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1 Introduction and summary of the results

Non-local operators are important observables in the Supersymmetric gauge theories in
various dimensions. Line operators such as Wilson operators and ’t Hooft operators are
familiar examples. They serve as order parameters in the gauge theories that provide the
valuable information about the phase structure in the non-perturbative regime. Similarly,
Surface operators of Gukov and Witten [1] with additional parameters are expected to
provide more information about the topological phases of gauge theories [2]. Surface oper-
ators in the 4d supersymmetric gauge theories are two-dimensional operators which may
descend from the non-local operators in the six-dimensional (0, 2) gauge theory, after suit-
able dimensional compactifications. These non-local operators in 6d theory can be either
of codimension-2 or codimension-4 and they have been a focus of many investigations [3–5].
Most of these studies have been done using the constructions in M-theory with intersect-
ing M5 branes or M2-M5 branes. Recently, in [3, 4] the analysis has used the probe M2
branes in the AdS7×S4 background to discuss a lot about the codimension-4 defects in the
boundary 6d N = (0, 2) theories, in terms of anomalies associated to the 2d surfaces that
support them and from the bootstrap point of view. Whereas, [5] discusses the defects of
the both types and shows the equivalence between them in the IR regime, in the context of
6d N = (0, 2) theories where the M5 worldvolumes wrap Reimann surfaces of non-trivial
topology C ⊂ T ?C inside a hyper-Kähler manifold with the special holonomy group SU(2).
The M-theoretic construction of such type was first discussed in [6] which was based on
the eleven-dimensional uplift of type IIA models of Hanany and Witten in [7].

Wilson surface operators which are codimension-4 in the 6d (0, 2) tensor multiplet
theory were also analysed in [8–10] using the probe M5 branes in the AdS7 × S4 geometry
with the 3-form fluxes turned on along a S3 sphere wrapped by their worldvolume. These
Wilson surfaces become the Wilson line operators in the 5d SU(N) SYM theory upon
dimensional compactification along the circular direction. The probe M5 branes in these
analysis had the worldvolume topology of AdS3 × S3 and have the correspondence with
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the Wilson surfaces associated with the higher rank representations of the gauge theory in
the large N limit.

In our analysis, the discussion of probe M5 branes will be useful to shed more light on
some features of the codimension-2 defects in the 6d (0, 2) theory. The probe M5 branes
we will consider will have non-compact worldvolume, which extend to the boundary of the
AdS region and end in a four dimensional submanifold. Our goal in this manuscript is to
derive the general M5 brane solutions that preserve the least amount of supersymmetry.
And further, to give some general characterization equations that govern the behaviour,
near the boundary of the AdS, of those BPS M5 solutions which wrap a circle direction in
the S4 part of the 11-dimensional geometry.

In the second section, we will begin by considering several classical solutions of 1
2 -

BPS M5 probe branes in AdS7 × S4 background expressed in the global coordinates. The
equations that define the worldvolume of these probe M5s are analogous to the ones used
for probe D3 brane solutions [11, 12] which were used to study the BPS monodromy
defects in N = 4 SYM theory holographically. These are noncompact brane solutions
with world-volume toplogy of AdS5 × S1 ending on the boundary in R× S3 submanifold.
They are one of the new findings that appear in this manuscript. The intersection of these
M5 brane probes with the boundary should essentially be the half-BPS codimension-2
defects in the 6d (0, 2) theory on R × S5. We perform a κ-symmetry analysis to find the
projections on the bulk Killing spinor for the various 1

2 -BPS probes. In section 3, we use
the common supersymmetry of all the half-BPS probe solutions to derive the general BPS
equations whose solutions preserve the least amount of supersymmetry from the ambient 11
dimensional geometry. A common single supersymmetry also comes from those half-BPS
solutions which have compact world-volumes and are more commonly referred as the dual-
giant gravitons in the literature [13, 14]. The worldvolume of the general probe branes are
described by zeros of the holomorphic functions that satisfy a scaling condition. The general
expression that we derive here give the worldvolumes of the least supersymmetric probe
M5 branes in the AdS7×S4 geometry which include the dual-giant graviton configurations
as well as the holographic dual of codimension-2 defects in the boundary 6d gauge theory.
In section 4, we look at those M5 brane solutions that wrap a circle in the S4 part of the
geometry, they are in general 1

8 -BPS configurations. We do the analysis near the boundary
of AdS7, and we show how the zero locus of the holomorphic function should coincide with
the location of codimension-2 defect in the 1

8 -BPS sector of the 6d (0, 2) theory. Moreover,
we also propose that the 1

8 -BPS defects have a general characterisation which describes
them as the intersection of the zeros of a holomorphic function F (z1, z2, z3) = 0 with the
5-sphere defined by |z1|2 + |z2|2 + |z3|2 = 1. This analysis of the general 1

8 -BPS probe M5
brane near the boundary of AdS also suggests us the kind of singular behavior the bosonic
fields in the 6d theory may acquire near the location of the defect.
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2 M5 branes in AdS7 × S4 geometry

