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ries renormalization group (RG) flow. In this work we use the Wetterich equation for
the effective average action to investigate the RG flow of gravity supplemented by a real
scalar field. We give a non-perturbative proof that the subspace of interactions respecting
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curvature. The computation utilizes the background field method with an arbitrary back-
ground, demonstrating that the results are manifestly background independent. Our beta
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outlook on potential phenomenological applications.
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1 Introduction

The structure of spacetime at very short length scales remains unknown. It is expected that
a description of this regime requires a theory of quantum gravity since quantum fluctuations
of spacetime itself become relevant as one zooms in on its microstructure and substantial
deviations from a smooth manifold structure can take place. Different approaches to for-
mulate a theory of quantum gravity are based on very different theoretical assumptions and
can lead to distinct physical pictures of quantum spacetime. Irrespective of its details, the
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microscopic picture has to give rise to a description of spacetime in terms of metric degrees
of freedom as one flows to macroscopic scales. Thus, it is suggestive to construct a quan-
tum theory of gravity in terms of metric variables directly. Starting out from the Einstein-
Hilbert action, this leads to a perturbatively non-renormalizable quantum field theory [1–
3]: absorbing the infinities arising in the quantization procedure requires infinitely many
counterterms, each one introducing a new free parameter into the theory. Since each free
parameter has to be fixed by experimental input, this leads to a breakdown of predictivity
of the underlying quantum field theory. This does not reflect an incompatibility between
the standard framework of continuum quantum field theory and gravity, however. In prac-
tice, quantum-gravity corrections can be computed explicitly in an effective field theory
framework which is reliable for energy scales way below the Planck mass [4–6]. Insisting
on a perturbative treatment, one can improve the renormalizability properties by adding
higher-derivative terms [7]. This results in a perturbatively renormalizable theory, but
challenges perturbative unitarity or microcausality, see, e.g., [8–13] for recent discussions.

Yet, a quantum field theory of gravity based on metric variables may exist as a non-
perturbative theory. If the couplings of the full effective action reach an ultraviolet (UV)
fixed point, then physical quantities constructed out of those couplings will be well-behaved
in the deep ultraviolet due to quantum scale invariance [14]. The enhanced symmetry
is provided by an interacting renormalization group (RG) fixed point, a so-called non-
Gaussian fixed point (NGFP). The fixed point ensures that the dimensionless versions
of the couplings retain finite values up to arbitrarily high energy scales, which in turn
ensures that dimensionless observables like scattering amplitudes remain finite. Such a
situation is well-known in Yang-Mills theory where such a fixed point sits at vanishing
values of the gauge coupling leading to asymptotic freedom. In this case, perturbation
theory is applicable in the vicinity of the fixed point. Conversely, in quantum gravity,
following the idea put forward by Weinberg in [15], the underlying quantum field theory
might be asymptotically safe, i.e., there is a fixed point where the couplings (or, at least,
a subset of couplings) do not vanish. Substantial progress in testing Weinberg’s proposal
in an Euclidean setting was achieved after the pioneering work by Reuter [16], where the
functional renormalization group (FRG) for the effective average action Γk [17–19] was
adapted to quantum gravity. For reviews on the FRG, we refer to [20–23]. Being non-
perturbative, the FRG allows for computations beyond expansions in a small parameter,
although each concrete, non-perturbative computation requires a proper truncation of Γk.
Within truncations, compelling evidence for the existence of a non-trivial fixed point in
pure (Euclidean) gravity was obtained over the past two decades. For works employing the
so-called background approximation, see [24–30] for truncations comprising the Einstein-
Hilbert terms, [31–50] for works involving polynomial-f(R), higher-derivative and non-local
operators, [51, 52] for non-polynomial f(R) truncations, [53, 54] for polynomial truncations
of curvatures beyond the Ricci scalar, and [55] for the inclusion of the so-called Goroff-
Sagnotti term. The study of the running of boundary terms was also undertaken in [56].
RG flows computed within a 3+1-decomposition of the metric were analyzed in [57–60].
For a bimetric treatment of the effective average action on a curved background, we refer
to [61–64]. The use of gauge-invariant fluctuations in the evaluation of the flow equation was
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pursued in, e.g., [65]. Truncations improvements were also achieved by considering hybrid
truncations using the RG flow from background and fluctuation correlation functions as
well as the running of the Faddeev-Popov sector, see [66–68]. The use of a vertex-expansion
scheme of the effective average action has been also a fertile avenue for the exploration of
different truncation schemes of the effective average action in quantum gravity, see [69–77].
See also [78–86] for discussions of the reconstruction of the bare action from the effective
average action in quantum gravity, the running of composite geometric operators, the
consequences of background independece to the running of the cosmological constant, and
different RG schemes for the search of the UV fixed point.1 Whether such a fixed point
exists beyond finite-dimensional truncations and persists in a Lorentzian setting remains
an open challenging problem [119, 120], even though the first steps taken in [121–124]
and [57, 58, 60, 125, 126] have yielded encouraging results in these directions already. In
this work, we will refer to the quantum theory of the gravitational interactions emerging
from this construction as asymptotically safe quantum gravity (ASQG). For reviews on
the topic, we refer to [127–135].

In complete analogy to the fate of asymptotic freedom in gauge theories coupled to
matter, a natural concern in this approach is whether the pure-gravity fixed point (also
called the Reuter fixed point) has analogues when matter degrees of freedom are included:
any realistic description of our world should accommodate, at least, the matter degrees
of freedom of the Standard Model of particle physics with possible minimal extensions
such as right-handed neutrinos or matter degrees of freedom linked to dark matter and
dark energy. Thus, realistic models should include suitable matter degrees of freedom,
thereby falling into the class of asymptotically safe quantum gravity-matter (ASQGM)
theories. This perspective has been investigated within Asymptotic Safety for a long time,
see [136–139]. For the interplay between gravity and scalar fields within the asymptotic
safety scenario, we refer to [140–157]. In the case of gravity-fermion systems, see [158–166].
The impact of quantum-gravity fluctuations to the running of (non-)Abelian gauge cou-
plings was explored, within the FRG, in [167–174]. More realistic models involving different
species of matter where also investigated. For Higgs-Yukawa systems, see, e.g., [175–177],
as well as [178] for the inclusion of Majorana masses. For gauge-Yukawa systems, we refer
to [179]. Toy models comprising the matter content of the Standard Model and some of its
extensions were considered in [125, 180–187]. Further phenomenological applications can
be found in, e.g., [188–194].

A particular feature of gravity-matter systems is that already the kinetic terms of the
matter fields give rise to infinitely many vertices coupling matter to an arbitrary number of
gravitons. Hence, even if one starts with minimally coupled matter these vertices generate
momentum-dependent self-interactions of matter fields due to quantum corrections contain-
ing internal graviton lines [143, 184]. Moreover, non-minimal couplings between curvature
structures and (derivatives of) matter fields are not forbidden by the underlying symmetries

1For applications of the FRG [17–19] in the context of theories encoding the metric degrees of freedom
in other variables (vierbeins, connections) or implementing different symmetries (Weyl gravity, unimodular
gravity, Einstein-Cartan gravity) the reader may consult [87–100]. Furthermore, many conceptual questions
related to Asymptotic Safety have been addressed in [101–118].
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of the gravity-matter system and, therefore, are expected to appear as well. This leads to a
proliferation of matter couplings which will be quantum mechanically generated even if not
included in the original bare action of the theory. By now, many results obtained within
truncations in the FRG framework point towards the existence of such a fixed point. The
challenge for ASQGM-models is to establish that the fixed points seen at minimal coupling
survive once the web of non-vanishing gravity-matter interactions is considered.

Since ASQGM-models build on interacting RG fixed points, predictivity must be estab-
lished based on the properties of the fixed point. This is at variance with UV completions
provided by free fixed points, where the number of relevant directions is equivalent to the
number of couplings with a positive or marginally relevant mass dimension. Generically,
Asymptotic Safety will be predictive if the number of directions along which an RG flow
can emanate from the fixed point (the number of UV-relevant directions) is finite. Based on
the explicit calculations performed so far, the number of relevant directions seems to satu-
rate at a small value for large truncations [185].2 This provided a first non-trivial check of
the desired properties of the fixed point. Moreover, different results suggest that the fixed
points which currently feature in ASQGM-models exhibit a near-canonical scaling [47, 53,
54, 150, 187], in the sense that the relevance of an operator is still set by its canonical mass
dimension. This suggests that canonical power-counting is a reasonable guiding principle
for the construction of truncations exploring the predictive power of these models.

In this work, we perform the currently most advanced investigation of ASQGM sys-
tems in the framework of gravity coupled to a single scalar field (scalar-tensor theories).
Besides the Einstein-Hilbert action, we include the scalar anomalous dimensions, the two
dimension-six operators coupling the spacetime curvature to scalar bilinears, as well as
the dimension-eight momentum-dependent scalar self-interaction. This selection is guided
by a symmetry principle: all operators associated with the gravity-matter interactions
are compatible with the Z2- and global shift symmetry exhibited by the scalar kinetic
term. As pointed out in [143, 184], the corresponding couplings take non-zero values at
the fixed point. Testing whether the fixed point found at minimal coupling [180] survives
once the non-minimal terms are included provides an acid-test for the consistency of the
ASQGM-model.

Notably, our work includes the recent investigations [143, 147, 157] as subcases. Our
beta functions provide an overarching umbrella on these works, thereby retaining all back-
reactions of the non-minimal gravity-matter couplings on the corresponding beta functions.
The latter are identified to be of essential importance in order for the full system exhibiting
an interacting fixed point suitable for Asymptotic Safety. The results are obtained within
a background computation. The novel technical feature is that the background used in
the computation is left unspecified, i.e., our results are shown to be manifestly background-
independent. Instead we resort to projection rules which allow to systematically trace and
eliminate contributions which do not contribute to the present setting.

2Investigating large-scale truncations within the composite operator formalism suggests that there can
also gravity-matter fixed points beyond near-canonical scaling [195, 196]. These are difficult to track based
on FRG computations though.
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The paper is organized as follows. In section 2 we provide a brief introduction to the
FRG underlying this work and review some arguments behind the non-Gaussian nature
of the matter interactions compatible with the global symmetries of the matter kinetic
term. In section 3, we show that the global symmetry of the scalar kinetic term implies an
exact functional identity that must be respected by the effective average action. Then, in
section 4 we specify the details of the truncation employed for Γk, describe the computation
of the corresponding beta functions, and give the final result in terms of threshold integrals.
Section 5 contains our results on the existence and stability properties of fixed points as
well as a structural view of the underlying beta functions. We end with our conclusions
and an outlook on how our findings can be related to quantum-gravity phenomenology in
section 6. Technical details of our computation as well as lengthy expressions are collected
in the appendices.

2 Asymptotic Safety and the functional renormalization group

This section reviews the basics of the functional renormalization group, currently con-
stituting the key technical tool for investigating Asymptotic Safety (section 2.1) before
summarizing the structural aspects of interacting gravity matter fixed points discussed in
the literature [140, 141, 143, 157, 177, 184] in section 2.2.

2.1 The functional renormalization group — a brief introduction

The FRG provides a smooth implementation of a Wilsonian RG flow, realizing a shell-
wise integration of field modes in the Euclidean path integral. This is achieved by the
introduction of a regulator function ∆Sk in the Boltzmann weight of the path integral such
that all field modes with momenta smaller than k are suppressed. Lowering k unsuppresses
new field modes until all modes have been integrated out at k = 0. At this point the entire
path integral has been performed. As a technical requirement, the regulator term is taken
to be of the form

∆Sk[ϕ] = 1
2

∫
ddx

√
ḡ ϕ(x)Rk(−D̄2)ϕ(x) , (2.1)

with ϕ(x) representing the collection of fluctuation fields being integrated in the path
integral, d is the spacetime dimension, and −D̄2 being the Laplacian constructed from the
background spacetime metric ḡµν . The regulator function Rk is an arbitrary function of
the eigenvalues of the Laplacian that must satisfy consistency conditions to be considered
a “proper” regulator though. For eigenvalues p2 > k2, the function Rk must fall off to
zero sufficiently fast, so that modes labelled by such eigenvalues are integrated out without
suppression factor. For p2 < k2, the regulator function acts as a mass term, implementing
a suppression of these modes. Moreover, limk→0Rk(p2) = 0, so that the regulator vanishes
for k = 0 and all modes are integrated out. Finally, the regulator should be quadratic
in the fluctuation fields in order to act as a mass-type regulator. The last requirement
is crucial for defining the effective average action Γk as a modified Legendre transform of
the scale-dependent generating functional of connected correlation functions. The effective
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average action satisfies a formally exact FRG equation, the Wetterich equation [17–19]

∂tΓk = 1
2STr

[(
Γ(2)
k +Rk

)−1
∂tRk

]
, (2.2)

where t ≡ ln(k/k0) denotes the RG time, and k0 is an arbitrary reference momentum scale.
The supertrace STr represents a sum over all internal indices as well as an integration over
spacetime. Moreover, depending on the nature of the field, it introduces a multiplicative
factor, i.e., for commuting real fields, this constant is 1, while it is 2 for complex fields. For
anti-commuting fields, the constant is -2. Finally, Γ(2)

k is the second functional derivative
of Γk with respect to the fluctuation fields which typically is matrix valued in field space.
By construction Γk coincides with the effective action (one-particle irreducible generating
functional) Γ as k = 0. At the UV-cutoff scale Λ (which may or may not be taken to
infinity) ΓΛ is equivalent to the bare/microscopic action of the theory S. Solving (2.2) and
taking the k → 0 is thus equivalent to carrying out the path integral. The simple one-loop
structure of (2.2) follows from the quadratic nature of the regulator (2.1).

The FRG (2.2) “lives” on theory space, built from all action functionals which can
be constructed from the field content of the theory and compatible with its symmetries.
Formally, Γk can then be expressed as

Γk[φ] =
∞∑
i=1

ḡi Oi(φ) , (2.3)

with φ ≡ 〈ϕ〉J being the expectation value of the fluctuation field in the presence of
external sources J . The operators Oi(φ) are (local) operators of the fields φ(x) and ḡi are
the corresponding dimensionful couplings. The ḡi serve as “coordinates” on the theory
space and can be traded for their dimensionless counterparts gi = ḡik

−dgi with dgi being
the canonical mass dimension of the coupling ḡi. From (2.3), one can write,

∂tΓk[φ] =
∞∑
i=1

(∂tḡi)Oi(φ) =
∞∑
i=1

kdgi (dgigi+∂tgi)Oi(φ)≡
∞∑
i=1

kdgi (dgigi+βi)Oi(φ) , (2.4)

where we have introduced the beta function of the coupling gi

∂tgi ≡ βi . (2.5)

The general structure of the beta functions is

βi = −dgi gi + k−dgi ∂tḡi , (2.6)

where the first term is due to the canonical mass dimension of ḡi and k−dgi∂tḡi is generated
by quantum fluctuations.

At a fixed point g∗ = (g∗1, g∗2, . . .) one has βi = 0, ∀i. Given a fixed point one can study
the linearized flow in its vicinity, encoded in the linearized beta functions

βi(g) =
∞∑
j=1

Bi
j (gj − g∗j ) . (2.7)
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Here the stability matrix is defined as

Bi
j ≡ ∂βi

∂gj

∣∣∣∣∣
g=g∗

. (2.8)

Assuming that these objects exist, we denote the right-eigenvectors of Bij by VJ and
the corresponding (potentially complex) eigenvalues by (−θJ). The θJ are the critical
exponents associated with the fixed point. The solution of (2.8) is then given by

gi(t) = g∗i +
∑
J

CJ V
i
J e
−θJ t , (2.9)

where CJ are integration constants. From (2.9) one readily concludes that the flow along
an eigendirection where Re(θJ) > 0 is dragged into the fixed point as t→∞. Conversely,
eigendirections where Re(θJ) < 0 repell the flow when going to the UV. Thus, in order
to approach the fixed point as t → ∞, the CJ associated with the latter directions must
be set to zero. Conversely, the coefficients associated with UV-attractive directions where
Re(θJ) > 0 are not fixed by Asymptotic Safety. They constitute free parameters which need
to be fixed based on experimental input. This discussion implies that fixed points coming
with a lower number of UV-attractive directions have more predictive power. A consistent
proposal for an ASQGM system requires a fixed point which provides the high-energy
completion of the quantum theory with (preferably) finitely many UV-attractive directions.

2.2 Properties of gravity-matter fixed points

The functional renormalization group methods surveyed in the previous subsection have
provided substantial evidence that gravity in four spacetime-dimensions supports a NGFP
suitable for Asymptotic Safety. A natural step towards a more realistic theory of quantum
gravity related to our world is the inclusion of matter degrees of freedom. At first sight, it
is then suggestive that the gravity-matter system should possess an NGFP of the form

NGFPASQGM = NGFPASQG ⊗GFPmatter , (2.10)

i.e., the UV-completion retains interactions in the gravitational sector while the matter sec-
tor is non-interacting and minimally coupled. While this structure appears in certain classes
of approximations [140, 141], e.g., when investigating the existence of gravity-matter fixed
points at minimal couplings [180], this is an artifact of the approximation: as suggested
in [143] and later substantiated in [157, 177, 184], the interactions in the gravitational sec-
tor induce non-minimal interactions as well as matter self-interactions at the NGFPASQGM.
Here we review the underlying argument based on a qualitative analysis.

Our work focuses on gravity, encoded in the spacetime metric gµν coupled to a real
scalar field φ. Writing down the scalar kinetic term,

Ikin = Zk
2

∫
d4x
√
g gµν(∂µφ)(∂νφ) , (2.11)

with Zk being the wave-function renormalization of φ, one easily verifies that Ikin is invari-
ant under the discrete Z2-symmetry φ 7→ −φ as well as continuous shifts

φ→ φ+ c , c ∈ R . (2.12)
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Figure 1. Scalar-graviton vertices generated in the expansion (2.13). Double-lines represent gravi-
ton insertions and simple lines denote insertions of the scalar field. Due to the global shift symmetry
exhibited by Ikin, the above vertices always carry a derivative for each scalar line.

Figure 2. Effective shift-symmetric scalar self-interaction generated by the shift-symmetric vertices
depicted in figure 1.

The kinetic term (2.11) contains the determinant and the inverse of the metric which
generate the infinite tower of gravity-matter vertices illustrated in figure 1. Decomposing
gµν in a background metric ḡµν and fluctuations hµν using the linear split gµν = ḡµν +hµν ,
this expansion takes the schematic form

Ikin ∼
Zk
2

∫
d4x

√
ḡ
(
ḡµν + h(1)µν + h(2)µν + O(h3)µν

)
∂µφ∂νφ , (2.13)

where h(n)µν contains n powers of the fluctuation field hµν . These vertices can be connected
by internal graviton lines leading to matter self-interactions, see figure 2, and non-minimal
gravity-matter interactions. All vertices carry the global symmetries of Ikin, though. As
a consequence, the induced interaction momomials also respect these symmetries [184]. A
consequence of this analysis is that the mechanism outlined above will not generate a scalar
potential V (φ) since this is not compatible with the shift-symmetry (2.12).

As pointed out in [143, 184], the couplings associated with interactions preserving the
shift symmetry must generically take a non-zero fixed point value. Hence these couplings
are not compatible with a Gaussian fixed point in the matter sector and thus do not follow
the structure suggested in (2.10). Let us illustrate this feature based on the momentum-
dependent quartic self-interaction

I5 = Z2
kCk

∫
d4x
√
g gµνgαβ(∂µφ)(∂νφ)(∂αφ)(∂βφ) , (2.14)
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where Ck is the corresponding coupling constant. This interaction is compatible with (2.12)
and therefore a natural candidate for a matter self-interaction present at a gravity-matter
fixed point. Introducing the dimensionless coupling ck ≡ Ckk

4 and substituting (2.14)
into the FRG (2.2) one concludes that the beta function associated with ck must be a
polynomial of order two in this coupling

βc = a0 + a1 ck + a2 c
2
k . (2.15)

The coefficients a0, a1, and a2 collect the dependence of the beta function on the other
couplings (as, e.g., Newton’s coupling). From (2.15), it then follows that a Gaussian fixed
point where c∗ = 0 requires a0 = 0. Generically, the contribution of Ikin will lead to a0 6= 0
though: the diagrams constructed from its vertices depend on the gravitational couplings
that contribute to the graviton propagator and the scalar wave-function renormalization
only and are independent of c. As a result, they induce a non-zero a0 in (2.15). Thus,
c∗ = 0 does not correspond to a fixed point when gravitational couplings have a non-trivial
fixed point value. This results in a shift of the Gaussian fixed point (GFP) to a non-
vanishing value indicating that one obtains a shifted-Gaussian fixed point (sGFP). Besides
the sGFP the theory might have additional interacting fixed points which we refer to as
NGFPs. This situation is illustrated in the gray solid and orange dashed curves shown in
figure 3. This example illustrates that interactions in the matter sector which respect the
symmetries of the kinetic term will generically have non-zero values for their couplings at
the NGFP. Thus, the relation (2.10) is modified to

NGFPASQGM = NGFP︸ ︷︷ ︸
shift-symmetric interactions

⊗ GFPmatter︸ ︷︷ ︸
non-shift symmetric interactions

. (2.16)

Notably, any interaction in the gravitational sector (which by definition is independent
of φ) trivially satisfies (2.12) and is thus part of the subspace of shift-symmetric interac-
tions. This structure reconciles the results on Gaussian and non-Gaussian matter couplings
available in the literature.

