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1 Introduction

As a new kind of topological gapless system, Weyl semimetal was proposed about ten years
ago [1], which has drawn much attention in recent yesrs [2]. Up to now, Weyl semimetals
have been identified in the laboratory in the TaAs family [3–6], YbMnBi2 [7] (Type-I Weyl
semimetal) and MoxW1−xTe2 [8–10] (Type-II Weyl semimetal) and so on.

Weyl semimetal, equipped with the so-called Weyl nodes, which can be presented as
the band crossings and behave like monopoles due to the Berry curvature in the three-
dimensional momentum space, can be obtained by breaking time-reversal symmetry or
spatial inversion symmetry. One Dirac node in the Dirac semimetal separates into two
Weyl nodes. Weyl nodes appear in pairs with opposite chirality. With chiral anomaly [11]
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in the system, anomalous transport coefficients caused by the anomaly are important to
physics in condensed matter physics as well as in high energy physics and astrophysics. This
may manifest itself by a negative longitudinal magneto-resistance (or positive magneto-
conductance). Furthermore, the mixed axial gravitational anomaly in NbP has also been
observed recently [12], which may open a new window in theoretical aspects.

Although the low energy excitation of some condensed matter systems can be de-
scribed by fundamental “relativistic” equations of motion [13], the condensed matter sys-
tems with nontrivial topological energy band structures show richer physical behaviors
than these equations themselves. As an example, a nontrivial Z2 topological invariant has
been demonstrated in the Dirac semimetal [14–18], namely Z2 Dirac semimetal, which can
not be understood straightforwardly from the relativistic Dirac equation.1 In the Z2 Dirac
semimetal with two Dirac nodes, similar to the chiral charge the Z2 topological invariant
can be defined as CZ2 = (C↑ − C↓) /2, where C↑, ↓ are the chiral charges of the spin-up and
spin-down Weyl fermions in the system. The Z2 anomaly2 is a spin analogy of the chiral
anomaly, and the presence of this extra anomaly brings interesting transport behavior.
The interplay between Z2 and chiral anomalies will lead to observable effects in magneto-
transport [20]. Since Weyl semimetal can be obtained from Dirac semimetal, it is fairly
interesting to investigate whether these far-reaching results still exist in Weyl semimetal.

The goal of this paper is to study the Weyl semimetals with both chiral anomaly and
Z2 anomaly which will be named as Weyl-Z2 (or equivalently Z2 Weyl) semimetal in the
following. One can start from a Z2 Dirac semimetal with two Dirac points and then split
each of these two Dirac points into Weyl points along the transverse direction. In this way
we obtain the Z2 Weyl semimetal, in which there exist two pairs of Weyl points and each
pair carry a nontrivial Z2 topological charge, thus each node carries both the chiral and
the Z2 charge. We can mark the chiral and Z2 charge of the four Weyl points as (±, ↑)
or (±, ↓) to distinguish them, where ± means the positive and negative of the chirality,
while the up (down) arrow means spin up (down). There is also another possibility for the
Weyl-Z2 semimetal, which has four nodes and carries pairs of topological charges as (±, 0)
and (0, ↑), (0, ↓), i.e. each pair of charges are completely independent.

By extending the Weyl semimetal model with one pair of Weyl nodes in [13, 21], two
different Z2 Weyl semimetal models with two pairs of Weyl/Z2 nodes will be studied in
section 2. In this model, each node carries both the chiral charge and Z2 charge. In contrast
to the three phases realized in the model with only one pair of Weyl nodes in [13, 21],
more phases exist in the current model when tuning the parameters in the system. More
precisely, we have: (a) Z2 Weyl semimetal phase, where four Weyl nodes exist in the
spectrum (referred to as the Weyl-Z2 phase in figure 1 and 3); (b) the critical point with

1Multi-Weyl semimetal [19] is another example.
2Note that with the name Z2 anomaly, it does not mean that the system possesses a Z2 symmetry.

It refers to the fact that there exists a new kind of Z2 topological charge. The extra new Z2 anomaly
is associated with another U(1) symmetry which is neither a vector gauge symmetry nor the axial gauge
symmetry. In the original paper [20], this extra anomaly has been named as Z2 anomaly, which indicates
this anomaly is associated with a symmetry that produces a Z2 topological charge and the symmetry is not
a Z2 symmetry.
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all of the nodes annihilated to one single Dirac point (critical-critical in figure 1 and 3),
which is different from the critical point of a Weyl semimetal [13, 21]; (c) topologically
trivial phase, in which there is no band touching point in the spectrum (trivial-trivial).
There are also four critical phases which are the phase transition lines between different
phases, including the following ones: (d) only one pair of the nodes annihilate to a critical
point while the other pair of nodes corresponds still exist (Weyl/Z2-critical). Depending
on which two nodes with opposite charges (both the chiral charge and the Z2 charge)
annihilate, there are two types of phases in this category. If the other pair of nodes vanish
and form a gap, we obtain another two critical phases, i.e. (e) critical-trivial. Depending
on which two nodes with opposite charges form a gap, there are also two kinds of phases
in this category. We also have two more interesting phases (f) one pair of the nodes vanish
to form a gap while the other pair of nodes still exist (Weyl/Z2-trivial). Again depending
on which two nodes with opposite charges form a gap, there are two kinds of phases in this
category. We will show them in subsections 2.1.1 and 2.2.1.

The physical picture above in the weak coupling regime is clear from the energy spec-
trum. What about an inherently strongly coupled system where the concept of quasipar-
ticle is not applicable? AdS/CFT makes it possible to build a holographic model which
can describe the physical properties in the strong coupling regime for the topological phase
transition that occurred in the weakly coupling regime. Recently, a holographic Weyl
semimetal with one-pair of Weyl nodes was built in [21, 22]. Several transport parame-
ters including negative magnetoconductivity [23], odd viscosity [24], axial Hall conductiv-
ity [25], AC conductivity [26], chiral vortical effect [27] have been studied. People also
investigated the exotic surface state [28], topological invariants [29, 30], non-local physical
quantities [31, 32], disorder and momentum dissipation effects [33, 34], phase transitions
to insulators [35, 36], topological nodal line semimetals [37, 38] and so on. These works
are quite suggestive to the physics of strongly coupled gapless topological states of matter
and more details can be found in a recent review [39].

Based on these developments, we will construct a holographic model to study the
strongly coupled Weyl-Z2 semimetal with two pairs of Weyl/Z2 nodes. We will solve the
model at zero temperature and study all its solutions which give rise to all different phases
which are also presented in the weak coupling regime. We will also calculate the transport
parameters by the Kubo formula at both finite and zero temperature, i.e. anomalous Hall
conductivity (σAHE) and Z2 anomalous Hall conductivity (σZ2AHE), which can be regarded
as the order parameters of the topological phase transitions. We shall show that the
holographic model shares both features of the two weakly coupled Weyl-Z2 semimetals.
This model can also be reduced to the model with only one pair of Weyl nodes in [21] in
the limiting case.

This paper is organized as follows. In section 2 we construct two effective field theory
models of the Weyl-Z2 semimetals with two pairs of Weyl/Z2 nodes which encodes the
chiral anomaly and Z2 anomaly. In section 3, we study a holographic model of the Weyl-Z2
semimetal where all different phases are uncovered and the analogy to the weakly coupled
theory is discussed. Order parameters of the topological phase transition are calculated at
both finite and zero temperatures. Section 4 is devoted to conclusions and discussions.
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2 Weyl-Z2 semimetal from effective field theories

Weyl semimetals are gapless topological states of matter that possess nontrivial chiral
charge. Usually Weyl nodes appear in pairs with opposite chiral charge ±1. The topological
charge of a node in a Weyl semimetal can be calculated by the integral of the Berry
curvature in the three dimensional momentum space. Usually the topological charge should
be ±1, however, there exist the so-called multi-Weyl semimetal states where the topological
charge for each node could be ±n with an integer n greater than 1.

Recently, a novel kind of gapless topological states of matter with a non-trivial Z2
topological charge has been considered in [20] and [40]. Z2 charge is a spin analog of the
chiral charge, which is defined by CZ2 = (C↑ − C↓) /2, where C↑, ↓ are the chiral charges of
the spin-up and spin-down Weyl fermions in the system. Quite similar to the chiral charge,
this Z2 charge measures the difference between the spin up and spin down fermions with
same chiral charges. This definition is quite similar with the definition of the spin-Chern
numbers in a two dimensional quantum spin Hall insulator [20]. The Dirac semimetal
with a topological Z2 charge has been constructed in [20] where there are two Dirac nodes
separated along a direction in the momentum space.3 They have also demonstrated that
in Dirac semimetals with two Dirac nodes, there exists a corresponding Z2 anomaly, which
is closely analogous to the chiral anomaly. Z2 anomaly related transport properties have
also been studied in [20], e.g. the Z2 anomalous Hall conductivity. As mentioned in the
introduction, there is also another possibility for the Weyl-Z2 semimetal, with four nodes
carrying pairs of charges as (±, 0) and (0, ↑), (0, ↓).

In this paper we focus on a generalization of the Weyl semimetal state, which is a
topological semimetal system possessing both the chiral and Z2 topological charges. In
this case, in the topological non-trivial phase, the nodes need to possess two non-trivial
topological charges, the chiral one and the Z2 one. This means we need to have at least
four nodes in the topological non-trivial phase. Thus we name this system the Weyl-
Z2 semimetal. In this section we will first present two Lorentz invariant Lagrangians for
the system with both topological charges. We then analyze its phase structure in a very
detailed way and we will finally check the anomaly by calculating the Ward identities.

2.1 Effective model for the Weyl-Z2 semimetal

In this subsection, we will build an effective field theory model for Weyl semimetals with
four nodes, and each node carries both the chiral and the Z2 topological charges. In next
subsection, we will construct another effective field theory model for Weyl semimetals with
four nodes with each node carrying either chiral topological charge or the Z2 topological
charge. The comparisons between these two models will be discussed.

We first review that for a Weyl semimetal with only one pair of Weyl nodes, the weakly
coupled quantum field theory Lagrangian is

L = ψ̄
(
i/∂ − e /A− γµγ5bµ +M

)
ψ , (2.1)

3A holographic model in the probe limit for the Z2 Dirac semimetal was studied recently in [41].
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which has been studied in [13, 42, 43] in which a single Dirac spinor and a time-reversal odd
axial gauge field were introduced. The term /X = γµXµ, where γµ are the Dirac matrices,
and γ5 = iγ0γ1γ2γ3 allows us to define left- or right-handed spinors via (1± γ5)ψ = ψL,R.
/A ≡ γµAµ, and Aµ is the electromagnetic gauge potential. Tuning the ratio between the
mass parameter M and the time-reversal symmetry breaking parameter b, there exists a
topological phase transition from a Weyl semimetal to a trivial semimetal across a critical
Dirac semimetal. Without loss of generality, we could choose ~b to be in the z direction so
that the two Weyl nodes in the Weyl semimetal phase are separated in the kz direction of
the momentum space.

Now our goal is to generalize this set-up to the Weyl-Z2 semimetal system. Note
that in the set-up above the spinor is a four-component spinor whose degrees of freedom
describe the chirality and particle-hole degrees, which could be seen from the calculation
of the Berry curvature where we treated half of the bands as occupied hole states. To
have also the Z2 topological charge, we need to introduce the spin degrees of freedom to
the system. In order to do so, we need to expand the four-component spinor ψ into an
eight-component spinor Ψ.

Following [20, 44], we consider the following eight-component spinor Ψ

Ψ = (Ψp,+,↑,Ψp,+,↓,Ψh,+,↑,Ψh,+,↓,Ψp,−,↑,Ψp,−,↓,Ψh,−,↑,Ψh,−,↓)T , (2.2)

where p, h in the index refers to particle-hole, ± refers to the chirality and the arrow means
spin up and down, which will be confirmed later by the definition of the operators of the
system.

For this eight-component spinor system, we need to also generalize the 4× 4 Gamma
matrices into 8× 8 matrices. Thus, we define the following new ‘Gamma’ matrices

Γµ ≡ γµ ⊗ I2 , Γ̂µ ≡ γµ ⊗ Z2 , Γ5 ≡ γ5 ⊗ I2 , Γ̂5 ≡ γ5 ⊗ Z2 , (2.3)

where µ = 0, 1, 2, 3, γµ is the 4× 4 Dirac Gamma matrix and

I2 =
(

1 0
0 1

)
, Z2 =

(
1 0
0 −1

)
. (2.4)

Note that in four space-time dimensions, for eight-component spinors we should have eight
Gamma matrices, which are Γµ and Γ̂µ here. From the definition above, we could see
that Γµ is a direct generalization of the γµ to the eight-component system, while Γ̂µ is
more like a Z2 generalization of the γµ to the eight-component system. Γ5 defined above
is in fact −iΓ0Γ1Γ2Γ3 and Γ̂5 = −iΓ̂0Γ̂1Γ̂2Γ̂3 IZ with IZ = I4 ⊗ Z2. Here, ±1 in Z2
means spin up and down, respectively. We have {Γµ,Γν} =

{
Γ̂µ, Γ̂ν

}
= 2ηµνI8×8 and{

Γµ,Γ5} =
{

Γ̂µ, Γ̂5
}

= 0 . Now we can show that the first four components in (2.2) have
a positive chirality, while the remaining four components have a negative chirality. This
can be confirmed from the matrix Γ5, which is the chiral charge operator. The Z2 charge
operator is defined by a direct product of a 4 × 4 unit matrix with the Z2 matrix above.
With this definition, we can confirm the role of each component in the eight component
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spinor (2.2) under the Z2 charge. Therefore, the information of Z2 charge has been taken
into consideration in the eight-component spinor.

