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1 Introduction

The gauge/gravity duality provides unique tools to study the properties of strongly coupled
gauge theories, including their phase structure. First-order phase transitions have been
thoroughly analyzed in many different models, following the seminal papers [1] for theories
with only adjoint matter, and [2] for cases with fundamental matter. Once the threshold
for the phase transition is crossed, the former minimal energy configuration becomes a
“false vacuum” and is expected to decay to the new ground state, the “true vacuum”.

This kind of vacuum decay was first studied long ago in a simple one-scalar field
model [3], where a first-order phase transition occurs when the scalar potential has two
minima, one of which is metastable. The decay of the latter can proceed through quantum
tunneling or via thermal fluctuations (or, more generally, by a combination of the two
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effects). Dynamically, the transition happens through the nucleation of bubbles of true
vacuum in the metastable phase [3–7].

In general, the decay rate of a metastable vacuum per unit volume in the semiclassical
limit is given by an expression of the form Γ = Ae−SB , where A and SB depend on the
underlying quantum field theory. The first coefficient is usually very hard to compute in
closed form: it is given in terms of a certain functional determinant and it is often estimated
by dimensional analysis. The exponential term is the so-called bounce action. For a scalar
field Φ in 3+1 dimensions, with potential having an absolute minimum (the true vacuum)
at Φt and a local minimum (the false vacuum) at Φf , the bounce action is defined by
SB = SE(ΦB) − SE(Φf ), where SE is the Euclidean action for the scalar field and ΦB

is called “the bounce”. The latter is a non-trivial “bubble-like” solution of the Euclidean
equation of motion which approaches the false vacuum Φf at Euclidean infinity and a
constant Φ0 at the center of the bubble.1 When the transition proceeds through quantum
tunneling, the bounce is O(4) symmetric and ΦB only depends on the radial coordinate
ρ =
√
t2 + xixi, where t is the Euclidean time and xi are the space coordinates. When the

transition is dominated by thermal fluctuations, the bounce is O(3) symmetric [6, 7] and
ΦB = ΦB(ρ), with ρ = √xixi. The configuration for which the rate Γ has the larger value
is the one that dominates the decay process.

A detailed description of the relevant Euclidean bounces at finite temperature T has
been provided in [6, 7]. A simplified picture, valid if the bubble wall thickness is much
smaller than the bubble size, is the following. At T = 0, O(4) symmetric bubbles with
radius ρw are produced. At T > 0, where the Euclidean time direction is compact and has
period β = 1/T , exact O(4) symmetric configurations are generically forbidden. However,
if T � ρ−1

w the solution may be still approximated by a periodic array of O(4) symmetric
configurations separated by a distance β along the Euclidean time direction. At T ∼ ρ−1

w

these bubbles start overlapping and finally at T � ρ−1
w the solution looks like a cylinder

along the Euclidean time direction with O(3) symmetric spatial cross section. For this
configuration, integration over the Euclidean time direction in the effective action naively
reduces to multiplication by 1/T . Due to the exponential dependence of the decay rate
on the value of the bounce action, the transition region from the low-temperature regime
(T � ρ−1

w ) to the high-temperature one (T � ρ−1
w ) usually turns out to be very narrow:

hence the related configurations actually provide a good estimate for the effective bounce
in the whole temperature range [7].

The main aspects of the above mentioned simple scalar model can be generalized to
vacuum decay in gravitational dual descriptions of quantum field theories, a process that
has been studied in various papers in the past. Nevertheless, as far as we know, this
literature is focused on bottom-up models with AdS geometries, like those relevant for
Randall-Sundrum (RS)-like setups [8–20].2

In this paper we try to proceed a step further, studying, for the first time, the dynamics
of first-order phase transitions in gauge theories with a precise string embedding. This top-

1As discussed in [3, 5], this Euclidean solution is meant to represent the bubble at time zero in
Minkowskian signature.

2See also [21] for a holographic superfluid setup and [22] for some considerations on backgrounds dual
to confining theories.
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down perspective allows for a precise identification of the gauge theories under investigation
and for an understanding of the approximations leading to the dual classical gravitational
descriptions. As a result, computations performed in the planar limit at strong coupling
are reliable, without uncontrolled approximations as the ones plaguing effective models
(such as sigma models, NJL, etc.) or bottom-up holographic models.

The theories we focus on are based on the Witten-Sakai-Sugimoto (WSS) model [23,
24]. It is the top-down holographic theory closest to QCD and it has been very successful in
modeling aspects of its strong coupling dynamics. In the limits where a simple dual classical
gravitational description is available, the model consists of a large N , SU(N) gauge theory
coupled to Nf � N fundamental fermions and to a tower of adjoint massive Kaluza-
Klein (KK) matter fields. The latter arise from the fact that the Yang-Mills sector of the
theory describes the low energy dynamics of a stack of N D4-branes wrapped on a circle
of coordinate x4 ∼ x4 + 2π/MKK. The fundamental chiral fields in the model are added
by means of further Nf D8/anti-D8 (“flavor”) brane pairs, placed at fixed points on the
above-mentioned circle, asymptotically separated by a distance L. In the Nf � N limit,
the backreaction of the flavor branes on the dual gravity background can be neglected.3

The WSS model exhibits two kinds of first-order phase transitions at finite temper-
ature. The confinement/deconfinement phase transition occurs at a critical temperature
Tc = MKK/2π. In the dual gravity picture, it corresponds to a Hawking-Page transition
between a solitonic background and a black brane solution. Finding the full-fledged config-
uration that interpolates between the two backgrounds in ten-dimensional supergravity is
an extremely interesting but complicated open problem, see e.g. [27]. Following a prescrip-
tion developed in bottom-up RS-AdS models in [8], we will use an off-shell description of
the phase transition, modeling it with a single scalar effective action which we will compute
using holographic renormalization techniques. From this, we will compute the aforemen-
tioned bounce, effectively interpolating between the two vacua, and its on-shell action.
This will allow us to determine the bubble nucleation rate in terms of the parameters of
the model.

If the flavor branes are placed at antipodal points on the compactification circle, i.e.
when LMKK = π, chiral symmetry breaking and confinement occur at the same energy
scale. In particular, when T < Tc chiral symmetry is broken and the theory confines, while
at T > Tc the theory enters a deconfined phase with chiral symmetry restoration. How-
ever, for non-antipodal configurations with LMKK < 0.966, an intermediate phase with
deconfinement but broken chiral symmetry arises [28]. In the second part of this paper,
we will examine this kind of separate first-order phase transition. The bubble nucleation
dynamics is described by the Dirac-Born-Infeld (DBI) action for the D8-branes on the fixed
black brane background. In this case, even the numerical analysis is challenging due to the
non-linearities inherent to the DBI action. We will develop a variational approach (which
could be hopefully useful to study further static and dynamical issues in the model) to solve
the problem. This will allow us to compute the (approximate) bounce solution interpo-

3Going beyond this leading order quenched regime in WSS is indeed possible. See [25] and [26] for
related results.
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lating between the chiral symmetry broken and restored configurations, corresponding to
connected and disconnected brane embeddings, and ultimately the actions and decay rates.

Although studying holographic vacuum decay is compelling per se, it can find an
interesting application in connection with gravitational waves, the context in which the
analyses related to RS scenarios are typically conducted [8–11, 14–16, 18–20]. First-order
phase transitions are quite common in nature and arise in many beyond the Standard
Model (BSM) scenarios for the early Universe. First-order cosmological phase transitions
can in fact be combined with dynamical mechanisms explaining, for instance, the baryon-
antibaryon matter asymmetry or the nature of dark matter. The occurrence of first-
order phase transitions in the early Universe would trigger the production of a stochastic
gravitational wave background (see e.g. [29–31]). Provided the transition is strong enough
(i.e. provided a relatively large amount of energy is released after the transition), it could
possibly be detected by ground-based as well as space-based future experiments, opening a
unique window into BSM physics. Another phenomenon that would be worth exploring in
the same context is that of the formation of primordial black holes after phase transitions
in the early universe [32].

The paper is organized as follows. In section 2, we revisit the compact RS model at
finite temperature examined in [8]. Making use of standard holographic renormalization
techniques, we compute the derivative term in the single scalar effective action for the
bounce in the deconfined phase. This derivative term was missing in the literature. Af-
ter devoting section 3 to a review of the main features of the WSS model, in section 4
we present the derivation of the effective action for the scalar field modeling the confine-
ment/deconfinement phase transition. Using holography, we compute both the potential
and the derivative term for the scalar. As in the compact RS example, holographic renor-
malization techniques play a crucial role in the process. We compute the bubble nucleation
rate both in the small temperature regime, where quantum tunneling is driven by O(4)-
symmetric bubbles, and in the high temperature regime, where O(3)-symmetric bubbles
are relevant. In section 5 we study the chiral symmetry breaking/restoration phase transi-
tion in the deconfined phase. Using a powerful variational method we compute the bounce
action and the related bubble nucleation rates. In appendix A, we present the thin and
thick wall approximations for the confinement/deconfinement phase transition.

In a forthcoming paper [33], we will compute the stochastic gravitational wave spec-
trum related to cosmological first-order phase transitions having the WSS model as under-
lying BSM theory.

2 Revisiting the Randall-Sundrum transition

In this section, as a warm-up, we revisit the analysis performed in [8] of the compact
Randall-Sundrum (RS) model with two relevant scales, given by the temperature T and
the radial distance between a Standard-Model brane (the TeV brane) and a Planck brane.
The system experiences a first-order phase transition at some critical temperature Tc. At
low temperatures, it is described by the RS solution with stabilized radion, while at large
temperatures its (bottom-up) holographic description is captured by an AdS5 Schwarzschild
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black hole whose horizon replaces the TeV brane. A cosmological scenario is considered
where the system evolves cooling down from a large temperature stage. The nucleation rate
of bubbles of RS vacuum is then estimated. In the process, the horizon radius of the AdS
black hole and the radion are promoted to space-dependent fields whose effective action,
describing the bounce, is then estimated. Actually, both fields are seen as two different
realizations of a single scalar field, whose effective potential can be obtained, in some
suitable limit, by gluing the effective potentials in the two phases. In the following section,
we will apply the same strategy to model the dynamics of the confinement/deconfinement
transition in the top-down WSS model.

Before going on, let us recall that a missing piece in the analysis of [8] was the computa-
tion of the effective derivative term for the horizon radius field. Here we present a proposal
to fill this gap. Although in [8] the horizon radius field is ultimately not employed, essen-
tially because its contribution is argued to be subleading with respect to the radion, in the
subsequent literature on the gravitational wave spectra in this type of models this field is
commonly included in the calculations, so the precise normalization of its derivative term
is important (see e.g. [10, 15]).

