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Abstract: Webs are sets of Feynman diagrams which manifest soft gluon exponentia-
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First, we use the replica trick to prove that diagrams involving self-energy insertions along
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1 Introduction

The structure of perturbative scattering amplitudes in non-Abelian gauge theories contin-
ues to be an important research area due to a wide range of phenomenological and formal
applications. Of particular interest are those universal quantities in field theory that govern
the all-order behaviour of amplitudes. One such quantity is the soft anomalous dimension,
which controls the long-distance singularities of on-shell form factors and amplitudes. These
singularities give rise to logarithms of kinematic invariants in perturbative cross-sections,
which reflect incomplete cancellation between real and virtual correction, and dominate
the perturbative expansion in many instances.

The soft anomalous dimension can also be determined from ultraviolet renormalization
properties of correlators of Wilson-line operators [1–7]. In calculating it one must make
a distinction between the colour singlet case, relevant for example for an on-shell form
factor, where the singularity structure is known in full to three loops (in particular the
angle-dependent cusp anomalous dimension was computed to three loops in QCD in [8, 9]
and to four loops in QED in [10]), and the more complicated case of multi-leg scattering
amplitudes, which is of interest here, where the soft anomalous dimension is matrix-valued
in the space of possible colour flows in the underlying hard process. One must make a fur-
ther distinction between lightlike Wilson lines, corresponding to the scattering of massless
particles, as discussed for example in [11–35] and non-lightlike Wilson lines, corresponding
to the scattering of heavy (coloured) particles, such as top quarks, see e.g. refs. [36–46].
In massless scattering, the soft anomalous dimension is highly constrained [22–25] and it
was computed in full at three-loop order [47, 48]. Furthermore, it was shown [49] that
its precise form can be deduced from general considerations and special kinematic limits.
These considerations do not apply directly to the massive case, and so the state-of-the-art
knowledge of this quantity remains two loops [38]. While specific three-loop contributions
have been directly computed in refs. [44, 45], a complete calculation is beyond the reach
of present methods. In this paper, we continue the calculation of the three-loop massive
soft anomalous dimension, by focusing on a particular class of contributions that have not
been previously obtained.

A particularly convenient language for organising calculations involving multiple Wil-
son lines is that of webs, first developed in the classic work of refs. [50–52] for the two-line
case. The starting point for this formalism is the fact that vacuum expectation values of
Wilson lines are known to exponentiate. Crucially, the logarithm of the Wilson-line cor-
relator can be given a Feynman diagram interpretation by itself, where the term “webs”
refers to the relevant diagrams. In the two-line case in QCD, webs can be conveniently
characterised by the fact that they are two-particle irreducible. Furthermore, their colour
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factors are modified in the logarithm of the amplitude, such that all colour factors have the
property of being maximally non-Abelian, i.e. akin to the colour factors of fully connected
gluon graphs. Perhaps unsurprisingly, things are more complicated in the multiparton
case, and a number of formalisms have been developed [45, 53–63]. Here we will adopt the
approach originated in ref. [55] (see also [64] for a review and references [65, 66] for recent
progress beyond three loops), in which webs are closed sets of diagrams related by permu-
tations of gluon attachments on the Wilson lines. Each such web is associated with a web
mixing matrix describing how the colour and kinematic degrees of freedom are entangled
in the logarithm of the amplitude. These matrices have a combinatorial definition that has
been studied from a purely mathematical point of view [67–69], but in this paper simply
provide a convenient way to organise the combination of different Feynman diagrams. The
renormalization of multiparton webs has been spelled out in ref. [57], and involves combin-
ing diagrams at a given perturbative order with an intricate set of lower-order information.
Furthermore, it is known that only certain combinations of diagrams survive in the loga-
rithm of the amplitude, where each is accompanied by a fully connected colour factor [58],
in direct analogy with the two-parton case.

Previously calculated three-loop webs involving massive lines include the broad class of
multiple gluon exchange webs (MGEWs), defined such that the Wilson lines are connected
by multiple gluon emissions, with no three- or four-gluon vertices located off the Wilson
lines. Such diagrams involving four lines (the maximal number that can be connected at
this order) were calculated in the Feynman gauge in ref. [44]. Those involving three lines
were calculated in ref. [45], where an interesting relationship with previous results was
developed. Namely, it is possible to generate parts of webs connecting n − 1 Wilson lines
from those connecting n lines, by taking two lines in a given n-line web to be collinear. The
procedure can then be iterated to generate parts of webs with even fewer lines, and was
dubbed collinear reduction in ref. [45]. It provides a highly nontrivial and useful consistency
check of higher-loop computations, and we will encounter this idea in what follows.

References [44, 45] initiated an ongoing programme of work, to calculate all relevant
diagrams for the massive three-loop soft anomalous dimension. Our aim in this study is to
consider the next natural class of diagrams, namely MGEWs in which at least one gluon has
both its endpoints on the same Wilson line. We shall refer to such gluons as boomerang glu-
ons, and to the corresponding sets of diagrams containing them as boomerang webs. These
were not considered in the above three-loop references, as they present additional compli-
cations related to the presence of ultraviolet divergences when the ends of a gluon meet at
the same spacetime point (possibly with another gluon in between). Such complications
were already present at lower orders (see e.g. [7] for a non-trivial two-loop example), but
must be reconsidered here. Firstly, references [44, 45] have developed a regulator that is
well-suited to isolating ultraviolet divergences in the web approach, and we will need to
see how to generalise this regulator to boomerang webs. Secondly, we must account for
these additional ultraviolet divergences within the general scheme developed in ref. [57] for
renormalizing multiparton webs. We will deal with these issues in the following, and in
turn present explicit results for all boomerang webs up to three-loop order.
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Our final expressions form an important contribution to the three-loop soft anomalous
dimension. In addition, we will also see a number of interesting results along the way.
In particular, a large class of individual diagrams entering boomerang webs — namely
those containing self-energy insertions alongside gluons which straddle multiple Wilson
lines — can be proven not to appear at all, at any order in the logarithm of the Wilson-line
correlator. Consequently boomerang webs spanning two or more Wilson lines effectively
involve only integrals where boomerang gluons straddle one or more gluons that connect
to other Wilson lines. Of course, this greatly reduces the number of integrals that need
to be evaluated and simplifies the work required to assemble all contributions. Another
important feature is that our final results can be written in terms of a special class of basis
functions that have appeared already for MGEWs connecting four lines or fewer [44, 45],
and that have been conjectured to hold for MGEWs more generally. Nevertheless, it is not
a priori obvious that this class of functions would be sufficient to express boomerang webs.
Indeed, while for non-boomerang MGEWs all ultraviolet divergences are associated with the
renormalization of the multi-Wilson-line vertex, boomerang webs feature other divergences
as well. We will see that while the former have a uniform, maximal transcendental weight
of (2n− 1) at n loops, the latter feature a lower and non-uniform weight. Despite this, we
will find that the above-mentioned function basis suffices to express all boomerang webs
to three loops, bolstering the expectation that it applies to this class of webs to all orders.

The structure of the paper is as follows. In section 2, we review necessary properties
regarding the soft anomalous dimension and webs and their renormalization. In section 3,
we consider boomerang webs at one- and two-loop order and discuss their regularisation and
renormalization, preparing the grounds for the rest of the paper. In section 4 we prove the
decoupling of self-energy contributions from boomerang webs to all orders in perturbation
theory. In section 5, we calculate complete expressions for all three-loop boomerang webs.
In section 6, we describe how collinear reduction can be used to check the consistency of
parts of the results of section 5. Finally, we discuss our results and conclude in section 7.
Technical details are contained in six appendices.

2 The soft anomalous dimension from webs

In this section, we review salient details regarding the web formalism that we need for the
rest of the paper. We will be brief, referring the reader to refs. [44, 45, 55, 57, 58] for more
details.

2.1 Wilson lines and the soft anomalous dimension

Let us first consider a Wilson-line operator associated with a semi-infinite straight-line
contour:

Φβi
≡ P exp

{
igs

∫ ∞
0

dλβµi Aµ(λβi)
}
, (2.1)

where Aµ is the gauge field, P denotes path ordering of colour generators along the Wilson-
line contour, λ is a distance parameter, and βi the 4-velocity tangent to the curve (n.b.
throughout, we will be concerned with non-null Wilson lines). Our aim is to study the
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vacuum expectation value of a product of Wilson-line operators, and to examine its renor-
malization properties, for which we will use dimensional regularisation in d = 4 − 2ε di-
mensions. However, as is well-known, Feynman diagrams involving Wilson lines vanish
in dimensional regularisation, as scaleless integrals. This can be understood as an exact
cancellation between ultraviolet divergences associated with the vertex (at the origin) at
which the Wilson lines meet and infrared (long-distance) divergences associated with gluons
emitted and absorbed at infinity. To remove the latter, we follow refs. [44, 45] in modifying
each Wilson line, defining instead

Φ(m)
βi
≡ P exp

{
igs

∫ ∞
0

dλβµi Aµ(λβi)e−imλ
√
β2

i−iε
}
, (2.2)

where ε is the infinitesimal quantity appearing in the Feynman iε prescription. Here m is
an additional regulator that has the effect of dampening emissions with increasing distance
along the Wilson line, thus smoothly removing long-distance behaviour. As has been found
for previous MGEWs, and as we will see in what follows, this regulator is well-suited to
the practical calculation of higher-loop webs. Armed with this regulator, we define the soft
function of L Wilson lines with velocities {βk} as

S
(
γij , αs(µ2), ε, m

µ

)
≡
〈

0
∣∣∣Φ(m)

β1
⊗ Φ(m)

β2
⊗ . . .⊗ Φ(m)

βL

∣∣∣ 0〉 . (2.3)

This is gauge-invariant, provided that total colour conservation is obeyed. That is, if Ti
defines a colour generator in the appropriate representation of line i [14, 15, 70, 71], one has

L∑
i=1

Ti S = 0. (2.4)

Equation (2.3) depends on the d-dimensional coupling αs(µ2) satisfying

dαs
d lnµ2 = −αs

[
ε+ b0αs + b1α

2
s + . . .

]
, (2.5)

where µ is the dimensional regularisation scale, and on the cusp angles1

γij = 2βi · βj√
β2
i − iε

√
β2
j − iε

= −
(
αij + 1

αij

)
, (2.6)

where we have defined the parameter αij associated with each pair of lines i and j for
later use. We shall always pick |αij | ≤ 1. Due to the additional regulator, all singularities
as ε → 0 are ultraviolet in origin, and the fact that multiple Wilson-line operators are
multiplicatively renormalizable [3] means that we can then define the renormalized soft
function

Sren.

(
γij , αs(µ2), ε, m

µ

)
= S

(
γij , αs(µ2), ε, m

µ

)
Z(γij , αs(µ2), ε), (2.7)

1More precisely, γij/2 = cosh(φij) where φij is the Minkowski-space angle between lines i and j. In
a timelike process, when φij is real, γij > 2 (or −1 < αij < 0) while in a spacelike one γij < −2 (or
0 < αij < 1).
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where the factor Z collects all singularities associated with the renormalization of the vertex
at which the Wilson lines meet. This leads to the renormalization group equation

µ
d

dµ
Z
(
γij , αs(µ2), ε

)
= −Z

(
γij , αs(µ2), ε

)
Γ
(
γij , αs(µ2)

)
, (2.8)

where Γ is the soft anomalous dimension referred to above: it is a finite quantity that
encapsulates the ultraviolet singularities of Z and S. Each of the Wilson lines Φ(m)

βk
in

eq. (2.3) carries independent colour indices in a tensor product, and thus all quantities
appearing in eqs. (2.7), (2.8) must be interpreted as matrix-valued in the space of possible
colour flows between the Wilson lines. As such, the order in which quantities appear on
the right-hand side is important. Defining the perturbative expansion2

Γ
(
γij , αs(µ2)

)
=
∞∑
n=1

(
αs(µ2)

)n
Γ(n) (γij) , (2.9)

we may write the solution of eq. (2.8) (suppressing the dependence on the cusp angles and
the scale) as

Z(γij , αs(µ2), ε) = exp
{
αs

1
2ε Γ(1) + α2

s

( 1
4εΓ(2) − b0

4ε2 Γ(1)
)

(2.10)

+α3
s

(
1
6εΓ(3) + 1

48ε2
[
Γ(1),Γ(2)

]
− 1

6ε2
(
b0Γ(2) + b1Γ(1)

)
+ b2

0
6ε3 Γ(1)

)

+α4
s

(
1
8εΓ(4) + 1

48ε2
[
Γ(1),Γ(3)

]
− b0

8ε2 Γ(3) + 1
8ε2

(
b2

0
ε
− b1

)
Γ(2)

− 1
8ε2

(
b3

0
ε2
− 2b0b1

ε
+ b2

)
Γ(1) − b0

48ε3
[
Γ(1),Γ(2)

])
+O

(
α5
s

)}
,

where the β-function coefficients of the d-dimensional coupling are defined in eq. (2.5). The
unrenormalized soft function also has an exponential form, which for now we may write as

S (αs, ε) = exp
[
w (αs, ε)

]
= exp

 ∞∑
n=1

∞∑
k=−n

(
αs(µ2)

)n
εk w(n,k)

 , (2.11)

i.e. w(n,k) collects all contributions to the logarithm of the soft function at a given order in
the coupling αs, and dimensional regularisation parameter ε. Equations (2.8) and (2.11),
together with the requirement that Γ(n) be finite as ε→ 0 imply [57]

Γ(1) = −2w(1,−1) ,

Γ(2) = −4w(2,−1) − 2
[
w(1,−1), w(1,0)

]
,

Γ(3) = −6w(3,−1) + 3
2b0

[
w(1,−1), w(1,1)

]
+ 3

[
w(1,0), w(2,−1)

]
+ 3

[
w(2,0), w(1,−1)

]
+
[
w(1,0),

[
w(1,−1), w(1,0)

]]
−
[
w(1,−1),

[
w(1,−1), w(1,1)

]]
. (2.12)

2Throughout, we will define the perturbative expansion of other quantities similarly to eq. (2.9) unless
otherwise stated.
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That is, the coefficients of the soft anomalous dimension are fixed from the simple pole
in ε of the logarithm of the soft function at a given order in αs = g2

s/(4π), together with
commutators (in colour space) of various coefficients at lower order.

We emphasise that the anomalous dimension coefficients must be strictly independent
of the infrared cutoff scale m. Of course, they are also gauge invariant subject to colour
conservation, eq. (2.4), just like the soft function S (αs, ε) itself. Being independent of
any cutoff, finite and gauge-invariant, the soft anomalous dimension governing all-order
soft singularities is clearly an important physical quantity. With eq. (2.12) in place, we
have translated the problem of calculating it to finding the coefficients w(n,k) appearing in
eq. (2.11). This is the subject of the following section.

2.2 Webs and their kinematic and colour factors

Equation (2.12) relates the perturbative coefficients of the soft anomalous dimension to
the coefficients appearing in the logarithm of the soft function, eq. (2.11). As explained in
ref. [55], we may write the total contribution w(n) at each loop order n as a sum of webs:

w(n) =
∑

(n1,n2,...nL)
w

(n)
(n1,n2,...nL) , (2.13)

where each web

W(n1,n2,...nL) = αns w
(n)
(n1,n2,...nL) = αns

∞∑
k=−n

εkw
(n,k)
(n1,n2,...nL) , (2.14)

consists of a closed set of diagrams connecting L Wilson lines, with a fixed number of
gluon attachments (n1, n2, . . . , nL) on each line, where ni ≥ 0. Although each individ-
ual web (set of diagrams) is by itself gauge-dependent, this language provides a highly
convenient formalism for calculating the fully gauge-invariant soft function. In particu-
lar, contributions from single webs that survive in the logarithm of the soft function have
fully connected colour factors [58]. Furthermore, webs renormalise independently of each
other [44, 57] and feature different analytical properties, making them natural objects to
compute separately [44, 45, 72, 73].

The diagrams in a single web are interrelated by all possible permutations of the gluon
attachments along each Wilson line.3 Each diagram D ∈ W(n1,...,nL) has a colour factor
C(D) and kinematic part F(D), such that the contribution of the web to w(n) may be
written4 in the form

W =
∑

D,D′∈W
F(D)RDD′C(D′). (2.15)

3Note however that the set of numbers (n1, n2, . . . , nL) does not uniquely identify a given web, even at
a given order in perturbation theory. For example W(1,2,3) webs can be formed at three loops by multiple-
gluon exchanges, with or without a boomerang gluon. Of course, three and four gluon vertices off the
Wilson lines also distinguish between webs. We refer the reader to ref. [58] for a full classification of all
webs at three loops, and to refs. [65, 66] for a classification at four loops using correlator webs.

4From now on, we will suppress the attachment indices on a given web W(n1,...,nL) where this is unim-
portant.
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The quantity RDD′ (a matrix in the space of diagrams) is called a web mixing matrix,
and has a purely combinatorial definition. An algorithm to calculate the mixing matrix
for a given web was given in ref. [55], further combinatorial aspects have been explored
in refs. [67–69], and recent progress beyond three loops was reported in refs. [65, 66].
Physically, the web mixing matrix describes how colour and kinematic factors are entangled
in the logarithm of the soft function.

Although a full understanding of web mixing matrices remains elusive, some general
properties have been well-established. Chief among these is the fact that web mixing
matrices are idempotent, and thus act as projection operators, with eigenvalues λi ∈ {0, 1}.
The rank r of a p-dimensional web mixing matrix is the number of unit eigenvalues. Let
Y be the matrix that diagonalises the web mixing matrix:

Y RY −1 = diag(λ1, λ2, . . . λp), λi =

1, i ≤ r;
0, r + 1 ≤ i ≤ p.

(2.16)

Then we can write the contribution of a single web as

W =
r∑
j=1

(∑
D

F(D)Y −1
D,j

)(∑
D′

Yj,D′C(D′)
)
≡

r∑
j=1
F (n)
W ;jc

[n,L]
j . (2.17)

As expressed by the second equality, this has the form of a sum over combinations of kine-
matic factors F (n)

W ; j (one for each unit eigenvalue), each accompanied by a corresponding
colour factor c[n,L]

j , where n indicates the loop order and L denotes the number of Wilson
lines. It has now been proven [58] that each such colour factor is equivalent to the colour
factor of a fully connected soft gluon graph. As mentioned above, this is the appropri-
ate generalisation of the maximally non-Abelian property of two-line webs [50–52] to the
multiparton case. We will briefly discuss our basis of these connected colour factors in
section 2.3 below.

Having introduced the colour decomposition of each web in eq. (2.17), we may write
the corresponding Laurent expansion in ε, eq. (2.14), more explicitly as

W(n1,n2,...nL) = αnsw
(n)
(n1,n2,...nL) = αns

∞∑
k=−n

εkw
(n,k)
(n1,n2,...nL) =

r∑
j=1
F (n)

(n1,n2,...nL);jc
[n,L]
j . (2.18)

To obtain the contributions of a given n-loop web to w(n,k) of eq. (2.13) we must therefore
expand its kinematic function F (n)

(n1,n2,...nL);j in ε:

F (n)
(n1,n2,...nL);j =

∞∑
k=−n

εkF (n,k)
(n1,n2,...nL);j , (2.19)

and then recast the result as

w
(n,k)
(n1,n2,...nL) =

r∑
j=1
F (n,k)

(n1,n2,...nL);jc
[n,L]
j . (2.20)
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In order to express the anomalous dimension in eq. (2.12) at order n in the loop expansion
we need, specifically, the single pole terms (k = −1) of each web. It is convenient to write

Γ(n) = −2nw(n,−1), w(n,−1) =
∑

(n1,n2,...nL)
w

(n,−1)
(n1,n2,...nL) (2.21)

where we followed refs. [44, 45] in defining subtracted webs w which include, for each web,
the commutators of the relevant web-subdiagrams taken at O(ε−1), according to eq. (2.12).
For example, for three-line webs at two loops, according to the second relation in eq. (2.12)
the subtracted (1, 1, 2) web is defined as

w
(2,−1)
(1,1,2) = w

(2,−1)
(1,1,2) + 1

2
[
w

(1,−1)
(1,0,1), w

(1,0)
(0,1,1)

]
+ 1

2
[
w

(1,−1)
(1,1,0), w

(1,0)
(1,0,1)

]
. (2.22)

The colour decomposition of each subtracted web in eq. (2.21) readily follows from eq. (2.20):

w
(n,−1)
(n1,n2,...nL) =

r∑
j=1

w
(n,−1)
(n1,n2,...nL);j =

( 1
4π

)n r∑
j=1

F
(n)
(n1,n2,...nL);jc

[n,L]
j , (2.23)

where the {F (n)
(n1,n2,...nL);j} carry the kinematic dependence on the Wilson-line velocities

associated with the colour structure j. These kinematic functions are independent of both
the infrared cutoff scale m and the dimensional regulator and they directly contribute to
the anomalous dimension, eq. (2.21). Their calculation — for the case of boomerang webs
— will be a central goal of the present paper.

2.3 Web colour bases

Given that any superposition of degenerate eigenvectors of the web mixing matrix is also an
eigenvector, the matrix Y in eq. (2.17) is not unique. Put another way, the basis of colour
factors c[n,L]

j is also not unique, and one must choose a suitable basis before calculating
all webs at a given order. One such basis was presented in ref. [58], which developed
an alternative language for the logarithm of the soft function. That is, one may think
of the latter as consisting of diagrams composed of effective vertices {V (l)

K }, describing
the emission of K gluons from the specific Wilson line l. In general there can be several
such vertices on a given line, but such that their respective position along the line is fully
symmetrised. The colour factor associated with each such vertex is that of a fully connected
gluon configuration. For example, the case of two gluons has only the single possibility

Cab2,1 =
[
T a, T b

]
= ifabcT c, (2.24)

which is the same as the colour factor associated with a gluon emitted from the Wilson
line, that then splits into two via a three-gluon vertex. For three gluons, there are two
independent connected colour factors, namely

Cab,c3,1 =
[[
T a, T b

]
, T c

]
= fabdf ecdT e;

Cac,b3,2 =
[
[T a, T c] , T b

]
= facdf ebdT e. (2.25)
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Ref. [58] showed that any connected diagram — i.e. one that remains connected when the
Wilson lines themselves are removed — composed of such vertices on the Wilson lines, and
ordinary QCD vertices off the Wilson lines, has a connected (“maximally non-Abelian”)
colour factor. In this way the effective-vertex formalism was used in establishing the non-
Abelian exponentiation theorem for multiple Wilson lines. Furthermore, this formalism
provides a neat way to fix a suitable colour basis for webs. For a given web W(n1,n2,...,nL),
the possible connected colour factors are generated by the possible assignments of effective
vertices on each Wilson line, commensurate with the gluon attachment numbers {ni}. As
explained in ref. [58], if more than one effective vertex is present on a given line, one
determines the contribution of this line to the overall colour factor by fully symmetrising
over the individual vertex colour factors {Ci}:

{C1C2 . . . Cn}+ ≡
1
n!

∑
π∈Sn

Cπ1 Cπ2 . . . Cπn . (2.26)

We can use this to formulate a basis for the overall connected colour factors of webs
connecting L lines as follows. Firstly, let us denote by {CK,j(l)} the set of (K − 1)!
independent colour factors associated with a given effective vertex V

(l)
K on Wilson line l

(examples are given in eqs. (2.24), (2.25)). Then a fully general web colour basis is provided
by the colour factors

c
[n,L]
j =

L∏
l=1

{
CK1,j1(l)CK2,j2(l) . . . CKnl

,jnl
(l)
}

+
, (2.27)

consisting of the different choices of effective vertex factors multiplied together on each line,
and symmetrised according to eq. (2.26). The effective vertex colour matrix CK,j(l) carries
K adjoint indices, which may be contracted in (2.27) with those of other colour matrices
on any of the Wilson lines. In particular, we will be interested in this paper in boomerang
webs where there are contractions between the adjoint indices of pairs of effective vertex
colour matrices on the same line. As noted already in ref. [58], in this case the basis defined
by eq. (2.27) is expected to be over-complete: there may be linear relations between c[n,L]

j

consisting of different sets of vertices CK,j(l), all having the same total number of gluons
emitted from line l (out of which some pairs are contracted to form boomerang gluons).
This will become important in section 6.2 (see eqs. (6.10) and (6.25) there) where we will
study a related, highly non-trivial relation between webs spanning a different number of
Wilson lines upon taking collinear limits.