Motivated by [20] and [13, 42, 43], we consider the following Lagrangian as the field
theory model for the Z2 Weyl semimetal,

L = Ψ†
[
Γ0
(
iΓµ∂µ − eΓµAµ − ΓµΓ5bµ +M1I1 +M2I2

)
+ Γ̂0

(
eΓ̂µÂµ − Γ̂µΓ̂5cµ

)]
Ψ ,

(2.5)
where the ‘Gamma’ matrices are defined in (2.3). I1 and I2 are two diagonal matrices with
diagonal elements as I1 = diag (1, 0, 1, 0, 1, 0, 1, 0) and I2 = diag (0, 1, 0, 1, 0, 1, 0, 1). We
have introduced four gauge fields in (2.5). Aµ and bµ are the electromagnetic gauge field
and chiral gauge field with field strengths Fµν = ∂µAν − ∂νAµ, and F 5

µν = ∂µbν − ∂νbµ,
respectively. These two gauge fields contribute to the chiral anomaly. While Âµ is the
fictitious spin gauge field with field strength F̂ρσ = ∂ρÂσ − ∂σÂρ and cµ is the so-called
Z2 gauge field with field strength F̂ 5

ρσ = ∂ρcσ − ∂σcρ [20], both of which contribute to
the Z2 anomaly. Here b0 and c0 play the role of axial chemical potential and Z2 chemical
potential which breaks inversion symmetry, while bi and ci play the role of separation in
the momentum space which breaks time reversal symmetry.

The mass terms M1I1 and M2I2 are introduced in (2.5) to break the chiral and the
analog spin symmetry separately. The two masses M1 and M2 could be thought of the
gap in the degrees of freedom for spin up and down sector respectively. Comparing to the
model (2.1), M1 and b describe half of the degrees of freedom in this system, while M2 and
c describe the other half degrees of freedom in this system. Also note that in this section
we work in the convention of the metric with most minus sign while in the next section
with most plus sign.

In the following, we consider the Weyl-Z2 semimetal system with the Lagrangian above.
Similar to the Weyl semimetal case, in the Weyl-Z2 semimetal system the parameter bµ
denotes the separation of the Weyl nodes in the momentum space while cµ denotes the
separation of the nodes with opposite Z2 charges in the momentum space. Here we choose
bµ = bδzµ and cµ = cδyµ, i.e. the two separations are in different spatial directions, in order
to make the physics more clear. We could as well choose the two separations in the same
spatial direction, which we leave for future consideration.

With the choice of bµ and cµ above, we could calculate the energy spectrum of (2.5)
from the Hamiltonian of the system. The eight eigenvalues of the Hamiltonian are (2.5) are

E1 = ±

√
b2z + c2

y + k2
y + k2

z +M2
1 ± 2

√
2bzcykykz + c2

y

(
k2
y +M2

1

)
+ b2z

(
k2
z +M2

1
)
, (2.6)

E2 = ±

√
b2z + c2

y + k2
y + k2

z +M2
2 ± 2

√
−2bzcykykz + c2

y

(
k2
y +M2

2

)
+ b2z

(
k2
z +M2

2
)
.

In the above form, the two ‘±’ in the same E should be understood as independent choice
of either plus or minus. From (2.6), we note that both E1 and E2 depend on the gauge
fields b and c which are crucial for the topological charges. The mixing of b and c in the
spectrum lead to that the nodes carry both the chiral U(1) and the analog spin Z2 charges.
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We will analyze the phase structure of spectrum (2.6) in the following in detail. Before
that note that a different while closely related set-up for the multi-Weyl semimetal has
been studied in [19]. In that set-up, there could still be only one pair of Weyl nodes, but
the Weyl nodes could have integer monopole charges larger than 1 and the low energy
dispersion around the Weyl nodes is anisotropic.4 In the multi-Weyl semimetal system,
a non-abelian anomaly exists [19]. Here we have two pairs of Weyl nodes and each Weyl
node has both the chiral charge Z2 charge to be ±1. Thus, in summary they are focusing
on a single pair of Weyl nodes with additional monopole charge n > 1, and the effective
field theory displays a U(1)A×SU(2) non-Abelian anomaly, while in our case, we have two
pairs of nodes with the U(1)A anomaly and an extra Abelian Z2 anomaly.

2.1.1 Phase diagram from the field theory model

In this subsection, we analyze the phase behavior of the energy spectrum (2.6) obtained in
the last subsection. Recall that in the Weyl semimetal case, depending on the relative values
of b and M , there are two phases and one critical point. Here with a fixed “unimportant”
parameter c/b,5 the system would still depend on two dimensionless parameters M1/b and
M2/c, thus, the phase diagram would be two dimensional. Phase boundaries would be lines
on the phase diagram plane and the phase transition lines would intersect at a particular
critical point. We will show that depending on the values of M1/b and M2/c, there will be
four distinct phases and four phase transition lines and one critical point.

Apparently the four bands in E1,2 of (2.6) with positive signs within the square root
are gapped bands and in the following we focus on the other four bands which may produce
interesting structure, i.e. the four bands that pick the negative sign within the square root.
For these four bands, depending on the values of b, c, M1 and M2, the minimum values of
E1,2 could be either zero or larger than zero, thus the system could have crossing nodes or
be in a gapped state for different parameters.

The behavior of the spectrum as a function of ky and kz in the nine different phases
is summarized in figure 1, where kx is fixed to be zero. Note that a nonzero kx would
immediately gap the system thus the crossing nodes in the figure are still nodes in the
three dimensional momentum space. We explain in detail the four different phases, four
phase transition lines and one critical point in the following.

• The Weyl-Z2 phase. When bothM1 andM2 are smaller than
√
b2 + c2, we obtain the

spectrum in figure 1(b) with four nodes at (kx, ky, kz) =
(

0 ,± c
√
b2+c2−M2

1√
b2+c2 ,± b

√
b2+c2−M2

1√
b2+c2

)
and

(
0 , ± c

√
b2+c2−M2

2√
b2+c2 , ∓ b

√
b2+c2−M2

2√
b2+c2

)
. For this phase, a small perturbation in the

mass terms would not gap the system. This belongs to a topologically nontrivial phase
with four nontrivial nodes. Different from the Weyl semimetal case, here we define a set

4A holographic model for this type of mulitiple Weyl semimetal has been studied in [45].
5The “unimportance” refers to the fact that c/b only affects the phase structure quantitatively. Different

from the effect of tuning M1/b and M2/c, tuning c/b has no qualitative effects in the phase structure of the
system.
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of topological charges with two components as (n1, n2), where n1 = ±1 gives the chiral
charge of the nodes and n2 = ↑ or n2 = ↓ gives the Z2 charge of the nodes.

Note that in order to calculate the topological charges using the Berry curvature in this
case, we need to first project the eight component spinor into a four component spinor, e.g.
to calculate the chiral charge, we project the negative energy eigenstate of the Hamiltonian
to a four component spinor composed of the (1,3,5,7)-th component of the full spinor
while to calculate the Z2 charge, we need to project the negative energy eigenstate to the
four component spinor with the (1,2,3,4)-th component of the original spinor. With this
definition, the four nodes in this phase would have topological charges (+, ↑),(−, ↑),(+, ↓)
and (−, ↓), respectively. With this viewpoint, we can view the four nodes as two pairs of
Weyl nodes with opposite Z2 charges between the two pairs of nodes or we can as well view
the four nodes as two pairs of Z2 nodes with opposite chiral charges between the two pairs.
Here we emphasize again that in this system we have multiple nodes, but it is different
from the multi-Weyl semimetal state mentioned above in which there could be only two
nodes but with each node possess a topological number larger than 1.

• The two Weyl/Z2-critical phases. Without loss of generality, we fix b, c and tune
M1,M2 to obtain different phases. When we increase M1 (or M2) from (a) in figure 1, two
nodes with opposite topological charges (both the chiral charge and the Z2 charge) would
annihilate and form a critical Dirac node with topological charge (0, 0) and the other pair
of nodes stay the same. That is, the two nodes with topological charges (1, 1) and (−1,−1)
(or (1,−1) and (−1,+1))6 would annihilate to a trivial Dirac node. Note that it is not
that each pair of the Weyl nodes (or Z2 nodes) annihilate into a critical Dirac point. This
is because in this case the Dirac point would have a chiral charge of 2 which is not allowed
in this system and only nodes with opposite topological charges could annihilate.

Depending on which pair of nodes annihilate, there are two different cases, each having
one critical point and a pair of nodes with opposite topological charges. Thus this case
corresponds to two phase transition lines in the phase diagram and is shown in (d) of
figure 1. As shown in (d) we now have a pair of Weyl/Z2 nodes and a critical Dirac point.

• The two Weyl/Z2-gap phases. Continue to increase M1 (or M2) from the two
Weyl/Z2-critical phases transition lines in (d) of figure 1, the critical Dirac node becomes
a trivial gap. This corresponds to two Weyl/Z2-gap phases, as shown in the case (f) in
figure 1.

• The double critical point. Again starting from the two Weyl/Z2-critical phases
transition lines in (d) of figure 3 and this time we increase the other parameter M2 (or
M1), the two Weyl/Z2 nodes will also reach a critical point at which two nodes merge into
one Dirac node. The system at this special set of parameters M1/b and M2/c corresponds
to a double critical point on the phase diagram, which is the case (b) in figure 1.

• The two gap-critical phases. Starting from the double critical point, we increase
one of the mass parameters M1 (or M2), the fourfold-degenerate critical point would split

6Note that we can also use ±1 to represent spin up and down, respectively.
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(a) Weyl-Z2. (b) Double critical. (c) Gap-gap.

(d) Weyl/Z2-critical. (e) Critical-gap or gap-critical. (f) Weyl/Z2-gap.

Figure 1. The energy spectrum of (2.5) as a function of ky and kz with kx = 0. From (a) to (f):
the system has two pairs of Weyl/Z2 nodes (a), two critical Dirac nodes (b), fully gapped (c), one
pair of Weyl/Z2 nodes and a critical Dirac node (d), a critical Dirac node and a gapped phase (e)
and the case of one pair of Weyl/Z2 nodes with two gapped bands (f). Note that at nonzero kx the
system is gapped, thus the crossing nodes are still nodes in the three dimensional momentum space.

into a pair of gapped bands and one twofold-degenerate critical point. These two phases
correspond to two phase transition lines between the gap-gap phase and the Weyl/Z2-gap
phase. This spectrum is shown in (e) of figure 1.

• The gap-gap phase. Starting from any of the two gap-critical phases transition lines
above, and increase the other mass parameters, the system would become fully gapped and
is in a gap-gap phase with all bands gapped. This corresponds to (c) in figure 1.

The behavior of the energy spectrum with different parameters is summarized in fig-
ure 1. There are nine different phases (including critical points or phase transition lines)
which could be summarized into six types of spectrums: including the Weyl-Z2, Weyl/Z2-
critical, Weyl/Z2-gap, critical-critical, critical-gap, and gap-gap phases.

The phase diagram can be plotted with the dimensionless parameters

M̂1 = M1/b , M̂2 = M2/c (2.7)

and c/b. Now we have three dimensionless parameters, and the full phase diagram should
be three dimensional in general. The phase diagrams with different M̂1 and M̂2, for c/b = 1
and for generic c/b (from c/b = 1/2 to c/b = 2) are shown in the left and right figures
of figure 2 respectively. In the left plot of figure 2, the red point is the critical point at
which both pairs of Weyl/Z2 nodes become critical in figure 1(c). The blue dashed lines
correspond to the phase transition lines where one pair of the Weyl/Z2 nodes annihilates
into a critical Dirac node while the other pair of Weyl/Z2 nodes still exists in figure 1(d).
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Figure 2. The phase diagram of the system (2.5) with three dimensionless parameters M̂1 = M1/b,
M̂2 = M2/c and c/b = 1 (left plot) and generic c/b (right plot). The red point is the double crit-
ical point at which both two pairs of nodes become critical (figure 1b). The vertical blue dashed
lines correspond to the critical phase in which two of the Weyl/Z2 nodes with opposite topological
charges annihilate into a critical Dirac node while the other two nodes still exist (figure 1d, the
Weyl/Z2-critical phases). The vertical purple dotted lines correspond to the phase where one pair of
Weyl/Z2 nodes annihilate into a critical Dirac point while the other pair becomes gapped (figure 1e,
the critical-gap phase). The left-down portion of the phase corresponds to the phase in figure 1a.
The up left and down right portions of the phase diagram correspond to the phase in figure 1f (i.e. the
Weyl/Z2-gap phase). The up right portion of the phase diagram corresponds to the phase figure 1c.
The surfaces in the right figure are formed by moving the corresponding critical lines in the param-
eter space of c/b. The blue point is to show the location of the double critical point where c/b = 2.

The purple dot lines correspond to another type of phase transition lines where one pair of
Weyl/Z2 nodes annihilates into a critical Dirac point while the other pair of Weyl/Z2 node
becomes gapped in figure 1(e). The down-left portion of the phase diagram corresponds
to the phase in figure 1(b). The up-left and down-right portions of the phase diagrams
correspond to the phase in figure 1(f). The up-right portion of the phase diagram corre-
sponds to the phase figure 1(a). In comparison to the location of the double critical point
(red point in figure 2) for c/b = 1, we also plot the location of the double critical point for
c/b = 2 by the blue point in figure 2.

As could be seen from the spectrum, there is an exchange symmetry of b and c in the
system (2.5). When we increase c/b, the location of the critical point (M1

b )c increases and
(M2
c )c decreases. We could also see that the two critical values of (M1

b )c, (M2
c )c exchange

for c/b = 2 and c/b = 1/2. The critical point in the left figure of figure 2 becomes the red
critical line in the c/b space in the right figure. The two critical lines become surfaces in
the three-dimensional phase space, which are shown as separate surfaces in figure 2.

