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1 Introduction

String theory, in its many avatars, gives rise to a wide range of vacuum solutions in various
dimensions with a great variety of different gauge groups and matter content coupled to
quantum gravity. This large range of solutions has led to the suggestion that essentially
“anything goes”, and that virtually any consistent quantum field theory can be found
coupled to quantum gravity in some string theory. In fact, however, quantum gravity and
string theory place strong constraints on the structure of theories with a consistent UV
completion.

This tension between the constraints coming from string theory and consistency con-
ditions apparent for a low-energy quantum field theory coupled to gravity has been present
since the early days of string theory. A simple example is the set of consistent N = 1 super-
symmetric gravity theories in ten dimensions. The seminal work of Green and Schwarz [1]
showed that all such supergravity theories were inconsistent except those with gauge groups
Spin(32)/Z2, E8 ×E8, E8 ×U(1)248 and U(1)496. At the time only the first of these gauge
groups was known to arise in string theory. Motivated by this result, the “string quartet”
identified the heterotic E8 × E8 string theory [2, 3]. More recently, Vafa coined the term
“swampland” [4] to describe those theories that appear to be consistent under all known
quantum consistency conditions but that are not (known to be) realized in string theory,
and pointed out that, at the time this term was coined, the 10D theories with gauge groups
E8 × U(1)248 and U(1)496 appeared to be in the swampland. In [5], it was shown that in
fact these theories cannot be simultaneously compatible with supersymmetry and gauge
invariance. The same conclusion was derived from a string worldsheet point of view in [6].
Thus, for minimally supersymmetric 10D theories of gravity coupled to gauge groups, at
least at the level of massless spectra the swampland is empty. In fewer than ten space-time
dimensions, however, the set of theories with known realizations in string theory is a proper
subset of those that satisfy all known consistency conditions, and the ongoing study of the
difference between these two sets has been a productive focus of much recent research
effort; an overview of recent conjectures and developments related to the swampland is
given in [7].

Six-dimensional N = (1, 0) supergravity theories present a particularly interesting
domain in which to investigate “swampland” related questions. As in ten dimensions, the
requirement of gravitational and mixed gauge-gravitational anomaly cancellation provides
strong constraints on the set of possibly consistent 6D theories. At the same time, string
constructions of 6D supergravity theories are fairly well understood, particularly in the
context of F-theory [8–10]. The set of 6D supergravity theories that can be realized through
known string constructions essentially forms one large moduli space, with different branches
connected by various kinds of geometric transitions.1 It was conjectured in [12] that, as in
10D, it may be possible to show that every quantum-consistent massless 6D supergravity
spectrum is realized in string theory. The close connection between the structure of 6D
supergravity and F-theory (see e.g. [13]) gives many insights into these theories, but at this

1Note, it has not been shown how the theories in [11] are connected to the connected moduli space of
standard F-theory constructions.
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time there are still substantial classes of apparently consistent 6D supergravity theories
without an F-theory realization; for example, there is an infinite class of theories with no
tensor multiplets, a single U(1) gauge factor, and matter fields with arbitrarily large U(1)
charges that cannot be realized in F-theory but that satisfy anomaly cancellation and all
other known quantum consistency conditions on low-energy 6D field theories coupled to
gravity [14]. Other aspects of the 6D supergravity swampland have been explored in a
variety of papers, including [6, 11, 15–20].

Another aspect of “swampland” related questions involves certain features that appear
to be typical of all string constructions (in a variety of dimensions), and for some of
which there are heuristic arguments involving quantum gravity features such as black hole
information and radiation. Some analysis and conjectures based on features of this type
were given in [21–23]. One particular feature of string theory is the general aspect that
any time there is a symmetry, with an associated gauge or higher form field, charged
objects appear in the theory, and these objects saturate the allowed space of charges in
most (perhaps all) known string solutions. This principle was part of the philosophy
underlying the development of D-branes [24], which are the charged objects associated with
the Ramond-Ramond fields of type II string theory. This notion of “charge completeness”
and the related idea that theories of quantum gravity cannot have global symmetries, only
gauge symmetries, were articulated clearly in [25]. For theories in anti-de Sitter space
with holographic dual descriptions, these conjectures were recently proven by Harlow and
Ooguri [26].

In this paper we address the charge completeness question in the context of 6D and 4D
supergravity theories. We prove using Poincaré duality that for 6D N = (1, 0) supergravity
theories that arise from F-theory, the charge completeness hypothesis for the connected
component of the gauge group is equivalent to the standard assumption made in F-theory
for how the global structure of the gauge group is encoded in geometry.2 We show that the
same result also holds in 4D F-theory constructions for the part of the gauge group that is
realized through 7-branes and sections. (Note that in 6D all of these supergravity theories
live in flat space-time, so that the proof of Harlow and Ooguri is not applicable.)

We furthermore observe that for many 6D N = (1, 0) supergravity theories a stronger
condition holds: in these models the charge lattice is completely determined by the set
of massless fields in the theory. We identify a simple positivity condition on the anomaly
coefficients of the gauge factors that seems to be sufficient to imply this “massless charge
sufficiency” condition. We give a large set of examples of 6D supergravity theories with
connected nonabelian and abelian gauge groups where this condition holds, and analyze
some of the cases where it does not. Mordell-Weil torsion and the global structure of the
gauge group play an important role in understanding these structures.

The structure of the paper is as follows. We begin in section 2 with a very brief review
of 6D N = (1, 0) supergravity theories and their realization in F-theory. In section 3 we

2As described in more detail in section 2.2 and the appendix, the “standard assumption” [27–29] relates
the fundamental group π1(G) of the gauge group G to the group of sections (the “Mordell-Weil group”)
of the elliptic fibration used in the F-theory construction, by considering which representations of the
corresponding Lie algebra can occur in the presence of Mordell-Weil group elements.
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state the completeness and massless charge sufficiency conditions. We prove a version of
the completeness hypothesis for those theories with an F-theory realization, and conjecture
that the massless charge sufficiency condition holds in all but certain special exceptional
circumstances. In section 4, we give a variety of examples of 6D N = (1, 0) supergravity
theories with nonabelian gauge groups where the gauge algebra does not uniquely determine
the global structure of the gauge group. In many of these theories we prove that the massless
charges in the theory are sufficient to generate the full charge lattice, and explicitly describe
the connection in these theories between Mordell-Weil torsion in the F-theory model and the
fundamental group of the gauge group of the associated 6D supergravity theory. In section 5
we consider an example with an abelian gauge group, and in section 6 we describe several
of the exceptional classes of models where the massless charge spectrum is not sufficient
to determine the full charge lattice of the theory. Section 7 contains some concluding
remarks. We include an appendix with a discussion of the topology of the gauge group and
its relation to representation theory.

Some recent papers touch on issues closely related to the subject and techniques of
this work. The structure of discrete 1-form symmetries in 6D supergravity theories with
Mordell-Weil torsion like many of the models studied here was investigated in [30]. In [31]
related aspects of the global structure of the gauge group for 8D F-theory models have been
investigated. In [19], a general characterization is given of a large set of 6D supergravity
models that appear to be compatible with known quantum consistency conditions but
lack an F-theory realization. Such models violate an automatic enhancement condition
that seems to hold for all theories that come from F-theory. The automatic enhancement
conjecture made in that paper is closely related in some cases to the massless charge
sufficiency conjecture presented here, as discussed further in that paper; the analysis of
that paper was inspired in part by some examples encountered in this work.

2 Quick review of 6D supergravity and F-theory realizations

We begin by briefly reviewing the structure of 6D N = (1, 0) supergravity theories and
their realizations in F-theory

2.1 Anomaly conditions

In general a 6D N = (1, 0) supergravity theory has T tensor multiplets, V = dimG =
dimG0 vector multiplets where the connected component3 G0 of the gauge group G can
generally have both nonabelian and abelian factors, taking the form4 G0 = (G0×U(1)r)/Ξ
(with G0 simply connected and Ξ a finite subgroup of the center of G0 × U(1)r), and H

matter hypermultiplets, which can be neutral or charged under the gauge group. The 6D
gravitational, nonabelian gauge, and gravitational-nonabelian gauge anomaly cancellation

3The gauge group G can also have a disconnected part G/G0 but that will not concern us in this paper.
In fact, π1(G) = π1(G0) so the condition as we have stated it is unchanged by passing from G to G0.

4See the appendix for more details about how this form is arrived at.
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conditions [32, 33] can be written in the form [13]

H − V + 29T = 273 (2.1)

0 = Bi
adj −

∑
R

xiRB
i
R (2.2)

a · a = 9− T (2.3)

−a · bi = 1
6λi

(∑
R

xiRA
i
R −Aiadj

)
(2.4)

bi · bi = 1
3λ

2
i

(∑
R

xiRC
i
R − Ciadj

)
(2.5)

bi · bj = λiλj
∑
RS

xijRSA
i
RA

j
S . (2.6)

Here, a, bi are the coefficients associated with the Green-Schwarz terms a · B ∧ R ∧ R, bi ·
B ∧ Fi ∧ Fi in the action, with Fi the ith nonabelian field strength; these coefficients lie
in a lattice Γ of signature (1, T ). The quantities xiR denote the number of hypermulti-
plets transforming in representation R under gauge group factor Gi, while the quantities
xijRS denote the number of hypermultiplets transforming in representations R,S under the
factors Gi, Gj . The coefficients AR, BR, CR are defined through

trR F 2 = AR trF 2 (2.7)
trR F 4 = BR trF 4 + CR(trF 2)2 ,

where F is a field strength for the appropriate group factor and tr is a normalized trace. Ta-
bles of the coefficients AR, BR, CR can be found in, e.g., [34–36] (see also [37, appendix C]).
Note that for groups with no quartic Casimir (like SU(2), SU(3), and the exceptional
groups), BR = 0 and the condition (2.2) is trivial. As a simple example of the anomaly
conditions, for SU(2) we have λ = 1, and the anomaly coefficients AR, CR for the funda-
mental and adjoint representations are 1, 1/2 and 4, 8 respectively.

For a theory with a single U(1) gauge factor, the associated gauge-gravitational and
pure gauge anomaly conditions are

−a · b̃ = 1
6
∑
q>0

xqq
2 , (2.8)

b̃ · b̃ = 1
3
∑
q>0

xqq
4 . (2.9)

Here, b̃ is the U(1) Green-Schwarz anomaly coefficient and xq is the number of matter
hypermultiplets of charge q under the U(1). More details on anomaly conditions for theories
with multiple U(1) and mixed abelian-nonabelian gauge groups, can be found in [34, 38, 39].
Some constraints on the anomaly coefficients a, b, b̃ are determined in [13, 16, 40].
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2.2 F-theory models of 6D and 4D supergravity theories

A large class of 6D and 4D supergravity theories can be realized by an F-theory compact-
ification5 using an elliptic Calabi-Yau threefold or fourfold X. Such an F-theory compact-
ification is defined6 through a Weierstrass model for the elliptic fibration on X,

y2 = x3 + fx+ g , (2.10)

where f, g are sections of line bundles O(−4KB),O(−6KB) over a base B that is a com-
plex surface for a 6D theory or a complex threefold for a 4D theory. Such an F-theory
compactification can be thought of as a compactification of type IIB string theory on the
base B with an axiodilaton field τ that varies over B and matches the ratio of periods τ of
the elliptic curve defined through (2.10) at each point in B. More detailed introductions
to F-theory models of 6D and 4D supergravity can be found in [44–48]; here we review a
few of the main points. We focus principally on reviewing the structure of 6D F-theory
models; 4D F-theory models are similar but have additional complications, as we discuss
in the last paragraph of this section.

The nonabelian gauge algebra of a 6D supergravity theory realized through F-theory
is associated with Kodaira singularities [49, 50] in the elliptic fibration over complex curves
Ci in B. In the type IIB picture, these are 7+1-dimensional objects (stacks of D7 branes
or F-theory generalizations thereof) supporting nonabelian gauge factors. There is a close
correspondence between the geometry of the elliptic Calabi-Yau threefold over B and the
physics of the resulting 6D theory. In particular, there is a direct mapping between the
anomaly coefficients a, b of the 6D theory and certain divisors in B. The string charge
lattice Γ of the 6D theory corresponds to the homology lattice H1,1(B,Z). The anomaly
coefficient a corresponds to the canonical class KB, while bi corresponds to the class of the
complex curve Ci. Abelian anomaly coefficients b̃ are described in a slightly more subtle
but similar way in terms of specific divisors in X. The detailed relationships between the
geometry of elliptic Calabi-Yau threefolds and the structure of the 6D theory, which relate
geometric conditions to the 6D anomaly constraints, are described in further detail in [13,
16, 37, 39, 51–54]. F-theory in 6D is often analyzed as a limit of M-theory (see e.g. [55]),
where in the M-theory picture the compactification manifold for the Coulomb branch is a
smooth Calabi-Yau threefold X̃ associated with a resolution of the singularities of X.