Let us work in Euclidean signature, with Einstein-Hilbert gravity action given by

SEH = −2M3
∫
d5x
√
g

[
R+ 12

L2

]
, (2.1)

where M is the 5d Plank mass. The (Euclidean) AdS5 Schwarzschild solution is given by

ds2 =
(
u

L

)2 [
fT (u)dt2 + dxidxi

]
+
(
u

L

)−2 du2

fT (u) , fT (u) = 1− u4
T

u4 , (2.2)

where L is the AdS radius. The real-time (Minkowski) metric has an event horizon at
u = uT .

In the near-horizon (u→ uT ) limit, the metric of the (t, u)-subspace becomes

ds2
(t,u) = 4uT

L2 (u− uT )dt2 + L2

4uT
du2

u− uT
. (2.3)

By performing the change of variables

r(u) = L
√
uT

√
u− uT , θ(t) = 2πTt , (2.4)

we see that the metric is that of a cone

ds2
(t,u) = (sinα)2r2dθ2 + dr2 , (2.5)

with
sinα = Th/T , Th ≡

uT
πL2 . (2.6)

When Th = T , there is no conical singularity and the metric is a proper solution of SEH .
In this case, the free energy density of the black hole is given by

fBH = −2π4(ML)3T 4 . (2.7)
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The above result can be obtained in at least three equivalent ways. The fastest one consists
in integrating the thermodynamic relation s = −∂T f , where s is the Bekenstein-Hawking
entropy density. Alternatively, one can use the holographic relation

F ≡ f V3 = SrenT , (2.8)

where F is the free energy, V3 =
∫
d3x is the infinite flat 3d space volume and Sren is the

renormalized on-shell Euclidean action. The latter, as reviewed in [8], can be obtained as
the difference between the on-shell value of the action (2.1) on the black hole solution (2.2)
and its on-shell value on a pure AdS spacetime with the same boundary. Alternatively, it
can be obtained by the procedure of holographic renormalization (see e.g. [34] for a review).
In the present setup, it amounts to writing

Sren = lim
uΛ→∞

[SEH + SGH + Sct] = lim
uΛ→∞

[
SEH + 2M3

∫
u=uΛ

d4x
√
h

(
−2K + 6

L

)]
.

(2.9)
Here uΛ is a radial cut-off introduced to regularize the on-shell actions and h is the de-
terminant of the metric at the boundary u = uΛ. The first piece in round parenthesis
is due to the Gibbons-Hawking term SGH, K being the trace of the extrinsic curvature
of the boundary. The second piece is due to the counterterm action Sct which precisely
cancels the divergent terms (in powers of uΛ) from the on-shell value of SEH + SGH. As a
result, Sren turns out to be finite. Let us recall that a generic counterterm is required to
be covariant with respect to the boundary metric.

According to the holographic correspondence, eq. (2.7) can be seen as the free energy
density of a dual strongly coupled (3+1)-dimensional conformal field theory (CFT), at
finite temperature T = Th, in the planar limit. In top-down holography, an infinite class
of explicit examples of such CFT arises by considering the low energy dynamics of N D3-
branes at the tip of a six-dimensional (Calabi-Yau) cone. The dual description is provided
by AdS5 × X5 backgrounds where X5 is the base of the cone. The master example is
provided by X5 = S5, in which case the six-dimensional transverse space is flat and the
dual CFT is N = 4 SU(N) Yang-Mills. For all such CFT,

(ML)3 = N2

16π2 p , p = π3

V (X5) , (2.10)

where V (X5) is the volume of X5. In the N = 4 SYM case, p = 1.
When Th 6= T , the conical singularity contributes to the free energy. It is useful to

consider this possibility since, as it will be clear in a moment, it can provide a natural
“off-shell” description for the background along the phase transition. As described in [35],
it is possible to regularize the singularity with a two-dimensional spherical cap of radius
r → 0, such that its Ricci scalar RS2 is 2/r2 and its area4 is 2πr2(1− Th/T ). As a result,
the contribution of the spherical cap to the on-shell Euclidean gravity action turns out to
be given by

Scone = −2M3
∫
d5x
√
gRS2 = −8πM3

(
1− Th

T

)
V3
u3
T

L3 . (2.11)

4The sphere is glued to the cone in a way such that their tangent vectors match. As a result the area of
the spherical cap reads 2πr2 ∫ π

π/2+α dθ sin θ = 2πr2(1 − sinα) where sinα is given in (2.6).
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Correspondingly, the contribution to the free energy density is given by

fcone = 8π4(ML)3T 4
h

(
1− T

Th

)
. (2.12)

As a result, the total free energy density reads

f = fBH + fcone = 2π4(ML)3
(
3T 4

h − 4TT 3
h

)
, (2.13)

which is the result obtained in [8]. A crucial idea in that paper was to model the dynamics
of the first-order phase transition by means of an effective action for a single scalar field.
In the deconfined phase, the latter is realized by promoting the parameter Th to a space-
dependent field. This is the reason why we need to develop an “off-shell” formalism where
we allow Th to vary taking general values different from T . Within this scheme, eq. (2.13)
provides the effective potential for the scalar field Th. Consistently, the potential has a
minimum in the homogeneous equilibrium configuration with Th = T .

To proceed further, let us first rewrite the AdS-BH metric (2.2) in terms of the radial
coordinate r defined in (2.4) without restricting the change of variables between u and r
to the near horizon limit. As a result

ds2 = u2
T

L2

(
1 + r2

L2

)2 [
fT (r)dt2 + dxidxi

]
+ 4
L2

(
1 + r2

L2

)−2
r2dr2

fT (r) ,

fT (r) = 1− L8

(L2 + r2)4 , (2.14)

with r ranging from zero (at the horizon) to infinity. In this coordinate system, the con-
stant uT factorizes in a very simple way. Let us now consider a simple O(3) symmetric
deformation of this metric, allowing just uT to become a function of the 3d radial vari-
able ρ = √xixi,

ds2 = uT (ρ)2

L2

(
1 + r2

L2

)2 [
fT (r)dt2 + dρ2 + ρ2dΩ2

2

]
+ 4
L2

(
1 + r2

L2

)−2
r2dr2

fT (r) . (2.15)

This deformation is built to holographically account for O(3) symmetric defects (bubbles)
in the dual QFT. Consistently, only an O(3) symmetry is preserved at the boundary r →
∞. The metric (2.15) is not the exact, proper dual to the bounce state, which would
require solving the full set of supergravity equations, a complicated task which has not
been achieved in the literature yet. Rather, the background (2.15) has to be interpreted as
an “off-shell” effective way of interpolating between black hole backgrounds with different
values of Th as ρ is varied. It is meant to represent a sequence of such metrics, each with
its conical singularity with different deficit angle, giving the potential (2.13) according to
the proposal of [8]. As such, it is a convenient way of calculating the derivative term for
the effective field Th.

In order to compute the effective 4d action for the field uT (ρ), one can evaluate the
total gravity action (including the contribution (2.11) from the conical singularity) on the
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background (2.15) and then integrate over the 5d radial variable r.5 The deformation gives
rise to terms which depend on the derivatives of uT (ρ). The terms that do not depend
on these derivatives are not affected by the deformation, since the latter amounts to a
coordinate transformation for them. As a result, the expression (2.13), which gives the
effective potential for the field Th(ρ) = uT (ρ)/πL2, is unchanged.

The derivative term in the effective action arises from the on-shell value of

Skin = −2M3
∫
d5x
√
gR . (2.16)

Actually, this gives rise to contributions proportional to (∂ρuT )2 which diverge as r →∞.
Implementing the holographic renormalization procedure, these divergences can be removed
by regularizing the above action term with a cut-off rΛ, adding the counterterm

Skin ct = −2M3
(
−L2

)∫
r=rΛ

d4x
√
hRh , (2.17)

and taking the rΛ → ∞ limit. In the above expression, hmn is the boundary metric at
r = rΛ and Rh is the corresponding Ricci scalar.

The renormalized derivative term is thus given by

Skin ren = 6M3 4π
TL

∫
dρρ2(∂ρuT )2 . (2.18)

Rewriting the above result in terms of the field Th(ρ) and taking into account the potential
term from (2.13), we get the total effective Euclidean action

Seff ≡
S3
T

= 4π
T

N2

16π2 p

∫
dρ ρ2

[
6π2(∂ρTh)2 + 2π4(3T 4

h − 4T 3
hT )

]
. (2.19)

This formula is the main result of this section: our analysis determines the relative coeffi-
cient between the derivative and the potential term in the effective action for the “temper-
ature field” Th(ρ), for the entire class of strongly coupled planar (3+1)-dimensional CFT
with an AdS5 black hole holographic dual.6

3 The Witten-Sakai-Sugimoto model

The WSS model is a non-supersymmetric (3+1)-dimensional Yang-Mills theory with gauge
group SU(N), coupled to Nf fundamental flavors and a tower of Kaluza-Klein (KK) mat-
ter fields [23, 24].7 Our focus will be on the ’t Hooft limit of the model, where N � 1,
Nf/N � 1 and the ’t Hooft coupling λ at the KK mass scale MKK is taken to be very
large, λ � 1. The dimensionful parameter MKK also gives the typical mass scale of

5This way of proceeding is analogous to what is done to obtain the effective action for the radion, see
e.g. [36]. Here we are just turning off any fluctuation corresponding to the 4d graviton, according to the
semiclassical approximation of [8] where the bounce is modeled by a single scalar field action.

6Comparing with the notations of e.g. [15], we see that our analysis allows to determine their derivative
term coefficient as c3 = 48c2 = 6π2p.

7See [37] for a concise review.
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the glueballs. The confining string tension Ts is parametrically larger than M2
KK since

Ts ∼ λM2
KK. The non-perturbative IR dynamics of the model shares many relevant fea-

tures with real-world QCD, including confinement, mass gap and chiral symmetry break-
ing. Moreover, the WSS theory exhibits a very interesting phase diagram, with a first-order
confinement/deconfinement transition and a first-order chiral-symmetry-restoring transi-
tion which can happen at different critical temperatures depending on the parameters of
the model. Most importantly, in the above-mentioned regime, all these features can be
analytically captured by means of a dual classical gravity description with a very precise
embedding in string theory.

In the WSS model, all the fields transforming in the adjoint representation of the gauge
group arise from the low energy dynamics of N D4-branes wrapped on a circle S1

x4 with
coordinate x4 ∼ x4 + 2π/MKK. When we consider the model at finite temperature T , the
Euclidean time direction is compactified too, t ∼ t + β = t ∼ t + 1/T , and therefore we
have another circle S1

t . Each of the Nf fundamental flavor fields is introduced by means of
a pair of D8/anti-D8-branes, transverse to S1

x4 , separated by a certain distance L ≤ πM−1
KK

along that circle. In the original version of the model, there are Nf D8-branes and Nf

anti-D8-branes put at antipodal points on S1, i.e. such that LMKK = π. When the flavors
are massless, the gauge symmetry on these branes realizes the classical U(Nf )L ×U(Nf )R
global chiral symmetry of the theory. In the following we will also consider a more general
setup where part (if not all) of the flavor branes are not antipodal. In general, there can
be several distinct flavor brane pairs as it happens in the recently considered Holographic
QCD axion scenario [38, 39].