We consider the following metric of the eleven-dimensional AdS7 × S4 geometry in global
coordinates system

ds2
AdS = −

(
1 + r2

4l2

)
dt2 + dr2(

1 + r2

4l2
) + r2dΩ5 (2.1)

with dΩ5 = dα2 + cos2 αdφ2
1 + sin2 α

(
dβ2 + cos2 β dφ2

2 + sin2 β dφ2
3
)

ds2
S4 = l2

(
dθ2 + sin2 θ(dχ2 + cos2 χdξ2

1 + sin2 χdξ2
2)
)

(2.2)

There is the 4-form flux F (4) through S4 obtained from the potential

A(3) = l3

2 cos θ (cos 2θ − 5) dΩ3 (2.3)

so that the field strength is F (4) = 3 l3 dΩ4.
The global AdS7 coordinates above can be written in terms of the following complex

coordinates in C1,3

Φ0 = l cosh ρ eiφ0 Φ1 = l sinh ρ cosα eiφ1

Φ2 = l sinh ρ sinα cosβ eiφ2 Φ3 = l sinh ρ sinα sin β eiφ3 (2.4)

which define the AdS7 part as the following locus in C1,3

− |Φ0|2 + |Φ1|2 + |Φ2|2 + |Φ3|2 = −l2 (2.5)

For the S3 ⊂ S4 we define the complex cooordinates describing it embedded in C2 space

Z1 = cosχ eiξ1 Z2 = sinχ eiξ2 . (2.6)

Killing spinor of the background

We choose the frame vielbein such that it becomes manifest that the AdS7 part ( respec-
tively S3 ⊂ S4 part) can be written as a U(1) Hopf fibration over a Kähler manifold C̃P

3

(respectively CP1). Here C̃P
3
is the hyberbolic version of the complex projective space and

it is defined as the set of rays in the complex space C1,3( in place of the C4 space). The
frame vielbein that we use are the following

e0 = 2l
(
cosh2 ρ dφ0 − sinh2 ρ

(
cos2 αdφ1 + sin2 α cos2 β dφ2 + sin2 α sin2 β dφ3

))
e1 = 2l dρ, e2 = 2l sinh ρ dα, e3 = 2l sinh ρ sinαdβ

e4 = 2l cosh ρ sinh ρ
(
cos2 αdφ01 + sin2 α cos2 β dφ02 + sin2 α sin2 β dφ03

)
e5 = 2l sinh ρ cosα sinα

(
cos2 β dφ02 + sin2 β dφ03 − dφ01

)
e6 = 2l sinh ρ sinα cosβ sin β (dφ03 − dφ02) (2.7)
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where r = 2l sinh ρ, φ0 = t
2l , and

e7 = l dθ, e8 = l sin θdχ, e9 = l sin θ cosχ sinχ (dξ1 − dξ2) ,

e10 = l sin θ
(
cos2 χdξ1 + sin2 χdξ2

)
. (2.8)

The Killing spinor has to satisfy

DM ε−
1

288
(
ΓMΓPQRS − 8δPMΓQRS

)
F

(4)
PQRS ε = 0 . (2.9)

When M is the index of one of the coordinates from AdS7 the killing spinor equation reads

Dµε−
1
4lΓµγε = 0 , (2.10)

where γ denotes the four-product Γ78910. When M is the index of one of the coordinates
from S4 the equation reads

Dmε+ 1
2lΓmγε = 0 . (2.11)

The solution for the Killing spinor with the above frame vielbein is given by:

ε = e
1
2 (Γ04+Γ1γ)ρe

1
2 (Γ12+Γ45)αe

1
2 (Γ23+Γ56)βe

1
2 Γ0γφ0e− 1

2 Γ14φ1e− 1
2 Γ25φ2e− 1

2 Γ36φ3

× e
1
2γΓ7θe

1
2 (Γ78+Γ910)χe

1
2 Γ710ξ1e− 1

2 Γ89ξ2ε0 ≡Mε0 (2.12)

The eleven-dimensional Γ-matrices satisfy the identity: Γ01234...10 = 1.

2.1 Half-BPS M5 brane embeddings

We have several half-BPS solutions obeying the Euler-Lagrange equations of motion. We
will divide them into the following two kind

1. ζ1Φi = l sinh ρ0 e
iξconst

2. ζ2Φi = l sinh ρ0 e
iξconst

Here we define the variables ζi which are related to the complex coordinates that describe
S3:

(ζ1)2 = Z1 and (ζ2)2 = Z2 . (2.13)

There are four solutions that can be considered in each kind. And the solutions in the
two kinds are related by an appropriate SU(2) rotation on the variables Zi. For all the
solutions that we consider in this section, we choose the static gauge in which the world-
volume coordinates are identified as follow:

τ = φ0, σ1 = α, σ2 = β, σ3 = φ1, σ4 = φ2 and σ5 = φ3 .