While the Kodaira singularities in the elliptic fibration that arise at codimension one in
the F-theory base B directly encode the gauge algebra of the corresponding 6D supergravity
theory, the global structure of the gauge group is somewhat more subtle. Assume that a
6D supergravity theory has gauge group G and comes from an F-theory Weierstrass model
that defines an elliptic Calabi-Yau threefold X with resolution X̃. The Cartan generators
of the Lie algebra are associated with the (divisorial) components of the Kodaira fibers of

5For simplicity, we do not include the F-theory compactifications with “frozen” singularities studied
in [11], nor do we allow background fluxes.

6In order to admit an effective description as a gauge theory coupled to supergravity, the singularities
in the Weierstrass model cannot be too bad: along any locus of complex codimension two in the base, the
multiplicities of (f, g) must be less than (4, 6), or else the F-theory model will include a superconformal
sector [10, 41–43].
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the codimension one singularities in the (resolved) fibration; these are divisors in H1,1(X̃).
Other divisors are associated with rational sections of the elliptic fibration; because rational
sections can be “added” (using the group law of the elliptic fibration) the rational sections
form a group7 called the Mordell-Weil group, which is a finitely generated abelian group
and therefore has the form Zr× (MW )tors where r is the rank of the group of sections and
(MW )tors is the Mordell-Weil torsion. The standard assumption in F-theory is that the
global structure of the 6D gauge group G is determined by the condition that the Mordell-
Weil group coincides with fundamental group of the gauge group (see [27] and footnote 4
in [28]), although there is no proof of this assumption. One of the primary results of this
paper is to show that this assumption is equivalent to the charge completeness hypothesis
for 6D F-theory models. In general, the connected part G0 of the 6D gauge group G is a
compact Lie group, which can be written as a quotient G0 = (G0 × U(1)r)/Ξ, where G0
is simply connected and represents the nonabelian part of G, and Ξ is a finite subgroup
of the center of G0 × U(1)r. The standard assumption regarding the global structure of
the gauge group is then that (1) π1(G)tors coincides with Ξ ∩G0 = (MW )tors, and (2) the
rank of the free part of the Mordell-Weil group measures the number of U(1) factors in
the gauge group. Note that when r = 0, G0 = G0/Ξ, and Ξ = (MW )tors; we consider
a number of cases of this type in section 4. On the other hand, when there are abelian
factors there can be a nontrivial finite quotient even when (MW )tors is trivial; for example,
models having such structure with group U(N) = (SU(N)×U(1))/ZN or with the standard
model gauge group (SU(3)× SU(2)×U(1))/Z6 have been studied in various places in the
literature [56–65].

The matter content of the 6D supergravity theory arising from an F-theory model
arises from a combination of local singularity enhancements associated with intersecting
7-branes in the IIB picture and nonlocal structure associated with adjoint representations
of the gauge group [10, 66–69]. We restrict attention in this paper to standard matter
representations that can be realized through local enhancements of the Kodaira singularity
type, and consider only briefly cases with local singularities in the elliptic fibration at
codimension two where (f, g) vanish to orders at least (4, 6); such singularities have no
direct Calabi-Yau resolution preserving a flat elliptic fibration and are associated with the
appearance of superconformal sectors in the F-theory model [10, 41–43].

One aspect of the connection between F-theory geometry and the anomaly structure
of the associated 6D supergravity theory that we will find useful is the connection between
the anomaly coefficient b and the genus of the associated complex curve C in the base B.
We define a “genus” g through

2g − 2 = b · b+ a · b (2.11)

for any gauge factor with anomaly coefficient b in a 6D supergravity theory. In the F-theory
picture this is just the genus of the corresponding complex curve C; this genus formula can

7Because one chosen section σ∞, the “zero-section”, serves as the additive identity for the group law on
the elliptic fibers and for the Mordell-Weil group itself, the map σ 7→ [σ] which sends a rational section to
its divisor class in H1,1(X̃) is not a group homorphism. However, the modified map σ 7→ [σ − σ∞] does
define a group homomorphism.

– 7 –



J
H
E
P
1
2
(
2
0
2
1
)
0
4
0

be decomposed into contributions from each distinct matter representation, where some
more exotic matter representations are associated with singularities in C contributing to
the arithmetic genus of C [36, 69].

The connection between F-theory geometry and physics for 4D F-theory constructions
of supergravity theories is similar but has additional subtleties. The gauge group of the
4D theory again has a piece arising from 7-branes associated with Kodaira singularities
in the elliptic fibration over codimension one loci (complex surfaces in this case) in the
base threefold B, but additional gauge factors can arise from D3-branes in the type IIB
picture. Furthermore, fluxes can break the geometric gauge group down to a smaller
group, and the presence of a superpotential can push the complex structure moduli of the
compactification to regions in moduli space with gauge enhancement. For further details
concerning the structure of 4D theories that arise from F-theory see [44–48, 70].

3 The completeness hypothesis and massless charge sufficiency

3.1 Statement of conditions

The charge completeness hypothesis specialized to 4D and 6D supergravity states that

Charge completeness hypothesis for 4D and 6D supergravity. Consider any con-
sistent 4D N = 1 or 6D N = (1, 0) supergravity theory. States exist with all possible values
in the charge lattice of the gauge group of the theory.

We state the condition of 6D massless charge sufficiency as follows:

Massless charge sufficiency condition in six dimensions. Consider any 6D super-
gravity theory. The massless states in the theory with nontrivial charges under the gauge
group generate a charge lattice Λ. We say that the theory satisfies the “massless charge
sufficiency” condition when Λ is the full charge lattice of the theory as given by the charge
completeness hypothesis. Equivalently, the massless charge sufficiency condition states that
the global structure of the gauge group is such that the group acts effectively on Λ, i.e.,
there is no element of the gauge group that acts trivially on all massless charged states.

3.2 Proof of charge completeness hypothesis in F-theory

We start with the completeness hypothesis in 6D. The charge completeness hypothesis for
the connected U(1)k group of a 5D M-theory compactification on a smooth Calabi-Yau
threefold Y follows immediately from the fact that Poincaré duality gives a dual pairing
between the geometric structures encoding the gauge bosons and the charged particles [28].
In this situation the U(1) gauge bosons Ai arise from the M-theory 3-form C = Ai ∧ ωi
where ωi is a class in H1,1(Y,Z). States that are charged under the U(1) factors come from
M2-branes wrapped on Poincaré dual 2-cycles in H1,1(Y,Z). The story in the corresponding
F-theory is conceptually similar but slightly more subtle since some of the divisors in the
corresponding Calabi-Yau threefolds are not associated with 6D gauge bosons and must be
projected out to make a precise statement.

– 8 –
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Assume that a 6D supergravity theory has gauge group G and comes from an F-theory
Weierstrass model that defines an elliptic Calabi-Yau threefold X with resolution X̃. We
prove a “connected” version of the completeness hypothesis in which we only consider
charges under the connected component of the identity in the gauge group — that is, we
ignore discrete charges (if any). Our goal is to prove that the completeness hypothesis for
a 6D supergravity theory realized through F-theory is equivalent to the condition that the
global structure of the gauge group is identified through the standard assumption that the
connected part of the gauge group is G0 = (G0 ×U(1)r)/Ξ, where G0 is simply connected
and π1(G0) coincides with the Mordell-Weil group of the elliptic fibration. As discussed in
section 2.2, each gauge boson in the Cartan subalgebra of G is associated with a divisor
D ∈ H1,1(X̃). In the M-theory picture, these gauge bosons arise by reducing the M-theory
three-form on the given divisor.8 All massive or massless charged states are associated (in
the M-theory picture) with M2-branes wrapped on elements of H2(X̃). By Poincaré duality
there is a complex curve C in H1,1(X̃) with D ·C = 1 for each divisor D ∈ H1,1(X̃). More
generally, there is a dual pairing between the linear space of divisors D (with coefficients
in Z) and the space of complex curves C. Not all divisors in H1,1(X̃) correspond to
massless gauge bosons in the 6D F-theory model, however. From the Shioda-Tate-Wazir
formula [72–74], we know that h1,1(X̃) = rk G+h1,1(B)+1; the divisors not corresponding
to 6D gauge bosons are associated with the zero section σ∞ (which defines the additive
identity in each elliptic fiber) and the pullbacks π∗Cα of divisors in the base, where {Cα}
is a basis of divisors in the base. Thus, to apply Poincaré duality to get a dual pairing
between gauge bosons and matter curves, we must separate out these extra divisors. The
intersection of the zero section with the curve associated with the generic fiber F is always
σ∞ · F = 1. Thus, we can always project away from this divisor-curve pair, considering
only curves orthogonal to σ∞ and divisors orthogonal to F . The pullbacks π∗Cα are always
orthogonal to F , π∗Cα ·F = 0. We can find a set of dual curves Ĉα = π∗Cα ·σ∞−(KB ·Cα)F
that satisfy σ∞ · Ĉα = 0, π∗Cα · Ĉβ = Ωαβ , where Ωαβ is the intersection form on the base
B, by projecting out the appropriate multiplicity of F , using the fact that, for any complex
curve C on the base, σ∞ · σ∞ · π∗C = KB · C where KB is the canonical class of the base.

Projecting out these divisor-curve dual pairs, we are left with a dual pairing between
the remaining divisors and curves. (Note that since Ω is unimodular for any surface, the
divisors and curves that are pulled back from B can always be projected out leaving a
dual pairing between the remaining divisors and curves.) The remaining divisors consist of
projections of sections (corresponding to the Mordell-Weil group), and projections of the
Cartan divisors of the Lie algebra g. The projected sections take the form σ−σ∞−π∗KB,
where σ − σ∞ fill out the Mordell-Weil group Zr × T where T is the Mordell-Weil torsion.
The Cartan divisors of the Lie algebra are associated with the exceptional components of
the Kodaira fibers of the codimension one singularities in the resolved fibration. Together,
the Cartan divisors and the sections in the Mordell-Weil group (including the torsion
elements) thus give a lattice which is dual to the charge lattice of the theory. Charge
completeness holds precisely when these divisors generate the fundamental group of the

8Note that there are also non-Cartan gauge bosons, which are obtained in the M-theory picture as part
of the spectrum determined by wrapping M2-branes on these same divisors [71].
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Cartan torus of the gauge group, where the curves lie in the dual lattice and therefore give
all weights in the dual charge lattice Λ. This establishes the assertion that the (connected)
completeness hypothesis for this class of theories is equivalent to the standard assumption
that the fundamental group π1(G0) of the connected componentG0 of the 6D gauge groupG
is generated by the Cartan divisors and the full Mordell-Weil group of sections of the Calabi-
Yau threefold X. In particular, the global form of the gauge group is G0 = (G0×U(1)r)/Ξ,
whereG0 is simply connected and Ξ∩G0 = T is the Mordell-Weil torsion. (See the appendix
for more details about this group.)

Essentially the same argument goes through unchanged for 4D N = 1 supergravity
theories that come from F-theory on elliptic Calabi-Yau fourfolds, for the part of the
gauge group that comes from Kodaira singularities over divisors in the threefold base and
from sections. In 4D F-theory models, gauge bosons in this part of the gauge group are
associated with divisors in the same way as in 6D theories. There are again matter states
associated with M2-branes wrapped on complex curves in a similar way; note, however,
that in the 4D construction these curves are fibral curves contained in a “matter surface”
that lies over a codimension two locus in the base. Note also that, unlike in 6D, in 4D
F-theory constructions other connected gauge group factors can arise from, e.g., stacks of
D3-branes, so the proof does not necessarily extend to the full connected gauge group.
Note also that fluxes and the superpotential do not change this conclusion. While the
superpotential can drive the theory to a locus with a larger geometric gauge group, the
dual pairing between divisors and matter curves holds in the same fashion. And while
fluxes can break the gauge group down from that naively determined by the 7-branes and
Kodaira singularity structure, this simply removes part of the gauge group; the dual pairing
between the remaining gauge components and matter charges must still hold.