2.2 Another effective model for Weyl-Z2 semimetal with four nodes

The nodes in the model (2.5) carry topological charges (+1,+1), (−1,−1) and
(+1,−1), (−1,+1). There is also another possibility that the nodes carry topological
charges of (+1, 0), (−1, 0) and (0,+1), (0,−1) which will be constructed in this subsection.
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Starting from the eight-component field (2.2) and the Gamma matrix defined in (2.3),
we consider the Lagrangian

L = Ψ†
[
Γ0
(
iΓµ∂µ − eΓµAµ − ΓµΓ5bµI1 +M1I1 +M2I2

)
+ Γ̂0

(
eΓ̂µÂµ − Γ̂µΓ̂5cµI2

)]
Ψ ,

(2.8)
where the ‘Gamma’ matrices are defined in (2.3). Four gauge fields and two mass terms
in (2.5) have the same physical meaning with those in (2.5). Different from (2.5), the axial
gauge fields here only couple to one half of the eight-components of the field, which leads
to different structure in the spectrum and different topological charges for each node, while
qualitatively similar phase diagrams, as we shall show in the following.

Similar to the case in (2.5), we choose bµ = bδzµ and cµ = cδyµ. Now the eight eigenvalues
of the Hamiltonian of (2.8) are

E1 = ±

√(
bz ±

√
k2
z +M2

1

)2
+ k2

y , E2 = ±
√(

cy ±
√
k2
y +M2

2

)2
+ k2

z . (2.9)

Compared to (2.6), now the spectrum (2.9) is much simpler due to the decoupled effect of
b and c. More precisely, here E1 only depends on b and M1 while E2 only depends on c

and M2. E1 can be viewed as the energy spectrum of (2.1), with M replaced by M1, and
E2 can be viewed as the energy spectrum of (2.1) with ~b and M replaced by ~c and M2.

Compared to the Weyl-Z2 semimetal described by (2.5), here we have two independent
pairs of nodes along ky and kz directions. Each pair of them carry topological charges
(1, 0), (−1, 0) or (0, 1), (0,−1). One could identify the pair of nodes in one direction as
carrying the charge of chiral U(1), while the nodes in the other direction as carrying the
charge of the analog spin Z2 charge. For simplicity, one could also name this kind of Weyl
semimetal with four nodes as a Weyl-Z2 semimetal. In the following, we shall show that
our holographic realization of Weyl-Z2 semimetals with four nodes share both features of
these two field theory models.

In the following we will analyze the phase behavior of this field theory model following
the same strategy as in subsection 2.1.1.

2.2.1 Phase diagram from the field theory model

In this subsection, we analyze the phase behavior of the energy spectrum (2.9) obtained in
the last subsection. Similar to the case in (2.5), the system depends on two dimensionless
parameters M1/b and M2/c. Compared to (2.5), the crucial difference is that since two
axial gauge fields couple to a four-component fermion separately, the value c/b does not
play any role in the phase diagram as we will show in the following.

We also fix kx to be zero and plot the spectrum as a function of ky and kz. Now
the topological charges for these two models are different, nevertheless we still describe the
corresponding phases with the same name, which is still reasonable in this model. The nine
phases are summarized in figure 3, which could be summarized into six types of spectrum:
including the Weyl-Z2, Weyl/Z2-critical, Weyl/Z2-gap, critical-critical, critical-gap, and
gap-gap phases.

In the following we follow the same order to explain in detail these phases.
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(a) Weyl-Z2. (b) Double critical. (c) Gap-gap.

(d) Weyl/Z2-critical. (e) Critical-gap or gap-critical. (f) Weyl/Z2-gap.

Figure 3. The energy spectrum (2.6) as a function of ky and kz with kx = 0. From (a) to (f): the
system has two pairs of Weyl/Z2 nodes (a), two critical Dirac nodes (b), fully gapped (c), one pair
of Weyl/Z2 nodes and a critical Dirac node (d), a critical Dirac node and a gapped phase (e) and
the case of one pair of Weyl/Z2 nodes with two gapped bands (f).

• The Weyl-Z2 phase. When both M1 < b and M2 < c, we obtain the spectrum as
shown in figure 3(a). From (2.9), the four nodes at the plane of kx = 0 are

(kz, ky) =
(
±
√
b2 −M2

1 , 0
)
, (kz, ky) =

(
0 , ±

√
c2 −M2

2

)
, (2.10)

This is a topologically nontrivial phase with four nontrivial nodes with topological charges
(1, 0), (−1, 0) and (0, 1), (0,−1). This is a different model with four Weyl nodes from the
one in the last subsection. Here not all the nodes carry two topological charges. Each pair
of them only carries one type of nontrivial topological charge.

• The two Weyl/Z2-critical phases. When we fix b, c and increase M1 (or M2) from
figure 3(a), two nodes would annihilate to form a critical Dirac node and the other pair
of nodes stay the same. The difference is that now the location of the nodes will depend
on the values of M1,M2. In this case, we now have a pair of Weyl/Z2 nodes and a critical
Dirac point, as shown in figure 3(d).

• The two Weyl/Z2-gap phases. When we further increase M1 (or M2) from the two
Weyl/Z2-critical phases transition lines in figure 3(d), the critical Dirac node becomes a
trivial gap. This corresponds to two Weyl/Z2- gap phases, as shown in figure 3(f).

• The double critical point. When we start from the two Weyl/Z2-critical phases tran-
sition lines in figure 3(d) and increase the other parameter M2 (or M1), the two Weyl/Z2
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Figure 4. The phase diagram of the system (2.8) with three dimensionless parameters M̂1 = M1/b,
M̂2 = M2/c and c/b = 1 (left) and generic c/b (right). The red point is the double critical point at
which both two pairs of nodes become critical (figure 3(b)). Obviously the phase diagram does not
depend on the value of c/b.

nodes will also reach a critical point at which two nodes merge into one Dirac node. The
system at this special set of parameters M1/b and M2/c corresponds to a double critical
point on the phase diagram, which is shown in figure 3(b).

• The two gap-critical phases. When we start from the double critical point in fig-
ure 3(b) and increase one of the mass parameters, the fourfold-degenerate critical point
would split into a pair of gapped bands and one twofold-degenerate critical point. These
two phases correspond to two phase transition lines between the gap-gap phase and the
Weyl/Z2-gap phase as shown in figure 3(e).

• The gap-gap phase. When we start from any of the two gap-critical phase transition
lines above, and increase the other mass parameter, the system would become fully gapped
and is in a gap-gap phase with all bands gapped. This corresponds to figure 3(c).

Similar to the phase diagram shown in figure 2, we could plot the full phase diagram
of (2.8). Different from the one shown in figure 2, now M̂1c and M̂2c does not depend on
c/b. This is due to the fact that the axial gauge fields are completely decoupled in (2.8).
There is also an exchange symmetry of b and c in the system. The critical point in the
left figure of figure 4 becomes the red critical line in the c/b space in the right figure. It is
easy to see that the phase diagram does not depend on c/b, i.e. the critical line is exactly
along the z-direction, which is different from the behavior in figure 2. The two critical
lines become surfaces in the three-dimensional phase space, which are shown as separate
surfaces in figure 4.

In summary, both of the two effective models (2.5) and (2.8) could describe the Weyl-
Z2 semimetal with four nodes, although the underlying mechanisms are different. Four
Weyl/Z2 nodes are obtained by splitting the eight-fold degeneracy of one node with different
process. For the model (2.5), each node carries both the chiral and Z2 topological charges,
while for the model (2.8), each node carries either the chiral or the Z2 topological charge. In
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section 3 we shall construct a holographic model for Weyl semimetals with four nodes which
shares both features of these two different weakly coupled field theory models. Before that
we will discuss the anomalous transports and Ward identities of the field theory models.

2.3 Anomalous transports and Ward identities

When tuning M1/b and M2/c, we have phase transitions in the system (2.5) and (2.8), as
has already been discussed above. Note that there is no symmetry breaking during this
process, and this phase transition is a topological quantum phase transition. Analogous to
the Weyl semimetal case, the order parameters of this topological phase transition can be
taken to be the anomalous Hall conductivity and Z2 anomalous Hall conductivity. To be
specific, these two conductivities of a quantum many body systems can be computed via
the Kubo formula

σij = lim
ω→0

1
iω
〈JiJj〉R , σ̂ij = lim

ω→0

1
iω
〈ĴiJj〉R , (2.11)

where σij is the electric conductivity, Ji is the electric current, while σ̂ij is the spin conduc-
tivity which characterizes the spin current Ĵi generated under the electric field. To obtain
these currents, we need to perform the functional derivative of the low energy effective
action Seff of in the weak coupling regime with respect to the gauge fields.

We shall focus on the system (2.8) whose low energy effective theory could be easily
constructed while the discussion for the other model (2.5) has been done in the four-
component description in [20] and physically the results should be equivalent to the eight-
component description, which we will not discuss here and refer the readers to [20]. Starting
from the low energy effective action Seff in (A.1), the currents are

J µ = e2

π2 bνε
µναβ∂αAβ + e2

π2 cνε
µναβ∂αÂβ , Ĵ µ = e2

π2 bνε
µναβ∂αÂβ + e2

π2 cνε
µναβ∂αAβ .

(2.12)
More details on the derivation can be found in the appendix A.

To calculate the anomalous transport, we shall focus on the low energy effective theory.
As in [21], for the un-gapped phases, the Lagrangian for the low energy field theory of (2.8)
is

L(a) = Ψ†
[
Γ0
(
iΓµ∂µ − eΓµAµ − ΓµΓ5beffêµI1

)
+ Γ̂0

(
eΓ̂µÂµ − Γ̂µΓ̂5ceffêµI2

)]
Ψ , (2.13)

where ~beff = beffêz =
√
b2 −M2

1 êz and ~ceff = ceffêy =
√
c2 −M2

2 êy. The parameter regimes
for this Lagrangian are M1 ≤ b and M2 ≤ c. The four nodes of the Weyl-Z2 phase in
figure 3(a) are simply given by (kz, ky) = (±beff, 0) and (kz, ky) = (0,±ceff). The Weyl/Z2-
critical phase in figure 3(d) and double critical phase in figure 3(b) can also be realized by
varying the parameters M1,M2, b and c. We can calculate the anomalous transports as
follows. The currents in (2.12) now become

~J = e2

π2
~beff × ~E + e2

π2~ceff ×
~̂
E ,

~̂J = e2

π2
~beff × ~̂

E + e2

π2~ceff × ~E , (2.14)
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where ~E is the electric field while ~̂
E = −∇Â0 is the analogous generalization for the

fictitious spin gauge fields [20, 22]. Thus, we can calculate the anomalous Hall conductivity
σAHE (from the expression of σij) and the Z2 anomalous Hall conductivity σZ2AHE (from
the expression of σ̂ij) accordingly. In the Weyl-Z2 semimetal phase, we have

σAHE ∝ beff , σZ2AHE ∝ ceff . (2.15)

From these two expressions, we note that if we choose c = M2 = 0 (or b = M1 = 0), there
will be only one pair of Weyl/Z2 nodes left and we could see that σAHE ∝

√
b2 −M2

1 (or

σZ2AHE ∝
√
c2 −M2

2 ), which is consistent with [22]. Setting both these two anomalous
transport coefficients to be zero, we obtain the critical value of

(
M1
b

)
c

=
(
M2
c

)
c

= 1.
For the Weyl/Z2-gap phase in figure 3(f), we have the low energy effective Lagrangian

L(b) = Ψ†
[
Γ0 (iΓµ∂µ − eΓµAµ +M1effI1) + Γ̂0

(
eΓ̂µÂµ − Γ̂µΓ̂5ceffêµI2

)]
Ψ , (2.16)

where M1eff =
√
M2

1 − b2, and ~ceff = ceffêy =
√
c2 −M2

2 êy.7

The parameter region for model (2.16) are M1 ≥ b and M2 ≤ c. The critical-gap or
gap-critical phase in figure 3(e) and double critical phase in figure 3(b) can also be realized
by changing these parameters. In this phase, only the current which is constructed by the
~ceff exist. Thus, we have σZ2AHE ∝ ceff, and σAHE vanishes.

For the gap-gap phase in figure 3(c), the effective Lagrangian (where the parameter
region for model (2.16) are M1 ≥ b and M2 ≥ c) is

L(c) = Ψ†
[
Γ0 (iΓµ∂µ − eΓµAµ +M1effI1 +M2effI2)

]
Ψ , (2.17)

where the matrix element in the mass matrixes are M1eff =
√
M2

1 − b2 and M2eff =√
M2

2 − c2, respectively. The double critical phase in figure 3(b) can also be realized with
M1 = b,M2 = c. In this case both of the anomalous transports vanish.

Finally, we calculate the Ward identities for the currents using Fujikawa’s method [46]
and the corresponding Ward identities are

∂µJ µ = 0 ,
∂µĴ µ = 0 ,

∂µJ µ5 = e2

32π2 ε
µναβ

(
3FµνFαβ + F 5

µνF
5
αβ + 3F̂µνF̂αβ + F̂ 5

µνF̂
5
αβ

)
+ 2iΨ̄M1I1Γ5Ψ ,

∂µĴ µ5 = e2

32π2 ε
µναβ

(
6FµνF̂αβ + 2F 5

µνF̂
5
αβ

)
+ 2iΨ̄M2I2Γ5Ψ ,

(2.18)

where J µ is the electric current, Ĵ µ is the spin current. J µ5 is the axial current which has
a chiral anomaly, while Ĵ µ5 is the so-called Z2 axial current which indicates the imbalance
of the Z2 charge.The form of J µ5 , Ĵ µ5 and the details for the calculation can be found in
appendix A. These Ward identities include the information of the anomalies of the system
and they are crucial for the strongly coupled holographic model to be built in the next
section, for which we need to check whether these identities are correctly realized.

