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D-instanton contribution to the four graviton amplitude in type IIB string theory was pre-
dicted by Green and Gutperle by requiring the amplitude to be S-duality invariant [1–3].
Direct computation of these amplitudes suffers from certain ambiguities related to integra-
tion over zero modes. Recently these ambiguities were resolved using string field theory [4]
and the resulting leading term in the one instanton contribution to the amplitude was shown
to agree with the predictions of [1, 2]. Our goal in this paper will be to extend the results
to multi-instanton amplitudes. We shall not attempt to make the paper self-contained, but
assume familiarity with the analysis of [4] and freely use the results of that paper.

We begin by computing the normalization constant that multiplies the k-instanton
amplitude. As in [4], this is formally given by the exponential of the annulus diagram
multiplied by i. Taking into account the effect of the k×k Chan-Paton factor, the annulus
amplitude should be given by k2 times the result for a single instanton. Indeed the first part
of our analysis will proceed exactly along this line. We normalize the open string fields as:

|ψo〉 =
∑
a

T a |ψao 〉, T r(T aT b) = δab , (1)

where |ψao 〉 is normalized in the same way as the open string field on a single D-instanton.
T a’s are k × k hermitian matrices describing generators of U(k), normalized so that,

Tr(T aT b) = δab , (2)

with T 0 = Ik/
√
k representing the U(1) generator. Proceeding as in [4], we get the analog

of eq. (4.32) of [4]:

Nk = i (2π)−5 k2 (2
√
π)k2

∫ k2−1∏
a=0

{∏
µ

dξaµ

}{∏
α

dχaα

}
eS
/∫ k2−1∏

b=0
Dθb . (3)

We have dropped the multiplier factor ζ that appeared in [4] since there it was shown to
be unity.

The next step is to find the relation between the modes ξ0
µ and the center of mass

coordinate ξ̃µ of the D-instanton system. For this we compare the effect of inserting a
ξ0
µ into a disk amplitude of closed and open strings, with the closed strings carrying total
momentum p, to the expected coupling ip.ξ̃ of the center of mass coordinate. The only
difference from the computation in [4] is that the ξ0

µ amplitude will get an extra factor of
1/
√
k due to the Chan-Paton factor Ik/

√
k. Trace over the Chan-Paton factors produces

an extra factor of k, but this affects the amplitudes with and without the ξ0
µ insertions in

the same way, and does not affect the ratio of the two amplitudes. Therefore the analog
of eq. (4.38) of [4] takes the form:

go π
√

2 ξ0
µ/
√
k = ξ̃µ , (4)

go being the open string coupling on the D-instanton.
We also need to determine the relation between the gauge transformation parameters θa

and the rigid U(k) transformation parameters θ̃a, defined so that if ξ̂ denotes a state of the
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open string with one end on the system of D-instantons under consideration and the other
end on a spectator D-instanton, then the U(k) transformation acts on ξ̂ as eiθ̃aTa ξ̂. Note
that ξ̂ in now a k dimensional vector transforming in the fundamental representation of
U(k) since its one end can be attached to any of the k D-instantons. The analog of eq. (4.44)
of [4], giving the infinitesimal string field theory gauge transformation of ξ̂, takes the form:

δξ̂ = i

2 go θ
a T a ξ̂ . (5)

Comparing this with the infinitesimal rigid U(k) gauge transformation δξ̂ = iθ̃aT aξ̂, we get,

θa = 2 θ̃a/go . (6)

Since θ̃0 accompanies the generator T 0 = Ik/
√
k, it has period 2π

√
k. However since

for θ̃0 = 2π/
√
k, the U(1) transformation coincides with the SU(k) transformation

diag(e2πi/k, · · · , e2πi/k), once we allow θ̃0 to span the full range (0, 2π
√
k), the integration

over θ̃a’s for a ≥ 1 need to be restricted so that they span the group SU(k)/Zk. This
gives, using (6),

∫ ∏
b

Dθb = 2k2 (go)−k
2 (2π

√
k)VSU(k)/Zk , VSU(k)/Zk ≡

∫
SU(k)/Zk

k2−1∏
a=1

Dθ̃a , (7)

where
∏
aDθ̃

a is the Haar measure, normalized so that near the identity element the
integration measure is

∏
a dθ̃

a, and θ̃a are defined so that the SU(k) matrix is given by
exp[i

∑k2−1
a=1 θ̃aT a].

As in [4], we further express χ0
α as

χ0
α = χ̃α/go , (8)

so that the vertex operators of the modes χ̃α do not carry any extra factor of go. This
gives

Nk = i (2π)−5 k2 (2
√
π)k2

( √
k

go π
√

2

)10

2−k2 (go)k
2 1

2π
√
k

1
VSU(k)/Zk

g16
o

∫ 9∏
µ=0

dξ̂µ

16∏
α=1

dχ̃α

×
∫ k2−1∏

a=1

{∏
µ

dξaµ

}{∏
α

dχaα

}
eS . (9)

For k = 1 this reduces to the normalization constant given in eq. (4.49) of [4].
Let Ak denote the product of four disk amplitudes, each with one graviton and four

χ̃α insertions. The result takes the same form as in the case of one instanton amplitude,
except that each χ̃α is accompanied by a factor of 1/

√
k from T 0, and each disk amplitude

gives a factor of k from trace over the Chan-Paton factors. This gives

Ak = k−8k4A1 = k−4A1 . (10)
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This gives the ratio of the coefficient of the k instanton contribution to that of the 1
instanton contribution to be:

NkAk
N1A1

= (2π)−5 (k2−1)(go
√
π)k2−1√k 1

VSU(k)/Zk

∫ k2−1∏
a=1


9∏

µ=0
dξaµ


{ 16∏
α=1

dχaα

}
eS . (11)