3.3 Massless charge sufficiency in 6D

We conjecture that the massless charge sufficiency condition holds for the lattice of charges
in each F-theory compactification giving a 6D supergravity theory, for all the (nonabelian
or abelian) gauge factors (in the connected part of the gauge group) where the associated
Green-Schwarz coefficient b (or b̃ for abelian factors) satisfies the condition

− a · b > 0 , (3.1)

where the inner product denotes the Dirac product on the string charge lattice. In F-theory
this is equivalent to the condition that each such gauge factor is associated with a divisor C
satisfying −K ·C > 0, where K is the canonical class of the base B and the inner product
is the intersection form in the homology lattice of the compactification space9 H1,1(B,Z).

There are two specific classes of cases where the positivity conditions (3.1) are violated
and we are aware of theories that violate the massless charge sufficiency condition:

9As mentioned in the previous section, for nonabelian factors the divisor C is the locus where the seven-
branes supporting the gauge factor are localized; for U(1) factors the divisor is somewhat more obscure
but in the simplest cases can be associated with the divisor supporting an unHiggsed nonabelian factor
containing the U(1).
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1) Cases where
b · b ≤ −3 and − a · b = b · b+ 2 ≤ −1 . (3.2)

These correspond to situations where the negative intersection −K ·C < 0 gives rise
to a “non-Higgsable” gauge factor [75], with minimal matter content (or possibly none
at all), since the Weierstrass coefficients f, g are forced to vanish along the geometric
locus C associated with b.

2) Cases where
b · b = −a · b = 0 . (3.3)

These cases are associated with gauge factors for which the matter content contains
precisely one hypermultiplet in the adjoint representation and no other charged mat-
ter, as would be seen in a multiplet with enhanced supersymmetry.

We explore these two classes of exceptions further in section 6. In fact, our conjecture
is equivalent to the statement that massless charge sufficiency holds for all factors except
those that fit into these two exceptional classes. This can be seen as follows: if the curve C
in the base associated with the anomaly coefficient b is irreducible and −K ·C < 0 it follows
that10 C · C = b · b < 0. Since the genus g in (2.11) is non-negative, we can only have a
gauge factor associated with an irreducible curve C and corresponding anomaly coefficient
b with −a · b < 0 when g = 0 so −a · b = b · b+ 2 as in case (1). If K ·C = 0 then the genus
g = 1 curve with C · C = 0 corresponds to the situation of case (2) giving our other class
of exceptions. When K ·C = 0 and the genus is higher, g > 1, then −a · b = 0, b · b > 0, or
g = 0 so b · b = −2, and it seems that massless charge sufficiency always holds, as we see
in a number of cases in the following analysis.

While we do not have a mathematical proof of this conjecture, it holds in all cases
we have analyzed, as we show in the following sections explicitly for various single-factor
gauge groups. Here, we elaborate slightly further on the statement of this conjecture.

As described above, the connected part G0 of the F-theory gauge group G is generally
a compact group of the form G0 = (G0 × U(1)r)/Ξ, where G0 is simply connected and Ξ
is a discrete subgroup of the center of G0 × U(1)r. We can consider the charge lattice Λ0
of the group G0 × U(1)r. In any F-theory model, the massless states are associated with
holomorphic or anti-holomorphic fibral curves (i.e. curves that project to a point in the
base). The associated massless hypermultiplet states generate a sublattice Λ ⊂ Λ0. Unless
there are U(1) factors under which no fields are charged (“non-Higgsable U(1) factors” [78–
80]), the rank of Λ is the same as the rank of Λ0. Projecting out the charge lattice
associated with such U(1) factors and with nonabelian factors having anomaly coefficients
that violate (3.1), to give the lattice p(Λ0), and similarly projecting out the charges under
nonabelian factors violating (3.1) from Λ, the quotient Ξ′ = p(Λ0)/p(Λ) is the subgroup
of the center of G0 that leaves all the remaining massless charged states invariant. Our
conjecture is then that Ξ = Ξ′.

10This can be shown for example by noting that such a negative intersection product is only possible
for irreducible C when −K contains C as a component; it follows that we can write −K = nC + R with
R · C ≥ 0 (Zariski decomposition [76, 77]), so C · C < 0.
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In the next section we analyze the possible Mordell-Weil torsion groups T for non-
abelian gauge groups. We show that for many of the gauge factors that contain each
such group Ξ = T in the center, when the anomaly coefficient satisfies (3.1) it follows
that massless charge sufficiency always holds. In particular, under these circumstances all
anomaly-consistent massless spectra that are invariant under Ξ = T are associated with
an F-theory Weierstrass model that indeed has this torsion group, so that Ξ = Ξ′ in all of
these cases. In section 5 we give an example of massless charge sufficiency for an abelian
U(1) theory, and in section 6, we describe in more detail the cases that violate (3.1) and
the massless charge sufficiency condition

4 Examples: massless charge sufficiency and Mordell-Weil torsion for
nonabelian gauge groups

We present here a variety of examples of 6D supergravity theories with purely nonabelian
gauge groups that are anomaly free and have a massless spectrum that is invariant under
a nontrivial discrete subgroup of the gauge group. These are the situations in which the
massless charge sufficiency condition has the potential to fail. We show that in all these
cases except those where the associated anomaly coefficient b satisfies (3.2) or (3.3) the
Mordell-Weil group of any F-theory construction with the desired gauge algebra and mat-
ter content has the appropriate torsion subgroup T = Ξ, where G0 = G0/Ξ, so that the
massless charge sufficiency condition is satisfied, in accord with our conjecture. We focus
primarily here on theories with “generic” matter representations [81], which for a single
SU(N) factor, for example, consists only of the fundamental, adjoint and two-index anti-
symmetric representations. We explicitly analyze one case of exotic (non-generic) matter
in section 4.2 (the 3-index antisymmetric representation of SU(6)). The analysis of [69]
suggests that there are few other viable exotic matter representations compatible with
Mordell-Weil torsion; in particular, the 3-index (4) representation of SU(2) breaks the pos-
sible Z2 central subgroup, while the 2-index symmetric representation of a general SU(N)
group can preserve the Z2 subgroup of ZN for even N . In general, including more ex-
otic matter types does not seem to modify the conclusions found here; we make a few
comments about this in various appropriate places but do not make an effort towards a
complete analysis of such questions. In this section and the following sections we use some
basic aspects of the geometry of elliptic curves; for a good introduction to these topics and
related methods see [82, 83].

We organize the analysis by the Mordell-Weil torsion group, and consider for each
torsion group different gauge groups that may arise with that torsion subgroup. While
our analysis here is not completely exhaustive, we give a fairly complete analysis of the
possibilities for nonabelian gauge groups.

From the geometry of elliptic Calabi-Yau manifolds we know that the only possible tor-
sion groups that can appear in the Mordell-Weil group for an elliptic Calabi-Yau threefold
or fourfold are the following groups:11

Zm, 2 ≤ m ≤ 6; Z2 ⊕ Z2n, 1 ≤ n ≤ 2; Z3 ⊕ Z3 . (4.1)
11We use additive notation for these groups, which are always abelian.
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gauge algebra simply connected G0 center
su(n) SU(n) Zn
sp(n) Sp(n) Z2
so(4n) spin(4n) Z2 ⊕ Z2

so(4n+ 2) spin(4n+ 2) Z4
so(2n+ 1) spin(2n+ 1) Z2

e6 E6 Z3
e7 E7 Z2
e8 E8 1
f4 F4 1
g2 G2 1

Table 1. The discrete central subgroup of the simply connected groups associated with each gauge
algebra.

Explicit forms of the Weierstrass models associated with each of these discrete groups were
given in [27], following [84]. It was argued in [85] that these are the only possible torsion
groups for elliptic Calabi-Yau manifolds.12 We consider in turn the Weierstrass forms and
6D supergravity models associated with theories with the torsion groups (4.1).

On the 6D supergravity side, we consider models with different nonabelian gauge
groups. Abelian gauge factors are more subtle and we address some questions about U(1)
factors in the following section. For nonabelian gauge algebras that can appear in 6D
supergravity theories, the discrete central subgroup of the simply connected associated
gauge group is listed in table 1, following [88].

4.1 ZZZ2 torsion

4.1.1 General Weierstrass models with ZZZ2 torsion

A Weierstrass model that has a section of order 2, corresponding to a Z2 factor in the
Mordell-Weil group, must have the form [27]

y2 = x(x2 + α2x+ α4) . (4.2)

This can be seen simply from the elliptic curve addition law, which states that for a given
elliptic curve C the three points p, q, r that lie on the intersection L · C with any line L
satisfy p+q+r = 0, and the condition that the zero point O of the elliptic curve lies at the
point at infinity along any vertical line x = const in the x, y plane. From these conditions,
we see that a point p satisfies 2p = p+ p = 0 if and only if the tangent to the cubic at p is
vertical, so shifting the point p to the origin gives the Weierstrass form (4.2).

Completing the square to get the reduced form we have

y2 = x3 + fx+ g (4.3)
12Note that, as shown by Mazur [86, 87], other groups such as Z7, . . . ,Z10,Z12 and Z2 ⊕ Z6,Z2 ⊕ Z8 are

possible for an elliptic curve over Q, though Z3 ⊕ Z3 is not allowed over Q.
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where

f = −α2
2/3 + α4

g = 2α3
2/27− α2α4/3 . (4.4)

The discriminant then has a factor

∆ = 4f3 + 27g2 = α2
4∆̃ , (4.5)

implying at least a gauge algebra su(2) on the locus α4 = 0.

4.1.2 su(2) Weierstrass models with ZZZ2 torsion

We begin with models with a gauge algebra su(2) = sp(1). The generic form of Weierstrass
model giving a gauge algebra su(2) (which generically gives an SU(2) group that has only
fundamental and adjoint matter) on a curve σ = 0 can be constructed from the Tate
form [66, 89], and by direct analysis of the general Weierstrass model with the appropriate
Kodaira singularity type [68]; from the latter perspective it is clear that this Weierstrass
model is the most general of this type and has all the moduli associated with this branch
of 6D supergravity theories. Such a generic SU(2) Weierstrass model has

f = − 1
48φ

2 + σf1

g = 1
864φ

3 − 1
12φσf1 + σ2(g2) , (4.6)

which can be related to the Tate parameters ak = σnk ãk (with n1, n2, n3, n4, n6 = 0, 0, 1,
1, 2) by

f = − 1
48(a2

1 + 4a2)2 + (ã4 + a1ã3/2)σ , (4.7)

and
g = 1

864(a2
1 + 4a2)3 − 1

12(a2
1 + 4a2)(ã4 + a1ã3/2)σ + (ã6 + ã2

3/4)σ2 . (4.8)

We thus identify φ = a2
1 + 4a2, f1 = ã4 + a1ã3/2, g2 = ã6 + ã2

3/4, and we see that the
Tate formulation has a redundancy under the choice of a1, a3. Matter in the fundamental
representation of su(2) transforms nontrivially under the Z2 center, while matter in the
adjoint representation does not, so the possibility of having a group of global structure
SO(3) = SU(2)/Z2 can only arise in the absence of matter in the fundamental represen-
tation.

The discriminant locus of (4.6) takes the form

∆ = 1
16φ

2(φg2 − f2
1 )σ2 +O(σ3) . (4.9)

Fundamental matter fields arise at the vanishing locus of the factor (φg2− f2
1 ). In general,

φ is a section of O(−2K), and ∆ is a section of O(−12K).
It is straightforward to confirm that when g2 = 0, the Weierstrass model (4.6) takes

the form (4.4) and has Z2 torsion. We now prove that this is the case whenever −a · b >
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0 and there is no fundamental matter, only matter in the adjoint of su(2). From the
anomaly cancellation conditions it is straightforward to determine that the number of
hypermultiplet fields in the fundamental representation of a theory with su(2) algebra is
−8a · b− 2b · b (assuming as stated above that we have only generic matter types, so that
the only representation arising is adjoint matter). To have no fundamental matter fields,
we must then have the condition

(−4a− b) · b = 0 . (4.10)

If −a · b > 0, we must then also have b · b = −4a · b > 0. The class of g2 is [g2] = −6a− 2b.
It thus follows that [g2] ·b = −b ·b/2 < 0. This, however, implies that [g2] is not an effective
class, since if b is an irreducible effective class with b · b > 0 there is no effective class c with
c ·b < 0. This shows that g2 must vanish, so the absence of fundamental matter implies the
presence of the Mordell-Weil torsion section associated with the Z2 quotient of the gauge
group. This demonstrates that, at least for theories with only the generic fundamental and
adjoint matter representations of a gauge factor su(2), when the condition −a · b > 0 is
satisfied the massless charge sufficiency condition holds. Note that for the gauge algebra
su(2), the only exceptions to massless charge sufficiency are those of class (2) where the
condition (3.3) holds. When b · b ≤ −3, the rank of the resulting non-Higgsable gauge
algebra is at least two. And when −a · b = 0, b · b = −2, we have fields in the fundamental
matter representation so the charge lattice is automatically filled.