The structure (2.15) entails an immanent danger. If the couplings entering a0 conspire
to make this coefficient sufficiently large, the shift of the GFP may be so violent that it
ceases to exist on the real line. This is illustrated by the blue dotted curve in figure 3.
This suggests that there is an upper bound on the effective interaction strength in the
gravitational sector above which an ASQGM-system can not be realized. This has been
called the weak-gravity bound [177, 184].

Owed to this destabilization-mechanism, investigations of the fixed point structure
on the space of shift-symmetry preserving interactions is crucial for establishing the ex-
istence of suitable sGFPs and NGFPs underlying the ASQGM-systems. Notably, the
class of shift-symmetric interactions contains a wide class of momentum-dependent matter
self-interactions like the example given in eq. (2.14) but also non-minimal gravity-matter
interactions. Examples of the latter type include

I3 ∼
∫

d4x
√
g RX , I4 ∼

∫
d4x
√
g Rµν Xµν . (2.17)
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Figure 3. Illustration of the qualitative structure encountered in the beta functions linked to
interactions sharing the same global symmetries as the matter kinetic term. We distinguish two
situations: on the left, the beta function is given by a polynomial of degree two in the matter
coupling g while, on the right, it has the structure of a cubic. In the absence of gravity (solid gray
line), the matter theory has a GFP and, eventually, additional NGFPs, represented by NGFP1
in the left diagram and NGFP1 and NGFP2 in the right diagram. When the matter theory is
coupled to gravity, βg receives contributions from the vertices generated by the kinetic term which
are independent of the coupling g. These contributions eliminate the GFP and shift its position to a
finite value of g which balances the g-dependent and independent contributions. This generates the
shifted Gaussian fixed point (sGFP). In addition, the system can again feature NGFPs represented
by NGFP2 in the left panel, and NGFP3,4 in the right pannel. If quantum-gravity fluctuations
are sufficiently strong, the shift in βg represented in the plot on the left may lead to a situation
where the fixed points become complex and the real fixed points cease to exist. In this case an
asymptotically safe theory of gravity and matter can no longer be realized. This mechanism is
operative for beta functions of even order in the coupling only: the cubic beta function depicted on
the right pannel, always has a real fixed point NGFP5 even if the other two fixed points forming
the triplet (sGFP, NGFP3, NGFP4) turn into complex roots.

Here we introduced the short-hand notation

Xαβ ≡ (∂αφ)(∂βφ) , X ≡ gαβXαβ , (2.18)

as the manifestly shift-invariant tensors obtained from the first derivatives of φ. The
interactions (2.17) are readily generalized by introducing suitable functions, as, e.g.,

I ∼
∫

d4x
√
g f(R)X ,

I ∼
∫

d4x
√
g F (Ric)µν Xµν , (2.19)

I ∼
∫

d4x
√
g G(R,Ric,Riem)µν K(Xαβ)µν ,

where f(R), F (Ric)µν , G(R,Ric,Riem)µν , and K(Xαβ)µν are generic functions. In prin-
ciple, all these structures should be considered when investigating the non-trivial sector of
gravity-matter systems. In this work, we take a key step in this direction: for the first time,
the interactions (2.14) and (2.17) are considered simultaneously, taking all backreactions
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into account. The distinction between such interactions is achieved thanks to the fact that
we leave the background metric arbitrary while employing a background approximation.

3 RG-invariant subspaces of scalar-tensor theories

It is well-known that in coarse-graining procedures, many symmetries can be broken either
by quantum fluctuations (anomalies) or artifically by the regularization process. Given
the relevance of shift symmetry in the case of scalar field theories coupled to gravity, one
might wonder if such a symmetry resists the regularization procedure and the inclusion of
quantum effects, i.e., if the effective average action preserves the symmetry along the RG
flow. In this section, we answer this question by deriving the functional constraint due
to shift symmetry that must be satifisfied by Γk. The resulting identity provides a non-
perturbative proof that the subspace spanned by shift-symmetric interaction monomials is
closed under RG flows.

Let us start by considering a shift-symmetric bare action S[ϕ] which is invariant un-
der (2.12), i.e., S[ϕ] = S[ϕ+ c]. The Euclidean path integral is defined as3

Z[J ] =
∫
Dϕ e−S[ϕ]+

∫
x
J(x)ϕ(x) , (3.1)

where
∫
x ≡

∫
ddx√g. The scale-dependent path integral Zk[J ] is obtained by adding the

regulator (2.1) to S[ϕ],
Zk[J ] =

∫
Dϕ e−Σ[ϕ,J ] , (3.2)

with
Σ[ϕ, J ] ≡ S[ϕ] + ∆Sk[ϕ]−

∫
x
J(x)ϕ(x) . (3.3)

Since ϕ is a dummy variable, we can replace it by ϕ′ in (3.2). Let us assume that ϕ′ =
ϕ + ε, with ε being an infinitesimal constant associated with an infinitesimal global shift
of ϕ. Assuming that the functional measure is invariant under such a transformation, i.e.,
Dϕ′ = Dϕ, one finds

Zk[J ] =
∫
Dϕ′ e−S[ϕ′]−∆Sk[ϕ′]+

∫
x
J(x)ϕ′(x)

=
∫
Dϕ e−S[ϕ+ε]−∆Sk[ϕ+ε]+

∫
x
J(x)(ϕ(x)+ε)

'
∫
Dϕ e−Σ[ϕ,J ]+ε

∫
x
δΣ
δϕ (3.4)

'
∫
Dϕ

(
1 + ε

∫
x

δΣ[ϕ, J ]
δϕ(x)

)
e−Σ[ϕ,J ]

= Zk[J ] + ε

∫
Dϕ

∫
x

δΣ[ϕ, J ]
δϕ(x) e−Σ[ϕ,J ] ,

3Besides the scalar field ϕ, S and the path-integral measure include additional fields comprising the
spacetime metric gµν and additional matter fields. Since these do not affect the derivation, we keep these
dependencies implicit in order to keep the notation light.
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where we expanded up to linear order in ε. Thus, one concludes that∫
Dϕ

∫
x

δΣ[ϕ, J ]
δϕ(x) e−Σ[ϕ,J ] = 0 . (3.5)

Substituting the definition (3.3) one then has

∫
x

δΣ[ϕ, J ]
δϕ(x) =

∫
x

(
δS

δϕ(x) + δ∆Sk
δϕ(x) − J(x)

)

=
∫
x

(
δ∆Sk
δϕ(x) − J(x)

)
, (3.6)

where shift-symmetry implies that the term containing the action S is a surface term which
vanishes once integrated over spacetime. Hence, eq. (3.5) simplifies to

∫
Dϕ

∫
x

(
δ∆Sk
δϕ(x) − J(x)

)
e−Σ[ϕ,J ] = 0 . (3.7)

Since ∆Sk is quadratic in ϕ, we have δ∆Sk[ϕ]
δϕ(x) = Rk ϕ(x). Substituting this expression into

the path integral then gives∫
Dϕ

∫
x
Rk ϕ(x) e−Σ[ϕ,J ] = Zk[J ]

∫
x
Rk〈ϕ(x)〉J

= Zk[J ]
∫
x
Rk φ(x) (3.8)

= Zk[J ]
∫
x

δ∆Sk[φ]
δφ(x) . (3.9)

Furthermore, the source J(x) can be expressed in terms of the effective average action,
exploiting the quantum equation of motion [132]

δΓk[φ]
δφ(x) + δ∆Sk[φ]

δφ(x) = J(x) . (3.10)

Using eqs. (3.10) and (3.9) in (3.7) leads to ,∫
x

δΓk[φ]
δφ(x) = 0 . (3.11)

Thus, Γk[φ] inherits the invariance under shift-symmetry from the bare action. Notably,
this result holds for any regulator, provided that it is quadratic in the field. Taking the
derivative of (3.11) with respect to the RG time t, one furthermore finds that shift sym-
metry is preserved along the RG flow, if the symmetry is preserved by the initial condi-
tions, see figure 4. Thus, the space of shift-symmetric actions is closed under RG flows
in the sense that the flow does not generate shift-symmetry violating terms dynamically.
This has the profound consequence that a scalar potential cannot be generated from the
shift-symmetric interactions unless the symmetry is broken by leaving the NGFP along a
UV-attractive direction.
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Figure 4. Illustration of the foliation structure established for the space of matter interactions
based on eq. (3.11): the subspace of shift-invariant interactions containing the blue-dotted RG
trajectories is closed under RG transformations. At the same time non-trivial interactions in the
gravitational sector turn on interactions for the shift-symmetric gravity-matter interactions, leading
to a sGFP in this sector (red line). The blue arrow attached to the sGFP indicates that generating
non-shift-symmetric interactions from an ASQGM-fixed point requires at least one UV-attractive
direction pointing outside of the subspace spanned by the shift-symmetric interactions.

4 RG flows of shift-symmetric scalar-tensor theories

In the last section we provided a non-perturbative proof that the space of shift-symmetric
scalar-tensor interactions is closed under the RG flow. Moreover, we argued in section 2.2
that understanding the fixed point structure of the couplings associated with these terms
is critical for assessing the feasibility of realizing an ASQGM-system. Guided by these
insights, we now proceed by studying the RG flow in this sector within a rather advanced
approximation of Γk. The main results of this section are the beta functions (4.25), (4.26),
(4.27), and (4.28) encoding the running and fixed point structure obtained within this
computation. Our calculation is performed for four-dimensional Euclidean spacetime and
within the background approximation of the FRG.

4.1 Projecting the RG flow

Schematically, the effective average action for a scalar-tensor theory has the structure

Γscalar−tensor
k = Γgrav

k [g] + Γmatter
k [φ, g] + Γgf

k + Γghost
k . (4.1)

Here Γgrav
k [g] captures the gravitational dynamics, Γmatter

k [φ, g] contains the matter sector,
and Γgf

k and Γghost
k are the gauge-fixing and ghost terms complementing the construction.

When constructing Γgrav
k [g], we assume that the dynamics of the metric degrees of freedom

is sufficiently well-approximated by the Einstein-Hilbert truncation,

Γgrav
k [g] ' 1

16πGk

∫
d4x
√
g [2Λk −R] , (4.2)
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which includes a running Newton coupling Gk and cosmological constant Λk. Our emphasis
in the matter sector is on shift-symmetric interactions. Explicitly, we include interactions
up to four derivatives

Γmatter
k [φ, g] '

∫
d4x
√
g

[
Zk
2 X + Z2

k CkX
2 + ZkC̃kR

µνXµν + ZkDk RX

]
, (4.3)

where Xµν ≡ (∂µφ)(∂νφ) and X ≡ gµνXµν are introduced in eq. (2.18). This ansatz
comprises a scale-dependent wave-function renormalization Zk, the coupling associated
with the scalar self-interaction Ck (mass dimension −4), and couplings of the scalar to
the spacetime curvature C̃k and Dk (mass-dimension −2). Thus the non-minimal terms
contained in (4.3) correspond to power-counting irrelevant operators. In order to have
a complete basis of four-derivative terms, one should also include the scalar bilinear with
second derivatives of the scalar, ∼ (D2φ)2, which would essentially correspond to promoting
the wave function renormalization Zk 7→ Zk(−D2) to a momentum-dependent form factor.
The inclusion of this factor will be left to future work.

Our gauge-fixing procedure utilizes the background field method [130, 132, 197], build-
ing on the decomposition

gµν = ḡµν + hµν , and φ = φ̄+ ϕ . (4.4)

Here ḡµν and φ̄ are arbitrary background fields and hµν and ϕ are the fluctuations about
those backgrounds, which are not necessarily small. From now on, indices are lowered and
raised by the background metric and its inverse. In the following, we adopt the harmonic
gauge

Γgf
k [h; ḡ] = 1

32πGk

∫
d4x

√
ḡḡµνFµFν , with Fµ = D̄νhµν −

1
2D̄µh . (4.5)

Here D̄µ is the covariant derivative constructed from the background metric ḡµν and h ≡
ḡµνhµν . For hµν = 0, which suffices for a background computation, the Faddeev-Popov
action associated with (4.5) is

Sghost[C̄, C, h = 0; ḡ] = −
√

2
∫

d4x
√
ḡ C̄µ

(
δµν D̄

2 + R̄µν

)
Cν . (4.6)

Here we neglect the wave function renormalization associated with the ghost fields C̄µ, Cν .
The setup is completed by specifying the regulatorRk appearing in the FRG. Following

the classification [36], we implement a regularization of Type I, utilizing the replacement
rule

∆ 7→ Pk(∆) ≡ ∆ +Rk(∆) (4.7)

constructed for the background Laplacian ∆ ≡ −ḡµνD̄µD̄ν . The dimensionful profile func-
tion, defined in eq. (2.1), is taken to be of Litim-type [198]

Rk(z) = (k2 − z)θ(k2 − z) . (4.8)

This completes the setup of our computation and constitutes the starting point for solv-
ing (2.2) in the given approximation.
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4.2 Evaluating the flow equation

We aim to derive the beta functions determining the k-dependence of the (dimensionless
counterparts of the) couplings {Gk,Λk, Ck, C̃k, Dk} as well as the scalar anomalous dimen-
sion ηs ≡ −k∂k lnZk. This can be achieved by projecting the FRG onto the ansatz (4.1).
The main task here is the evaluation of the trace appearing on the right-hand side of the
flow equation (2.2). This can be achieved by means of the universal RG machine developed
in [30] and recently upgraded in [199]. The core idea is to use the choices of gauge, back-
ground, and regulator together with suitable algebraic manipulations to cast the operator
that we want to trace into a form where standard heat-kernel techniques can be applied.

As a first step, one computes the Hessian arising from (4.1) in a fixed but arbitrary
background [

Γ(2)
k

]
IJ

= 1√
ḡ

1√
ḡ

δ2Γk
δΦIδΦJ

∣∣∣
Φ=0

. (4.9)

Here ΦI = {hµν , ϕ, C̄µ, Cν} is the collection of fluctuation fields. We highlight that, in
this schematic notation, we are assuming that suitable signs of derivatives with respect to
Grassmannian fields are taken into account. Within the background approximation, the
elements of the Hessian (4.9) lead to the general structure,[

Γ(2)
k +Rk

]
IJ

= PIJ(∆) + DIJ(D̄·) + VIJ(Φ̄; D̄·) . (4.10)

The function PIJ(∆) contains the (regularized) kinetic terms of the fluctuation fields and
collects all the background Laplace-operator contributions to the Hessian. Typically, this
matrix is diagonal in field space. Terms containing uncontracted derivatives D̄· but no back-
ground structures are collected in DIJ . Finally, all terms containing background structures,
such as spacetime curvatures or background matter fields are contained in V.

The right-hand side of (2.2) contains the inverse of (4.10). This inverse can be con-
structed perturbatively in the background quantities, expanding

[
Γ(2)
k +Rk

]−1
and retain-

ing all terms build from the background operators which appear in the expansion basis
within our truncation. In order to perform such an inversion and get a suitable expression
that enables the application of standard heat-kernel techniques, one needs to get rid of
D-type terms. In the present setting, this is achieved by adopting harmonic gauge in which
the graviton propagators depend on the Laplacian only and do not contain uncontracted
derivatives D̄·. Terms containing the “background structures” R̄, R̄µν , C̄µνρσ and ∂µφ̄ are
grouped into V.

With the reduction of (4.10) to the desired form, the perturbative inversion is, in a
matrix notation, given by[

Γ(2)
k +Rk

]−1
= P−1

k ×
[
1 + V× P−1

k

]−1

' P−1
k − P−1

k × V× P−1
k + P−1

k × V× P−1
k × V× P−1

k +O(V3) , (4.11)

with P−1
k being the matrix of regularized propagators G. Since the vertices V carry back-

ground structures, the expansion can be truncated when it reaches the same power of the
background structures as the one present in Γk[Φ = 0; Φ̄]. At this stage, the computation
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has boiled down to evaluating a sum of traces, which can be performed via the off-diagonal
heat-kernel techniques of appendix C. Once this has been done, the beta functions for
the dimensionful couplings can be read off from the coefficients multiplying the various
interaction terms contained in the ansatz. Note that no physical meaning should be at-
tributed to these terms at this point. They merely serve as book-keeping devices spanning
a (truncated) basis on the space of all possible scalar-tensor theories.

4.3 Traces, propagators, vertices, and projection rules

We now apply the general algorithm of section 4.2 to the specific truncation (4.1). We first
note that the components of the regularized kinetic terms, PIJ , for the graviton fluctuations,
scalar fluctuations, and ghosts are

[Ph]µν
αβ = 1

32πGk
(∆ +Rk)

[
ΠTL αβ

µν −ΠT αβ
µν

]
, Pϕ = Zk (∆ +Rk) ,

[PC̄C ]µ
ν = (∆ +Rk) δνµ .

(4.12)

Here ΠTL and ΠT are projection operators on the space of symmetric matrices whose
definitions are given in eq. (A.2). The entries of the propagator matrix G are readily
obtained from inverting (4.12)

[
Gh
]
µν

αβ = 32πGk
(∆ +Rk)

[
ΠTL αβ

µν −ΠT αβ
µν

]
, Gϕ = 1

Zk (∆ +Rk)
,[

GC̄C
]
µ

ν = 1
(∆ +Rk)

δνµ .

(4.13)

The matrix entries of the regulator Rk are readily read off from (4.12) and are given by[
Rhk
]
µν

αβ = 1
32πGk

Rk
[
ΠTL αβ

µν −ΠT αβ
µν

]
, Rϕk = Zk Rk ,[

RC̄Ck
]
µ

ν = Rk δ
ν
µ .

(4.14)

In addition to the propagators one also needs the explicit expressions for the inter-
action vertices V. These are conveniently generated using the xAct package suite for
Mathematica [200–204]. Since the resulting expressions are rather bulky, they have been
relegated to appendix B.

The ansatz (4.1) entails that the information about the scale-dependence of the cou-
pling is encoded in the coefficients multiplying the following interaction monomials

I0 ≡
∫

d4x
√
ḡ , I1 ≡

∫
d4x

√
ḡ R̄ , I2 ≡

∫
d4x

√
ḡ X̄ ,

I3 ≡
∫

d4x
√
ḡ R̄X̄ , I4 ≡

∫
d4x

√
ḡ R̄µνX̄µν , I5 ≡

∫
d4x

√
ḡ X̄2 .

(4.15)

The next step then constitutes in substituting the expansion (4.11) into the trace appearing
on the right-hand side of eq. (2.2) and identifying the terms which give rise to contribu-
tions proportional to at least one of the elements (4.15). Analyzing the structure of the
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background fields appearing in the vertices listed in appendix B shows that the flow on the
subspace spanned by our ansatz receives contributions from 18 traces

1
2STr

[(
Γ(2)
k +Rk

)−1
∂tRk

]
'

18∑
n=1

Tn . (4.16)

The first eight traces contain the graviton regulator and read

T1 = 1
2Tr(2)

[
Gh · ∂tRhk

]
,

T2 = −1
2Tr(2)

[
Gh · Vhh · Gh · ∂tRhk

]
,

T3 = 1
2Tr(2)

[
Gh · Vhϕ Gϕ Vϕh · Gh · ∂tRhk

]
,

T4 = 1
2Tr(2)

[
Gh · Vhh · Gh · Vhh · Gh · ∂tRhk

]
,

T5 = −1
2Tr(2)

[
Gh · Vhh · Gh · Vhϕ Gϕ Vϕh · Gh · ∂tRhk

]
,

T6 = −1
2Tr(2)

[
Gh · Vhϕ Gϕ Vϕh · Gh · Vhh · Gh · ∂tRhk

]
,

T7 = 1
2Tr(2)

[
Gh · Vhϕ Gϕ Vϕh · Gh · Vhϕ Gϕ Vϕh · Gh · ∂tRhk

]
,

T8 = −1
2Tr(2)

[
Gh · Vhϕ Gϕ Vϕϕ Gϕ Vϕh · Gh · ∂tRhk

]
.

(4.17)

Here the subscript (2) on the trace indicates that the trace is on the space of symmetric
matrices and the symbol · marks a contraction of spacetime indices. In addition there are
eight traces involving the scalar regulator. Their structure is identical to the one found in
the gravitational sector (4.17) with h ↔ ϕ interchanged and the trace taken with respect
to scalar fluctuations:

T9 = 1
2Tr(0)

[
Gϕ ∂tRϕk

]
,

T10 = −1
2Tr(0)

[
Gϕ Vϕϕ Gϕ ∂tRϕk

]
,

T11 = 1
2Tr(0)

[
Gϕ Vϕh · Gh · Vhϕ Gϕ ∂tRϕk

]
,

T12 = 1
2Tr(0)

[
Gϕ Vϕϕ Gϕ Vϕϕ Gϕ ∂tRϕk

]
,

T13 = −1
2Tr(0)

[
Gϕ Vϕϕ Gϕ Vϕh · Gh · Vhϕ Gϕ ∂tRϕk

]
,

T14 = −1
2Tr(0)

[
Gϕ Vϕh · Gh · Vhϕ Gϕ Vϕϕ Gϕ ∂tRϕk

]
,

T15 = 1
2Tr(0)

[
Gϕ Vϕh · Gh · Vhϕ Gϕ Vϕh · Gh · Vhϕ Gϕ ∂tRϕk

]
,

T16 = −1
2Tr(0)

[
Gϕ Vϕh · Gh · Vhh · Gh · Vhϕ Gϕ ∂tRϕk

]
.

