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1 Introduction

It is a well-known fact that higher spin algebras obtained from the Hamiltonian reduction of
Kac-Moody current algebras can be realized in terms of flat connections in Drinfeld-Sokolov
form [2]. This fits the general scheme of higher spin dualities involving three-dimensional
Chern-Simons theory and two-dimensional CFT’s with W-symmetry, where some recent
and notable examples are the relation between sl(N) Chern-Simons theory and CFT’s with
WN symmetry [3, 4], and, more generally, the duality between hs[λ] Chern-Simons theory
and CFT’s with W∞[λ] symmetry [5, 6]. See [7] for a review on this subject.
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One appeal of these higher spin dualities is that they serve as “simple” examples
of holography: the abundance of symmetry opens an opportunity to build solvable and
tractable instances of the AdS/CFT correspondence. Higher spin dualities also allow us
to introduce non-linear and non-geometrical features classically, via the Chern-Simons for-
mulation of the gravitational side of the correspondence. These are features we expect to
arise in string theory dualities, but are generically difficult to quantify.

Our focus in this note is on supersymmetric examples of higher spin holography, with
the specific goal of building a detailed dictionary between flat connections in Chern-Simons
theory and the corresponding currents and sources in the dual supersymmetric W-algebra.
As a complement to [1], we study what it is perhaps the simplest three-dimensional higher
spin supergravity, namely, Chern-Simons theory based on two copies of the sl(3|2) gauge
algebra.1 As we prove in detail below, this theory is holographically dual to a CFT with
N = 2 super-W3 symmetry, in the semiclassical (large c) limit. It is important to men-
tion that the relation between sl(3|2) connections and CFT’s with W(3|2) symmetry was
uncovered long ago in the context of Hamiltonian reduction of current algebras [9]. More
recent studies from an AdS/CFT perspective can be found in [10–14]. However, the explicit
form of the holographic dictionary between the basic Chern-Simons and CFT variables for
this case has not been fully laid out so far. The original reference [9] included a map for
the currents (although in a rather cumbersome basis), but it did not provide the corre-
sponding map between transformation parameters, implying in practice that the relation
between bulk and boundary sources is missing. By analyzing the CFT Ward identities,
the authors in [14] produced a dictionary for both currents and sources, albeit only in
the bosonic sector. In what follows we fill these gaps. We perform a complete analysis
of the asymptotic symmetries of the sl(3|2) Chern-Simons theory in a basis that makes
the supersymmetries transparent and allows to make contact with the modern literature.
In addition to the dictionary for the currents, we establish the holographic relation for
the infinitesimal transformation parameters as well as for the sources, which is a key in-
gredient in the thermodynamic analysis of black hole solutions [1]. This enables us to
reproduce the holographic Ward identities in full detail. Crucially, our treatment includes
the fermionic sector. After adjusting for conventions, our results agree with [14] for the
bosonic truncation.

Carrying out this rather technical analysis for a specific instance of a higher spin duality
might seem superfluous. Nevertheless, there are two aspects that are worth recording and
highlighting. The first is the distinction between Chern-Simons connections in Euclidean
and Lorentzian signatures. Having constructed the complete dictionary in a basis that
respects the N = 2 supermultiplet structure, we can impose suitable hermiticity conditions
on the CFT currents in order to identify the real form of the bulk sl(3|2) gauge superalgebra
that properly codifies this structure. While many entries of the holographic dictionary can
be worked out in the Euclidean formalism, there are several features of the correspondence
that are intrinsically Lorentzian. For example, in [1] it was crucial to single out the real
form su(2, 1|1, 1) to successfully construct Killing spinors in the bulk, and therefore identify

1See [8] for an example with hypersymmetry.
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BPS configurations with real values of the U(1) R-charge. It also allowed us to identify the
branches of solutions that have a physically meaningful thermodynamical interpretation in
Lorentzian signature. More broadly, in the context of black hole physics several Lorentzian
processes do not have a clear Euclidean counterpart. This has been manifest in the study
of eternal black holes and multi-boundary solutions in Chern-Simons theory [15–17]. We
therefore consider important to clearly identify the Lorentzian gauge algebra when studying
these setups.