For the gauge algebra su(2), there cannot be any further exceptions to massless charge
sufficiency even when other matter representations that can be realized through F-theory
geometry are included. It is argued in [69] that the only exotic matter representation that
can arise in F-theory for su(2) is the 3-index (4) representation. Since this representation
by itself is sufficient to generate the full SU(2) charge lattice, any model that includes this
representation automatically satisfies massless charge sufficiency.

It is interesting to consider explicitly some of the classes of cases with generic matter
where the massless charge sufficiency condition holds. When σ is in the class −4K, f1
becomes a constant and g2 automatically vanishes. In this case, as discussed above, there is
no (massless) matter charged in the fundamental representation of the su(2), only adjoint
matter. The presence of the Z2 torsion in this case indicates that the global form of
the gauge group is SO(3) = SU(2)/Z2, in agreement with the massless charge sufficiency
hypothesis.

A special case of the SU(2)/Z2 Weierstrass model occurs when φ = 0 and [σ] = −4KB.
In this case, g vanishes identically and we have a Kodaira type III singularity, giving an
alternative realization of the su(2) algebra.

When σ is in a class such that [g2] = −6KB − 2[σ] is ineffective (there are no sections
of the corresponding line bundle), then g2 automatically vanishes. In such a case, as long
as f1 is in an effective class (has sections), we get another SU(2) factor on the locus f1 = 0
(or several SU(2) factors if f1 is reducible).13 This can also occur when g2 is in an effective

13This is a simple example of the automatic enhancement conjecture described in [19], and was part of
the motivation for the work in that paper.
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class but tuned to vanish. In either of these cases, we again have Z2 torsion, but the
global form of the gauge group is G = (SU(2)× SU(2))/Z2 (with more factors if f1 or σ is
reducible). (Note that if f1 is not in an effective class, or otherwise vanishes along with g2,
then f, g vanish to order (2, 3) at the vanishing locus of φ, which supports a larger gauge
group such as SO(8).)

As simple examples of these situations, consider the base P2, with canonical class
−KB = 3H. When σ is a degree 12 curve, we have an SO(3) theory with only adjoint
matter (55 adjoints). When [σ] < 12 and g2 = 0 we have an (SU(2) × SU(2))/Z2 theory
where the divisors supporting the two SU(2) factors have degrees d, 12 − d. When the
degree of σ is 10 or 11, this condition is forced automatically, so there is no pure SU(2)
theory with anomaly coefficient b = d = 10, 11 that comes from such an F-theory model at
T = 0. Such theories are anomaly-consistent, however, so form a part of the apparent 6D
supergravity “swampland”.

Note that the cases with gauge group (SU(2) × SU(2))/Z2 can be thought of as de-
generate cases of the SO(3) theory where the divisor supporting the gauge group becomes
reducible. In particular, when [σ] + [f1] = −4K, this can be thought of as tuning an SO(3)
on a reducible divisor α4 = σf1.

From the 6D supergravity point of view, the models described correspond precisely
with the set of anomaly-consistent models with only SU(2) gauge group factors and generic
matter content that is invariant under a central Z2. For example, at T = 0 the number
of fundamental matter representations of an SU(2) with anomaly coefficient b > 0 is eas-
ily computed to be 2b(12 − b). This vanishes only when b = 12, corresponding to the
SO(3) theory described above, and the fundamentals are all associated with bifundamen-
tals with other SU(2) factors precisely when the anomaly coefficients of the SU(2) factors
satisfy

∑
i bi = 12.

4.1.3 ZZZ2 torsion and larger SU(N) and Sp(N) groups

For groups SU(2N) with N > 1, the discrete Z2 subgroup of the center Z2N is respected by
models that have no fundamental matter but do have matter in the 2-index antisymmetric
and adjoint representations. The Z2 center of Sp(N) models without fundamental matter
is similarly preserved, and the anomaly equation for the number of fundamental matter
fields is the same in these cases. A variety of such models with larger SU(N) and Sp(N)
groups can be constructed by taking α4 = σk in (4.4) for some integer k. In this case
the gauge group on the locus σ = 0 becomes SU(2k) when α2 is a perfect square, and
otherwise is Sp(k). Since α4 is in the class −4K, the divisor 4K must be divisible by
k in Pic(B) in order to carry out such a construction. For example, on the base P2

we have such a model for any k|12, so that there are T = 0 models with gauge groups
SO(3), SU(4)/Z2, SU(6)/Z2, SU(8)/Z2, SU(12)/Z2, and SU(24)/Z2 (and similarly for the
analogous Sp(N)/Z2 models). In each case there are no fundamental matter fields, only
adjoint and two-index antisymmetric tensor fields. The Weierstrass model for SU(24)/Z2
was considered previously in [68] (section 4.1). It is not hard to check that these are the
only anomaly-free models with T = 0 and gauge algebra su(N) or sp(N) with generic
matter representations and no matter in the fundamental representation. Note that there
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may be related models (in some cases connected by “matter transitions” [90]) in which there
are two-index symmetric and antisymmetric matter representations replacing adjoints [69],
which could still preserve the Z2 subgroup; we leave further analysis of such possible exotic
matter models as open problems. Other models with a variety of product gauge groups can
be constructed by making α4 reducible. For example, taking T = 0 and α4 = φ2

4φ
2
2 gives

a theory with gauge group (SU(4) × SU(4))/Z2 on degree 4 and 2 curves in P2, so that
the matter content consists of 3 adjoint representations of the first SU(4), 8 bifundamental
matter fields, and 12 and 6 two-index antisymmetric matter fields for the two SU(4) factors
respectively.

Note that making α4 reducible in the special case where α2 = 0 enhances the Kodaira
type III singularity mentioned above to a type I∗0 (SO(8)) or type III∗ (E7) singularity
when α4 = σ2 or α4 = σ3 respectively, as discussed further below.

Considering SU(N) models with T > 0, a similar, though slightly more intricate,
analysis to that of SU(2) allows us to prove that just as for SU(2), for any SU(4) model
(for any T ) where −a · b > 0 that has only generic matter invariant under the Z2 subgroup
of the center the associated Weierstrass model has Z2 torsion. This can be seen as follows:
from [68], the general form of a Weierstrass model with SU(4) symmetry on the divisor σ is

f = − 1
48φ

4
0−

1
6φ

2
0φ1σ+ f2σ

2 + f3σ
3 (4.11)

g = 1
864φ

6
0 + 1

72φ
4
0φ1σ+

( 1
36φ

2
0φ

2
1−

1
12φ

2
0f2

)
σ2 +

(
− 1

12φ
2
0f3−

1
3φ1f2−

1
27φ

3
1

)
σ3 + g4σ

4 ,

where f3, g4 may also include terms of higher order in σ. From anomaly cancellation for
a theory with only generic (adjoint, two-index antisymmetric, fundamental) matter, the
number of fields in the fundamental representation is −8a · b− 4b · b, so to have no matter
fields we must have

(−2a− b) · b = 0 . (4.12)

If −a · b > 0, it follows that b · b > 0. The class of f3 is [f3] = −4a − 3b, which must be
ineffective. Similarly, g4 is ineffective, so f3 = g4 = 0. The remaining nonzero terms in the
Weierstrass model (4.11) then take the form (4.4), where

α2 = 1
4φ

2
0 + φ1σ (4.13)

α4 =
(
f2 + 1

3φ
2
1

)
σ2 . (4.14)

This shows that our conjecture on massless charge sufficiency holds for SU(4) models with
only two-index antisymmetric and adjoint matter. The only other representation possible in
standard F-theory models is the two-index symmetric representation [69], and the adjoint
is anomaly equivalent to a combination of the two-index symmetric and antisymmetric
representations, so the condition for the number of fundamental representations to vanish
is the same in the presence of this exotic matter. Thus, for SU(4) we have proven the
massless charge sufficiency conjecture for arbitrary matter fields. The same argument
holds for models with a gauge group Sp(2); the only difference is that we replace the
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perfect square φ2
0 (that satisfies the “split” condition) in the Weierstrass model with a

more general field φ.
A similar argument holds for SU(2k) models with larger N = 2k. While for SU(6)

and SU(8) the story is slightly more complicated due to the possible presence of 3-index
antisymmetric matter representations, the most generic type of SU(2k) tuning takes the
form [68]

f = −1
3Φ2 + fkσ

k + fk+1σ
k+1 (4.15)

g = − 2
27Φ3 − 1

3Φ(fkσk + fk+1σ
k+1) + g2kσ

2k .

The number of fundamental matter fields is given by −8a · b − 2k b · b, so to have no
fundamental matter fields we must have

(−4a− kb) · b = 0 . (4.16)

The classes of fk+1 and g2k are −4a − (k + 1)b and −6a − 2k, which are both ineffective
through similar arguments to the above, so these terms vanish and the absence of funda-
mental matter with −a · b thus implies that we have the Z2 torsion form (4.4). Again, the
analysis is parallel for Sp(k). All these models thus agree with the conjecture for massless
charge sufficiency.

4.1.4 E7 gauge group

The group E7 has a center Z2. The generic matter representations are the adjoint (133)
and fundamental (56) representations. No higher-dimensional exotic E7 representations
should be possible in standard F-theory models. The adjoint is invariant under the Z2
center, while the fundamental is not. Thus, the only situation where we can have a matter
spectrum with generic matter that respects the Z2 symmetry is when we only have adjoint
matter. We get an e7 algebra over a divisor σ = 0 for a Weierstrass model with f, g of
the form

f = σ3f̃ (4.17)
g = σ5g̃

∆ = 4σ9f̃3 .

Fundamental matter appears at the locus where f̃ = 0.
We now prove that the massless charge sufficiency conjecture holds by demonstrating

that the absence of fundamental matter and the condition −a·b together imply the presence
of Z2 torsion. The number of (half-hypermultiplet) fundamental matter fields is given by
(−4a − 3b) · b. When this quantity vanishes, it follows that g̃, with class [g̃] = −6a − 5b
has an ineffective class and vanishes. We thus match the Weierstrass form (4.2) with
α2 = 0, α4 = f̃σ3 when the E7 theory has only adjoint matter, giving another class of
examples where the massless charge sufficiency conjecture holds.
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In the simplest cases with only adjoint matter f̃ is simply a constant, and σ is a section
of −(4/3)KB. This is possible, for example, on the base P2 when σ is a quartic polynomial.
Other models with Z2 torsion can arise when T > 0.

One other relevant class of models occurs when g̃ = 0 but f̃ is not a constant. This
corresponds to the case discussed in the previous subsections where α2 = 0 and α4 is
reducible, where we have a product group with both an E7 and other factors.

4.1.5 SO(N) and ZZZ2 torsion

A theory with an so(N) gauge algebra and generic matter generally has both fundamental
matter and matter in the spinor representation, in addition to adjoint matter. We focus
here first on the cases so(2n+1), where the center of the simply connected group spin(2n+1)
is Z2.

The Weierstrass model for an so(2n+ 7) or so(2n+ 8) gauge algebra has the form

f = f2σ
2 + f3σ

3 (4.18)
g = g3σ

3 + g4σ
4

∆ = ∆6+nσ
6+n ,

where the choice of 2n+ 7 or 2n+ 8 depends upon additional monodromy conditions, and
the last coefficients in each expansion may contain higher order powers in σ.

The spin representation breaks the central Z2 for odd N , so we can have Z2 torsion
with gauge algebra so(2n+ 1) only when there are no fields in the spin representation. By
anomalies this occurs only when (−2a − b) · b = 0. In this circumstance, when −a · b >
0 it follows that f3, g4 vanish. The discriminant is then ∆ = (4f2

2 + 27g3
3)σ6, so this

is only possible for so(7) when N is odd. The so(7) monodromy condition is that the
cubic x3 + f2x + g3 factorizes as (x − A)(x2 + Ax + B), while a factorization of the form
(x− A)(x− B)(x+ (A+ B)) gives so(8). When (−2a− b) · b = 0 and −a · b > 0 we have
b · b > 0, and it follows that −2a− b is a rigid divisor (or sum of rigid divisors).14 It then
follows that f2 = cA2, g3 = c′A3 with c, c′ constant and [A] = −2a − b. This implies that
the monodromy is that of so(8). In this case in fact the torsion is Z2 ⊕ Z2, as we discuss
further in section 4.3.2. This proves that the massless charge sufficiency conjecture we have
made holds for gauge algebras so(2n + 1) taken in isolation. In fact, we have shown that
there are no situations at all where a pure so(2n + 1) gauge algebra arises without some
matter in the spinor representation when −a · b > 0.