7Note that another effective theory can be obtained by keeping the mass matrix M2effI2 with M2eff =√
M2

2 − c2 and ~beff = beffêz =
√
b2 −M2

1 êz.
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3 Holographic model for the Weyl-Z2 semimetal

In this section, we will consider the strong coupling regime of the Weyl-Z2 semimetal
using holography. We first construct the holographic model in section 3.1 and then solve
it at zero temperature in section 3.2. We find that there exist nine different kinds of
solutions in holography, and they correspond to the strong coupling version of the nine
phases discussed in the previous section. In section 3.3, we calculate the free energy of
the system and show that the free energy of the system changes smoothly when crossing
the phase transition point, which means that this phase transition is a continuous one.
We calculate the anomalous transport coefficients in section 3.4 according to the Kubo
formula. Different behavior indicating phase transitions has been obtained. The difference
between the two anomaly effects is also checked by varying the parameters in the system.

3.1 Set-up

In this section, we will extend the model [21, 22, 39] for strongly coupled Weyl semimetal
with a single pair of Weyl points to a holographic model for the Weyl-Z2 semimetal and
study its full phase diagram. In holography the symmetries of the boundary field theory
can be mapped to the symmetries of gauge fields in the AdS space. Compared to the
holographic Weyl semimetal mode, for the Weyl-Z2 semimetal system [20] we have an ad-
ditional analogue spin current which could be broken by the new mass term. Therefore, we
need to introduce one more U (1) gauge fields and one more scalar field to the holographic
Weyl semimetal system in [21, 22].

More precisely, the electromagnetic U(1) symmetry and the axial U(1) symmetry are
represented by the AdS bulk gauge field Va with the field strength F = dV and the
gauge field Aa with the field strength F5 = dA respectively. We shall also introduce two
additional gauge fields: V̂a with the field strength F̂ = dV̂ and Âa with the field strength
F̂5 = dÂ to encode the fictitious spin U(1) symmetry and the Z2 axial U(1) symmetry.
The anomalies are represented by Chern-Simons terms in the action. Axial symmetry
(including Z2 symmetry) can be broken by the mass terms. The deformation of the mass
term in field theory model is introduced via the non-normalizable mode of the scalar field.
With all the ingredients above, we consider the following holographic model

S =
∫
d5x
√
−g
[ 1

2κ2

(
R+ 12

L2

)
− 1

4F
2 − 1

4 F̂
2 − 1

4F
2
5 −

1
4 F̂

2
5

+ α

3 ε
abcdeA5

µ

(
F 5
bcF

5
de + 3FbcFde + 3F̂bcF̂de + F̂ 5

bcF̂
5
de

)
+ 2β

3 εabcdeÂ5
µ

(
3F̂bcFde + F̂ 5

bcF
5
de

)
− (DaΦ1)∗(DaΦ1)− (D̂aΦ2)∗(D̂aΦ2)− V (Φ1,Φ2)

]
, (3.1)

where κ2 is the five dimensional gravitational constant, L is the AdS radius, α and β are
the Chern-Simons coupling constants. Scalar field Φ1 (or Φ2) is charged only under the
axial (or Z2 axial) gauge symmetries. The gauge covariant derivatives are

DaΦ1 = (∂a − iq1Aa) Φ1 , D̂aΦ2 =
(
∂a − iq2Âµ

)
Φ2 , (3.2)
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where q1 and q2 are the axial charges of the scalar operators. The scalar field potential is

V (Φ1,Φ2) = m2
(
|Φ1|2 + |Φ2|2

)
+ λ1

2 |Φ1|4 + λ2
2 |Φ2|4 . (3.3)

The scalar bulk mass is set to be m2L2 = −3. With this choice, the dual operator has
dimension three and its source has dimension one. In the following we set 2κ2 = L = 1.

To obtain the corresponding currents and the equations of motion, we can expand
the four gauge fields around the asymptotically AdS background. From the first order in
fluctuations we can obtain the expressions for the currents from the boundary terms as

Jµ = lim
r→∞

√
−g
(
Fµr + 4αεrµνρσAνFρσ + 4βεrµνρσÂνF̂ρσ

)
,

Ĵµ = lim
r→∞

√
−g
(
F̂µr + 4αεrµνρσAνF̂ρσ + 4βεrµνρσÂνFρσ

)
,

Jµ5 = lim
r→∞

√
−g
(
Fµr5 + 4α

3 εrµνρσAνF
5
ρσ + 4β

3 εrµνρσÂνF̂
5
ρσ

)
,

Ĵµ5 = lim
r→∞

√
−g
(
F̂µr5 + 4α

3 εrµνρσAνF̂
5
ρσ + 4β

3 εrµνρσÂνF
5
ρσ

)
.

(3.4)

After using the on-shell condition, we would obtain the Ward identities as

∇µJµ = 0 ,
∇µĴµ = 0 ,

∇µJµ5 = lim
r→∞

[
− α

3 ε
rνρστ

(
3FνρFστ + F 5

νρF
5
στ

)
− β

3 ε
rνρστ

(
3F̂νρF̂στ + F̂ 5

νρF̂
5
στ

)
− iq1 [Φ∗1(DrΦ1)− Φ1(DrΦ1)∗]

]
,

∇µĴµ5 = lim
r→∞

[
− α

3 ε
rνρστ

(
3F̂νρFστ + F 5

νρF̂
5
στ

)
− β

3 ε
rνρστ

(
3FνρF̂στ + F̂ 5

νρF
5
στ

)
− iq2

[
Φ∗2(D̂rΦ2)− Φ2(D̂rΦ2)∗

] ]
.

(3.5)

The vector-like currents are conserved as expected. If we set α = β = − 3e2
32π2 , these

identities are exactly the same as (2.18) from the weakly coupled theory. Note that the
Ward identities do not depend on the coupling constants of the system, therefore it is
expected that this holographic model describes a strong interacting Weyl-Z2 semimetal
model with two pairs of Weyl-Z2 nodes. However, we could not conclude if our holographic
model describes the strongly coupled model for (2.5) or (2.8). In fact, the holographic model
shares both essential features of (2.5) and (2.8). To precisely calculate the topological
charges of the nodes in the dual field theory, one has to study the dual Fermionic spectrum
functions in the holographic model following [29] and we leave it for future work.

Note that we need to distinguish between semimetals with multiple nodes and the so-
called multi-Weyl semimetal. The former has multiple nodes but each with a topological
charge of ±1 while the latter might have only one pair of Weyl nodes, but each node
possesses a topological charge of ±n with integer n > 1. Multi-Weyl semimetals could be
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produced from a Lagrangian with an additional SU(2) non-Abelian field whose components
need to be appropriately chosen [19]. A different special choice of the configuration of the
SU(2) field could also give a Weyl-Z2 semimetal. In holography, the multi-Weyl semimetal
have been discussed also in [45].

3.2 Zero temperature solutions for different phases

We shall focus on the zero temperature physics to obtain the gravitational solutions which
correspond to different quantum phases. Our Ansatz for the zero temperature solution is

ds2 = u
(
−dt2 + dx2

)
+ fdy2 + hdz2 + dr2

u
,

A = Azdz , Φ1 = φ1 ,

Â = Cydy , Φ2 = φ2 ,

(3.6)

where fields u, f, h,Az, Cy, φ1 and φ2 are functions of the radial coordinate r. The corre-
sponding equations of motion are shown in appendix B and we have seven independent
ordinary differential equations for seven fields to solve. Note that here the axial gauge fields
are along y and z directions, which is similar to the weakly coupled model (2.8). However,
as we shall show later, our holographic model also has features of the model (2.5) because
the two gauge fields talk to each other through gravitons in the bulk.

If we consider the case q1 = q2 and λ1 = λ2, we have a permutation symmetry for the
background solutions

(f,Az,Φ1)↔ (h,Cy,Φ2) . (3.7)
Note that this permutation symmetry is due to the fact that the Chern-Simons factors do
not enter the equations of motion. However, at the level of fluctuations we do not have
such symmetry.

Close to the UV boundary we can introduce the holographic analogues of the mass
terms and the time-reversal breaking parameters by imposing the following boundary con-
dition

lim
r→∞

rΦ1 = M1 , lim
r→∞

rΦ2 = M2 , lim
r→∞

Az = b , lim
r→∞

Cy = c . (3.8)

M1 andM2 correspond to the sources of the dual scalar operator Ψ†Γ0M1Ψ and Ψ†Γ0M2Ψ,
b corresponds to the source of the chiral current Ψ†Γ0ΓµΓ5Ψ and c corresponds to the source
of the Z2 current Ψ†Γ̂0Γ̂µΓ̂5Ψ, respectively. We shall study the phase diagrams of strong
interacting Z2-Weyl semimetals by turning on these four sources.

Due to the symmetries at zero temperature, we can choose M̂1,M̂2 and c/b as the
tunable parameters of the system where we define

M̂1 = M1
b
, M̂2 = M2

c
. (3.9)

In the following we shall study the bulk geometry and its free energy by tuning these
parameters in the UV. For the case with q1 = q2, λ1 = λ2, from the permutation symme-
try (3.7) the geometry with boundary values (M̂1, M̂2, c/b) should be the same as the case
(M̂2, M̂1, b/c). Thus, at the background level, the solutions are symmetric to each other.
Specifically when c/b = 1, the geometries are symmetric under interchange of M1 ↔ M2.
We will comment more on these properties when we discuss the phase diagrams.
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Critical solution. In the weakly coupled theory, we have the critical points as shown in
figure 3(b). The corresponding geometry in the holographic system is as follows.

The near horizon solution of the critical point is the following Lifshitz-type solution,
which is an exact solution of the system

ds2 = u0r
2
(
−dt2 + dx2

)
+ dr2

u0r2 + f0r
2α1dy2 + h0r

2α2dz2 ,

Az = rα1 , φ1 = φ10 ,

Cy = rα2 , φ2 = φ20 .

(3.10)

This solution has an anisotropic Lifshitz-type symmetry (t, x) → s (t, x) , y → sα1y, z →
sα2z. The constants {u0, f0, h0, α1, α2, φ10, φ20} in (3.10) can be fully determined by the
values of the parameters m, q1, q2, λ1, λ2. In the following we will consider the simple case
q1 = q2 and λ1 = λ2 where we have the permutation symmetry (3.7). In this case we have
α1 = α2, f0 = h0, φ10 = φ20, and (3.10) can be simplified as

ds2 = u0r
2
(
−dt2 + dx2

)
+ dr2

u0r2 + f0r
2α1

(
dy2 + dz2

)
,

Az = Cy = rα1 , φ1 = φ2 = φ10 .

(3.11)

As the solution above is an exact solution of the system, we need to introduce irrelevant
deformations to flow this geometry to asymptotic AdS in the UV. In the IR the leading
order solutions with irrelevant perturbations are

u = u0r
2
(
1 + δu1 r

β1 + δu2 r
β2
)
,

f = f0r
2α1

(
1 + δf1 r

β1 + δf2 r
β2
)
,

h = f0r
2α1

(
1 + δh1 r

β1 + δh2 r
β2
)
,

Cy = rα1
(
1 + δc1 r

β1 + δc2 r
β2
)
,

Φ2 = φ10
(
1 + δφ21 r

β1 + δφ22 r
β2
)
,

Az = rα1
(
1 + δa1 r

β1 + δa2 r
β2
)
,

Φ1 = φ10
(
1 + δφ11 r

β1 + δφ12 r
β2
)
.

(3.12)

Taking into account the scaling symmetries of the system, There are only two free
parameters above: the sign of δa1 and the value of δa2. Only the choice of δa1 = −1 could
flow the geometry to asymptotic AdS boundary. The value of δa2 can be freely changed to
tune the value of c/b and we could obtain the corresponding critical values ofM1c/b,M2c/c.
Note that in the holographic Weyl semimetal system, there is no free parameter for the
critical solution as the system has a fixed critical point. However, here we have a free
tuning parameter of c/b in the phase diagram and the critical point becomes a critical line
in the three dimensional phase diagram. Thus here we have an extra tuning parameter to
tune the value of c/b and the critical values ofM1c/b,M2c/c will be determined accordingly.

We fix q = q2 = 1 and λ1 = λ2 = 1/10 without loss of generality. We
have {u0, f0, φ10, α1, β1, β2} → {2.367, 0.347, 1.081, 0.410, 1.063, 1.203}, {δu1, δf1 =
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Figure 5. The critical value M̂1 = M1/b (red), M̂2 = M2/c (blue) as a function of c/b.

δh1, δc1, δφ11 = δφ21} → {8.111, -27.212, 1, 8.832}δa1 and {δu2, δf2 = −δh2, δc2, δφ12 =
−δφ22} → {1.624, 262.692, − 1, 68.031}δa2. Shooting to c/b = 1 we have the critical
values M̂1 = M̂2 = 0.908, which corresponds to the critical phase where four Weyl-Z2
nodes gather together as a single Dirac point.

As shown in figure 5, we numerically check that at large c/b the value of M̂2 approaches
0.744 where only one pair of Weyl nodes exist as in [21], while M̂1 goes to the same
value when c/b tends to zero which is consistent with the permutation symmetry of the
background. These two curves cross at c/b = 1. This physical picture is qualitatively
similar to the case in the weak coupling theory.

Next we will give the two phase transition solutions which correspond to the case where
only one pair of Weyl-Z2 nodes annihilates to form a critical point. In the phase diagram
these two solutions correspond to critical lines with fixed value of c/b.