2.4 Kinematic factors of MGEWs

Having addressed the colour structure of webs in the previous sections, we must also de-
scribe how to calculate the kinematic part F(D) of a web diagram D. References [44, 45]
developed a systematic procedure for calculating the kinematic parts of multiple gluon
exchange webs, that will provide a highly useful starting point for what follows. First, we
will use the Feynman gauge gluon propagator in configuration space, which in d = 4 − 2ε
dimensions is

Dµν(x) = −Nηµν(−x2 + iε)ε−1, (2.28)
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where
N = Γ(1− ε)

4π2−ε . (2.29)

Furthermore, eq. (2.2) implies that the Feynman rule for emission of a gluon from a Wilson
line is

igsµ̄
ε
∫ ∞

0
dλβµi e

−imλ
√
β2

i−iε. (2.30)

These results are sufficient to calculate any MGEW, given (by definition) the absence of
three- or four-gluon vertices located off the Wilson lines. Let us now consider such a web,
consisting of n individual gluon exchanges, where the kth such gluon straddles the Wilson
lines i(k) and j(k) 6= i(k) (i.e. we do not yet allow for the possibility of boomerang gluons).
Letting sk and tk denote the distance parameters of the gluon along these two Wilson lines,
the expression for a given web diagram D is given by

F (n)(D) = (g2
s µ̄

2εN )n
n∏
k=1

(
βi(k) · βj(k)

∫ ∞
0

dskdtk

) n∏
k=1

[
−(βi(k)sk − βj(k)tk)2 + iε

]−1+ε

× ΘD[{sk, tk}] exp
[
−im

n∑
k=1

(
sk
√
β2
i(k) − iε+ tk

√
β2
j(k) − iε

)]
. (2.31)

Here ΘD[{sk, tk}] consists of a product of Heaviside functions involving the distance pa-
rameters, that implements the ordering of the gluons on each Wilson line. To carry out
the integrals in eq. (2.31), one may first rescale to

σk = sk
√
β2
i(k), τk = tk

√
β2
j(k), (2.32)

before changing variables according to

σk = xkλk, τk = (1− xk)λk; 0 ≤ λk ≤ ∞, 0 ≤ xk ≤ 1, (2.33)

where λk measures how far a given gluon is from the origin (the hard interaction vertex,
where the Wilson lines meet), and xk is an “angular” variable, which tends to 0 or 1 in the
limits where the gluon is collinear with line i(k) or j(k) respectively. Equation (2.31) then
becomes

F (n) (D) =
(1

2 g
2
s µ̄

2ε Γ(1− ε)
4π2−ε

)n n∏
k=1

[ ∫ ∞
0

dλk λ
−1+2ε
k e−i(m−iε)λk (2.34)

×
∫ 1

0
dxk γk

[
− x2

k − (1− xk)2 + γk xk(1− xk) + iε
]−1+ε

]
ΘD

[
{xk, λk}

]
,

where γk ≡ γi(k)j(k) is the cusp angle between lines i(k) and j(k), as defined in eq. (2.6).
To proceed, one may define

λk = (1− yk−1)
n∏
p=k

yp , k = 1, . . . , n, y0 = 0, (2.35)
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so that the exponential-regulator factor simplified to e−i(m−iε)yn , and after integrating over
yn, eq. (2.34) becomes (see ref. [45] for more details):

F (n) (D) = κn Γ(2nε)
n∏
k=1

[ ∫ 1

0
dxk γk

[
x2
k + (1− xk)2 − γk xk(1− xk)

]−1+ε
]

×
n−1∏
k′=1

[ ∫ 1

0
dyk′ (1− yk′)−1+2ε y−1+2k′ε

k′

]
ΘD

[
{xk, yk′}

]
= κn Γ(2nε)

n∏
k=1

[ ∫ 1

0
dxk γk Pε (xk, γk)

]
φ

(n)
D (xi; ε) , (2.36)

where we have defined the expansion parameter

κ ≡ −1
2 g

2
s

(
µ̄2

m2

)ε Γ(1− ε)
4π2−ε , (2.37)

which is convenient at intermediate stages of the calculation. In the second line in eq. (2.36)
we also defined the propagator-related function

Pε (x, γ) ≡
[
x2 + (1− x)2 − x(1− x)γ)

]−1+ε
(2.38)

and the kernel of diagram D

φ
(n)
D (xi; ε) =

n−1∏
k=1

[ ∫ 1

0
dyk (1− yk)−1+2ε y−1+2kε

k

]
ΘD

[
{xi, yi}

]
, (2.39)

consisting of integrals over Heaviside functions originating from the ordering of gluon at-
tachments. At this point it is natural to perform the integrals defining the kernel for each
diagram, expanded as a Laurent series in ε, obtaining φ

(n)
D in terms of logarithms and

polylogarithms of the variables {xi}. In eq. (2.36), the kernel will eventually be integrated
over the variables {xi} after multiplying it with the functions Pε(xi, γi) related to the gluon
propagators. The overall divergence in the factor Γ(2nε) in eq. (2.36) is associated with
the ultraviolet divergence one obtains upon shrinking the entire soft gluon diagram D to
the origin [44, 45].

All diagrams within a given web (i.e. with the same numbers of gluon attachments at
a given perturbative order) will have an integral expression of the form of eq. (2.36). The
only difference between such diagrams will be the kernel of eq. (2.39), which is the only part
sensitive to the ordering of gluons on the Wilson lines. It then follows from section 2.2 that
the contribution of a web W to the colour structure c[n,L]

j in our chosen basis is given by

F (n)
W ; j (γij , ε) = κn Γ(2nε)

n∏
k=1

[ ∫ 1

0
dxk γk Pε (xk, γk)

]
φ

(n)
W, j (xi; ε) , (2.40)

where, following eq. (2.17), the web kernel is defined by

φ
(n)
W, j (xi; ε) =

∑
D∈W

Y −1
D,j φ

(n)
D (xi; ε) . (2.41)
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As an example, we collect in appendix A the final results for the kinematic factors {F (n)
W } of

one- and two-loop MGEWs, after integration over the {yk} variables of eq. (2.39). Similar
three-loop results can be found in refs. [44, 45]. The integrals over the variables {xk}
in (2.41) could in principle also be carried out at this stage. However, in forming the soft
anomalous dimension, one must combine the result for each web with commutators of its
web-subdiagrams, as prescribed by eq. (2.12), leading to the definition of subtracted webs
in eq. (2.21). It turns out that performing the integrals over the {xk} variables at the level
of the subtracted webs is also much easier to carry out than for the web itself. This was
explained in refs. [44, 45], showing that for subtracted webs this integration yields a highly
restricted class of functions, which we briefly recall below.

Following refs. [44, 45], we write each O(αns ) subtracted web as in eq. (2.23), namely

w(n,−1) (αk) =
( 1

4π

)n r∑
j=1

c
[n,L]
j F

(n)
W ; j

(
αk
)
, (2.42)

where from eqs. (2.6) we define γk = −αk − 1/αk. Essential to deriving the subtracted
web of eq. (2.42) is the fact that the commutators in eq. (2.12) build up the same fully
connected colour factors as in the chosen basis of section 2.3. The kinematic function
multiplying each colour structure, F (n)

W ; j , contains integrals over the variables {xk}, as well
as the propagator functions of eq. (2.38), rewritten in terms of α:

pε (x, α) ≡ γ Pε (x, γ) = −
(
α+ 1

α

) [
q(x, α)

]−1+ε

q (x, α) ≡ x2 + (1− x)2 +
(
α+ 1

α

)
x(1− x) = −(1− α)2

α

(
x− 1

1− α

)(
x+ α

1− α

)
.

(2.43)

The factorization property of q (x, α) clarifies the advantage of using the variable α over
using γ (see also ref. [73]). This ultimately amounts to rationalising the symbol alpha-
bet. The integrals may be carried out after expansion in the dimensional regularisation
parameter ε, for which eq. (2.43) becomes

pε (x, α) = p0 (x, α)
∞∑
n=0

εn

n!
[

log q (x, α)
]n
, (2.44)

where

p0 (x, α) = −
(
α+ 1

α

) 1
q(x, α) = r(α)

[
1

x− 1
1−α
− 1
x+ α

1−α

]
, (2.45)

is the leading part of the propagator function as ε → 0, and we have defined the rational
prefactor

r(α) = 1 + α2

1− α2 . (2.46)
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Finally, the subtracted web kinematic factor can be written as

F
(n)
W ; j

(
αi
)

=
n∏
k=1

[∫ 1

0
dxk p0(xk, αk)

]
G(n)
W ; j

(
xi, q(xi, αi)

)
=
(

n∏
k=1

r(αk)
)

n∏
k=1

[∫ 1

0
dxk

(
1

xk − 1
1−αk

− 1
xk + αk

1−αk

)]
G(n)
W ; j

(
xi, q(xi, αi)

)
≡
(

n∏
k=1

r(αk)
)
G

(n)
W ; j

(
αi
)
, (2.47)

which defines the subtracted web kernel G(n)
W ;j , and its fully integrated counterpart G(n)

W ;j .
In all previously studied MGEWs [44, 45], the subtracted web kernel consists exclusively
of powers of logarithms of certain rational functions of xk and αk (details will follow).
The integrals in the middle line of eq. (2.47) are then in so-called d log form,5 and can be
carried out explicitly to give G(n)

W ; j
(
αi
)
as a pure transcendental function of weight (2n−1),

consisting of a sum of products of harmonic polylogarithms, where a given polylogarithm
depends on a single angle αij . More than this, the functions appearing in the final answer
are of a special type, as we review in the following section. As stated above, we have
considered here only webs that do not contain boomerang gluons i.e. all gluon exchanges
begin and end on different Wilson lines. We will need to generalise the above results to
cope with the case when boomerang gluons are indeed present.

2.5 A basis of functions for MGEWs

Upon integrating the subtracted web kernel for a given MGEW, one obtains a pure tran-
scendental function G(n)

W ; j taking the form of a sum of products of harmonic polylogarithms
of αij , where each polylogarithm depends on a single αij . The analytic properties of such
functions can be efficiently encoded by means of the symbol map [74–77]. It was argued
already in ref. [44] that the symbol of (integrated) subtracted MGEWs has the highly
restricted alphabet {

αij , ηij ≡
αij

1− α2
ij

}
. (2.48)

This structure realises the two symmetries

α→ −α and α→ 1
α

(2.49)

at symbol-level. Reference [45] then proposed a set of basis functions consistent with this
symbol alphabet, and in terms of which all currently calculated MGEWs can be expressed.
To quote the basis, we may use the functions defined in the previous section, as well as the
additional function q̃(x, α) given by

ln q̃(x, α) ≡ 1
r(α)

∫ 1

0
dy p0(y, α)θ(x > y) = ln

(1
x

+ α− 1
)
− ln

(1
x

+ 1
α
− 1

)
. (2.50)

5Similar observations regarding the d log form have been made in the context of the calculation of the
cusp anomalous dimension in ref. [73].
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The proposed basis for G(n)
W ; j in eq. (2.47) can then be written as

Mk,l,n(α) = 1
r(α)

∫ 1

0
dx p0(x, α) lnk

(
q(x, α)
x2

)
lnl
(

x

1− x

)
lnn q̃(x, α) , (2.51)

where each function in the set has uniform weight w = k+l+n+1. Defined in this manner,
the basis is actually overcomplete, as the functions satisfy the relations

Mk,l,n(α) = (−1)l+n
k∑
r=0

n∑
s=0

(
k

r

)(
n

s

)
2s+r(−1)s logs(α)Mk−r,l+r,n−s(α) . (2.52)

For completeness, we quote the symbols of basis functions which occur up to three-loop
order — as well as explicit forms for the functions themselves — in appendix B. There is
currently much evidence that this basis is sufficient for describing MGEWs to all orders in
perturbation theory. Up to three-loop order, it covers all such webs that do not involve
boomerang gluons [44, 45], including those two-line webs that involve intricate patterns of
crossed gluon exchanges. Furthermore, a certain special diagram type, called the Escher
staircase in ref. [45], can be calculated for arbitrary numbers of gluon exchanges, and is
fully expressible in terms of the basis of eq. (2.51). It remains to be seen whether or not
the basis will cope if boomerang gluons are indeed present, and it is one of the aims of the
present paper to explore this.

Note that one of the simplifying features of subtracted web kernels, discussed in detail
in refs. [44, 45], is that higher weight polylogarithm functions (such as dilogs) are absent,
whereas they are present in the web kernel itself. This made it particularly straightforward
to formulate the above basis of functions. However, there is nothing to forbid the possibility
that such dilogs are indeed present in the subtracted web kernel for more general webs.
If so, they threaten to undermine our basis of functions for integrated webs. Another
possibility is that polylogarithmic functions are present, but that after integration one still
requires only the restricted set of basis functions defined above. We will return to this
point later in the paper.

Finally, we point out that neither the simple rational structure of eq. (2.47), consisting
exclusively of powers of r(αij), nor the highly restricted transcendental function basis are
expected to hold for non-MGEWs. In particular, a richer structure was found in the full
angle-dependent cusp anomalous dimension in QCD at three loops in refs. [8, 9] and also
in QED at four loops [10].

3 Boomerang webs up to two-loop order

Having reviewed the properties of MGEWs and their calculation, we now turn to the main
subject of this paper, which is to calculate boomerang webs, namely MGEWs containing at
least one gluon whose two endpoints are attached to the same Wilson line. These were not
considered in refs. [44, 45] due to the fact that they present an additional complication,
namely the presence of ultraviolet singularities associated with shrinking a boomerang
gluon to a point on its Wilson line that is not at the origin. These extra singularities must
be regulated and removed, where necessary, via renormalization of the coupling gs. This
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1
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t

Figure 1. The self-energy web at one-loop order.

possibly involves modifying the regulator of eq. (2.2). As a warm-up exercise, we may
consider boomerang webs up to two-loop order, even though these have been calculated
before using different regulators [7]. The lessons drawn may tell us how to generalise the
results of section 2.4 and then apply them at three loops. We begin with the simplest
boomerang web.

3.1 The self-energy graph

The simplest boomerang web one can consider consists of the self-energy graph of figure 1.
This diagram forms a web by itself, given that permutation of the two gluon attachments
sends the diagram to itself. We take the 4-velocity of the Wilson line to which the gluons
attach to be β1, and label the distance parameters of the gluon emission vertices as shown
in the figure. Note that the colour factor of this graph is simply given by

CSE = T a1 T
a
1 = CR1 , (3.1)

where the right-hand side is a quadratic Casimir in the appropriate representation R1 of
the Wilson line. Thus, the colour factor of this graph commutes with the colour factors of
all other graphs or webs, a fact that will be useful later on.

For the kinematic part of the self-energy diagram, we may apply the results of eq. (2.31),
together with the transformations of eqs. (2.32), (2.33), to get

F (1)
SE = g2

s µ̄
2εNβ2

1

∫ ∞
0

ds

∫ ∞
0

dt
[
−(tβ1 − sβ1)2 + iε

]ε−1
e−im(t+s)

√
β2

1−iε θ(t > s)

= −g2
s

(
µ̄2

m2

)ε
N
∫ 1

0
dx
[
(2x− 1)2

]ε−1
θ

(
x >

1
2

)∫ ∞
0

dλλ2ε−1 e−λ, (3.2)

where the “cusp angle” in this case is simply γ11 = 2, according to the definition of eq. (2.6).
The λ integral is easily carried out to give

F (1)
SE = 2κΓ(2ε)

∫ 1

1
2

dx

[(2x− 1)2]1−ε , (3.3)

where we expressed the prefactor in terms of κ using eq. (2.37). As discussed in section 2.4,
the pole in ε that arises upon performing the λ integration is an ultraviolet singularity
associated with shrinking the entire diagram to the origin. It is thus associated with
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renormalization of the cusp vertex at which the Wilson lines meet, and indeed appears in
the soft anomalous dimension at one-loop order [3–5, 12, 13]. We are left with the integral
over the x variable, whose integration region from x = 1/2 to x = 1 is dictated by the
θ(t > s) in eq. (3.2). There is of course a symmetry in the propagation of the gluon between
the points of emission and absorption, and swapping the two corresponds to transforming
x→ 1−x. The x integral in eq. (3.3) is divergent at the lower limit, for ε ≤ 1/2. Physically,
this corresponds to shrinking the self-energy loop to a point away from the origin, and the
fact that the critical value of ε is 1/2 rather than zero indicates a power-like, rather than
logarithmic, singularity in four space-time dimensions. We will follow the conventional
procedure of focussing on logarithmic divergences, and therefore only expand about ε = 0.
Firstly, one carries out the integral to obtain

F (1)
SE = 2κΓ(2ε)1

2
1

2ε− 1 , (3.4)

assuming ε > 1/2. Next, one may analytically continue to near ε = 0. In practice, this
simply means expanding eq. (3.4) about ε = 0 to obtain

F (1)
SE = −κΓ(2ε) [1 +O(ε)] = 1

4ε
g2
s

4π2 +O(ε0) . (3.5)

We see that there is in fact no additional ε→ 0 divergence in this case from shrinking the
loop to a point. Nor indeed can there be: it is known that the only ultraviolet singulari-
ties that affect Wilson lines are associated with renormalization of the cusp at which the
Wilson lines meet, or with the coupling. There are no singularities associated with field
redefinitions of the Wilson lines themselves. Shrinking the self energy to a point would
indeed correspond to a renormalization of the Wilson line itself, and is hence forbidden.

Here, we have seen that the regulator of eq. (2.2) is sufficient to calculate the self-
energy web at one-loop order. The situation will be different at two loops, as we describe
in the following section.

3.2 The mushroom (3,1) web

We now move to the calculation of the two-loop (3,1) web of figure 2. Diagrams (b) and
(c) in this web contain self-energy loops, and can be calculated using the methods of the
previous section. However, we will see in due course that, although the kinematic factors
of the individual diagrams are non-zero, they do not in fact contribute to the overall result
after combination with the colour factors and web mixing matrix,6 as in eq. (2.15). We thus
do not consider them further. More interesting is diagram (a), which has been previously
called the mushroom diagram due to its resemblance to said fungus. This diagram was
of course computed, along with all other two-loop diagrams, in the original computation
of the two-loop angle-dependent cusp anomalous dimension in ref. [7]. We repeat the
calculation here, albeit using a different regulator, preparing the ground for the evaluation
of higher-order diagrams.

6A similar mechanism does not lead to the vanishing of the self-energy web at one-loop (figure 1), as
there is nothing for this to cancel against.
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(a) (b) (c)

1

2

s
1

s2

t2

t1

Figure 2. The (3,1) web.

Notably, diagram (a) contains a boomerang gluon that straddles an extra emission.
Here we again expect an ultraviolet singularity as the boomerang gluon is shrunk to a point.
Furthermore, at least part of this singularity will not be associated with renormalization
of the cusp, as it will instead have to do with the renormalization of the coupling of the
gluon to the Wilson line.

We can again apply the calculational methods of section 2 to obtain a result for the
kinematic part of diagram (a). However, there is a subtlety in how to apply the exponential
regulator of eq. (2.2) for the specific case in which a boomerang gluon straddles an extra
emission. The exponential regulator dampens the emission of a gluon that is emitted
further from the origin along the Wilson line. This in turn means that the endpoints of the
boomerang gluon on either side of the extra emission are not treated equally. The latter
is not a problem when shrinking the entire diagram to the origin i.e. when obtaining those
ultraviolet singularities associated with renormalization of the cusp. However, there is
indeed a problem when trying to cleanly isolate the ultraviolet singularity associated with
shrinking the boomerang gluon to a point around the extra gluon, and which contributes
to the renormalization of the coupling gs. The safest and simplest way to proceed is to
remove the exponential regulator for the boomerang gluon, leaving it in place only for
the gluon exchange that links two different Wilson lines. As we will see explicitly below,
the regulation of the exchanged gluon will be sufficient to dampen the emission of the
boomerang gluon at large distances. Given the rather subtle nature of the problem, we
will present here the calculation of the mushroom diagram in detail.

From figure 2(a), the colour factor of the mushroom graph is given by

C(a) = T b1T
a
1 T

b
1T

a
2 =

(
CR1 −

1
2Nc

)
T1 · T2, (3.6)

where CR1 denotes a quadratic Casimir in the representation of line 1, and the kinematic
factor (excluding the exponential regulator for the boomerang gluon) is

F (2)
a (α12, ε) = g4

s µ̄
4εN 2(β1)2(β1 · β2)

∫ ∞
0

ds1ds2dt1dt2(−(t1β1 − s1β1)2 + iε)ε−1

× (−(s2β1 − t2β2)2 + iε)ε−1e−ims2
√
β2

1−iεe−imt2
√
β2

2−iεθ(t1 > s2)θ(s2 > s1).
(3.7)
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Upon rescaling the parameters:

s1

√
β2

1 − iε = σ1 s2

√
β2

1 − iε = σ2

t1

√
β2

1 − iε = τ1 t2

√
β2

2 − iε = τ2

we get:

F (2)
a (α12, ε) = g4

s µ̄
4εN 2 γ12

2

∫ ∞
0

dσ1dσ2dτ1dτ2(−σ2
1 − τ2

1 + 2σ1τ1 + iε)ε−1

× (−σ2
2 − τ2

2 + γ12σ2τ2 + iε)ε−1e−i(m−iε)(σ2+τ2)θ(τ1 > σ2)θ(σ2 > σ1).
(3.8)

We now perform another change of variables,

λ1 = σ1 + τ1 x = τ1
σ1 + τ1

λ2 = σ2 + τ2 y = σ2
σ2 + τ2

from which one finds

dσ1dτ1 = λ1dλ1dx, dσ2dτ2 = λ2dλ2dy. (3.9)

At this point the integrals over λk are straightforward: the λ1 integral is bounded from
both ends by Heaviside functions, which imply

λ2y

x
≤ λ1 ≤

λ2y

1− x , (3.10)

while the λ2 integral is regulated by the exponential damping in the infrared, and by
dimensional regularization in the ultraviolet. We thus obtain:

F (2)
a (α12, ε) = κ2Γ(4ε)1

ε

∫ 1

1
2

dx (2x− 1)2ε−2((1− x)−2ε − x−2ε)
∫ 1

0
dy y2εpε(y, α12) , (3.11)

where the lower limit of the x integral is implied by eq. (3.10). Proceeding to evaluate
this integral, we note that in contrast to the self-energy graph of section 3.1, here there
is no power divergence near x → 1

2 ; instead, the factor ((1 − x)−2ε − x−2ε) suppresses the
singularity in this limit, so that the integral is well-defined for 0 < ε < 1

2 . Carrying out the
integral one simply obtains:

F (2)
a (α12, µ

2/m2, ε) = κ2Γ(4ε)1
ε

1
1− 2ε

∫ 1

0
dyy2εpε(y, α12)

=
(
g2
s

8π2

)2 ∫ 1

0
dyp0(y, α12)

[
1

4ε2 + 1
4ε

(
2 + ln q(y, α12) + 2 ln y + 2 ln

(
µ2

m2

))
+O(ε0)

]
,

(3.12)

where in the last step we expanded the expression in ε, and switched from the scale µ̄ of
eqs. (2.30) and (2.37) to the MS renormalization scale, µ2 = πe−γE µ̄2.

The appearance of a double pole at ε → 0 corroborates our above observation that
one expects a logarithmic singularity upon shrinking the boomerang gluon to a point at
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X

Figure 3. Counterterm graph for the mushroom diagram of figure 2(a), where ⊗ denotes the
counterterm for the gluon emission vertex from the Wilson line.

the gluon emission vertex, in addition to the singularity associated with renormalization
of the cusp. Before renormalizing the cusp singularity as described in section 2 we must
renormalize the gluon emission vertex. To this end we add the counterterm graph of
figure 3, corresponding to the one-loop single gluon-exchange diagram, dressed by a gluon-
emission vertex counterterm which we compute in appendix C. The colour factor with
which the counterterm graph enters is the same as the graph itself (eq. (3.6)), and its
kinematic factor is given by

F (2) CT
a (α12, µ

2/m2, ε) ≡ Z(1)
v (ε)F (1)(α12, ε) = g2

s

8π2ε
κΓ(2ε)

∫ 1

0
dy pε(y, α12)

=
(
g2
s

8π2

)2 ∫ 1

0
dyp0(y, α12)

[
− 1

2ε2 −
1
2ε

(
ln q(y, α12) + ln

(
µ2

m2

))
+O(ε0)

]
,

(3.13)

where Z(1)
v is the one-loop counterterm corresponding to the renormalization of the gluon

emission vertex, and F (1) is the kinematic part of the one-loop exchange graph. In the
second step we inserted the result for F (1) from eqs. (A.1) and the counterterm from
eq. (C.4), and in the third we expanded in ε and switched from µ̄ to µ as in eq. (3.12).

Summing up the results of the non-renormalized graph, eq. (3.12), plus the counterterm
graph, eq. (3.13), and using the basis functions of eq. (2.51), one finds for the coefficient of
the double pole

F (2,−2)
a, ren. = F (2,−2)

a + F (2,−2) CT
a = −1

4

(
g2
s

8π2

)2

r(α12)M0,0,0(α12), (3.14)

and for the single pole

F (2,−1)
a, ren. = F (2,−1)

a + F (2,−1) CT
a = −1

4

(
g2
s

8π2

)2

r(α12) [M1,0,0(α12)− 2M0,0,0(α12)] , (3.15)

where the explicit expressions for M0,0,0 and M1,0,0 can be found in appendix B. We stress
that while the latter result can neatly be written in terms of basis functions, the non-
renormalized kinematic function F (2,−1)

a cannot. This is a general feature.7 We also point
7Generally, the additional stage of forming subtracted webs will be required for the result to be expressible

in terms of basis functions [44]. We will encounter this in section 5.1.
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out that the dependence on ln(µ2/m2) has cancelled in the coefficient of the 1/ε pole
between eq. (3.12) and eq. (3.13), as it must do given that the infrared regulator m cannot
appear in the final result for the soft anomalous dimension.