(4.18)

The ghosts contribute

T17 =− Tr(1)
[
GC̄C · ∂tRC̄Ck

]
, T18 = Tr(1)

[
GC̄C · VC̄C · G

C̄C · ∂tRC̄Ck
]
, (4.19)

with the trace taken on the space of vectors.
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The evaluation of these traces can be simplified significantly by noting that certain
background structures do not contribute to the flow projected onto the ansatz spanned
by (4.15). Hence, the computation can be simplified by equating the corresponding struc-
tures to zero. A careful analysis shows that this applies to

C̄µρνσ ∼ 0 , (D̄µR̄αβ) ∼ 0 , and (D̄αR̄) ∼ 0 , (4.20)

as well as symmetrized strings of covariant derivatives acting on the background scalar
field,

D̄(µ1 · · · D̄µn)φ̄ ∼ 0 , n ≥ 2 . (4.21)

Here the symbol ∼ is used to indicate that these terms are not necessarily zero. They
merely generate interaction monomials not tracked in our truncation. We stress that the
projection rules (4.20) and (4.21) do not entail a particular choice of background so that it
is clear that any result derived by imposing these relations is still manifestly background-
independent. While the conditions (4.20) state that any derivative of a curvature tensor
will not contribute to interaction monomials contained in our ansatz, a remark about our
projection condition for matter fields is in order. The ansatz (4.3) contains first derivatives
of the scalar field φ̄ only. Therefore, it is tempting to impose a projection condition which
eliminates all terms where two or more covariant derivatives act on φ̄. In a flat background,
this would correspond to projecting out contributions which contain more than one power
of the momentum associated with the corresponding scalar field. In a curved spacetime,
the commutator of covariant derivatives gives rise to curvature terms which in turn will
generate contributions proportional to I3 and I4. Imposing that one drops terms containing
symmetrized derivatives, as indicated by the condition (4.21), then reduces to the intuitive
picture of dropping terms containing higher powers of the momentum in a flat background
while, at the same time, keeping track of the curvature terms generated by anti-symmetric
combinations of the derivatives.

Equipped with these prerequisits the traces (4.17), (4.18), and (4.19) can be evaluated
based on the heat-kernel techniques reviewed in appendix C. Since the resulting expressions
are rather bulky, we have relegated these intermediate results to appendix D where we also
add some comments on technical subtleties. This forms the basis for the beta functions
given in the next section.

4.4 Beta functions

We are now in a position to write down the beta functions controlling the scale-dependence
of the couplings {Gk,Λk, Ck, C̃k, Dk} and the scalar wave function renormalization Zk. For
this purpose it is convenient to trade the dimensionful couplings with their dimensionless
counterparts

gk ≡ Gkk2 , λk ≡ Λkk−2 , c̃k ≡ C̃kk2 , dk ≡ Dkk
2 ck ≡ Ckk4 , (4.22)
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and introduce the anomalous dimensions ηs and ηN associated with the wave function
renormalization of the scalar field and Newton’s coupling as

ηs ≡ −k∂k lnZk , ηN ≡ k∂k lnGk . (4.23)

Denoting the collective set of dimensionless couplings by ui ≡ {gk, λk, ck, dk, c̃k} the running
of the couplings is encoded in the beta functions

k∂kui = βui(uj) , i = 1, · · · , 5 . (4.24)

The beta function associated with the dimensionless Newton’s coupling can be expressed
through the anomalous dimension ηN , βg = (2 + ηN ) g.

Matching the coefficients multiplying the monomials (4.15) on the left- and right-
hand side of the FRG gives a coupled set of equations determining the scale-dependence
of the quantities (4.22). Following [16], the result is conveniently expressed in terms of
the dimensionless threshold functions defined in eqs. (C.19) and (C.21). The short-hand
notation on the upper index in the q-functionals appearing in appendix D is lifted by
counting the number of scalar and graviton propagators in the corresponding trace. Since
all dimensionless q-functionals are evaluated at argument −2λ, we omit this information
for the sake of readability. Furthermore, it is understood that all couplings depend on the
scale k, so that the subscripts are omitted as well. This said, the beta functions encoding
the scale-dependence of gk and λk are

βλ = (ηN − 2)λ+ g

2π
(
10 q0,1

N,2 + q1,0
s,2 − 8 Φ1,0

2

)
,

βg = (2 + ηN ) g .
(4.25)

The three beta functions associated with the non-minimal interaction terms are

βc̃ = (2 + ηs)c̃

− g

3π
(
q1,2
N,2 + (9c̃+ 10d)q0,2

N,2 − 6(3c̃+ 2d)q1,2
N,3 − 3(7c̃− 10d)(c̃+ 2d)q1,2

N,4

− 180c̃(c̃+ 2d)2q2,2
N,6

)
+ c

12π2 q
2,0
s,2 + c c̃

π2 q
3,0
s,4 + g

π

(
4(c̃+ 2d)q2,1

s,3 − (11c̃+ 6d) (c̃+ 2d)q2,1
s,4

+ 120 c̃ (c̃+ 2d)2q3,1
s,6
)
,

βd = (2 + ηs)d

+ g

6π
(
4q1,2
N,2 − 18q1,3

N,3 + 180(c̃+ 2d)2(c̃+ 6d)q2,2
N,6 + 3(c̃+ 2d)(7c̃+ 22d)q1,2

N,4

− 72(c̃+ 2d)2q1,3
N,5 − 2(3c̃+ 14d)q0,2

N,2 − 18(3c̃+ 4d)q0,3
N,3 + 6(3c̃+ 10d)q1,2

N,3

− 36(c̃+ 2d)q1,3
N,4 − 18(c̃+ 4d)q2,2

N,4

)
− c

12π2 q
2,0
s,2 + c(2c̃+ 9d)

π2 q3,0
s,4 + g

6π
(
q2,1
s,2 − 9q2,2

s,3 + 12(c̃+ 4d)q2,1
s,3

− 3(c̃− 6d)(c̃+ 2d)q2,1
s,4 − 18(c̃+ 2d)q2,2

s,4 − 36(c̃+ 2d)2q2,2
s,5 − 36(c̃+ 4d)q3,1

s,4

+ 360(c̃+ 2d)2(c̃+ 6d)q3,1
s,6

)
, (4.26)
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βc = 2 (2 + ηs)c

+ 12g
π

(
2cq1,2

N,3 − c q
0,2
N,2 + 2c(c̃+ 2d)q1,2

N,4 − 3cq2,2
N,4 + 60c(c̃+ 2d)2q2,2

N,6 + 4gπq0,3
N,2

+ 4πg
(
5c̃2 + 4c̃d− 2d2

)
q0,3
N,4 − 4πgq1,3

N,3 − 8πg(c̃+ 2d)q1,3
N,4 + 88πg(c̃+ 2d)2q1,3

N,5

+ 40πg(c̃+ 2d)2(7c̃+ 18d)q1,3
N,6 + 8πgq2,3

N,4 − 240πg(c̃+ 2d)2q2,3
N,6

+ 7560πg(c̃+ 2d)4q2,3
N,8 − 48c̃g2q0,3

N,3

)
+ 3
π2

(
5c2q3,0

s,4 + 8πgcq2,1
s,3 + 8πgc(c̃+ 2d)q2,1

s,4 − 24πgcq3,1
s,4 + 480πgc(c̃+ 2d)2q3,1

s,6

− 8π2g2q2,2
s,3 − 16π2g2(c̃+ 2d)q2,2

s,4 + 80π2g2(c̃+ 2d)2(7c̃+ 18d)q2,2
s,6

+ 32π2g2q3,2
s,4 + 176π2g2(c̃+ 2d)2q2,2

s,5 − 960π2g2(c̃+ 2d)2q3,2
s,6

+ 30240π2g2(c̃+ 2d)4q3,2
s,8

)
. (4.27)

The system is completed by the expressions for the anomalous dimensions which can be
read off from the coefficients multiplying I1 and I2:

ηN = g

6π
(
10q0,1

N,1−36q0,2
N,2+q1,0

s,1−6(c̃+4d)q2,0
s,3−8Φ1

1−12Φ2
2

)
,

ηs = 1
2π2

(
72πg(c̃+2d)2(q1,2

N,5+q2,1
s,5)−24πg(c̃+d)q0,2

N,3−8πg(q1,2
N,3+q2,1

s,3)+3cq2,0
s,3

)
.

(4.28)

The explicit form of ηN and ηs as a function of the couplings is obtained by solving this
linear system of equations. Together with the beta functions (4.25), (4.26), and (4.27),
these results completely determine the scale-dependence of the couplings (4.22).

5 Fixed point structure

We are now in the position to give an elaborate discussion of the fixed point structure
supported by the beta functions (4.25), (4.26), and (4.27). We start by commenting on
the general structure of βc, βc̃ and βd in section 5.1 before discussing the properties of
the NGFPs in section 5.2. We close the investigation by considering the fixed points
appearing in “pure-matter” truncations in a curved (non-fluctuating) background spacetime
in section 5.3.

5.1 Structure of the beta functions in the matter sector

We start the investigation by looking at the structure of the matter-beta functions. In the
approximation where the scalar anomalous dimension is set to zero, they are given by poly-
nomials in the non-minimal matter couplings. The coefficients depend on the gravitational
couplings λ, g. When the effect of the scalar anomalous dimension is included, the structure
of the beta functions changes and they are given by the quotient of two polynomials. In
order to exhibit this structure, we pick a “reference point” for the gravitational couplings,

gref = 0.66 , λref = 0.2 . (5.1)
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ηs p0(gref , λref) n ñ n ñ

βc
# 54.0 2 0 2 0

! 54.0 3 1 3 1

βd
# −0.47 3 0 3 0

! −0.48 6 3 6 3

βc̃
# −0.13 3 0 3 0

! −0.13 6 3 6 3

Table 1. Polynomial structure of the matter beta-functions evaluated at the base-point (5.1) (and
ηN = −2) obtained from the one-dimensional projection (middle block) and including the full
backreaction of all non-minimal gravity matter couplings (last two columns).

These values are suggested by the position of the non-Gaussian gravity-matter fixed point
seen at minimal coupling. In a first instance, it is then instructive to consider a one-
dimensional projection of the non-minimal matter beta functions, setting the couplings of
the other operators to zero by hand. Schematically, βg then takes the form

βgm = p(gm)
q(gm) , p(gm) =

n∑
i=0

pi(g, λ)(gm)i , q(gm) =
ñ∑
i=0

qi(g, λ)(gm)i . (5.2)

Here we normalized q0 = 1 and gm denotes the dimensionless version of the single matter
coupling in the one-dimensional projection.4 The polynomial structure of the resulting
systems is then compiled in table 1. There are several observations linked to this data:

1) All polynomials have a non-zero value p0(gref , λref). Thus setting the matter coupling
to zero does not correspond to a fixed point of the corresponding beta function. This
is the mechanism creating the “shifted Gaussian fixed points”: the presence of non-
zero gravitational couplings lead to non-zero interactions in the matter sector.

2) The actual value of p0 is insensitive to the inclusion of the scalar anomalous dimension.

3) If ηs is set to zero n may be even or odd. Beta functions where n is odd automatically
have at least one real zero, extending the gravitational fixed point to a fixed point
with a non-zero matter coupling. If n is even, there are three possible scenarios: the
polynomial may have two, one, or zero real roots. In the first case, one observes a
splitting of the gravitational fixed point into two gravity-matter fixed points. The
critical exponents generated by the matter-coupling (essentially encoding the slope
of the beta function in the direction of the matter coupling) come with opposite
signs. Hence, it is expected that the two gravity-matter fixed points generated by the
inclusion of the non-minimal matter coupling come with different predictive power.

4The dimensionless coupling gm is a short-hand notation for c, d or c̃ depending on the choice of projection
of the matter interactions.
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4) The inclusion of the scalar anomalous dimension changes the degree n of p(gm) with-
out altering the index n − ñ. In this way, the system can generate additional zero’s
of the beta functions. In the following, we adopt the selection criterion that a vi-
able NGFP must be present in both systems with ηs included and set to zero. In
this viewpoint the scalar anomalous dimension has the status of a correction to the
fixed point properties (refining the approximation) instead of being the key ingredient
generating the fixed point.5

5) The inclusion of the backreaction from the other non-minimal matter couplings does
not affect the polynomial structure exhibited in eq. (5.2). In this case, the coefficients
depend on both the gravitational couplings {λ, g} as well as the other non-minimal
gravity matter couplings though.

6) The only beta function with an even index n− ñ in its associated matter coupling is
βc. Thus it is this direction in theory space which is “dangerous” in the sense that
the corresponding beta function may not exhibit real zeros as indicated in the left
panel of figure 3.

5.2 Fixed points of the gravity-matter system

Following up on the general structure of the beta functions in the matter sector, we now
determine the fixed point structure of the system. Besides the full system, comprising
the five scale-dependent couplings {λ, g, c, c̃, d}, it is also instructive to consider the six
subtruncations where either two or one of the couplings in the matter sector is set to
zero and the corresponding beta function is dropped from the set of equations. It is
then convenient to label the resulting truncations by the matter couplings retained in
the approximation. In addition, the fixed point structure can be analyzed including the
scalar anomalous dimension or in the approximation where ηs = 0 by hand. The inclusion
of ηs will then be indicated by adding the symbol “∗” to the truncation label. In this
nomenclature, the full system is then denoted by cc̃d∗.

The fixed points identified in the various (sub-)systems are listed in table 2. This data
constitutes the main result of this section. Notably, the fixed point structure of the systems
c and c̃ have been studied in [157] and [147], respectively. In both cases our computation
confirms the results motivated by the hybrid computation reported in these works.

Given that the complexity of the beta functions increases significantly once an ad-
ditional coupling is included, we apply two different search strategies for identifying their
roots. For the simple systems c, c̃, d and c∗, c̃∗, d∗ the set of fixed points can be obtained via
the NSolve-command of Mathematica. In these cases, it is possible to verify analytically
that the numerical algorithm identified all zeros of the set of beta functions. This strategy
underlies the data given in the first four blocks of table 2, reporting the fixed point structure
at minimal coupling (mc) and upon retaining one non-minimal gravity-matter couplings.

5Note that this does not rule out that there can also be viable RG fixed points of the second category
where the anomalous dimension is essential for creating the fixed point. The fact that fluctuations in the
matter sector are essential for these fixed points puts their study beyond the scope of the present work.
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g∗ λ∗ c∗ c̃∗ d∗ ηs θ1 θ2 θ3 θ4 θ5

mc 0.66 0.21 − − − − 1.60± 3.25i − − −
mc∗ 0.66 0.21 − − − −0.77 1.60± 3.28i − − −
c − − − − − − − − − −
c∗ − − − − − − − − − −
c̃ 0.66 0.21 − 0.08 − − 1.60± 3.25i − −1.79 −

c̃∗
0.65 0.21 − 0.17 − −1.03 1.60± 3.29i − −0.56 −
0.65 0.21 − 0.75 − −1.74 1.60± 3.28i − 0.40 −
0.64 0.20 − 2.20 − −2.42 1.65± 3.17i − −1.33 −

d

0.66 0.21 − − −1.24 − 1.74± 3.47i − − −3.90
0.66 0.21 − − −0.22 − 1.59± 3.33i − − 2.22
0.66 0.19 − − 1.20 − 1.75± 2.96i − − −4.47

d∗
0.67 0.21 − − −0.74 1.13 1.66± 3.33i − − −3.20
0.66 0.21 − − −0.19 −0.43 1.59± 3.33i − − 2.32
0.66 0.19 − − 1.31 −0.46 1.74± 2.94i − − −7.26

cc̃ − − − − − − − − − −
cc̃∗ − − − − − − − − − −
cd 0.66 0.21 −80.8 − −1.98 − 2.12± 3.44i −1.71 − −18.3
cd∗ 0.67 0.21 −16.7 − −0.93 1.51 1.58± 3.48i −0.25 − −2.19

c̃d

0.66 0.21 − 0.33 −1.23 − 1.67± 3.49i − −2.49± 0.68i
0.66 0.21 − 0.05 −0.28 − 1.59± 3.35i − −1.86 2.17
0.66 0.19 − 0.59 1.15 − 1.74± 2.95i − −3.13 −5.91

c̃d∗
0.67 0.21 − 0.08 −0.74 0.94 1.65± 3.34i − −2.62 −2.96
0.66 0.21 − 0.07 −0.25 −0.42 1.58± 3.34i − −1.40 2.25
0.66 0.19 − 0.71 1.20 −0.44 1.74± 2.92i − −2.88 −9.43

cc̃d 0.66 0.21 −29.0 0.63 −1.69 − 1.76± 3.57i −1.88± 1.28i −9.69

cc̃d∗
0.67 0.21 −16.6 0.14 −0.96 1.27 1.70± 3.38i −4.54± 2.69i −3.00
0.64 0.24 −42.2 5.65 −4.23 −1.75 1.34± 4.65i −7.52± 1.80i 2.20

Table 2. We summarize the fixed point structure entailed by our beta functions in various sub-
systems. Coordinates and critical exponents are given up to two decimal digits. The first two lines
refer to a minimally coupled scalar field (mc), providing the benchmark for the truncations includ-
ing the shift-symmetric interactions in the matter sector. The latter are labeled by the couplings
retained in the corresponding subsystem. E.g., the full system tracking the couplings c, c̃, and d

together with the scalar anomalous dimension ηs is referred to as cc̃d∗, etc.
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Figure 5. Illustration of the characteristic features linked to the gravitational sector of the NGFPs
for various subsystems. The data points are based on table 2. Notably, the position and critical
exponents are rather insensitive to the truncation employed in the matter sector.

The fixed points listed for the more complex truncations are found in a multistep
procedure. First, the beta functions of the matter sector are simplified by substituting the
approximate fixed point values of the gravitational couplings given in (5.1). The complete
list of zeros of the simplified matter sector is then obtained from NSolve, which results
in approximate values for c∗, c̃∗, d∗. Combined with the base point for λ and g, this data
serves as initial condition for finding the exact position of the root through Mathematica’s
FindRoot algorithm. This strategy has the advantage that it converges rapidly to the exact
position of the fixed point. At the same time it allows to determine the number of NGFPs
rooted in the same base point in the gravitational sector in a reliable way.

At this point the following technical remark is in order. Our analysis also revealed
that the interactions in the matter-sector may also generate zeros of the beta functions
which are not visible at minimal couplings and their properties in the gravitational sector
differ substantially from the ones shown in figure 5. While the existence of this new class
of solutions is intriguing, the complexity of the coupled system of beta functions makes
the systematic inventarization of all potential fixed point candidates technically rather
involved. Thus this task is left for a future investigation.

Table 2 allows to draw the following conclusions:

Stability of the Gravitational Sector. All fixed points identified in our work essentially share
the same properties in the gravitational sector: the position {λ∗, g∗} as well as the critical
exponents θ1, θ2 are almost unaffected by the feedback from the non-minimal interaction
terms. This feature is highlighted in figure 5 which compares the characteristics of the
gravitational sector in various truncations.6

6When a given truncation gives multiple NGFPs, we select the one closest to the one observed at minimal
coupling. Since the values for Re(θ1) and Re(θ2) among the different candidates differ by less than 20% the
feature exhibited in figure 5 is shared by all candidates.
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Truncations with a single non-minimal coupling. The NGFP seen at minimal coupling (mc)
persists in the c̃ and d-truncations while it is absent in the c-truncation. These features
are readily understood from the properties of the beta functions summarized in table 1.
βc̃ and βd are cubic in the respective couplings. Thus they always give rise to at least
one real root and the existence of a NGFP is guaranteed. The cubic nature of the matter
beta functions can also entail the possibility that the NGFP visible at minimal coupling
splits into a triplet of NGFPs which are distinguished by their fixed point coordinate c̃ or
d. These triplets appear in the c̃∗, d, and d∗-truncations. Their characteristic feature is
an alternating sign for the critical exponent appearing in the matter sector. This can be
traced back to the fact that the derivatives of a cubic polynomial at its three real roots
must have alternating signs.

In contrast to βc̃ and βd, βc is quadratic in c. The fact that we do not find a suitable NGFP
in the c-truncation then indicates that the gravitational interactions shift βc upward so that
the resulting quadratic polynomial does not admit real roots. This situation is depicted by
the top-curve shown in figure 3. In ref. [157], this situation has been paraphrased as the
truncation is incompatible with the weak gravity bound.

The stabilizing effect of the RX-coupling. The c-truncation suggests that the gravity-scalar
system considered in this work does not constitute an ASQGM-model, since the matter
self-interaction c does not develop a suitable fixed point. The cc̃ and cc̃∗-truncations seem
to corroborate this assessment. This analysis does not take the full backreaction of the
matter self-interactions into account. Table 2 shows that the coupling d plays a crucial
role in stabilizing the system within the weak gravity bound: all truncations including this
coupling possess (at least) one NGFP suitable for realizing Asymptotic Safety. Already in
the cd-truncation this stabilization effect is sufficiently strong to recreate the fixed point.