Next we shall determine the action S. The action vanishes up to quadratic order, but
in order to carry out the integration over the modes ξaµ and χaα for 1 ≤ a ≤ (k2 − 1), we
need to keep higher order terms.1 It is sufficient to consider the effective action obtained by
dimensional reduction of ten dimensional N = 1 supersymmetric Yang-Mills theory to zero
space-time dimensions. Recalling that we have normalized the modes so that the (would
be) kinetic terms are canonically normalized, the action takes the form:

S = g2
o

8 Tr ([Aµ, Aν ][Aµ, Aν ]) + 1
2
√

2
goγ

µ
αβTr (Φα[Aµ,Φβ ]) ,

Aµ ≡
k2−1∑
a=1

ξaµT
a, Φα ≡

k2−1∑
a=1

χaαT
a , (12)

where we have taken into account the relation go =
√

2 gYM between the open string cou-
pling constant go and the Yang-Mills theory coupling constant gYM [6]. One can also check
explicitly that the χaα-χbβ-ξcµ amplitude computed from (12) agrees with that computed
from string theory in the convention of [4] and that the quartic coupling between the ξaµ’s
agrees with the result of [7].

The integral appearing in (11) is the partition function of the IKKT matrix model [8]
and has been analyzed in [9–11]. In particular, for general k, the result of this integral was
conjectured in [10] and computed in [11]. Possible connection of this integral to the results
of [1, 2] was also anticipated in [10, 12, 13]. Our main goal here will be to check that the
integral (11) exactly reproduces the prediction of [1, 2] including the normalization. To
this end, we first define,

xaµ = g1/2
o ξaµ , yaα = g1/4

o χaα,

Xµ = xaµ T
a = g1/2

o Aµ, Yα = yaα T
a = g1/4

o Φα . (13)

This gives
S = 1

8Tr([Xµ, Xν ][Xµ, Xν ]) + 1
2
√

2
γµαβTr(Yα[Xµ, Yβ ]) , (14)

and

NkAk
N1A1

= (2π)−5 (k2−1)(
√
π)k2−1 k1/2 1

VSU(k)/Zk

∫ k2−1∏
a=1


9∏

µ=0
dxaµ


{ 16∏
α=1

dyaα

}
eS . (15)

We shall now give the result of the integral appearing in (15) following the notation
of [10]. The action of [10] took the form:

S = 1
2Tr

(
[Xµ, Xν ][Xµ

, X
ν ]
)

+ γµαβTr
(
Y α[Xµ, Y β ]

)
, (16)

1One did not need to do this in the analysis of multi-instanton amplitudes in [5], since there was only one
set of ξ̃aµ’s associated with the Euclidean time direction, and ξa0T a was gauge equivalent to a diagonal matrix.
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with
Xµ = xaµ T

a
, Y α = yaα T

a
, (17)

with T a normalized as
Tr(T aT b) = 1

2δab . (18)

Comparing (18), (17) with (2), (13) we see that we have,

T
a = 1√

2
T a, Xµ = 1√

2
Xµ, Y α = 1√

2
Yα . (19)

This gives
S = 1

8Tr([Xµ, Xν ][Xµ, Xν ]) + 1
2
√

2
γµαβTr(Yα[Xµ, Yβ ]) , (20)

in agreement with (14). The result of [10] can now be stated as∫ k2−1∏
a=1


9∏

µ=0

dxaµ√
2π


{ 16∏
α=1

dyaα

}
eS = 2k(k+1)/2π(k−1)/2

2
√
k
∏k−1
i=1 i!

∑
d|k

1
d2 . (21)

We now turn to VSU(k)/Zk . The volume of SU(k) was computed in [14, 15] to be

V̂SU(k) = 2(k−1)/2π(k−1)(k+2)/2√k∏k−1
i=1 i!

. (22)

Refs. [14, 15] used algebra generators T̂ a normalized as

Tr(T̂ aT̂ b) = 2 δab , (23)

and labelling the group element as exp(iθ̂aT̂ a), defined the integration measure so that
near the origin the measure is

∏
a dθ̂

a. Comparing this with (2) and the measure described
below (7), we see that we have T a = T̂ a/

√
2, θ̃a =

√
2 θ̂a and VSU(k) = 2(k2−1)/2V̂SU(k).

This gives,

VSU(k)/Zk = VSU(k)/k = 2(k2−1)/2V̂SU(k)/k = 2(k2−1)/2 2(k−1)/2π(k−1)(k+2)/2
√
k
∏k−1
i=1 i!

. (24)

Substituting (21), (24) into (15) we get,
NkAk
N1A1

= k1/2∑
d|k

1
d2 . (25)

This is in perfect agreement with the result of [1, 2].
If we denote by f(τ, τ̄) the coefficient of the R4 term in type IIB string theory action,

with τ = τ1 + iτ2 denoting the axion-dilaton modulus, and expand f as
∑
k∈Z fk(τ2)e2πikτ1 ,

then our analysis determines the coefficient of the leading term in the large τ2 expansion
of fk(τ2) for each k. On the other hand the requirement of space-time supersymmetry
gives a homogeneous linear second order partial differential equation for f(τ, τ̄) [3, 16],
which translates to a homogeneous linear second order ordinary differential equation for
each fk. Of the two solutions, one is unphysical since it has terms that grow exponentially
in the large τ2 limit. The other solution is determined uniquely once we determine the
leading term in its large τ2 expansion. Therefore our result, together with supersymmetry,
determines the function f(τ, τ̄) completely without the help of S-duality.
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