Weyl/Z2-critical. In the weak coupling case, we have the two phase transition surfaces
where only one pair of Weyl/Z2 nodes annihilates to a critical Dirac point while the other
pair of nodes still exists, as shown in figure 1(d) and 3(d). For this case it is critical along
one of the ky and kz directions while the two Weyl/Z2 nodes are separated along the other
direction.

For the one of these two phase transition surfaces with the critical node in the ky
direction, the holographic solution in the IR takes the following form

u = h = u0 r
2
(
1 + δu1 r

β1
)
,

f = f0 r
2α1

(
1 + δf1 r

β1
)
,

Cy = rα1
(
1 + δc1 r

β1
)
,

Φ2 = φ20
(
1 + δφ21 r

β1
)
,

Az = a0 + φ2
10

√
u0

qa2
0πr

α1
exp

(
−2q1a0
r
√
u0

)
,

Φ1 = φ10

(1
r

)1+α1
2

exp
(
− q1a0
r
√
u0

)
.

(3.13)

– 20 –



J
H
E
P
1
2
(
2
0
2
1
)
0
6
6

Weyl-Z2

σ

A>0, σ


Z>0

Trivial
σ

A=σ


Z=0

σ

A=0, σ


Z>0

Weyl/Z2-Trivial

σ

A>0, σ


Z=0

Weyl/Z2-Trivial

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

M

1

M

2

Figure 6. The holographic phase diagram at c/b = 1. σ̃A = σAHE
8αb and σ̃Z = σZ2AHE

8βc . The red point
corresponds to the critical phase, at which both σ̃A and σ̃Z are zero. The blue dashed lines and the
purple dotted lines are two critical phase transition lines with one critical Dirac node and one pair
of nodes or gapped bands. The up-left and bottom-right parts of the phase diagram correspond
to the Weyl/Z2-Trivial phase where σ̃Z = 0 while σ̃A 6= 0 or σ̃Z 6= 0 while σ̃A = 0. The right-up
part in the phase diagram corresponds to the phase where both the Weyl-Z2 nodes vanish and
become trivial, i.e. the Trivial-Trivial phase. In this case, both of the two anomalous transport
coefficients vanish. The left-down part in the phase diagram corresponds the phase where all of the
four Weyl-Z2 nodes exist. In this phase, σ̃A 6= 0 and σ̃Z 6= 0 (i.e. the Weyl-Z2 phase).

With the above choice of q1, q2, λ1, λ2, we have {u0, f0, φ20, α1, β1} → {1.468, 0.344, 0.947,
0.407, 1.315} and {δu1, δf1, δφ21, δc1} → {0.021, −0.159, 0.057, 0.0078}c0. Only the sign
of c0 is important for the flow and it has to be chosen to be c0 = −1. There are only two
shooting parameters a0 and φ10 corresponding to a surface in the three dimensional phase
diagram. When we fix c/b we will get a curve in the planeM1/b-M2/c. Shooting to c/b = 1
we obtain the (dashed blue) curve as the critical line with two endpoints as (0.908, 0.908)
and (0, 0.744) in the phase diagram of the M̂1-M̂2 plane (see figure 6).

For the case where it is critical along the kz direction while the Weyl-Z2 nodes are in
the ky direction, we could just change the IR solution (3.13) by (f,Az,Φ1) ↔ (h,Cy,Φ2)
following the permutation symmetry and integrating the system to the boundary, we obtain
another (dashed blue) curve with two endpoints as (0.908, 0.908) and (0.744, 0) on the M̂1-
M̂2 plane at c/b = 1.

Critical-trivial. In the weak coupling system, when only one pair of Weyl/Z2 nodes
annihilate to a critical Dirac point while the other pair of nodes becomes a trivial gap, we
have two critical-trivial phases, as shown in figure 3(e). In holography, the corresponding
geometry for the case where the y direction is critical while the z direction is trivial is as
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follows. In the IR, we have

u = u0 r
2
(
1 + δu1 r

β1 + a2
0 δu2 r

2a1−2 + φ2
10 δu3 r

2φ11
)
,

f = f0 r
2α1

(
1 + δf1 r

β1 + a2
0 δf2 r

2a1−2 + φ2
10 δf3 r

2φ11
)
,

h = u0 r
2
(
1 + δu1 r

β1 + a2
0 δh2 r

2a1−2 + φ2
10 δh3 r

2φ11
)
,

Cy = rα1
(
1 + δc1 r

β1 + a2
0 δc2 r

2a1−2 + φ2
10 δc3 r

2φ11
)
,

Φ2 = φ20
(
1 + δφ21 r

β1 + a2
0 δφ2 r

2a1−2 + φ2
10 δφ3 r

2φ11
)
,

Az = a0 r
a1 ,

Φ1 =
√

3
λ1

+ φ10 r
φ11 ,

(3.14)

where

a1 =
−u0λ1 (1 + α1) +

√
24q2u0λ1 + u2

0λ
2
1 (1 + α1)2

2u0λ1
,

φ11 =
−u0(3 + α1) +

√
24u0 + u2

0(3 + α1)2

2u0
.

(3.15)

Because the backreactions of Az and Φ1 to the other fields are of the same order,
here we have considered higher order terms in the expansion to make the solution
more accurate. With the choice of q1 = q2 = 1 and λ1 = λ2 = 1/10, we have
{u0, f0, φ20, α1, β1} →{6.914, 0.393, 2.137, 0.44, 0.886}, {δu1, δf1, δφ21} →{-2.496, 28.77,
-2.659}δc1, {δu2, δf2, δh2, δc2, δφ2} → {0.032, 0.024, -0.3, 0.005, -0.0004}, {a1, φ11} →
{2.312, 0.236} and {δu3, δf3, δh3, δc3, δφ3} →{-2.241, 6.885, -2.241, 0.988, -1.053}. Note
that δc1 has to be set to −1. The two shooting parameters are (a0, φ10). Therefore, for
fixed c/b we obtain the solutions as a curve in the plane M̂1-M̂2. We find that when
shooting to c/b = 1, this solution only exist at M̂1 ≥ 0.908, which is the (dashed red)
curve in the phase diagram of figure 6. Similar to the case above, the solution for the
case that the z direction is critical while y direction is trivial can be obtained by replacing
(f,Az,Φ1)↔ (h,Cy,Φ2). Shooting to c/b = 1 we obtain the red dashed curve in figure 6.

In the following we study the remaining three kinds of solutions (for four phases), each
of the phase corresponds to a two dimensional regime in the phase diagram for fixing c/b
and to a three dimensional regime in the three dimensional phase diagram.
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Weyl-Z2. This kind of solution corresponds to the phase with four Weyl nodes as shown
in figure 3(b). The leading order geometry in the IR has the following form,

u = f = h = r2 ,

Cy = c0 + πc2
0 φ

2
20

16r exp
(
−2q2c0

r

)
,

Φ2 = φ20

√
π

8

(
q2c0
r

) 3
2

exp
(
−q2c0

r

)
,

Az = a0 + πa2
0 φ

2
10

16r exp
(
−2q1a0

r

)
,

Φ1 = φ10

√
π

8

(
qa0
r

) 3
2

exp
(
−q1a0

r

)
.

(3.16)

We have shooting parameters a0, c0, φ10, φ20. Either a0 or c0 can be fixed to be one and we
have three independent parameters. Shooting to c/b = 1 and with our choice of q1, q2, λ1, λ2
we find that this kind of solutions indeed only exists in the area of the left-down portion in
figure 6. In particular, we can start from (3.16) with the choice a0 = c0, q1 = q2, λ1 = λ2
and φ10 = φ20, a straight line which connects the point (0, 0) and the point (0.908, 0.908)
in the phase diagram of figure 6 can be obtained. Varying the shooting parameters, we can
obtain different M̂1 and M̂2 in the phase diagram.

Topological trivial solutions. In the case without any Weyl/Z2 nodes as shown in
figure 3(a), the dual theory is topologically trivial along all the spatial directions.

In the IR the leading order geometry of the holographic solution takes the following
form

u =
(

1 + 3
8λ1

+ 3
8λ2

)
r2 ,

f = h = r2 ,

Cy = c0r
−1+

√
1+

48q22λ1
3λ2+λ1(3+8λ2) ,

Φ2 =
√

3
λ2

+ φ20r
−2+

√
2+ 4λ1λ2

3λ2+λ1(3+8λ2) ,

Az = a0r
−1+

√
1+

48q21λ2
3λ2+λ1(3+8λ2) ,

Φ1 =
√

3
λ1

+ φ10r
−2+

√
2+ 4λ1λ2

3λ2+λ1(3+8λ2) .

(3.17)

We take a0, c0, φ10, φ20 as the shooting parameters. Similar to the previous case, we have
three independent parameters and we find this kind of solution only exists in right-up
portion of the phase diagram of figure 6.

Weyl/Z2-trivial phases. This kind of solution corresponds to two phases where only
one pair of Weyl/Z2 nodes becomes trivial while the other pair of nodes still exists as
shown in figure 3(f). For the case where the y-direction is topologically nontrivial while
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the z-direction is topologically trivial, we have the leading order holographic solution in
the IR to be

u =
(

1 + 3
8λ1

)
r2 ,

f = h = r2 ,

Cy = c0 + π c2
0 φ

2
20

16r exp
(
−2c0

r

)
,

Φ2 = φ20

c
1/2
0 q

1/2
2 u

3/4
0 r3/2

√
2
π

(
1 + 3

8λ1

)
exp

(
− c0q2
r
√
u0

)
,

Az = a0r
−1+

√
1+

48q21
3+8λ1 ,

Φ1 =
√

3
λ1

+ φ10 r
2
(
−1+

√
3+20λ1
3+8λ1

)
.

(3.18)

With three independent shooting parameters since one of {a0, c0} could be set to be 1 and
with our choice of q1, q2, λ1, λ2, we find that this kind of solution only exists in the right-
down part in the phase diagram of figure 6. The solution for the case that the z direction is
critical while the y direction is trivial can be obtained by replacing (f,Az,Φ1)↔ (h,Cy,Φ2).
Thus we can obtain the left-up part in the phase diagram figure 6 from the procedure above.

3.2.1 Phase diagram

We have shown the solutions for the nine different phases in the previous subsection.
From the IR solution, we could tell if the solution has Weyl/Z2 nodes or if the solution is
gapped from the IR behavior of the fields. As mentioned before, the anomalous transports
σAHE and σZ2AHE calculated from the Kubo formula in (2.11) can be employed as the
order parameters. To be specific, we have a non-zero σAHE and σZ2AHE in the Weyl-Z2
phase, while the σZ2AHE (or σAHE) vanishes when we reach the Weyl/Z2-critical phase
or the Weyl/Z2-gap phase. Both of the two anomalous transports become zero at the
critical-critical point, the critical-gap phase and the gap-gap phase. In section 3.4, we will
confirm the corresponding phase for each solution from the behavior of the two anomalous
Hall transport coefficients σAHE and σZ2AHE from the holographic calculation. In this
subsection, we will first summarize the phase diagram of the nine different phases/critical
lines/critical points above.

The phase diagram for the holographic model with c/b = 1 is shown in figure 6, which
is two dimensional in the parameter space. One can relax the ratio c/b = 1 to arbitrary
value and a three dimensional phase diagram can be obtained in the space of c/b, M̂1, M̂2,
as shown in figure 7. At each value of c/b, the qualitative behavior of the phase diagram
is the same. The nontrivial dependence on the value of c/b is similar to the behavior of
weakly coupled result in the right plot of figure 2. This is due to the fact that in the
holographic model the two axial gauge fields are no longer independent.

In the following we shall focus on the case of c/b = 1 and point out the different behav-
ior of the anomalous transport coefficients in different phases, whose detailed calculations
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Figure 7. The phase diagram of the system with three dimensionless parameters M̂1 = M1/b,
M̂2 = M2/c and c/b. The red points are critical points forming a line, the blue dashed (blue solid
for c/b = 1) lines correspond to the critical phases where one pair of the nodes annihilate to a Dirac
point while the other pair of nodes still exist (so is the light blue surface) and the purple dotted
(purple solid at c/b = 1) lines correspond to another critical phase where one pair of nodes vanish
and become trivial while the other pair becomes a Dirac node (so is the light purple surface).

will be presented in the next section. In section 3.3 we will compute the free energy across
the phase separations to show that the phase transition is a continues phase transition.

In figure 6, the red point corresponds to the solution with the near horizon solu-
tion (3.12). This phase is a critical phase, both σAHE and σZ2AHE are equal to zero. The
blue dashed lines and the purple dotted lines are two phase transition lines with two nodes
annihilating into a Dirac point and two nodes left. The left blue dashed lines correspond
to the solution in the IR regime in (3.13) with σZ2AHE = 0 while σAHE 6= 0 and vice verse.8

Note that, the solution (3.18) corresponds to the phase where only one pair of Weyl/Z2
nodes exist while the other pair of nodes vanish. This phase is located at the up-left part
in the phase diagram of figure 6 (i.e. the Weyl/Z2-Trivial phase). Using the permutation
symmetry of the system we can plot the right blue dashed line which corresponds to
σZ2AHE 6= 0 but σAHE = 0, i.e. the Weyl/Z2-Critical phase. The right-down part can also
be obtained through the permutation symmetry and we can only measure the anomalous
Hall conductivity in this phase.