The Lagrangian density associated with all the probe M5 brane solutions that we
discuss here is given by the following expression

L = T5
√
−h + T5 P [C(6)] (2.14)
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where h is the determinant of the induced metric on the worldvolume and P [·] refers to the
pullback of a spacetime differential form onto the worldvolume. C(6) is the six-form gauge
potential whose field strength F (7) is ?dual to the 4-form flux F (4) through S4. We choose
the gauge such that the six-form potential is given by

C(6) = − (2l)6 sinh6 ρ cosα sin3 α cosβ sin β dα ∧ dβ ∧ dφ0 ∧ . . . ∧ dφ3 . (2.15)

There are no world volume fluxes due to the gauge fields, and their value is zero throughout
the analysis.

Our strategy in the remaining of this section is to analyze the half-BPS solutions
(which are of the simpler form) and discuss the supersymmetry preserved by each in terms
of the projection condition on the constant spinor ε0 in the killing spinor in (2.12). The
probe M5 solutions of the non-compact world-volumes are new here and have never been
presented before in the background geometry of global AdS7×S4. These solutions are the
holographic dual of the half-BPS codimension-2 defects in the 6d boundary dual theory.
In the next section, we make use of the crucial knowledge of the common supersymmetry
preserved among all the 8 solutions here to determine much more general BPS solutions
preserving the least supersymmetry.

Solutions of the Ist kind

First we consider the solutions in which the M5 brane world-volumes wrap a maximal circle
on the S4 part of the 11-dimensional geometry, parametrized by the coordinate ξ1.

2.1.1 Solution: ζ1Φ0 = l sinh ρ0 e
i ξ(0)

This solution describes the world-volume of a dual-giant graviton of [14] that wraps the S5

sphere in the AdS direction. In terms of the real coordinates the defining equations are

θ = π

2 χ = 0 ρ = ρ0(const.) 2φ0 + ξ1 = ξ(0) (2.16)

The induced metric on the world-volume is

ds2
∣∣∣∣
M5

= hµνdσ
µdσν (2.17)

= 4l2 sinh2 ρ0
(
−dφ2

0 + dα2 + cos2 αdφ2
1 + sin2 α(dβ2 + cos2 βdφ2

2 + sin2 βdφ2
3)
)
,

it has a topology of R × S5. The square root of the determinant of the induced metric is
equal to √

− deth = 25l6 sinh6 ρ0 cosα sin3 α sin 2β .

The product of the six worldvolume γ−matrices is

γφ0αβφ1φ2φ3 =−32l6sinh5ρ0cosαsin3αsin2β
(
coshρ0Γ023456+coshρ0Γ2345610+sinhρ0Γ0235610

)
(2.18)

The κ-symmetry equation that ensures the supersymmetry of the probe M5 is given by

Γκε = ε (2.19)
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where the matrix Γκ is equal to

Γκ = γφ0αβφ1φ2φ3√
− deth

.

We subsititute for γφ0αβφ1φ2φ3 from (2.18) in the kappa-symmetry equation. Then we com-
mute each Γabcdef product in (2.18) through the matrix factorM in the killing spinor (2.12).
The above solution satisfies the κ-symmetry constraint and preserves half of the eleven-
dimensional supersymmetries if the following projection is considered on the constant
spinor:

(1− Γ089) ε0 = 0 . (2.20)

2.1.2 Solution: ζ1Φ1 = l sinh ρ0 e
i ξ(0)

This solution describes the M5 branes with non-compact world-volumes that end in the
boundary region of AdS into a four-dimensional submanifold. They are the holographic
duals of codimension-2 defects in the 6d (0, 2) theory on S5 ×R manifold. In terms of the
real coordinates the embedding equations are

θ = π

2 χ = 0 sinh ρ cosα = sinh ρ0 2φ1 + ξ1 = ξ(0) (2.21)

The metric induced on the world-volume of this classical solution is

ds2
∣∣∣
M5

= −4l2(1+sinh2ρ0sec2α)dφ2
0+4l2sinh2ρ0cosh2ρ0sec4α

1+sinh2ρ0sec2α
dα2+4l2sinh2ρ0tan2αdβ2

+4l2cosh2ρ0dφ
2
1+4l2sinh2ρ0tan2αcos2βdφ2

2+4l2sinh2ρ0tan2αsin2βdφ2
3. (2.22)

The metric is of topology AdS5×S1 and the scalar curvature is equal to −5 cosh−2 ρ0
l2 . The

square root of the determinant of the induced metric is equal to
√
− deth = 25l6 sinh4 ρ0 cosh2 ρ0 sec2 α tan3 α sin 2β .