The WSS model has a very well known holographic dual description. When Nf = 0 the
latter is provided by the so-called Witten-Yang-Mills (WYM) solution [23] which describes
the near horizon limit of the background sourced by the N D4-branes. It is a classical
solution of the Type IIA 10d gravity action with a curved metric, a dilaton and a four-
form Ramond-Ramond (RR) field strength turned on. At finite temperature, there are
actually two competing solutions, related by the exchange of the two S1 circles mentioned
above. By computing the free energy, it turns out that at any given temperature T only
one of the two backgrounds is energetically favored. Dialing the temperature, the system
exhibits a first-order phase transition.

One of these backgrounds is the black hole one. Considering the case with Euclidean
signature, it reads, in string frame:

ds2 =
(
u

R

)3/2 [
fT (u)dt2 + dxidxi + dx2

4

]
+
(
R

u

)3/2
[
du2

fT (u) + u2dΩ2
4

]
,

fT (u) = 1− u3
T

u3 , eφ = gs

(
u

R

)3/4
, F4 = 3R3

gs
ω4 , R3 = πgsNl

3
s . (3.1)

The parameter uT is related to the Hawking temperature Th by

uT = 16π2

9 R3T 2
h . (3.2)
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The second background is called solitonic and reads

ds2 =
(
u

R

)3/2 [
dt2 + dxidxi + f(u)dx2

4

]
+
(
R

u

)3/2
[
du2

f(u) + u2dΩ2
4

]
,

f(u) = 1− u3
0
u3 , u0 ≡

4
9R

3M2
h . (3.3)

The dilaton and F4 fields keep precisely the same form as in the previous case.
As we will see in a moment, the two backgrounds are regular, proper solutions of the

type IIA gravity action only when Th = T and Mh = MKK. The map between string
parameters and field theory ones is given by

gsls = 1
4π

λ

MKKN
,

R3

l2s
= 1

4
λ

MKK
, (3.4)

where λ is the ’t Hooft coupling mentioned at the beginning of this section.
The two backgrounds are simply related by (t, 2πTh) ↔ (x4,Mh). Without imposing

further constraints, they both exhibit a conical singularity. Indeed, let us consider the (t, u)
subspace of the black hole background and let us expand it in the neighborhood of u = uT ,

ds2
(u,t) = 3u1/2

T

R3/2 (u− uT )dt2 + R3/2

3u1/2
T

du2

u− uT
. (3.5)

By performing the change of coordinates (t, u)→ (θ, r) given by

r(u) = 2√
3

(
R3

uT

)1/4√
u− uT , θ(t) = 2πTt , (3.6)

we find
ds2

(u,t) = 9uT
16π2R3T 2 r

2dθ2 + dr2 =
(
Th
T

)2
r2dθ2 + dr2 . (3.7)

This is the metric of a cone with angle α given by sinα = Th/T . Analogously, expanding
the metric of the solitonic background around u = u0 we find

ds2
(u,x4) = y2(sin β)2dθ2 + dy2 , (3.8)

with sin β = Mh/MKK. As anticipated above, the conical singularity disappears when
Th = T for the first background and Mh = MKK for the second one. For the purposes of
this work, and in analogy with the discussion of section 2, it will be useful to consider a
general “off-shell” setup in which the backgrounds display the conical singularity.

The solitonic background is dual to the confining phase of the dual gauge theory. The
black hole one is instead dual to the deconfined phase.8 As we will review in section 4, there
is a first-order phase transition between the two phases, with a critical temperature Tc =
MKK/2π. When T < Tc (resp. T > Tc) the theory is in a confined (resp. deconfined) phase.

8It has been argued in [40] that this phase is actually not in the same universality class as that of finite
temperature Yang-Mills since some discrete symmetries do not match.
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Let us now recall what happens when fundamental flavors are added to the model [24].
In the ’t Hooft limit, the backreaction of the D8/anti-D8 branes on the above-mentioned
backgrounds can be neglected and they can thus be treated as probes. One is just left with
solving the Euler-Lagrange equations for the D8-brane embedding described by a function
x4 = x4(u) on both backgrounds.

In the confined phase the solution is such that each D8 and anti-D8 brane pair is
actually joined into a single U-shaped configuration. This geometrically realizes the chiral
symmetry breaking of the dual field theory. When the branes are taken to be antipodal
on the S1

x4 circle, the bottom of the configuration coincides with the bottom of the space
u = u0. This means that chiral symmetry breaking and confinement happen at the same
energy scale. However, when the branes are not antipodal, they end up joining at some
uJ > u0, in which case the two scales are separated. In the standard QCD-like setup with
Nf coincident D8-branes and Nf antipodal anti-D8-branes, the model precisely realizes
the breaking of U(Nf ) × U(Nf ) to the diagonal U(Nf ), and the effective action on the
D8-branes turns out to reproduce, at low energy, the chiral Lagrangian (with pion decay
constant fπ ∼

√
NMKK) including the Skyrme term. The η′-like particle, in the model,

gets a mass due to the axial anomaly, precisely as expected in QCD. Quark mass terms can
also be turned on. In [38] a variant of this setup has been considered, by adding a further
non-antipodal D8-brane pair (with LMKK � π) corresponding to an extra massless flavor.
The related axial symmetry was identified with the U(1) Peccei-Quinn symmetry and the
η′-like particle arising from its breaking was interpreted as a QCD-like axion, see also [39].

In the deconfined phase, there are two possible D8-brane embeddings depending on
the distance L along the S1

x4 circle [28]. In particular, for fixed physical parameters MKK,
L, we have the following phases depending on the temperature T :

• If T < MKK
2π , the theory is confining and chiral symmetry is broken;

• If T > MKK
2π , the theory is deconfined and:

– If T < 0.1538
L , chiral symmetry is broken;

– If T > 0.1538
L , chiral symmetry is preserved.

Thus, the intermediate phase with deconfinement and chiral symmetry breaking that will
be of interest in section 5 exists for

MKK
2π < T <

0.1538
L

. (3.9)

According to eq. (3.9), the intermediate phase exists if MKKL < 0.966.

4 Confinement/deconfinement phase transition

In this section, we study bubble nucleation in the confinement/deconfinement phase tran-
sition in the WSS model. We consider a scenario where the WSS theory starts at high
temperature and then cools down. Due to the first-order phase transition, bubbles of con-
fining (solitonic) vacuum will start to nucleate within the deconfined (black hole) vacuum.
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4.1 Free energies of the Witten backgrounds

In order to decide which one of the two possible background solutions (3.1) and (3.3) is
energetically favored, one has to compute the related on-shell gravity action. This in turn
amounts to computing the free energy of the dual field theory, as we have reviewed in
section 2. As usual, the on-shell gravity action will be holographically renormalized. Let
us review some detail of the computation following [26, 41]. The Euclidean renormalized
on-shell gravity action is given by

Sren = SIIA + SGH + Sct , (4.1)

where
SIIA = − 1

2κ2
10

∫
d10x
√
g

[
e−2φ

(
R+ 4∂Mφ∂Mφ

)
− 1

2 |F4|2
]
, (4.2)

is the relevant truncation of the type IIA gravity action,

SGH = − 1
κ2

10

∫
d9x
√
he−2φK , (4.3)

is the Gibbons-Hawking term and

Sct = 1
κ2

10

g
1/3
s

R

∫
d9x
√
h

5
2e
−7φ/3 , (4.4)

is the counterterm action. In the above expressions, 2κ2
10 = (2π)7l8s , K is the extrinsic

curvature of a cut-off surface u = uΛ,

K = 1
√
g
∂u

( √
g

√
guu

) ∣∣∣
u=uΛ

, (4.5)

and h is the determinant of the boundary metric at u = uΛ. Summing up all the contri-
butions and taking the uΛ → ∞ limit, the renormalized on-shell action on the black hole
background (3.1) turns out to be given by

Sren = − πVS4V4
2κ2

10g
2
sMKK

u3
T . (4.6)

Here VS4 and V4 are the volumes of the four sphere and the flat four-dimensional space.
The free energy density of the dual theory is therefore

fBH = −1
2

(2
3

)7
π4λN2 T 6

h

M2
KK

, (4.7)

where we have also used the relations (3.4). Substituting Th → Mh/2π we find the free
energy of the solitonic background,

fsolitonic = −
(1

3

)7 1
π2λN

2 M6
h

M2
KK

. (4.8)
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When Th = T and Mh = MKK, the energy difference reads

fsolitonic − fBH = λN2

π2M2
KK

(1
3

)7 [
−M6

KK + (2πT )6
]
. (4.9)

As a result, for temperatures T < MKK/2π the solitonic solution is energetically favored,
while for temperatures T > MKK/2π the black hole solution dominates. At T = Tc =
MKK/2π the system features a first-order phase transition.

As shown in the previous section, if Th 6= T and Mh 6= MKK, the backgrounds display
a conical singularity and the latter contributes to the free energy. For the black hole
background, we regularize the (t, u) subspace smoothing it with a two-dimensional spherical
cap precisely as done in the RS-AdS case revisited in section 2. The contribution of the
spherical cap to the action is therefore

Scone
BH = − 1

2κ2
10

∫
d10x
√
ge−2φRS2 = − 2πV3VS4

2κ2
10g

2
sMKK

4π
(

1− Th
T

)(
uT
R

)−3/2
u4
T . (4.10)

Analogously, for the solitonic background we have

Scone
solitonic = − 1

2κ2
10

∫
d10x
√
ge−2φR = − 1

2κ2
10

V3VS4β

g2
s

4π
(

1− Mh

MKK

)(
u0
R

)−3/2
u4

0 . (4.11)

The contribution of the conical singularity then reads

f cone
BH = 3

(2
3

)7
π4λN2 T 6

h

M2
KK

(
1− T

Th

)
, (4.12)

f cone
solitonic = 6

(1
3

)7 1
π2λN

2 M6
h

M2
KK

(
1− MKK

Mh

)
. (4.13)

As a result, the total free energies read

f ′BH = fBH + f cone
BH = 1

2

(2
3

)7
π4λN2 1

M2
KK

(
5T 6

h − 6TT 5
h

)
, (4.14)

f ′solitonic = fsolitonic + f cone
solitonic =

(1
3

)7 1
π2λN

2 1
M2

KK

(
5M6

h − 6MKKM
5
h

)
. (4.15)

4.2 Holographic bubbles

In order to describe the nucleation of bubbles, we should find a solution of the equations of
motion that interpolates between the confined and the deconfined backgrounds. Unfortu-
nately, this is a very difficult task to pursue. The idea is then to take an effective approach
in which the interpolation is mediated by a single effective degree of freedom [8]. Since the
two backgrounds differ only for the fact that the blackening factor sits in front of dx2