We can now use these results to calculate the contribution of the entire web of figure 2
to the soft anomalous dimension. We first need the web mixing matrix, that describes how
to combine the kinematic and colour parts of individual diagrams in the web. Using the
algorithm of ref. [55] (reviewed here in appendix D) for the (3,1) web, we find that the
combination of eq. (2.15) evaluates to

W(3,1) = 1
2
(
F(a) F(b) F(c)

) 2 −1 −1
0 1 −1
0 −1 1


C(a)
C(b)
C(c)

 . (3.16)

We have already given the colour factor of diagram (a) in eq. (3.6). The colour factors of
the other two diagrams are

C(b) = T b1 T
b
1 T

a
1 T

a
2 = CR1T

a
1 T

a
2 ;

C(c) = T a1 T
b
1 T

b
1 T

a
2 = C(b), (3.17)

where as usual CRi denotes a quadratic Casimir in the representation of line i. The fact
that the colour factors of diagrams (b) and (c) are equal, and evaluate to the CR1-dependent
part of diagram (a), means that eq. (3.16) simplifies considerably to

W(3,1) = 1
2F(a) [2C(a)− C(b)− C(c)] = −1

2Nc(T1 · T2)F(a) . (3.18)

The single pole of eq. (3.18) contributes to the two-loop soft anomalous dimension
Γ(2), as prescribed by eq. (2.12). The commutator term that converts the web into a
subtracted web is zero, given that the only lower-order subwebs in the (3,1) web are the
self-energy bubble, and a single gluon exchange between the two Wilson lines. As discussed
in section 3.1, the colour factor of the self-energy graph is a constant, and thus commutes
with all other webs. We can then immediately identify the contribution of (3,1) webs to
the two-loop soft anomalous dimension to be

Γ(2)
∣∣∣
(3,1)

= −4w(2,−1)
(3,1) =

∑
i 6=j

1
2Nc(Ti · Tj)

( 1
2π

)2
r(αij)

[
2M0,0,0(αij)−M1,0,0(αij)

]
, (3.19)

where we have used eq. (3.15), and summed over all pairs of Wilson lines i and j (n.b.
each pair occurs twice in the sum, given that the boomerang gluon can be on line i or j).
The result in eq. (3.19) agrees with previous calculations, in particular it can be checked
that it reproduces the (non-Abelian part of the) coefficient of the single-logarithmic term
in eq. (42) of ref. [7] upon relating the kinematic variables according to γ = lnα.

To summarise, we have shown in detail how to adapt the exponential regulator of
eq. (2.2) to the calculation of boomerang webs. We do it by simply removing this regulator
for boomerang gluons, so as to be able to cleanly isolate ultraviolet singularities associated
with the cusp, from those that have to do with the renormalization of the coupling. The
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regularization of the non-boomerang gluons at large distances is sufficient to render dia-
grams in which they are straddled by non-regularized boomerang gluons infrared-finite. A
simplification in the calculation of the (3,1) web was that self-energy diagrams (i.e. dia-
grams (b) and (c) in figure 2) do not contribute to the final expression for the web, despite
the fact that their individual colour factors and kinematic parts are non-zero. In fact, this
property persists at higher perturbative orders, and thus greatly streamlines the calcula-
tion of boomerang webs at three loops and beyond. We present a proof of this result in
section 4, so that we can reliably use it throughout the remainder of the paper.

Considering the contribution of the (3,1) web to the soft anomalous dimension in
eq. (3.19), we note that the general structure is similar to that of non-boomerang MGEWs
analysed in refs. [44, 45], namely an overall rational function r(αij) associated with the
non-boomerang gluon, multiplying a pure transcendental function. Furthermore, the latter
may still be written in terms of the basis functions defined in eq. (2.51). However, while
non-boomerang MGEWs are characterized by a uniform maximal weight (that is the con-
tribution to the anomalous dimension at n loops is of weight 2n−1) the (3,1) web displays
mixed (non-uniform) non-maximal weight: eq. (3.19) features both weight 2 (M1,0,0) and
weight 1 (M0,0,0) contributions. The origin of this weightdrop can be traced back to the
integration over the boomerang gluon yielding the factor 1/(1−2ε) in eq. (3.12) (cf. a sim-
ilar factor appearing in the self-energy diagram of eq. (3.4)). This weightdrop is a general
characteristic of boomerang webs and is discussed further below in section 3.3 and in the
context of the three-loop examples in section 5.

3.3 Kinematic factors of boomerang webs

In section 2.4, we discussed the general procedure for calculating MEGWs of refs. [44, 45],
where an explicit assumption of this method was that each gluon propagates between
different Wilson lines. The latter is no longer true once boomerang gluons are present,
and the results of the previous two sections can be used to guide us towards a suitable
generalisation of the MGEW integrand, which encompasses the new feature. Given a
MGEW with n gluon exchanges in total, out of which b are boomerang gluons, we must
modify eq. (2.34) as follows:

F (n) (D) =
(1

2 g
2
s µ̄

2ε Γ(1− ε)
4π2−ε

)n n−b∏
k=1

[ ∫ ∞
0

dλk λ
−1+2ε
k e−i(m−iε)λk

×
∫ 1

0
dxk γk

(
− x2

k − (1− xk)2 + γk xk(1− xk) + iε
)−1+ε

]

×
n∏

l=n−b+1

[ ∫ ∞
0

dλl λ
−1+2ε
l

∫ 1

0
dxl 2

[
−(2xl − 1)2 + iε

]ε−1
]
ΘD

[
{xi, λi}

]
.

(3.20)

The first two lines correspond to the n − b non-boomerang gluon exchanges, and follow
a similar format to eq. (2.34), including the presence of the exponential regulator. The
third line contains the integrations associated with the b boomerang gluons, where the
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exponential regulator has been removed as discussed in the previous section. Furthermore,
the propagator function in each xl integral has been replaced with its appropriate form
for γl → 2. Finally, the third line also contains the Heaviside functions implementing the
gluon orderings along the Wilson lines for a given diagram, which may potentially involve
both the boomerang, and non-boomerang, gluons.

While the convergence of the integrations over the distance parameters λk for the
non-boomerang gluons (k ≤ n − b) is clearly guaranteed by the regulating exponentials,
it is less obvious from eq. (3.20) that also those for the boomerang gluons, that is, λl for
all n − b + 1 ≤ l ≤ n, are regulated. Closer inspection of these integrals reveals that
they are in fact regulated in all cases of interest, namely so long as Wilson-line self-energy
subdiagrams are excluded.8 One way to see this is to observe that each boomerang gluon
then necessarily straddles at least one other gluon emission, be it another boomerang gluon
or a non-boomerang one. Furthermore, each boomerang cluster (a subdiagram involving
one or more boomerang gluons) limits the upper integration limit over some non-boomerang
gluon along the Wilson line, and it also limits the lower integration limit of some (possibly
another) non-boomerang gluon along the same line. Upon performing the integration over
all boomerang λl parameters first, one then necessarily hits both an upper and a lower limit
of integration due to the Heaviside functions ΘD

[
{xi, λi}

]
, linking the distance parameters

λl for the boomerang gluons to those of the non-boomerang ones, λk for k ≤ n−b, which are
in turn regularised by the exponentials. This mechanism was seen already in the context of
the (3,1) web above (see in particular eq. (3.10)); we now see that it is completely general,
and we will give further examples at three loops in section 5.

It is convenient to rewrite eq. (3.20) so as to expose the general properties of boomerang
webs. To this end, we may introduce variable transformations analogous to eq. (2.35):

λk = (1− yk−1)
n−b∏
p=k

yp, k = 1, . . . , n− b, y0 = 0, (3.21)

where the product now includes the non-boomerang gluons only. One may also decouple the
distance parameters {λl} of the boomerang gluons from their non-boomerang counterparts
by defining

λl = yn−b λ̃l, (3.22)
after which one may perform the yn−b integral in eq. (3.20) to obtain

F (n) (D) = κn Γ(2nε)
n−b∏
k=1

[∫ 1

0
dxk γk Pε(xk, γk)

] n∏
l=n−b+1

[∫ 1

1
2

dxl [(2xl−1)2]ε−1
]
φ

(n)
D ({xi}; ε),

(3.23)
where the kernel is now defined by

φ
(n)
D ({xi}; ε)=2b

n−b−1∏
k=1

[∫ 1

0
dyk(1−yk)−1+2εy−1+2kε

k

] n∏
l=n−b+1

[∫ ∞
0
dλ̃lλ̃

−1+2ε
l

]
ΘD

[{
xi, λ̃i, yi

}]
,

(3.24)

where the λ̃l integrals are bounded by the Heaviside functions, as explained above.
8As mentioned above, those which are excluded (see figure 5), will be shown to have a vanishing expo-

nentiated colour factor in the next section.
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The general representation of boomerang MGEWs in eq. (3.23) gives us an opportu-
nity to recall some of the general properties of MGEWs [44, 45, 73], and then pinpoint
the differences between those containing boomerang gluons and those which do not. Equa-
tion (3.23) much like its boomerang-free analogue, eq. (2.36), represents at n-loop order
an integration over the 2n positions of emission and absorption of the n gluons along the
Wilson lines. As we have seen in the previous section, these integrals ultimately lead to
a result for the subtracted web, that is a contribution to the soft anomalous dimension,
taking the form of eq. (2.47), with a rational factor consisting of a factor of r(αij) for
each gluon exchange between lines i and j, multiplying a pure transcendental function of
{αij} with polylogarithmic weight 2n− 1. Equation (2.36) explains the origin of this pure,
maximal weight structure: every integral over yk in eq. (2.39) is an integral over a d log
form, with endpoint singularities regularised by ε > 0. The resulting kernel is therefore a
pure function of weight n − 1, that is, the ε0 term in its Laurent expansion is of weight
n − 1, and upon assigning ε weight −1, all the terms in the Laurent expansion have the
same weight. A similar thing happens at the next stage, when the kernel is integrated with
respect to the propagators in eq. (2.36). At this stage the linear denominator is generated
by the propagators (see eq. (2.45)), and again, each and every integral over xk results in an
increase of one unit in the transcendental weight. This is true for each and every diagram
contributing to the web, as well as the commutators entering the subtracted web.

Consider now the analogous structure of the integration in the case of boomerang webs.
In eq. (3.24) we see n−b−1 integrals over non-boomerang yk variables plus b integrals over
boomerang distance scales λ̃l. Both are of d log form, regularized by ε > 0. Thus, again
in total we have n − 1 integrals each contributing to the weight of φD. The latter must
therefore still be a pure function of weight n− 1. The differences to non-boomerang webs
occur at the next step, when integrating over the kernel in eq. (3.23). First, a factor of r(αij)
is only generated by the n− b non-boomerang propagator integrals over xk. Second, while
each of the latter integrals is a dlog form, regularised by ε > 0, which therefore increases
the weight by one unit, the remaining b integrals over xl take a rather different form:∫ 1

1
2

dxl (2xl − 1)2ε−2 (. . .) , (3.25)

where the ellipsis denotes the remaining integrand, containing Heaviside functions which
may depend on the {xl}. Such integrals contain a potential divergence associated with the
lower limit xl → 1

2 . This lower limit of integration corresponds to a local (instantaneous)
emission and absorption of the boomerang gluon. Integration over xl in eq. (3.25) produces
a factor of

1
1− 2ε (3.26)

in the final expression for the kinematic function of the corresponding boomerang web
diagram.

The pole at ε = 1
2 represents a linear power divergence. We have already seen such

a factor in the self-energy web in eq. (3.4) as well as in the (3,1) web in eq. (3.12). We
now see that this is a general feature of boomerang webs. We further note however that
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there is a qualitative difference between the above two cases. In the self-energy web, the
extra factor (. . .) in eq. (3.25) is absent, so the integral only exists for ε > 1

2 , and one must
first compute it there and then analytically continue the result towards ε = 0, where it is
ultimately expanded. In contrast, in the case of the (3,1) web we can see from eq. (3.11),
as already discussed there, that a factor of the form ((1 − x)−2ε − x−2ε) regularises the
endpoint singularity at x = 1

2 . It is also clear that the occurrence of this regularising
factor is rather general: it appears due to the difference of the two limits of integration
over the boomerang gluon λ̃l (this is λ1 in eq. (3.10)), which must both coincide with the
emission point of the other gluon when the boomerang gluon is contracted to a point. This
would therefore be the precise form of the factor (. . .) in eq. (3.25) whenever a boomerang
gluon straddles a single gluon emission. The same considerations apply more generally:
whenever a boomerang gluon straddles other emissions at some position λ0 on the line,
both the upper and lower limit of λ̃l coincide with λ0 when the boomerang gluon is shrunk
to a point, namely at xl → 1

2 . We therefore expect that the factor (. . .) multiplying the
singularity at xl = 1

2 , would always have a Taylor expansion that begins with a linear
term, (xl − 1

2). This factor regularises the double pole at xl = 1
2 and renders eq. (3.23)

well-defined for any ε > 0. Of course, poles at ε → 0 will be generated due to end-point
singularities. In addition, despite the regularising factor in eq. (3.25), the pole at ε = 1

2
survives. These features are already present in the example of the (3,1) web in eq. (3.12)
and we shall illustrate them in more complex three-loop examples in section 5.

The implications the analysis above, and specifically the presence of the pole at ε = 1
2 ,

have on the transcendental structure of the kinematic function F (n) in eq. (3.23) are clear:
instead of increasing the weight by one, as the usual propagator integrals xk in eq. (3.23)
do, the b boomerang integrals leave the weight unchanged in as far as the contributions
arising from the leading term in the expansion of eq. (3.26) are concerned, and decrease it
further in contributions arising from higher-order terms in the ε expansion. This implies,
first, that the maximal weight attained in the relevant subtracted web is 2n − 1 − b, i.e.
a weight drop of one unit for every boomerang web when compared to ordinary MGEWs
of the same loop order, and second, that when higher-order terms in the ε expansion are
relevant, the subtracted boomerang web would feature mixed (non-uniform) weight. These
phenomena were exemplified in the (3,1) web, which features basis functions with weights
2 and 1 (to be contrasted with the maximal weight of 3 of subtracted two-loop MGEWs,
see [44, 45]). We will see further examples of this at three loops in section 5 (see a summary
in table 2 there).

In order to present explicit results, it is useful to generalise the definition of a subtracted
web kernel from eq. (2.47), to the case in which boomerang gluons may be present:

F
(n)
W, j

(
αi
)

=
n−b∏
k=1

[∫ 1

0
dxk p0(xk, αk)

]
G(n)
W, j

(
xi, q(xi, αi)

)
. (3.27)

Here, as above, b is the number of boomerang gluons, and thus the integration only in-
cludes propagator functions associated with non-boomerang exchanges. Having discussed
the general kinematic properties of boomerang webs, let us now return to the decoupling
property of self-energy-type diagrams discussed in the previous section, namely that web
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

i

j k

i

j

k

Figure 4. The (2,4) web, where we have assigned replica indices to the gluons in diagrams (g)
and (j). Although not drawn here, it is assumed that additional Wilson lines emanate from the
Wilson-line cusp.

diagrams spanning two or more Wilson lines, which contain self-energy subdiagrams (such
as those in figures 2(b) and 2(c)) do not contribute to the soft anomalous dimension at
any order.

4 Decoupling of self-energy diagrams at all orders

Boomerang webs at arbitrary orders in perturbation theory will contain many individual
diagrams in which gluons form self-energy-like loops, without straddling one or more gluon
emissions that leave the Wilson line. The aim of this section is to formally prove that
such graphs do not end up contributing to the web after combination with the web mixing
matrix of eq. (2.15). Put another way, if we define the exponentiated colour factors of
diagrams in a given web via

C̃(D) =
∑
D′

RDD′C(D′), (4.1)

where C(D) is the conventional colour factor of diagram D, then the exponentiated colour
factor of a diagram containing a self-energy loop is zero.

To guide the proof, let us first consider a non-trivial example, namely the (2,4) web
of figure 4. This has 12 diagrams, 6 of which — diagrams (g) through (l) — involve self-
energy bubbles. Let us take two of the graphs, namely (g) and (j), and show that their
exponentiated colour factors vanish. To this end, we can perform a replica analysis as in
ref. [55] or appendix D, and we have labelled the gluons in the figure with appropriate
replica indices (i, j, k). In table 1, we show the possible hierarchies h of replica indices,
together with their multiplicities MN (h). We also show, for each diagram D, the colour
factor of the diagram obtained from ordering the replica indices along the Wilson line (such
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h R[g|h] R[j|h] MN (h) O(N) part of MN (h)

i = j = k C(g) C(j) N 1
i = j < k C(h) C(h) 1

2N(N − 1) −1
2

i = j > k C(g) C(g) 1
2N(N − 1) −1

2

i = k < j C(h) C(h) 1
2N(N − 1) −1

2

i = k > j C(g) C(g) 1
2N(N − 1) −1

2

j = k < i C(g) C(j) 1
2N(N − 1) −1

2

j = k > i C(i) C(l) 1
2N(N − 1) −1

2

i < j < k C(i) C(i) 1
6N(N − 1)(N − 2) 1

3

i < k < j C(i) C(i) 1
6N(N − 1)(N − 2) 1

3

j < i < k C(h) C(h) 1
6N(N − 1)(N − 2) 1

3

j < k < i C(g) C(g) 1
6N(N − 1)(N − 2) 1

3

k < i < j C(h) C(h) 1
6N(N − 1)(N − 2) 1

3

k < j < i C(g) C(g) 1
6N(N − 1)(N − 2) 1

3

Table 1. Replica analysis of the (2,4) web of figure 4.

that larger replica indices are closer to the Wilson-line vertex), labelled by R[D|h]. The
exponentiated colour factors of the two diagrams considered are given by eq. (D.1), and
we find

C̃(g) = C(g)
2 − C(h)

3 − C(i)
6 ;

C̃(j) = −C(g)
3 − C(h)

3 + 2C(i)
3 + C(j)

2 − C(l)
2 .

(4.2)

We may now use the fact that a self-energy loop contributes a factor T ai T ai = CRi

to the colour factor of any web diagram, which is diagonal in colour space. Thus, graphs
which differ only by the placement of a self-energy loop on a given Wilson line have equal
colour factors. For the specific web of figure 4, this implies

C(g) = C(h) = C(i), C(j) = C(k) = C(l). (4.3)

Equation (4.2) then immediately implies

C̃(g) = C̃(j) = 0. (4.4)

In the above replica analysis (and as noted in ref. [55]), a hierarchy h containing r
distinct replica indices has multiplicity

MN [h(r)] =
(
N

r

)
= 1
r!N(N − 1) . . . (N − r + 1), (4.5)
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(a) (b)

i i

G G

H

Figure 5. (a) General web diagram containing a self-energy loop, where the rest of the diagram
G consists of a number of connected pieces; (b) generalisation to include a non-trivial subdiagram
H in place of the self-energy loop.

and thus contributes the following to the O(N) part of the replicated colour factor:

MN [h(r)]
∣∣∣
O(N)

= (−1)r−1

r
. (4.6)

Now consider a general web diagram D containing a self-energy loop on line i, as shown
in figure 5(a). Here G is the rest of the graph, which must contain at least one gluon
connecting to another Wilson line, and may potentially consist of a number of connected
pieces. Let us assume that a hierarchy of replica indices has already been assigned to G,
and that this has r distinct indices. For a given hierarchy h of replica indices for the entire
diagram, we must reorder those gluons on line i whose replica numbers differ. However,
this reordering can never make the self-energy loop straddle another gluon emission: both
endpoints of the boomerang gluon have the same replica number, and so cannot appear
on opposite sides of another gluon attachment whose replica number is different. The
most that can happen is that the self-energy loop as a whole is shifted along the line.
According to eq. (D.1), for each hierarchy h, we must record the colour factor R[D|h]
obtained after the reordering. The contribution to this colour factor from the self-energy
loop is CRi , which is diagonal in colour space. Given that the hierarchy of replica indices
for the subgraph G have already been fixed, it follows that for every hierarchy h (including
the replica index for the self-energy loop), the reordered colour factor R[D|h] is the same,
and given by

R[D|h] = CRiR[G|h] (4.7)

There are then two possibilities when inserting replica index i of the self-energy loop to
give the full hierarchy h:

1. The index i is the same as one of the r indices already assigned in G. Here the h con-
tributes with a multiplicity factor (−1)r−1/r, from eq. (4.6). There are r choices for
i, so that the contribution to the exponentiated colour factor from all such choices is

r
(−1)r−1

r
CRiR[G|h] = (−1)r−1CRiR[G|h], (4.8)

where we have used eq. (4.7) in eq. (D.1).
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2. The index i is distinct from the r indices already ordered in G. Now there are r + 1
distinct replica numbers in total in h, so that h has a multiplicity factor (−1)r/(r+1).
There are r + 1 possible placings for the replica index i (i.e. it may be less than or
greater than any of the existing r replica numbers), and thus the total contribution
to the exponentiated colour factor is

(r + 1)(−1)r
r + 1 CRiR[G|h] = (−1)rCRiR[G|h]. (4.9)

Adding together eqs. (4.8) and (4.9), the total contribution to C̃(D) from the hierarchy h
for subdiagram G is (

(−1)r−1 + (−1)r
)
CRiR[G|h] = 0. (4.10)

The full calculation of C̃(D) requires a sum over all hierarchies for the full diagram. This
is easily rewritten as a sum over all hierarchies, h, of G then a sum over all assignments
of i for the extra gluon. Each of these sub-sums is zero by eq. (4.10), hence the required
result that indeed C̃(D) = 0.

To clarify the above proof, we can revisit the replica analysis of the (2,4) web in table 1.
Considering first diagram (g), the subdiagram G consists of a ladder of two gluon exchanges
between the two active Wilson lines. There are then three possible assignments of replica
indices j and k to G. If j = k (corresponding to r = 1 distinct indices), then in assigning a
replica index to the self-energy loop one may choose i = j or i 6= j. When the index i is the
same as (j, k) one obtains the colour factor C(g), with multiplicity factor 1. Alternatively,
we may have i < j or i > j, giving colour factors C(i) or C(g) respectively, and each with
a multiplicity factor of −1/2. However, C(g) = C(i), so that the total contribution to the
exponentiated colour factor is C(g)

(
1− 1

2−
1
2
)

= 0. A similar analysis can be applied to the
other possible hierarchies j < k and j > k for the subdiagram G, and also for the second
diagram (j) considered in table 1.

As well as the above result for self-energy loops, we can also prove a more general result.
Consider replacing the self-energy loop in figure 5(a) with a subdiagram H consisting of
more than one connected piece in general, but such that none of its gluon attachments
on Wilson line i straddle any gluon emissions not in H. Let us again label the complete
diagram by D, containing the subdiagrams G and H, such that H is assumed to only
attach to Wilson line i, while G involves attachments to i and other Wilson lines. We
shall now show that the exponentiated colour factors for such diagrams vanish (a result we
will use for three-loop boomerang webs in section 5). Let us assume that r replica indices
have been assigned to G, and s indices to H, where the latter potentially overlap with the
indices in G.

As in the previous proof, we will split the sum over all replica index hierarchies into
a sum over sums, which between them cover all hierarchies. We will then show that each
is zero. To do this, we define a sub-hierarchy, {{r}, {s}}, of a replica hierarchy h to be
the separated ordering for G and H. This is equivalent to undoing a shuffle. For example,
h = {r1 < s1 = r2 < s2 < r3}, has sub-hierarchy {{r1 < r2 < r3}, {s1 < s2}}. Each h has
a unique sub-hierarchy, but many different hierarchies may give the same sub-assignment
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i

j

(a)

i

j

(b)

Figure 6. (a) Generalised self-energy diagram on a single Wilson line, with replica indices i and
j; (b) replica ordered version, if i < j.

(e.g. r1 < s1 < r2 < s2 < r3 gives the same sub-hierarchy as above). We then split the
sum in eq. (4.1) according to sub-assignment:

C̃(D) =
∑
allh
MN [h(r, s)]

∣∣∣
O(N)
R[D|h] =

∑
{{r},{s}}

∑
allh→{{r},{s}}

MN [h(r, s)]
∣∣∣
O(N)

R[D|h] ,

(4.11)
where R[D|h] is the colour factor of the diagram obtained from D after hierarchy h is
applied.

For a given assignment {s} of replica indices to H, the subdiagram will split into a
number of pieces, each of which has a colour factor proportional to the identity, as we are
only considering diagrams where H does not connect to any Wilson line other than i and
furthermore does not straddle any gluon in G on line i. An example for H is given in
figure 6(a), which shows a subgraph on a single Wilson line, consisting of two overlapping
self-energy loops. If we assign replica indices such that i < j, the graph will split into two
separate self-energy loops (figure 6(b)), each with colour factor CRi1, which is different to
the colour factor of figure 6(a). We use the organisation of the sum in eq. (4.11), to treat
the contribution for each hierarchy of H separately, so in this example the hierarchies with
i = j are considered separately to those with i < j.

For a fixed assignment of the r replica indices to G and s indices in H, different
hierarchies of the full set of replicas will potentially reorder the parts of H along the
Wilson line, according to the mutual ordering between the indices of G and H. However,
because both before and after this reordering none of the subdiagrams in H straddle any
gluon emissions in G and the colour factor of the subdiagram H (and its subdiagrams
if present) are proportional to the identity, it follows that all choices with the same sub-
hierarchy {{r}, {s}} will lead to a diagram with the same colour factor. We may express
this common colour factor as the product R[G|{r}]R[H|{s}], noting explicitly that it
depends on the choice of the r indices in G and s indices in H, but not on how they are
interleaved.

Combining H and G, we will have a total number of indices

n = r + s− k, k ∈ [0,min(r, s)] (4.12)

where k is the number of indices that overlap (i.e. are set equal) between G and H. From
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eq. (4.6), the overall hierarchy h will contribute with a multiplicity factor

(−1)n−1

n
= (−1)r+s−k−1

r + s− k
.