The product of the six worldvolume γ-matrices is

γφ0αβφ1φ2φ3 =−16 l6 sinh4 ρ0 sec2αtan3αsin2β×
(

(1+2sinh2 ρ0 +cos2α)Γ0235610

+2sinhρ0 cosα
√

1+sinh2 ρ0 sec2α(Γ023456 +Γ2345610)
+2sinhρ0 sinα(Γ013456 +Γ1345610)+2sin2αΓ0134610

+sin2α
√

1+sinh2 ρ0 sec2α(Γ0135610 +Γ0234610)
)

(2.23)

We substitute this γφ0αβφ1φ2φ3 in the κ−symmetry equation and take each product of six
Γ-matrices to the right through the exponential factors in the killing spinor denoted by M
in (2.12). After doing the Γ-matrix algebra, the l.h.s. in the κ-symmetry equation becomes

Γκ·M ·ε0=M ·Γ0235689·ε0+Msinβtanαtanh2ρ0e
Γ14φ1eΓ36φ3

(
Γ0125689+Γ0245678910

)
·ε0 (2.24)

−Mcosβtanαtanh2ρ0e
Γ14φ1eΓ25φ2

(
Γ0135689+Γ0345678910

)
·ε0

−Mtanhρ0cosh−1ρ0

√
1+sinh2ρ0sec2αe−Γ0γφ0eΓ14φ1

(
Γ012356710+Γ023456

)
·ε0

– 6 –
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The κ−symmetry equation is satisfied and half of the eleven-dimensional supersymmetries
are preserved by the M5 world-volume, when the following projection is applied on the
constant spinor ε0 (

1− Γ14710
)
ε0 = 0 . (2.25)

The remaining two solutions in this kind can be obtained by doing the appropriate SU(3)
transformations on the complex coordinate Φ1.

2.1.3 Solution: ζ1Φ2 = l sinh ρ0 e
i ξ(0)

This is an another example of non-compact worldvolume solution which end in the AdS
boundary into a 4-dimensional submanifold. This will also be a holographic dual of a
codimension-2 defect in the 6d (0, 2) theory. In terms of the real coordinates the embedding
equations are

θ = π

2 χ = 0 sinh ρ sinα cosβ = sinh ρ0 2φ2 + ξ1 = ξ(0) (2.26)

The induced metric again is of topology AdS5 × S1 and the scalar curvature of the above
metric is −5 cosh−2 ρ0

l2 . With the determinant:

deth = −(2l)12 sinh8 ρ0 cosh4 ρ0 cot2 α csc4 α sec8 β tan2 β.

The above M5 brane solution satisfies the κ−symmetry constraint

Γκε = ε , (2.27)

and half of the eleven-dimensional supersymmetries are preserved by the world-volume,
when the following projection is applied on the constant spinor ε0(

1− Γ25710
)
ε0 = 0 . (2.28)

2.1.4 Solution: ζ1Φ3 = l sinh ρ0 e
i ξ(0)

This is the fourth half-BPS solution in the first set of solutions. In terms of the real
coordinates the embedding equations are

θ = π

2 χ = 0 sinh ρ sinα sin β = sinh ρ0 2φ3 + ξ1 = ξ(0) (2.29)

The above solution will also preserve half the supersymmetries if the following projections
on ε0 are imposed

(1− Γ36710)ε0 = 0 . (2.30)

Solutions of the IInd kind

We now consider the solutions which wrap the maximal circle on S4 parametrized by the
coordinate ξ2.

– 7 –
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2.1.5 Solution: ζ2Φ0 = l sinh ρ0 e
i ξ(0)

This solution describes a dual-giant graviton with worldvolume wraping the S5 sphere in
the AdS directions. In terms of the real coordinates the embedding equations are

θ = π

2 χ = π

2 ρ = constant 2φ0 + ξ2 = ξ(0) (2.31)

The above solution will also preserve half of the supersymmetries if the following projections
on ε0 are imposed

(1 + Γ0710)ε0 = 0 . (2.32)

2.1.6 Solution: ζ2Φ1 = l sinh ρ0 e
i ξ(0)

This solution describes a non-compact worldvolume brane with holographic duality to a
codimension-2 defect in the 6d theory. In terms of the real coordinates the embedding
equations are

θ = π

2 χ = π

2 sinh ρ cosα = sinh ρ0 2φ1 + ξ2 = ξ(0) (2.33)

The above solution will also preserve half the supersymmetries if the following projections
on ε0 are imposed

(1 + Γ1489)ε0 = 0 . (2.34)

Similar to the first set of solutions there are two more solutions that can be obtained by
doing the appropriate SU(3) rotations on the coordinate Φ1.

2.1.7 Solution: ζ2Φ2 = l sinh ρ0 e
i ξ(0)

In terms of the real coordinates the embedding equations are

θ = π

2 χ = π

2 sinh ρ sinα cosβ = sinh ρ0 2φ2 + ξ2 = ξ(0) (2.35)

The above solution will also preserve half the supersymmetries if the following projections
on ε0 are imposed

(1 + Γ2589)ε0 = 0 . (2.36)

2.1.8 Solution: ζ2Φ3 = l sinh ρ0 e
i ξ(0)

In terms of the real coordinates the embedding equations are

θ = π

2 χ = π

2 sinh ρ sinα sin β = sinh ρ0 2φ3 + ξ2 = ξ(0) (2.37)

The above solution will also preserve half the supersymmetries if the following projections
on ε0 are imposed

(1 + Γ3689)ε0 = 0 . (2.38)

– 8 –
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2.2 Some 1
4-BPS solutions

From the analysis we have seen so far we can consider to combine two of the solutions from
above. This time the parametrization of the 1-dimensional curve that is wrapped on the
S4 can be understood by using both the coordinates: ξ1 and ξ2.