The full system cc̃d. The most elaborate truncation considered in the present work, the
cc̃d and cc̃d∗-truncations described in the last block of table 2, exhibit a NGFP suitable
for realizing asymptotic safety.7 Its gravitational sector, comprising {λ∗, g∗, θ1, θ2} is strik-
ingly similar to the one associated with the NGFP visible at minimal coupling. The critical
exponents associated with the non-minimal matter interactions, θ3, θ4, θ5, are all negative
indicating that the non-minimal gravity-matter interactions are UV-irrelevant. Hence the
power-counting irrelevant operators I3, I4, I5 introduced in eq. (4.15), remain irrelevant
upon including quantum corrections from the gravitational and matter sectors. This sug-
gests that the values of c, c̃, and d in the effective action actually constitute predictions
from Asymptotic Safety which may be benchmarked against structural requirements on
the low-energy effective action [205].

7The cc̃d∗ truncation gives rise to a second NGFP created by including the scalar anomalous dimension.
This fixed point is listed in the second line for completeness. The present discussion focuses on the fixed
point in the first line which, by virtue of its stability coefficient in the matter sector, may be identified as
the counterpart of the NGFP listed for the cc̃d-truncation.
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c∗ c̃∗ d∗ ηs θ3 θ4 θ5

flat

GFP 0 − − − −4 − −
NGFP −63.2 − − − 4 − −
GFP 0 − − 0 −4 − −
NGFP −31.9 − − −0.90 4.40 − −

curved

GFP 0 0 0 − −4 −2 −2
NGFP −63.2 0.15 0.46 − 4 0.4 −1.73
GFP 0 0 0 0 −4 −2 −2
NGFP −31.9 0.16 0.49 −0.90 4.40 0.22 −0.95

Table 3. We summarize the fixed point structure of the matter sector in the absence of gravity,
setting g = 0, λ = 0. The results on a flat Euclidean background (flat) and on a fixed curved
background (curved) are given in the first and second line, respectively. In the flat case, the
quadratic nature of βc gives rise to a non-trivial fixed point solution (NGFP). This fixed point
extends to the curved space truncation retaining all three matter couplings.

In summary, our analysis revealed that the theory space associated with gravity sup-
plemented by a single scalar field possesses a NGFP suitable for asymptotic safety. In
the gravitational sector, the properties of this fixed point are very similar to the ones en-
countered at minimal coupling. The detailed analysis reported in table 2 reveals that the
interplay of the couplings associated with the non-minimal interactions play a critical role
for establishing the presence of this fixed point.

5.3 Scalar systems in a flat background

Based on the general beta functions in the matter sector (4.26) and (4.27), it is also interest-
ing to study the fixed point structure of the “pure-matter”-system where all contributions
involving graviton propagators are switched off. This corresponds to analyzing the RG flow
of the scalar matter system in a non-fluctuating background spacetime which can either be
flat or curved. For the flat background, the invariants I3 and I4 vanish. The corresponding
truncation (flat) contains the scalar-kinetic term I2 and the momentum-dependent scalar
self-interactions I5 only. Thus we are left with the scalar wave-function renormalization
and the coupling c. Additionally, the curved background truncation (curved) retains the
interations I3 and I4, so that the set of couplings in this truncation is given by {c, c̃, d}.
Technically, the beta functions associated with the flat and curved truncations are obtained
from (4.26) and (4.27) by applying

qp1,p2
N,q → 0 , ∀{p1, p2} and qp1,p2

s,q → 0 , ∀p2 6= 0 . (5.3)

The first substitution eliminates the contributions from all traces including the regulator
Rk in the gravitational sector while the second identity removes all contributions including
at least one gravitational propagator.

The fixed point structure arising from this setting is summarized in table 3. The result
can be understood as follows. In the flat truncation with ηs = 0, βc is quadratic in c with
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vanishing constant coefficient

βflatc

∣∣∣
ηs=0

= 4c+ 5
8π2 c

2 . (5.4)

Hence we obtain a GFP (c∗ = 0) and a NGFP (c∗ = −32π2

5 ). Since the slope of the
polynomial has different signs at these two points, the GFP is UV-repulsive while the NGFP
is an UV-attractor. This structure persists upon including the scalar anomalous dimension
(second block in the flat rows) and when transiting to the curved space truncation (bottom
lines). We note that the inclusion of the scalar-anomalous dimension ηs gives rise to a
second NGFP solution coming with a large positive ηs. This zero of the beta function is
not included in the table. In addition to that, this model was also explored in [157] as
a particular case of their analysis and a NGFP with similar qualitative features — and
reasonable quantitative agreement with our findings was reported.

Note that the occurrence of the NGFP in the flat approximation does not conflict with
the fixed point structure for Galileon theories recently reported in [206] which identified
a GFP only. As argued in section 3, only the inclusion of specific couplings convert a
Gaussian into a non-Gaussian matter fixed point. The coupling c, which is responsible
for generating the NGFP in our case is not included in the study [206], which provides a
natural explanation for the diverging results.

6 Conclusions and outlook

The formulation of a consistent and predictive theory of quantum gravity including the ob-
served (and, perhaps, yet to be discovered) matter degrees of freedom is a daunting task.
Nevertheless, there are good prospects of achieving this goal in the form of an asymptoti-
cally safe quantum gravity-matter (ASQGM) theory. This work has taken important steps
towards this goal by studying the renormalization group (RG) flow on the theory space
spanned by gravity supplemented by a real scalar field. The kinetic term of the scalar field
exhibits a global shift-symmetry being invariant under the transformation φ 7→ φ+ c with
c being an arbitrary real number. In section 3 we demonstrated that this symmetry plays
a key role in understanding the structure of the theory space: action functionals invariant
under this shift-symmetry span a subspace on which the flow equation for the effective
average action closes, i.e., if the initial conditions for the flow respect the shift-symmetry
the symmetry is preserved along the RG flow.

This finding has profound consequences for understanding the structure of potential
RG fixed points of the theory which are the key element in the asymptotic safety construc-
tion. By definition, the gravitational sector of an asymptotically safe gravity-matter system
must exhibit non-vanishing gravitational interactions. These interactions are transmitted
into the matter sector, where the fixed point then develops non-minimal interactions as
well. The “non-Gaussian” subspace of the matter sector is spanned by interactions com-
patible with shift-symmetry. While it is consistent to set all couplings associated with
shift-symmetry breaking interaction terms to zero, the non-Gaussian matter interactions
play a crucial role in determining whether a theory exhibits asymptotic safety.
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In this work, we have tackled the question: may scalar-tensor theories have a high-
energy completion through the asymptotic safety mechanism? Based on the general dis-
cussion above, the focus of the investigation was on analyzing the effect of shift-symmetric
non-minimal interactions. By the mechanisms exhibited in figure 3, these come with the
imminent danger of destroying a fixed point by shifting the zeros of the matter beta func-
tions into the complex plane. Concretely, we considered a truncation of the theory space
comprising the Einstein-Hilbert action supplemented with a quartic scalar self-interaction
as well as the two non-minimal terms coupling scalar-bilinears to the Ricci scalar and the
Ricci tensor (cf. eq. (4.3)). This setting produced two key insights. Firstly, the full trunca-
tion possesses an interacting RG fixed point suitable for Asymptotic Safety. Secondly, the
interplay of the non-minimal couplings is crucial for establishing this result: in particular
the non-minimal coupling involving the Ricci scalar plays a crucial role in ensuring that
there is a fixed point with real values of the coupling constants. Thus our work provides
strong indications that scalar-tensor theories can indeed have a high-energy completion
based on the asymptotic safety mechanism.

On the technical side, our computation followed the spirit of [207] and evaluated the
beta functions using the background field method in an unspecified background. Thus our
results are manifestly background independent. While extending the present truncation by
including further operators is challenging, the computational toolbox developed in this work
does not face any conceptual issue to deal with such refinements on a conceptual level. Our
results on the fixed point structure then suggest that such a refinement should primarily
focus on including further shift-symmetric non-minimal gravity matter interactions, as
these may challenge the existence of the NGFPs found at minimal coupling. In the best
case, such an extended analysis will reveal the onset of stability and convergence of the
fixed point structure similarly to the f(R)-type computations carried out in the context of
pure gravity [34, 35, 47, 54].

From a phenomenological viewpoint, a theory of quantum gravity coupled to a single
scalar field is still far beyond from a realistic description of our Universe and its matter
content. Nonetheless, this setting provides an interesting arena for phenomenological ap-
plications, e.g., in the context of cosmology and the physics of black holes. In particular,
the so-called Horndeski theories [208–210], recently reviewed in [211], have been explored in
quite some detail with regards to cosmology [212, 213], black holes [214–216], gravitational
waves [217], and the consistency of the low-energy effective field theory [205]. Our find-
ings support the viability of a scalar-tensor theory as being a fundamental quantum field
theory. Thus, a clear direction to pursue is the investigation of quantum-gravity imprints
in scalar-tensor theories. In particular, the foliation of the theory space suggests that the
phenomenology related to shift-symmetric scalar-tensor theories may have a distinguished
role from a fundamental perspective. The fact that the fixed points identified in our work
provided substantial predictive power, fixing the value of either two or all three gravity-
matter couplings in (4.3) in terms of Asymptotic Safety, makes this setting particularly
interesting for confronting the theory with phenomenological implications.
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Note added. While this work was under consideration for publication, ref. [218] ap-
peared, which conducted a thorough analysis of the fixed point structure of scalar-tensor
theories in the shift-symmetry breaking sector. The results support our factorization (2.16),
concluding that the couplings in this sector are Gaussian.

A Definitions of tensor structures

Throughout the work (anti-)symmetrization is with unit strength, i.e., X(αβ) = 1
2(Xαβ +

Xβα), etc. We define ∆ ≡ −ḡµνD̄µD̄ν . The units on the space of symmetric matrices (2),
vectors (1), and scalars (0) are

1(2)αβ
µν ≡ 1

2
(
δµαδ

ν
β + δµβδ

ν
α

)
, 1(1)µ

ν ≡ δνµ , 1(0) ≡ 1 . (A.1)

On the space of symmetric 2-tensors it is convenient to introduce the following tensors

ΠTL µν
αβ ≡ 1

2
(
δµαδ

ν
β + δµβδ

ν
α

)
− 1

4 ḡαβ ḡ
µν , ΠT µν

αβ ≡ 1
4 ḡαβ ḡ

µν . (A.2)

ΠTL and ΠT project a symmetric matrix onto its traceless (TL) and tracepart (T). The
projectors are orthogonal in the sense that[

ΠTL
]
·
[
ΠTL

]
=
[
ΠTL

]
,
[
ΠT
]
·
[
ΠT
]

=
[
ΠT
]
,
[
ΠTL

]
·
[
ΠT
]

=
[
ΠT
]
·
[
ΠLT

]
= 0 . (A.3)

In order to write the interaction vertices in a compact form we use the short-hand
notation introduced in (2.18). Moreover, we use the standard colon-notation for covariant
derivatives Dαφ ≡ φ;α.

B Vertices entering the computation of the beta functions

The vertices arising from the second variation of (4.3) with respect to the fluctuation
fields are quite bulky. Therefore, we collect the corresponding expressions entering into
the evaluation of (4.17) and (4.18) in this appendix. At this stage it is understood that
all fields and spacetime curvatures are background quantities, i.e., we omit the bar on the
metric for the sake of readability. The complete list of vertices is then given in table 4.

Notably, the expressions [Vhh]αβ µν arising from the variation of the curvature-scalar
interaction terms are rather involved. For computational convenience all expressions are
ordered according to the powers of the spacetime curvature contained, i.e.,

[Vhh]αβ
µν =

∑
n=0

[
V(n)
hh

]
αβ

µν (B.1)

The matter-sector (4.3) gives vertices with n = 0, 1 only.
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vertex matrix element

[Vhh]αβ µν
1

32πGk

[
2
3RΠTL µν

αβ − 2C µ ν
(α β)

]
[VC̄C ]µ ν −Rµν

[Vhh]αβ µν −1
4X

[
ΠTL µν

αβ −ΠT
αβ

µν
]
− 1

4 (gαβ Xµν +Xαβ g
µν) + δ

(µ
(αX

ν)
β)

[Vhφ]αβ
1
2gαβφ

;λDλ − φ;(αDβ)

[Vφh]µν −1
2g
µνDλφ

;λ +D(µφ;ν)

[Vhh]αβ µν −1
2 X

2
[
ΠTL µν

αβ −ΠT
αβ

µν
]

+ 4δ(µ
(αX

ν)
β)X − [gαβXµν +Xαβg

µν ]X

+2XαβX
µν

[Vhφ]αβ 2gαβXφ;λDλ − 4Xφ;(αDβ) − 4Xαβφ
;λDλ

[Vφh]µν −2Dλφ
;λXgµν + 4D(µXφ;ν) + 4Dλφ

;λXµν

[Vφφ] −4DλXD
λ − 8DλX

λσDσ

[Vhh]αβ µν (B.2) + (B.3) + (B.4)
[Vhφ]αβ gαβR

λσφ;λDσ − 2Rλ(αφ;λDβ) − 2Rλ(αφ;β)Dλ

−gαβDλDσφ;λDσ +DλD(αφ;λDβ) +DλD(αφ;β)D
λ −D2φ;(αDβ)

[Vφh]µν −DλR
λσ φ;σ g

µν + 2D(µRν)λ φ;λ + 2DλRλ
(µ φ;ν)

+Dλ φ;σDλD
σgµν −D(µ φ;λD

ν)Dλ −Dλ φ;(µDν)Dλ +D(µφ;ν)D2

[Vφφ] −2DλR
λσDσ

[Vhh]αβ µν (B.5) + (B.6) + (B.7)
[Vhφ]αβ −2Rαβφ;λD

λ + gαβR φ;λD
λ − 2Rφ;(αDβ) + 2D(αDβ)φ;λD

λ

−2gαβD2φ;λD
λ

[Vφh]µν 2Dλφ
;λRµν −Dλφ

;λgµνR+ 2D(µφ;ν)R− 2Dλφ
;λD(µDν)

+2Dλφ
;λD2gµν

[Vφφ] −2DλRD
λ

Table 4. Vertices encoding the interactions between the background and fluctuation fields. Deriva-
tives not denoted by the colon-notation act onto everything to their right. The vertices derived
from the Einstein-Hilbert action, the scalar kinetic term, the scalar self-interaction, scalars coupled
to the Ricci tensor, and the scalars coupled to the Ricci scalar are provided in the first, second,
third, fourth, and fifth block, respectively. The couplings in the matter sector are set to 1. The
definitions of the tensorial quantities are provided in appendix A.
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The second variation of
∫

d4x
√
gRµνXµν with respect to the metric fluctuation gener-

ates the following vertex structure. At zeroth order in the curvature one obtains[
V(0)
hh

]
αβ

µν ∼ 1
2
(
XλσDλDσ

) [
ΠTL µν

αβ − 3 ΠT
αβ

µν
]

+ 1
2
(
gµνXλ

(α
(
DλDβ) +Dβ)Dλ

)
+ gαβXλ

(µ
(
DλDν) +Dν)Dλ

))
+X

(µ
(α δ

ν)
β)D

2 − 1
2X

(µ
(α

(
Dν)Dβ) +Dβ)D

ν)
)
− 1

2δ
(µ
(αX

ν)
σ

(
DσDβ) +Dβ)D

σ
)

− 1
2δ

(µ
(αX

σ
β)

(
DσD

ν) +Dν)Dσ

)
. (B.2)

Here ∼ denotes that the vertex has been simplified applying the relations (4.20). Sym-
metrization of the covariant derivatives acting on the fluctuation fields gives curvature
terms related to commutators[

V(1a)
hh

]
αβ

µν ∼− 1
2X

(µ
(αR

ν)
β) −

1
4X

σ
(αRβ)

(µν)
σ −

1
4X

(µ
σ R

ν)
(αβ)

σ

− 1
2
(
δ

(µ
(αX

ν)
λ Rβ)

λ + δ
(µ
(αX

λ
β)Rλ

ν) +Xλ
(αRλ

(µν)
β) +X

(µ
λ R

λ
(αβ)

ν)
)
.

(B.3)

In addition, the vertex contains contributions including one power of the spacetime curva-
ture which directly appear at the level of the variation[

V(1b)
hh

]
αβ

µν =− 1
2R

ρσXρσ

[
ΠTL µν

αβ −ΠT
αβ

µν
]
−
(
gµνRλ(αXβ)λ + gαβR

λ(µXν)
λ

)
+ 2

(
δ

(µ
(αR

ν)
λX

λ
β) + δ

(µ
(αRβ)

λXλ
ν)
)

+ 2X(µ
(αR

ν)
β) .

(B.4)

The coupling constants can be restored by multiplying the vertices with ZkC̃k.
The vertex structure originating from the second variation of

∫
d4x
√
gRX comes with

the following contributions. At zeroth order in the spacetime curvature one obtains[
V(0)
hh

]
αβ

µν ∼ 1
2 XD2

[
ΠTL µν

αβ − 3 ΠT
αβ

µν
]

+ 1
2X

(
gαβD

(µDν) +D(αDβ)g
µν
)

− 1
2Xδ

(µ
(α

(
Dν)Dβ) +Dβ)D

ν)
)
−XαβD

(µDν) −XµνD(αDβ)

+ (Xαβg
µν + gαβX

µν)D2 .

(B.5)

The commutators arising from the symmetrization of the covariant derivatives enter-
ing (B.5) give rise to [

V(1a)
hh

]
αβ

µν ∼− 1
2X

(
δ

(µ
(αR

ν)
β) +Rα

(µν)
β

)
. (B.6)

In addition, the vertex contains contributions including one power of the spacetime curva-
ture which directly appear at the level of the variation[

V(1b)
hh

]
αβ

µν =− 1
2RX

[
ΠTL µν

αβ −ΠT
αβ

µν
]

+ 2Rδ(µ
(αX

ν)
β) + 2Xδ(µ

(αR
ν)
β)

− 1
2R (Xαβg

µν +Xµνgαβ)− 1
2X (Rαβgµν +Rµνgαβ) +XαβR

µν

+XµνRαβ .

(B.7)

The coupling constants can be restored by multiplying the vertices with ZkDk.
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C Heat-kernel techniques

In this appendix, we collect the results on the heat-kernel expansion which are used for eval-
uating the operator traces appearing on the right-hand side of Wetterich’s equation (2.2).

C.1 Early-time expansion of the heat-kernel

Standard heat-kernel techniques [36, 219, 220] and their extension to the off-diagonal heat-
kernel [221–224] provide a powerful tool for computing quantum corrections in a curved
spacetime. The central idea is to introduce the heat kernel

H(x, x′; s) ≡ 〈x| e−s∆ |x′〉 , (C.1)

as the matrix elements of the operator e−s∆. The heat kernel solves the heat equation

(∂s + ∆x′)H(x, x′; s) = 0 , (C.2)

subject to the boundary condition

lim
s→0

H(x, x′; s) = δ(x, x′) . (C.3)

The trace of e−s∆ is then encoded in the “diagonal part” (coincidence limit) of H(x, x′; s)

Tr
[
e−s∆

]
=
∫

ddx√g H(x, x; s) . (C.4)

The heat kernel admits various different approximations. For the present purpose,
it is convenient to utilize the early-time expansion which by power-counting can be seed
to correspond to an expansion of H(x, x; s) in powers of the spacetime curvature and its
derivatives

H(x, x; s) = 1
(4πs)d/2

∞∑
n=0

tr(a2n) sn , (C.5)

where n counts the number of derivatives contained in the expansion coefficient a2n and
tr is a trace over vector-bundle indices. The present computation requires the expansion
coefficients for n = 0, 1 which are given by

a0 = 1 , a2 = 1
6R1 . (C.6)

C.2 Results for the off-diagonal heat-kernel

Following [30], we define the expansion of the heat-kernel at non-coincident points

H(x, x′; s) = 1
(4πs)d/2

e−
σ(x,x′)

2s

∞∑
n=0

snA2n(x, x′) . (C.7)

Here σ(x, x′) is half the squared geodesic distance between x and x′ and we introduced the
off-diagonal heat-kernel coefficients A2n(x, x′), n ∈ N. The coincident limit x = x′ of any
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object will be denoted by an overbar. For σ(x, x′) we then have σ(x, x′) = 0 and the only
non-trivial coincidence limit appears if we take two covariant derivatives

σ(x, x′);(µν) = gµν . (C.8)

Up to terms of O(R2), which do not contribute to the present computation, the non-trivial
coincident limits of the coefficients A2n and their derivatives are

A0(x, x′) = 1 , A0(x, x′);(µν) = 1
6Rµν 1 , A2(x, x′) = 1

6R1 , (C.9)

where 1 denotes the unit operator on the vector bundle on which ∆ acts (cf. (A.1)).
When applying the off-diagonal heat-kernel in the trace evaluation, one frequently

encounters covariant derivatives acting on (C.7). The resulting structures motivate defining

Hα1···α2n(x; s) ≡ D(α1 · · ·Dα2n)H(x, x′; s) . (C.10)

The tensors Hα1···αn(x; s) are symmetric in all indices by construction. Their early-time
expansion can be constructed by taking covariant derivatives of (C.7) and evaluating the
coincidence limit by substituting the expressions (C.9). For the present computation it
suffices to carry out the early time expansion up to first order in the spacetime curvature
and up to n = 2. The explicit form of the H-tensors is [30]

Hαβ = 1
(4πs)d/2

[
− 1

2sgαβ
(

1 + 1
6sR

)
+ 1

6Rαβ
]
1 ,

Hαβµν = 1
(4πs)d/2

[ 1
4s2

(
gαµgβν + gανgβµ + gαβgµν

)(
1 + 1

6sR
)

− 1
12s

(
gαµRβν + gανRβµ + gβµRαν + gβνRαµ + gαβRµν + gµνRαβ

)]
1 .