Returning to the expression for the exponentiated colour factor of D in eq. (4.11), we have
now found that the inner sum can be written as

∑
allh→{{r},{s}}

MN [h(r, s)]
∣∣∣
O(N)

R[D|h] = R[G|{r}]R[H|{s}]
min(r,s)∑
k=0

Nr,s,k
(−1)r+s−k−1

r + s− k
,

(4.13)
where Nr,s,k is the number of ways of assigning r indices to G and s indices to H, with k
overlaps. To find this, first note that there are r+ s− k distinct indices in total. There are(

r + s− k
k

)

ways of choosing which indices correspond to the overlapping ones. Of the r + s − 2k
remaining indices, (r − k) must be chosen to be the remaining indices of G (which has r
distinct indices in total), for which there are(

r + s− 2k
r − k

)

possible choices. The remaining s− k indices are then automatically the remaining indices
in H, and one thus finds

Nr,s,k =
(
r + s− k

k

)(
r + s− 2k
r − k

)
. (4.14)

Note that Nr,s,k is symmetric under r ↔ s as it must be. From eq. (4.13), the total
contribution to the exponentiated colour factor of diagram D is then

R[G|{r}]R[H|{s}]
min(r,s)∑
k=0

(
r + s− k

k

)(
r + s− 2k
r − k

)
(−1)r+s−k−1

r + s− k
. (4.15)

To carry out the sum, we may write it as an infinite sum, i.e.,

min(r,s)∑
k=0

(
r + s− k

k

)(
r + s− 2k
r − k

)
(−1)r+s−k−1

r + s− k

=
min(r,s)∑
k=0

Γ(r + s− k)
k!Γ(r − k + 1)Γ(s− k + 1)(−1)r+s−k−1

=
∞∑
k=0

Γ(r + s− k)
k!Γ(r − k + 1)Γ(s− k + 1)(−1)r+s−k−1 (4.16)
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relying on the fact that for integer r and s the Γ functions in the denominator render all
terms with k > min(r, s) identically zero. Next we may consider generic values of r and s,
for which one may establish that

∞∑
k=0

Γ(r + s− k)
k!Γ(r − k + 1)Γ(s− k + 1)(−1)r+s−k−1 = (−1)r+s−1 sin(πr) sin(πs)

πrs sin(π(r + s)) , (4.17)

which vanishes in the limit where r and s are positive integers. Thus, each assignment
of r replica numbers to the subdiagram G and s replica numbers to the subdiagram H

in figure 5(b) leads, upon summing over all hierarchies, to a vanishing contribution to the
exponentiated colour factor of the whole diagram. Hence, exponentiated colour factors of
diagrams which can be split as in figure 5(b) are zero.

Note that a consistency check of the above proof is that for the case s = 1, the sum in
eq. (4.15) reduces to just two terms, k = 0 and k = 1, yielding

R[G|{r}]R[H|{s}]
[
(r + 1)(−1)r

r + 1 + r
(−1)r−1

r

]
= 0,

as encountered in the previous proof (cf. eqs. (4.9) and (4.10)).
In summary, we have shown that graphs of the general form of figure 5(b), in which

G and H are subdiagrams consisting (in general) of any number of connected pieces, such
that H connects to a single line and does not straddle any emission in G, have vanishing
exponentiated colour factors. Thus, from eq. (2.15), their kinematic parts do not contribute
to the logarithm of the soft function, and so do not have to be calculated. For example,
we will see in section 5 that of the 15 diagrams in the (5,1) web, only 4 have non-zero
exponentiated colour factors. This greatly simplifies the calculation of boomerang webs at
three-loop order, which we proceed to do in the following section.

We note that in the above proof we required that G contained at least one gluon
connecting to other Wilson lines. This means that the proof above does not apply to
webs which consist of multiple boomerang gluons on a single line and nothing else. Indeed
these pure self-energy webs are not zero (as we saw with the one-loop self-energy graph in
section 3.1) and they do contribute to the soft anomalous dimension. However, because
they involve just a single line, these contributions must be entirely independent of kinematic
variables and we do not consider them further in this paper.

5 Boomerang webs at three-loop order

In the previous sections, we have prepared the necessary ingredients for the calculation of
boomerang MGEWs. We will now focus on the explicit calculation of these webs at the
three-loop order. We have seen that at two loops there is a single boomerang web, the (3,1)
web. At three loops there are five: two webs involving three Wilson lines, (1,1,4) and (1,2,3)
and three webs involving two lines: (3,3), (5,1), and (2,4). As before we shall not assume
colour conservation amongst the Wilson lines involved, allowing for a hard interaction
vertex involving more lines. The three-line webs are discussed first, in section 5.1, followed
by the two-line ones in section 5.2.
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5.1 Boomerang webs connecting three Wilson lines

For three-loop webs connecting three lines, the colour basis of eq. (2.27) can be written in
the explicit form9 [58]

c
[3,3]
1 = −facef bdeT {a,b}1 T c2T

d
3 = {T a1 , T b1}[T b2 , T c2 ][T a3 , T c3 ]

c
[3,3]
2 = −f caef bdeT a1 T

{b,c}
2 T d3 = [T a1 , T b1 ]{T b2 , T c2}[T a3 , T c3 ]

c
[3,3]
3 = −f cbefadeT a1 T b2T

{c,d}
3 = [T a1 , T b1 ][T b2 , T c2 ]{T a3 , T c3}

c
[3,3]
4 = −1

2 if
acdf beffdefT a1 T

b
2T

c
3 = 1

2 iNcf
abcT a1 T

b
2T

c
3 = [T a1 , T b1 ][T b2 , T c2 ][T a3 , T c3 ] .

(5.1)

For each three-line web, the combinations of kinematic factors accompanying each colour
factor have already been derived in ref. [58] using the corresponding mixing matrices. There
are two distinct boomerang webs connecting three lines, namely the (1,1,4) web of figure 7,
and the (1,2,3) web of figure 8. Let us consider each in turn and compute the relevant
integrals.

5.1.1 The jelly-fish (1,1,4) web

The (1,1,4) web consists of twelve distinct diagrams, where six of them (diagrams (g)–(l)
in figure 7) contain self-energy loops, and are thus irrelevant according to the results of
section 4. Following the approach of sections 2 and 3, the kinematic parts of the first six
diagrams can be written as

FD(α13, α23, ε) = κ3Γ(6ε)
∫ 1

1
2

dx

[(2x− 1)2]1−ε
∫ 1

0
dydz pε(y, α23) pε(z, α13)φD(x, y, z; ε) ,

(5.2)
where D ∈ {a, b, c, d, e, f}, and we present the calculation and results for kernels φD in
appendix E. The results φD(x, y, z; ε) are presented in eqs. (E.7) through (E.12), both as
hypergeometric functions depending on x, y and z, with ε shifting the parameters away
from integer values, as well as through an expansion in powers of ε. These expressions
are useful to illustrate the general discussion around eq. (3.25). Indeed, we observe that
each diagram kernel consists of differences between pairs of hypergeometric functions, which
vanish at x = 1

2 , providing a linear suppression near the lower endpoint of the x integration
in eq. (5.2), such that the double pole associated with the boomerang gluon propagator is
regularised, rendering this integral well-defined for small positive ε.

We further point out that the suppression of the enpoint singularity at x = 1
2 can also

be easily seen after the ε expansion of the kernel. For diagrams D ∈ {c, d, e, f}, where the
boomerang gluon straddles a single emission, the ε-expanded kernel φD(x, y, z; ε) begins
with ∼ 1

ε ln((1 − x)/x) providing linear suppression of the x = 1
2 singularity. In turn, for

diagrams D ∈ {a, b}, where the boomerang gluon straddles two emissions, the ε-expanded
kernel φD(x, y, z; ε) begins with ln2((1 − x)/x) providing a quadratic suppression of this
singularity.

9Note that here we use the usual anticommutator notation {T a
i , T

b
i } = T a

i T
b
i + T b

i T
a
i , rather than the

notation of eq. (2.26) which includes an extra factor of 1/n! = 1/2.
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(a) (b)

(e)

(i)

(c) (d)

(f) (g) (h)

(j) (k) (l)

1 2

3

Figure 7. The (1,1,4) web.

The exponentiated colour factors for the six diagrams are [58]

C̃(a) = 1
2(c[3,3]

3 − c[3,3]
4 ); C̃(b) = 1

2(c[3,3]
3 + c

[3,3]
4 ); (5.3)

C̃(c) = C̃(d) = 1
2c

[3,3]
4 ; C̃(e) = C̃(f) = −1

2c
[3,3]
4 ,

where we used the basis of colour factors of eq. (5.1). The complete renormalized web can
then be written in this basis as

W(1,1,4) = c
[3,3]
3 F(1,1,4);3 + c

[3,3]
4

[
F(1,1,4);4 + FCT

(1,1,4);4

]
,

= c
[3,3]
3

[1
2
(
Fa + Fb

)]
+ c

[3,3]
4

[1
2
(
−Fa + Fb + Fc + Fd −Fe −Ff

)
+ 1

2
(
FCT
c + FCT

d −FCT
e −FCT

f

)]
,

(5.4)

where FCT
D is the counterterm contribution associated with the renormalization of the gluon

emission vertex in diagram D, analogous to eq. (3.13) for the (3,1) web. Note that the
counterterm contributions enter with the same coefficient as the diagram they renormalize,
thus removing any singularities associated with the shrinking of boomerang gluon loops to
a point. As is implied from eq. (5.4), counterterm graphs are not required for diagrams
(a) and (b) in figure 7: such a counterterm would correspond to the renormalization of a
two-gluon emission vertex coupling to the Wilson line, which is not required.
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Using the integrals of eq. (5.2) we immediately find the results for the kinematic func-
tions F(1,1,4);3 and F(1,1,4);4 defined by the combinations of contributions from individual
diagrams in eq. (5.4); these two are given respectively by eqs. (E.15) and (E.19). In
turn, each of the counterterm contributions entering FCT

(1,1,4);4 consists of the factor Z(1)
v

of eq. (C.4) multiplying a lower order graph, obtained by shrinking the boomerang gluon
to a point. For each of the diagrams (c)–(f) in figure 7, the lower-order diagram will be
one of the members of the (1,1,2) web of figure 18, after relabelling of the Wilson lines.
Indeed, the combination of graphs appearing in eq. (5.4) is precisely such as to construct
the combination of kinematic factors found in the (1,1,2) web (see ref. [55]) and we may
thus write

FCT
(1,1,4);4(α13, α23, µ

2/m2, ε) = −Z(1)
v F

(2)
(1,1,2)(α13, α23)

= −1
2

(
g2
s

8π2

)3 ∫ 1

0
dydz p0(y, α23)p0(z, α12)

{
1
ε2

ln
(
z

y

)
+ 1
ε

[
2Li2

(
−z
y

)

− 2Li2
(
−y
z

)
+ ln

(
z

y

)(
ln (q(y, α23)q(z, α13)) + 2 ln

(
µ2

m2

))]
+O(ε0)

}
,

(5.5)

using eqs. (A.2) and (C.4).
To obtain the renormalized kinematic function multiplying c[3,3]

4 in (5.4) we now sum
up the unrenormalised function of eq. (E.19) and the counterterm contribution of eq. (5.5),
obtaining

F(1,1,4);4(α13, α23, µ
2/m2, ε) + FCT

(1,1,4);4(α13, α23, µ
2/m2, ε)

=
(
g2
s

8π2

)3 1
8

∫ 1

0
dydz p0(y, α23)p0(z, α12) ln

(
z

y

)
{
− 1
ε2

+ 1
ε

[
6 + 3 ln (yz)− ln (q(y, α23)q(z, α13)) + ln

(
µ2

m2

)]
+O(ε0)

}
,

(5.6)

where we note the cancellation of all dilogarithms at O(1/ε). With this we have completed
the computation of all ingredients in the renormalized (1, 1, 4) web of eq. (5.4).

For the contribution of this web to the soft anomalous dimension, we must combine
eq. (5.4) with the commutator contributions appearing in eq. (2.12), to form the subtracted
web w(1,1,4) as follows:

w
(3,−1)
(1,1,4) = w

(3,−1)
(1,1,4) + 1

2
[
w(2,−2), w(1,1)

]
− 1

2
[
w(1,0), w(2,−1)

]
− 1

2
[
w(2,0), w(1,−1)

]
. (5.7)

Note that, as always, all w(n,k) entering this expression are defined including the countert-
erms associated with the renormalization of the gluon emission of the Wilson line.

The two lower-order webs which occur in the (1,1,4) web are the single gluon exchange
web and the (3,1) web, where the latter has been calculated in section 3. The commutators
of these do not yield anything proportional to the colour factor c[3,3]

3 . They do give a
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contribution to the colour factor c[3,3]
4 , with the kinematic function

FComm
(1,1,4);4(α13, α23, µ

2/m2, ε)

= 1
2
[
F (2,−2)

(3,1) (α23)F (1,1)(α13)−F (2,−2)
(3,1) (α13)F (1,1)(α23) + F (2,−1)

(3,1) (α23)F (1,0)(α13)

−F (2,−1)
(3,1) (α13)F (1,0)(α23)−F (2,0)

(3,1) (α23)F (1,−1)(α13) + F (2,0)
(3,1) (α13)F (1,−1)(α23)

]
= 1

8ε

(
g2
s

8π2

)3 ∫ 1

0
dydz p0(y, α23)p0(z, α13)

{
1
2 ln2 q(z, α13)− 1

2 ln2 q(y, α23)

+ (2 + ln(yz))
(

ln q(y, α23)− ln q(z, α13)− ln
(
z

y

))
− ln

(
z

y

)
ln
(
µ2

m2

)}
.

(5.8)

Note that similarly to eq. (5.6) this result is manifestly antisymmetric under the interchange
of α23 and α13. This permutation symmetry is of course consistent with Bose symmetry
and the fact that the colour factor c[3,3]

4 in (5.1) is antisymmetric.
Similarly to eqs. (2.42), (2.47) we can write the final result for the (1,1,4) subtracted

web in terms of integrals over subtracted web kernels. Specifically, we define

F
(3)
(1,1,4);i(α13, α23, ε) =

∫ 1

0
dx1dx2 p0(x1, α13)p0(x2, α23)G(3)

(1,1,4);i(x1, x2, α13, α23) (5.9)

for i = 3, 4. After adjusting for normalisation, we find G(3)
(1,1,4);3 from eq. (E.15) and G(3)

(1,1,4);4
from the sum of the ε−1 pole in eq. (5.6) and eq. (5.8):

G(3)
(1,1,4);3(x1, x2, α13, α23) = −4π2

9 ;

G(3)
(1,1,4);4(x1, x2, α13, α23) = 1

2

[
4 ln

(
q(x2, α23)

x2
2

)
− 4 ln

(
q(x1, α13)

x2
1

)
(5.10)

− ln2
(
q(x2, α23)

x2
2

)
+ ln2

(
q(x1, α13)

x2
1

)]
.

Again, the antisymmetry under the interchange of α23 and α13 is manifest. The ln(µ2/m2)
terms have cancelled in the 1/ε pole, as they must do to ensure that the soft anomalous
dimension does not depend on the regulator m. Carrying out the remaining integrals, we
obtain the kinematic factors for the subtracted web (defined as in eq. (2.47)):

F
(3)
(1,1,4);3(α13, α23) = −4π2

9 r(α13)r(α23)M0,0,0(α13)M0,0,0(α23);

F
(3)
(1,1,4);4(α13, α23) = 1

2r(α13)r(α23)
[
4M1,0,0(α23)M0,0,0(α13)− 4M1,0,0(α13)M0,0,0(α23)

−M2,0,0(α23)M0,0,0(α13) +M2,0,0(α13)M0,0,0(α23)
]
, (5.11)

where the Mk,l,n(αij) are defined in eq. (2.51). Explicit expressions for these functions
and their symbols are summarised in appendix B. Note that the first result in eq. (5.11)
contains an overall factor of π2, which itself has a non-zero transcendental weight. It is
then natural to ask whether one can rewrite this result to be purely in terms of (products
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of) our basis functions with purely rational coefficients. That this is indeed the case can
be seen by noting that (see appendix B)

4π2

3 M0,0,0(α) = 4M0,2,0(α)−M0,0,2(α). (5.12)

Thus, one may write

F
(3)
(1,1,4);3 = −1

6r(α13)r(α23)
[(

4M0,2,0(α13)−M0,0,2(α13)
)
M0,0,0(α23)

+M0,0,0(α13)
(
4M0,2,0(α23)−M0,0,2(α23)

)]
, (5.13)

where we have made the symmetry of the web under the interchange of lines 1 and 2
manifest. We see once again the same general pattern previously seen in MGEWs and in
the (3,1) web in section 3.2: the subtracted web kinematic function takes the form of a
rational function consisting of one factor of r(αij) for each gluon which connects distinct
Wilson lines i and j, multiplied by a pure transcendental function. The latter consists of a
sum of products of polylogarithmic functions of individual αij . The latter are again drawn
from the basis of Mk,l,n(αij) proposed in ref. [45].

We further note that as in the case of the (3,1) web— and in contrast to non-boomerang
MGEWs — the polylogarithmic function in eq. (5.11) is of mixed, non-maximal weight,
here weight 3 and weight 4, while the soft anomalous dimension at three loops receives con-
tributions starting at weight 5. We will see a similar mixed, non-maximal weight structure
across all boomerang webs.

5.1.2 The (1,2,3) web

Next, we consider the (1,2,3) web of figure 8, consisting of six diagrams. However, four of
these (diagrams (c)–(f)) contain self-energy loops, and thus do not contribute to the loga-
rithm of the soft function, using the results of section 4. From ref. [58], the exponentiated
colour factors of diagrams (a) and (b) are

C̃(a) = −1
2c

[3,3]
4 and C̃(b) = 1

2c
[3,3]
4 . (5.14)

Therefore, the renormalized web is given by

W(1,2,3) = c
[3,3]
4

[
F(1,2,3);4 + FCT

(1,2,3);4

]
= c

[3,3]
4

[
− 1

2
(
Fa −Fb

)
− 1

2
(
FCT
a −FCT

b

)]
.

(5.15)

Using similar methods to the (1,1,4) web, we find that the kinematic parts of these diagrams
are given by

FD(α12, α23, ε) = κ3Γ(6ε)1
ε

1
1− 2ε

∫ 1

0
dydz y2εpε(y, α23)pε(z, α12)φD(y, z), (5.16)
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(a) (b)

(d)

(c)

(e) (f)

1 2

3

Figure 8. The (1,2,3) web.

where

φa(y, z) = 1
2ε

(1− y
z

)2ε
2F1

(
6ε, 2ε; 1 + 2ε;−1− y

z

)
= 1

2ε + ln
(1− y

z

)
+
{

ln2
(1− y

z

)
+ 6Li2

(
−1− y

z

)}
ε+O(ε2);

φb(y, z) = 1
4ε

(
z

1− y

)4ε
2F1

(
6ε, 4ε; 1 + 4ε;− z

1− y

)
= 1

4ε + ln
(

z

1− y

)
+
{

2 ln2
(

z

1− y

)
+ 6Li2

(
− z

1− y

)}
ε+O(ε2) ,

(5.17)

and where 2F1(a, b; c; z) is the Gauss hypergeometric function. The integrals corresponding
to the boomerang gluon10 have already been performed here, generating the pole at ε =
1
2 in eq. (5.16). To these, we must add the ultraviolet counterterm graphs, FCT

a and
FCT
b , associated with renormalization of the gluon emission vertex in graphs (a) and (b)

respectively. As for the (1,1,4) web, the counterterms construct the (1,1,2) web of eq. (A.2),
where line 2 in figure 8 is the one having two gluon attachments. The resulting counterterm
contribution in eq. (5.15) is

FCT
(1,2,3);4(α12, α23, µ

2/m2, ε) = −1
2Z

(1)
v F

(2)
(1,1,2)(α12, α23, ε)

= 1
4

(
g2
s

8π2

)3 ∫ 1

0
dydz p0(y, α23)p0(z, α12)

{
1
ε2

ln
(
z

y

)
+ 1
ε

[
2Li2

(
−z
y

)

− 2Li2
(
−y
z

)
+ ln

(
z

y

)(
ln (q(y, α23)q(z, α12)) + 2 ln

(
µ2

m2

))]
+O(ε0)

}
,

(5.18)

10We point out that prior to performing this integral we observed the same regularisation of the double
pole at the x = 1

2 endpoint as in eq. (3.11).
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using eq. (C.4). Combining this with the results from eq. (5.17) gives the final result for
the kinematic function multiplying c[3,3]

4 in the renormalized (1,2,3) web in eq. (5.15) to be

F(1,2,3);4(α12, α23, µ
2/m2, ε) + FCT

(1,2,3);4(α12, α23, µ
2/m2, ε)

= 1
48

(
g2
s

8π2

)3 ∫ 1

0
dydz p0(y, α23)p0(z, α12)

{
1
ε3

+ 1
ε2

[
2 + 3 ln

(
µ2

m2

)
+ ln (q(y, α23)q(z, α12)]− 2 ln(y) + 4 ln(z)

]

+ 1
2ε

[
8 + 13π2

2 + 40 ln(y)− 32 ln(z) + ln2 (q(y, α23)q(z, α12))− 4 ln2(y)

+ 32 ln(y) ln(1− y)− 16 ln(y) ln(z)− 8 ln2(z)
+ 4 ln (q(y, α23)q(z, α12)) (1− ln(y) + 2 ln(z))

+3 ln
(
µ2

m2

)(
4 + 2 ln (q(y, α23)q(z, α12)) + 4 ln(y) + 3 ln

(
µ2

m2

))]
+O(ε0).

(5.19)

Once again the dilogarithms have cancelled to this order in ε in the renormalised result.
In order to obtain the corresponding contribution of this web to the soft anomalous

dimension, the (1, 2, 3) subtracted web, we must now add to eq. (5.19) the commutator
contributions involving lower-order webs. As is clear from figure 8, the relevant lower-order
webs include the single gluon exchange (one-loop) diagram, and the (3,1) web of figure 2
and we find

w
(3,−1)
(1,2,3) = w

(3,−1)
(1,2,3) + c

[3,3]
4 FComm

(1,2,3);4(α12, α23, µ
2/m2, ε), (5.20)

where

FComm
(1,2,3);4(α12, α23, µ

2/m2, ε)

= 1
2ε
(
−F (1,1)(α12)F (2,−2)

(1,3) (α23)−F (1,0)(α12)F (2,−1)
(1,3) (α23) + F (2,0)

(1,3) (α23)F (1,−1)(α12)
)

= − 1
32ε

(
g2
s

8π2

)3 ∫ 1

0
dydz p0(y, α23)p0(z, α12)

×
[
8 + 13π2

6 + 4 ln(q(y, α23))− 4 ln(q(z, α12))− ln2(q(y, α23))

+ ln2(q(z, α12)) + 2 ln(q(y, α23)) ln(q(z, α12)) + 8 ln(y) + 4 ln2(y)
+ 4 ln(q(y, α23)) ln(y)− 4 ln(q(z, α12)) ln(y)

+ ln
(
µ2

m2

)(
4 + 2 ln (q(y, α23)q(z, α12)) + 4 ln(y) + 3 ln

(
µ2

m2

))]
.

(5.21)

Upon adding this to the 1/ε term of eq. (5.19), as expected, all dependence on the regulator
m cancels and the integrated subtracted web is given by

F
(3)
(1,2,3);4(α12, α23) =

∫ 1

0
dx1dx2 p0(x1, α12)p0(x2, α23)G(3)

(1,2,3);4(x1, x2, α12, α23) (5.22)
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where the subtracted web kernel is given by

G(3)
(1,2,3);4(x1, x2, α12, α23) = 1

6

[
−8− 4 ln

(
q(x2, α23)

x2
2

)
+ 8 ln

(
q(x1, α12)

x2
1

)
+ 2 ln2

(
q(x2, α23)

x2
2

)
− ln2

(
q(x1, α12)

x2
1

)
− 16 ln2

(
x2

1− x2

)
−2 ln

(
q(x1, α12)

x2
1

)
ln
(
q(x2, α23)

x2
2

)]
, (5.23)

so that the integrated contribution to the soft anomalous dimension is

F
(3)
(1,2,3);4(α12, α23) = 1

6r(α12)r(α23)
{
− 8M0,0,0(α12)M0,0,0(α23)

− 4M0,0,0(α12)M1,0,0(α23) + 8M1,0,0(α12)M0,0,0(α23)
+ 2M0,0,0(α12)M2,0,0(α23)−M2,0,0(α12)M0,0,0(α23)

− 16M0,0,0(α12)M0,2,0(α23)− 2M1,0,0(α12)M1,0,0(α23)
}
, (5.24)

where explicit expressions for the functions Mk,l,n(αij) are summarised in appendix B. We
observe again the same pattern described following eq. (5.11). Also the (1,2,3) web can be
expressed in terms of the previously-defined basis functions (see eq. (2.51)), and similarly
to the (1,1,4) web we see mixed, non-maximal weight. We note that in eq. (5.24) the weight
ranges from 4 all the way down to 2.

5.2 Boomerang webs connecting two Wilson lines

Having calculated all boomerang MGEWs connecting three Wilson lines, we now turn our
attention to those connecting two lines. Without loss of generality, we will take the labels
of the lines to be 1 and 2. As explained in ref. [45], if the Wilson lines are not in a colour
singlet state (as will be the case in general if the lines 1 and 2 are chosen out of total
of L > 2 Wilson lines), the effective vertex formalism generates two independent colour
structures, which we label using our standard notation as

c
[3,2]
1 = N2

c

4 T1 · T2

c
[3,2]
2 = −1

4f
cbdface{T b1 , T a1 } {T d2 , T e2 }.

(5.25)

Of these two colour factors, the second contains symmetrised combinations of colour gen-
erators, whereas the first does not. These observations will be useful when considering
collinear reduction later on.