We could also get a Z2 torsion by breaking part of the discrete center of the gauge group
when the algebra is so(2n) with 2n even. For the algebra so(4n+ 2), there are two spinor
representations and either spin representation again completely breaks the central Z4 [88].

14We argue in favor of this by using the Zariski decomposition [76, 77] of the effective Q-divisor −2a.
(This divisor is effective because −2a = −2KB and the Weierstrass coefficients f and g are sections of
−4KB and −6KB , respectively.) We assume that the gauge divisor C is irreducible; since C ·C = b · b > 0,
it follows that b is nef (since its intersection with any irreducible divisor other than C must be nonnegative).
Thus, −2a = b + (−2a − b) must be the Zariski decomposition of −2a, so that in particular, if we write
−2a− b in terms of irreducible components, the intersection matrix of those components must be negative
definite. In particular, each component has negative self-intersection and so it is rigid.
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From the same argument as above, the absence of matter in a spinor representation implies
(−2a− b) · b = 0, and there are no models with −a · b > 0 and no spinors except so(8). For
the gauge algebra so(N) with N = 4n, the presence of either of the spinor representations
or the fundamental representation leaves a Z2 invariant, but the center is completely broken
by any pair of these representations. When the genus g defined through (2.11) is one, then
the multiplicities of both spinor and fundamental representations are given by b · b, so the
center is completely broken except in the exceptional case −a · b = b · b = 0. When g = 0,
the number of spinors is b ·b+4, which can only vanish when b ·b = −4, another exceptional
case that we return to in section 6.1, and the number of fundamental representations is
b · b + N − 4, which is always larger than or equal to the number of spinors, so the only
cases where the discrete center is not completely broken are exceptional. When g > 1,
on the other hand, there are always more spinors than fundamental representations when
N > 8; the case of so(8) is treated in section 4.3.2. This leaves as a possible class of
exceptions to massless charge sufficiency theories with algebra so(4n) and spinor matter
but no fundamental matter. For example, on the base P2 we can tune a so(12) algebra on a
quartic (genus g = 3), and the matter content consists of 8 spinor fields and no fundamental
fields. If all the spinors appearing here are in the same representation, this would violate
massless charge sufficiency unless the corresponding Weierstrass model has Z2 Mordell-Weil
torsion. We can check explicitly, however, that in such a case the Weierstrass model does
have the form (4.4). For the number of fundamental fields to vanish for so(12), we have
(−4a−3b)·b = 0. From this it follows that the Tate coefficients a1, a3, a6 must vanish in the
standard so(12) Tate tuning, giving precisely the resulting Weierstrass model form (4.4).
It is not possible to have an so(16) or higher gauge algebra on a curve with b · b > 0, so we
have checked massless charge sufficiency for all possible so(n) algebras with Z2 torsion.

Considering product groups associated with gauge algebras with multiple components,
it would seem that various combinations of su(2), so(7), and e7 algebras can be produced
with a single Z2 torsion factor by taking the class of Z2 models with α2 = 0 and setting
α4 to be a product of various linear, quadratic, and cubic factors. The so(7) part of
the Weierstrass model then takes the form of (4.18), with f3 = g = 0. While taken
alone the so(8) symmetry coming from the quadratic factors would respect a Z2 ⊕ Z2
torsion as described below, the monodromy condition is changed to give an so(7) and
the discrete symmetry is broken to Z2 in the presence of at least one linear or cubic
factor in α4. When the only gauge factors are SU(2) and a single SO(7), this gives a
perfectly well-behaved set of models where all matter is in (2, 8) representations at the
intersections of the SU(2) divisors with the SO(7) divisor; this matter is invariant under
the Z2 that acts simultaneously on all factors. Including more than one SO(7) or E7 factor
gives (4, 6) points at the intersections of the divisors associated with these factors (unless
we are in the special case where −a · b = b · b = 0 for these factors). An interesting
set of examples of this type with at least two E7 factors were recently considered by
Kimura in the F-theory context [91]. For example, the first case considered there has
α4 = (t − x1)3(t − x2)3(t − x3)2∏8

i=1(u − yi), where t, u are local coordinates on the
base F0 = P1 × P1, giving a gauge group (E2

7 × SO(7) × SU(2)8)/Z2. The other models
come from combining loci of the SU(2) factors to form further SO(7) or E7 factors in
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the group. While these models have (4, 6) points corresponding to SCFTs coupled to
the SO(7) and E7 factors, the analysis of Kimura suggests that interpreting these loci as
bi-charged matter may nonetheless give solutions to the anomaly cancellation conditions.
The notion that (56,2) matter transforming under E7×SU(2) may be realized in F-theory
at apparent superconformal loci was also considered previously in [92]. As pointed out
there, the existence of a heterotic dual with such matter suggests that there is a sensible
interpretation of these constructions in the F-theory context. It would be interesting to
investigate this kind of exotic matter structure further.

4.2 ZZZ3 torsion: SU(3), E6, SU(6) (but not SU(9))

A Weierstrass model with Z3 torsion takes the form [27, 83]

f = −α4
1/48 + α1α3/2

g = α6
1/864− α3

1α3/24 + α2
3/4 (4.19)

∆ = α3
3∆̃ .

This implies at least an su(3) algebra. This form of the Weierstrass model can be un-
derstood geometrically by noting that an elliptic curve only has a point p satisfying
3p = p + p + p = 0 when the point p is an inflection point that hits the tangent at
that point three times, in which case the Weierstrass model can be written in the form
y2 + a1yx+ a3y = x3.

As for SU(2), we can easily prove that a model with algebra su(3) takes the form (4.19)
when there is no fundamental matter and −a · b > 0, as predicted by the massless charge
sufficiency conjecture. The general form of a Weierstrass model with su(3) algebra takes
the form [68]

f = − 1
48φ

4
0 + 1

2φ0ψ1σ + f2σ
2

g = 1
864φ

6
0 −

1
24φ

3
0ψ1σ +

(1
4ψ

2
1 −

1
12φ

2
0f2

)
σ2 + g3σ

3 . (4.20)

The absence of fundamental matter dictates that (−3a− b) · b = 0. The classes of f2, g3 are
[f2] = −4a− 2b, [g3] = −6a− 3b, so these are both ineffective and f2 = g3 = 0. This gives
exactly the form of (4.19) with α1 = φ0, α3 = ψ1σ, confirming that all models with no
fundamental matter and −a · b > 0 have Z3 torsion, so that the massless charge sufficiency
conjecture holds for su(3).

The simplest class of su(3) models of this form are those where the divisor σ supporting
the gauge factor has the maximum class −3KB. In this case α3 = cσ with c a constant. In
the case where σ is irreducible, this gives a 6D F-theory model with gauge group SU(3)/Z3,
and only adjoint matter fields (with multiplicity g = 1 + 3K2

B). For T = 0, this reproduces
the only anomaly-free theory with su(3) gauge algebra and only adjoint matter.

As in the Z2 case, when we tune an SU(3) factor on a large enough divisor σ that
there are no terms in f, g of higher order in σ, then we get the Weierstrass form (4.19)
with α3 = τσ and there is another gauge factor of SU(3) on τ (multiple factors if τ is
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reducible), for a global gauge group (SU(3) × SU(3))/Z3. As we found for the analogous
su(2) models, this construction also points to further classes of anomaly-free models that
have no known F-theory construction, such as for example the T = 0 model with gauge
group SU(3), anomaly coefficient b = 8, and 24 fields in the fundamental of SU(3) (along
with 21 adjoint fields), since e.g. attempting to tune such a Weierstrass model automatically
gives a second SU(3) factor, only bifundamental and adjoint fields, and a global gauge group
(SU(3)× SU(3))Z3.

One can again in this case construct various product models by taking α3 to be re-
ducible when [α3] = −3KB.

We can also consider models with the group E6, which has a center Z3. Like in the E7
case above, we have

f = σ3f̃

g = σ4g̃ (4.21)
∆ = 27σ8g̃2 .

Fundamental matter appears at the locus where g̃ = 0. We can prove the massless charge
sufficiency conjecture for E6 in a similar fashion to the preceding cases. The absence of
fundamental matter is equivalent to the condition (−3a− 2b) · b = 0. It follows that f̃ = 0,
and there can be no higher-order terms in g̃ in an expansion in σ. For Weierstrass models
of the form (4.21), with no terms in g of order σ5 the monodromy condition for E6 is
that g̃ is a perfect square g̃ = χ2 (otherwise we have a group F4). When this condition
is satisfied, (4.21) takes the form (4.19) with α3 = σ2χ. Thus, whenever we have a group
E6 with no fundamental matter and −a · b > 0 it follows that the Weierstrass model has
the Z3 torsion form (4.19). This proves the massless charge sufficiency conjecture for the
group E6.

In the simplest example of E6 theories with Z3 torsion, g̃ is a constant, which occurs
when σ is a section of −3KB/2. This is possible, for example, on the base F0 = P1 × P1,
when σ is a curve of bidegree (3, 3). In this case f̃ = 0, and we match the Weierstrass
form (4.19) with α1 = 0, α3 =

√
4g̃σ2, precisely corresponding to the case where the E6

theory has only adjoint matter.
Finally, we consider one case with exotic matter: SU(6) with only matter in the adjoint

and 3-index antisymmetric representation. These matter representations preserve the Z3
subgroup of the discrete center Z6, so that the global form of the gauge group is SU(6)/Z3.
From anomaly cancellation, this is possible when −9a · b = 6b · b. The general form of
Weierstrass model with SU(6) gauge group and 3-index antisymmetric representations was
worked out in [68] As shown in [93], for such models with no antisymmetric matter, a
Tate-type tuning can be realized through the general Weierstrass form

y2 + a1xy + ã3σ
2y = x3 , (4.22)

where fundamental matter occurs at the locus ã3 = σ = 0, so that the absence of funda-
mental matter occurs precisely when (−3a − 2b) · b = 0. This Tate tuning matches with
the Z3 Weierstrass form (4.19). Here again (omitting the details, which are similar to the
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other cases) the massless charge sufficiency hypothesis holds and we have the appropri-
ate Mordell-Weil torsion group. In the simplest cases, this corresponds to a situation in
F-theory where [σ] = −3KB/2, which can be realized for example on F0.

A similar construction would seem to possible for an SU(9) theory, where we use
a3 = ã3σ

3, with [σ] = −KB. This would seem to correspond to the structure needed
for an SU(9) theory with SU(9)/Z3 symmetry. This could be imagined for example to
occur in a model in which all the matter is in 3-index antisymmetric representations. As
discussed in e.g. [90], however, this representation only seems to arise in the context of (4,
6) points associated with an SCFT. This can be seen in the Weierstrass model from the
vanishing of f, g,∆ to orders 4, 6, 12 at the locus a1 = σ = 0. Nonetheless, this suggests
that these SCFT loci may have a natural interpretation as exotic SU(9) matter in the F-
theory context that preserves the Z3 discrete central symmetry, like the E7×SU(2) matter
discussed above that preserves a Z2 symmetry. How the anomaly equations work out in
this case, however, is rather unclear,15 and a further analysis of this class of models is left
for further investigation.

4.3 Higher torsion groups

4.3.1 ZZZ4

Continuing in this vein we next consider the torsion group Z4. In this case we cannot
simply realize this through a theory with gauge group SU(4)/Z4 and only adjoint matter.
We can see this since from the anomaly conditions the number of two-index antisymmetric
fields on a curve C associated with anomaly coefficient b is −a · b, while the number of
fundamental fields is −8a · b− 4b · b; these can only both vanish if b · b = −a · b = 0, which
is an exceptional case where the condition −a · b > 0 does not hold. The same kind of
argument holds for all higher SU(N), so we do not expect any F-theory models with a
gauge group of only SU(N)/ZN for N > 3, except when −a · b = 0, so the massless charge
sufficiency condition holds trivially in this class of cases.

Similarly, we do not expect any models with torsion Z4 from a gauge algebra so(4n+2).
The Z4 center is broken by fundamental fields, with multiplicity (−(2n−1)a− (2n−2)b) · b
and also by spinor fields, with multiplicity (−2a− b) · b. These multiplicities can only both
vanish when −a · b = b · b, which is again one of the exceptional cases, so we again can have
no counterexamples to the massless charge sufficiency conjecture.