(C.11)

C.3 Laplace-transforms and threshold functions

Generically, the argument of the operator traces is given by functions W (z) of the Lapla-
cian. The inverse Laplace transform

W (z) ≡
∫ ∞

0
ds W̃ (s) e−sz (C.12)

allows to relate such traces to the heat kernel via

Tr [W (∆)] =
∫ ∞

0
ds W̃ (s) Tr

[
e−s∆

]
. (C.13)

Substituting the early-time expansion of the heat kernel (C.5) yields

Tr [W (∆)] = 1
(4π)d/2

∞∑
n=0

Qd/2−n[W ]
∫

ddx√g tr(a2n) , (C.14)

with the Q-functionals being

Qn[W ] ≡
∫ ∞

0
ds s−n W̃ (s) . (C.15)
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For n > 0 it is straightforward to express the Q-functional in terms of W (z)

Qn[W ] = 1
Γ(n)

∫ ∞
0

dz zn−1W (z) , n > 0 . (C.16)

The prototypical form of W (z) encountered in the present computation is

W (z) = 1
Zk (Pk)ps(Pk + k2w)pg ∂t(ZkRk) (C.17)

where Rk(z) ≡ k2R(0)(z/k2) is the scalar regulator function introduced in (4.7) and ps and
pg denote the number of scalar and graviton propagators appearing in the trace. In this
case, the Q-functionals are conveniently expressed in terms of (a slight generalization of)
the threshold functions introduced in [16]

Φps,pg
n (w) ≡ 1

Γ(n)

∫ ∞
0

dz zn−1 R(0)(z)− zR(0)′(z)
(z +R(0)(z))ps (z +R(0)(z) + w)pg

,

Φ̃ps,pg
n (w) ≡ 1

Γ(n)

∫ ∞
0

dz zn−1 R(0)(z)
(z +R(0)(z))ps (z +R(0)(z) + w)pg

.

(C.18)

For the Litim-type regulator (4.8) the integrals in (C.18) are easily evaluated analytically

Φps,pg
n (w) = 1

Γ(n+ 1)
1

(1 + w)pg , Φ̃ps,pg
n (w) = 1

Γ(n+ 2)
1

(1 + w)pg (C.19)

We note that for the special value ps + pg = n+ 1 one has

Φn+1
n (0) = 1

Γ(n+ 1) , n ≥ 0 , (C.20)

which is independent of the choice of regulator function and encodes “universal” contribu-
tions to the flow. To ease our notation, we define the following linear combination of the
dimensionless threshold functions

q
ps,pg
i;n (w) ≡ Φps,pg

n (w)− 1
2ηiΦ̃

ps,pg
n (w) , (C.21)

where the argument i ∈ {N, s} specifies the anomalous dimension (4.23) appearing in the
linear combination.

Substituting (C.17) into (C.16) then leads to the useful relation

Qn

[
∂t(ZkRk)

Zk(Pk)ps(Pk + k2w)pg

]
= 2k2n−2ps−2pg+2 qps,pgn (w) , (C.22)

and its generalization

Qn

[
zq

∂t(ZkRk)
Zk(Pk)ps(Pk + k2w)pg

]
= 2 Γ(n+ q)

Γ(n) k2n+2q−2ps−2pg+2 q
ps,pg
n+q (w) . (C.23)
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D Traces

The traces which are needed to be computed within our truncation are collected in this
appendix. For the gravitational sector, (4.17), they evaluate to

T1 = 5
8π2k

4q1
2 I0 + 5

48π2k
2 q1

1 I1 ,

T2 = − 3
8π2k

2 q2
2 I1

+ GkZkk
2

π

(
6
(
C̃k +Dk

)
k2q2

3I2 −
(
C̃k + 14

3 Dk

)
q2

2I3 −
(

3C̃k + 10
3 Dk

)
q2

2I4

− 12CkZk q2
2 I5

)
,

T4 = − 3
π
GkZkk

2
(
3C̃k + 4Dk

)
q3

3I3 + 48G2
kZ

2
k

(
q3

2 − k2C̃kq
3
3 + k4 (5C̃2

k + 4C̃kDk

− 2D2
k)q3

4

)
I5 ,

T5 = −3GkZk
2π

(
q4

3 + 2k2(C̃k + 2Dk)q4
4 + 4k4(C̃k + 2Dk)2q4

5

)
I3

− 24G2
kZ

2
k

(
q4

3 + 2k2(C̃k + 2Dk)q4
4 − 22k4(C̃k + 2Dk)2 q4

5 − 10k6(C̃k + 2Dk)2

× (7C̃k + 18Dk) q4
6

)
I5 ,

T6 = T5 ,

T7 = 96G2
kZ

2
k

(
q5

4 − 30k4(C̃k + 2Dk)2 q5
6 + 945 k8 (C̃k + 2Dk)4 q5

8

)
I5 ,

T8 = −3GkZkk2

π

(
(C̃k + 4Dk)q4

4 − 10k4(C̃k + 2Dk)2(C̃k + 6Dk)q4
6

)
I3

+ 60GkZk k6

π
C̃k (C̃k + 2Dk)2 q4

6 I4 −
36GkZ2

k k
2

π
Ck

(
q4

4 − 20k4(C̃k + 2Dk)2 q4
6

)
I5 .

(D.1)

The scalar traces (4.18) yield

T9 = 1
16π2k

4q1
2 I0 + 1

96π2 k
2 q1

1 I1 ,

T10 = − 1
16π2k

4(C̃k + 4Dk) q2
3 I1 −

3
4π2 CkZk k

4 q2
3 I2 −

1
12π2 CkZkk

2q2
2(I3 − I4) ,

T12 = 1
π2Ck Zk k

4 q3
4

(
(2C̃k + 9Dk)I3 + C̃kI4 + 15ZkCk I5

)
T13 = − 3

π
Gkk

2Zk
(
(C̃k + 4Dk)q4

4 − 10k4(C̃k + 2Dk)2(C̃k + 6Dk) q4
6

)
I3

+ 60
π
Gkk

6ZkC̃k(C̃k + 2Dk)2 q4
6 I4

− 36
π
CkGkk

2 Z2
k

(
q4

4 − 20k4(C̃k + 2Dk)2 q4
6

)
I5 ,

T14 = T13 ,

T15 = T7,
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T16 = −3GkZk
2π

(
q4

3 + 2k2(C̃k + 2Dk) q4
4 + 4k4(C̃k + 2D̃k)2 q4

5

)
I3

− 24G2
kZ

2
k

(
q4

3 + 2k2(C̃k + 2Dk) q4
4 − 22k4(C̃k + 2Dk)2 q4

5

− 10k6(C̃k + 2Dk)2 (7C̃k + 18Dk) q4
6

)
I5 . (D.2)

Finally, the Faddeev-Popov ghost sector (4.19) contributes with

T17 = − 1
2π2k

4 Φ1
2 I0 −

1
12π2 k

2 Φ1
1 I1 ,

T18 = − 1
8π2 k

2 Φ2
2 I1 .

(D.3)

Here all threshold functions are evaluated at zero argument.
The most involved part of the computation is the evaluation of the traces T3 and T11

containing the insertion of two off-diagonal vertices only. These traces naturally split into
three contributions

T3 = T commuting
3 + T symmetrization

3 + T scalar-symmetrization
3 + T commutator

3 , (D.4)

and identical for T11. By definition T commuting
3 captures all contributions from the trace

where all covariant derivatives are taken to be commuting. In addition, there are three
types of commutator contributions. T symmetrization

3 captures the curvature terms originat-
ing from symmetrizing the covariant dertivatives acting on the off-diagonal heat-kernel
(cf. (C.10)) while T scalar-symmetrization

3 captures the curvature terms arising in the process
of symmetrizing covariant derivatives acting on the scalar field. Moreover, there are ad-
ditional contributions arising from commuting the covariant derivatives contained in the
“left” vertex through the propagator, so that all functions containing the Laplacian ∆ can
be combined into a single function W (∆) which is then acted upon by all uncontracted
derivatives. The explicit computation gives

T commuting
11 = 2GkZk k2

π

(
q3

3−9k4 (C̃k+2Dk)2 q3
5

)
I2

+GkZk
6π

(
q3

2 +12k2 (C̃k+4Dk)q3
3 +3k4 (C̃k+2Dk)(C̃k+10Dk)q3

4

)
I3

+GkZkk
2

π

(
2(5C̃k+2Dk)q3

3 +k2 (C̃k+2Dk)(13C̃k+10Dk)q3
4

)
I4

+ 24CkGkZ2
k k

2

π

(
q3

3 +k2(C̃k+2Dk)q3
4

)
I5 ,

(D.5)

together with T commuting
3 = T commuting

11 . The contributions arising from the symmetrization
of the covariant derivatives acting on the off-diagonal heat-kernel yields

T symmetrization
3 = Gk Zk

π

(
q3

2 + 2k2(C̃k + 2Dk)q3
3 + 6k4(C̃k + 2Dk)2q3

4

)
I3

+ Gk Zk
π

(
q3

2 − 2k2(C̃k − 6Dk)q3
3

)
I4 ,

(D.6)

– 36 –



J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

and

T symmetrization
11 =− Gk Zkk

4

2π (C̃k + 2Dk)2 q3
4 I3

− 2Gk Zk k2

π

(
(C̃k −Dk)q3

3 + k2 (7C̃k −Dk)(C̃k + 2Dk) q3
4

)
I4.

(D.7)

From the symmetrization of derivatives acting on the scalar field, we obtain

T scalar-symmetrization
3 = −2GkZkk2

π

(2
3 q

3
2 + (C̃k + 6Dk) k2q3

3

+ k4 (3C̃k + 10Dk)(C̃k + 2Dk) q3
4

)
I4 ,

(D.8)

and

T scalar-symmetrization
11 = −2GkZkk2

π

(
(2C̃k −Dk)q3

3 + k2 (5C̃k + 9Dk)(C̃k + 2Dk) q3
4

)
I4 .

(D.9)
Notably, the threshold functions in T commutator

3 and T commutator
11 vanish when evaluated for

the Litim regulator.

Open Access. This article is distributed under the terms of the Creative Commons
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References

[1] G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann.
Inst. H. Poincare Phys. Theor. A 20 (1974) 69.

[2] S.M. Christensen and M.J. Duff, Quantizing Gravity with a Cosmological Constant, Nucl.
Phys. B 170 (1980) 480 [INSPIRE].

[3] M.H. Goroff and A. Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B
266 (1986) 709 [INSPIRE].

[4] J.F. Donoghue, Leading quantum correction to the Newtonian potential, Phys. Rev. Lett. 72
(1994) 2996 [gr-qc/9310024] [INSPIRE].

[5] J.F. Donoghue, General relativity as an effective field theory: The leading quantum
corrections, Phys. Rev. D 50 (1994) 3874 [gr-qc/9405057] [INSPIRE].

[6] C.P. Burgess, Quantum gravity in everyday life: General relativity as an effective field
theory, Living Rev. Rel. 7 (2004) 5 [gr-qc/0311082] [INSPIRE].

[7] K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16
(1977) 953 [INSPIRE].

[8] L. Modesto and I.L. Shapiro, Superrenormalizable quantum gravity with complex ghosts,
Phys. Lett. B 755 (2016) 279 [arXiv:1512.07600] [INSPIRE].

[9] D. Anselmi, On the quantum field theory of the gravitational interactions, JHEP 06 (2017)
086 [arXiv:1704.07728] [INSPIRE].

– 37 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(80)90423-X
https://doi.org/10.1016/0550-3213(80)90423-X
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB170%2C480%22
https://doi.org/10.1016/0550-3213(86)90193-8
https://doi.org/10.1016/0550-3213(86)90193-8
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB266%2C709%22
https://doi.org/10.1103/PhysRevLett.72.2996
https://doi.org/10.1103/PhysRevLett.72.2996
https://arxiv.org/abs/gr-qc/9310024
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9310024
https://doi.org/10.1103/PhysRevD.50.3874
https://arxiv.org/abs/gr-qc/9405057
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F9405057
https://doi.org/10.12942/lrr-2004-5
https://arxiv.org/abs/gr-qc/0311082
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0311082
https://doi.org/10.1103/PhysRevD.16.953
https://doi.org/10.1103/PhysRevD.16.953
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD16%2C953%22
https://doi.org/10.1016/j.physletb.2016.02.021
https://arxiv.org/abs/1512.07600
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.07600
https://doi.org/10.1007/JHEP06(2017)086
https://doi.org/10.1007/JHEP06(2017)086
https://arxiv.org/abs/1704.07728
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.07728


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[10] D. Anselmi and M. Piva, The Ultraviolet Behavior of Quantum Gravity, JHEP 05 (2018)
027 [arXiv:1803.07777] [INSPIRE].

[11] D. Anselmi and M. Piva, Quantum Gravity, Fakeons And Microcausality, JHEP 11 (2018)
021 [arXiv:1806.03605] [INSPIRE].

[12] J.F. Donoghue and G. Menezes, Unitarity, stability and loops of unstable ghosts, Phys. Rev.
D 100 (2019) 105006 [arXiv:1908.02416] [INSPIRE].

[13] J.F. Donoghue and G. Menezes, Arrow of Causality and Quantum Gravity, Phys. Rev. Lett.
123 (2019) 171601 [arXiv:1908.04170] [INSPIRE].

[14] C. Wetterich, Quantum scale symmetry, arXiv:1901.04741 [INSPIRE].

[15] S.W. Hawking and W. Israel, General Relativity: An Einstein Centenary Survey,
Cambridge University Press, Cambridge, U.K. (1979).

[16] M. Reuter, Nonperturbative evolution equation for quantum gravity, Phys. Rev. D 57 (1998)
971 [hep-th/9605030] [INSPIRE].

[17] C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301 (1993)
90 [arXiv:1710.05815] [INSPIRE].

[18] T.R. Morris, The Exact renormalization group and approximate solutions, Int. J. Mod.
Phys. A 9 (1994) 2411 [hep-ph/9308265] [INSPIRE].

[19] M. Reuter and C. Wetterich, Effective average action for gauge theories and exact evolution
equations, Nucl. Phys. B 417 (1994) 181 [INSPIRE].

[20] J. Berges, N. Tetradis and C. Wetterich, Nonperturbative renormalization flow in quantum
field theory and statistical physics, Phys. Rept. 363 (2002) 223 [hep-ph/0005122] [INSPIRE].

[21] J.M. Pawlowski, Aspects of the functional renormalisation group, Annals Phys. 322 (2007)
2831 [hep-th/0512261] [INSPIRE].

[22] H. Gies, Introduction to the functional RG and applications to gauge theories, Lect. Notes
Phys. 852 (2012) 287 [hep-ph/0611146] [INSPIRE].

[23] N. Dupuis et al., The nonperturbative functional renormalization group and its applications,
Phys. Rept. 910 (2021) 1 [arXiv:2006.04853] [INSPIRE].

[24] W. Souma, Nontrivial ultraviolet fixed point in quantum gravity, Prog. Theor. Phys. 102
(1999) 181 [hep-th/9907027] [INSPIRE].

[25] O. Lauscher and M. Reuter, Ultraviolet fixed point and generalized flow equation of quantum
gravity, Phys. Rev. D 65 (2002) 025013 [hep-th/0108040] [INSPIRE].

[26] M. Reuter and F. Saueressig, Renormalization group flow of quantum gravity in the
Einstein-Hilbert truncation, Phys. Rev. D 65 (2002) 065016 [hep-th/0110054] [INSPIRE].

[27] O. Lauscher and M. Reuter, Is quantum Einstein gravity nonperturbatively renormalizable?,
Class. Quant. Grav. 19 (2002) 483 [hep-th/0110021] [INSPIRE].

[28] M. Niedermaier, On the renormalization of truncated quantum Einstein gravity, JHEP 12
(2002) 066 [hep-th/0207143] [INSPIRE].

[29] D.F. Litim, Fixed points of quantum gravity, Phys. Rev. Lett. 92 (2004) 201301
[hep-th/0312114] [INSPIRE].

[30] D. Benedetti, K. Groh, P.F. Machado and F. Saueressig, The Universal RG Machine, JHEP
06 (2011) 079 [arXiv:1012.3081] [INSPIRE].

– 38 –

https://doi.org/10.1007/JHEP05(2018)027
https://doi.org/10.1007/JHEP05(2018)027
https://arxiv.org/abs/1803.07777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.07777
https://doi.org/10.1007/JHEP11(2018)021
https://doi.org/10.1007/JHEP11(2018)021
https://arxiv.org/abs/1806.03605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1806.03605
https://doi.org/10.1103/PhysRevD.100.105006
https://doi.org/10.1103/PhysRevD.100.105006
https://arxiv.org/abs/1908.02416
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.02416
https://doi.org/10.1103/PhysRevLett.123.171601
https://doi.org/10.1103/PhysRevLett.123.171601
https://arxiv.org/abs/1908.04170
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04170
https://arxiv.org/abs/1901.04741
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.04741
https://doi.org/10.1103/PhysRevD.57.971
https://doi.org/10.1103/PhysRevD.57.971
https://arxiv.org/abs/hep-th/9605030
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9605030
https://doi.org/10.1016/0370-2693(93)90726-X
https://doi.org/10.1016/0370-2693(93)90726-X
https://arxiv.org/abs/1710.05815
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.05815
https://doi.org/10.1142/S0217751X94000972
https://doi.org/10.1142/S0217751X94000972
https://arxiv.org/abs/hep-ph/9308265
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9308265
https://doi.org/10.1016/0550-3213(94)90543-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB417%2C181%22
https://doi.org/10.1016/S0370-1573(01)00098-9
https://arxiv.org/abs/hep-ph/0005122
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0005122
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1016/j.aop.2007.01.007
https://arxiv.org/abs/hep-th/0512261
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0512261
https://doi.org/10.1007/978-3-642-27320-9_6
https://doi.org/10.1007/978-3-642-27320-9_6
https://arxiv.org/abs/hep-ph/0611146
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0611146
https://doi.org/10.1016/j.physrep.2021.01.001
https://arxiv.org/abs/2006.04853
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.04853
https://doi.org/10.1143/PTP.102.181
https://doi.org/10.1143/PTP.102.181
https://arxiv.org/abs/hep-th/9907027
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9907027
https://doi.org/10.1103/PhysRevD.65.025013
https://arxiv.org/abs/hep-th/0108040
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0108040
https://doi.org/10.1103/PhysRevD.65.065016
https://arxiv.org/abs/hep-th/0110054
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0110054
https://doi.org/10.1088/0264-9381/19/3/304
https://arxiv.org/abs/hep-th/0110021
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0110021
https://doi.org/10.1088/1126-6708/2002/12/066
https://doi.org/10.1088/1126-6708/2002/12/066
https://arxiv.org/abs/hep-th/0207143
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0207143
https://doi.org/10.1103/PhysRevLett.92.201301
https://arxiv.org/abs/hep-th/0312114
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0312114
https://doi.org/10.1007/JHEP06(2011)079
https://doi.org/10.1007/JHEP06(2011)079
https://arxiv.org/abs/1012.3081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.3081


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[31] O. Lauscher and M. Reuter, Flow equation of quantum Einstein gravity in a higher
derivative truncation, Phys. Rev. D 66 (2002) 025026 [hep-th/0205062] [INSPIRE].

[32] M. Reuter and F. Saueressig, A Class of nonlocal truncations in quantum Einstein gravity
and its renormalization group behavior, Phys. Rev. D 66 (2002) 125001 [hep-th/0206145]
[INSPIRE].

[33] A. Codello and R. Percacci, Fixed points of higher derivative gravity, Phys. Rev. Lett. 97
(2006) 221301 [hep-th/0607128] [INSPIRE].

[34] P.F. Machado and F. Saueressig, On the renormalization group flow of f(R)-gravity, Phys.
Rev. D 77 (2008) 124045 [arXiv:0712.0445] [INSPIRE].

[35] A. Codello, R. Percacci and C. Rahmede, Ultraviolet properties of f(R)-gravity, Int. J.
Mod. Phys. A 23 (2008) 143 [arXiv:0705.1769] [INSPIRE].

[36] A. Codello, R. Percacci and C. Rahmede, Investigating the Ultraviolet Properties of Gravity
with a Wilsonian Renormalization Group Equation, Annals Phys. 324 (2009) 414
[arXiv:0805.2909] [INSPIRE].