A further simplification occurs in the two-line webs considered here compared to the
three-line ones described in the previous section. This is the fact that no commutators
of lower-order webs can arise, owing to the fact that all the relevant one- and two-loop
subdiagrams form webs with colour factors proportional to T1 ·T2, which are hence mutually
commuting. Thus, the contribution of each web to the anomalous dimension in eq. (2.12)
— the subtracted web — simply corresponds to the single pole of that web.
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(a) (b)

(f)

(c)

(g) (h)

(d) (e)

(i)

1

2

Figure 9. The (3,3) web.

In the following sections we consider in turn the three boomerang MGEWs connecting
two lines at three loops, the (3,3), (5,1) and (2,4) webs, compute their contribution to
the soft anomalous dimension, and comment on how they manifest the general properties
discussed above.

5.2.1 The (3,3) web

The (3,3) web is shown in figure 9, and contains nine diagrams. However, eight of these
contain self-energy loops, and thus do not contribute to the soft anomalous dimension,
using the results of section 4.

The contribution of the entire web is then simply

W(3,3) = C̃(a)
(
Fa + FCT

a

)
, (5.26)

where C̃(a) is the exponentiated colour factor of diagram (a), Fa its kinematic part before
renormalization, while FCT

a is the corresponding counterterm contribution. The exponen-
tiated colour factor is found to be

C̃(a) = C(a)− 1
2
(
C(b) + C(c) + C(d) + C(e) + C(f) + C(i)

)
+ 1

3
(
C(g) + C(h) + 2C(i) + 2C(f)

)
= c

[3,2]
1 ,

(5.27)

where the second line follows after performing the appropriate colour algebra, with c
[3,2]
1

as defined in eq. (5.25).
Applying the Feynman rules similarly to the previous webs, one finds

Fa(α12) = κ3Γ(6ε)
ε2(1− 2ε)2

∫ 1

0
dy[y(1− y)]2εpε(y, α12). (5.28)

Note that we see explicitly the presence of a double pole at ε = 1
2 associated with the power

divergence of the boomerang loop. The double pole is to be expected given that there are
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two independent boomerang gluons, one on each Wilson line. Expanding the result yields

Fa (α12) = −
(
g2
s

8π2

)3 ∫ 1

0
dyp0(y, α12)

{
1

6ε3 + 1
6ε2

[
4 + ln q(y, α12) + 4 ln y + 3 ln

( µ2

m2

)]

+ 1
12ε

[
24 + 32 ln y + 8 ln q(y, α12) + 13

2 π
2 + ln2 q(y, α12) + 8 ln q(y, α12) ln y + 8 ln2 y

+ 8 ln(1− y) ln y + ln
( µ2

m2

)(
6 ln q(y, α12) + 24 ln(y) + 24

)
+ 9 ln2

( µ2

m2

)]
+O(ε0)

}
.

(5.29)

One must combine this with counterterm contributions, and as is evident from figure 9(a)
there are three possibilities. One can shrink both boomerang gluon loops to a point, in
which case one obtains the one-loop single gluon exchange web dressed by two counterterms.
Or, one can shrink only the upper or lower boomerang gluon loops, recovering the (3,1)
web dressed by one counterterm. The full counterterm contribution to the web is then

FCT
a (α12) = (Z(1)

v )2F (1)
(1,1)(α12) + 2Z(1)

v F
(3)
(3,1)(α12)

=
(
g2
s

8π2

)3 ∫ 1

0
dyp0(y, α12)

{
1
ε2

[
1 + ln y + 1

2 ln
( µ2

m2

)]

+ 1
ε

[
2 + 2 ln y + ln q(y, α12) + 13

24π
2 + ln q(y, α12) ln y + ln2 y

+ ln
( µ2

m2

)(1
2 ln q(y, α12) + 2 ln y + 2

)
+ 3

4 ln2
( µ2

m2

)]
+O(ε0)

}
.

(5.30)

There are no lower-order webs one can use to form commutator structures, and thus sum-
ming eqs. (5.29), (5.30) leads directly to the contribution of this web to the soft anomalous
dimension:

F
(3)
(3,3);1(α12) =

∫ 1

0
dx1p0(x1, α12)G(3,3);1(x1, α12), (5.31)

where we have defined the subtracted web kernel

G(3,3);1(x1, α12) = −2
3

[
ln2
(
q(x1, α12)

x2
1

)
− 4 ln

(
q(x1, α12)

x2
1

)
− 4 ln2

(
x1

1− x1

)]
. (5.32)

The integrated subtracted web can then be written in terms of the basis functions of
eq. (2.51) as

F
(3)
(3,3);1(α12) = −2

3r(α12)
[
M2,0,0(α12)− 4M1,0,0(α12)− 4M0,2,0(α12)

]
, (5.33)

where explicit expressions for the functions Mk,l,n(αij) are summarised in appendix B.
We see again the same pattern described following eq. (5.11): the (3,3) web can also
be expressed in terms of the previously-defined basis functions, and similarly to other
boomerang webs it features mixed, non-maximal weights, in this case, weights 3 and 2.
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

Figure 10. The (5,1) web in a compact representation. Note that in any given diagram in this
web there is just one non-boomerang emission. Labels attached to the gluons correspond to the
diagram obtained by placing the gluon as shown, and connecting it with a second Wilson line.

5.2.2 The (5,1) web
Next, we consider the (5,1) web, consisting of two boomerang gluons on one Wilson line,
and a single gluon emitted from the same line that lands on another. We represent this web
compactly as in figure 10. There are three configurations of the boomerang gluons, and the
non-boomerang gluon can be in any of the places shown, where each of these constitutes a
different diagram in the web. Thus, there are fifteen diagrams in total.

By the results of section 4, the only diagrams which end up contributing to the web
(i.e. which do not contain self-energy loops) are (c), (g), (h) and (i). Furthermore, we find
the exponentiated colour factors to be

C̃(c) = C̃(g) = C̃(i) = c
[3,2]
1 , C̃(h) = 2c[3,2]

1 . (5.34)

Thus, the renormalised web including counterterm contributions may be expressed as

W(5,1) = c
[3,2]
1

[
F(5,1);1 + FCT

(5,1);1

]
(5.35)

= c
[3,2]
1

[
Fc + Fg + 2Fh + Fi + FCT

c + FCT
g + 2FCT

h + FCT
i

]
.

Using eq. (2.31) we may write the kinematic function of each of the four surviving dia-
grams as

FD(α12)= g2
s µ̄

2εNβ1 · β2

∫ ∞
0
dudv

[
−(β1u−β2v)2

]−1+ε
exp

[
−im

(
u
√
β2

1 +v
√
β2

2

)]
B[0,∞]
D (u)

(5.36)

where the function B[0,∞]
D (u) represents the two-loop subdiagram consisting of boomerang

gluons with their emission and absorption positions — whose order depends on the specific
diagram D considered — integrated along the β1 Wilson line over the entire range [0,∞]
without any regulators. Applying similar methods to above, the kinematic functions may
be brought to the following form:

FD(α12) = κ3 Γ(6ε)
2ε2

∫ 1

0
dx dy dz pε(z, α12)z4ε(2x− 1)2ε−2(2y − 1)2ε−2φD(x, y)

× θ
(
x >

1
2

)
θ

(
y >

1
2

)
, (5.37)
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where

φc(x, y) = x−2εy−2ε
[
1−

(
y

1− y

)4ε
] [

1−
(1− y

y

)2ε ( x

1− x

)2ε
]
θ(x > y),

φg(x, y) = (1− x)−2εy−2ε
[
1−

(
x

1− x

)2ε
] [

1−
(

y

1− y

)4ε (1− x
x

)2ε
]
θ(x < y)

+ (1− x)−2εy−2ε
[
1−

(
y

1− y

)2ε
]2

θ(x > y),

φh(x, y) = x−2εy−2ε
[
1−

(
x

1− x

)2ε
]2

θ(x < y) (5.38)

+ (1− x)−2ε(1− y)−2ε
[
1−

(1− y
y

)2ε
]2

θ(x > y),

φi(x, y) = (1− x)−2εy−2ε
[
1−

(1− x
x

)2ε
]2

θ(x < y)

+ (1− x)−2εy−2ε
[
1−

(1− y
y

)2ε
] [

1−
(1− x

x

)4ε ( y

1− y

)2ε
]
θ(x > y).

Importantly, as discussed on general grounds in section 3.3, the integral in eq. (5.37)
exists for any ε > 0. Specifically, we observe that the functions φD(x, y) provide linear
suppression in (x − 1

2) whenever x = 1
2 is a limit of integration and similarly for y, so

the double poles in FD(α12) associated with the boomerang gluon propagators are always
accompanied by a regularising factor, such that the integral is well defined for small positive
values of ε.

After adding together all contributions in the combination of eq. (5.35), one may carry
out the x and y integrals and expand in ε, obtaining

F(5,1);1(α12) = κ3 Γ(6ε)
2ε2

1
2ε− 1

[ 1
4ε− 1 + Γ(2ε− 1)Γ(2ε+ 1)

Γ(4ε)

] ∫ 1

0
dz pε(z, α12)z4ε

= −
(
g2
s

8π2

)3 1
12ε3

[
3 +

(
14 + 9 ln

(
µ2

m2

))
ε

+
(

52 + 23π2

3 + 42 ln
(
µ2

m2

)
+ 27

2 ln2
(
µ2

m2

))
ε2 + . . .

] ∫ 1

0
dz pε(z, α12)z4ε.

(5.39)

According to eq. (5.35), we must now combine F(5,1);1 with counterterms for the ultravi-
olet subdivergences associated with shrinking the boomerang gluons to a point. To remove
all divergences, we may write a renormalization factor Zv for the gluon emission vertex
from the Wilson line to two loops, where the one-loop Z(1)

v was computed in appendix C
(see eq. (C.4)) and the two-loop one, Z(2)

v , will be determined below. The renormaliza-
tion of this web is described in figure 11, which shows the four contributing diagrams (c),
(g),(h) and (i) along with the counterterm contributions arising upon contracting one or
both boomerang gluons to a point. In diagram (c), a one-loop counterterm is required
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Figure 11. Renormalization of the (5,1) web. Upper row: the boomerang gluon subdiagram
in diagrams (c), (g), (h) and (i); Second row: one-loop counterterm contributions to the above
diagrams associated with shrinking the innermost boomerang gluon to a point; Third row: two-
loop counterterm contributions to the above diagrams associated with simultaneously shrinking
both boomerang gluons to a point.

to compensate for the subdivergence associated with shrinking the innermost boomerang
gluon to the emission vertex of the non-boomerang gluon at point u, going to the second
line in figure 11. The remaining diagram after this contraction is the mushroom graph of
figure 2(a), which was computed in section 3.2. An additional renormalization is required
to compensate for the divergence associated with shrinking both gluons to a point, going
to the third row in figure 11. The remaining diagram is simply the one gluon exchange dia-
gram. Similarly, one- and two-loop counterterms are required for diagrams (g) and (i), with
the only difference to the above being that now the first boomerang gluon being shrunk
renormalizes one of the vertices of the second, rather than the non-boomerang emission ver-
tex. Finally, diagram (h) has no one-loop subdivergences, as each of the boomerang gluons
straddles two emission vertices, but it does require a two-loop counterterm corresponding
to shrinking both boomerang gluons simultaneously to a point.

As implied by the above description, the required counterterm contributions can be
all identified considering the boomerang subdiagrams in figure 11, without reference to
the integration over u nor the other Wilson line. We therefore proceed to compute these
considering the pole terms in the integrand of eq. (5.36). To this end we introduce an
upper limit on the furthest boomerang gluon attachment along the Wilson line, which we
denote by umax, and consider the poles arising in B[0,umax]

i (u) for each of the contributing
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diagrams. For diagram (c) we find

B[0,umax]
c (u) = µ̄4ε(−β2

1)2εg4
sN 2

∫ u

0
ds2

∫ u

s2
dt2

∫ umax

u
ds1

∫ s1

u
dt1 ((s1 − s2)2)ε−1((t1 − t2)2)ε−1

=
(
g2
s

4π2

)2{ 1
8 ε2 + 1

4 ε

[
1+2γE + 2 ln

(√−β2
1µ(umax − u)u
umax

)]
+O(ε0)

}
,

(5.40)

where in the second line we performed the four integrations and expanded in ε, discarding
finite terms. Similarly, for the remaining diagrams we find

B[0,umax]
g (u) =

(
g2
s

4π2

)2{ 1
8 ε2 + 1

2 ε

[
1 + γE + ln

(√−β2
1µ(umax − u)u
umax

)]
+O(ε0)

}
;

B[0,umax]
h =

(
g2
s

4π2

)2{ 1
4 ε +O(ε0)

}
;

B[0,umax]
i (u) =

(
g2
s

4π2

)2{ 1
8 ε2 + 1

2 ε

[
1 + γE + ln

(√−β2
1µ(umax − u)u
umax

)]
+O(ε0)

}
. (5.41)

Note that diagram (h), being free of one-loop subdivergences, does not have a double
pole, nor does its single-pole carry any dependence on the position of the non-boomerang
attachment u and the cutoff umax.

Next, consider the counterterm contributions removing the one-loop subdivergences in
diagrams (c), (g) and (i) described by the second row in figure 11. These three diagrams are
all the same: they simply correspond to the one-loop counterterm Z

(1)
v of eq. (C.4) times

B[0,umax]
M (u) = − µ̄2ε(−β2

1)εg2
sN

∫ umax

u
ds1

∫ u

0
ds2((s1 − s2)2)ε−1

= µ̄2ε(−β2
1)εg2

sN
u2ε

max − (umax − u)2ε − u2ε

2ε(1− 2ε) ,

(5.42)

where the subscript M indicates that this function forms the integrand of the mushroom
diagram, that is inserting B[0,umax]

M (u) into eq. (5.36) and sending umax →∞, one recovers
the mushroom diagram of section 3.2. Upon expanding eq. (5.42) in ε and multiplying by
Z

(1)
v of eq. (C.4) we obtain:

Z(1)
v B

[0,umax]
M (u) =

(
g2
s

4π2

)2{
− 1

4ε2 −
1
2ε

[
1 + γE + ln

(√−β2
1µ(umax − u)u
umax

)]
+O(ε0)

}
.

(5.43)
To complete the renormalization of the web we proceed to determine the relevant two-

loop counterterm by requiring that the sum of all contributions to the web, weighted by
the appropriate exponentiated colour factors displayed in the second line of eq. (5.35), is
ultraviolet finite:(
B[0,umax]
c (u) + Z(1)

v B
[0,umax]
M (u) + Z

(2)
v(c)

)
+
(
B[0,umax]
g (u) + Z(1)

v B
[0,umax]
M (u) + Z

(2)
v(g)

)
+ 2

(
B[0,umax]
h (u) + Z

(2)
v(h)

)
+
(
B[0,umax]
i (u) + Z(1)

v B
[0,umax]
M (u) + Z

(2)
v(i)

)
= O(ε0),

(5.44)
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It is straightforward to verify that for each of the three diagrams (c), (g) and (i) the
logarithmic dependence on the position of the non-boomerang attachment u and the cutoff
umax cancels with the corresponding Z(1)

v B[0,umax]
M (u) counterterm. Ultraviolet finiteness of

the sum of diagrams in eq. (5.44) fixes the two-loop vertex renormalization factor associated
with multiple gluon exchange graphs to be

Z
(2)
v(MGE) ≡ Z

(2)
v(c) + Z

(2)
v(g) + 2Z(2)

v(h) + Z
(2)
v(i) =

(
g2
s

4π2

)2{ 3
8 ε2 −

1
4 ε

}
. (5.45)

The total contribution to the web from the second-order counterterm may be written as
Z

(2)
v(MGE) multiplying the one-gluon exchange web:

Z
(2)
v(MGE)F

(1)
(1,1) =

(
g2
s

8π2

)3 ∫ 1

0
dzpε(z, α12)

{
1
ε2

[
2 + 3

2 ln z + 3
4 ln

(
µ2

m2

)]
+ 1
ε

[
3 + 3π2

4

+3 ln z + 3
2 ln2 z + ln

(
µ2

m2

)(7
2 + 3 ln z

)
+ 9

8 ln2
(
µ2

m2

)]}
.

(5.46)

The total renormalized web is now given by

W(5,1) = c
[3,2]
1

[
Fc + Fg + 2Fh + Fi + 3Z(1)

v FM + Z
(2)
v(MGE)F

(1)
(1,1)

]
, (5.47)

where FM denotes the mushroom graph of figure 2(a). As in other two-line webs no
additional subtraction of commutators is necessary and thus, the contribution of the (5,1)
web to the soft anomalous dimension is directly given by the single-pole contribution to
eq. (5.47). Combining all contributions leads to

F
(3)
(5,1);1(α12) =

∫ 1

0
dx1p0(x1, α12)G(3)

(5,1);1(x1, α12), (5.48)

where the appropriate web kernel is

G(3)
(5,1);1(x1, α12) = −8

[
4
3 −

π2

9 −
5
6 ln

(
q(x1, α12)

x2
1

)
+ 1

8 ln2
(
q(x1, α12)

x2
1

)]
. (5.49)

Finally, performing the integration over x1 we readily obtain the result in terms of the
basis functions Mk,l,n(αij) of eq. (2.51):

F
(3)
(5,1);1(α12) =− 8r(α12)

[4
3M0,0,0(α12)− 1

3M0,2,0(α12) + 1
12M0,0,2(α12)− 5

6M1,0,0(α12)

+1
8M2,0,0(α12)

]
. (5.50)

We confirm once more the pattern described following eq. (5.11). Indeed, the (5,1) web
can also be expressed in terms of these basis functions, and similarly to other boomerang
webs it features mixed, non-maximal weights, here weights 3, 2 and 1.
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5.2.3 The (2,4) web

The last remaining boomerang web is the (2,4) web of figure 4 where, as already discussed,
only diagrams (a) through (f) will contribute to the final result. Applying a replica anal-
ysis to obtain the web mixing matrix, we find (after applying colour algebra) that the
corresponding exponentiated colour factors are given by

C̃(a) = −1
2c

[3,2]
1 + c

[3,2]
2 ;

C̃(b) = −3
2c

[3,2]
1 + c

[3,2]
2 ;

C̃(c) = C̃(d) = 0

C̃(e) = C̃(f) = −c[3,2]
1 , (5.51)

so that the contribution of the entire renormalised web is given by

W(2,4) = c
[3,2]
1

[
F(2,4);1 + FCT

(2,4);1

]
+ c

[3,2]
2

[
F(2,4);2

]
(5.52)

=− c[3,2]
1

(1
2Fa + 3

2Fb + Fe + Ff + FCT
e + FCT

f

)
+ c

[3,2]
2 (Fa + Fb) ,

As indicated in the second line, FCT
(2,4);1 is included because diagrams (e) and (f) must be

supplemented by graphs in which the one-loop vertex counterterm of appendix C dresses
the two-loop crossed gluon web of figure 19, whose kinematic factor can be found in
eqs. (A.3), (A.4). This gives

FCT
(2,4);1 = −2Z(1)

v FX . (5.53)

Using the calculational approach adopted for the other boomerang webs, we find that the
kinematic part of each diagram D ∈ {a, b, e, f} in figure 4 can be written as

FD(α12) = κ3 Γ(6ε)
ε(1− 2ε)

∫ 1

0
dy dz pε(y, α12)pε(z, α12)φD(y, z;α12) , (5.54)

where we have already performed the integration over the boomerang gluon. Considering
first diagram (a) we find

φa(y, z;α12) = (1− y)2ε
∫ 1

0
dww4ε−1(1− w)2ε−1

[
1−

(
1− 1− w

w

1− z
1− y

)2ε]
× θ

(1− w
w

<
y

z

)
θ

(1− w
w

<
1− y
1− z

)
.

(5.55)

Making the change of variable to:
q = 1− w

w
, (5.56)

eq. (5.55) becomes:

φa(y, z;α12) = (1−y)2ε
∫ ∞

0
dq q2ε−1(1+q)−6ε

[
1−

(
1− 1−z

1−y q
)2ε]

θ

(
q <

y

z

)
θ

(
q <

1−y
1−z

)
,

(5.57)
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which can be integrated to give

φa(y, z;α12) = (1− y)2ε

2ε

{(
y

z

)2ε
θ(z > y) (5.58)

×
[

2F1

(
2ε, 6ε; 1 + 2ε;−y

z

)
− F1

(
2ε, 6ε,−2ε, 1 + 2ε;−y

z
,
y(1− z)
z(1− y)

)]
+

(1− y
1− z

)2ε
θ(y > z)

×
[

2F1

(
2ε, 6ε; 1 + 2ε;−1− y

1− z

)
− Γ2(1 + 2ε)

Γ(1 + 4ε) 2F1

(
2ε, 6ε; 1 + 4ε;−1− y

1− z

)]}
.

Here 2F1(a, b; c; z) is the Gauss hypergeometric function, and F1(a, b, c, d;x, y) the Appell
F1 function. We may expand the former in ε using the HypExp package in Mathemat-
ica [78, 79]. We explain how to expand the Appell function in appendix F.1, such that
after expansion in ε eq. (5.58) assumes the form

φa(y, z;α12) = 2ε Li2
(
z

y

1− y
1− z

)
θ(y > z) + 2ε ζ2θ(z > y) +O(ε2) . (5.59)

Next we note that owing to the symmetry of the propagator functions in (5.54), we are free
to transform the integration parameters according to y → 1 − y and z → 1 − z, in any of
the terms. Using this freedom we eliminate the θ(z > y) component, shifting the ζ2 term
to the θ(y > z) component, obtaining

φa(y, z;α12) = ε

{
2 ζ2 + 2Li2

(
z

y

1− y
1− z

)}
θ(y > z) +O(ε2). (5.60)

Similarly, the kinematic parts of diagrams (b), (e) and (f) in figure 4 can be written
in the form of eq. (5.54) with the kernels

φD(y, z;α12) = (1− y)2ε
∫ ∞

0
dq q2ε−1(1 + q)−6εθ

(
q >

y

z

)
θ

(
q <

1− y
1− z

)
ψD

(1− z
1− y q

)
(5.61)

where

ψb(Q) = 1− ψf (Q); ψe(Q) = Q2ε − ψb(Q); ψf (Q) = (1−Q)2ε . (5.62)

The corresponding ε-expanded kernels are given by

φb(y, z;α12) = ε

{
2 ζ2 − 2Li2

(
z

y

1− y
1− z

)}
θ(y > z) +O(ε2); (5.63)

φe(y, z;α12) =
{
ln
(
y

z

1− z
1− y

)
+
[1

2 ln
2
(1− z

1− y

)
− 1

2 ln
2
(
z2

y2
1− y
1− z

)
+ 2 ln

(
y

z

1− z
1− y

)
ln(1− z)

− 2 ζ2 + 6Li2
(
− 1−z

1−y

)
− 6Li2

(
− z

y

)
+ 2Li2

(
z

y

1−y
1−z

)]
ε

}
θ(y>z) +O(ε2);

φf (y, z;α12) =
{
ln
(
y

z

1− z
1− y

)
+
[
ln2
(1− z

1− y

)
− ln2

(
z

y

)
+ 2 ln

(
y

z

1− z
1− y

)
ln(1− z)− 2 ζ2

+ 6Li2
(
− 1− z

1− y

)
− 6Li2

(
− z

y

)
+ 2Li2

(
z

y

1− y
1− z

)]
ε

}
θ(y > z) +O(ε2).
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The combination of kinematic factors appearing in eq. (5.52) for the colour factor c[3,2]
1

then evaluates to

F(2,4);1(α12) =−
(
g2
s

8π2

)3 ∫ 1

0
dy dz p0(y, α12)p0(z, α12)θ(y > z)

×
{

1
6

[
− 12Li2

(
−1− z

1− y

)
+ 12Li2

(
−z
y

)
− 2Li2

(
z(1− y)
y(1− z)

)

+ 2 ln
(
z(1− y)
y(1− z)

)
ln
(
q(y, α12)

y2

)
− 2 ln

(
y

1− y

)
ln
(
q(z, α12)

z2

)
− 2 ln

(1− z
z

)
log

(
q(z, α12)
(1− z)2

)
− 6 ln

(
y

1− y

)
ln
(1− z

z

)

− 4 ln
(
y(1− z)
z(1− y)

)
− 12 ln z ln

(
y(1− z)
z(1− y)

)
− ln2

(
y

1− y

)
− 9 ln2

(1− z
z

)]

− ln
(
µ2

m2

)
ln
(
y(1− z)
z(1− y)

)}1
ε

+O(ε0).