4 or
dt2, we might try to promote the parameters uT and u0 to fields uT (ρ) and u0(ρ), where
ρ is the radial coordinate for the bubble. We will consider either O(3) symmetric bubbles,
for which ρ2 = xixi, or O(4) symmetric ones, where ρ2 = t2 + xixi. For instance, in the
black hole case, one could start from a O(3)-symmetric ansatz of the form

ds2 =
(
u

R

)3/2 [
fT (u, ρ)dt2 + dρ2 + ρ2dΩ2

2 + dx2
4

]
+
(
R

u

)3/2
[

du2

fT (u, ρ) + u2dΩ2
4

]
, (4.16)
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with
fT (u, ρ) = 1− uT (ρ)3

u3 , (4.17)

and the other fields left unchanged. In this setup, the temperature of the horizon Th is
promoted to a field as well,

uT (ρ) = 16π2

9 R3 Th(ρ)2 . (4.18)

The effective action for this field will now include a contribution from its derivative term.
This comes from the Ricci scalar and reads

Rkin = −9
2

(
u

R

)3/2 R3u4
T

u3(u3 − u3
T )2 (∂ρuT )2

= −9
2

(
32π2

9

)2 (
u

R

)3/2 R9u4
T

u3(u3 − u3
T )2T

2
h (∂ρTh)2 . (4.19)

Thus we see that using the ansatz (4.16) the Ricci scalar (4.19) displays a divergence
for u → uT (ρ) which deviates from the conical singularity. Indeed, if we expand the
metric around u = uT (ρ), we do not find the metric of a cone, because the change of
coordinates (3.6) becomes non-trivial when uT is a function of ρ. This background is not
satisfactory, because we would like it to display a conical singularity with a ρ-dependent
cone angle.

Let us consider another ansatz. We start from the background (3.1) and we perform
the coordinate change between u and r as in (3.6). Then we promote uT to be a function
of ρ. In this way, the metric expanded around r = 0 is the metric of a cone for any value
of ρ. In general, it reads

ds2 =
(
u

R

)3/2 [
fT (u)dt2 + dρ2 + ρ2dΩ2

2 + dx2
4

]
+
(
R

u

)3/2
[

9uT r2dr2

4R3fT (u) + u2dΩ2
4

]
, (4.20)

where

u = u(r, ρ) = uT (ρ) + 3
4

√
uT (ρ)
R3 r2 . (4.21)

The dilaton and the RR four form will be taken as in the original background. In particular,
due to eq. (4.21), the dilaton will now be a function of both r and ρ.

The effective four-dimensional action for uT (ρ) will be obtained by plugging the ansatz
above in the renormalized action Sren = SIIA +Sct+SGH as defined in section 4.1 and inte-
grating over r, x4 and the transverse four-sphere. The background deformation described
above affects only the quantities which depend on the derivatives of uT (ρ). Thus, the
potential term in the effective action will be read from eq. (4.14) where Th(ρ) is expressed
in terms of uT (ρ) by means of eq. (4.18).

The derivative term in the effective action for uT (ρ) requires some care. In principle,
it is obtained from the on-shell value of

Skin eff = − 1
2κ2

10

∫
d10x
√
g
[
e−2φ (R+ 4∂ρφ∂ρφ)

]
. (4.22)
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Actually, this gives rise to contributions proportional to (∂ρuT (ρ))2 which diverge as r →∞.
Remarkably enough, the above divergences can be removed by adding to the action above
the counterterm

Skin ct = − 1
2κ2

10

(
− 40R

9g1/3
s

)∫
r=rUV

d9x
√
h e−5φ/3 hmn ∂mφ∂nφ , (4.23)

where hmn is the boundary metric at fixed r = rUV . All in all we get a quite simple effective
action for uT (ρ).

It is possible to show that precisely the same results (and the same expression for the
renormalized derivative term) can be obtained using an alternative counterterm action that
is built having in mind the structure of the first two terms of the counterterm action in
eq. (5.78) of [42]. It reads

Skin ct alt = − 1
2κ2

10

(
− 5R

7g1/3
s

)∫
r=rUV

d9x
√
h e−5φ/3R[h]

− 1
2κ2

10

(
60

7Rg−1/3
s

)∫
r=rUV

d9x
√
h e−7φ/3 . (4.24)

The second, “volume” counterterm, cancels all the divergences and the finite terms - which
do not depend on derivatives of uT (ρ) - coming from the first one. The structure of this
term is analogous to that of the “volume” counterterm we have added to renormalize the
bulk on-shell action.

With the same procedure we can get an effective action for u0(ρ) ∼ Mh(ρ)2 in the
confined phase.

The ansatz we have chosen in our discussion above is O(3) symmetric. This is what
is expected to hold at large enough temperatures. For smaller temperatures, one should
expect a O(4)-symmetric ansatz to hold. This ansatz would be perfectly consistent with
the symmetries of the solitonic background dual to the confined phase. In fact, even on the
black hole background, which has only O(3) symmetry, at small enough temperature the
radius of the bubble can be much smaller than the length of the time circle. In this case, the
configuration can effectively enjoy an enlarged O(4) symmetry including the Euclidean time
direction [6, 7]. We will present the related effective actions in the following subsection.

4.3 Effective actions and solutions

Let us now write the effective actions for uT (ρ) or u0(ρ) in terms of the field

Y = −YT (deconfined phase) , Y = Y0(confined phase) , (4.25)

where
YT = Th(ρ)2 , Y0 =

(
Mh(ρ)

2π

)2
. (4.26)

In the O(3)-symmetric case, the effective action in the deconfined phase reads

S3(Y )
T

= 16π3λN2

35M2
KKT

∫
dρρ2

[(
5− π

2
√

3

)
Y ′2 − 16π2

9
(
5Y 3 + 6T (−Y )5/2

)]
, (4.27)
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where the prime denotes derivative with respect to ρ, and Y is supposed to take negative
values. In the confined phase the action is

S3(Y )
T

= 16π3λN2

35M2
KKT

∫
dρρ2

[(
5− π

2
√

3

)
Y ′2 + 16π2

9

(
5Y 3 − 3

π
MKKY

5/2
)]

, (4.28)

where now Y takes positive values. The full problem is simply the junction of the two
regimes. By passing to dimensionless quantities

Φ ≡ Y

M2
KK

, ρ̄ ≡MKKρ , T̄ ≡ 2πT
MKK

, (4.29)

such that the critical temperature Tc corresponds to T̄ = 1, one factorizes the parametric
dependences out of the Lagrangians and the whole action reads

S3(Φ)
T

= 32π4g

35T̄

∫ ∞
0

dρ̄ρ̄2
[(

5− π

2
√

3

)
Φ′2 + Θ(Φ)Vc(Φ) + Θ(−Φ)Vd(Φ)

]
, (4.30)

where Θ(·) is the Heaviside step function,

Vc(Φ) = 16π2

9

(
5Φ3 − 3

π
Φ5/2

)
,

Vd(Φ) = −16π2

9

(
5Φ3 + 3

π
T̄ (−Φ)5/2

)
, (4.31)

and
g ≡ λN2 . (4.32)

Formula (4.30) is the main result of this section, providing the action for the scalar field
effectively describing the interpolation between the black brane and solitonic backgrounds.
Note that there is a single parameter g which enters multiplicatively the action.

Figure 1 depicts the full potential for three different values of the reduced temperature
T̄ . The two minima are Vd = −T̄ 6/(36π4) for Φd = −T̄ 2/(4π2) and Vc = −1/(36π4) for
Φc = 1/(4π2). We will focus on the case T̄ ∈ [0, 1], where the true vacuum is the confining
one at Φ = Φc.

We are going to find a bubble-like solution ΦB of the equation of motion derived from
the action (4.30) in the following way. We start inside the bubble, i.e. for ρ̄ ∈ [0, ρ̄w] (where
ρ̄w is the location of the bubble wall), i.e. in the confined case with Φ > 0. The equation
is solved with boundary conditions

ΦB(0) = Φ0 , Φ′B(0) = 0 , (4.33)

for some positive value Φ0; the second condition corresponds to the request of regularity.
The solution ΦB is going to vanish at a finite position of the radius, which is identified
with ρ̄w. There we calculate the derivative Φ′B(ρ̄w) ≡ Φ′B,w.

Then we solve the equation outside the bubble, i.e. for ρ̄ ∈ [ρ̄w,∞], i.e. in the deconfined
case where Φ < 0. The boundary conditions we use are the ones enforcing continuity of
ΦB and Φ′B at the junction,

ΦB(ρ̄w) = 0 , Φ′B(ρ̄w) = Φ′B,w . (4.34)

– 16 –



J
H
E
P
1
2
(
2
0
2
0
)
2
0
0

-0.06 -0.04 -0.02 0.02 0.04

-0.0005

0.0005

0.0010

0.0015

0.0020

0.0025

V (Φ)

Φ

Alessio Caddeo The Holographic QCD Axion 1 / 1

Figure 1. Representative curves of the potential for three different values of the dimensionless
temperature: T̄ = 0.8 (blue), T̄ = 1 (orange), T̄ = 1.1 (green). The region where Φ takes positive
values does not depend on the temperature, hence the curves overlap.
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Figure 2. Solutions for the bubble profile in the O(3) case (left) with T̄ = 0.3 (dashed), 0.5 (dash-
dotted), 0.7 (dotted) and in the O(4) case (right) with T̄ = 0.01 (dashed), 0.02 (dash-dotted), 0.03
(dotted).

Finally, we search for the initial value Φ0 at the center of the bubble such that the
solution for large ρ̄ goes to the false vacuum, Φd. Thus, the whole solution is such that
at the center of the ball it goes to a positive constant9 with vanishing derivative and
at infinity it goes to the false vacuum solution. Examples of solutions corresponding to
different choices of T̄ are given in figure 2. The amplitude of the configuration is reduced
as the temperature gets smaller and smaller.

Once the solution is calculated, one can plug it back in the action. As mentioned in
the introduction, the bounce action SB that enters the formula Γ = Ae−SB for the rate of
the vacuum decay is, in the O(3)-symmetric case, SB = S3,B given by [3]

S3,B
T

= S3(ΦB)− S3(Φd)
T

. (4.35)

9Note that the constant Φ0 is typically different from the true vacuum Φc, because the equation of
motion derived from (4.30) contains a friction term.
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For small temperatures, one could have also O(4) symmetric bounces. Notice that
in the present setup this symmetry is also preserved by the solitonic background (3.3)
describing the low temperature phase of the model. The action for the O(4) symmetric
configuration is almost the same as (4.30), but for the fact that the four-dimensional
measure d4x is now given by dΩ3dρρ

3, where dΩ3 is the measure of the three-sphere. As a
result, the action does not display the overall MKK/T = 2π/T̄ factor that in the O(3) case
came from the integration over t,

S4(Φ) = 8π4g

35

∫ ∞
0

dρ̄ ρ̄3
[(

5− π

2
√

3

)
Φ′2 + Θ(Φ)Vc(Φ) + Θ(−Φ)Vd(Φ)

]
. (4.36)

Then, proceeding as above, one obtains solutions for the bubbles as in figure 2. The bounce
action is defined as S4,B = S4(ΦB)− S4(Φd).