[37] D. Benedetti, P.F. Machado and F. Saueressig, Asymptotic safety in higher-derivative
gravity, Mod. Phys. Lett. A 24 (2009) 2233 [arXiv:0901.2984] [INSPIRE].

[38] P.F. Machado and R. Percacci, Conformally reduced quantum gravity revisited, Phys. Rev.
D 80 (2009) 024020 [arXiv:0904.2510] [INSPIRE].

[39] D. Benedetti, P.F. Machado and F. Saueressig, Taming perturbative divergences in
asymptotically safe gravity, Nucl. Phys. B 824 (2010) 168 [arXiv:0902.4630] [INSPIRE].

[40] M.R. Niedermaier, Gravitational Fixed Points from Perturbation Theory, Phys. Rev. Lett.
103 (2009) 101303 [INSPIRE].

[41] N. Ohta and R. Percacci, Higher Derivative Gravity and Asymptotic Safety in Diverse
Dimensions, Class. Quant. Grav. 31 (2014) 015024 [arXiv:1308.3398] [INSPIRE].

[42] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, A bootstrap towards asymptotic
safety, arXiv:1301.4191 [INSPIRE].

[43] K. Falls, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Further evidence for asymptotic
safety of quantum gravity, Phys. Rev. D 93 (2016) 104022 [arXiv:1410.4815] [INSPIRE].

[44] H. Gies, B. Knorr and S. Lippoldt, Generalized Parametrization Dependence in Quantum
Gravity, Phys. Rev. D 92 (2015) 084020 [arXiv:1507.08859] [INSPIRE].

[45] N. Ohta, R. Percacci and G.P. Vacca, Flow equation for f(R) gravity and some of its exact
solutions, Phys. Rev. D 92 (2015) 061501 [arXiv:1507.00968] [INSPIRE].

[46] N. Ohta, R. Percacci and G.P. Vacca, Renormalization Group Equation and scaling
solutions for f(R) gravity in exponential parametrization, Eur. Phys. J. C 76 (2016) 46
[arXiv:1511.09393] [INSPIRE].

[47] K.G. Falls, D.F. Litim and J. Schröder, Aspects of asymptotic safety for quantum gravity,
Phys. Rev. D 99 (2019) 126015 [arXiv:1810.08550] [INSPIRE].

[48] G.P. De Brito, N. Ohta, A.D. Pereira, A.A. Tomaz and M. Yamada, Asymptotic safety and
field parametrization dependence in the f(R) truncation, Phys. Rev. D 98 (2018) 026027
[arXiv:1805.09656] [INSPIRE].

[49] M. Becker, C. Pagani and O. Zanusso, Fractal Geometry of Higher Derivative Gravity,
Phys. Rev. Lett. 124 (2020) 151302 [arXiv:1911.02415] [INSPIRE].

– 39 –

https://doi.org/10.1103/PhysRevD.66.025026
https://arxiv.org/abs/hep-th/0205062
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0205062
https://doi.org/10.1103/PhysRevD.66.125001
https://arxiv.org/abs/hep-th/0206145
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0206145
https://doi.org/10.1103/PhysRevLett.97.221301
https://doi.org/10.1103/PhysRevLett.97.221301
https://arxiv.org/abs/hep-th/0607128
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0607128
https://doi.org/10.1103/PhysRevD.77.124045
https://doi.org/10.1103/PhysRevD.77.124045
https://arxiv.org/abs/0712.0445
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.0445
https://doi.org/10.1142/S0217751X08038135
https://doi.org/10.1142/S0217751X08038135
https://arxiv.org/abs/0705.1769
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.1769
https://doi.org/10.1016/j.aop.2008.08.008
https://arxiv.org/abs/0805.2909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0805.2909
https://doi.org/10.1142/S0217732309031521
https://arxiv.org/abs/0901.2984
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.2984
https://doi.org/10.1103/PhysRevD.80.024020
https://doi.org/10.1103/PhysRevD.80.024020
https://arxiv.org/abs/0904.2510
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.2510
https://doi.org/10.1016/j.nuclphysb.2009.08.023
https://arxiv.org/abs/0902.4630
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.4630
https://doi.org/10.1103/PhysRevLett.103.101303
https://doi.org/10.1103/PhysRevLett.103.101303
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C103%2C101303%22
https://doi.org/10.1088/0264-9381/31/1/015024
https://arxiv.org/abs/1308.3398
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.3398
https://arxiv.org/abs/1301.4191
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.4191
https://doi.org/10.1103/PhysRevD.93.104022
https://arxiv.org/abs/1410.4815
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.4815
https://doi.org/10.1103/PhysRevD.92.084020
https://arxiv.org/abs/1507.08859
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08859
https://doi.org/10.1103/PhysRevD.92.061501
https://arxiv.org/abs/1507.00968
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.00968
https://doi.org/10.1140/epjc/s10052-016-3895-1
https://arxiv.org/abs/1511.09393
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.09393
https://doi.org/10.1103/PhysRevD.99.126015
https://arxiv.org/abs/1810.08550
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.08550
https://doi.org/10.1103/PhysRevD.98.026027
https://arxiv.org/abs/1805.09656
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.09656
https://doi.org/10.1103/PhysRevLett.124.151302
https://arxiv.org/abs/1911.02415
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.02415


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[50] K. Falls, N. Ohta and R. Percacci, Towards the determination of the dimension of the
critical surface in asymptotically safe gravity, Phys. Lett. B 810 (2020) 135773
[arXiv:2004.04126] [INSPIRE].

[51] D. Benedetti and F. Caravelli, The Local potential approximation in quantum gravity, JHEP
06 (2012) 017 [Erratum ibid. 10 (2012) 157] [arXiv:1204.3541] [INSPIRE].

[52] J.A. Dietz and T.R. Morris, Asymptotic safety in the f(R) approximation, JHEP 01 (2013)
108 [arXiv:1211.0955] [INSPIRE].

[53] K. Falls, C.R. King, D.F. Litim, K. Nikolakopoulos and C. Rahmede, Asymptotic safety of
quantum gravity beyond Ricci scalars, Phys. Rev. D 97 (2018) 086006 [arXiv:1801.00162]
[INSPIRE].

[54] Y. Kluth and D.F. Litim, Fixed Points of Quantum Gravity and the Dimensionality of the
UV Critical Surface, arXiv:2008.09181 [INSPIRE].

[55] H. Gies, B. Knorr, S. Lippoldt and F. Saueressig, Gravitational Two-Loop Counterterm Is
Asymptotically Safe, Phys. Rev. Lett. 116 (2016) 211302 [arXiv:1601.01800] [INSPIRE].

[56] D. Becker and M. Reuter, Running boundary actions, Asymptotic Safety, and black hole
thermodynamics, JHEP 07 (2012) 172 [arXiv:1205.3583] [INSPIRE].

[57] E. Manrique, S. Rechenberger and F. Saueressig, Asymptotically Safe Lorentzian Gravity,
Phys. Rev. Lett. 106 (2011) 251302 [arXiv:1102.5012] [INSPIRE].

[58] J. Biemans, A. Platania and F. Saueressig, Quantum gravity on foliated spacetimes:
Asymptotically safe and sound, Phys. Rev. D 95 (2017) 086013 [arXiv:1609.04813]
[INSPIRE].

[59] A. Platania and F. Saueressig, Functional Renormalization Group Flows on
Friedman-Lemaître-Robertson-Walker backgrounds, Found. Phys. 48 (2018) 1291
[arXiv:1710.01972] [INSPIRE].

[60] W.B. Houthoff, A. Kurov and F. Saueressig, Impact of topology in foliated Quantum
Einstein Gravity, Eur. Phys. J. C 77 (2017) 491 [arXiv:1705.01848] [INSPIRE].

[61] E. Manrique and M. Reuter, Bimetric Truncations for Quantum Einstein Gravity and
Asymptotic Safety, Annals Phys. 325 (2010) 785 [arXiv:0907.2617] [INSPIRE].

[62] E. Manrique, M. Reuter and F. Saueressig, Bimetric Renormalization Group Flows in
Quantum Einstein Gravity, Annals Phys. 326 (2011) 463 [arXiv:1006.0099] [INSPIRE].

[63] D. Becker and M. Reuter, Towards a C-function in 4D quantum gravity, JHEP 03 (2015)
065 [arXiv:1412.0468] [INSPIRE].

[64] D. Becker and M. Reuter, En route to Background Independence: Broken split-symmetry,
and how to restore it with bi-metric average actions, Annals Phys. 350 (2014) 225
[arXiv:1404.4537] [INSPIRE].

[65] M. Demmel, F. Saueressig and O. Zanusso, RG flows of Quantum Einstein Gravity in the
linear-geometric approximation, Annals Phys. 359 (2015) 141 [arXiv:1412.7207] [INSPIRE].

[66] K. Groh and F. Saueressig, Ghost wave-function renormalization in Asymptotically Safe
Quantum Gravity, J. Phys. A 43 (2010) 365403 [arXiv:1001.5032] [INSPIRE].

[67] A. Eichhorn and H. Gies, Ghost anomalous dimension in asymptotically safe quantum
gravity, Phys. Rev. D 81 (2010) 104010 [arXiv:1001.5033] [INSPIRE].

– 40 –

https://doi.org/10.1016/j.physletb.2020.135773
https://arxiv.org/abs/2004.04126
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.04126
https://doi.org/10.1007/JHEP06(2012)017
https://doi.org/10.1007/JHEP06(2012)017
https://arxiv.org/abs/1204.3541
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.3541
https://doi.org/10.1007/JHEP01(2013)108
https://doi.org/10.1007/JHEP01(2013)108
https://arxiv.org/abs/1211.0955
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1211.0955
https://doi.org/10.1103/PhysRevD.97.086006
https://arxiv.org/abs/1801.00162
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.00162
https://arxiv.org/abs/2008.09181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.09181
https://doi.org/10.1103/PhysRevLett.116.211302
https://arxiv.org/abs/1601.01800
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.01800
https://doi.org/10.1007/JHEP07(2012)172
https://arxiv.org/abs/1205.3583
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.3583
https://doi.org/10.1103/PhysRevLett.106.251302
https://arxiv.org/abs/1102.5012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.5012
https://doi.org/10.1103/PhysRevD.95.086013
https://arxiv.org/abs/1609.04813
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.04813
https://doi.org/10.1007/s10701-018-0181-0
https://arxiv.org/abs/1710.01972
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.01972
https://doi.org/10.1140/epjc/s10052-017-5046-8
https://arxiv.org/abs/1705.01848
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01848
https://doi.org/10.1016/j.aop.2009.11.009
https://arxiv.org/abs/0907.2617
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0907.2617
https://doi.org/10.1016/j.aop.2010.11.006
https://arxiv.org/abs/1006.0099
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.0099
https://doi.org/10.1007/JHEP03(2015)065
https://doi.org/10.1007/JHEP03(2015)065
https://arxiv.org/abs/1412.0468
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.0468
https://doi.org/10.1016/j.aop.2014.07.023
https://arxiv.org/abs/1404.4537
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.4537
https://doi.org/10.1016/j.aop.2015.04.018
https://arxiv.org/abs/1412.7207
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.7207
https://doi.org/10.1088/1751-8113/43/36/365403
https://arxiv.org/abs/1001.5032
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1001.5032
https://doi.org/10.1103/PhysRevD.81.104010
https://arxiv.org/abs/1001.5033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1001.5033


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[68] A. Codello, G. D’Odorico and C. Pagani, Consistent closure of renormalization group flow
equations in quantum gravity, Phys. Rev. D 89 (2014) 081701 [arXiv:1304.4777] [INSPIRE].

[69] N. Christiansen, D.F. Litim, J.M. Pawlowski and A. Rodigast, Fixed points and infrared
completion of quantum gravity, Phys. Lett. B 728 (2014) 114 [arXiv:1209.4038] [INSPIRE].

[70] N. Christiansen, B. Knorr, J.M. Pawlowski and A. Rodigast, Global Flows in Quantum
Gravity, Phys. Rev. D 93 (2016) 044036 [arXiv:1403.1232] [INSPIRE].

[71] N. Christiansen, B. Knorr, J. Meibohm, J.M. Pawlowski and M. Reichert, Local Quantum
Gravity, Phys. Rev. D 92 (2015) 121501 [arXiv:1506.07016] [INSPIRE].

[72] T. Denz, J.M. Pawlowski and M. Reichert, Towards apparent convergence in asymptotically
safe quantum gravity, Eur. Phys. J. C 78 (2018) 336 [arXiv:1612.07315] [INSPIRE].

[73] B. Knorr and S. Lippoldt, Correlation functions on a curved background, Phys. Rev. D 96
(2017) 065020 [arXiv:1707.01397] [INSPIRE].

[74] N. Christiansen, K. Falls, J.M. Pawlowski and M. Reichert, Curvature dependence of
quantum gravity, Phys. Rev. D 97 (2018) 046007 [arXiv:1711.09259] [INSPIRE].

[75] B. Knorr, Lessons from conformally reduced quantum gravity, Class. Quant. Grav. 38
(2021) 065003 [arXiv:2010.00492] [INSPIRE].

[76] A. Bonanno, T. Denz, J.M. Pawlowski and M. Reichert, Reconstructing the graviton,
arXiv:2102.02217 [INSPIRE].

[77] B. Knorr and M. Schiffer, Non-Perturbative Propagators in Quantum Gravity, Universe 7
(2021) 216 [arXiv:2105.04566] [INSPIRE].

[78] T.R. Morris and Z.H. Slade, Solutions to the reconstruction problem in asymptotic safety,
JHEP 11 (2015) 094 [arXiv:1507.08657] [INSPIRE].

[79] M. Becker and C. Pagani, Geometric operators in the asymptotic safety scenario for
quantum gravity, Phys. Rev. D 99 (2019) 066002 [arXiv:1810.11816] [INSPIRE].

[80] B. Knorr and F. Saueressig, Towards reconstructing the quantum effective action of gravity,
Phys. Rev. Lett. 121 (2018) 161304 [arXiv:1804.03846] [INSPIRE].

[81] M. Becker and C. Pagani, Geometric Operators in the Einstein-Hilbert Truncation,
Universe 5 (2019) 75 [INSPIRE].

[82] M. Becker and M. Reuter, Background Independent Field Quantization with Sequences of
Gravity-Coupled Approximants, Phys. Rev. D 102 (2020) 125001 [arXiv:2008.09430]
[INSPIRE].

[83] R. Martini, A. Ugolotti, F. Del Porro and O. Zanusso, Gravity in d = 2 + ε dimensions and
realizations of the diffeomorphisms group, Eur. Phys. J. C 81 (2021) 916
[arXiv:2103.12421] [INSPIRE].

[84] R. Martini, A. Ugolotti and O. Zanusso, The Search for the Universality Class of Metric
Quantum Gravity, Universe 7 (2021) 162 [arXiv:2105.11870] [INSPIRE].

[85] M. Becker and M. Reuter, Background Independent Field Quantization with Sequences of
Gravity-Coupled Approximants II: Metric Fluctuations, arXiv:2109.09496 [INSPIRE].

[86] A. Baldazzi and K. Falls, Essential Quantum Einstein Gravity, Universe 7 (2021) 294
[arXiv:2107.00671] [INSPIRE].

– 41 –

https://doi.org/10.1103/PhysRevD.89.081701
https://arxiv.org/abs/1304.4777
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.4777
https://doi.org/10.1016/j.physletb.2013.11.025
https://arxiv.org/abs/1209.4038
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.4038
https://doi.org/10.1103/PhysRevD.93.044036
https://arxiv.org/abs/1403.1232
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1403.1232
https://doi.org/10.1103/PhysRevD.92.121501
https://arxiv.org/abs/1506.07016
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.07016
https://doi.org/10.1140/epjc/s10052-018-5806-0
https://arxiv.org/abs/1612.07315
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.07315
https://doi.org/10.1103/PhysRevD.96.065020
https://doi.org/10.1103/PhysRevD.96.065020
https://arxiv.org/abs/1707.01397
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.01397
https://doi.org/10.1103/PhysRevD.97.046007
https://arxiv.org/abs/1711.09259
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.09259
https://doi.org/10.1088/1361-6382/abd7c2
https://doi.org/10.1088/1361-6382/abd7c2
https://arxiv.org/abs/2010.00492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.00492
https://arxiv.org/abs/2102.02217
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02217
https://doi.org/10.3390/universe7070216
https://doi.org/10.3390/universe7070216
https://arxiv.org/abs/2105.04566
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.04566
https://doi.org/10.1007/JHEP11(2015)094
https://arxiv.org/abs/1507.08657
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1507.08657
https://doi.org/10.1103/PhysRevD.99.066002
https://arxiv.org/abs/1810.11816
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.11816
https://doi.org/10.1103/PhysRevLett.121.161304
https://arxiv.org/abs/1804.03846
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.03846
https://doi.org/10.3390/universe5030075
https://inspirehep.net/search?p=find+J%20%22Universe%2C5%2C75%22
https://doi.org/10.1103/PhysRevD.102.125001
https://arxiv.org/abs/2008.09430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.09430
https://doi.org/10.1140/epjc/s10052-021-09719-z
https://arxiv.org/abs/2103.12421
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.12421
https://doi.org/10.3390/universe7060162
https://arxiv.org/abs/2105.11870
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.11870
https://arxiv.org/abs/2109.09496
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.09496
https://doi.org/10.3390/universe7080294
https://arxiv.org/abs/2107.00671
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.00671


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[87] J.E. Daum and M. Reuter, Renormalization Group Flow of the Holst Action, Phys. Lett. B
710 (2012) 215 [arXiv:1012.4280] [INSPIRE].

[88] A. Codello, G. D’Odorico, C. Pagani and R. Percacci, The Renormalization Group and
Weyl-invariance, Class. Quant. Grav. 30 (2013) 115015 [arXiv:1210.3284] [INSPIRE].

[89] U. Harst and M. Reuter, The ‘Tetrad only’ theory space: Nonperturbative renormalization
flow and Asymptotic Safety, JHEP 05 (2012) 005 [arXiv:1203.2158] [INSPIRE].

[90] J.E. Daum and M. Reuter, Einstein-Cartan gravity, Asymptotic Safety, and the running
Immirzi parameter, Annals Phys. 334 (2013) 351 [arXiv:1301.5135] [INSPIRE].

[91] U. Harst and M. Reuter, A new functional flow equation for Einstein-Cartan quantum
gravity, Annals Phys. 354 (2015) 637 [arXiv:1410.7003] [INSPIRE].

[92] U. Harst and M. Reuter, On selfdual spin-connections and Asymptotic Safety, Phys. Lett. B
753 (2016) 395 [arXiv:1509.09122] [INSPIRE].

[93] A. Eichhorn, On unimodular quantum gravity, Class. Quant. Grav. 30 (2013) 115016
[arXiv:1301.0879] [INSPIRE].

[94] A. Eichhorn, The Renormalization Group flow of unimodular f(R) gravity, JHEP 04
(2015) 096 [arXiv:1501.05848] [INSPIRE].

[95] D. Benedetti, Essential nature of Newton’s constant in unimodular gravity, Gen. Rel. Grav.
48 (2016) 68 [arXiv:1511.06560] [INSPIRE].

[96] G.P. De Brito, A. Eichhorn and A.D. Pereira, A link that matters: Towards
phenomenological tests of unimodular asymptotic safety, JHEP 09 (2019) 100
[arXiv:1907.11173] [INSPIRE].

[97] G.P. de Brito and A.D. Pereira, Unimodular quantum gravity: Steps beyond perturbation
theory, JHEP 09 (2020) 196 [arXiv:2007.05589] [INSPIRE].

[98] G.P. de Brito, A.D. Pereira and A.F. Vieira, Exploring new corners of asymptotically safe
unimodular quantum gravity, Phys. Rev. D 103 (2021) 104023 [arXiv:2012.08904]
[INSPIRE].

[99] G.P. de Brito, O. Melichev, R. Percacci and A.D. Pereira, Can quantum fluctuations
differentiate between standard and unimodular gravity?, arXiv:2105.13886 [INSPIRE].

[100] R. Ferrero and M. Reuter, Towards a Geometrization of Renormalization Group Histories
in Asymptotic Safety, Universe 7 (2021) 125 [arXiv:2103.15709] [INSPIRE].

[101] O. Lauscher and M. Reuter, Fractal spacetime structure in asymptotically safe gravity,
JHEP 10 (2005) 050 [hep-th/0508202] [INSPIRE].

[102] M. Reuter and J.-M. Schwindt, Scale-dependent metric and causal structures in Quantum
Einstein Gravity, JHEP 01 (2007) 049 [hep-th/0611294] [INSPIRE].

[103] E. Manrique and M. Reuter, Bare Action and Regularized Functional Integral of
Asymptotically Safe Quantum Gravity, Phys. Rev. D 79 (2009) 025008 [arXiv:0811.3888]
[INSPIRE].

[104] M. Reuter and H. Weyer, Conformal sector of Quantum Einstein Gravity in the local
potential approximation: Non-Gaussian fixed point and a phase of unbroken diffeomorphism
invariance, Phys. Rev. D 80 (2009) 025001 [arXiv:0804.1475] [INSPIRE].