The complete ansatz for an M5-brane world-volume made from the set of solutions of
the Euler-Lagrange equation is

θ = π

2 sinh ρ cosα = sinh ρ0 2φ1 + ξ1 = 0 2φ1 + ξ2 = 0 . (2.39)

Along with the S4 coordinate ‘χ’ fixed to an arbitrary value(other than 0 or π
2 ). In terms of

the special complex variable we have defined in (2.13) this ansatz takes the form: ζ1Φ1 = c1
and ζ2Φ1 = c2 with c1, c2 some arbitrary constants. This choice of ansatz indicates that
the curve that is wrapped on the S4 by the probe M5 solution is parametrized by the
Hopf fibre direction coordinate in which the frame component e9 vanishes and e10 becomes
l
(
cos2 χdξ1 + sin2 χdξ2

)
= l dξ1 (or l dξ2).

The induced metric on the world-volume remains the same as in (2.22) and the product
of the six γ matrices to be used in the kappa-symmetry equation is also the same as
in (2.23). After pushing through all the six-product Γab...f matrices in (2.23) through the
matrix factorM in the killing spinor in (2.12), the kappa-symmetry constraint: Γκε = ε can
be made to be satisfied as in the previous 8 half-BPS solutions we have seen so far. But this
time we need to impose two independent projection conditions in order to accomplish this.
It means that the worldvolume now preserves the quarter of the 11-dimensional spacetime
supersymmetries and the answer in terms of the projection conditions is the following

(1− Γ14710)ε0 = 0 (1− Γ78910)ε0 = 0 . (2.40)

Likewise, there are other solutions which can be considered with the ansatz ζ1Φi = c1 and
ζ2Φi = c2 with i = 0, 2, and 3. Each of these world-volume solutions are BPS and preserve
a quarter of the 11-d supersymmetries, with the second projection condition being the same
and the first condition being altered according to the illustrations given in previous sub-
section in 2.1.1, 2.1.3 and 2.1.4, respectively. The world volume metric and the six-product
γτσ1...σ5 of the world-volume γ-matrices remains unchanged as given for the respective cases
in 2.1.1, 2.1.3 and 2.1.4. For convenience, we write the projection conditions for the each
individual 1

4 -BPS solutions separately

ζ1Φ0 = c1 ; ζ2Φ0 = c2 : (1− Γ089)ε0 = 0 (1− Γ78910)ε0 = 0
ζ1Φ2 = c1 ; ζ2Φ2 = c2 : (1− Γ25710)ε0 = 0 (1− Γ78910)ε0 = 0
ζ1Φ3 = c1 ; ζ2Φ3 = c2 : (1− Γ36710)ε0 = 0 (1− Γ78910)ε0 = 0 . (2.41)

3 The general BPS solutions

In this section, we consider the projections that preserve the common set of supersym-
metries amongst all the eight half-BPS probe M5 solutions that we have seen so far, by

– 9 –
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keeping both ζ1 and ζ2 non-zero. It is given by the following set of projections on the
constant spinor:

Γ14ε0 = Γ25ε0 = Γ36ε0 = i ε0 and Γ0ε0 = Γ710ε0 = −Γ89ε0 = −i ε0 (3.1)

These projections preserve just one out of the thirty two supersymmetries of the bulk
background. After taking into account the action of these projection conditions on ε0, the
killing spinor simplifies to

ε = e− i
2 (φ0+φ1+φ2+φ3+ξ1+ ξ2) 1− Γ7√

2
ε0 . (3.2)

In addition to this simplified form of the killing spinor, the action of any six-product
Γ-matrix: Γabcde10( with a, b, c, d, e 6= 7, 10 ) on ε effectively becomes

Γabcde10 ε = −i e− i
2 (φ0+φ1+φ2+φ3+ξ1+ ξ2) 1− Γ7√

2
Γabcde ε0 . (3.3)

This relation is very crucial in deriving the constraint equations that we are after. We are
now interested in finding the world volume solution for the general case, the expressions
which describe the M5 branes that preserve atleast a single supersymmetry obtained from
the 5 independent projection conditions that we have written in (3.1). We follow the
method used in the reference [15] and introduce the complex 1-forms

E1 = e1 − i e4 E2 = e2 − i e5

E3 = e3 − i e6 E8 = e8 − i e9 , (3.4)

where eai = eaµ∂iX
µ is the pullback of the spacetime frame eaµ onto the M5 world-volume.