15In particular, if we take the base P2 and σ to be a cubic, the generic matter content from anomaly
cancellation would be −9 fundamental fields and +9 two-index antisymmetric fields. These cannot be
exchanged for only 3-index antisymmetric matter, however, as the 3-index antisymmetric representation
is anomaly equivalent to 5 2-index antisymmetric fields and −14 fundamental fields. Thanks to Patrick
Jefferson for discussions on this issue.
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We can identify some models with torsion Z4 by analyzing the Weierstrass model form
with this torsion [27]

y2 + a1xy + a1a2y = x3 + a2x
2 , (4.23)

which gives

f = − 1
48a

4
1 + 1

3a
2
1a2 −

1
3a

2
2

g = 1
864(a2

1 − 8a2)(a4
1 − 16a2

1a2 − 8a2
2) (4.24)

∆ = − 1
16a

2
1a

4
2(a2

1 − 16a2) .

From this we see that this torsion arises when the gauge algebra contains at least su(2)⊕
su(4). In particular, when a1, a2 are irreducible divisors in the classes −KB,−2KB we get
a gauge group (SU(2) × SU(4))/Z4. Consideration of anomalies shows that the spectrum
of an SU(2) gauge group on a divisor of class −KB has 6KB ·KB fields in the fundamental
representation, and the spectrum of an SU(4) gauge group on a divisor of class −2KB has
2KB ·KB fields in the two-index antisymmetric representation. The curves a1, a2 intersect
at 2KB ·KB points, so each of these points must support a half-hypermultiplet in the (2,6)
representation of su(2)⊕su(4), which is invariant under Z4. Indeed, while we have not done
an exhaustive analysis, it does not seem possible to construct any other anomaly-consistent
theory that has a spectrum invariant under a Z4 subgroup, other than by making the SU(2)
and SU(4) loci a1 and/or a2 reducible. Note in particular that trying to factor a2 = α2 to
get an SU(8) factor gives (4, 6) points at the locus a1 = α = 0 unless −a · b = 0, which is
an exceptional case. Similarly, factoring a2 = a1β, which naively would give a theory with
gauge group SU(4) × SO(12) gives (4, 6) points at the locus a1 = β = 0 unless we are in
an exceptional case.

4.3.2 ZZZ2 ⊕ ZZZ2

In this case the Weierstrass model comes from a Tate form

y2 = x(x− b2)(x− c2), (4.25)

giving

f = 1
3(b2c2 − b2

2 − c2
2)

g = − 1
27(b2 + c2)(b2 − 2c2)(2b2 − c2) (4.26)

∆ = −b2
2c

2
2(b2 − c2)2 .

The only single-factor groups that have a center Z2⊕Z2 are the groups spin(4n), with
algebra so(4n). To keep this center unbroken we must have no spinor matter, of multiplicity
(−2a − b) · b, and no fundamental matter, of multiplicity (−(2n − 2)a − (2n − 3)b) · b.
This is only possible when n = 2, i.e. for so(8). From the point of view of Weierstrass
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models, the absence of spinor matter, as discussed in section 4.1.5, is only possible with
−a · b > 0 when we have an so(8) algebra and a Weierstrass form (4.18) with f3 = g4 = 0,
and f2 = cA2, g3 = c′A3. This corresponds to a model with SO(8) gauge group and no
fundamental or spinor matter. This has the form (4.26), where c2, b2 are proportional to A,
and thus has the necessary Z2 ⊕ Z2 torsion, so the massless matter sufficiency conjecture
is satisfied for all single-factor groups with torsion Z2 ⊕ Z2.

More generally, (4.26) gives a gauge group of SU(2)3/(Z2⊕Z2), where the three SU(2)
factors are tuned on divisors b2, c2, b2 − c2 in the class −2KB. The anomaly-free spectrum
consists of 4KB ·KB half-hypermultiplet bifundamental fields in each pair of SU(2) factors.
The Z2 actions act on pairs of SU(2) factors; note that the product of e.g. the Z2 actions
on factors 1+2 and 2+3 combine to give the Z2 action on the 1+3 factors.

As in the other cases, we can get more complicated models by taking b2, b3 in factored
form. For example, setting b2 = β2

1 gives a theory with (SU(4)×SU(2)×SU(2))/(Z2⊕Z2)
symmetry.

4.3.3 Other discrete torsion groups

For the groups Z5,Z6,Z4⊕Z2, and Z3⊕Z3 there are no natural realizations of these torsion
groups from anomaly-free models with single-factor gauge groups. The only place these
might be realized from a single group factor is through SU(5)/Z5 or SU(6)/Z6, but there
are no anomaly-free models with these gauge groups and no fundamental or two-index
antisymmetric matter where −a · b > 0.

Indeed, it turns out that there are no good Weierstrass models with these Mordell-Weil
torsion forms other than models with (4, 6) points and models where gauge group factors
are tuned on divisors that violate the massless charge sufficiency condition −a·b > 0, which
we discuss further in section 6.

As an example, for Z5, the Weierstrass model takes the form [27]

f = 1
6a1b

3
1 −

1
48a

4
1 + 1

3a
2
1b

2
1 −

1
3b

4
1 −

1
6a

3
1b1 (4.27)

g = 1
864(a2

1 − 2a1b1 + 2b2
1)(a4

1 + 14a3
1b1 + 26a2

1b
2
1 − 116a1b

3
1 + 76b4

1)

∆ = 1
16(a2

1 + 9a1b1 − 11b2
1)(a1 − b1)5b5

1 .

Here the parameters a1, b1 are both sections of the line bundle O(−KB). WhenKB ·KB 6= 0,
then there are points where both a1 and b1 vanish. At such points, f, g,∆ vanish to orders
4, 6, 12, corresponding to the appearance of an SCFT in the 6D theory so that there is no
simple interpretation in terms of gauge groups and local matter fields. We do not consider
such constructions here, although again the question of interpreting SCFT loci as exotic
matter fields begs further investigation. Thus, the only theories we consider that admit
discrete Z5 Mordell-Weil torsion are those where gauge group factors SU(5) or larger are
tuned on divisors satisfying −a ·b = b ·b = 0. The same is true for the other discrete torsion
cases mentioned above: Z6,Z4 ⊕ Z2,Z3 ⊕ Z3.
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5 U(1) gauge factors

All the cases considered in the previous section involved nonabelian gauge factors, associ-
ated with local Kodaira-type fiber singularities arising at codimension one loci in the base.
We have given a fairly comprehensive treatment of such factors. Abelian U(1) factors,
however, associated with the infinite Zr part of the Mordell-Weil group, are much less
well understood. The assertion of massless charge sufficiency for the continuous part of
the gauge group states that the massless charges in the theory must span the full charge
lattice, even when such U(1) factors are included. We conjecture that this holds for any
U(1) factor with anomaly coefficient b̃ satisfying −a · b̃ > 0. Because the matter structure
of U(1) theories is not as well understood, it is harder to get a complete picture of this
class of theories. Here we consider only a single case: a situation where there appears to be
a U(1) factor with massless fields only of charge 2. We show that in fact this case satisfies
the massless charge sufficiency hypothesis through the appearance of an additional section
that is the correct generator for the Mordell-Weil group. A brief discussion of further cases
involving U(1) gauge factors is given in section 5.2

5.1 U(1) and “charge 2” matter

We thus now consider the case of the Morrison-Park model that appears to have only charge
2 matter under the U(1) field (i.e., no matter of charge 1). We first recall the general form
of the Morrison-Park [94] model, which gives a generic F-theory compactification with a
U(1) gauge field and charges q = 1, 2, using the notation and conventions of [95] (but using
b̂ in place of b to avoid confusion with the anomaly coefficient b for nonabelian groups)

y2 = x3 +
(
−1

3e
2
2 + e1e3 − e0b̂

2
)
x+

(1
3e1e2e3 + 2

3e0e2b̂
2 − 1

4e
2
1b̂

2 − e0e
2
3 −

2
27e

3
2

)
.

(5.1)

The parameters ei are sections of particular line bundles parameterized by the single class L:

[e0] = 2L (5.2)
[e1] = −KB + L (5.3)
[e2] = −2KB (5.4)
[e3] = −3KB − L (5.5)
[b̂] = −2KB − L . (5.6)

The anomaly coefficient b̃ of the resulting U(1) model is associated with the class 2[e3].
We are interested in particular in two special cases: in the first special case, only massless
matter with charge q = 1 appears. This occurs when L = −2KB, so that b̂ is a constant,
which we can rescale so that b̂ = 1. In the second special case, where for clarity we denote
the parameters by ěi, only massless matter with charge q = 2 appears. This occurs when
L = KB, in which case ě0 = 0 must vanish identically as 2L = 2KB is not effective, and ě1
is a constant, which we can take to be ě1 = 1. In these two cases we have b̃ = −2a, b̃ = −4a.
As long as T < 9, these give models satisfying −a · b̃ > 0, b̃ · b̃ > 0.
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Our assertion is that the Morrison-Park models in these two special cases are precisely
equivalent. That is, the q = 2 model with

f = ě3 − ě2
2/3 (5.7)

g = −
(
− 2

27 ě
3
2 + 1

3 ě2ě3 −
1
4 b̌

2
)

is equivalent to the q = 1 model with

f = −1
3e

2
2 + e1e3 − e0 (5.8)

g = −
(1

3e1e2e3 + 2
3e0e2 −

1
4e

2
1 − e0e

2
3 −

2
27e

3
2

)
.

This equivalence occurs because the natural section for the q = 2 special case of Morrison-
Park is actually not the generating section of the Mordell-Weil group; as noted in the final
appendix of [94], this model contains an additional section corresponding to the generator
of the U(1), which matches the natural section in the q = 1 special case.16 To show
this equivalence explicitly, we identify the relationship between the parameters in the two
models to be

b̌ = −e1 + 2e2e3 − 2e3
3

ě2 = −2e2 + 3e2
3 (5.9)

ě3 = −e0 + e2
2 + e1e3 − 4e2e

2
3 + 3e4

3 .

Explicit use of these relations shows through a short calculation that the models are indeed
equivalent as stated. Furthermore, by taking e3 to be an arbitrary section of O(−KB), we
can solve the equations for e2, e1, e0 successively, so that for every q = 2 type model there
is a family of q = 1 type models associated with the allowed values of e3, representing an
over-parameterization of the associated Weierstrass models.

This shows that the models that appear to have only q = 2 charges under the U(1)
gauge symmetry are actually equivalent to models with the fundamental charge q = 1.
Thus, the “q = 2” type models actually have an additional section σ, as expected through
Poincaré duality and the massless charge sufficiency hypothesis; this section satisfies σ ·C =
1 for the curves that appear to have charge 2 in the usual Morrison-Park formulation.

While this explicit demonstration of equivalence is mathematically efficient, it does
not explain much about the geometry. We make some additional observations that help to
clarify this story.

First, we note that the q = 1 case, where b̂ is a constant that can be taken to be unity,
is the only case where we can shift the section identified by Morrison-Park

[x1, y1, z1] =
[
e2

3 −
2
3 b̂

2e2,−e3
3 + b̂2e2e3 −

1
2 b̂

4e1, b̂

]
(5.10)

16We would also like to thank Remke Kloosterman and Nikhil Raghuram for discussions regarding this
additional section.
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to the origin without involving rational functions with a nontrivial denominator. Perform-
ing the shift

x→ x+ x1, y → y + y1 (5.11)

the q = 1 Weierstrass model takes the form

y2 + a3y = x3 + a2x
2 + a4x , (5.12)

where the section is now located at x = y = 0, and we identify (setting b̂ = 1)

a2 = 3x1

a3 = 2y1 (5.13)
a4 = −e0 + e2

2 + e1e3 − 4e2e
2
3 + 3e4

3 .

If we now complete the square and cube in the Weierstrass model (5.12), we find that the
resulting Weierstrass normal form has precisely the form of (5.7), with the identifications

b̌ = a3

ě2 = a2 (5.14)
ě3 = a4 .

On the other hand, completing the square in this way must return us to the original q = 1
Weierstrass model. Combining (5.14) and (5.13), we reproduce the relations of (5.9), giving
a simple way of understanding the formulae appearing in this relationship.