As already stressed in the Introduction, one should take in mind that these O(4) and
O(3) symmetric configurations have to be considered as reliable approximations of the
actual solution in some small and large temperature regime, respectively [7]. We will come
back to this issue in a moment.

In appendix A we report on the use of the thin and thick wall approximations, which
allow us to study semi-analytically the problem at large and small temperatures, respec-
tively. There it is also shown that the bubble is unlikely to have an even larger symmetry
than O(4). In fact, in principle in the dual description, the bubble could happen to be small
as compared to the four-sphere and the x4 circle of the background. In appendix A we
show that this is never the case for temperatures below Tc, justifying the ansatze adopted
in this section.

Based on the numerical results and inspired by the functional form of the thin and
thick wall approximations studied in appendix A, a continuous analytic approximation to
the action for the O(3) bubble can be provided as follows,

S3,B
gT
≈



0.32 T̄ 5/2 (T̄ ≤ 0.3)
1.8× 10−3 exp(7.9 T̄ )− 2× 10−3 (0.3 ≤ T̄ ≤ 0.68)
5.4× 10−2 exp(8.8 T̄ 3.8) (0.68 ≤ T̄ ≤ 0.87)
2.6/T̄ (1 − T̄ 6)2 (T̄ ≥ 0.87)

(4.37)

while its radius can be approximated as

ρ̄w ≈



3.5/T̄ 1/2 (T̄ ≤ 0.13)
6.8 + 0.13/T̄ 1.5 (0.13 ≤ T̄ ≤ 0.38)
7.4 + 110 T̄ 10 (0.38 ≤ T̄ ≤ 0.84)
16/(1 − T̄ 6) (T̄ ≥ 0.84)

(4.38)

Figure 3 shows a comparison between the latter fits and numerical data.
For the O(4) bubble, since it is only defined for small temperatures, it is sufficient to

consider the functional form of the thick wall approximation, giving
S4,B
g
≈ 0.39 T̄ 3 , ρ̄w ≈

4.0
T̄ 1/2 (T̄ < 0.06) . (4.39)
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Figure 3. The action S3,B/gT and dimensionless radius ρ̄w of the O(3) symmetric bubble as a
function of T̄ . Dots correspond to numerical results, the dotted lines to eqs. (4.37), (4.38). Different
colors correspond to different expressions of the piecewise functions.

The comparison with numerical data is shown in figure 4. We only plot S4,B/g for small
T̄ because of its range of validity. In fact, the O(4) bubble radius must be much smaller
than 1/T , otherwise one cannot have this enlarged symmetry configuration on the thermal
circle [6, 7].10 We choose to place the discriminant bubble radius value, above which we do
not consider O(4) configurations, at the conventional point where ρw = 1/2πT (the radius
of the thermal circle). In our case, this happens for T̄ ≈ 0.06.

4.4 Bubble nucleation rate

The bubble nucleation rate is the maximum of the rates of the O(3) and O(4) symmetric
bubbles [3–7]11

Γ = Max
[
T 4
(
S3,B
2πT

)3/2
e−S3,B/T ,

(
S4,B
2πρ2

w

)2
e−S4,B

]

= M4
KKMax

[
T̄ 4

(2π)4

(
S3,B
2πT

)3/2
e−S3,B/T ,

(
S4,B
2πρ̄2

w

)2
e−S4,B

]
. (4.40)

Some examples of the rates in the O(3) case are provided in figure 5. Since the rate is
exponentially suppressed with the action, it is more and more suppressed as the parameter
g is increased. Also, the peak of the rate is shifted to smaller temperatures by increasing
g, so that for large values of this parameter the theory features what is called supercooling.
In this case, the rate is so small that the theory is trapped in the false vacuum, below the
critical temperature of the first-order transition, for a long time.

Similar features are present in the O(4) case, shown again in figure 5. As can be
appreciated by comparing the left and right plots in figure 5, which correspond to the same

10The O(4) bubble does not fit the thermal circle for 2ρw > 1/T . But even if 2ρw < 1/T , if the radius
is close to the extremal value 1/2T , the assumption that there is an enlarged O(4) symmetry is hardly
consistent.

11The prefactors T 4 and 1/ρ4
w in (4.40) are essentially determined by dimensional analysis and heuristic

considerations [4, 7]. We verified that changing e.g. T 4 into T 6/M2
KK has very small impact on the numerical

values found in this paper.
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Figure 4. The action S4,B/g and dimensionless radius ρ̄w of the O(4) symmetric bubble as a
function of T̄ . Dots correspond to numerical results, the dotted lines to eq. (4.39).
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Figure 5. Representative plots of the decay rate Γ̄ ≡ Γ/M4
KK for g/106 = 1 (blue), 2 (orange), 4

(green), 8 (red), for the O(3) (left) and O(4) (right) configurations.

values of g, the rate for the O(4) bubble dominates on the one for the O(3) bubble for those
values of T̄ for which it is defined, namely for T̄ . 0.06. Thus, at such small temperatures,
the decay is much more likely to happen via quantum rather than thermal fluctuations.

5 Chiral symmetry phase transition

5.1 Revisiting the transition

As already mentioned in section 3, the authors of [28] showed that in the Witten-Sakai-
Sugimoto model the deconfinement phase transition and the chiral symmetry breaking
phase transition can take place at different temperatures for certain parameters of the
model. Thus, apart from the vacuum decay studied in section 4, there is a different type
of vacuum decay associated to the embedding of the flavor branes. In this section we will
briefly review the analysis of [28] and then put forward a simple analytic expression that
approximates with good accuracy the brane embedding profiles. This expression will be a
useful tool in subsection 5.2 where we will discuss the bubble configurations that mediate
the chiral symmetry breaking phase transitions in the deconfined phase.

We want to study probe brane embedding profiles in the (Euclidean) background given
by eqs. (3.1) where one must take into account that

uT = 16π2

9 R3T 2 , x4 ∼ x4 + 2π
MKK

, t ∼ t+ 1
T
. (5.1)
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The Sakai-Sugimoto model [24] consists in introducing D8 probe flavor branes extended
along the Minkowski directions, the four-sphere and u, with a profile x4 = x4(u). The
Dirac-Born-Infeld action is

SDBI = T8
gs

∫
d9x

(
u

R

)−3/2
u4

√
1 + fT (u)

(
u

R

)3
(∂ux4)2 . (5.2)

From the Euler-Lagrange equation ∂u
(
∂L
∂ux4

)
= ∂L

∂x4
, we find that ∂L

∂ux4
is a constant and

therefore (
u

R

)−3/2
u4 fT (u)

(
u
R

)3 (∂ux4)√
1 + fT (u)

(
u
R

)3 (∂ux4)2
= constant . (5.3)

The simplest solution is that of a straight brane-antibrane pair each at constant x4. That
would be the phase with unbroken chiral symmetry. On the other hand, there are U-shaped
solutions that connect the brane and the antibrane somewhere in the bulk, leading to a
breaking of chiral symmetry. Any solution of that kind has a tip, where the brane and
antibrane are joined, located at some position of the holographic direction u = uJ such
that x′4(uJ) =∞. For this case, we can rewrite (5.3) as

u4√fT (u)√
1 +

(
fT (u)

(
u
R

)3 (∂ux4)2
)−1

= u4
J

√
fT (uJ) . (5.4)

We can rescale the coordinate to factor out the dimensionful parameters,12

x4 = xu
−1/2
T R3/2 = x

3
4πT , u = y uT , uJ = yJ uT , (5.5)

such that
fT (u) ≡ fT = 1− y−3 , fT (uJ) ≡ fTJ = 1− y−3

J . (5.6)

The periodicity of the cigar coordinate is

x ∼ x+
2π√uT
MKKR

3
2

= x+ 8π2T

3MKK
. (5.7)

In these coordinates, equation (5.4) can be rewritten as

∂yx =
[
fT y

3
(
y8fT
y8
JfTJ

− 1
)]−1/2

. (5.8)

Recalling that L is the distance between the brane and the antibrane along x4 in the u→∞
limit, for the U-shaped configuration, it can be computed as

L =
∫

worldvolume
dx4 = 2

∫ ∞
uJ

dx4
du

du = 2 3
4πT

∫ ∞
yJ

[
fT y

3
(
y8fT
y8
JfTJ

− 1
)]−1/2

dy , (5.9)

where the factor of 2 arises from adding up both sides of the “U”. Thus, for each value of
uJ (or, equivalently, of yJ), there is a unique solution with a given value of LT that can
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Figure 6. Left: separation in x4 times the temperature as a function of yJ = uJ/uT for the
U-shaped configuration in the deconfined background. The maximum value of LT in the plot is
LT ≈ 0.1675 and occurs for yJ ≈ 1.119. Right: profiles for different values of yJ : yJ = 1.03 (red),
yJ = 1.119 (black), yJ = 1.4 (blue), yJ = 2.5 (green). We have assumed, without loss of generality,
that the tip of the brane is located at x4 = 0.

be numerically computed by integrating (5.9). This is represented in figure 6. The figure
also displays some profiles for different values of yJ .

The next step is to understand in which cases the U-shaped profile is energetically
preferred to the disconnected brane-antibrane pair. We have to compare the on-shell actions
of both cases. Let us first express (5.2) in terms of the dimensionless constants. We write
V1,3 for the (infinite) volume of Minkowski space and VS4 for the volume of the internal
four-sphere. We get

SDBI = K

∫
y5/2

√
1 + fT y3(∂yx)2dy , (5.10)

whereK = T8
gs
V1,3VS4R3/2u

7/2
T is a constant factor, common to all brane configurations. For

the disconnected configuration, taking into account the factor of 2 for the brane-antibrane
pair and inserting a UV cut-off,

SDBI|d = 2K
∫ ycut

1
y5/2dy . (5.11)

For the connected configuration, we can insert the value of (∂yx) for the solution, as given
in (5.8),

SDBI|c = 2K
∫ ycut

yJ

y5/2
(

1− y8
JfTJ
y8fT

)−1/2

dy . (5.12)

We are interested in the difference ∆SDBI = SDBI|c−SDBI|d. This difference is not divergent
and the UV cut-off can be safely removed. Splitting SDBI|d into two integrals below and
above yJ , we have

∆SDBI
K

= 2
∫ ∞
yJ

y5/2

(1− y8
JfTJ
y8fT

)−1/2

− 1

 dy − 4
7(y7/2

J − 1) . (5.13)

12Notice that the y defined here does not coincide with the one defined by [28].
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The value of ∆SDBI can be computed numerically as a function of yJ . It turns out that
∆SDBI > 0 for yJ < yχSB ≈ 1.3592, a case in which the disconnected configuration is
preferred and chiral symmetry is preserved. Conversely, ∆SDBI < 0 for yJ > yχSB and the
connected configuration is preferred. The value of yχSB corresponds to (LT )χSB ≈ 0.1538.