We substitute the simplified Killing spinor in (3.2) in the κ-symmetry equation

γτσ1σ2σ3σ4σ5ε = ±
√
− deth ε , (3.5)

and use the projection conditions to reduce the l.h.s. into a linear combination of indepen-
dent structures of the form Γa1a2...ε0. The coefficient of each such structure is set to zero
except the constant one, which can be proved to equal to the r.h.s. . In this section we are
looking for solutions with the S4 coordinate θ fixed to π

2 , therefore, the 1-form e7 is 0 and
will never appear in the relations we obtain.

On account of the projection conditions in (3.1) we find that there are various six-form
differential constraints that need to be satisfied to obtain the solution we seek. To give a
clear exposition of the steps involved in arriving at these BPS differential-form constraints
we divide the

(10
6
)
number of terms in the l.h.s. of (3.5) into three different groups. In the

first group, we only look at terms which either have e0 or e10. The second group have terms
with both e0 and e10 present. And in the third group terms neither of the two are present.

From the terms in the first group we get the following set of 6-form constraints(
e0 + e10

)
∧Ea Eb Ec ∧ (ω̃ + ω) = 0(

e0 + e10
)
∧Ea ∧ (ω̃ + ω) ∧ (ω̃ + ω) = 0 for a, b, c = 1, 2, 3, 8 (3.6)
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with the definitions: E0 = e0 + e10 and E0 = e0 − e10, we re-write the above sets of
constraints as

E0 ∧Ea Eb Ec ∧ (ω̃ + ω) = 0
E0 ∧Ea ∧ (ω̃ + ω) ∧ (ω̃ + ω) = 0 for a, b, c = 1, 2, 3, 8 (3.7)

Here we have also defined the following real 2-forms:

ω̃ = e14 + e25 + e36 = i

2
(
E1 E1 + E2 E2 + E3 E3

)
≡ ω

C̃P
3 (3.8)

ω = e89 = i

2E8 E8 ≡ ωCP1 . (3.9)

These 2-forms are the pull-backs of certain Kähler forms onto the worldvolume of the brane.
These Kähler forms are of the respective base manifolds CP1 and C̃P

3
, when the S3 ⊂ S4

and AdS7 are written as Hopf-fibrations.
The terms with a factor e010 give the constraints

e0 ∧ e10 ∧Ea Eb ∧ (ω̃ + ω) = 0
e0 ∧ e10 ∧E1 E2 E3 E8 = 0 . (3.10)

The BPS differential 6-form constraints from the remaining set of terms are

Ea Eb ∧ (ω + ω̃) ∧ (ω + ω̃) = 0 for a, b = 1, 2, 3, 8 . (3.11)

And finally, coefficients of the terms in (3.5) with all the six Γ matrices projected out,
suggest that they are equal to

(
e0 ∧ e10 − i

ω + ω̃

3

)
∧ (ω + ω̃) ∧ (ω̃ + ω)

2 =
√
− deth = dvol6 . (3.12)

Where dvol6 is the volume element on the world volume of the M5-brane.
To describe the embedding of an M5 brane in 11-dimensional spacetime we need 5

real conditions. Fixing θ = π
2 is one of them. To determine the other four we consider

two holomorphic functions of spacetime coordinates whose zeros will give us the desired
embedding solution

F (I) (ρ, α, β, φ0, φ1, φ2, φ3, χ, ξ1, ξ2) = 0 for I = 1, 2 (3.13)

This leads to the differential constraints

P

F (I)
ρ dρ+ F (I)

α dα+ F
(I)
β dβ +

3∑
i=0

F
(I)
φi

dφi +
∑

xj=χ,ξ1,ξ2

F
(I)
xj

dxj

 = 0 (3.14)
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where P denotes pullback onto the world-volume. We rewrite this in terms of the complex
one-forms defined in (3.4) using the frame vielbeins in (2.7) and (2.8)

E1

F (I)
ρ −i

∑
i=1,2,3

F
(I)
φi

cothρ−iF (I)
φ0

tanhρ

+E1

F (I)
ρ +i

∑
i=1,2,3

F
(I)
φi

cothρ+iF (I)
φ0

tanhρ


×sinh−1ρ

E2

F (I)
α −i

∑
i=2,3

F
(I)
φi

cotα+iF (I)
φ1

tanα

+E2

F (I)
α +i

∑
i=2,3

F
(I)
φi

cotα−iF (I)
φ1

tanα


×cscαsinh−1ρ

[
E3
(
F

(I)
β −iF

(I)
φ3

cotβ+iF (I)
φ2

tanβ
)
+E3

(
F

(I)
β +iF (I)

φ3
cotβ−iF (I)

φ2
tanβ

)]
×2E8

(
F (I)
χ −iF

(I)
ξ2

cotχ+iF (I)
ξ1

tanχ
)
+2E8

(
F (I)
χ +iF (I)

ξ2
cotχ−iF (I)