(5.64)
Furthermore, the counterterm contribution amounts to

FCT
(2,4);1(α12) =− 1

2

(
g2
s

8π2

)3∫ 1

0
dy dz p0(y, α12)p0(z, α12)θ(y > z)

{
ln
(
y(1− z)
z(1− y)

)[
2 ln

(
µ2

m2

)

+ ln
(
q(y, α12)

y2

)
+ ln

(
q(z, α12)

z2

)
+ 2 ln(yz)

]
+ 4Li2

(
−1−z

1−y

)
− 4Li2

(
−z
y

)

+ ln2
(1− z

1− y

)
− ln2

(
z

y

)}1
ε

+O(ε0). (5.65)

Using the fact that there are no lower-order contributions that form non-zero commu-
tators in eq. (2.12), the O(ε−1) coefficient of the renormalized (2,4) web directly determine
its contribution to the soft anomalous dimension. Putting things together in the combi-
nation of eq. (5.52), we find the integrals multiplying the two colour structures c[3,2]

i for
i = 1, 2 to be

F
(3)
(2,4);i(α12) =

∫ 1

0
dy

∫ 1

0
dz p0(y, α12) p0(z, α12) θ(y > z)G(3)

(2,4);i(y, z, α12) , (5.66)

where we displayed the overall Heaviside function restricting the integration range, and
where

G(3)
(2,4);1(y, z, α12)= 4

3

[
2Li2

(
z

y

1−y
1−z

)
+ 4 ln

(
y

1−y

)
−ln

(
y

1−y

)
ln
(
q(y, α12)

y2

)
−2 ln2

(
y

1−y

)
+ 4 ln

(1− z
z

)
− ln

(1− z
z

)
ln
(
q(z, α12)
(1− z)2

)
− ln

(
y

1− y

)
ln
(
q(z, α12)

z2

)
+ ln

(
z

1− z

)
ln
(
q(y, α12)

y2

)]
;

G(3)
(2,4);2(y, z, α12)=− 16

3 ζ2 . (5.67)
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The second kernel can be straightforwardly integrated over y and z and written in terms
of the basis functions of eq. (2.51) as

F
(3)
(2,4);2(α12) = −4

9r
2(α12)π2M2

0,0,0(α12) = −4
9r

2(α12)
(
6M0,2,1(α12)−M0,0,3(α12)

)
. (5.68)

The integration of the first kernel in eq. (5.67), however, is not immediately inter-
pretable in terms of basis functions. Firstly, it contains dilogarithms involving the param-
eters y and z, which are not part of the integrand of eq. (2.51), consisting exclusively of
powers of logarithms. The webs previously calculated in this paper and in refs. [44, 45]
contained dilogarithms at intermediate stages, but these completely cancelled at the level
of the subtracted web integrand. Here this is not the case, and we have furthermore found
no variable transformation (or dilogarithm identity) that removes the dilogarithms from
eq. (5.67). Secondly, there is a remaining Heaviside function in eq. (5.67), which also does
not appear in the definition of eq. (2.51). It thus appears that our previously conjectured
basis of functions is incomplete. However, this conclusion is premature and incorrect. Re-
markably, the kernel of eq. (5.67) may be integrated fully analytically and found to respect
the basis of eq. (2.51) after all. In appendix F.2 we show how this works in detail. The
final result reads

F
(3)
(2,4);1(α12) = 4

3r
2(α12)

[
8M0,1,1(α12)− 4M1,1,1(α12)− 3M0,2,1(α12)− 1

6 M0,0,3(α12)
]
,

(5.69)

featuring weight 4 as well as weight 3 contributions.
We have now calculated all multiple-gluon exchange boomerang webs up to three-loop

order, and shown that they conform with the expected functional form: an overall rational
function consisting of powers of r(αij) for any non-boomerang exchange between lines i
and j, multiplying a pure transcendental function. The latter may be expressed in terms
of sums of products of our Mk,l,n(αij) basis functions, each dependent on a single αij and
having a restricted symbol alphabet, eq. (2.48). We found one salient difference compared
to non-boomerang MGEWs: while MGEWs without boomerang gluons have uniform, max-
imal weight (weight 5 for subtracted webs at three loops), boomerang ones have mixed,
non-maximal weight. Table 2 presents the weights occurring in each case: the fact that the
maximal weight occurring reduces by one unit with each additional boomerang gluon, is
expected based on the observation in section 3.3, namely that for each boomerang gluon,
there is one integration, over xl in eq. (3.23), which instead of increasing the weight by one
unit as in non-boomerang webs, generates a factor of 1/(1 − 2ε), which reflects a power
divergence due to an instantaneous interaction. At leading order in the ε expansion this
readily translates into a weight drop compared to the non-boomerang case, and further-
more, when subleading powers in ε hit higher-order pole terms in the web kernel, further
lower weight terms emerge.

As discussed in section 2.3, a further consistency check on higher-loop webs is that a
subset of the information in a given web can be obtained from webs connecting a greater
number of Wilson lines, through the process of collinear reduction. We discuss how this
applies to the boomerang webs calculated in this paper in the following section.
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web boomerangs weights
(1,1,4) c[3,3]

3 1 4
(1,1,4) c[3,3]

4 1 4,3
(1,2,3) c[3,3]

4 1 4,3,2
(3,3) c[3,2]

1 2 3,2
(5,1) c[3,2]

1 2 3,2,1
(2,4) c[3,2]

2 1 4
(2,4) c[3,2]

1 1 4,3

Table 2. Transcendental weights in the kinematic functions of three-loop webs. The left column
specifies the web and the colour factor component using the bases in eqs. (5.1) and (5.25), the
middle column presents the number of boomerang gluons, and the right one the weights of the
transcendental functions entering the anomalous dimension.

6 Collinear reduction for boomerang webs

In section 2, we reviewed how kinematic factors have been previously obtained for
boomerang-free MGEWs [44, 45, 55, 57, 58]. In such cases, it was possible to perform
an additional (albeit partial) cross-check of the final results for web kinematic factors, us-
ing the process of collinear reduction [45]. Roughly speaking, this states that one may
take a web connecting n Wilson lines, and obtain kinematic results pertaining to webs
connecting m < n lines, by identifying the 4-velocities of two or more Wilson lines in the
original web. In carrying out such a procedure, gluon emissions from different Wilson lines
may end up on the same line, and we must then reinterpret the colour indices of such emis-
sions appropriately. To this end, the effective vertex formalism reviewed here in section 2.3
becomes useful: eq. (2.26) implies that there is no natural ordering of effective vertices
if more than one of them occurs on a given Wilson line. Thus, as far as the ordering of
vertices is concerned, it is similar to the case where they occur on different Wilson lines.
To explore the converse of this, imagine a web in which two Wilson lines l1 and l2 contain
a single vertex each, which we may write as V (l1)

K1
and V

(l2)
K2

respectively. The collinear
reduction process then consists of the following steps:

1. One sets the 4-velocities β1 and β2 to be equal (hence the term “collinear”).

2. One identifies the partonic colour indices of the generators in the two vertices as
living in the same (single) colour space.

3. One symmetrises over the colour factors of the two vertices, as in eq. (2.26).

4. One must include symmetry factors present in the obtained web, that are missing in
the original web.

This procedure generalises straightforwardly to any number of effective vertices, and was
already used in ref. [45], where it provided a highly non-trivial check of non-boomerang
MGEWs at three-loop order. Note that not all information in the fewer-line webs can be
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(a) (b)

Figure 12. (a) The (1,1) web, which features a 1-gluon emission vertex on each line; (b) collinear
reduction of Wilson lines i and j to make a self-energy web on the single line i.

obtained by collinear reduction. Due to the symmetrisation over multiple vertices, the
fully antisymmetric colour part of a given web cannot be generated. This is precisely the
contribution in which there is a fully connected colour factor on each individual Wilson line,
namely that arising from having at most a single effective vertex on each line. For example,
for three-line webs collinear reduction may yield the components involving c[3,3]

i for i = 1
through 3 in eq. (5.1), which contain two C2,1 effective vertices (defined in eq. (2.24)) on
line i, but not c[3,3]

4 , which is fully antisymmetric. Similarly for two-line webs collinear
reduction may yield the c[3,2]

2 component defined in eq. (5.25), but not the c[3,2]
1 one.

It is possible to use a similar collinear reduction procedure to check some of the results
of this paper. However, the presence of boomerang gluons creates additional complica-
tions, which were not necessary to consider in ref. [45]. At the outset, in computing non-
boomerang MGEWs using collinear reduction, the collinear limit βi = βj simply amounts
to identifying αik = αjk in the kinematic function of the original web. In turn, in computing
boomerang webs, the collinear limit also involves taking αij → −1 for the boomerang gluon
itself. In this limit r(αij) of eq. (2.46) diverges and the basis functions Mk,l,n(αij) become
complex, so it is not a priori clear that the collinear limit exists. To better understand the
problem we first consider the relation between the single-gluon exchange (1,1) web diagram
and the self-energy one upon taking the collinear limit. We will subsequently explain how
the problem is resolved in boomerang webs in which boomerang gluons straddle one or
more emissions along the Wilson line. We will demonstrate the application of the collinear
reduction procedure in the rather non-trivial example of the (1,1,4) web in section 6.2.

6.1 The collinear limit of the (1,1) web

In this section, we consider the (1,1) web of figure 12(a) and use it to analyse the collinear
limit. Upon identifying the two Wilson lines i and j, we obtain the self-energy diagram
of figure 12(b), whose integral was computed in section 3.1. The kinematic factor for the
(1,1) web is given in eq. (A.1),

F (1)(αij , ε) = κΓ(2ε)
∫ 1

0
dxpε(x, αij) = κ

ε

1 + α2
ij

1− α2
ij

ln(αij) + O(ε0) , (6.1)
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where in the second equality we substituted for r(αij) using eq. (2.46) and expanded in ε,
keeping only the leading-order term. Taking the collinear limit to obtain figure 12(b), one
identifies βi = βj , which from eq. (2.6) implies

γij → 2, αij → −1. (6.2)

One could therefore expect that the self-energy web would be given by the αij → −1 limit
of eq. (6.1), that is

1
2 lim
αij→−1

F (1)(αij , ε) = 1
2
κ

ε
lim

αij→−1

1 + α2
ij

1− α2
ij

ln(αij)+ · · · = 1
2
κ

ε
lim

αij→−1

iπ

1 + αij
+ · · · , (6.3)

where the factor of 1/2 originates from the symmetrisation of the colour generators. Per-
haps surprisingly, we see that the kinematic limit required for the collinear reduction is
ill-defined, whereas the result we are expecting to reproduce — the self-energy factor of
eq. (3.5) — is perfectly well-behaved.

To see what has gone wrong, we may examine the kinematic factor for the (1,1) web
in more detail. Following the procedures outlined in section 2, one finds (cf. eq. (3.2))

F (1)
(1,1)(αij) = g2

s µ̄
2εNβi · βj

∫ ∞
0
ds

∫ ∞
0
dt
[
−(sβi − tβj)2 + iε

]ε−1
e−im

(
s
√
β2

i +t
√
β2

j−iε
)
,

(6.4)

where s and t are distance variables for the gluon attachments on lines i and j respectively.
Transforming according to eqs. (2.32), (2.33), eq. (6.4) can be rewritten as

F (1)
(1,1)(αij) = κγij

∫ ∞
0

dλλ2ε−1e−λ
∫ 1

0
dx
[
x2 + (1− x)2 − γijx(1− x)

]ε−1

= −κΓ(2ε)
(
αij + 1

αij

)∫ 1

0
dx

[
x2 + (1− x)2 +

(
αij + 1

αij

)
x(1− x)

]ε−1

,

(6.5)

where the λ integral was carried out as previously. In general kinematics one may subse-
quently perform the integration over x using the factorization property of the expression in
the square brackets (q(x, α) in eq. (2.43)) yielding the hypergeometric functions in eq. (A.1)
corresponding to the two poles at

xpoles =
{

1
1− αij

,
αij

αij − 1

}
. (6.6)

Since we are dealing with an analytic function of αij we may start with real 0 < αij <

1, corresponding to space-like kinematics (say βi incoming and βj outgoing) to ensure
that both poles in (6.6) are outwith the integration domain x ∈ [0, 1], and subsequently
analytically continue to the required kinematic point (for time-like kinematics αij is located
just above the cut on the negative real axis). Note that this computation, and eq. (6.1)
in particular, is consistent with expanding under the integral about ε = 0, and integrating
term by term.
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In performing the collinear reduction of eq. (6.5), one must take the limit αij → −1,
and include a factor of 1/2 from symmetrisation of the gluon vertices. The relevant limit
of the (1,1) web is then

1
2 lim
αij→−1+iε

F (1)
(1,1)(αij)

= −κΓ(2ε)1
2 lim
αij→−1+iε

(
αij + 1

αij

)∫ 1

0
dx

[
x2 + (1− x)2 +

(
αij + 1

αij

)
x(1− x)

]ε−1

.

(6.7)

This limit may be compared with the direct computation of the self-energy web integral in
eq. (3.4), which yields

2κΓ(2ε)
∫ 1

1/2

dx

[(2x− 1)2]1−ε
= 2κΓ(2ε)1

2
1

2ε− 1 . (6.8)

We have already seen in eq. (6.3) that the two fail to agree at leading order in ε. Having
discussed the pole structure of eq. (6.5) we clearly see the origin of the problem: while for
generic kinematics we may expand in ε under the integral near ε = 0, upon considering
the special point αij = −1 the two poles in eq. (6.6) coincide leading to a double pole at
x = 1

2 , which is not integrable near ε = 0; it requires instead ε > 1
2 , followed by analytical

continuation in ε, before an expansion can be performed. It is therefore not surprising that
the result we obtained for general kinematic in (6.1) is incompatible with the special case
of αij = −1.

The issue we encountered in eq. (6.3) boils down to an obstruction in performing
analytic continuation of the general kinematic result in αij , computed as an expansion in
ε, to the strict collinear limit where αij = −1, where the function has a branch point.
Indeed, adhering to the iε prescription, the collinear limit in eq. (6.7) is itself well-defined,
and furthermore, is equal to the self-energy web in eq. (6.7), as we now show. Taking the
limit under the integral in eq. (6.7) for ε > 1

2 we arrive at

1
2 lim
αij→−1+iε

F (1)
(1,1)(αij) = κΓ(2ε)

∫ 1

0

dx

[(2x− 1)2 − iδ]1−ε

= 2κΓ(2ε)

1
4(−iδ)ε−

1
2

√
πΓ
(

1
2 − ε

)
Γ(1− ε) + 1

2
1

2ε− 1 2F1

(1
2 − ε, 1− ε,

3
2 − ε, iδ

)
−−−−→
δ→0+

2κΓ(2ε)1
2

1
2ε− 1 ,

(6.9)

where at the first step we conveniently account for the prescription using a new small
parameter δ > 0, in the second we evaluate the integral exactly as a function of δ and in
the final stage consider the limit δ → 0+. Of course this limit is taken with ε > 1

2 , where
the first term vanishes while the hypergeometric function in the second reduces to 1. We
thus observe that the collinear limit of the (1,1) web does indeed reproduce the self-energy
web result of eq. (6.8) as a function of ε.
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With this example we have reassured ourselves that the collinear limit of webs can be
consistently taken also when it gives rise to boomerang webs. We have seen that a subtle
situation arises in the collinear limit αij → −1, in which the two singularities in eq. (6.6)
coincide, potentially prohibiting an expansion about ε = 0 prior to integration over x. In
eq. (6.9) we have overcome this by keeping the iδ prescription prior to integrating over x,
in which case the result of the direct computation (eq. (6.8)) is exactly recovered from the
collinear limit.

Next we turn our attention to the question of how to obtain subtracted web results
for boomerang webs from final results for (subtracted) webs with a larger number of lines
by taking collinear limits. Importantly, in this case the expansion in ε for the originally-
computed web has already been done (recall that the subtracted web is defined in eq. (2.20)
by considering the coefficient of ε−1), violating the proper order of limits we adhered to
above. We have already seen in eq. (6.3) that the self-energy diagram cannot be recovered
in this way from the (1,1) web. Nevertheless, in the following section we will show that the
limit αij → −1 can actually be taken to determine boomerang webs in which (as we have
seen) all boomerang gluons necessarily straddle at least one extra emission along the Wilson
line. To this end one must not consider the collinear limit of individual subtracted webs,
but instead identify the combination of subtracted webs forming together the boomerang
web of interest in the collinear limit. Upon considering this combination the limit exists
and is bound to reproduce the result of the direct computation.

6.2 Collinear reduction into boomerang webs

To begin, we would like to explain the qualitative difference there is between the hopeless
attempt to recover the self-energy web from the ε-expanded (1,1) web, along the lines of
eq. (6.3), and the well-defined collinear-reduction procedure into boomerang webs where
boomerang gluons necessarily straddle other emissions along the Wilson line. As shown
above, the self-energy web requires setting ε > 1

2 when the integration is performed, owing
to the double pole in eq. (6.8), which explains why the αij → −1 limit of the (1,1) web does
not commute with the ε expansion. In contrast, as discussed in section 3.3, and demon-
strated in several examples in section 5 (see specifically the discussion following eq. (5.2)
regarding the (1,1,4) web and following eq. (5.38) regarding the (5,1) web) non-self-energy
boomerang webs, where each boomerang gluon straddles other emissions, have the key
property described following eq. (3.25) where the integrand features an extra suppression
factor ∼ (xl − 1

2), regularising the double pole at xl = 1
2 , and rendering the integral in

eq. (3.23) well-defined for small positive values of ε. In such webs then, an expansion in
ε will be valid (provided of course logarithmic end-point singularities are properly regu-
larised by ε > 0). It is therefore expected that such boomerang webs could be reproduced
order-by-order in the ε-expansion by considering collinear limits of non-boomerang webs,
by taking the αij → −1 limit. Specifically, this can be done directly for the subtracted web.

Having cleared the conceptual issue, let us now show how to apply the collinear re-
duction procedure in practice, by considering three-line boomerang webs. For a given
three-line web W , we must find webs connecting four Wilson lines that can produce the
diagrams contained in W upon identifying two of the Wilson lines. Furthermore, as shown
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in ref. [45], in the language of effective connected vertices of ref. [58], the process of merging
the two lines involves symmetrisation of the order of the effective vertices which are now
placed on a single line. This implies that the specific colour components of a given web
which may be recovered upon applying collinear reduction are those where at least one of
the lines features two or more effective vertices.

Our first and central example is the (1,1,4) web of figure 7. We will show that its
colour component c[3,3]

3 , whose corresponding kinematic function was determined through
a direct calculation in the previous section (see eq. (5.11)), may be derived11 through the
collinear reduction of non-boomerang four-line MGEWs computed in ref. [44]. The basic
observation is that the colour structure c[3,3]

3 defined in eq. (5.1) may be expressed in two
different ways using connected multiple-gluon-emission effective colour matrices as follows:

c
[3,3]
3 = −T a1 T b2

{
T c3 , C

ac,b
3,2 (3)

}
, (6.10a)

c
[3,3]
3 = T a1 T

b
2

{
Cbe2,1(3), Cea2,1(3)

}
, (6.10b)

where the double- and triple-gluon-emission matrices, defined in eqs. (2.24) and (2.25), are
always placed on Wilson line 3, inside an anticommutator. Therefore, in total four gluons
are emitted from this line, out of which one pair is contracted to form the boomerang
gluon, as relevant to the (1,1,4) web of figure 7.

To determine which four-line webs contribute to the c[3,3]
3 component of the (1,1,4)

web upon applying collinear reduction, consider placing one of the two colour matrices
appearing in the anticommutators in eq. (6.10) on a fourth Wilson line instead. It is
straightforward to see that the corresponding four-line web would be of the (1,1,1,3) type
upon using eq. (6.10a) and of the (1,1,2,2) type upon using eq. (6.10b). Furthermore, in each
of these cases there are two distinct choices for the colour operator to be placed on line 4.
These considerations imply that in order to obtain the complete c[3,3]

3 component of the
(1,1,4) web upon taking the collinear limit 3||4, one needs to sum up the four four-line webs
shown in figures 13 and 14: the former presents the contributions of w1113(α14, α24, α34)
and w1131(α13, α23, α34), while the latter depicts the two instances of the (1,1,2,2) web,
namely w1122(α24, α34, α13) and w1122(α14, α34, α23), all of which contribute to c[3,3]

3 when
the lines 3 and 4 are identified.

We will now examine taking the limit in more detail. We first note that the collinear
limit can only be consistently taken after summing up the four contributions above. Indeed,
as we shall see, each of the four separate webs features singularities such as those in eq. (6.1),
owing to the fact that r(αij) of eq. (2.46) diverges and the basis functions Mk,l,n(αij)
become complex in the limit where the would-be-boomerang gluon αij → −1. We will
therefore postpone taking the limit αij → −1 until we have added all four contributions.
Nonetheless, for clarity we consider the four webs in turn.

Let us begin by considering the (1,1,1,3) of figure 15, which is shown in terms of
effective vertices in figure 13 (top left).

11Note that the other colour component of the (1,1,4) web, involving c[3,3]
4 , does not have two effective

colour structures on any of the lines, and therefore cannot be obtained through collinear reduction.
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Figure 13. Two different (1,1,1,3)-type webs w1113(α14, α24, α34) (top left) and w1113(α13, α23, α34)
(top right), give a contribution to the (1,1,4) web in the limit that lines 3 and 4 are collinear. The
red dashed circle indicates the symmetric contribution will be taken.

According to refs. [44, 45], the integrated subtracted (1,1,1,3) web can be written as

w
(3,−1)
(1,1,1,3) (α14, α24, α34) = −1

6 T
a
1 T

b
2T

c
3T

d
4

( 1
4π

)3
r(α14) r(α24) r(α34)

×
[
fadef ebcG(1,1,1,3) (α14, α24, α34) + facef ebdG(1,1,1,3) (α24, α14, α34)

]
, (6.11)

where

G(1,1,1,3) (a1, a2, a3) = 1
2 M2,0,0(a1)M0,0,0(a2)M0,0,0(a3)

+ 1
2 M2,0,0(a3)M0,0,0(a1)M0,0,0(a2)− M2,0,0(a2)M0,0,0(a1)M0,0,0(a3)

+M0,0,0(a1)M1,0,0(a2)M1,0,0(a3) +M0,0,0(a3)M1,0,0(a1)M1,0,0(a2)
− 2M0,0,0(a2)M1,0,0(a1)M1,0,0(a3) .

(6.12)

We will now take the collinear limit, beginning with the colour factors. We identify line 4
with line 3 and symmetrise:

T a1 T
b
2T

c
3T

d
4 f

adef ebc −→
3||4

T a1 T
b
2

1
2{T

c
3 , T

d
3 }fadef ebc = 1

2[T a1 , T b1 ][T b2 , T c2 ]{T a3 , T c3} = 1
2c

[3,3]
3 ,

T a1 T
b
2T

c
3T

d
4 f

acef ebd −→
3||4

T a1 T
b
2

1
2{T

c
3 , T

d
3 }facef ebd = 1

2[T a1 , T b1 ][T b2 , T c2 ]{T a3 , T c3} = 1
2c

[3,3]
3 .

(6.13)
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Figure 14. Two different (1,1,2,2) webs w1122(α24, α34, α13) (top left) and w1122(α14, α34, α23) (top
right), give a contribution to the (1,1,4) web in the limit that lines 3 and 4 are collinear. The red
dashed circle indicates the symmetric contribution regarding the relative position of the two V2
vertices along line 3 is taken.

Identifying lines 3 and 4 in the α-variables and defining α = α33, we find

w
(3,−1)
(1,1,1,3)(α14, α24, α34) −→

3||4
− 1

12c
[3,3]
3

( 1
4π

)3
r(α13)r(α23)r(α)

×
[
G(1,1,1,3) (α13, α23, α) +G(1,1,1,3) (α23, α13, α)

]
,

(6.14)

where it is understood that the limit α → −1 will be taken once all the contributions are
collected.

As shown in figure 13 (top right), we must also consider the (1,1,3,1) web, where three
gluons are emitted form line 3. We may readily write the result as w(1,1,1,3)(α13, α23, α34) as
it corresponds to the (1,1,1,3) web considered above with lines 3 and 4 swapped. Repeating
the steps above yields

w
(3,−1)
(1,1,3,1)(α13, α23, α34) −→

3||4
− 1

12c
[3,3]
3

( 1
4π

)3
r(α13)r(α23)r(α)

×
[
G(1,1,1,3) (α13, α23, α) +G(1,1,1,3) (α23, α13, α)

]
,

(6.15)

which is the same contribution as eq. (6.14).
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Figure 15. The (1,1,1,3) web.

(a) (b) (c)

1

2 3

4

(d)

Figure 16. The (1,1,2,2) web.