We now demonstrate that a variational approach can provide a good approximation
to these results. Let us consider a family of profiles for a length L of the form

y = yJ +B

[
arctanh

(2x
L̃

)]2
, (5.14)

where L̃ is the distance between the brane and the antibrane in the coordinate x, which,
taking (5.5) into account, is related to L as

L̃ = 4π
3 LT . (5.15)

The expression (5.14) can be inverted,

x = L̃

2 tanh
(√

y − yJ√
B

)
. (5.16)

The parameters yJ and B are here variational constants that can take values 1 ≤ yJ <∞,
0 < B < ∞. It is important to remark that the variational profile smoothly interpolates
between a U -shaped profile and the chiral symmetry preserving profile that is recovered in
the limit yJ = 1, B → 0. For a particular L̃, the values of yJ and B have to be determined
by minimizing the on-shell action attained after inserting (5.16) in

∆SDBI
K

= 2
∫ ∞
yJ

y5/2
[√

1 + fT y3(∂yx)2 − 1
]
dy − 4

7(y7/2
J − 1) , (5.17)

where we have used (5.10) and subtracted the straight brane-antibrane pair. Figure 7
depicts two examples of the behavior of ∆SDBI as a function of the variational parameters.

With this procedure, a variational approximation to the lowest energy profile can be
found for any value of L̃. Figure 8 shows that the approximation is quite accurate. To
further emphasize that this variational approach captures the physics very well, we can
compute the value of L̃ at which the phase transition occurs. Numerically solving the
exact equations (namely finding from eq. (5.13) the value of yJ for which ∆SDBI vanishes
and inserting it in (5.9)), we obtain L̃χSB = 0.6444. From the variational approach,
we find L̃χSB = 0.6442. We have introduced this analytic approximation to the brane
profiles in order to simplify the computation of vacuum decay that will be discussed below.
Nevertheless, it is natural to expect that it may also prove useful to study other properties
of the WSS as, e.g., the relation between the excitations of the branes in the connected
and disconnected phases [43].

5.2 Flavor brane bubbles

We have seen that for L̃ = 4π
3 LT < 0.644, the chiral symmetry breaking configuration is

energetically preferred (it is the “true vacuum”) and therefore for lower temperatures the
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Figure 7. Numerically computed values of K−1∆SDBI(yJ , B) for two different values of L̃. On
the left (L̃ = 1), the minimum is at yJ = 1, B → 0 and therefore the disconnected solution is
preferred. On the right (L̃ = 0.5), the minimum is at yJ = 2.15, B = 0.48, the connected solution
has lower energy and chiral symmetry breaking is to be expected. It is interesting to notice that
the disconnected solution (yJ = 1, B → 0) remains a local minimum of the action in all the cases.
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Figure 8. Comparison of the numerical profiles (red dashed lines) with the variational profiles
(black dotted lines) for four cases: L̃ = 0.64, L̃ = 0.6, L̃ = 0.5 and L̃ = 0.3. The lines are
hardly distinguishable, showing that the variational profile is a very good approximation to the
exact profile.

chirally symmetric vacuum (the “false vacuum”) can decay through bubble nucleation [3, 5–
7]. The bubble would correspond to a “bounce solution”. Namely, we look for a regular
solution of the equations of motion obtained from the Euclidean action that interpolates
between a configuration related to the true vacuum at the center of the bubble and the
false vacuum far away from it.13 Our goal is to produce estimates for the production rate
of vacuum decay bubbles. As in the deconfinement phase transition case, we will discuss
ansatze with O(3) [3, 5] and O(4) [6, 7] symmetries.

13A bounce solution mediated by a complex tachyon field for a brane-antibrane pair in flat space was
analyzed in [44].
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5.2.1 O(3)-symmetric bubbles

We start by rewriting the metric with the Euclidean physical space in spherical coordinates,
with ρ as the radial coordinate,

ds2
E =

(
u

R

)3/2 [
fT (u)dt2 + dρ2 + ρ2dΩ2

2 + dx2
4

]
+
(
R

u

)3/2
[
du2

fT (u) + u2dΩ2
4

]
. (5.18)

Considering an ansatz in which x4(u, ρ), the DBI action reads

SDBI = T8
gs

∫
d9xρ2

(
u

R

)−3/2
u4

√
1 + fT (u)

(
u

R

)3
(∂ux4)2 + (∂ρx4)2 . (5.19)

We can use (5.5), (5.6) together with

ρ = σ u
−1/2
T R3/2 = σ

3
4πT , (5.20)

in order to extract all the dimensionful factors from the integral. In terms of quantities of
the dual field theory, we find14

SDBI = NT 3λ3

486M3
KK

S̃ , (5.21)

where
S̃ =

∫ ∫
σ2y5/2

√
1 + (y3 − 1)(∂yx)2 + (∂σx)2dσdy . (5.22)

Once extracted the factor written in (5.21), the renormalized on-shell action is

∆S̃ = 2
∫ ∞

0
dσ σ2

(∫ ∞
yJ (σ)

y5/2
[√

1+(y3−1)(∂yx)2+(∂σx)2− 1
]
dy − 2

7(yJ(σ)7/2−1)
)
,

(5.23)
where we have subtracted the straight brane-antibrane pair. We can derive the Euler-
Lagrange equation for x(y, σ) from the Lagrangian density,

∂y

 σ2y5/2(y3 − 1)(∂yx)√
1 + (y3 − 1)(∂yx)2 + (∂σx)2

+ ∂σ

 σ2y5/2(∂σx)√
1 + (y3 − 1)(∂yx)2 + (∂σx)2

 = 0 . (5.24)

Numerically solving (5.24) is a daunting task, due to the non-linear nature of the partial
differential equation. A much simpler possibility is to look for approximate solutions by
using a reasonable variational ansatz. Taking into account the discussion of the previous
section, the natural choice is to promote the yJ and B constants in (5.16) to functions of
σ, namely

x = L̃

2 tanh
(√

y − yJ(σ)√
B(σ)

)
. (5.25)

14The value of R3 given in (3.1), the value of uT is given in (5.1) and the integral over t is T−1 as implied
from (5.1). The volumes of the two- and four-spheres are VS2 = 4π and VS4 = 8π2/3. The tension of the
D8-brane is T8 = (2π)−8l−9

s . Finally, we inserted the value of lsgs given in (3.4).
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We will use a further simplification, assuming that the bounce is a straight line in the yJ , B
plane. This simplifies the computations because there is only one function of one variable
that is unknown. Take

yJ(σ) = yJ,tv − (yJ,tv − 1)α(σ) ,
B(σ) = Btv(1− α(σ)) , (5.26)

where the tv labels mean “true vacuum”. This true vacuum corresponds to α(σ) = 0
and the false vacuum to α(σ) = 1. Therefore, we insert (5.25), (5.26) into (5.23), derive
the Euler-Lagrange equation for α(σ) and, in analogy with [3], look for the solution that
satisfies α′(0) = 0 and limσ→∞ α(σ) = 1. The idea is simple but the procedure is somewhat
tricky, so we explain it here in some detail. First, we change variables in order to have
fixed limits in the integrals,

z = y − yJ(σ)
B(σ) . (5.27)

The Lagrangian can be expressed as

L =
∫ ∞

0
F dz +G , (5.28)

where

F = 2σ2B(σ)(B(σ)z + yJ(σ))5/2
(√

1 + (y3 − 1)(∂yx)2 + (∂σx)2 − 1
)
,

G = −4
7σ

2
(
yJ(σ)7/2 − 1

)
. (5.29)

Notice that, once L̃ is fixed, yJ,tv and Btv can be computed as detailed in section 5.1.
Then F is a function of z, σ, α(σ), α′(σ) and G is a function of σ, α(σ). Thus, ∂α′(σ)L =∫∞

0 ∂α′(σ)F dz and we can write

d

dσ

[
∂α′(σ)L

]
≡
∫ ∞

0
H dz + α′′(σ)

∫ ∞
0

J dz , (5.30)

where H and J depend on z, σ, α(σ), α′(σ) but not on α′′(σ). Then, the Euler-Lagrange
equation for α(σ) yields

α′′(σ) =
(∫ ∞

0
J dz

)−1 [
−
∫ ∞

0
H dz +

∫ ∞
0

(
∂F

∂α(σ)

)
dz +

(
∂G

∂α(σ)

)]
. (5.31)

Having this explicit expression for α′′(σ), we set up a standard explicit fourth-order Runge-
Kutta integration method for the ordinary differential equation. The initial conditions are
provided near the center,

α(0) = α0 , α′(0) = 0 . (5.32)

The goal is to determine α0 ∈ (0, 1) in order to have limσ→∞ α(σ) = 1. It turns out that
if α0 is chosen to be too small, α(σ) becomes larger than 1 at some value of σ and it
subsequently acquires an imaginary part. On the other hand, if α0 is chosen to be too
large, α(σ) eventually starts decreasing without reaching 1. Taking these observations into
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account, we set up a shooting method to determine the sought value of α0. Once the
profiles are known, we can compute the value of ∆S̃ by inserting them in (5.23). Figure 9
presents some numerical results for the variational function α(σ), its value at the center of
the bubble α0, the on-shell action of the bounce solution and the radius of the bubble. In
particular, the dimensionless radius R̃ is defined as the value of σ for which α is halfway
between its value at the center and its value in the false vacuum, namely α(R̃) = (α0+1)/2.
For illustrative purposes, we depict in figure 10 two examples of the brane profiles x(y, σ)
for bounce solutions.