ξ1
tanχ

)
+E0

 3∑
i=0
F

(I)
φi

+2
∑
i=1,2

F
(I)
ξi

+E0

 3∑
i=0
F

(I)
φi
−2

∑
i=1,2

F
(I)
ξi

=0 (3.15)

On account of the constraint obtained in (3.7), (3.10) and (3.11) it can be checked that
the l.h.s. can be made to zero if it is multiplied by appropriate factors, when there are a
few additional differential equations are satisfied, that can be read from above. We write
those down below to determine the functional form of F (I)

F (I)
ρ + i

∑
i=1,2,3

F
(I)
φi

coth ρ+ i F
(I)
φ0

tanh ρ = 0

F (I)
α + i

∑
i=2,3

F
(I)
φi

cotα− i F (I)
φ1

tanα = 0

F
(I)
β + i F

(I)
φ3

cotβ − i F (I)
φ2

tan β = 0

F (I)
χ + i F

(I)
ξ2

cotχ− i F (I)
ξ1

tanχ = 0 . (3.16)

The functional conditions have holomorphic dependence on AdS7 complex coordinates and
the complex coordinates describing the S3 ⊂ S4

F (I)(Φ0 ,Φ1 ,Φ2 ,Φ3 , Z1, Z2) = 0 . (3.17)

There is a fifth differential equation that can also be read from (3.15)

3∑
i=0

F
(I)
φi
− 2

∑
i=1,2

F
(I)
ξi

= 0 , (3.18)

for I equal to 1 and 2. We refer to it as the scaling condition on the holomorphic functions
F (I) for our general solutions. It can be checked that from this general solution all the
half-BPS solutions that we have discussed in section 2.1 and 1

4 -BPS solutions in section 2.2
can be derived easily. For the half-BPS solutions, the holomorphic functional constraints
become(

F (1) (Φi , Z1) = 0 ; F (2) = Z2 = 0
)

or
(
F (1) = Z1 = 0 ; F (2) (Φi , Z2) = 0

)
.
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And the scaling condition on F (a) makes them equivalent to the constraints

ζaΦi − ca = 0 ; Zb = 0 ,

for the respective cases. For the 1
4 -BPS solutions, the holomorphic functional constraints

become
F (1) (Φi , Z1) = 0 ; F (2) (Φi , Z2) = 0 .

The scaling condition on F (I) makes them equivalent to

ζ1Φi − c1 = 0 ; ζ2Φi − c2 = 0 ,

for the respective cases.
Similar equations were obtained in [15] where the investigations were done for general

D3 brane solutions in the AdS5 × S5 spacetime. In [12] it was shown that the holographic
duals of codimension-2 defects in 4d N = 4 SYM belong to same class of BPS solutions
that also admit giant gravitons and the dual-giant gravitons from [15]. In [16] general
giant M2 brane solutions which have two non-zero spin charges along S4 were discussed in
AdS7×S4 and they were atleast 1

4 -BPS. These solutions were obtained when at any given
time the spatial part of M2 worldvolume is given by the intersection of a holomorphic curve
C in C2 space with S4 sphere. Where the S4 was considered to be embedded in the 5d flat
space R5 = C2 × R.

From the general expression (3.17) that we have derived, depending upon the functional
form of F (I) we can have the dual-giant gravtion M5 branes or the holographic duals of the
codimension-2 defects in the boundary gauge theory that preserve the least supersymmetry
from the projections given in (3.1).

4 Boundary profile of the BPS solutions

The particular probe M5 brane solutions we are interested in and which will be the holo-
graphic duals of codimension-2 defects in the 6d theory have the charges (S1, S2, S3, J).
Here Si denotes the spin angular momentum charges in the AdS directions and J is due to
the spin in the S3 ⊂ S4 directions. In terms of the general expressions we derived, these
solutions are described by

Z2 = 0 and F (ζΦ0, ζΦ1, ζΦ2, ζΦ3) = 0 , (4.1)

where ζ =
√
Z1 = ei

ξ1
2 . The scaling condition (3.18) has allowed us to write this solution

with Z2 = 0 in this form. It also means that the configuration is invariant under the
following change

Φi → λΦi and ζ → λ−1ζ . (4.2)

The goal in this section is to find what functional form F leads to near the boundary of
AdS7, and this will tell us about the location of the singularity along with the singular
profile the 6d bosonic fields may acquire near the defect. As we near the boundary the
complex coordinates Φi ∈ C1,3 chosen for AdS7 embedding take the form

Φ0 = rν0 Φ1 = rν1 Φ2 = rν2 Φ3 = rν3 (4.3)
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where r = 2l sinh ρ and ν0 = eiφ0 , ν1 = cosαeiφ1 , ν2 = sinα cosβeiφ2 , ν3 = sinα sin βeiφ3 .
And in this large r approximation these become the coordinates on a null cone: −|Φ0|2 +
|Φ1|2 + |Φ2|2 + |Φ3|2 = 0. The induced metric on this cone tells us that the boundary is in
the conformal class of R× S5 for arbitrary and lagre r