To confirm this picture, we can check explicitly that the natural section of the q = 2
Morrison-Park model corresponds under the elliptic curve addition law to twice the natural
section of the q = 1 model. In terms of the parameterization (5.12), where the section
s = [x1, y1, 1] has been shifted to the origin we can compute s + s using the elliptic curve
law. The tangent to (5.12) at the point s is given by the line y = a4x/a3. This line
intersects the cubic at the third point r̃ = (x̃, a4x̃/a3), where x̃ = −a2 + a2

4/a
2
3. This

represents the point −2s on the elliptic curve. To find 2s, we identify the other point on
the cubic that intersects a vertical line passing through this point, which is

2s ∼ (−a2 + a2
4/a

2
3,−a3 + a2a4/a3 − a3

4/a
3
3) . (5.15)

Shifting x, y to go back to the original Weierstrass normal form, and scaling by appropriate
powers of a3, we see that this precisely reproduces the expected Morrison-Park section

2s→
[
−2

3a2a
2
3 + a2

4,−a4
3/2 + a2a4a

2
3 − a3

4, a3

]
. (5.16)

So we find that indeed the natural section of the “q = 2” Morrison-Park model is twice
the generating section identified from the “q = 1” form of the same model, confirming the
massless charge sufficiency hypothesis in this situation.
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5.2 Other aspects of U(1) factors

We have considered here only a single example of a theory with a U(1) factor that appears
naively to violate the massless charge sufficiency conjecture. There are many other similar
models that satisfy anomaly cancellation conditions [14]; for example, any model with 54
matter fields with each of the U(1) charges aq, ap, a(q+p) satisfies anomaly cancellation, for
arbitrary integers a > 1, p, q, but violates the massless charge sufficiency conjecture. Few
such models have known F-theory constructions, however, and F-theory in principle can
only realize a finite subset of this infinite class of models. In particular, explicit Weierstrass
models are only known for U(1) charges up to q = 3, 4 [96, 97], though general arguments
suggest that charges as large as q = 6 [98, 99] or even q = 21 [100] should be possible in
6D F-theory models. It was shown in [19] that the above-mentioned infinite family of U(1)
models would appear to violate the automatic enhancement conjecture, and indeed lead
to a larger gauge group in the simplest cases where F-theory realizations are possible, but
there are other more complicated infinite families where this story is even less clear. It
would be interesting to explore further if and how massless charge sufficiency is realized for
models that apparently have matter content where all charges under a given U(1) factor
are multiples of an integer a > 2.

Another interesting class of models that we have not addressed in the preceding sections
involve situations where the gauge group has nonabelian and abelian factors, and may have
a discrete quotient, such as U(N) = (SU(N) × U(1))/ZN . Some analysis of the charges
in such situations were considered in [58, 59, 61]. Models of this type where the gauge
group contains SU(3)× SU(2)×U(1) factors, with the possibility of a discrete quotient by
Z6, have recently been considered in [56, 57, 60, 62–65]. In this situation in particular, for
example, however, as discussed in more detail in the appendix, the fundamental group of
the gauge group (SU(3)×SU(2)×U(1))/Z6 is just Z, and there is no Mordell-Weil torsion.
The generic matter representations under this group, which include the charges of the
MSSM [81], generate the full charge lattice of the quotient group, and the massless charge
sufficiency hypothesis is satisfied for the models that have been considered of this type.

6 Exceptions to massless charge sufficiency

As discussed in section 3, there are two distinct classes of exceptions to the condition
−a·b > 0 that we conjecture leads to massless charge sufficiency. The first class corresponds
to nonabelian factors where −a · b < 0, and the second class corresponds to abelian or
nonabelian factors where −a · b = b · b = 0. We consider these two cases of exceptions
in turn.

6.1 Non-Higgsable nonabelian factors: exceptional cases with −a · b < 0

The exceptional cases with −a · b < 0 correspond to F-theory models where the base B
contains rational curves with −KB · C < 0. Multiples of the anticanonical class −nKB

must contain one or more multiples of the rigid curve C, which has self-intersection C ·C =
−KB ·C − 2, as a component. It follows that the Weierstrass coefficients f, g must vanish
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over C to sufficiently high degrees to force at least a type IV vanishing associated with
an su(3) algebra. The configurations of curves of this type that are allowed in F-theory
models without (4, 6) loci are known as “non-Higgsable clusters”, since the associated
gauge groups cannot be broken by giving a Higgs VEV to any of the matter fields without
breaking supersymmetry, and were classified in [75].

Many of the non-Higgsable clusters give single gauge factors with no matter. In
particular, curves of self-intersection −3,−4,−6,−8,−12 give rise to the gauge algebras
su(3), so(8), e6, e7, and e8. While there is no matter charged under any of these gauge fields,
in each of these cases the constraints on the Weierstrass model are completely local and in
general there is no Mordell-Weil torsion. As a simple example of this consider the SU(3)
non-Higgsable gauge factor that arises on the −3 curve S in the Hirzebruch surface F3.
Standard toric methodology (see, e.g., [101]) gives an explicit description of f, g in terms of
monomials associated with lattice points in the 4th and 6th polar polytopes to the polytope
associated with the toric base F3. Taking σ to be a coordinate that vanishes on S, we have

f = f2,2σ
2 + f3,5σ

3 + · · · (6.1)
g = g2,0σ

2 + g3,3σ
3 + · · · (6.2)

where the second index in the subscript denotes the degree of the associated coefficient
considered (locally) as a function of the coordinate on the rational curve S. The coeffi-
cients of each of the monomials in this expansion can be chosen independently, as f, g are
general sections of −4KB,−6KB respectively. It is easy to compute that the numbers of
independent degrees of freedom in f, g are 84, 176 respectively (this is closely related to
the total number of uncharged hypermultiplets in the theory, 252). On the other hand,
for a Weierstrass model with Z3 torsion, which must have the form (4.19), the parameters
α1, α3 are sections of −KB,−3KB and have only 9, 51 degrees of freedom respectively.
Thus, the generic Weierstrass model over F3 has an su(3) gauge algebra over S but does
not have Mordell-Weil torsion, so the gauge group is indeed SU(3). Since there is no mat-
ter this represents a case in which the massless charge sufficiency condition does not hold.
Similarly, since the other single non-Higgsable gauge group factors without matter result
from purely local effects in the geometry they do not generically correspond to Weierstrass
models with Mordell-Weil torsion, which is a global effect. The other single non-Higgsable
gauge factors are therefore spin(8), E6, E7, and E8. All of these except for the E8 case
represent exceptions to the massless charge sufficiency condition.

Over a −5 curve there is a gauge factor F4. This does not have a nontrivial discrete
center so there is no possibility of Mordell-Weil torsion. Over a −7 curve there is a E7
gauge group with a single multiplet of matter in the fundamental (56). Because the matter
breaks the central Z2, there is no possibility for Mordell-Weil torsion.

There are also three non-Higgsable clusters containing a combination of −3 and −2
curves. A cluster containing one each of these curves, intersecting at a point, supports a
gauge group G2× SU(2), with a half-hypermultiplet of matter in the (7, 2) representation.
This breaks the Z2 central symmetry of the SU(2) factor so there is no possibility of torsion.
The same situation holds for a chain of three curves of self-intersections −3,−2,−2. In
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the final case, however, we have a chain of three curves of self-intersections −2,−3,−2,
supporting a gauge group SU(2)× SO(7)× SU(2). There is a matter field jointly charged
under the SO(7) factor and each of the SU(2) factors, in the (8, 2) representation. This
matter breaks two of the three combinations of Z2 factors in the center. There is, however,
a third Z2 factor in the center, given by the product of all three Z2 factors, which acts
trivially on all the matter in this cluster. Nonetheless, like the single gauge factors this
is a local effect and there is no Mordell-Weil torsion in general, so this cluster represents
another exception to massless charge sufficiency.

Finally, we point out that the Spin(8) on a −4 curve can be enhanced to a larger
Spin(N) group that has fundamental matter but no spinor matter. In this case there can
still be a discrete subgroup of the gauge factor that acts trivially on all the matter, but the
gauge group is still Spin(N); this gives further exceptions to massless charge sufficiency
where −a · b < 0.

This essentially exhausts all the possible exceptions in the first class.

6.2 Geometry of exceptional cases with −a · b = b · b = 0

In this section we describe in further detail the second class of exceptions to the massless
charge sufficiency hypothesis for 6D F-theory models. These exceptions arise in cases where
we have a gauge factor associated with an irreducible divisor C such that

KB · C = C · C = 0 . (6.3)

Physically, in these cases the matter content matches with what we would expect in a
theory with twice as much supersymmetry, where the vector supermultiplet contains a
single adjoint field. For a nonabelian gauge factor this means that the matter content in
the 6D N = 1 theory contains a single adjoint hypermultiplet, and for an abelian U(1)
factor it means that there is no matter charged under the U(1). In both cases, there is
no one-loop anomaly associated with the gauge factor, and no Green-Schwarz mechanism
occurs, in accord with the vanishing of the terms KB ·C,C ·C that appear on the left-hand
side of the anomaly equations.

Geometrically, the significance of the conditions (6.3) is that the curve C is a genus
one curve (i.e. a two-dimensional torus) with trivial normal bundle. Locally, therefore,
the geometry is like that of a flat 7-brane in 10D flat space, so it makes sense that the
matter content matches with that expected of the vector supermultiplet with enhanced
supersymmetry. The existence of such a genus one curve with trivial normal bundle means
that, at least to first order locally, the base B is itself elliptically fibered.

The simplest base B that contains such a curve C is the del Pezzo surface dP9, also
known as a rational elliptic surface. This surface can be thought of as an elliptic fibration
over the 1D base P1, where instead of the 24 vanishing points of the discriminant needed
to form a K3 surface, the discriminant vanishes only to order 12, and f, g are sections
of O(−2KP1) and O(−3KP1) respectively. Other bases can also contain a curve satisfy-
ing (6.3), e.g. by blowing up a point on the base well away from C (which we note is only
possible when we have a degenerate surface containing curves of self-intersection −3 or
below, which support non-Higgsable nonabelian gauge factors).
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6.3 Non-Higgsable U(1) factors

The generic elliptic fibration over a smooth rational elliptic surface gives a Calabi-Yau
threefold with Hodge numbers (19, 19) known as a Schoen manifold.17 More generally,
Schoen constructed a class of Calabi-Yau threefolds as fiber products of rational elliptic
surfaces; these rational elliptic surfaces can include singular fiber configurations, giving to a
range of threefold constructions. The F-theory physics associated with such constructions
was analyzed in some detail in [80]. The most important feature of the Schoen manifold
is the presence of extra sections of the threefold elliptic fibration at generic points in
the moduli space. The generic Schoen manifold has 9 independent sections, leading to
a fibration with Mordell-Weil rank 8. Physically, these sections give rise in F-theory to
U(1) gauge factors that are (supersymmetrically) non-Higgsable; there are no massless
fields charged under these U(1) factors, and the U(1) factors are present everywhere in the
smooth moduli space. These kinds of non-Higgsable U(1) factors were analyzed in [78–80].
When the fiber product includes rational elliptic surfaces with singular fibers, the sections
can combine into Kodaira singularities of the threefold associated with nonabelian gauge
factors; in this subsection we focus on the generic non-Higgsable U(1) factors and look at
the associated nonabelian factors in the next subsection.

From the complete absence of massless fields charged under such a U(1) factor, it is
clear that they violate the massless charge sufficiency conjecture. It is interesting that such
fields can only arise in the “higher supersymmetry” context where (6.3) is satisfied.

One might wonder how the absence of massless matter charged under the U(1) factor
is reconciled with charge completeness, which we have proven using Poincaré duality. To
demonstrate how this is possible we carry out the Poincaré duality analysis of divisors and
curves a little further in this case. As described in section 3.2, we begin by projecting out
the divisors σ∞, π∗C and the curves F, Ĉ. In the case of the generic Schoen manifold X

there are 8 further sections σi, i = 1, . . . , 8, where the Mordell-Weil group Z8 is generated
by σi − σ∞. Subtracting off σ∞ from these sections ensures that we have divisors that are
orthogonal to the curve associated with the generic fiber F . We must further orthogonalize
these divisors by subtracting appropriate multiples of the divisors π∗Cα so that they are
orthogonal to the curves Ĉβ . This can be done by taking the divisors

Di = σi − σ∞ − π∗K . (6.4)

From Poincaré duality, we expect that there are fibral curves on X, even after the above
projections, that have nonzero inner product with Di, associated with matter fields in
the 6D theory that are charged under each of the U(1) factors. We can identify some
such curves by starting with π∗Cα · σi and orthogonalizing with respect to the divisors
σ∞, π

∗Cβ . The resulting curves are of the form π∗C · (σi − σ∞) + (KB · C)F . Note that
these are fibral curves in homology but are expressed as linear combinations of holomorphic
curves that are horizontal in the elliptic fibration, and do not have vanishing volume in
the F-theory limit, so that these correspond to massive particles in the 6D F-theory model

17The generic Schoen manifold has an infinite number of distinct elliptic fibrations, see e.g. [102] for a
recent analysis in the context of F-theory.
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that are charged under the U(1) factor associated with divisor Di. In this way, we can
satisfy charge completeness but not massless charge sufficiency for these non-Higgsable
U(1) factors that satisfy (6.3). Note, however, that the inner product between such a curve
and Di is even and given by 2KB ·C. So we have not given a complete set of divisors and
dual curves. Other curves may for example be associated with the lift of a curve in the
base to a section that is only defined over that curve and not globally over the base; it
is also possible that the curves we have identified here are even in integer homology, and
thus there exist curves associated with half of these classes. We do not attempt a complete
analysis of the set of allowed curves here.