The right purple dotted line corresponds to the solution with the near horizon geome-
try (3.14) with both σZ2AHE and σAHE equal to zero (i.e. the Critical-Trivial phase). The
left purple dotted line can be obtained by the permutation symmetry. The right-up part in
the phase diagram corresponds to the phase where all the nodes vanish and become trivial,

8Note that we use dimensionless transports σ̃A and σ̃Z in figure 6 and figure 8. The dimensionless
transports are defined in (3.24).
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Figure 8. The phase diagram of the holographic system at c/b = 1/2 (left) and c/b = 2 (right)
respectively.

which has the near IR solution in (3.17). In this case, both of the two anomalous transport
coefficients vanish, i.e. the Trivial-Trivial phase. The left-down part in the phase diagram
has the near IR solution in (3.16) where all of the Weyl/Z2 nodes exist. In this phase, both
σAHE and σZ2AHE are nonzero, i.e. the Weyl-Z2 phase. Finally we have a non-vanishing
σZ2AHE and a zero σAHE for the solution (3.18). It corresponds to the right-down part in
the phase diagram of figure 6.

We show the phase diagram at c/b = 1/2 and c/b = 2 in figure 8. As expected from
the permutation symmetry, these two plots are symmetric under M̂1 ↔ M̂2. We can see
that when c/b changes, the qualitative behavior of the phase diagram does not change.

Several different paths in the phase diagram in figure 8, say left panel without loss
of generality, can lead to different phase transition processes. For the diagonal line, the
system undergoes a phase transition from the Weyl-Z2 to the Weyl/Z2-trivial phase. While
for the lines parallel to the vertical axis, the system may undergo different phase transition
processes according to the location of the critical point. For example, when we study
the line with fixed M̂1 = 0.5, the system goes from the Weyl-Z2 to the other Weyl/Z2-
trivial phase. While a fixed M̂1 = 1.3 gives a Weyl/Z2-trivial to the trivial-trivial phase
transition. When the fixed value approaches the critical point, say M̂1 = 1, we would have
a more interesting process. The system first goes from the Weyl/Z2-trivial phase to the
trivial-trivial phase then to the other Weyl/Z2-trivial phase. While at M̂1 = (M̂1)c, the
system goes from the Weyl/Z2-trivial to the other Weyl/Z2-trivial phase with increasing
M̂2. Similar processes happen when we consider the path parallel to the horizontal axis. In
this paper, we only study the diagonal line without loss of generality. Note that the different
Weyl/Z2-trivial/critical phases are characterised by different anomalous Hall conductivities
being zero, i.e. σAHE = 0 or σZ2AHE = 0.

3.3 Free energy across the phase transition

In this section, we compute the free energy of this system to study whether the phase
transition is a continuous one. To compute the free energy, we need to be careful with the
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Figure 9. The free energy density as a function of M1/b = M2/c at c/b = 1 across the critical
point. The red dot is the value of free energy density at the critical red dot in figure 6. We found
the phase transition is continuous and smooth (up to our numerical accuracy).

boundary counter-terms. The renormalized action is

Sren = Son-shell + SGH + Sc.t., (3.19)

where Son-shell is the bulk on-shell action, which can be calculated from (3.1) in section 3.1,
and SGH is the Gibbons-Hawking term SGH = 2

∫
r=r∞ d

4x
√
−γK. The counter-term Sc.t. is

Sc.t. =
∫
r=r∞

d4x
√
−γ

(
−6−|Φ1|2−|Φ2|2 + 1

2
(
logr2

)[1
4F

2 + 1
4F

2
5 + 1

4 F̂
2 + 1

4 F̂
2
5 +

+|D1µΦ1|2 + |D2µΦ2|2 +
(1

3 + λ1
2

)
|Φ1|4 +

(1
3 + λ2

2

)
|Φ2|4 + 2

3 |Φ1|2|Φ2|2
])
, (3.20)

where γµν is the induced metric on the boundary r = r∞, K is the trace of the extrinsic
curvature with K = γµν∇µnν and nν is the outward unit vector normal to the boundary.
Compared to the counter-terms in [21], an extra term |Φ1|2|Φ2|2 appears.

The bulk on-shell action is calculated to be a total derivative, which is

Son-shell =
∫
d4xdr

√
−gL = −

∫
d4x

r∞∫
0

dr
(
u′
√
fhu

)′
. (3.21)

With the field expansion near the UV boundary r →∞, we obtain the free energy density
Ω
V = − 1

V Sren = 1
8(8M1O1 + 8M2O2 + 2b2M2

1 q
2
1 + 2c2M2

2 q
2
2 + 4bη1 + 4cη2 + λ1M

4
1 + λ2M

4
2 ),

as shown in (C.3). The detailed calculations are shown in appendix C. In the case that all
the Z2 parameters vanish, i.e. q2 = λ2 = M2 = c = 0, this goes back to the same result as
the holographic Weyl semimetal system [22].

As an example, in figure 9, we show the free energy as a function of M1/b = M2/c

at c/b = 1 close to the phase transition point. We find that though the solutions in the
IR are not continuous, however, the result of the free energy indicates that the quantum
phase transition is a continuous one. Similar feature of phase transition also appears
in [21, 37, 38]. We could expect that in general the system is smooth when it crosses the
phase transition.
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3.4 Order parameters: σAHE, σZ2AHE and finite temperature solutions

In this subsection, we will give the detailed calculations of the anomalous transports σAHE
and σZ2AHE. Since the system undergoes a topological phase transition, we employ the
anomalous transports as the order parameters [21]. We then calculate the anomalous
transports at both zero temperature and finite temperature. The different behavior of the
anomalous transports confirms the phase diagrams in previous sections. To be general, we
start with the finite temperature solution with the Ansatz as follows

ds2 = −udt2 + vdx2 + fdy2 + hdz2 + dr2

u
,

A = Azdz , Φ1 = φ1 ,

Â = Cydy , Φ2 = φ2 ,

(3.22)

where all the fields are functions of the radial coordinate r. Compared to the zero tempera-
ture case (3.6), we have introduced another field v in the Ansatz. At T = 0 we have u = v.
We will calculate the anomalous Hall conductivities which serve as the order parameters
of the phase transition.

The conductivities of a quantum many body system can be computed via the Kubo
formula which is shown in (2.11). In holography, the current-current retarded correlators
can be computed by studying the fluctuations of the gauge fields dual to the currents around
the background with in-falling boundary conditions near the horizon. We consider the
following six fluctuations to calculate the correlators: δVx = e−iωtvx (r), δVy = e−iωtvy (r),
δVz = e−iωtvz (r), δV̂x = e−iωtv̂x (r), δV̂y = e−iωtv̂y (r) and δV̂z = e−iωtv̂z (r). The detailed
calculations for the anomalous Hall transport coefficients can be found from appendix E,
and it turns out only the fluctuations δVx, δVy, δV̂z are crucial for the Hall conductivities.
For both nonzero and zero temperatures we have

σAHE = 8αAz (r0) , σZ2AHE = 8βCy (r0) . (3.23)

In the following we shall focus on the dimensionless normalized transport coefficients

σ̃A = σAHE
8αb , σ̃Z = σZ2AHE

8βc . (3.24)

In figure 10 we plot σ̃A as a function of M̂1 = M̂2 with different temperatures when
c/b = 1. We have chosen q1 = q2 = 1 and λ1 = λ2 = 1/10. Note that in this case from the
permutation symmetry, σ̃Z has exactly the same behavior. From figure 10, we note that
at zero temperature, both σ̃A and σ̃Z are nontrivial in the regime M1/b = M2/c < 0.908
which indicates the existence of a topological phase transition from the phase with two
pairs of Weyl/Z2 nodes at the region M1/b = M2/c < 0.908 to the fully gapped phase
at the region M1/b = M2/c > 0.908. At finite temperature case, when we decrease the
temperature, σAHE approximates closer to zero in the trivial phase.

Next, we will comment on the effect of c/b on σAHE and σZ2AHE. In the weakly coupled
case we have σ̃A ∝

√
1− M2

1
b2 and σ̃Z ∝

√
1− M2

2
c2 in the Weyl-Z2 semimetal phase. If we fix

M̂1 = M̂2 but with c/b 6= 1, we will have different behaviors of the anomalous transport,
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Figure 10. For M̂2 = M̂1 = M̂ , the order parameter σ̃ (we use σ̃ as the axis label for simplification
since σ̃A = σ̃Z = σ̃) as a function of M̂ at T/b = 0.06, 0.05, 0.04 and zero temperature with c/b = 1.
q1 = q2 = 1 and λ1 = λ2 = 1/10.

i.e., if c/b > 1 at M̂1 = M̂2, we have σ̃A > σ̃Z . We will study the effect of c/b on σAHE
and σZ2AHE in holography. In figure 11 we plotted σAHE and σZ2AHE at zero temperature
but with fixed c/b = 2. Here we fix q1 = q2 = 1 and λ1 = λ2 = 1/10 and in this case
the critical values for the critical phase are (M1/b)c = 1.0044 and (M2/c)c = 0.8414,
respectively. From the plot in figure 11, we note that in both phases, we have σ̃A > σ̃Z ,
which is qualitatively the same as the behavior in the weak coupling regime. Compared to
figure 10, these transport behaviors indicate that the system is in the phase where one pair
of Weyl/Z2 nodes becomes a gap while the other pair of nodes still exists, i.e. the left-up
part in the right plot of figure 8. We also note that at the interval M̂1 = M̂2 > 0.7872, the
nonzero anomalous Hall conductivity slowly decreases while σZ2AHE already becomes zero
at this interval. This behavior is similar to the weakly coupled result. Note that different
from the weakly couple case, the critical value of M̂2 here is smaller than that of the critical-
critical point. This could naturally be seen from the phase diagram figure 8 where the blue
dotted phase transition line is curved instead of being straight as in weakly coupled case.

We will shortly comment on the effect of the couplings q1, q2, λ1, λ2 on σAHE and
σZ2AHE. As is mentioned in [24, 27], at very low temperature, the temperature scaling
behavior of anomaly transports in the quantum critical region can be determined from the
anisotropic scaling exponents α1 and α2. We also note that the scaling exponents are fully
determined by the parameters q1, q2, λ1, λ2. Hence, if we change these parameters, we will
have different locations of the critical values and different transport behaviors. Different
from the weakly coupled case, these parameters are taken to be free parameters in hologra-
phy. Previous studies on the effect of q, λ to the critical value of phase transition have been
done in [21, 25], and here we focus on their effect on Hall conductivities. For simplicity, we
choose two groups of parameters where q1 = 1, λ1 = 1/10, q2 = 3/2, λ2 = 1/2 and q1 = 1,
λ1 = 1/10, q2 = 13/10, λ2 = 45/100 separately. With these two group of parameters we
calculate the two anomalous transport coefficients at T = 0.04. The corresponding results
are shown in figure 12. Numerically it is not difficult to get a finite temperature solutions
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Figure 11. The anomalous transport as a function of M̂ ≡ M̂1 = M̂2, i.e. along the diagonal line
in the phase diagram from left bottom to right top, at zero temperature with c/b = 2. q1 = q2 =
1, λ1 = λ2 = 1/10.

for this case, while the zero temperature solution is extremely difficult with q1 6= q2 and
λ1 6= λ2. Nevertheless we could estimate the location of the critical point M̂1,2c in the
following way.

Firstly, we calculate the critical values of M̂c at q1 = q2 = 3/2 and λ1 = λ2 = 1/2 from
the zero temperature solution in (3.11), which are obtained to be (M̂1)c = (M̂2)c = 0.837.
For the case where q1 = q2 = 13/10 and λ1 = λ2 = 45/100, we find that the critical
values are (M̂1)c = (M̂2)c = 0.881. Remember that for q1 = q2 = 1 and λ1 = λ2 = 1/10
we have (M̂1)c = (M̂2)c = 0.908. As shown in [21, 25], with a relatively larger q, the
critical value M̂c becomes smaller and the effect of q is more important than the effect of
λ. Thus it is naturally expected that 0.837 < (M̂2)c < (M̂1)c < 0.908 at q1 = 1, λ1 =
1/10, q2 = 3/2, λ2 = 1/2 and 0.881 < (M̂2)c < (M̂1)c < 0.908 q1 = 1, λ1 = 1/10,
q2 = 13/10, λ2 = 45/100. Qualitatively, we can arrive at the conclusion by calculating
the solution in (3.16) which should approach the critical solution in certain limit. From
figure 12, we note that at very low temperature the two transports σ̃A, σ̃Z cross and for
large M̂ we have σ̃A > σ̃Z . We will show that this is another numerical evidence for the
conjecture about the temperature dependence of the anomalous transports found in [21, 27].
From the conjecture, the anomalous Hall conductivities are temperature dependent, which
are given by σ̃A ∝ Tα1 , and σ̃Z ∝ Tα2 . If α1 < α2, then we may deduce that σ̃A > σ̃Z near
the critical region as figure 12 shows. Actually, the value of α1 and the anisotropic scaling
exponent α2 for all of the parameters mentioned above can be calculated and we have
checked that for all these two groups of parameters α2 is indeed larger than α1. Strictly
speaking, a more general zero temperature solution (3.10) of the critical region is needed
where we can realize the different anisotropic scaling exponents (also the location of the
critical values) caused by different q1, q2 and λ1, λ2. A comparison is also needed with
the zero temperature weak coupling field theory, which will be left for future work. These
results show that the difference between the σ̃A and σ̃Z suffers form the contributions both
of the mass parameters M1,2 and the relative distance c/b of the nodes. It is interesting
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Figure 12. The transport parameters as a function of M̂ ( ≡ M̂1 = M̂2, i.e. the diagonal line in
the phase diagram.) at c/b = 1, T/b = 0.04, with q1 = 1, λ1 = 1/10, q2 = 3/2, λ2 = 1/2 (left), and
with q1 = 1, λ1 = 1/10, q2 = 13/10, λ2 = 45/100 (right).

to see whether these conclusions from holographic calculations can be verified by further
experiments.