Next, we must consider the (1,1,2,2) web of figure 16, shown with effective vertices
in figure 14, top-left. The subtracted web is given by a permutation of the (1,2,2,1)
web [44, 45]:

w
(3,−1)
(1,1,2,2) (α14, α34, α23) = 1

6 f
adef ebcT a1 T

b
2T

c
3T

d
4

( 1
4π

)3
r(α12) r(α23) r(α34)

×G(1,1,2,2) (α14, α34, α23) , (6.16)

where

G(1,1,2,2) (a1, a2, a3)=− 1
2 M2,0,0(a1)M0,0,0(a2)M0,0,0(a3) (6.17)

− 1
2 M2,0,0(a3)M0,0,0(a1)M0,0,0(a2) +M2,0,0(a2)M0,0,0(a1)M0,0,0(a3)

−M0,0,0(a1)M1,0,0(a2)M1,0,0(a3)−M0,0,0(a3)M1,0,0(a1)M1,0,0(a2)
+ 2M0,0,0(a2)M1,0,0(a1)M1,0,0(a3)−4M0,2,0(a2)M0,0,0(a1)M0,0,0(a3).
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Note the second argument in this function, a2, corresponds to the α between the two lines
with two gluons attached; this is the gluon which is due to become a boomerang. The
result is symmetric between a1 and a3. Using eq. (6.13), we find

w
(3,−1)
(1,1,2,2)(α14, α34, α23) −→

3||4

1
12c

[3,3]
3

( 1
4π

)3
r(α13)r(α23)r(α)G(1,1,2,2) (α13, α, α23) . (6.18)

The second (1,1,2,2) web is a different permutation of the (1,2,2,1) web in refs. [44, 45]
which corresponds to w1122(α13, α34, α24) (figure 14). Repeating the steps above gives

w
(3,−1)
(1,1,2,2)(α13, α34, α24) −→

3||4

1
12c

[3,3]
3

( 1
4π

)3
r(α13)r(α23)r(α)G(1,1,2,2) (α13, α, α23) . (6.19)

Finally, the (1,1,4) web should be obtained by 1/2 the sum of the four contributions in
eqs. (6.14), (6.15), (6.18) and (6.19). The factor of 1/2 is due following step 4 in the rules
at the start of this section, reflecting the fact that the (1,1,4) web has higher symmetry
than the original webs, since the ends of the boomerang gluon now attach to the same
Wilson line. The collinear reduction procedure thus gives

w
(3,−1)
(1,1,4);3 = 1

2 lim
3||4

{
w

(3,−1)
(1,1,1,3) (α14, α24, α34) + w

(3,−1)
(1,1,3,1)(α13, α23, α34)

+ w
(3,−1)
(1,1,2,2)(α14, α34, α23) + w

(3,−1)
(1,1,2,2)(α13, α34, α24)

}

= 1
2 lim
α→−1

{
− 1

6c
[3,3]
3

( 1
4π

)3
r(α13)r(α23)r(α)

×
[
G(1,1,1,3) (α13, α23, α) +G(1,1,1,3) (α23, α13, α)−G(1,1,2,2) (α13, α, α23)

]}

= 1
2 lim
α→−1

{
−2

3c
[3,3]
3

( 1
4π

)3
r(α13)r(α23)r(α)M0,0,0(α13)M000(α23)M0,2,0(α)

}

= − c[3,3]
3

( 1
4π

)3 4π2

9 r(α13)r(α23)M0,0,0(α13)M0,0,0(α23) ,

(6.20)

where in the second step we inserted the expressions for the kinematic functions G(1,1,1,3)
and G(1,1,2,2) from eqs. (6.12) and (6.17) in terms of basis functions, observing a remarkable
cancellation of all terms except for the one containing M0,2,0(α), and in the last step we
have taken the limit α→ −1, using

lim
α→−1

r(α)M0,2,0(α) = lim
α→−1

1 + α2

1− α2

(2
3 log3(α) + 4ζ2 ln(α)

)
= 4

3π
2 . (6.21)

Note that the two terms in the brackets conspire to cancel the singularity, yielding together
a finite, real limit.

In summary we observe here multiple cancellations of potential singularities emanating
from the pole of r(α), which is realised in the sum of webs in eq. (6.20) both through
the cancellation of a host of terms containing the basis functions M0,0,0(α), M1,0,0(α) and
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M2,0,0(α) and through the finite limit of the remaining r(α)M0,2,0(α) term. The final result
in eq. (6.20) exactly matches the c[3,3]

3 contribution to the (1,1,4) web of eq. (5.11) obtained
by a direct computation (see appendix E, with the result given in eq. (E.15) there).

As already discussed above, it is not possible to reproduce the fully antisymmetric
colour factor c[3,3]

4 by collinear reduction. Thus, this contribution to the (1,1,4) web cannot
be checked by this procedure. Furthermore, the (1,2,3) boomerang web — which only has
a c[3,3]

4 term — is also unobtainable.
Next, let us consider the two-line webs of section 5.2. Of the three boomerang-web

examples considered there, the (3,3), (5,1) and (2,4), only the last has a component that
is accessible through collinear reduction, namely its contribution involving the c[3,2]

2 colour
factor of eq. (5.25), which involves anticommutators. All other contributions of these two-
line webs are proportional to c[3,2]

1 and are thus unobtainable through collinear reduction.
The c[3,2]

2 contribution to the (2,4) web was computed directly in eq. (5.68). Using the
notation of eq. (2.23) and the basis functions in appendix B, the result can be expressed as:

w
(3,−1)
(2,4);2(α13) =

( 1
4π

)3
c

[3,2]
2 F

(3)
(2,4);2(α13) = −

( 1
4π

)3
c

[3,2]
2

4
9π

2
(
r(α13)M0,0,0(α13)

)2
,

(6.22)
where the colour factor is defined in eq. (5.25) and for later convenience we renamed the
Wilson lines as 1 and 3.

Let us now compare this to the collinear reduction of the (1,1,4) web, i.e. starting with
the final result in eq. (6.20) and considering the limit 1||2. Let us first examine the colour
factor c[3,3]

3 defined in eq. (5.1). We find that upon merging the lines 1 and 2, it becomes

c
[3,3]
3 = −f cbefadeT a1 T b2T

{c,d}
3 → −f cbefade 1

2T
{a,b}
1 T

{c,d}
3 = 2c[3,2]

2 , (6.23)

where in the final step we used the definition in eq. (5.25). Upon applying collinear reduc-
tion to the (1,1,4) web of eq. (6.20) we must account for the extra symmetry of the (2,4)
web due to the fact that the two non-boomerang gluons connect the same two Wilson lines
(but distinct lines in the original (1,1,4) web) by including an extra factor 1/2. We thus
obtain,

w
(3,−1)
(2,4);2(α13) = 1

2 lim
1||2

w
(3,−1)
(1,1,4);3(α13, α23)

= 1
2 lim

1||2

{
− c[3,3]

3

( 1
4π

)3 4π2

9 r(α13)r(α23)M0,0,0(α13)M0,0,0(α23)
}

= −c[3,2]
2

( 1
4π

)3 4π2

9
(
r(α13)M0,0,0(α13)

)2
,

(6.24)

where in the final step we just used the reduced colour structure from eq. (6.23) and
identified α23 = α13. In this case, no α variable tends to −1, as no new boomerang gluon
is generated, so the limit is straightforward to take. Evidently eq. (6.24) agrees with the
direct computation in eq. (6.22), thus providing an additional check of the computations.
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V1

V1

V1

V3

(a)

1

2

3

4

V3

V1

V1

V1

(c)(b)

V3

V1

V1

V1

V1

V1

(a)

1

2

3

4

(c)(b)

V2

V2
V2

V2

V1

V1

V2

V2

V1

V1

Figure 17. Upper diagrams: (a) Effective vertex diagram for the (1,1,1,3) web; (b) Contribution to
the (1,1,4) web obtained from collinear reduction of (a); (c) Contribution to the (2,4) web obtained
from collinear reduction of (b). The red circle denotes symmetrisation of vertices. Lower diagrams:
the same starting with the 1122 web.

To conclude this section it is useful to take another look at the collinear reduction
process we have just completed, in which two consecutive collinear limits have been ap-
plied, first getting the c[3,3]

3 component of the (1,1,4) web by taking 3||4, and then getting
the c[3,2]

2 component of the (2,4) web by further taking 1||2. This process is summarised
diagrammatically in figure 17 using the effective vertex formalism. The basic feature of
this example of collinear reduction, is what is described by eq. (6.10), namely that the very
same colour structure of three-line webs emerges upon merging different configurations of
effective vertices. Of course the same follows for the two-line colour structure c[3,2]

2 , which
can be expressed in two different ways as

c
[3,2]
2 = −1

4
{
T a1 , T

b
1

}{
T c3 , C

ac,b
3,2 (3)

}
, (6.25a)

c
[3,2]
2 = 1

4
{
T a1 , T

b
1

}{
Cbe2,1(3), Cea2,1(3)

}
. (6.25b)

This interesting example therefore illustrates both the over-completeness of the colour basis
of eq. (2.27) when used to express boomerang webs and the non-trivial structure of the
relations between webs spanning a different number of Wilson lines.
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7 Discussion

In this paper, we have taken another step towards the calculation of the multiparton soft
anomalous dimension for massive Wilson lines at three-loop order, continuing the pro-
gramme of work developed in refs. [44, 45, 55, 57, 58]. In our approach, the logarithm
of the soft function is calculated directly in terms of Feynman diagrams known as (multi-
parton) webs. In this work we have focused specifically on what we call boomerang webs,
containing multiple gluon exchanges where at least one gluon has both its endpoints on
the same Wilson line. As in previous work on Multiple Gluon Expchange Webs (MGEWs),
we set up the calculation in configuration space, and introduced a suitable exponential
infrared regulator in order to isolate the ultraviolet divergences associated with the vertex
where the Wilson lines meet. The latter are evaluated using dimensional regularization.
We have classified all boomerang webs through three-loop order, addressed new aspects
of regularization and renormalization that arise in this class of webs and provided explicit
results for their contributions to the soft anomalous dimension.

Beyond the significance of the results as components of the three-loop massive soft
anomalous dimension, our study highlights several interesting aspects of webs and multi-
loop computations. First, we find that self-energy diagrams, including arbitrary clusters of
such, completely decouple from other boomerang webs. Boomerang webs which span two
or more Wilson lines, include a priori both self-energy subdiagrams and diagrams where
the boomerang gluons straddle one or more emission vertices connecting to other Wilson
lines. However, we have proven in full generality (section 4) that only the latter type
contribute. That is, all web diagrams containing self-energy subdiagrams have a vanishing
exponentiated colour factor. This clearly simplifies the computation of such webs, since
only a subset of the diagrams need to be computed. Furthermore, the boomerang gluons
in these diagrams do not require any infrared regulator: their regularization is guaranteed
by that associated with the non-boomerang gluons which they straddle. This is shown in
section 3.3 and illustrated in a variety of examples in section 5.

Our proof for the complete decoupling of self-energy diagrams from multi-line
boomerang webs utilises the replica trick and relies on the combinatorial properties of
the web mixing matrix, as well as the colour algebra (namely that self-energy-type subdi-
agrams are diagonal in colour space). These general observations suggest that there may
be further interesting insights to be gained about the structure of web mixing matrices,
and also about what happens when one combines their combinatorial properties with the
known colour algebra of a non-Abelian gauge theory. Recently, the calculation of these
matrices was systematically extended to the four-loop order [65, 66], so there is clear scope
for further progress in this area.

A significant part of our study here has been dedicated to the properties of the kine-
matic functions arising in boomerang webs. Our findings are consistent with the conjec-
ture [44, 45] that MGEWs spanning several Wilson lines are expressible as sums of products
of harmonic polylogarithms of individual cusp angles αij , multiplied by a unique rational
function r(αij) = 1+α2

ij

1−α2
ij

for every gluon exchange between the lines i and j. As reviewed
in section 2.4, the appearance of these functions can be most easily understood in con-
figuration space, where a suitable choice of variables leads to factorization of the gluon

– 64 –



J
H
E
P
1
2
(
2
0
2
1
)
0
1
8

propagator, and the integral can be recast in a d log form. This was first noted in the
context of the angle-dependent cusp anomalous dimension [73], and then conjectured to
apply to any MGEW [44, 45]. The fact that the dependence on several kinematic variables
does not lead to new types of singularities is a highly non-trivial feature, which is special
to MGEWs. Moreover, as reviewed here in section 2.5, MGEWs were conjectured to be ex-
pressible in terms of a restricted class of harmonic polylogarithms, defined (see eq. (2.51))
through a single integral over a product of three types of logarithms [45]. In this paper
we extended the class of webs for which this conjecture was tested. We found that while
the main properties still hold, namely boomerang webs are still expressible12 as sums of
products of the same basis of functions, one salient feature is lost, namely boomerang webs
are no more functions of uniform, maximal transcendental weight. Instead, they always
display a weight-drop of at least one unit for every boomerang gluon (with no rational
factor) and furthermore, often feature mixed weight, as summarised in table 2.

The mechanism leading to the weight-drop and the mixed weight is analysed in some
detail in section 3.3. This may be of broader interest, well beyond the context of webs,
because a general understanding of transcendental weight in perturbative computations
is lacking. In particular, while it has been observed that certain quantities in N = 4
Super-Yang-Mills (SYM) feature uniform, maximal weight, and moreover are equal to the
maximal weight terms on the corresponding quantities in QCD, these properties are not
general, and the underlying mathematical reasons for these relations and for the complex
mixed-weight structure in QCD, remain elusive. Nevertheless, from the perspective of
comparing results in different gauge theories it is not surprising to see that non-boomerang
MGEWs have uniform maximal weight, while boomerang webs feature a weight-drop and
mixed weight. Indeed, only the latter contribute to the renormalization of the coupling,
thus affecting the QCD result, while not the N = 4 SYM one.

Our finding that, despite the mixed weight, boomerang webs can still be expressed in
terms of the same basis of functions provides further evidence that the conjecture above
holds for all MGEWs. This is interesting because it is already known that going beyond
MGEWs, the basis of transcendental functions must be extended (and likewise the set
of rational functions they accompany) as seen explicitly in the calculation of the angle-
dependent cusp anomalous dimension in QCD at three loops [8, 9], and in QED [10] at
four loops.

In section 6, we have generalised and applied the collinear reduction procedure devel-
oped in ref. [45], motivated by the effective vertex formalism of ref. [58]. First we have
seen that collinear limits generating boomerang gluons involve taking the limit αij → −1,
which may be rather subtle in dimensional regularization. For the self-energy web, the
direct computation requires ε > 1

2 , and it therefore cannot be recovered from the expanded
(1,1) web. We have then seen that in boomerang webs, in which boomerang gluons straddle
other emissions along the Wilson line, order-by-order treatment in ε is in fact possible, as
all singularities are regularised by small positive values of ε. This guarantees the validity
in principle of the collinear reduction process.

12We emphasise that the applicability of the basis of functions of [45] to boomerang webs is not a priori
obvious. Indeed, there are instances, such as the (2,4) web, where the form of the integral is rather different
to eq. (2.51), and yet the final result can be recast in terms of such functions.
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Next we examined the non-trivial example of the (1,1,4) web, demonstrating that it can
be recovered from results for non-boomerang four-line webs. Specifically, we have shown
that upon considering the complete set of four-line webs (specifically, the (1,1,1,3), (1,1,3,1)
webs and two instances of the (1,1,2,2) web) whose collinear limit contribute to the (1,1,4)
web, the limit exists, and through a rather intricate set of cancellations, reproduces the
result of the direct calculation. This provides a strong check of our results.

The fact that different four-line webs, with different compositions of effective colour
vertices contribute together is an interesting feature, which is a reflection of the fact that
the basis in eq. (2.27) becomes over-complete when contracting pairs of adjoint indices
of different effective colour vertices on the same line, as needed when forming boomerang
webs. While we showed that collinear reduction may be used to compute (or check) certain
components of boomerang webs, we stress that this procedure does not constrain those
contributions to lower-line webs involving a fully antisymmetric colour factor, such as e.g.
c

[3,3]
4 in eq. (5.1) or c[3,2]

1 in eq. (5.25), and thus cannot be generally used as a replacement
of direct computations.

In this paper, we have completed the calculation of a class of contributions to the
soft anomalous dimension, while also proving a general result on the decoupling of self-
energy diagrams and deepening our understanding of the analytic structure of webs and
their collinear limits. Work towards calculating the remaining contributions to the full and
gauge-invariant result is ongoing. These involve gluon self-interactions off the Wilson lines,
necessitating a range of different and more complex techniques.
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A Results for lower-order webs

Here, we collect some useful results for one- and two-loop webs, obtained in refs. [44, 45]
using the approach described in section 2. First, there is the single gluon exchange web
connecting lines i and j at one-loop order. This web has a colour factor c[1,2] = T1 · T2 and
a kinematic factor

F (1)(α12, µ
2/m2, ε) = κΓ(2ε)

∫ 1

0
dxpε(x, α12)

= κΓ(2ε) r(α12)
ε

(
2F1

(
1, 2ε, 1+ε, α12

1+α12

)
− 2F1

(
1, 2ε, 1+ε, 1

1+α12

))
= κΓ(2ε) 2r(α12) ln(α12) + O(ε0)

= − g2
s

16π2
2
ε
r(α12) ln(α12) + O(ε0) , (A.1)
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(a) (b)

i j i j

1 2

3

1 2

3

Figure 18. The (1,1,2) web.

where in the first line we used pε(x, α) of eq. (2.43), in the second we performed the integral
keeping the exact ε dependence in terms of Gauss hypergeometric functions, and expressed
the rational function using r(α) of eq. (2.46) and in the third and fourth lines we expanded
in ε keeping only the singular term. Higher-order terms, O(εk) for k ≥ 0, will be needed
for the renormalization of higher-order webs. These follow simply from expansion of the
propagator function pε under the integral in the first line of (A.1) according to eq. (2.44),
or alternatively from the ε expansion of the hypergeometric functions in the second line
of eq. (A.1).

Next, consider the two-loop three-line (1,1,2) web of figure 18. This web contributes
through a single connected colour factor proportional to the structure constant fabc. Con-
sidering a (1,1,2) web with two attachments on line 3 and single attachments on each of the
lines 1 and 2, the colour factor is c[2,3] = 1

2 if
abcT a1 T

b
2T

c
3 and the corresponding kinematic

factor (for the non-subtracted web) is (see ref. [44])

F (2)
(1,1,2)(α13, α23) = κ2Γ(4ε) 1

2ε

∫ 1

0
dydz pε(y, α23)pε(z, α13){(

z

y

)2ε
2F1

(
4ε, 2ε; 1 + 2ε;−z

y

)
−
(
y

z

)2ε
2F1

(
4ε, 2ε; 1 + 2ε;−y

z

)}

= 2κ2Γ(4ε)
∫ 1

0
dydz pε(z, α13)pε(y, α23)

[
ln
(
z

y

)
+ ε

{
4Li2

(
−z
y

)
+ ln2

(
z

y

)
+ π2

3

}
+O(ε2)

]
.

(A.2)

Finally, let us consider the two-loop two-line web consisting of two gluons exchanged
between lines 1 and 2. This web has two diagrams, but only one of them, with the gluons
crossed (see figure 19), has a non-vanishing exponentiated colour factor c[2,2] = Nc

2 T1 · T2.
The corresponding kinematic factor was computed long ago [7]. In our notations it is
reported in eq. (4.7) in [45] and it reads:

F (2,−1)
X = κ2Γ(4ε)

∫ 1

0
dy dz p0(y, α12)p0(z, α12)ln

(1− z
1− y

y

z

)
θ(y > z), (A.3)
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Figure 19. The (2,2) web: the crossed-gluon diagram denoted by X in the text is the only diagram
in the (2,2) web with a non-zero exponentiated colour factor.

at O(ε−1) and

F (2,0)
X = κ2Γ(4ε)

∫ 1

0
dydz p0(y, α12)p0(z, α12)

[
ln2
(1− z

1− y

)
− ln2

(
z

y

)
− 4Li2

(
− z

y

)
+ 4Li2

(
− 1− z

1− y

)
+ ln

(1− z
1− y

y

z

)
ln
(
q(y, α12)q(z, α12)

)]
θ(y > z). (A.4)

and O(ε0).

B Basis functions and their symbols

In this appendix, we present explicit forms for the basis functions of eq. (2.51), together
with their symbols, as taken from ref. [45]. We only include the functions up to weight 4,
as higher-weights do not appear in the webs computed here at O(1/ε). We refer the reader
to ref. [45] for a more complete list.

For the functions themselves, we have

• Weight one.

M0,0,0(α) = 2 log(α) . (B.1)

• Weight two.

M1,0,0(α) = 2Li2(α2) + 4 log(α) log
(
1− α2

)
− 2 log2(α)− 2 ζ2. (B.2)

• Weight three.

M0,0,2(α) = 8
3 log3(α) , (B.3)

M0,1,1(α) = 2Li3(α2)− 2 log(α)
[
Li2(α2) + log2(α)

3 + ζ2

]
− 2 ζ3 , (B.4)

M0,2,0(α) = 2
3 log3(α) + 4 ζ2 log(α) , (B.5)
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M2,0,0(α) =− 4
[
Li3(α2) + 2Li3

(
1− α2

) ]
− 8 log

(
1− α2

)
log2(α)

+ 8
3 log3(α) + 8 ζ2 log(α) + 4 ζ3 .

(B.6)

• Weight four.

M3,0,0(α) = 12
[
Li4(α2)− 4Li4

(
1− α2

) ]
− 24S2,2(α2)

− 24 log
(
1− α2

)
Li3(α2)− 24 log2

(
1− α2

)
log2(α)

+ 16 log
(
1− α2

)
log3(α)− 4 log4(α)

− 24 ζ2 log(α) log
[

α

(1− α2)2

]
+ 24 ζ3 log

[
α
(
1− α2

)]
− 6 ζ4 ,

(B.7)

M1,2,0(α) = 4Li4(α2)− 4 log(α)Li3(α2) + 2 log2(α)Li2(α2)

+ 4
3 log3(α) log

(
1− α2

)
− 2

3 log4(α)

+ ζ2
[
8 log(α) log

(
1− α2

)
+ 4Li2(α2)− 6 log2(α)

]
+ 4 ζ3 log(α)− 14 ζ4 ,

(B.8)

M1,0,2(α) = 4Li4(α2)− 8 log(α)Li3(α2) + 8 log2(α)Li2(α2)

+ 16
3 log3(α) log

(
1− α2

)
− 4

3 log4(α)− 4 ζ4 ,
(B.9)

M1,1,1(α) =− 4Li4(α2) + 4S2,2(α2) + 2 log
[
α
(
1− α2

)2
]
Li3(α2)

+ 4 log(α)Li3
(
1− α2

)
− 4

3 log2(α) log
(
1− α2

) [
log(α)− 3 log

(
1− α2

) ]
− 8 ζ2 log(α) log(1− α2)− 2 ζ3 log

[
α
(
1− α2

)2
]

+ 3 ζ4 ,

(B.10)

M0,2,1(α) = 2
3π

2 log2(α) + 2
3 log4(α) , (B.11)

M0,0,3(α) = 4 log4(α) . (B.12)

One can easily check that

M0,2,1(α) = 1
2M0,0,0(α)M0,2,0(α) (B.13)

which is one example of the relations in eq. (2.52). The symbol of each function may be
found in table 3.
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Mk,l,n(α)
w Name symbol

1 M0,0,0 2 (⊗α)

2 M1,0,0 −4α⊗ η

3

M0,0,2 16α⊗ α⊗ α
M0,1,1 −4α⊗ η ⊗ α
M0,2,0 4α⊗ α⊗ α
M2,0,0 16α⊗ η ⊗ η

4

M1,0,2 −32α⊗ α⊗ α⊗ η
M1,1,1 −16α⊗ α⊗ α⊗ α+ 8α⊗ η ⊗ α⊗ η + 8α⊗ η ⊗ η ⊗ α
M1,2,0 −8α⊗ α⊗ α⊗ η − 8α⊗ η ⊗ α⊗ α
M3,0,0 −96α⊗ η ⊗ η ⊗ η
M0,2,1 16α⊗ α⊗ α⊗ α
M0,0,3 96α⊗ α⊗ α⊗ α

Table 3. Symbols of the all linearly independent functions of the MGEW basis of eq. (2.51) up to
weight 4.

s t

u

Figure 20. Diagram used for the calculation of the vertex counterterm, where β is the 4-velocity
of the Wilson line, and µ the Lorentz index of the emitted gluon.

C Gluon emission vertex counterterm

In this appendix, we calculate the counterterm for the vertex coupling a gluon to a Wilson
line. Consider the diagram of figure 20, which shows a gluon being emitted from a Wilson
line at distance parameter u, dressed by a boomerang gluon whose endpoints have distances
s and t. To identify the singularity associated with the boomerang gluon we must integrate
over s and t, keeping u fixed. Applying the Feynman rules of eqs. (2.28), (2.30), but
removing the exponential regulator for the boomerang gluon as discussed in section 3.2,
we obtain

igs µ
ε T b1T

a
1 T

b
1β

µ
∫ ∞

0
due−imu

√
β2−iεI(u), (C.1)
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where

I(u) = N g2
sµ

2ε β2
∫ u

0
ds

∫ ∞
u

dt
[
−(tβ − sβ)2

]ε−1

= −N g2
sµ

2ε (−β2)ε
∫ u

0
ds

∫ ∞
u

dt (t− s)2ε−2

= −N g2
sµ

2ε (−β2)εu2ε 1
2ε (1− 2ε) , (C.2)

where in the last line we performed the integrals over s and t assuming 0 < ε < 1
2 . We

conclude that upon neglecting terms of O(ε0) and above, eq. (C.1) assumes the form of a
usual emission vertex from a Wilson line, multiplied by the factor

− g2
s

8π2ε

(
CR1 −

1
2Nc

)
+O(ε0) , (C.3)

where we manipulated the colour factor in eq. (C.1) as in eq. (3.6). Equation (C.3) rep-
resents the singularity associated with shrinking the boomerang gluon surrounding the
emission vertex to a point. To remove this local singularity, we must introduce a pure
counterterm that is the negative of this result, i.e.

Zv = 1 + Z(1)
v

(
CR1 −

1
2Nc

)
+ . . . , Z(1)

v = + g2
s

8π2ε
, (C.4)

where the subscript v stands for the gluon-emission vertex.

D Calculation of web mixing matrices

In this appendix we review the replica-trick based algorithm developed in ref. [55] for
calculating the web mixing matrix of eq. (2.15) for a given web. This algorithm is also
heavily used in section 4 to prove that self-energy graphs do not contribute in the overall
expression for a boomerang web.

Given a web W , we may separate its soft gluon part (i.e. the part of the diagrams
remaining after the Wilson lines are removed) into a set of nc connected pieces. We
now consider a theory in which there are N non-interacting copies of the gluon fields,13

which may connect with the same Wilson lines. Then one may associate a replica index
i ∈ [1, N ] with each connected subdiagram, such that these are completely independent.
The exponentiated colour factor of eq. (4.1) for a given diagram D is then obtained as
follows:

1. One considers a particular hierarchy h of the nc replica number assignments for all
connected pieces of D.

2. For each h, one reorders the gluon attachments on each Wilson line, so that replica
indices are increasing (they may be equal, but not ever decrease) along the direction
of the appropriate 4-velocity βi. This reordering leads to a new diagram, whose colour
factor is labelled by R[D|h] in ref. [55].