6.4 Nonabelian factors with a single adjoint matter field

The non-Higgsable U(1) factors described in the previous subsection are closely related
to nonabelian factors that satisfy (6.3). In particular, given any nonabelian factor with
only a single adjoint field, we can Higgs the nonabelian factor to a product of U(1)s under
which there is no charged matter. For example, given an SU(2) factor with a single adjoint
we can turn on a diagonal expectation value for the adjoint reducing to a single U(1)
under which no matter is charged. Geometrically, such nonabelian gauge factors arise in
the Schoen construction when one of the factors in the fiber product of rational elliptic
surfaces has degenerate fibers. The set of possible degenerate fibers for a rational elliptic
surface is known and was tabulated in [103, 104]. We can also identify the gauge algebras
that can appear on a divisor satisfying (6.3) from the geometry of rational elliptic surfaces.
The intersection form on dP9 is U ⊕ E8. An elliptic Calabi-Yau threefold with base dP9
is generally a fiber product of rational elliptic surfaces. The elliptic fiber of the surface
with which we take the fiber product removes the U factor from the intersection form.
This shows that the only gauge algebras we can realize are those with a lattice that is a
sublattice of the E8 lattice. Furthermore, this gives information about the kinds of discrete
Mordell-Weil torsion that can be realized even in these exceptional cases.

As an example, consider what happens in the Z2 torsion case described by the Weier-
strass model with (4.4) when the base is a generic rational elliptic surface dP9. In this case,
[α4] = −4KB, and KB is the class of the fiber with KB ·KB = 0. This means that α4 is
reducible and factorizes as α4 = β1γ1δ1ε1. The gauge group then becomes SU(2)4/Z2. The
presence of the Z2 quotient can be understood from the fact that if x, y, z, t are orthogonal
elements of the E8 lattice each with self-intersection −2, then (x+ y + z + t)/2 is also an
element of the lattice with the same self-intersection since E8 is unimodular.

The upshot of this is that for the exceptional cases satisfying (6.3), the presence of
Mordell-Weil torsion is determined by different considerations to the general 6D N = (1, 0)
gauge factor where we believe massless charge sufficiency holds. In some cases there is no
Mordell-Weil torsion, though in others there is. Another example of a case with Mordell-
Weil torsion with a rational elliptic surface base is the case of Z5 torsion (4.27). In this
case we see that one can have two SU(5) factors each on a divisor of class −KB, with global
gauge group (SU(5)× SU(5))/Z5.
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7 Conclusions

In this paper we have used Poincaré duality on an elliptic Calabi-Yau threefold to prove
that the charge completeness hypothesis for the connected component of the gauge group
of every 6D N = (1, 0) supergravity theory that is realized in F-theory is equivalent to
the standard understanding [27–29] of how the global form of the gauge group is encoded
in F-theory geometry. The same result holds for every 4D N = 1 F-theory model, for all
charges under the connected component of the gauge group that arises from 7-branes and
from sections of the F-theory elliptic fibration.

We have conjectured a stronger condition for 6D supergravity theories, that the mass-
less charged states generate the full charge lattice of the theory whenever the anomaly
coefficients satisfy −a · b > 0, which holds in all but a small set of exceptional cases. We
have checked this for essentially all single-factor nonabelian gauge groups, and analyzed a
large number of examples that illustrate the connection between the fundamental group
of the gauge group of the supergravity theory and Mordell-Weil torsion in the F-theory
picture. We have found that the only possible torsion subgroups that can arise without
codimension two (4, 6) loci associated with superconformal sectors are Z2, Z3, Z4, and
Z2 ⊕ Z2, except in the exceptional cases that violate massless charge sufficiency. We have
given one example of an abelian U(1) theory that satisfies the massless charge sufficiency
condition in a nontrivial way, but a more thorough analysis of more complicated U(1)
theories with higher apparent charges is left as an open question.

An interesting feature we have identified in several of the models with fixed Mordell-
Weil torsion groups is the appearance of SCFTs at points where anomaly cancellation
and the discrete torsion structure suggest specific types of massless matter. In one case,
corresponding to a situation previously analyzed in [91, 92], we find loci associated with
(E7×SU(2))/Z2 matter in the (56, 2) representation. These structures suggest that there
may be a general way of understanding certain exotic matter structures in terms of local
SCFTs in the F-theory context, as also suggested in [92]. This would be interesting to
investigate further.

It would be nice to find some way to prove the charge completeness and massless charge
sufficiency hypotheses for general 6D supergravity theories, extending the corresponding
results of [26] to flat space theories in 6D.

Even in F-theory, we do not have a proof of charge completeness for theories with
discrete gauge groups. Poincaré duality does not seem to be adequate to generalize the
proof to such situations. We leave this interesting question, and a further analysis of 4D
theories, for further work.

While we have analyzed a broad range of examples, the appearance of Mordell-Weil
torsion in precisely those cases where the massless charge sufficiency conjecture predicts
it should arise seems somewhat surprising and mysterious. It seems there should be some
more general principle that guarantees that the global gauge group indeed matches the
massless matter when −a · b > 0. It would be good to find a more fundamental under-
standing of this result, and to better understand the exceptional cases that violate the
massless charge sufficiency condition when −a · b ≤ 0. Even lacking a proof of the massless
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charge sufficiency hypothesis for 6D theories, it would be interesting to find arguments
based on basic principles of quantum gravity such as using black holes, along the lines of
arguments in e.g. [25].
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A The fundamental group of the gauge group

In this appendix, we will review some aspects of the topology of gauge groups, and de-
scribe how that topology is connected to the representation theory of the gauge group, in
particular explaining why the fundamental group of the gauge group gives a reasonable
measurement of the representation theory. Our primary references will be [105] and [106].

The gauge group G of a physical theory is a compact Lie group which in general might
not be connected. Let G0 be the connected component of G containing the origin. Then
G0 is a normal subgoup of G, and there is a short exact sequence of groups

1→ G0 → G→ G/G0 → 1

where 1 denotes the trival group, and where G/G0 = π0(G) is a discrete group, the group
of components of G. As in the body of this paper, we ignore questions about this discrete
group, and only consider the connected subgroup G0.

It is known [105, p. 70] that a compact Lie group is connected if and only if it is
path-connected. So G0 is also path-connected.

Theorem A.1 ([106, theorem V(8.1)]). A compact connected Lie group G0 possesses
a finite (unramified) cover which is isomorphic to the direct product of a compact simply
connected Lie group G0 and a (real) torus18 T ∼= U(1)r.

Ref. [106] goes on to note that the covering map is given by the quotient by a finite
central subgroup Ξ, namely:

G0 = (G0 × T )/Ξ (A.1)
18In this appendix, we follow the conventions of the math literature and refer to this torus as T ; in the

body of the paper, we have often remained closer to the physics literature and called the torus U(1)r.
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where Ξ is a finite subgroup of the center Z0 × T of G0 × T . Moreover, G0 is a product of
simply connected simple compact groups Gi

G0 =
k∏
i=1

Gi (A.2)

and the center of G0 × T is
(∏k

i=1 Zi
)
× T , where Zi is the (finite) center of Gi. These

centers are closely related to the representation theory.
Before continuing with the general theory, we pause to discuss two familiar examples.

If G0 = U(n), the finite cover in question is obtained by extracting an nth root of the
determinant. Then (detA)−1/nA ∈ SU(n) for A ∈ U(n) and we can describe an element
of U(1) × SU(n) as ((detA)1/n, (detA)−1/nA). There is an order n ambiguity here (the
choice of nth root) and so U(n) ∼= (U(1)× SU(n))/(Z/nZ), where the action of the central
subgroup Ξ ∼= Z/nZ is generated by (e−2πi/n, diag(e2πi/n, . . . , e2πi/n)). A representation of
U(1)× SU(n) descends to a representation of U(n) if and only if the group Ξ acts trivially
within the given representation.

As a second example, let G0 be the gauge group of the standard model.19 We take G0

to be the subgroup of SU(5) consisting of matrices in block 2×2 and 3×3 form. (The fact
that the matter representation of the standard model is compatible with this description
is at the mathematical heart of the Georgi-Glashow grand unified model [108].) That is,
a gauge group element consists of a unitary 2× 2 matrix A and a unitary 3× 3 matrix B
such that the 5× 5 matrix [

A 0
0 B

]

has determinant 1, i.e., (detA)(detB) = 1. To describe this group in terms of SU(2) and
SU(3), we need a square root of detA and a cube root of detB; since these determinants
were inverses of each other, we need a sixth root of the common quantity.

That is, we can describe our group G0 as a finite quotient of U(1) × SU(2) × SU(3),
where the map to SU(5) is given by

(λ, α, β) 7→
[
λ3α 0

0 λ−2β

]
.

It is easy to see that the kernel of this map is Ξ ∼= Z/6Z generated by(
e−2πi/6, diag(e6πi/6, e6πi/6), diag(e−4πi/6, e−4πi/6, e−4πi/6)

)
.

Thus, G0 ∼= (U(1) × SU(2) × SU(3))/(Z/6Z). The key fact here is that Ξ acts trivially
on all representations ocurring in the standard model, and it is the largest subgroup of
U(1)× SU(2)× SU(3) to do so.

19The global structure of this group has various subtleties, and the corresponding representation theory
is described in great detail in [107].
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Returning to the general case: the connected part G0 of the gauge group will act on
the various fields of the physical theory,20 and the charges under this group are determined
by the charges under a maximal (compact) torus H ⊂ G0. We can write this torus as

H = (H0 × T )/Ξ ⊂ (G0 × T )/Ξ, (A.3)

where H0 ⊂ G0 is a maximal torus of G0. The possible charges are described as group
homomorphisms ϑ : H → U(1), or, writing21 H = h/π1(H), as group homomorphims
ϑ : π1(H)→ Z (extended from π1(H) to h by extending scalars from Z to R).

The set of possible charges

Λw = Hom(π1(H),Z) (A.4)

forms the weight lattice (or charge lattice) inside the real vector space h∗ = Hom(h,R), and
each finite-dimensional representation involves a finite number of such weights, which are
the simultaneous H-eigenvalues under the representation. (In this context, a lattice inside
a real vector space is a free Z-module generated by a basis of the vector space.) The dual
of the weight lattice

Λcw = Hom(Λw,Z) (A.5)

forms the coweight lattice which coincides with π1(H).
The weights which occur as simultaneous H-eigenvalues in the adjoint representation

of G0 are known as the roots of G0, and span a sublattice Λr of Λw known as the root
lattice. Notice that since T lies in the center of G0, the adjoint representation of G0 maps
T to the identity, which implies that Λr is a sublattice of (Λw)0 = Hom(π1(H0),Z), the
weight lattice of G0. In fact, Λr has finite index in (Λw)0, and (Λw)0/Λr ∼=

∏k
i=1 Zi, where

Zi is the center of the simple factor Gi of G0.
To specify a representation of G0, we specify a representation of each Gi as well as a

representation of T , and tensor them together; this will give a representation of G0 provided
that Ξ acts trivially. The corresponding representation of Gi determines a representation
of its center Zi, and these — together with the representation of T — determine the
action of Ξ.

The fundamental group of G0 × T is

π1(G0 × T ) = π1(T ) = Zr (A.6)

where r = dim T , and its universal cover is G0×Rr, so there is an exact sequence of abelian
groups

0→ π1(G0 × T ) = Zr → π1(G0)→ Ξ→ 0 . (A.7)

Thus, a maximal free subgroup of π1(G0) determines the coweights of representations,
and the finite quotient Ξ determines the compatibility conditions. When Ξ does not act

20For simplicity, we take all fields to be complex-valued, so that tori act through multiplication by some
phase. In the real case, a phase rotation in the complex z-plane can be replaced by a circle action in the
real (x, y)-plane.

21Here, h is the Lie algebra of H, which is a finite dimensional real vector space with trivial Lie bracket.
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on T , then it is isomorphic to the torsion subgroup of π1(G0); on the other hand, in the
explicit examples described above where Ξ acts nontrivially on T = U(1), π1(G0) = Z and
there is no torsion subgroup.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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