4 Conclusion and discussion

In summary, we have studied two effective field theories for Weyl-Z2 semimetal which carry
different types of topological charges. They share similar phase diagrams but different
features. We have also built a holographic model for a Weyl-Z2 semimetal with two pairs
of Weyl/Z2 nodes, carrying Weyl and Z2 topological charges. The dual system has both
chiral anomaly and Z2 anomaly. The novel Z2 anomaly in the system indicates the non-
conservation of the Z2 charge in the presence of an external electric field, which is quite
similar to the chiral anomaly. The holographic model shares both features of the two
weakly coupled field theory models.

We found that the system can also have topological phase transitions between topolog-
ically nontrivial phases and trivial phases with the order parameters being the anomalous
Hall conductivity and the Z2 anomalous Hall conductivity. In the complete phase diagram,
there are nine phases/phase transition lines/critical points and we have obtained nine so-
lutions at zero temperature in the holographic model to correspond to these nine cases.
We calculated the anomalous Hall conductivity and the Z2 anomalous Hall conductivity in
the holographic model and found that these two transport parameters are non-vanishing
in the topological phases and both become zero at the trivial phase at zero temperature,
which indicates the existence of the topological phase transitions.

We also show the different behavior of σAHE and σZ2AHE and find that both of the
mass parameters and the relative distance of the nodes will contribute to the difference.
This can lead to observable effects in the measure of the magnetoconductivity and may be
checked in experiments in the future.

There are still some open questions that we would like to leave for future work. First,
the topological invariants in the holographic construction could in principle be calculated
using the method of [29] with appropriate bulk action for the probe fermions. With this
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calculation one could identify the topological charges of the nodes in the dual theory and
make precise connection to the weakly coupled theory. Second, we would like to mention
that in the process of our calculation of the anomalous transport in subsection 3.4, M̂1 = M̂2
is chosen for convenience. From the phase diagram we know that M̂1 can take different
values from M̂2, so this may lead to a more interesting picture and we leave this in a future
work. Finally, we could also try to work out the topological structure and the complete
phase diagram for the more general case with an extra SU(2) non-Abelian gauge field with
different types of components turned on.
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A The Ward identity from the field theory

In this appendix, we compute the ward identity of the theory (2.8). Here we take the mass
term as zero for simplicity since the contribution of the mass term can be added directly
after we obtain the desired expression. The massless action is

Seff =
∫
d4xΨ† (x) Γ0Γµ

[(
i∂µ − e

(
Aµ + SzÂµ

)
− Γ5bµI1 − SzΓ̂5cµI2

)]
Ψ (x) (A.1)

where ‘Gamma’ matrices are defined in (2.3). Here, Sz = Γµ−1Γ0−1Γ̂0Γ̂µ which is just
I8×8, we drop this in the following. Under the chiral and Z2 transformation

Ψ→ e−iα1θ1(x)Γ5I1/2−iα2θ2(x)Γ̂5I2/2Ψ ,

Ψ̄→ Ψ̄e−iα1θ1(x)Γ5I1/2−iα2θ2(x)Γ̂5I2/2 ,
(A.2)

where we follow the notations in Fujikawa’s [44, 46] that α1 ≡ ds1, α2 ≡ ds2, where
s1(s2) ∈ [0, 1] to parameterize the infinite sequence of the chiral(Z2) gauge transformations.
The theta functions are defined as θ1 (x) = 2bµxµ and θ2 (x) = 2cµxµ .

Then the action becomes

Seff =
∫
d4xΨ† (x) Γ0Γµ

[
i∂µ − e

(
Aµ + Âµ

)
− Γ5I1 (1− s1) bµ − Γ̂5I2 (1− s2) cµ

]
Ψ (x) .

We can define /D = Γµ
[
∂µ + ie

(
Aµ + Âµ

)
+ i (1− s1) bµΓ5I1 + i (1− s2) cµΓ̂5I2

]
, and

assume φn (x) satisfies /Dφn (x) = εnφn (x). We expand the Grassmann variables as
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Ψ (x) =
∑
n
cnφn (x), Ψ̄ (x) =

∑
n
φ∗n (x) c̄n where cn and c̄n are new Grassmann variables.

Then the infinitesimal transformation operator can be defined as

Unm = δnm − ds
i

2

∫
d4xφ∗n (x)

(
θ1 (x) Γ5I1 + θ2 (x) Γ̂5I2

)
φn (x) . (A.3)

Note that we have defined s1 = s2 = s without loss of generality.
The path integral Jacobian can be obtained immediately,

J = det
(
U−2

)
= e
−ids

∫
d4x
∑
n

φ∗n(x)(θ1(x)Γ5I1+θ2(x)Γ̂5I2)φn(x)
. (A.4)

Consider the quantity appearing in the exponential and we define the following

I1 (x) =
∑
n

φ∗n (x) Γ5I1φn (x) , I2 (x) =
∑
n

φ∗n (x) Γ̂5I2φn (x) . (A.5)

With the standard method of heat kernel regularization, we have

I1 (x) = lim
Λ→∞

∑
n

φ∗n (x) Γ5I1e
− ε

2
n

Λ2 φn (x) = lim
Λ→∞

∑
n

φ∗n (x) Γ5I1e
− /D2

Λ2 φn (x) ,

I2 (x) = lim
Λ→∞

∑
n

φ∗n (x) Γ̂5I2e
− ε

2
n

Λ2 φn (x) = lim
Λ→∞

∑
n

φ∗n (x) Γ̂5I2e
− /D2

Λ2 φn (x) ,
(A.6)

where

/D
2 = −DµDµ − (1− s)2 (bµbµ + cµc

µ) + i (1− s)
2 [Γµ,Γν ]

(
bµDνΓ5I1 + cµDνΓ̂5I2

)
+ ie

4 [Γµ,Γν ]
(
Fµν + F̂µν

)
+ i (1− s)

4 [Γµ,Γν ]
(
F 5
µνΓ5I1 + F̂ 5

µν Γ̂5I2
)
. (A.7)

Then we have

I1 (x) = lim
Λ→∞

∫
d4k

(2π)4 e
−
k2
µ

Λ2 trΓ5I1 exp
{(ikµ +Dµ)2

Λ2 + (1− s)2 (bµbµ + cµc
µ)

Λ2

− ie

4Λ2 [Γµ,Γν ]
(
Fµν + F̂µν

)
− i (1− s)

4Λ2 [Γµ,Γν ]
(
F 5
µνΓ5I1 + F̂ 5

µνΓ̂5I2
)

+ i (1− s)
2Λ2 [Γµ,Γν ]

[
bµ (ikν +Dν) Γ5I1 + cµ (ikν +Dν) Γ̂5I2

]}
,

I2 (x) = lim
Λ→∞

∫
d4k

(2π)4 e
−
k2
µ

Λ2 trΓ̂5I2 exp
{(ikµ +Dµ)2

Λ2 + (1− s)2 (bµbµ + cµc
µ)

Λ2

− ie

4Λ2 [Γµ,Γν ]
(
FµνF̂µν

)
− i (1− s)

4Λ2 [Γµ,Γν ]
(
F 5
µνΓ5I1 + F̂ 5

µν Γ̂5I2
)

+ i (1− s)
2Λ2 [Γµ,Γν ]

[
bµ (ikν +Dν) Γ5I1 + cµ (ikν +Dν) Γ̂5I2

]}
.

(A.8)

When Λ → ∞, only O
(

1
Λ4

)
or higher order can contribute to I1 (x) and I2 (x), therefore

only the term
{

[Γµ,Γν ]
(
Fµν + F̂µν

)}2
makes sense.
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Based on tr
(
Γ5I1ΓµΓνΓαΓβ

)
= 16iεµναβ , tr

(
Γ̂5I2ΓµΓνΓαΓβ

)
= 0 and

tr
(
Γ̂5I2Γ̂µΓ̂νΓ̂αΓ̂β

)
= 16iεµναβ , we have

I (x) = I1 (x) + I2 (x) = 1
32π2 ε

µναβ
[
FµνFαβ + F̂µνF̂αβ + FµνF̂αβ + F̂µνFαβ

]
. (A.9)

Integrate the fermionic part in the action, we have

Sθ = i

∫ 1

0
ds

∫
d4x [θ1 (x) I1 (x) + θ2 (x) I2 (x)] (A.10)

= ie

32π2

∫
d4x

[
εµναβθ1 (x)

(
FµνFαβ + F̂µνF̂αβ

)
+ θ2 (x)

(
FµνF̂αβ + F̂µνFαβ

)]
.

Integrating by parts and eliminating a total derivative term, we have Sθ in the Chern-
Simons form

Sθ =− e

4π2

∫
dtdrbµεµναβ

(
Aν∂αAβ+Âν∂αÂβ

)
− e

4π2

∫
dtdrcµεµναβ

(
Aν∂αÂβ+Âν∂αAβ

)
,

then the functional derivative of Sθ with respect to the gauge field Aµ would give the charge
current J µ, while the functional derivative with respect to the gauge field Âµ gives the
spin current Ĵ µ. They are

J µ = − δS

δAν
= e2

2π2 bνε
µναβ∂αAβ + e2

2π2 cνε
µναβ∂αÂβ ,

Ĵ µ = − δS

δÂν
= e2

2π2 bνε
µναβ∂αÂβ + e2

2π2 cνε
µναβ∂αAβ ,

(A.11)

then we have

∂µJ µ = e2

32π2 ε
µναβ

(
FµνF

5
αβ + F̂µνF̂

5
αβ

)
, ∂µĴ µ = e2

32π2 ε
µναβ

(
FµνF̂

5
αβ + F̂µνF

5
αβ

)
.

(A.12)
To obtain the Ward identity, we define vector currents via

J µ = J µL + J µR , Ĵ µ = Ĵ µL + Ĵ µR , (A.13)

then we can obtain the derivative of the currents as

∂µJ µL,R = ± e2

32π2 ε
µναβ

(
FL,Rµν FL,Rαβ + F̂L,Rµν F̂L,Rαβ

)
,

∂µĴ µL,R = ± e2

16π2 ε
µναβFL,Rµν F̂L,Rαβ .

(A.14)

Now we define axial currents via

J µ5 = J µL − J
µ
R , Ĵ µ5 = Ĵ µL − Ĵ

µ
R , (A.15)

and a basis of vector-like and axial gauge fields

Aµ = 1
2
(
ALµ +ARµ

)
, A5

µ = 1
2
(
ALµ −ARµ

)
,

Âµ = 1
2
(
ÂLµ + ÂRµ

)
, Â5

µ = 1
2
(
ÂLµ − ÂRµ

)
.

(A.16)
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Thus, we have the Ward identities as

∂µJ µ5 = e2

16π2 ε
µναβ

(
FµνFαβ + F 5

µνF
5
αβ + F̂µνF̂αβ + F̂ 5

µνF̂
5
αβ

)
,

∂µĴ µ5 = e2

16π2 ε
µναβ

(
FµνF̂αβ + F 5

µνF̂
5
αβ + F̂µνFαβ + F̂ 5

µνF
5
αβ

)
.

(A.17)

We note that in (A.12), the vector currents are not conserved. This is because we
should write the currents in the form of the consistent current [47] by adding the local
counterterms which is the so-called Bardeen counterterms to our action [48]. The form of
the Bardeen counterterm is

∫
d4xεµναβ

[
Aµbν

(
c11Fαβ + c12F

5
αβ + c13F̂αβ + c14F̂

5
αβ

)
+Âµcν

(
c21Fαβ + c22F

5
αβ + c23F̂αβ + c24F̂

5
αβ

)]
.

If we take c11 = c13 = c21 = c23 = 1
4 and c12 = c14 = c22 = c24 = 0, then we have

∂µJ µ = 0,
∂µĴ µ = 0,

∂µJ µ5 = e2

32π2 ε
µναβ

(
3FµνFαβ + F 5

µνF
5
αβ + 3F̂µνF̂αβ + F̂ 5

µνF̂
5
αβ

)
,

∂µĴ µ5 = e2

32π2 ε
µναβ

(
6FµνF̂αβ + 2F 5

µνF̂
5
αβ

)
.

(A.18)

With the mass terms included, we can obtain the formula (2.18) in the main text. These
Ward identities are very important, which are used in the main text and can also be
obtained in our holography model.
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B The equations of motion at zero temperature

The equations of motion of the corresponding field are given as follows:

u′′+ u′

2

(
f ′

f
+ h′

h
+ u′

u

)
− u3

(
A′2z
h

+
C ′2y
f

)
−8+ 2

3m
2Φ2

1 + λ1
3 Φ4

1 + 2
3m

2Φ2
2 + λ2

3 Φ4
2 = 0 ,

f ′′− f
′

2

(
f ′

f
− h

′

h
− 3u′

u

)
−

2hC ′2y +fA′2z
3h − f

u

[
8+ 2

3m
2
(
Φ2

1 +Φ2
2

)
+ λ1

3 Φ4
1 + λ2

3 Φ4
2

]
= 0 ,

−A
′2
z

4h −
C ′2y
4f + f ′h′

4fh+ u′

2u

(
f ′

f
+ h′

h
+ u′

2u

)
− 1

2
(
Φ′21 +Φ′22

)
− 6
u

+ λ1Φ4
1 +λ2Φ4

2
4u

+ 1
2u

[
m2
(
Φ2

1 +Φ2
2

)
+ q2

1A
2
zΦ2

1
h

+
q2

2C
2
yΦ2

2
f

]
= 0 ,

A′′z +A′z

(3u′

2u −
h′

2h+ f ′

2f

)
− 2q2

1AzΦ2
1

u
= 0 ,

C ′′y +C ′y

(3u′

2u −
f ′

2f + h′

2h

)
− 2q2

2CyΦ2
2

u
= 0 ,

Φ′′1 +Φ′1
(3u′

2u + h′

2h+ f ′

2f

)
− Φ1
u

(
m2 +λ1Φ2

1 + q2
1A

2
z

h

)
= 0 ,

Φ′′2 +Φ′2
(3u′

2u + h′

2h+ f ′

2f

)
− Φ2
u

(
m2 +λ2Φ2

2 +
q2

2C
2
y

h

)
= 0 ,

(B.1)
where the prime is the derivative with respect to the radial coordinate r. We have seven
independent ordinary differential equations for seven unknown fields.