− |dΦ0|2 + |dΦ1|2 + |dΦ2|2 + |dΦ3|2

= r2
(
−dφ2

0 + dα2 + cos2 αdφ1 + sin2 α
(
dβ2 + cos2 β dφ2

2 + sin2 β dφ2
3

))
(4.4)

Our steps are going to be very similar to the steps that were done in [12] for the gen-
eral 1

8−BPS non-compact D3 worldvolume solutions with a single spin angular momen-
tun charge turned on in the S5 part. Here we need to find the locus of zeros of the
function in (4.1) as we near the boundary. Near the boundary the function becomes
F (ζrν0, ζrν1, ζrν2, ζrν3) with ζ = ei

ξ1
2 . So the worldvolume of the M5 brane intersects

the boundary at the zeros of the functions

F (λν0, λν1, λν2, λν3) = 0 , (4.5)

where λ = r ei
ξ1
2 for arbitrary λ ∈ C∗. In this near boundary limit where Φi → r νi, the

zero set remains invariant only if this function is homogeneous under scaling, which means
F (λν0, λν1, λν2, λν3) = λpF (ν0, ν1, ν2, ν3). And a function with such a scaling property
can be re-written as νp0 H (ν1/ν0, ν2/ν0, ν3/ν0) so therefore, the zeros that we are after at
a fixed ‘time’ τ(or φ0) is the same as the zeros of the holomorphic function H (Λ1,Λ2,Λ3)
where Λi = νi

ν0
∈ C3 which intersects the unit 5-sphere |Λ1|2 + |Λ2|2 + |Λ3|2 = 1. The time

evolution here is given by the scaling (Λ1,Λ2,Λ3) → e−iφ0(Λ1,Λ2,Λ3).
We summarize our result that we have derived just now for our 1

8 -BPS probe M5
solutions. If the worldvolume of the non-compact probe M5 brane are described by the zero
locus of an arbitrary function F (ζΦ0, ζΦ1, ζΦ2, ζΦ3), then we see that the worldvolume, as
it approaches the boundary is four dimensional and at a given instant in time, it is given
by the locus S which is obtained as the intersection of a holomorphic function in C3 with
the 5-sphere

H (Λ1,Λ2,Λ3) = 0 ∩ |Λ1|2 + |Λ2|2 + |Λ3|2 = 1 . (4.6)

This is certainly a higher dimensional generalization of the result (refer [17] for definition
for instance), that we have seen in [12] in terms of the algebraic link in S3, obtained for
the probe M5 brane in the AdS7 × S4 background.

We can also comment on the profile the bosonic fields in 6d N = (0, 2) tensor multiplet
may take near the location of the defect. We can write our general solution in (4.1) as

F (ζΦ0, ζΦ1, ζΦ2, ζΦ3) = G(ζΦ0,Φ1/Φ0,Φ2/Φ0,Φ3/Φ0) = 0 (4.7)

When G is a linear function of ζΦ0 we can write

G(ζΦ0,Φ1/Φ0,Φ2/Φ0,Φ3/Φ0)
= ζΦ0 F1(Φ1/Φ0,Φ2/Φ0,Φ3/Φ0)− F0(Φ1/Φ0,Φ2/Φ0,Φ3/Φ0) = 0 (4.8)
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and very near the boundary we have

λν0 = F0(ν1/ν0, ν2/ν0, ν3/ν0)
F1(ν1/ν0, ν2/ν0, ν3/ν0) . (4.9)

Here λ = rei
ξ1
2 is a field on the probe brane that determines the radial and angular profile

of the probe brane and may be identified with two of the real scalars in the 6d boundary
(2, 0) tensor multiplet theory. The defects on the boundary are given by zero-sets of
F1(ν1/ν0, ν2/ν0, ν3/ν0). And therefore, our analysis suggests that in (4.9) is the singularity
profile that the boundary theory scalars can take near the defect. We can consider the
half-BPS solution in the previous section 2.1.2 as an example. The holomorphic function
F in that case will be F (ζΦ0, ζΦ1, ζΦ2, ζΦ3) = ζΦ1 − c and very near the boundary we
have the following expression for λ

λ = c

ν1
= c

cosα eiφ1
. (4.10)

Therefore, near the AdS boundary region where α→ π
2 we have the singular behaviour for

λ due to the simple pole.
To summarize, in this section, we have analyzed the M5 brane solutions that wrap

a one-dimensional circle in the S4 part of the geometry. We have taken the near AdS
boundary limit for the non-compact brane solutions from which our analysis suggests the
location of the general 1

8 -BPS codimension-two defects in the 6d boundary (2, 0) gauge
theory, described by the equation (4.6). Our analysis also suggests that how in the presence
of such defects, some of the scalar field components may acquire a singular behaviour near
their location: for a half-BPS static solution, from (4.10); for a general 1

8 -BPS abelian
solution, from (4.9). For further understanding of these codimension-two defect solutions
in the boundary gauge theory more work is required in the gauge theory side and we hope
to report more about them in future work.
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