[105] M. Reuter and H. Weyer, Background Independence and Asymptotic Safety in Conformally
Reduced Gravity, Phys. Rev. D 79 (2009) 105005 [arXiv:0801.3287] [INSPIRE].

– 42 –

https://doi.org/10.1016/j.physletb.2012.01.046
https://doi.org/10.1016/j.physletb.2012.01.046
https://arxiv.org/abs/1012.4280
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1012.4280
https://doi.org/10.1088/0264-9381/30/11/115015
https://arxiv.org/abs/1210.3284
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.3284
https://doi.org/10.1007/JHEP05(2012)005
https://arxiv.org/abs/1203.2158
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.2158
https://doi.org/10.1016/j.aop.2013.04.002
https://arxiv.org/abs/1301.5135
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.5135
https://doi.org/10.1016/j.aop.2015.01.006
https://arxiv.org/abs/1410.7003
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.7003
https://doi.org/10.1016/j.physletb.2015.12.016
https://doi.org/10.1016/j.physletb.2015.12.016
https://arxiv.org/abs/1509.09122
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.09122
https://doi.org/10.1088/0264-9381/30/11/115016
https://arxiv.org/abs/1301.0879
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1301.0879
https://doi.org/10.1007/JHEP04(2015)096
https://doi.org/10.1007/JHEP04(2015)096
https://arxiv.org/abs/1501.05848
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.05848
https://doi.org/10.1007/s10714-016-2060-3
https://doi.org/10.1007/s10714-016-2060-3
https://arxiv.org/abs/1511.06560
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.06560
https://doi.org/10.1007/JHEP09(2019)100
https://arxiv.org/abs/1907.11173
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.11173
https://doi.org/10.1007/JHEP09(2020)196
https://arxiv.org/abs/2007.05589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.05589
https://doi.org/10.1103/PhysRevD.103.104023
https://arxiv.org/abs/2012.08904
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.08904
https://arxiv.org/abs/2105.13886
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.13886
https://doi.org/10.3390/universe7050125
https://arxiv.org/abs/2103.15709
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.15709
https://doi.org/10.1088/1126-6708/2005/10/050
https://arxiv.org/abs/hep-th/0508202
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0508202
https://doi.org/10.1088/1126-6708/2007/01/049
https://arxiv.org/abs/hep-th/0611294
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0611294
https://doi.org/10.1103/PhysRevD.79.025008
https://arxiv.org/abs/0811.3888
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.3888
https://doi.org/10.1103/PhysRevD.80.025001
https://arxiv.org/abs/0804.1475
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.1475
https://doi.org/10.1103/PhysRevD.79.105005
https://arxiv.org/abs/0801.3287
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0801.3287


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[106] M. Reuter and F. Saueressig, Fractal space-times under the microscope: A Renormalization
Group view on Monte Carlo data, JHEP 12 (2011) 012 [arXiv:1110.5224] [INSPIRE].

[107] A. Nink and M. Reuter, On the physical mechanism underlying Asymptotic Safety, JHEP
01 (2013) 062 [arXiv:1208.0031] [INSPIRE].

[108] A. Nink, Field Parametrization Dependence in Asymptotically Safe Quantum Gravity, Phys.
Rev. D 91 (2015) 044030 [arXiv:1410.7816] [INSPIRE].

[109] M. Reuter and G.M. Schollmeyer, The metric on field space, functional renormalization,
and metric-torsion quantum gravity, Annals Phys. 367 (2016) 125 [arXiv:1509.05041]
[INSPIRE].

[110] A. Nink and M. Reuter, The unitary conformal field theory behind 2D Asymptotic Safety,
JHEP 02 (2016) 167 [arXiv:1512.06805] [INSPIRE].

[111] N. Ohta and R. Percacci, Ultraviolet Fixed Points in Conformal Gravity and General
Quadratic Theories, Class. Quant. Grav. 33 (2016) 035001 [arXiv:1506.05526] [INSPIRE].

[112] N. Ohta, R. Percacci and A.D. Pereira, Gauges and functional measures in quantum gravity
I: Einstein theory, JHEP 06 (2016) 115 [arXiv:1605.00454] [INSPIRE].

[113] C. Pagani and R. Percacci, Quantization and fixed points of non-integrable Weyl theory,
Class. Quant. Grav. 31 (2014) 115005 [arXiv:1312.7767] [INSPIRE].

[114] C. Pagani and R. Percacci, Quantum gravity with torsion and non-metricity, Class. Quant.
Grav. 32 (2015) 195019 [arXiv:1506.02882] [INSPIRE].

[115] C. Pagani and M. Reuter, Composite Operators in Asymptotic Safety, Phys. Rev. D 95
(2017) 066002 [arXiv:1611.06522] [INSPIRE].

[116] C. Pagani and M. Reuter, Background Independent Quantum Field Theory and Gravitating
Vacuum Fluctuations, Annals Phys. 411 (2019) 167972 [arXiv:1906.02507] [INSPIRE].

[117] C. Pagani and M. Reuter, Why the Cosmological Constant Seems to Hardly Care About
Quantum Vacuum Fluctuations: Surprises From Background Independent Coarse Graining,
Front. Phys. 8 (2020) 214.

[118] A. Platania and C. Wetterich, Non-perturbative unitarity and fictitious ghosts in quantum
gravity, Phys. Lett. B 811 (2020) 135911 [arXiv:2009.06637] [INSPIRE].

[119] J.F. Donoghue, A Critique of the Asymptotic Safety Program, Front. Phys. 8 (2020) 56
[arXiv:1911.02967] [INSPIRE].

[120] A. Bonanno et al., Critical reflections on asymptotically safe gravity, Front. Phys. 8 (2020)
269 [arXiv:2004.06810] [INSPIRE].

[121] I.H. Bridle, J.A. Dietz and T.R. Morris, The local potential approximation in the
background field formalism, JHEP 03 (2014) 093 [arXiv:1312.2846] [INSPIRE].

[122] M. Demmel, F. Saueressig and O. Zanusso, RG flows of Quantum Einstein Gravity on
maximally symmetric spaces, JHEP 06 (2014) 026 [arXiv:1401.5495] [INSPIRE].

[123] M. Demmel, F. Saueressig and O. Zanusso, A proper fixed functional for four-dimensional
Quantum Einstein Gravity, JHEP 08 (2015) 113 [arXiv:1504.07656] [INSPIRE].

[124] S. Gonzalez-Martin, T.R. Morris and Z.H. Slade, Asymptotic solutions in asymptotic safety,
Phys. Rev. D 95 (2017) 106010 [arXiv:1704.08873] [INSPIRE].

– 43 –

https://doi.org/10.1007/JHEP12(2011)012
https://arxiv.org/abs/1110.5224
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.5224
https://doi.org/10.1007/JHEP01(2013)062
https://doi.org/10.1007/JHEP01(2013)062
https://arxiv.org/abs/1208.0031
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.0031
https://doi.org/10.1103/PhysRevD.91.044030
https://doi.org/10.1103/PhysRevD.91.044030
https://arxiv.org/abs/1410.7816
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.7816
https://doi.org/10.1016/j.aop.2015.12.004
https://arxiv.org/abs/1509.05041
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.05041
https://doi.org/10.1007/JHEP02(2016)167
https://arxiv.org/abs/1512.06805
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06805
https://doi.org/10.1088/0264-9381/33/3/035001
https://arxiv.org/abs/1506.05526
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.05526
https://doi.org/10.1007/JHEP06(2016)115
https://arxiv.org/abs/1605.00454
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.00454
https://doi.org/10.1088/0264-9381/31/11/115005
https://arxiv.org/abs/1312.7767
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.7767
https://doi.org/10.1088/0264-9381/32/19/195019
https://doi.org/10.1088/0264-9381/32/19/195019
https://arxiv.org/abs/1506.02882
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.02882
https://doi.org/10.1103/PhysRevD.95.066002
https://doi.org/10.1103/PhysRevD.95.066002
https://arxiv.org/abs/1611.06522
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.06522
https://doi.org/10.1016/j.aop.2019.167972
https://arxiv.org/abs/1906.02507
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.02507
https://doi.org/10.3389/fphy.2020.00214
https://doi.org/10.1016/j.physletb.2020.135911
https://arxiv.org/abs/2009.06637
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.06637
https://doi.org/10.3389/fphy.2020.00056
https://arxiv.org/abs/1911.02967
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.02967
https://doi.org/10.3389/fphy.2020.00269
https://doi.org/10.3389/fphy.2020.00269
https://arxiv.org/abs/2004.06810
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.06810
https://doi.org/10.1007/JHEP03(2014)093
https://arxiv.org/abs/1312.2846
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2846
https://doi.org/10.1007/JHEP06(2014)026
https://arxiv.org/abs/1401.5495
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.5495
https://doi.org/10.1007/JHEP08(2015)113
https://arxiv.org/abs/1504.07656
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.07656
https://doi.org/10.1103/PhysRevD.95.106010
https://arxiv.org/abs/1704.08873
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.08873


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[125] J. Biemans, A. Platania and F. Saueressig, Renormalization group fixed points of foliated
gravity-matter systems, JHEP 05 (2017) 093 [arXiv:1702.06539] [INSPIRE].

[126] B. Knorr, Lorentz symmetry is relevant, Phys. Lett. B 792 (2019) 142 [arXiv:1810.07971]
[INSPIRE].

[127] M. Niedermaier and M. Reuter, The Asymptotic Safety Scenario in Quantum Gravity,
Living Rev. Rel. 9 (2006) 5 [INSPIRE].

[128] M. Reuter and F. Saueressig, Quantum Einstein Gravity, New J. Phys. 14 (2012) 055022
[arXiv:1202.2274] [INSPIRE].

[129] A. Eichhorn, Status of the asymptotic safety paradigm for quantum gravity and matter,
Found. Phys. 48 (2018) 1407 [arXiv:1709.03696] [INSPIRE].

[130] R. Percacci, An Introduction to Covariant Quantum Gravity and Asymptotic Safety, vol. 3
of 100 Years of General Relativity, World Scientific (2017) [DOI] [INSPIRE].

[131] A. Eichhorn, An asymptotically safe guide to quantum gravity and matter, Front. Astron.
Space Sci. 5 (2019) 47 [arXiv:1810.07615] [INSPIRE].

[132] M. Reuter and F. Saueressig, Quantum Gravity and the Functional Renormalization Group:
The Road towards Asymptotic Safety, Cambridge University Press (2019).

[133] A.D. Pereira, Quantum spacetime and the renormalization group: Progress and visions, in
Progress and Visions in Quantum Theory in View of Gravity: Bridging foundations of
physics and mathematics, (2019) [arXiv:1904.07042] [INSPIRE].

[134] M. Reichert, Lecture notes: Functional Renormalisation Group and Asymptotically Safe
Quantum Gravity, PoS 384 (2020) 005 [INSPIRE].

[135] J.M. Pawlowski and M. Reichert, Quantum Gravity: A Fluctuating Point of View, Front.
Phys. 8 (2021) 527 [arXiv:2007.10353] [INSPIRE].

[136] L. Griguolo and R. Percacci, The β-functions of a scalar theory coupled to gravity, Phys.
Rev. D 52 (1995) 5787 [hep-th/9504092] [INSPIRE].

[137] D. Dou and R. Percacci, The running gravitational couplings, Class. Quant. Grav. 15
(1998) 3449 [hep-th/9707239] [INSPIRE].

[138] R. Percacci and D. Perini, Constraints on matter from asymptotic safety, Phys. Rev. D 67
(2003) 081503 [hep-th/0207033] [INSPIRE].

[139] R. Percacci and D. Perini, Asymptotic safety of gravity coupled to matter, Phys. Rev. D 68
(2003) 044018 [hep-th/0304222] [INSPIRE].

[140] G. Narain and R. Percacci, Renormalization Group Flow in Scalar-Tensor Theories. I,
Class. Quant. Grav. 27 (2010) 075001 [arXiv:0911.0386] [INSPIRE].

[141] G. Narain and C. Rahmede, Renormalization Group Flow in Scalar-Tensor Theories. II,
Class. Quant. Grav. 27 (2010) 075002 [arXiv:0911.0394] [INSPIRE].

[142] M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass,
Phys. Lett. B 683 (2010) 196 [arXiv:0912.0208] [INSPIRE].

[143] A. Eichhorn, Quantum-gravity-induced matter self-interactions in the asymptotic-safety
scenario, Phys. Rev. D 86 (2012) 105021 [arXiv:1204.0965] [INSPIRE].

[144] P. Labus, R. Percacci and G.P. Vacca, Asymptotic safety in O(N) scalar models coupled to
gravity, Phys. Lett. B 753 (2016) 274 [arXiv:1505.05393] [INSPIRE].

– 44 –

https://doi.org/10.1007/JHEP05(2017)093
https://arxiv.org/abs/1702.06539
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.06539
https://doi.org/10.1016/j.physletb.2019.01.070
https://arxiv.org/abs/1810.07971
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.07971
https://doi.org/10.12942/lrr-2006-5
https://inspirehep.net/search?p=find+J%20%22Living%20Rev.Rel.%2C9%2C5%22
https://doi.org/10.1088/1367-2630/14/5/055022
https://arxiv.org/abs/1202.2274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1202.2274
https://doi.org/10.1007/s10701-018-0196-6
https://arxiv.org/abs/1709.03696
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.03696
https://doi.org/10.1142/10369
https://inspirehep.net/search?p=find+doi%20%2210.1142%2F10369%22
https://doi.org/10.3389/fspas.2018.00047
https://doi.org/10.3389/fspas.2018.00047
https://arxiv.org/abs/1810.07615
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.07615
https://arxiv.org/abs/1904.07042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.07042
https://doi.org/10.22323/1.384.0005
https://inspirehep.net/search?p=find+J%20%22PoS%2C384%2C005%22
https://doi.org/10.3389/fphy.2020.551848
https://doi.org/10.3389/fphy.2020.551848
https://arxiv.org/abs/2007.10353
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.10353
https://doi.org/10.1103/PhysRevD.52.5787
https://doi.org/10.1103/PhysRevD.52.5787
https://arxiv.org/abs/hep-th/9504092
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9504092
https://doi.org/10.1088/0264-9381/15/11/011
https://doi.org/10.1088/0264-9381/15/11/011
https://arxiv.org/abs/hep-th/9707239
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9707239
https://doi.org/10.1103/PhysRevD.67.081503
https://doi.org/10.1103/PhysRevD.67.081503
https://arxiv.org/abs/hep-th/0207033
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0207033
https://doi.org/10.1103/PhysRevD.68.044018
https://doi.org/10.1103/PhysRevD.68.044018
https://arxiv.org/abs/hep-th/0304222
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0304222
https://doi.org/10.1088/0264-9381/27/7/075001
https://arxiv.org/abs/0911.0386
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.0386
https://doi.org/10.1088/0264-9381/27/7/075002
https://arxiv.org/abs/0911.0394
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0911.0394
https://doi.org/10.1016/j.physletb.2009.12.022
https://arxiv.org/abs/0912.0208
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.0208
https://doi.org/10.1103/PhysRevD.86.105021
https://arxiv.org/abs/1204.0965
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.0965
https://doi.org/10.1016/j.physletb.2015.12.022
https://arxiv.org/abs/1505.05393
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1505.05393


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[145] P. Donà, A. Eichhorn, P. Labus and R. Percacci, Asymptotic safety in an interacting system
of gravity and scalar matter, Phys. Rev. D 93 (2016) 044049 [Erratum ibid. 93 (2016)
129904] [arXiv:1512.01589] [INSPIRE].

[146] R. Percacci and G.P. Vacca, Search of scaling solutions in scalar-tensor gravity, Eur. Phys.
J. C 75 (2015) 188 [arXiv:1501.00888] [INSPIRE].

[147] A. Eichhorn, S. Lippoldt and V. Skrinjar, Nonminimal hints for asymptotic safety, Phys.
Rev. D 97 (2018) 026002 [arXiv:1710.03005] [INSPIRE].

[148] D. Becker, C. Ripken and F. Saueressig, On avoiding Ostrogradski instabilities within
Asymptotic Safety, JHEP 12 (2017) 121 [arXiv:1709.09098] [INSPIRE].

[149] A. Eichhorn, Y. Hamada, J. Lumma and M. Yamada, Quantum gravity fluctuations flatten
the Planck-scale Higgs potential, Phys. Rev. D 97 (2018) 086004 [arXiv:1712.00319]
[INSPIRE].

[150] A. Eichhorn, P. Labus, J.M. Pawlowski and M. Reichert, Effective universality in quantum
gravity, SciPost Phys. 5 (2018) 031 [arXiv:1804.00012] [INSPIRE].

[151] J.M. Pawlowski, M. Reichert, C. Wetterich and M. Yamada, Higgs scalar potential in
asymptotically safe quantum gravity, Phys. Rev. D 99 (2019) 086010 [arXiv:1811.11706]
[INSPIRE].

[152] B. Knorr, C. Ripken and F. Saueressig, Form Factors in Asymptotic Safety: conceptual
ideas and computational toolbox, Class. Quant. Grav. 36 (2019) 234001
[arXiv:1907.02903] [INSPIRE].

[153] C. Wetterich, Effective scalar potential in asymptotically safe quantum gravity, Universe 7
(2021) 45 [arXiv:1911.06100] [INSPIRE].

[154] B. Bürger, J.M. Pawlowski, M. Reichert and B.-J. Schaefer, Curvature dependence of
quantum gravity with scalars, arXiv:1912.01624 [INSPIRE].

[155] A. Eichhorn and M. Pauly, Constraining power of asymptotic safety for scalar fields, Phys.
Rev. D 103 (2021) 026006 [arXiv:2009.13543] [INSPIRE].

[156] P. Ali, A. Eichhorn, M. Pauly and M.M. Scherer, Constraints on discrete global symmetries
in quantum gravity, JHEP 05 (2021) 036 [arXiv:2012.07868] [INSPIRE].

[157] G.P. de Brito, A. Eichhorn and R.R.L.d. Santos, The weak-gravity bound and the need for
spin in asymptotically safe matter-gravity models, arXiv:2107.03839 [INSPIRE].

[158] A. Eichhorn and H. Gies, Light fermions in quantum gravity, New J. Phys. 13 (2011)
125012 [arXiv:1104.5366] [INSPIRE].

[159] P. Dona and R. Percacci, Functional renormalization with fermions and tetrads, Phys. Rev.
D 87 (2013) 045002 [arXiv:1209.3649] [INSPIRE].

[160] A. Eichhorn and S. Lippoldt, Quantum gravity and Standard-Model-like fermions, Phys.
Lett. B 767 (2017) 142 [arXiv:1611.05878] [INSPIRE].

[161] H. Gies and R. Martini, Curvature bound from gravitational catalysis, Phys. Rev. D 97
(2018) 085017 [arXiv:1802.02865] [INSPIRE].

[162] A. Eichhorn, S. Lippoldt and M. Schiffer, Zooming in on fermions and quantum gravity,
Phys. Rev. D 99 (2019) 086002 [arXiv:1812.08782] [INSPIRE].

[163] J. Daas, W. Oosters, F. Saueressig and J. Wang, Asymptotically safe gravity with fermions,
Phys. Lett. B 809 (2020) 135775 [arXiv:2005.12356] [INSPIRE].

– 45 –

https://doi.org/10.1103/PhysRevD.93.129904
https://arxiv.org/abs/1512.01589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.01589
https://doi.org/10.1140/epjc/s10052-015-3410-0
https://doi.org/10.1140/epjc/s10052-015-3410-0
https://arxiv.org/abs/1501.00888
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.00888
https://doi.org/10.1103/PhysRevD.97.026002
https://doi.org/10.1103/PhysRevD.97.026002
https://arxiv.org/abs/1710.03005
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.03005
https://doi.org/10.1007/JHEP12(2017)121
https://arxiv.org/abs/1709.09098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.09098
https://doi.org/10.1103/PhysRevD.97.086004
https://arxiv.org/abs/1712.00319
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.00319
https://doi.org/10.21468/SciPostPhys.5.4.031
https://arxiv.org/abs/1804.00012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.00012
https://doi.org/10.1103/PhysRevD.99.086010
https://arxiv.org/abs/1811.11706
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11706
https://doi.org/10.1088/1361-6382/ab4a53
https://arxiv.org/abs/1907.02903
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.02903
https://doi.org/10.3390/universe7020045
https://doi.org/10.3390/universe7020045
https://arxiv.org/abs/1911.06100
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.06100
https://arxiv.org/abs/1912.01624
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.01624
https://doi.org/10.1103/PhysRevD.103.026006
https://doi.org/10.1103/PhysRevD.103.026006
https://arxiv.org/abs/2009.13543
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.13543
https://doi.org/10.1007/JHEP05(2021)036
https://arxiv.org/abs/2012.07868
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.07868
https://arxiv.org/abs/2107.03839
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.03839
https://doi.org/10.1088/1367-2630/13/12/125012
https://doi.org/10.1088/1367-2630/13/12/125012
https://arxiv.org/abs/1104.5366
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1104.5366
https://doi.org/10.1103/PhysRevD.87.045002
https://doi.org/10.1103/PhysRevD.87.045002
https://arxiv.org/abs/1209.3649
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1209.3649
https://doi.org/10.1016/j.physletb.2017.01.064
https://doi.org/10.1016/j.physletb.2017.01.064
https://arxiv.org/abs/1611.05878
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.05878
https://doi.org/10.1103/PhysRevD.97.085017
https://doi.org/10.1103/PhysRevD.97.085017
https://arxiv.org/abs/1802.02865
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.02865
https://doi.org/10.1103/PhysRevD.99.086002
https://arxiv.org/abs/1812.08782
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08782
https://doi.org/10.1016/j.physletb.2020.135775
https://arxiv.org/abs/2005.12356
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.12356


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[164] G.P. de Brito, A. Eichhorn and M. Schiffer, Light charged fermions in quantum gravity,
Phys. Lett. B 815 (2021) 136128 [arXiv:2010.00605] [INSPIRE].