It is useful to have some analytic approximation for the functions ∆S̃(L̃), R̃(L̃). We
propose the following expressions, that match quite precisely the numerical results:15

∆S̃ ≈


0.555L̃5 (L̃ ≤ 0.31)

4.61× 10−6 exp(18.8L̃) (0.31 ≤ L̃ ≤ 0.57)

0.000467
(0.6442−L̃)2 + 0.00937

0.6442−L̃ (L̃ ≥ 0.57)

(5.33)

R̃ ≈


1.081L̃ (L̃ ≤ 0.2)

0.0777 exp(5.11L̃) (0.2 ≤ L̃ ≤ 0.55)

0.0872
(0.6442−L̃) + 0.369 (L̃ ≥ 0.55)

(5.34)

5.2.2 O(4)-symmetric bubbles

When the radius of the bubble is much smaller than the inverse of the temperature, one
expects to have bubbles with O(4)-symmetry in the Euclidean spacetime [6, 7]. However,
the blackening factor fT (u) in (3.1) breaks the O(4)-symmetry and an ansatz of the form
x4(u, ρ) where ρ is a radial coordinate in the t−xi four-dimensional space is not consistent
with the equations of motion. Still, it is natural to expect bubble solutions with non-trivial
behavior along the time coordinate, for instance with an ansatz of the type x4(u, ρ, t).
Solving the problem with this ansatz, either integrating the exact equation or with a
reliable approximation seems extremely difficult and is beyond the scope of the present
work. Nevertheless, we can get an order of magnitude estimate by considering a “naive
O(4) configuration” in which we just neglect the O(4) breaking due to the blackening
factor.16 As discussed in section 4.3, we do this by simply considering the measure d4x

to be given by dΩ3dρρ
3, where dΩ3 is the measure of the three-sphere. By changing

accordingly (5.23) and (5.29), we can follow the steps explained in the previous section and

15For values of L̃ near 0.6442, the numerics becomes very delicate and we have not been able to obtain
reliable results for L̃ > 0.63. However, we assume in (5.33), (5.34) that ∆S̃ diverges as (0.6442 − L̃)2 and
R̃ as (0.6442 − L̃), as it should be expected from a thin wall approximation similar to [3], and find good
agreement.

16Notice that the results will produce an underestimation of the action since the presence of the blackening
factor tends to increase it.

– 27 –



J
H
E
P
1
2
(
2
0
2
0
)
2
0
0

0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.4

0.6

0.8

1.0

α0

L̃

Alessio Caddeo The Holographic QCD Axion 1 / 1

0 1 2 3 4

0.2

0.4

0.6

0.8

1.0

α(σ)

σ

L̃ = 0.4

L̃ = 0.55

L̃ = 0.6

L̃ = 0.62

Alessio Caddeo The Holographic QCD Axion 1 / 1

0.1 0.2 0.3 0.4 0.5 0.6

-15

-10

-5

log ∆S̃

L̃

Alessio Caddeo The Holographic QCD Axion 1 / 1

0.1 0.2 0.3 0.4 0.5 0.6

-3

-2

-1

1

2

log R̃

L̃

Alessio Caddeo The Holographic QCD Axion 1 / 1

Figure 9. On the top left, we depict the values of α0 in the variational approximation to the bounce
solution as a function of L̃. Notice that α0 → 0 for L̃ → 0.6442 and the interior of the bubble is
very close to the true vacuum. On the other hand α0 → 1 as L̃ → 0. On the top right, we depict
the numerically found profiles for four values of L̃. On the bottom, we depict the on-shell action
and the radius of the O(3)-bubble as a function of L̃ in a semilogarithmic scale. The dots represent
numerically computed data and the dashed lines correspond to the analytic approximation given in
eqs. (5.33) and (5.34). Different colors correspond to different expressions of the piecewise functions.

find the following approximate expression for the on-shell action:

∆S̃ ≈


0.638L̃6 (L̃ ≤ 0.22)

3.91× 10−7 exp(23.8L̃) (0.22 ≤ L̃ ≤ 0.54)

0.0000432
(0.6442−L̃)3 + 0.00118

(0.6442−L̃)2 (L̃ ≥ 0.54)

(5.35)

We can also study the radius of the bubble. Defining R̃ as above, we find the approx-
imate expressions

R̃ ≈


1.34L̃ (L̃ ≤ 0.21)

0.101 exp(4.89L̃) (0.21 ≤ L̃ ≤ 0.49)

0.151
(0.6442−L̃) + 0.131 (L̃ ≥ 0.49)

(5.36)

Figure 11 depicts some numerical results compared to their fits given in eqs. (5.35), (5.36).
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Figure 10. Plots for the bounce profile x(y, σ) in two cases: L̃ = 0.62 (left) and L̃ = 0.4 (right).
The configurations smoothly interpolate between U-shaped profiles at σ = 0 and disconnected
branes at σ → ∞. The solution on the left can be regarded as a thin wall bubble: a U-shaped
configuration very close to the true vacuum exists for a finite range of σ which then rapidly evolves
into the false vacuum. On the other hand, the embedding on the right can be considered as a thich
wall configuration.
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Figure 11. The on-shell action and the radius of the O(4)-bubble as a function of L̃ in a semilog-
arithmic scale. The dots represent numerically computed data and the dashed lines correspond to
the analytic approximation given in eqs. (5.35) and (5.36). Different colors correspond to different
expressions of the piecewise functions.

It is important to recall that the O(4) configuration could start playing a role only if
the bubble radius is smaller than the radius of the time circle. It is easy to verify that this
condition can be satisfied only for L̃ . 0.386.

5.3 Bubble nucleation rate

In principle, the rates for the bubble nucleations are provided by formula (4.40)

Γ = Max
[
T 4
(
S3,B
2πT

)3/2
e−S3,B/T ,

(
S4,B
2πρ2

w

)2
e−S4,B

]

= M4
KKMax

[(
T̃ f̄

2/3
χ

0.35λ1/3N1/3

)4 (
S3,B
2πT

)3/2
e−S3,B/T ,

(
S4,B
2πρ̄2

w

)2
e−S4,B

]
, (5.37)
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Figure 12. Plots of Γ̄3 ≡ Γ3/M
4
KK for different values of parameters. On the left, the rate

magnitude is quenched as N is increased (solid blue, dashed and dotted lines correspond to N =
10, 20, 40 with λ = 10, f̄χ = 10) and as λ is increased (solid blue, orange, green lines correspond
to λ = 10, 20, 40 with N = 10, f̄χ = 10). On the right, the magnitude increases as f̄χ is increased
(blue, orange and green lines correspond to f̄χ = 2, 4, 8 with λ = 10, N = 10).

where we have introduced the dimensionless quantities

T̃ ≡ TL

0.1538 ' 0.35(λN)1/3 T

M
1/3
KKf

2/3
χ

, (5.38a)

f̄χ ≡
fχ
MKK

, ρ̄w ≡ ρwMKK ' 0.35(λN)1/3 3R̃
4πT̃ f̄2/3

χ

, (5.38b)

so that the critical temperature for the chiral symmetry breaking transition corresponds
to T̃ = 1 and the chiral symmetry breaking scale is given, as a function of the asymptotic
brane separation L, by [28, 38]17

f2
χ ' 0.1534 λN32π3

1
MKKL3 . (5.39)

As we have outlined before, the symmetries of the black hole background do not allow
for (simple) O(4) solutions, so that the analysis of the previous subsection can, at best,
be considered as providing a rough estimate of some limiting value of the corresponding
bounce action. Hence, here, we will just focus on the O(3) bounce.

The rate for the O(3) bubble depends on three distinct parameters: λ,N and f̄χ. Its
behavior when these parameters are separately varied is shown in figure 12. Increasing λ
both quenches the rate and shifts the peak to smaller temperatures while increasing N has
essentially only a quenching effect. Instead, the rate magnitude is enhanced if the chiral
symmetry breaking scale f̄χ is increased, while the peak is shifted to smaller temperatures.

6 Conclusions

In this paper, we have studied the dynamics of first-order phase transitions in strongly
coupled planar gauge theories. Using the holographic correspondence as a tool we have

17Note that in this paper a different convention on the coupling w.r.t. [38] is used: λhere = 2λthere.
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been able to compute the decay rate of the false vacuum which proceeds through the
nucleation of bubbles in the metastable phase. As discussed in the seminal papers [3, 5–7],
the decay probability per unit time and unit volume in the semiclassical limit is given by
Γ = Ae−SB , where A is a certain functional determinant which is often approximated using
dimensional analysis, and SB is the on-shell action for the bounce.

In holographic models like those examined in this paper, the first-order phase transition
can be related, in the dual picture, either to a change of the gravity background (a Hawking-
Page transition for instance) or to a change of the embedding of some probe brane on a
fixed background.

The first case is precisely what arises when the dual quantum gauge theory experi-
ences a first-order confinement/deconfinement transition. Describing the dynamics of the
transition in the gravity side requires developing an off-shell formalism which may allow
to follow the jump from a black hole solution describing the deconfined phase to a “soli-
tonic” solution describing the confined one. Deriving the complete solution for the mixed
fluctuations of the metric and the other background fields would be a daunting task, thus
we have adopted a simplified practical approach, introduced in [8] for Randall-Sundrum
models with an AdS5 dual description.

The approximation consists in modeling bubble dynamics by means of an effective
action for a single scalar field. This field was actually a parameter in the original ho-
mogeneous gravity solutions related to the two phases: it was the horizon radius in the
black hole case and the minimum of the holographic radial coordinate in the solitonic back-
ground. In the effective off-shell Euclidean description, these parameters are combined into
a space-dependent field Φ(ρ) where ρ2 = t2 +xixi or ρ2 = xixi (with xi being the 3d space
coordinates) depending on the symmetry of the bubbles. At low temperatures, where the
vacuum decay is mostly driven by quantum tunneling, the bubble is expected to have an
O(4) symmetry. At large temperatures, where thermal fluctuation dominates, the bubble
should have instead an O(3) symmetry.

We have started this paper by revisiting the compact Randall-Sundrum model exam-
ined in [8]. In this seminal paper, and in the following literature, a missing piece in the
analysis of the bounce action in the deconfined phase (dual to an AdS5 black hole) was
the derivative term for the field Th(ρ) related to the horizon radius. Using holographic
renormalization we have been able to compute this term.

Holographic renormalization has also been the relevant tool we have adopted in study-
ing the dynamics of the confinement/deconfinement transition in the top-down Witten-
Sakai-Sugimoto (WSS) model. To the best of our knowledge, this is the first time the
phase transition dynamics is studied in a full-fledged top-down holographic model. We
have been able to extract the effective bounce action and to compute the bubble nucle-
ation rate as a function of the model parameters. Analytic expressions have been also
provided in the thick and thin wall approximations.

The second kind of transition we have examined is the very special chiral symmetry
breaking/restoration one which, provided certain parameters of the WSS model are oppor-
tunely tuned, occurs in the deconfined phase, with a critical temperature which is larger
than the one for deconfinement. In this case, the two phases are related to two different
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solutions for the embedding of D8-brane probes in the black hole background describing
the deconfined phase. The off-shell description of the transition consists in promoting the
embedding function (which is originally dependent only on the holographic radial direc-
tion) to a ρ-dependent field. What is relevant in this case is that in principle the DBI
action for the branes is enough to deduce the on-shell action for this field. However, the
non-linearities inherent to the DBI action render the complete analysis very challenging.
We have been able to tackle the problem by using a powerful variational approach which
could hopefully be useful for treating more general (static and dynamical) problems related
to flavor-brane dynamics in WSS and similar models. Again this has allowed us to compute
the bubble interpolating between the two configurations and the nucleation rate.

It would be interesting to apply the techniques employed in this paper to study other
holographic first-order transitions, for example involving finite density states.