13One must also replicate any additional matter that can couple to the gluons off the Wilson lines,
although this is irrelevant for this paper.
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h R[a|h] R[b|h] MN (h) O(N) part of MN (h)
i = j C(a) C(b) N 1
i < j C(a) C(a) 1

2N(N − 1) −1
2

i > j C(b) C(b) 1
2N(N − 1) −1

2

Table 4. Replica analysis of the (1,1,2) web of figure 18.

3. The contribution to the colour factor in the replicated theory from each ordering is
defined to be

MN (h)R[D|h],

where MN (h) is the multiplicity of the hierarchy h (we will see an example in what
follows).

4. Finally, one must sum over all possible hierarchies, and take the O(N) part of the
total colour factor thus obtained:

C̃(D) =
[∑
h

MN (h)R[D|h]
]
O(N)

. (D.1)

As an illustration of this procedure, let us consider the (1,1,2) web of figure 18. This has
two connected pieces (each a single gluon exchange), so that nc = 2. Assigning replica
indices i and j to them, there are three possible hierarchies h, which are listed in table 4
along with their multiplicities MN (h). Now consider diagram (a). If the replica indices are
equal, then reordering of the gluons according to their replica indices has no effect, so that
the same diagram is obtained. For the hierarchy i < j, the gluons are already correctly
ordered according to replica index, so that again the same diagram is obtained. Finally, for
the hierarchy i > j, the gluons get reordered, producing diagram (b). Adding the colour
factors for each hierarchy weighted according to multiplicity, one obtains

C̃(a) = C(a)− 1
2 (C(a) + C(b)) = 1

2 (C(a)− C(b)) . (D.2)

Repeating this analysis for diagram (b), one obtains the web mixing matrix (from eq. (4.1))

R(1,1,2) = 1
2

(
1 −1
−1 1

)
. (D.3)

Further examples of this technique can be found throughout section 4.

E Calculation of the (1,1,4) web

Here we present the calculation of the (1,1,4) web integrals in section 5.1.1. Considering
the 12 diagrams in figure 7, only the first six, denoted (a) through (f), enter eq. (5.4),
while the remaining six involve self-energy subdiagrams. Our goal here is to compute the
kinematic functions FD for diagrams D = a through f . Specifically, we wish to express
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Figure 21. Diagram (a) of the (1,1,4) web of figure 7. The parameters indicating the position of
each gluon emission and absorption along the lines are indicated by si and ti for i = 1 to 3.

these functions as in eq. (5.2) so our first task will be to determine the integration kernels
φD for these diagrams. We will illustrate the method using diagram (a) shown in figure 21
and then present the final results for the others.

As explained in the main text, the exponential regulator of eq. (2.30) is used on all
but the boomerang gluon attachments, leading to the following integral for diagram (a):

Fa(α13, α23)= g6
s µ̄

6εN 3(β1 · β3)(β2 · β3)β2
3

∫ ∞
0

ds1ds2ds3dt1dt2dt3

(−(s1β3−t1β1)2 + iε)ε−1(−(s2β3−t2β2)2+ iε)ε−1(−(s3β3 − t3β3)2+ iε)ε−1

e−im(s1+s2)
√
β2

3−iε−imt1
√
β2

1−iε−imt2
√
β2

2−iεθ(s3 > s1)θ(s1 > s2)θ(s2 > t3)
(E.1)

where N is defined in eq. (2.29) and for brevity we do not indicate the dependence of Fa
on µ̄2/m2 and ε as arguments. Let us begin by noting (see figure 21) that all si variables
run along line 3 while the ti variables each runs along the respective line i, and thus we
rescale the variables according to si

√
β2

3 − iε = σi and ti
√
β2
i − iε = τi to get:

Fa(α13, α23) = g6
s µ̄

6εN 3 γ13γ23
4

∫ ∞
0

dσ1dσ2dσ3dτ1dτ2dτ3 θ(σ3 > σ1)θ(σ1 > σ2)θ(σ2 > τ3)

(−σ2
1 − τ2

1 + γ13σ1τ1 + iε)ε−1(−σ2
2 − τ2

2 + γ23σ2τ2 + iε)ε−1

(−σ2
3 − τ2

3 + 2σ3τ3 + iε)ε−1e−im(σ1+σ2+τ1+τ2) .

(E.2)

Now we perform a change of variables, λi = σi + τi, for i = 1 through 3 along with

z = σ1
σ1 + τ1

, y = σ2
σ2 + τ2

, x = σ3
σ3 + τ3

.

Next we perform the integral over the boomerang parameter λ3 to obtain

Fa(α13, α23) = − g6
s µ̄

6εN 3 γ13γ23
4

e3iπε

2ε

∫ ∞
0

dλ1dλ2

∫ 1

0
dxdydz λ2ε−1

1 λ2ε−1
2

((2x− 1)2)ε−1Pε(y, γ23)Pε(z, γ13) e−im(λ1+λ2)[(
yλ2

1− x

)2ε
−
(
zλ1
x

)2ε]
θ(λ1z > λ2y)θ(λ2xy > λ1z(1− x)).

(E.3)
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We can now combine the remaining length parameters of the exponentially regulated
gluons,

λ = λ1 + λ2 w = λ1
λ1 + λ2

and perform the integral over λ to obtain

Fa(α13, α23) =− g6
s

(
µ̄2

m2

)3ε

N 3 Γ(6ε)
8ε

∫ 1

0
dwdydz

∫ 1

1
2

dx[((1− w)y
1− x

)2ε
−
(
wz

x

)2ε
]
w2ε−1(1− w)2ε−1((2x− 1)2)ε−1

pε(y, γ23)pε(z, γ13)θ
(

w

1− w >
y

z

)
θ

(
y

z

x

1− x >
w

1− w

)
= κ3Γ(6ε)

∫ 1

0
dydz

∫ 1

1
2

dx ((2x−1)2)ε−1pε(y, γ23)pε(z, γ13)φa(x, y, z; ε) .

(E.4)

Here we have defined the kernel φa as:

φa(x, y, z; ε) =− 1
ε

∫ 1

0
dw

[(
x

wz

)−2ε
−
( 1− x

(1− w)y

)−2ε
]
w2ε−1(1− w)2ε−1

θ

(
w

1− w >
y

z

)
θ

(
y

z

x

1− x >
w

1− w

)
=− 1

ε

∫ 1

0
dw

[(
x

z

)−2ε
w4ε−1(1− w)2ε−1 −

(1− x
y

)−2ε
w2ε−1(1− w)4ε−1

]

θ

(
w

1− w >
y

z

)
θ

(
y

z

x

1− x >
w

1− w

)
.

(E.5)

Upon changing the integration variable to u = w
1−w , the integral becomes:

φa(x, y, z; ε) =− 1
ε

(
x

z

)−2ε∫ y
z

x
1−x

y
z

duu4ε−1(1+u)−6ε − 1
ε

(1−x
y

)−2ε∫ y
z

x
1−x

y
z

duu2ε−1(1 + u)−6ε

=− 1
ε

(
x

z

)−2ε
{∫ y

z
x

1−x

0
duu4ε−1(1 + u)−6ε −

∫ y
z

0
duu4ε−1(1 + u)−6ε

}

+ 1
ε

(1− x
y

)−2ε
{∫ y

z
x

1−x

0
duu2ε−1(1 + u)−6ε −

∫ y
z

0
duu2ε−1(1 + u)−6ε

}
.

(E.6)
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We can then perform this integral over u and expand in ε to find:

φa(x, y, z; ε) =

= − 1
4ε2

(
y2

xz

)2ε [(
x

1− x

)4ε
2F1

(
6ε, 4ε; 1 + 4ε;−y

z

x

1− x

)
− 2F1

(
6ε, 4ε; 1 + 4ε;−y

z

)]

+ 1
2ε2

(
y2

(1−x)z

)2ε [(
x

1−x

)2ε
2F1

(
6ε, 2ε; 1 + 2ε;−y

z

x

1−x

)
− 2F1

(
6ε, 2ε; 1 + 2ε;−y

z

)]

= ln2
( x

1− x
)
− ε

{
12Li3

(
−y
z

)
− 12Li3

(
− xy

(1− x)z

)

+ 12 ln
(

x

1− x

)
Li2

(
−y
z

)
+ 2 ln2

( x

1− x
)

ln
(
z(1− x)

y2

)}
+O(ε2).

(E.7)

We now follow the same method to obtain results for the remaining diagrams (b) to (f) of
the (1, 1, 4) web. The respective kernels read:

φb(x, y, z; ε) =

= − 1
2ε2

(
y2

xz

)2ε [
2F1

(
6ε, 2ε; 1 + 2ε;−y

z

)
−
(1− x

x

)2ε
2F1

(
6ε, 2ε; 1 + 2ε;−y

z

1− x
x

)]

+ 1
4ε2

(
y2

(1−x)z

)2ε [
2F1

(
6ε, 4ε; 1+4ε;−y

z

)
−
(

x

1−x

)4ε
2F1

(
6ε, 4ε; 1 + 4ε;−y

z

1−x
x

)]

= ln2
( x

1− x
)
− ε

{
12Li3

(
−z
y

)
− 12Li3

(
− xz

(1− x)y

)

+ 12 ln
(

x

1− x

)
Li2

(
−z
y

)
+ 2 ln2

( x

1− x
)

ln
(
y(1− x)

z2

)}
+O(ε2);

(E.8)

φc(x, y, z; ε) =

= 1
4ε2

(
y2

xz

)2ε [
2 2F1

(
6ε, 2ε; 1 + 2ε;−y

z

)
− 2

(1− x
x

)2ε
2F1

(
6ε, 2ε; 1 + 2ε;−y

z

1− x
x

)

+
(1− x

x

)2ε
2F1

(
6ε, 4ε; 1 + 4ε;−y

z

1− x
x

)
− 2F1

(
6ε, 4ε; 1 + 4ε;−y

z

)]

= 1
2ε ln

( x

1− x
)

+ 1
2 ln

( x

1− x
)

ln
((1− x)y4

x3z2

)
− ε

{
12Li3

(
−(1− x)y

xz

)
− 12Li3

(
−y
z

)
− 1

3 ln3
(

x

1− x

)

− ln
(

x

1− x

)
ln
(
xz

y2

)
ln
(

x2z

y2(1− x)

)}
+O(ε2);

(E.9)
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φd(x, y, z; ε) =

= 1
4ε2

(
y2

z(1−x)

)2ε [
2 2F1

(
6ε, 2ε; 1+2ε;−y

z

)
− 2

(1−x
x

)4ε
2F1

(
6ε, 2ε; 1 + 2ε;−y

z

1−x
x

)

+
(1− x

x

)4ε
2F1

(
6ε, 4ε; 1 + 4ε;−y

z

1− x
x

)
− 2F1

(
6ε, 4ε; 1 + 4ε;−y

z

)]

= 1
ε

ln
( x

1− x
)

+ 2 ln
( x

1− x
)

ln
( y2

xz

)
− ε

{
12Li3

(
−(1− x)y

xz

)

− 12Li3
(
−y
z

)
− 2

3 ln3
(

x

1− x

)
− 2 ln

(
x

1− x

)
ln2
(
xz

y2

)}
+O(ε2);

(E.10)

φe(x, y, z; ε) =

= 1
4ε2

(
z2

y(1−x)

)2ε [
2 2F1

(
6ε, 2ε; 1+2ε;−z

y

)
− 2

(1−x
x

)4ε
2F1

(
6ε, 2ε; 1+2ε;−z

y

1− x
x

)

+
(1− x

x

)4ε
2F1

(
6ε, 4ε; 1 + 4ε;−z

y

1− x
x

)
− 2F1

(
6ε, 4ε; 1 + 4ε;−z

y

)]

= 1
ε

ln
( x

1− x
)

+ 2 ln
( x

1− x
)

ln
( z2

xy

)
− ε

{
12Li3

(
−(1− x)z

xy

)
− 12Li3

(
−z
y

)

− 2
3 ln3

(
x

1− x

)
− 2 ln

(
x

1− x

)
ln2
(
xy

z2

)}
+O(ε2);

(E.11)

φf (x, y, z; ε) =

= 1
4ε2

(
z2

xy

)2ε [
2 2F1

(
6ε, 2ε; 1 + 2ε;−z

y

)
− 2

(1− x
x

)2ε
2F1

(
6ε, 2ε; 1 + 2ε;−z

y

1− x
x

)

+
(1− x

x

)2ε
2F1

(
6ε, 4ε; 1 + 4ε;−z

y

1− x
x

)
− 2F1

(
6ε, 4ε; 1 + 4ε;−z

y

)]

= 1
2ε ln

( x

1− x
)

+ 1
2 ln

( x

1− x
)

ln
((1− x)z4

x3y2

)
− ε

{
12Li3

(
−(1− x)z

xy

)
− 12Li3

(
−z
y

)

− 1
3 ln3

(
x

1− x

)
− ln

(
x

1− x

)
ln
(
xy

z2

)
ln
(

x2y

z2(1− x)

)}
+O(ε2).

(E.12)

It is important to note that the overall degree of divergence in ε of φa and φb is lower
than that of the remaining diagrams: this is related to the fact that the latter diagrams
are composed of two subdiagrams that may be shrunk to the origin separately, while the
former can only be shrunk upon taking all gluons to the origin simultaneously. One can
also see that each of the φD functions vanish at x = 1

2 . This is an example of the general
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behaviour of the xl integral for a boomergang gluon which straddle one or more other gluon
emissions, as discussed around eq. (3.25).

According to eq. (5.4), the contribution to the colour factor c[3,3]
3 requires the combi-

nation
φ3 = 1

2 [φa + φb] ,

such that expanding the results of eqs. (E.7) and (E.8) gives the coefficient of ε−1 to be

F (3,−1)
(1,1,4);3(α13, α23) = −1

6

(
g2
s

8π2

)3∫ 1

1
2

dx ln2
(

x

1− x

)
[2x− 1]−2

∫ 1

0
dydz p0(y, α23)p0(z, α13).

(E.13)

Using the result ∫ 1

1
2

dx ln2
(

x

1− x

)
[2x− 1]−2 = π2

3 , (E.14)

one obtains

F (3,−1)
(1,1,4);3(α13, α23) = −π

2

18

(
g2
s

8π2

)3 ∫ 1

0
dydz p0(y, α23)p0(z, α13). (E.15)

Next, we consider the kinematic contribution to the colour factor c[3,3]
4 , for which

eq. (5.3) dictates we need the combination

φ4(x, y, z; ε) = 1
2 [−φa + φb + φc + φd − φe − φf ]

= −9
2 ln

(
x

1− x

)
ln
(
z

y

)
+ 1

2B(x, y, z)ε+O(ε2), (E.16)

where we have expanded in ε in the second line and defined

B(x, y, z) = ln
(
y

z

)(
3 ln2

(
x

1− x

)
− 9 ln

(
x

1− x

)
ln
(
x2

yz

)
− 2 ln2

(
y

z

)
− 2π2

)

+ 12 ln
(

x

1− x

)(
Li2

(
−y
z

)
− Li2

(
−z
y

))
(E.17)

− 12
(
Li3

(
−(1− x)y

xz

)
− Li3

(
−(1− x)z

xy

))
.

This can be simplified further using relations between dilogarithms, but we leave it in this
form to keep the antisymmetry between y and z manifest. φ4 enters the unrenormalized
kinematic factor accompanying c[3,3]

4 through the integral

F (3)
(1,1,4);4(α13, α23) = κ3Γ(6ε)

∫ 1

1
2

dx

∫ 1

0
dydz[(2x− 1)2]ε−1pε(y, α23)pε(z, α13)φ4(x, y, z; ε).

(E.18)
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One can check that limx→ 1
2
B(x, y, z) = 0 and hence the singularity at x = 1

2 is integrable
for ε > 0 and we find

F (3)
(1,1,4);4(α13, α23)

= κ3Γ(6ε)
∫ 1

0
dydzpε(y, α23)pε(z, α13)

×
[
− 9

4ε ln
(
z

y

)
− 6Li2

(
−z
y

)
+ 6Li2

(
−y
z

)
− 9

4 ln
(
z

y

)
(2 + ln(yz)) +O(ε)

]

=
(
g2
s

8π2

)3 ∫ 1

0
dydz p0(y, α23)p0(z, α13) (E.19)

×
[ 3

8ε2 ln
(
z

y

)
+ 1

8ε

(
8Li2

(
−z
y

)
− 8Li2

(
−y
z

)
+3 ln

(
z

y

)(
2 + ln(yz) + ln (q(y, α23)q(z, α13)) + 3 ln

(
µ2

m2

)))]
+O(ε0).

We note that the antisymmetry between y and z remains manifest in this expression.

F Steps in the calculation of the (2,4) web

The calculation of the (2,4) web is presented in section 5.2.3. Here we collect some in-
termediate results, first considering the expansion of the Appell F1 function appearing in
eq. (5.58) (appendix F.1) and then evaluating the polylogarithmic integrals in eq. (5.66)
(appendix F.2).

F.1 Expansion of the Appell F1 function entering the (2,4) web

Here, we explain how to expand the Appell F1 function appearing in eq. (5.58), as a series in
the dimensional regularisation parameter ε. Starting with the well-known one-dimensional
integral representation

F1(a, b, b′, c;x, y) = Γ(c)
Γ(a)Γ(c− a)

∫ 1

0
du

ua−1(1− u)c−a−1

(1− ux)b(1− uy)b′ , (F.1)

one has

F1(2ε, 6ε,−2ε, 1 + 2ε;x, y) = Γ(1 + 2ε)
Γ(2ε)Γ(1)

∫ 1

0
du

u2ε−1

(1− ux)6ε(1− uy)−2ε . (F.2)

Application of the Feynman parameter trick

1
AαBβ

= Γ(α+ β)
Γ(α)Γ(β)

∫ 1

0
dt

tα−1(1− t)β−1

(At+B(1− t))α+β (F.3)

gives

F1(2ε, 6ε,−2ε, 1 + 2ε;x, y) = Γ(1 + 2ε)Γ(4ε)
Γ(2ε)Γ(−2ε)Γ(6ε)

∫ 1

0
dt t−2ε−1(1− t)6ε−1

∫ 1

0
du

u2ε−1[1− u(ty + (1− t)x)]−4ε.

(F.4)
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The u integral produces a hypergeometric function, which can be expanded in ε using
HypExp, such that one obtains

F1(2ε, 6ε,−2ε, 1 + 2ε;x, y) = 1
2ε

Γ(1 + 2ε)Γ(4ε)
Γ(2ε)Γ(−2ε)Γ(6ε)

∫ 1

0
dt t−2ε−1(1− t)6ε−1

+ 4ε Γ(1 + 2ε)Γ(4ε)
Γ(2ε)Γ(−2ε)Γ(6ε)

∫ 1

0
dt t−2ε−1(1− t)6ε−1Li2(Q) + · · ·

(F.5)

where
Q = ty + (1− t)x. (F.6)

The integral in the first term in eq. (F.5) yields a complete beta function. For the second
term, the t integral produces a pole in ε for t → 0, 1, in which cases the argument of the
dilogarithm reduces to y and x respectively. One then obtains

F1(2ε, 6ε,−2ε, 1 + 2ε, x, y) = 1− ε2
(
4Li2(y)− 12Li2(x)

)
+O(ε3). (F.7)

F.2 Evaluation of the (2,4) web polylogarithmic integrals

Our task in this appendix is to explicitly evaluate the y and z integrals in eq. (5.66) with
the kernel of G(3)

(2,4);1(y, z, α12) given in eq. (5.67). As these integrals do not directly lend
themselves to the form of eq. (2.51), we will first evaluate them in terms of Goncharov
polylogarithms, and then show that the result can be expressed in terms of the basis
functions.

As a first step, one may straightforwardly integrate those terms in the kernel G(3)
(2,4);1

that depend only upon y or z individually (where the transformation z → 1− z, y → 1− y
is useful in the latter case). One then obtains

F
(3)
(2,4);1(α12) = 4

3

{
r2(α12)

[
8M0,1,1(α12)− 2M1,1,1(α12)− 2M0,2,1(α12)

]
+ I(α12)

}
, (F.8)

where we have denoted the remaining integrals I(α) = I1(α) + I2(α) + I3(α) with

I1(α) = 2
∫ 1

0
dy dz p0(y, α)p0(z, α)Li2

(
z

y

1− y
1− z

)
θ(y > z)

I2(α) =
∫ 1

0
dy dz p0(y, α)p0(z, α)ln

(
z

1− z

)
ln
(
q(y, α)
y2

)
θ(y > z)

I3(α) = −
∫ 1

0
dy dz p0(y, α)p0(z, α)ln

(
y

1− y

)
ln
(
q(z, α)
z2

)
θ(y > z). (F.9)

To calculate I1, we may first rewrite the dilogarithm function as a Goncharov polyloga-
rithm [80]:

Li2
(
z

y

1− y
1− z

)
= −G0,1

(
z

y

1− y
1− z

)
. (F.10)
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The right-hand side has a non-trivial function of y and z in the final argument, and one
may replace this with a sum of simpler Goncharov polylogarithms involving only y or z [81]:

Li2
(
z

y

1− y
1− z

)
=−G1(y)

(
G0(z)−G1(z)

)
+ G0(y)

(
G0(z)−G1(z)

)
−G0,0(y)

−G0,0(z) + G0,1(z) + G0,z(y) + G1,0(y) + G1,0(z)
−G1,1(z)−G1,z(y) + 2 ζ2 − iπ

(
G1(y) + G0(z)−G0(y)−G1(z)

)
.

(F.11)

Having rewritten the dilogarithm according to eq. (F.11), we may use partial fractioning
to rewrite the propagator functions in eq. (F.9) to be linear in the integration variable, as
in eq. (2.45). Each term in the integral can now be carried out using standard methods,
and one finds

I1(α) = 2r2(α)
[
− π4

36 − 2G0(α)ζ3 − π2
(2

3G0,−1(α) + 2
3G0,1(α)

)
+ 8G0,−1,−1,0(α)

− 8G0,−1,0,0(α) + 8G0,−1,1,0(α)− 8G0,0,−1,0(α)− 8G0,0,1,0(α)

+ 8G0,1,−1,0(α)− 8G0,1,0,0(α) + 8G0,1,1,0(α)
]
.

(F.12)

For the other integrals in eq. (F.9), one may apply similar techniques to obtain

ln
(

z

1− z

)
ln
(
q(y, α)
y2

)
=
(
G0(z)−G1(z)

)(
G1/(1−α)(y) + Gα/(α−1)(y)− 2G0(y)

)
, (F.13)

and similarly for y ↔ z. We then find

I2(α) + I3(α) = r2(α)
[
− ζ4 + 8 ζ3

(
G−1(α) + G1(α)

)
+ 8ζ2

(
G−1,0(α) + 2G0,−1(α)−G0,0(α) + 2G0,1(α) + G1,0(α)

)
− 16G−1,0,−1,0(α) + 16G−1,0,0,0(α)− 16G−1,0,1,0(α)− 32G0,−1,−1,0(α)
+ 32G0,−1,0,0(α)− 32G0,−1,1,0(α) + 48G0,0,−1,0(α)− 32G0,0,0,0(α)
+ 48G0,0,1,0(α)− 32G0,1,−1,0(α) + 32G0,1,0,0(α)− 32G0,1,1,0(α)

− 16G1,0,−1,0(α) + 16G1,0,0,0(α)− 16G1,0,1,0(α)
]
,

(F.14)

so that the total contribution from all integrals in eq. (F.9) is

I(α) = r2(α)
[
− 6 ζ4 + 4 ζ3

(
2G−1(α) + 2G1(α)−G0(α)

)
+ 8ζ2

(
G−1,0(α) + G0,−1(α)−G0,0(α) + G0,1(α) + G1,0(α)

)
− 16G−1,0,−1,0(α) + 16G−1,0,0,0(α)− 16G−1,0,1,0(α)− 16G0,−1,−1,0(α)
+ 16G0,−1,0,0(α)− 16G0,−1,1,0(α) + 32G0,0,−1,0(α)− 32G0,0,0,0(α)
+ 32G0,0,1,0(α)− 16G0,1,−1,0(α) + 16G0,1,0,0(α)− 16G0,1,1,0(α)

− 16G1,0,−1,0(α) + 16G1,0,0,0(α)− 16G1,0,1,0(α)
]
.

(F.15)
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To express this result in terms of basis functions, we may take its symbol, obtaining

S
( I(α)
r2(α)

)
= −16α⊗ η ⊗ α⊗ η − 16α⊗ η ⊗ η ⊗ α, (F.16)

where η has been defined in eq. (2.48). Comparing this with the symbols of the basis
functions in table 3, we construct the ansatz

I(α) = r2(α)
[
AM4

0,0,0(α) +BM0,0,0(α)M0,0,2(α) + CM0,0,0(α)M0,2,0(α)− 2M1,1,1(α)
]
.

(F.17)

Fitting the coefficients using the expressions for the basis functions given in appendix B
we find

A = − 1
24 , B = 0, C = −1

2 . (F.18)

The final result in eq. (5.69) follows upon substituting the coefficients eq. (F.18) into
eq. (F.17) and using the latter in eq. (F.8) along with the relations in eqs. (B.13) and (B.12).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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