[165] H. Gies and A.S. Salek, Curvature bound from gravitational catalysis in thermal
backgrounds, Phys. Rev. D 103 (2021) 125027 [arXiv:2103.05542] [INSPIRE].

[166] J. Daas, W. Oosters, F. Saueressig and J. Wang, Asymptotically Safe Gravity-Fermion
Systems on Curved Backgrounds, Universe 7 (2021) 306 [arXiv:2107.01071] [INSPIRE].

[167] J.-E. Daum, U. Harst and M. Reuter, Running Gauge Coupling in Asymptotically Safe
Quantum Gravity, JHEP 01 (2010) 084 [arXiv:0910.4938] [INSPIRE].

[168] J.E. Daum, U. Harst and M. Reuter, Non-perturbative QEG Corrections to the Yang-Mills
β-function, Gen. Rel. Grav. 43 (2011) 2393 [arXiv:1005.1488] [INSPIRE].

[169] U. Harst and M. Reuter, QED coupled to QEG, JHEP 05 (2011) 119 [arXiv:1101.6007]
[INSPIRE].

[170] S. Folkerts, D.F. Litim and J.M. Pawlowski, Asymptotic freedom of Yang-Mills theory with
gravity, Phys. Lett. B 709 (2012) 234 [arXiv:1101.5552] [INSPIRE].

[171] N. Christiansen and A. Eichhorn, An asymptotically safe solution to the U(1) triviality
problem, Phys. Lett. B 770 (2017) 154 [arXiv:1702.07724] [INSPIRE].

[172] A. Eichhorn and F. Versteegen, Upper bound on the Abelian gauge coupling from asymptotic
safety, JHEP 01 (2018) 030 [arXiv:1709.07252] [INSPIRE].

[173] N. Christiansen, D.F. Litim, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity
with matter, Phys. Rev. D 97 (2018) 106012 [arXiv:1710.04669] [INSPIRE].

[174] A. Eichhorn and M. Schiffer, d = 4 as the critical dimensionality of asymptotically safe
interactions, Phys. Lett. B 793 (2019) 383 [arXiv:1902.06479] [INSPIRE].

[175] O. Zanusso, L. Zambelli, G.P. Vacca and R. Percacci, Gravitational corrections to Yukawa
systems, Phys. Lett. B 689 (2010) 90 [arXiv:0904.0938] [INSPIRE].

[176] K.-y. Oda and M. Yamada, Non-minimal coupling in Higgs-Yukawa model with
asymptotically safe gravity, Class. Quant. Grav. 33 (2016) 125011 [arXiv:1510.03734]
[INSPIRE].

[177] A. Eichhorn, A. Held and J.M. Pawlowski, Quantum-gravity effects on a Higgs-Yukawa
model, Phys. Rev. D 94 (2016) 104027 [arXiv:1604.02041] [INSPIRE].

[178] G.P. De Brito, Y. Hamada, A.D. Pereira and M. Yamada, On the impact of Majorana
masses in gravity-matter systems, JHEP 08 (2019) 142 [arXiv:1905.11114] [INSPIRE].

[179] N. Christiansen, A. Eichhorn and A. Held, Is scale-invariance in gauge-Yukawa systems
compatible with the graviton?, Phys. Rev. D 96 (2017) 084021 [arXiv:1705.01858]
[INSPIRE].

[180] P. Donà, A. Eichhorn and R. Percacci, Matter matters in asymptotically safe quantum
gravity, Phys. Rev. D 89 (2014) 084035 [arXiv:1311.2898] [INSPIRE].

[181] P. Donà, A. Eichhorn and R. Percacci, Consistency of matter models with asymptotically
safe quantum gravity, Can. J. Phys. 93 (2015) 988 [arXiv:1410.4411] [INSPIRE].

[182] J. Meibohm, J.M. Pawlowski and M. Reichert, Asymptotic safety of gravity-matter systems,
Phys. Rev. D 93 (2016) 084035 [arXiv:1510.07018] [INSPIRE].

– 46 –

https://doi.org/10.1016/j.physletb.2021.136128
https://arxiv.org/abs/2010.00605
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.00605
https://doi.org/10.1103/PhysRevD.103.125027
https://arxiv.org/abs/2103.05542
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2103.05542
https://doi.org/10.3390/universe7080306
https://arxiv.org/abs/2107.01071
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.01071
https://doi.org/10.1007/JHEP01(2010)084
https://arxiv.org/abs/0910.4938
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0910.4938
https://doi.org/10.1007/s10714-010-1032-2
https://arxiv.org/abs/1005.1488
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.1488
https://doi.org/10.1007/JHEP05(2011)119
https://arxiv.org/abs/1101.6007
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.6007
https://doi.org/10.1016/j.physletb.2012.02.002
https://arxiv.org/abs/1101.5552
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1101.5552
https://doi.org/10.1016/j.physletb.2017.04.047
https://arxiv.org/abs/1702.07724
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1702.07724
https://doi.org/10.1007/JHEP01(2018)030
https://arxiv.org/abs/1709.07252
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.07252
https://doi.org/10.1103/PhysRevD.97.106012
https://arxiv.org/abs/1710.04669
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.04669
https://doi.org/10.1016/j.physletb.2019.05.005
https://arxiv.org/abs/1902.06479
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.06479
https://doi.org/10.1016/j.physletb.2010.04.043
https://arxiv.org/abs/0904.0938
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.0938
https://doi.org/10.1088/0264-9381/33/12/125011
https://arxiv.org/abs/1510.03734
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.03734
https://doi.org/10.1103/PhysRevD.94.104027
https://arxiv.org/abs/1604.02041
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.02041
https://doi.org/10.1007/JHEP08(2019)142
https://arxiv.org/abs/1905.11114
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.11114
https://doi.org/10.1103/PhysRevD.96.084021
https://arxiv.org/abs/1705.01858
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01858
https://doi.org/10.1103/PhysRevD.89.084035
https://arxiv.org/abs/1311.2898
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.2898
https://doi.org/10.1139/cjp-2014-0574
https://arxiv.org/abs/1410.4411
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1410.4411
https://doi.org/10.1103/PhysRevD.93.084035
https://arxiv.org/abs/1510.07018
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.07018


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[183] Y. Hamada and M. Yamada, Asymptotic safety of higher derivative quantum gravity
non-minimally coupled with a matter system, JHEP 08 (2017) 070 [arXiv:1703.09033]
[INSPIRE].

[184] A. Eichhorn and A. Held, Viability of quantum-gravity induced ultraviolet completions for
matter, Phys. Rev. D 96 (2017) 086025 [arXiv:1705.02342] [INSPIRE].

[185] N. Alkofer and F. Saueressig, Asymptotically safe f(R)-gravity coupled to matter I: the
polynomial case, Annals Phys. 396 (2018) 173 [arXiv:1802.00498] [INSPIRE].

[186] N. Alkofer, Asymptotically safe f(R)-gravity coupled to matter II: Global solutions, Phys.
Lett. B 789 (2019) 480 [arXiv:1809.06162] [INSPIRE].

[187] A. Eichhorn, S. Lippoldt, J.M. Pawlowski, M. Reichert and M. Schiffer, How perturbative is
quantum gravity?, Phys. Lett. B 792 (2019) 310 [arXiv:1810.02828] [INSPIRE].

[188] C. Wetterich and M. Yamada, Gauge hierarchy problem in asymptotically safe gravity —
the resurgence mechanism, Phys. Lett. B 770 (2017) 268 [arXiv:1612.03069] [INSPIRE].

[189] A. Eichhorn and A. Held, Top mass from asymptotic safety, Phys. Lett. B 777 (2018) 217
[arXiv:1707.01107] [INSPIRE].

[190] A. Eichhorn and A. Held, Mass difference for charged quarks from asymptotically safe
quantum gravity, Phys. Rev. Lett. 121 (2018) 151302 [arXiv:1803.04027] [INSPIRE].

[191] M. Reichert and J. Smirnov, Dark Matter meets Quantum Gravity, Phys. Rev. D 101
(2020) 063015 [arXiv:1911.00012] [INSPIRE].

[192] A. Eichhorn, A. Platania and M. Schiffer, Lorentz invariance violations in the interplay of
quantum gravity with matter, Phys. Rev. D 102 (2020) 026007 [arXiv:1911.10066]
[INSPIRE].

[193] A. Eichhorn and M. Pauly, Safety in darkness: Higgs portal to simple Yukawa systems,
Phys. Lett. B 819 (2021) 136455 [arXiv:2005.03661] [INSPIRE].

[194] A. Eichhorn, M. Pauly and S. Ray, Towards a Higgs mass determination in asymptotically
safe gravity with a dark portal, JHEP 10 (2021) 100 [arXiv:2107.07949] [INSPIRE].

[195] W. Houthoff, A. Kurov and F. Saueressig, On the scaling of composite operators in
asymptotic safety, JHEP 04 (2020) 099 [arXiv:2002.00256] [INSPIRE].

[196] A. Kurov and F. Saueressig, On characterizing the Quantum Geometry underlying
Asymptotic Safety, Front. in Phys. 8 (2020) 187 [arXiv:2003.07454] [INSPIRE].

[197] L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982)
33 [INSPIRE].

[198] D.F. Litim, Optimization of the exact renormalization group, Phys. Lett. B 486 (2000) 92
[hep-th/0005245] [INSPIRE].

[199] B. Knorr, The derivative expansion in asymptotically safe quantum gravity: general setup
and quartic order, SciPost Phys. 4 (2021) 020 [arXiv:2104.11336] [INSPIRE].

[200] J.M. Martín-García et al., xAct: Efficient tensor computer algebra for Mathematica,
http://xact.es/index.html.

[201] J.M. Martin-Garcia, R. Portugal and L.R.U. Manssur, The Invar Tensor Package, Comput.
Phys. Commun. 177 (2007) 640 [arXiv:0704.1756] [INSPIRE].

– 47 –

https://doi.org/10.1007/JHEP08(2017)070
https://arxiv.org/abs/1703.09033
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.09033
https://doi.org/10.1103/PhysRevD.96.086025
https://arxiv.org/abs/1705.02342
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.02342
https://doi.org/10.1016/j.aop.2018.07.017
https://arxiv.org/abs/1802.00498
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.00498
https://doi.org/10.1016/j.physletb.2018.12.061
https://doi.org/10.1016/j.physletb.2018.12.061
https://arxiv.org/abs/1809.06162
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.06162
https://doi.org/10.1016/j.physletb.2019.01.071
https://arxiv.org/abs/1810.02828
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.02828
https://doi.org/10.1016/j.physletb.2017.04.049
https://arxiv.org/abs/1612.03069
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.03069
https://doi.org/10.1016/j.physletb.2017.12.040
https://arxiv.org/abs/1707.01107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.01107
https://doi.org/10.1103/PhysRevLett.121.151302
https://arxiv.org/abs/1803.04027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.04027
https://doi.org/10.1103/PhysRevD.101.063015
https://doi.org/10.1103/PhysRevD.101.063015
https://arxiv.org/abs/1911.00012
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.00012
https://doi.org/10.1103/PhysRevD.102.026007
https://arxiv.org/abs/1911.10066
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.10066
https://doi.org/10.1016/j.physletb.2021.136455
https://arxiv.org/abs/2005.03661
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.03661
https://doi.org/10.1007/JHEP10(2021)100
https://arxiv.org/abs/2107.07949
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.07949
https://doi.org/10.1007/JHEP04(2020)099
https://arxiv.org/abs/2002.00256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.00256
https://doi.org/10.3389/fphy.2020.00187
https://arxiv.org/abs/2003.07454
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.07454
https://inspirehep.net/search?p=find+J%20%22Acta%20Phys.Polon.%2CB13%2C33%22
https://doi.org/10.1016/S0370-2693(00)00748-6
https://arxiv.org/abs/hep-th/0005245
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0005245
https://doi.org/10.21468/SciPostPhysCore.4.3.020
https://arxiv.org/abs/2104.11336
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.11336
http://xact.es/index.html
https://doi.org/10.1016/j.cpc.2007.05.015
https://doi.org/10.1016/j.cpc.2007.05.015
https://arxiv.org/abs/0704.1756
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.1756


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[202] D. Brizuela, J.M. Martin-Garcia and G.A. Mena Marugan, xPert: Computer algebra for
metric perturbation theory, Gen. Rel. Grav. 41 (2009) 2415 [arXiv:0807.0824] [INSPIRE].

[203] J.M. Martín-García, xPerm: fast index canonicalization for tensor computer algebra,
Comput. Phys. Commun. 179 (2008) 597 [arXiv:0803.0862].

[204] T. Nutma, xTras: A field-theory inspired xAct package for mathematica, Comput. Phys.
Commun. 185 (2014) 1719 [arXiv:1308.3493] [INSPIRE].

[205] L. Alberte, C. de Rham, S. Jaitly and A.J. Tolley, Positivity Bounds and the Massless
Spin-2 Pole, Phys. Rev. D 102 (2020) 125023 [arXiv:2007.12667] [INSPIRE].

[206] C.F. Steinwachs, Non-perturbative quantum Galileon in the exact renormalization group,
JCAP 04 (2021) 038 [arXiv:2101.07271] [INSPIRE].

[207] K. Groh, S. Rechenberger, F. Saueressig and O. Zanusso, Higher Derivative Gravity from
the Universal Renormalization Group Machine, PoS EPS-HEP2011 (2011) 124
[arXiv:1111.1743] [INSPIRE].

[208] G.W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int.
J. Theor. Phys. 10 (1974) 363 [INSPIRE].

[209] A. Nicolis, R. Rattazzi and E. Trincherini, The Galileon as a local modification of gravity,
Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [INSPIRE].

[210] C. Deffayet, G. Esposito-Farese and A. Vikman, Covariant Galileon, Phys. Rev. D 79
(2009) 084003 [arXiv:0901.1314] [INSPIRE].

[211] T. Kobayashi, Horndeski theory and beyond: a review, Rept. Prog. Phys. 82 (2019) 086901
[arXiv:1901.07183] [INSPIRE].

[212] T. Qiu, J. Evslin, Y.-F. Cai, M. Li and X. Zhang, Bouncing Galileon Cosmologies, JCAP
10 (2011) 036 [arXiv:1108.0593] [INSPIRE].

[213] T. Kobayashi, M. Yamaguchi and J. Yokoyama, Generalized G-inflation: Inflation with the
most general second-order field equations, Prog. Theor. Phys. 126 (2011) 511
[arXiv:1105.5723] [INSPIRE].

[214] T.P. Sotiriou and V. Faraoni, Black holes in scalar-tensor gravity, Phys. Rev. Lett. 108
(2012) 081103 [arXiv:1109.6324] [INSPIRE].

[215] T.P. Sotiriou and S.-Y. Zhou, Black hole hair in generalized scalar-tensor gravity, Phys.
Rev. Lett. 112 (2014) 251102 [arXiv:1312.3622] [INSPIRE].

[216] C.A.R. Herdeiro and E. Radu, Asymptotically flat black holes with scalar hair: a review,
Int. J. Mod. Phys. D 24 (2015) 1542014 [arXiv:1504.08209] [INSPIRE].

[217] J.M. Ezquiaga and M. Zumalacárregui, Dark Energy After GW170817: Dead Ends and the
Road Ahead, Phys. Rev. Lett. 119 (2017) 251304 [arXiv:1710.05901] [INSPIRE].

[218] N. Ohta and M. Yamada, Higgs scalar potential in the exponential parametrization in
arbitrary gauge, arXiv:2110.08594 [INSPIRE].

[219] D.V. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279
[hep-th/0306138] [INSPIRE].

[220] A.O. Barvinsky and G.A. Vilkovisky, The Generalized Schwinger-Dewitt Technique in
Gauge Theories and Quantum Gravity, Phys. Rept. 119 (1985) 1 [INSPIRE].

– 48 –

https://doi.org/10.1007/s10714-009-0773-2
https://arxiv.org/abs/0807.0824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0807.0824
https://doi.org/10.1016/j.cpc.2008.05.009
https://arxiv.org/abs/0803.0862
https://doi.org/10.1016/j.cpc.2014.02.006
https://doi.org/10.1016/j.cpc.2014.02.006
https://arxiv.org/abs/1308.3493
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.3493
https://doi.org/10.1103/PhysRevD.102.125023
https://arxiv.org/abs/2007.12667
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.12667
https://doi.org/10.1088/1475-7516/2021/04/038
https://arxiv.org/abs/2101.07271
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2101.07271
https://doi.org/10.22323/1.134.0124
https://arxiv.org/abs/1111.1743
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1111.1743
https://doi.org/10.1007/BF01807638
https://doi.org/10.1007/BF01807638
https://inspirehep.net/search?p=find+J%20%22Int.J.Theor.Phys.%2C10%2C363%22
https://doi.org/10.1103/PhysRevD.79.064036
https://arxiv.org/abs/0811.2197
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.2197
https://doi.org/10.1103/PhysRevD.79.084003
https://doi.org/10.1103/PhysRevD.79.084003
https://arxiv.org/abs/0901.1314
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0901.1314
https://doi.org/10.1088/1361-6633/ab2429
https://arxiv.org/abs/1901.07183
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.07183
https://doi.org/10.1088/1475-7516/2011/10/036
https://doi.org/10.1088/1475-7516/2011/10/036
https://arxiv.org/abs/1108.0593
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.0593
https://doi.org/10.1143/PTP.126.511
https://arxiv.org/abs/1105.5723
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.5723
https://doi.org/10.1103/PhysRevLett.108.081103
https://doi.org/10.1103/PhysRevLett.108.081103
https://arxiv.org/abs/1109.6324
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1109.6324
https://doi.org/10.1103/PhysRevLett.112.251102
https://doi.org/10.1103/PhysRevLett.112.251102
https://arxiv.org/abs/1312.3622
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.3622
https://doi.org/10.1142/S0218271815420146
https://arxiv.org/abs/1504.08209
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.08209
https://doi.org/10.1103/PhysRevLett.119.251304
https://arxiv.org/abs/1710.05901
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.05901
https://arxiv.org/abs/2110.08594
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.08594
https://doi.org/10.1016/j.physrep.2003.09.002
https://arxiv.org/abs/hep-th/0306138
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0306138
https://doi.org/10.1016/0370-1573(85)90148-6
https://inspirehep.net/search?p=find+J%20%22Phys.Rept.%2C119%2C1%22


J
H
E
P
1
2
(
2
0
2
1
)
0
0
1

[221] Y. Decanini and A. Folacci, Off-diagonal coefficients of the Dewitt-Schwinger and
Hadamard representations of the Feynman propagator, Phys. Rev. D 73 (2006) 044027
[gr-qc/0511115] [INSPIRE].

[222] D. Anselmi and A. Benini, Improved Schwinger-DeWitt techniques for higher-derivative
corrections to operator determinants, JHEP 10 (2007) 099 [arXiv:0704.2840] [INSPIRE].

[223] K. Groh, F. Saueressig and O. Zanusso, Off-diagonal heat-kernel expansion and its
application to fields with differential constraints, arXiv:1112.4856 [INSPIRE].

[224] A. Codello and O. Zanusso, On the non-local heat kernel expansion, J. Math. Phys. 54
(2013) 013513 [arXiv:1203.2034] [INSPIRE].

– 49 –

https://doi.org/10.1103/PhysRevD.73.044027
https://arxiv.org/abs/gr-qc/0511115
https://inspirehep.net/search?p=find+EPRINT%2Bgr-qc%2F0511115
https://doi.org/10.1088/1126-6708/2007/10/099
https://arxiv.org/abs/0704.2840
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0704.2840
https://arxiv.org/abs/1112.4856
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.4856
https://doi.org/10.1063/1.4776234
https://doi.org/10.1063/1.4776234
https://arxiv.org/abs/1203.2034
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.2034

	Introduction
	Asymptotic Safety and the functional renormalization group
	The functional renormalization group — a brief introduction
	Properties of gravity-matter fixed points

	RG-invariant subspaces of scalar-tensor theories
	RG flows of shift-symmetric scalar-tensor theories
	Projecting the RG flow
	Evaluating the flow equation
	Traces, propagators, vertices, and projection rules
	Beta functions

	Fixed point structure
	Structure of the beta functions in the matter sector
	Fixed points of the gravity-matter system
	Scalar systems in a flat background

	Conclusions and outlook
	Definitions of tensor structures
	Vertices entering the computation of the beta functions
	Heat-kernel techniques
	Early-time expansion of the heat-kernel
	Results for the off-diagonal heat-kernel
	Laplace-transforms and threshold functions

	Traces