Our analysis has been in part motivated by the exciting perspective, offered by near-
future experiments, to detect signals of possible cosmological first-order phase transitions
which could have occurred in the early Universe, as predicted in many beyond the Stan-
dard Model scenarios. Bubble nucleation, expansion and collision, and further collective
dynamics of the underlying plasma are expected to be the source for a stochastic gravita-
tional wave (GW) background which, depending on the amount of energy released after the
transition, could have a power spectrum entering the sensitivity regime of future ground-
based and space-based experiments. Predicting the power spectrum from first principles
requires precisely to compute the relevant parameters describing the dynamics of the phase
transition. Our analysis provides the tools to compute an approximation of the complete
set of these parameters for the case of the WSS model. If the latter is used to describe the
strongly coupled dynamics of some hidden sector, then our analysis would allow to provide
falsifiable predictions on the GW signals. The advantage of using a top-down holographic
model would be that the various approximations which are made for deducing the relevant
parameters would be perfectly under control. We will devote a forthcoming paper [33] to
this very fascinating subject.
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A Thick and thin wall approximations for the deconfinement transition

In this appendix, we provide some analytical estimates of the bounce action, of the radius
of the bubbles and of the vacuum decay rate related to the confinement/deconfinement
phase transition. We adopt the two standard thick and thin wall approximations.
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A.1 The O(4) bubble

We follow the procedure discussed in [10]. Let us assume that the nucleation temperature
is much smaller than Tc. In such a regime, if the bubble radius is smaller than 1/(2πT ), the
system has O(4) symmetry and its physics can be captured by the thick wall approximation.
We recall that, in our setup, the Euclidean action with O(4) symmetry reads

S4(Φ) = 8π4g

35

∫ ∞
0

dρ̄ ρ̄3
[
aΦ′2 + Θ(Φ)Vc(Φ) + Θ(−Φ)Vd(Φ)

]
, (A.1)

where
a = 5− π

2
√

3
(A.2)

and

Vc(Φ) = 16π2

9

(
5Φ3 − 3

π
Φ5/2

)
,

Vd(Φ) = −16π2

9

(
5Φ3 + 3

π
T̄ (−Φ)5/2

)
. (A.3)

The total potential has a false vacuum at Φ = Φd = −T̄ 2/(4π2) where Vd = −T̄ 6/(36π4)
and a true vacuum at Φ = Φc = 1/(4π2) where Vc = −1/(36π4).

The O(4) bounce is a solution ΦB of the equations of motion following from S4 with
boundary conditions Φ′B(ρ̄ = 0) = 0 and ΦB(ρ̄ → ∞) = Φd. Let us indicate by Φ0 the
value of the solution at the center of the bubble (i.e. at ρ̄ = 0).

Let us consider a bubble of true vacuum and (dimensionless) radius ρ̄w nucleated in
the false vacuum. What we need is the on-shell value of the action S4 on the bounce
solution, or, more precisely, the difference between the latter and the action computed on
the false vacuum,

S4,B = S4(ΦB)− 8π4g

35

∫ ∞
0

dρ̄ ρ̄3Vd(Φd) . (A.4)

More explicitly, it reads

S4,B = 8π4g

35

[∫ ∞
0

dρ̄ ρ̄3[aΦ′2B − Vd(Φd)] +
∫ ρ̄w

0
dρ̄ ρ̄3Vc(ΦB) +

∫ ∞
ρ̄w

dρ̄ ρ̄3Vd(ΦB)
]
. (A.5)

If ρ̄w →∞, we can approximate the above expression as

S4,B ≈
8π4g

35

∫ ∞
0

dρ̄ ρ̄3
[
aΦ′2B + Vc(ΦB)− Vd(Φd)

]
. (A.6)

Just as in [10], let us roughly estimate this action as

S4,B ≈
8π4g

35

[
ρ̄3
wa

(
δΦB

δρ̄w

)2
δρ̄w + 1

4 (Vc(Φ0)− Vd(Φd)) ρ̄4
w

]
, (A.7)

where δΦB = ΦB(0)− ΦB(∞) = Φ0 − Φd. In the thick wall approximation

δρ̄w ≈ ρ̄w , (A.8)
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so that, extremizing (A.7) w.r.t. ρ̄w we find the critical bubble radius squared

ρ̄2
w ≈ −

2a(δΦB)2

[Vc(Φ0)− Vd(Φd)]
. (A.9)

Now, numerical analysis shows that Φ0 ≈ c0T̄
2 at small T̄ so that

δΦB = Φ0 − Φd ≈
(
c0 + 1

4π2

)
T̄ 2 (A.10)

and
Vc(Φ0)− Vd(Φd) = 16π2

9

(
5Φ3

0 −
3
π

Φ5/2
0

)
+ T̄ 6

36π4 ≈ −
16π
3 c

5/2
0 T̄ 5 . (A.11)

Hence, from (A.9), we get

ρ̄2
w ≈

3a
16πc5/2

0

(
c0 + 1

4π2

)2 1
T̄
≡ b2

T̄
. (A.12)

Thus, the bubble radius goes like ρ̄w ∼ T̄−1/2 when T̄ � 1: this relation qualitatively
reproduces what we have obtained numerically in the small T̄ regime.

Recalling that ρ̄ ≡MKKρ and MKKT̄ = 2πT , the above results imply that the dimen-
sionful bubble radius in the small temperature regime scales like

ρw ≈
b√

2π T MKK
. (A.13)

Now, an important question regarding our holographic model is whether in the limit of
small enough bubble radius a O(5) symmetric bubble should be used instead of the O(4)
symmetric one. This should be unavoidable if the bubble radius turns out to be smaller
than 1/(2πT ) (the length of the radius of the time circle) and, at the same time, smaller
than 1/MKK (the length of the radius of the x4 circle). Let us study whether these two
conditions are mutually compatible in the regime where the approximations used since now
hold. The first condition implies

ρw �
1

2πT hence T � MKK
2πb2 , (A.14)

while the second one implies

ρw �
1

MKK
hence T � b2

MKK
2π . (A.15)

At least parametrically, the two above conditions are not mutually compatible. Hence
we argue that in the regime of parameters where the bubble is O(4) symmetric, an O(5)
configuration cannot be consistent. The very same considerations can be done for the
directions along the four-sphere of the background.

Let us now try to see whether, in the thick wall approximation, it is possible to deduce
some qualitative information about the nucleation rate. For this aim, it is enough to notice
that the action (A.7) at the critical radius (A.9) reads

S4,B ≈ −
2π4g

35 ρ̄4
w[Vc(Φ0)− Vd(Φd)] ≈ c4 g T̄

3 . (A.16)
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From the fit of numerical data and the previous relations we get

c4 ≈ 0.39 , b ≈ 6.6 . (A.17)

The nucleation rate is given by

Γ4 = M4
KK

c2
4

(2π)2 b4
g2T̄ 8e−c4 g T̄

3
. (A.18)

A.2 The O(3) bubble

As explained in section 4.3, the radius of the O(4) bubble is much smaller than the dimen-
sionless parameter 1/T̄ only for very small T̄ , i.e. T̄ . 0.06. Hence the use of the O(4)
symmetric bounce for larger values of T̄ is questionable and it should be replaced by the
O(3) symmetric one.

The O(3) bounce arises as a solution of the action S = S3(T )/T where S3 is the
Euclidean action with O(3) symmetry,

S3(Φ)
T

= 32π4g

35T̄

∫ ∞
0

dρ̄ρ̄2
[
aΦ′2 + Θ(Φ)Vc(Φ) + Θ(−Φ)Vd(Φ)

]
. (A.19)

As already mentioned, we need the difference between the on-shell action on the bounce
solution and the action evaluated on the false vacuum configuration,

S3,B
T

= S3(ΦB)
T

− 32π4g

35T̄

∫ ∞
0

dρ̄ ρ̄2Vd(Φd) . (A.20)

Explicitly,

S3,B
T

= 32π4g

35T̄

[∫ ∞
0

dρ̄ ρ̄2[aΦ′2B − Vd(Φd)] +
∫ ρ̄w

0
dρ̄ ρ̄2Vc(ΦB) +

∫ ∞
ρ̄w

dρ̄ ρ̄2Vd(ΦB)
]
.

(A.21)

A.2.1 Small temperatures
It is worth to consider the case in which for some range of values of T̄ � 1 the O(3) config-
uration is the relevant one. In this case, we could try to use the thick wall approximation.

In this approximation, following the same steps described in the previous subsection
and using the fact that Φ0 ∼ T̄ 2 for small T̄ , we find the dimensionless bubble radius

ρ̄2
w ≈ −

a(δΦB)2

[Vc(Φ0)− Vd(Φd)]
≈ b̃2

T̄
, (A.22)

for some constant b̃. The action at the critical radius above reads
S3,B
T
≈ −64π4g

36T̄
[Vc(Φ0)− Vd(Φd)]ρ̄3

w ≈ c3 g T̄
5/2 . (A.23)

The S4 action is parametrically smaller than S3/T . From the fit of numerical data and the
previous relations we get

c3 ≈ 0.32 , b̃ ≈ 9.3 . (A.24)

When the O(3) configuration dominates, the nucleation rate is given by

Γ3 = M4
KK

c
3/2
3

(2π)11/2 g
3/2T̄ 31/4e−c3 g T̄

5/2
. (A.25)
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A.2.2 Large temperatures

At large enough temperatures, the O(3) configuration is definitely the dominant one. We
can try to get some intuition about its physical properties using the thin wall approxima-
tion, which is expected to be valid around Tc, i.e. in the T̄ → 1 limit [3].

In the thin wall approximation, the bounce action can be estimated as

S3,B
T
≈ 32π4g

35T̄

[
ρ̄3
w

3 ∆V + ρ̄2
wS1

]
, (A.26)

where S1 ≈ S1(Tc) is the bubble surface tension

S1 = 2
√
a

∫ Φc

Φd
dΦ
√

16π2

9

(
5|Φ|3 − 3

π
|Φ|5/2

)
+ 1

36π4 ≈ 0.0023 , (A.27)

and
∆V = Vc(Φc)− Vd(Φd) = − 1

36π4 (1− T̄ 6) . (A.28)

Extremizing the action above, we get the critical bubble radius

ρ̄w ≈ −
2S1
∆V ≈

16
1− T̄ 6 . (A.29)

This is increasing for T̄ → 1, in qualitative agreement with our numerical results.
In the T̄ → 1 limit, the action (A.26) at the critical radius (A.29) goes like

S3,B
T
≈ c̃3g

T̄ (1− T̄ 6)2 , c̃3 ≈ 2.6 , (A.30)

so that in the same limit the nucleation rate (A.25) goes as

Γ3 ≈
M4

KK
(2π)4

c̃
3/2
3

(2π)3/2
g3/2

T̄ 3/2(1− T̄ 6)3 e
− c̃3g
T̄ (1−T̄6)2 . (A.31)
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