C The free energy

With the formula of the free energy of the system (3.21), we need to expand the field at
the UV. Close to the UV boundary, we can obtain the following behavior of the fields

u = r2−M
2
1 +M2

2
3 + logr

18r2

(
2M4

1 +4M2
1M

2
2 +2M4

2 +3λ1M
4
1 +3λ2M

4
2

)
+u1
r2 +...

f = r2−M
2
1 +M2

2
3 + logr

18r2

(
2M4

1 +4M2
1M

2
2 +2M4

2 +3λ1M
4
1 +3λ2M

4
2 +9c2q2

2M
2
2

)
+ f1
r2 +...

h = r2−M
2
1 +M2

2
3 + logr

18r2

(
2M4

1 +4M2
1M

2
2 +2M4

2 +3λ1M
4
1 +3λ2M

4
2 +9b2q2

1M
2
1

)
+h1
r2 +...

Az = b− bM
2
1 q

2
1 logr
r2 + η1

r2 +...

Cy = c− cM
2
2 q

2
2 logr
r2 + η2

r2 +...

Φ1 = M1
r
− logr

6r3

(
2M3

1 +2M1M
2
2 +3b2q2

1M
2
1 +3λ1M

3
1

)
+O1
r3 +...

Φ2 = M2
r
− logr

6r3

(
2M3

2 +2M2M
2
1 +3c2q2

2M
2
2 +3λ2M

3
2

)
+O2
r3 +.... (C.1)

with h1 = −2f1 + 7M4
1

36 − M1O1 + 1
8b

2q2
1M

2
1 + λ1M4

1
8 from the equation of motion. We

have a radially conserved quantity uAzA′z
h + uCyC′y

f + uf ′

f + uh′

h − 2u′ = 0, which gives
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f1 = 1
72(14M4

1 − 72M1O1 + 18b2q2
1M

2
1 + 9c2q2

2M
2
2 + 36bη1 + 36cη2 − 144u1 + 9λ1M

4
1 ). We

also have another radially conserved relation which gives f1 = 1
72(−28M2

1M
2
2 − 14M4

2 +
72M2O2 − 9c2M2

2 q
2
2 + 72u1 − 9λ2M

4
2 ). Note that one can determine the above expansions

only up to a shift r → r + a. The two equations will lead to one identical relation, which
will be used later.

Taking into account the boundary terms and performing a Wick rotation, the free
energy density can be obtained as

Ω
V

= − 1
V
Sren = − 1

36
[
3M2

(
6c2q2

2M2 + 7M3
2 − 24O2

)
(C.2)

+144f1 − 7M4
1 + 42M2

1M
2
2 + 72M1O1 + 18λ2M

4
2 − 36u1

]
.

With the two relations of f1 in the above paragraph, we can replace the cross term M2
1M

2
2 ,

and arrive at
Ω
V

= 1
8(8M1O1 + 8M2O2 + 2b2M2

1 q
2
1 + 2c2M2

2 q
2
2 + 4bη1 + 4cη2 + λ1M

4
1 + λ2M

4
2 ). (C.3)

We can also check the relationship between the free energy and total energy density,
this can be done as follows. The stress tensor for the dual field theory can be calculated as

Tµν = 2(Kµν − γµνK) + 2√
−γ

δSc.t.
δγµν

. (C.4)

The total energy density is

ε = lim
r→∞

√
−γ〈T 0

0 〉 = − 1
36
[
3M2

(
6c2q2

2M2 + 7M3
2 − 24O2

)
(C.5)

+ 144f1 − 7M4
1 + 42M2

1M
2
2 + 72M1O1 + 18λ2M

4
2 − 36u1

]
.

Hence, from (C.2) and (C.5) we have Ω
V = ε.

D The near horizon expansion of the background geometry

At finite temperature, the background geometry has the following near horizon form

u = 4πT (r − r0) + . . .

v = v1 − v1
2
(
φ2

11 + φ2
21
)
m2r2

0 + λ1φ
4
1 + λ2φ

4
2 − 24r4

0
12πTr4

0
(r − r0) + . . .

f = f1 + f2 (r − r0) + . . .

h = h1 + h2 (r − r0) + . . .

Az = Az1 + Az1q
2
1φ

2
11

2πTr2
0

(r − r0) + . . .

Cy = Cy1 + Cy1q
2
2φ

2
21

2πTr2
0

(r − r0) + . . .

rφ1 = φ11 + h1φ11m
2r2

0 + φ11A
2
z1q

2
1r

2
0 + 4h1φ11πTr0 + h1λ1φ

3
11

4h1πTr2
0

(r − r0) + . . .

rφ2 = φ21 +
f1φ21m

2r2
0 + φ21C

2
y1q

2
2r

2
0 + 4f1φ21πTr0 + f1λ2φ

3
21

4f1πTr2
0

(r − r0) + . . . .

(D.1)
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E Calculations of conductivities in holography

The corresponding equations of motion for the fluctuations in section 3.4 are

v′′x+ 1
2

(
f ′

f
− v
′

v
+ h′

h
+ 2u′

u

)
v′x+ ω2

u2 vx+ 8iαω
√
fhvA′z

ufh
vy−

8iβω
√
fhvC ′y

ufh
v̂z = 0 ,

v′′y + 1
2

(
v′

v
− f

′

f
+ h′

h
+ 2u′

u

)
v′y+ ω2

u2 vy−
8iαω

√
fhvA′z

vhu
vx = 0 ,

v̂′′z + 1
2

(
v′

v
− h

′

h
+ f ′

f
+ 2u′

u

)
v̂′z+ ω2

u2 v̂z+
8iβω

√
fvhC ′y

fuv
vx = 0 ,

(E.1)

and

v̂′′x+ 1
2

(
f ′

f
− v
′

v
+ h′

h
+ 2u′

u

)
v̂′x+ ω2

u2 v̂x+ 8iαω
√
fvhA′z

fuh
v̂y−

8iβω
√
fhvC ′y

ufh
vz = 0 ,

v̂′′y + 1
2

(
v′

v
− f

′

f
+ h′

h
+ 2u′

u

)
v̂′y+ ω2

u2 v̂y−
8iαω

√
fvhA′z

vuh
v̂x = 0 ,

v′′z + 1
2

(
v′

v
− h

′

h
+ f ′

f
+ 2u′

u

)
v′z+ ω2

u2 vz+
8iβω

√
fvhC ′y

vfu
v̂x = 0 .

(E.2)

These six equations are divided into two groups. The first group gives both the elec-
tric Hall conductivity and the spin Hall conductivity. Therefore, we shall focus on the
fluctuations vx, vy, v̂z. We show here the calculations of the Hall conductivities.

Let us start from the finite temperature case. We work in the small ω limit ω � r0.
The fluctuations vx, vy, v̂z which satisfies the infalling boundary condition can be expanded
in the whole radial direction as [21, 22]

vi = u−
iω

4πT
(
v

(0)
i + ωv

(1)
i + . . .

)
, v̂z = u−

iω
4πT

(
v̂(0)
z + ωv̂(1)

z + . . .
)
, (E.3)

where i = x, y. We solve the equations (E.1) order by order in ω.
At zeroth order of ω, we have

v(0)′′
x + 1

2

(
f ′

f
− v′

v
+ h′

h
+ 2u′

u

)
v(0)′
x = 0 ,

v(0)′′
y + 1

2

(
v′

v
− f ′

f
+ h′

h
+ 2u′

u

)
v(0)′
y = 0 ,

v̂(0)′′
z + 1

2

(
v′

v
− h′

h
+ f ′

f
+ 2u′

u

)
v̂(0)′
z = 0 .

(E.4)

These three equations can be further simplified as(
u
√
fh√
v
v(0)′
x

)′
= 0 ,

(
u
√
vh√
f
v(0)′
y

)′
= 0 ,

(
u
√
vf√
h
v̂(0)′
z

)′
= 0 , (E.5)

thus we have v(0)
x = c1, v(0)

y = c2, v̂(0)
z = c3, where ci with i = 1, 2, 3 are integration

constants and we have used the regularity condition.
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At first order of ω, we have

v(1)′′
x + 1

2

(
f ′

f
− v′

v
+ h′

h
+ 2u′

u

)
v(1)′
x − i

4πTu

(
u′′

u′
− v′

2v + h′

2h + f ′

2f

)
v(0)
x

− iu′

2πTuv
(0)′
x + 4i

√
fhv

fhu

(
2αv(0)

y A′z − 2βv̂(0)
z C ′y

)
= 0 ,

v(1)′′
y + 1

2

(
v′

v
− f ′

f
+ h′

h
+ 2u′

u

)
v(1)′
y − i

4πTu

(
u′′

u′
− f ′

2f + h′

2h + v′

2v

)
v(0)
y

− iu′

2πTuv
(0)′
y − 8iα

√
fhvA′z
fhu

v(0)
x = 0 ,

v̂(1)′′
z + 1

2

(
v′

v
− h′

h
+ f ′

f
+ 2u′

u

)
v̂(1)′
z − i

4πTu

(
u′′

u′
− h′

2h + f ′

2f + v′

2v

)
v̂(0)
z

− iu′

2πTuv̂
(0)′
z +

8iβ
√
fhvC ′y
fuv

v(0)
x = 0 .

(E.6)

We focus on the retarded Green function GRxy = 〈JxJy〉R and ĜRzx = 〈ĴzJx〉R. For GRxy,
we can choose the source term c1 = 1, c2 = c3 = 0, and we have the equation for v(1)

y as

v(1)′′
y + 1

2

(
v′

v
− f ′

f
+ h′

h
+ 2u′

u

)
v(1)′
y − 8iα

√
fhvA′z
huv

= 0 . (E.7)

The above equation can be simplified as
(
u
√
hv√
f
v

(1)′
y

)′
= 8iα vfA

′
z, with the regular-

ity boundary condition we have v(1)′
y = 8iα(Az(r)−Az(r0))

√
v

u
√
hf

. Hence, we have ImGRxy =
8ωα (Az (r)−Az (r0)). From the Kubo formula, we have σxy = 8α (b−Az (r0)), and
σAHE = 8αb − σxy = 8αAz (r0). Similarly, we can obtain the Z2 anomalous conductiv-
ity σZ2AHE from Im ĜRzx = 8ωα (Cy (r)− Cy (r0)) and obtain σZ2AHE = 8βCy (r0).

Now we calculate the anomalous transports at zero temperature following the near-far
matching method in [21]. We take the case of four Weyl nodes as an example and the
calculations for the other cases are straightforward to calculate. Using the leading order
solution of the near IR solutions in (3.16), (3.17), (3.18), the corresponding equations of
motion for vi and v̂i have the form

v
(n)′′
i + 3

r
v

(n)′
i + ω2

r4 v
(n)
i = 0 , v̂(n)′′

z + 3
r
v̂(n)′
z + ω2

r4 v̂
(n)
z = 0 , (E.8)

where i = x, y. This form of equations have been discussed in [21] and we can
expand the in-falling near horizon solutions in the matching regime ω � r �
min {M1, b} (or ω � r � min {M2, c}) as

v
(n0)
i = 1− ω2

4r2

(
−1 + 2γ + 2 ln

[−iω
2r

])
, v̂(n0)

z = 1− ω2

4r2

(
−1 + 2γ + 2 ln

[−iω
2r

])
.

(E.9)
Note that the above three solutions are three independent boundary conditions. The same
as the finite temperature case mentioned above, we focus on GRxy and ĜRzx. We choose the
near horizon condition with v(n0)

y = v̂
(n0)
z = 0 while v(n0)

x as above. We will calculate the
far region solution sourced by this infalling near horizon solution.
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At the matching region the near horizon solution above gives v(n)
x = 1, v(n)

y = ωv
(n1)
y

and v̂(n)
z = ωv̂

(n1)
z , where

v(n1)′
y = 8iα (Az (r)−Az (0))

u0r3 , v(n1)′
z = −8iβ (Cy (r)− Cy (0))

u0r3 . (E.10)

These solutions are boundary conditions for the fluctuations in the far region.
In the far region r � ω, we have equations

v(f)′′
x + 1

2

(
u′

u
+ f ′

f
+ h′

h

)
v(f)′
x + 8iαA′z√

fhu
v(f)
y −

8iβC ′y√
fhu

v̂(f)
z = 0 ,

v(f)′′
y + 1

2

(3u′

u
− f ′

f
+ h′

h

)
v(f)′
y − 8iα

√
fA′z

u
√
hu

v(f)
x = 0 ,

v̂(f)′′
z + 1

2

(3u′

u
+ f ′

f
− h′

h

)
v̂(f)′
z +

8iβ
√
hC ′y

u
√
fu

v(f)
x = 0 .

(E.11)

The far regime solutions with the above boundary condition are v(f)
x = 1, v(f)

y = ωv
(f1)
y

and v̂(f)
z = ωv̂

(f1)
z with

v(f1)′
y = 8iα (Az (r)−Az (0))√

uhf
, v̂(f1)′

z = −8iβ (Cy (r)− Cy (0))√
uhf

. (E.12)

From the solutions above we obtain σAHE = 8αAz (0) and σZ2AHE = 8βCy (0). For other
phases one can use the same method above and obtain the same results for the anomalous
Hall conductivities. Thus the formulas for the anomalous Hall conductivity (Z2 anomalous
Hall conductivity) are the same for both the finite temperature and zero temperature.

Open Access. This article is distributed under the terms of the Creative Commons
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