The second aspect regards the original literature on the W(3|2) algebra. There are
some minor typos in the OPE’s and composite operators recorded originally in [18] which
we correct in this note. We have verified that our OPE’s are indeed correct via three
independent methods, namely, by checking explicitly that all the Jacobi identities are
satisfied, by complying with the spectral flow automorphism of the N = 2 super-W3
algebra, and by correctly matching with the semiclassical OPE’s obtained in Chern-Simons
theory. Although the results displayed here are specific for W(3|2), we present general
explanations of our methods that can be easily implemented for other super W-algebras.

The paper is organized as follows. In section 2 we provide a concise summary of
the N = 2 super-W3 algebra and its main properties. After a brief review of higher
spin supergravity on AdS3, section 3 is devoted to establishing the explicit holographic
dictionary between the sl(3|2) Chern-Simons theory and the dual CFT with N = 2 super-
W3 symmetry, including currents, transformation parameters, sources and Ward identities,
as well as the choice of real form of sl(3|2) in Lorentzian signature. We end in section 4
with some brief conclusions. In appendix A we display the composite operators appearing
in the W(3|2) algebra and their spectral flow transformations, and appendix B collects our
conventions on the superalgebra sl(3|2) and its real form su(2, 1|1, 1) .

2 The N = 2 super-W3 algebra

We begin by reviewing some basic aspects of the N = 2 super-W3 algebra, often refered to
as W(3|2). Far from being a comprehensive survey, this section is intended as a summary
of the essential features that are pertinent for our purposes. In particular, we review the
N = 2 multiplet structure, the OPE’s and the spectral flow invariance of theW(3|2) algebra.
We also comment on the semiclassical limit needed to make contact with the holographic
description and on the hermiticity properties of the generators on the cylinder. Important
issues such as the commutator algebra and unitarity and BPS bounds are purposefully
omitted (see [1, 18–20]). The material below closely follows references [18, 21].

2.1 General structure and OPE’s

Let us briefly recall the structure of the N = 2 super-Virasoro algebra. Besides the stress
tensor T , this algebra contains a weight-1 U(1) current J and two weight-3/2 fermionic
currents G+ and G− with U(1) charges +1 and −1, respectively. In standard conventions,

– 3 –
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their OPE’s are given by

T (z)T (w) ∼ c/2
(z − w)4 + 2T (w)

(z − w)2 + ∂T (w)
z − w

, (2.1)

T (z)J(w) ∼ J(w)
(z − w)2 + ∂J(w)

z − w
, (2.2)

T (z)G±(w) ∼ 3
2
G±(w)

(z − w)2 + ∂G±(w)
z − w

, (2.3)

J(z)J(w) ∼ c/3
(z − w)2 , (2.4)

J(z)G±(w) ∼ ±G
±(w)
z − w

, (2.5)

G+(z)G−(w) ∼ 2c/3
(z − w)3 + 2J(w)

(z − w)2 + 2T (w) + ∂J(w)
z − w

. (2.6)

For notational convenience, we denote these fields collectively by W (1) =
{
J,G+, G−, T

}
.

According to [21], the W-algebras that are relevant for the N = 2 version [22] of
minimal model holography [23] contain, in addition to the super-Virasoro generators W (1),
an infinite number of higher spin multiplets W (s), one for every integer spin s ≥ 2. Each of
these multiplets compromises four Virasoro primaries, W (s) =

{
W

(s)
0 ,W

(s)
+ ,W

(s)
− ,W

(s)
1

}
,2

whose OPE’s with the generators of the superconformal algebra are

T (z)W (s)
0 (w) ∼ sW

(s)
0 (w)

(z − w)2 + ∂W
(s)
0 (w)

z − w
, (2.7)

T (z)W (s)
1 (w) ∼ (s+ 1)W (s)

1 (w)
(z − w)2 + ∂W

(s)
1 (w)

z − w
, (2.8)

T (z)W (s)
± (w) ∼

(
s+ 1

2

)
W

(s)
± (w)

(z − w)2 +
∂W

(s)
± (w)

z − w
, (2.9)

J(z)W (s)
1 (w) ∼ sW

(s)
0 (w)

(z − w)2 , (2.10)

J(z)W (s)
± (w) ∼ ±

W
(s)
± (w)
z − w

, (2.11)

G±(z)W (s)
0 (w) ∼ ∓

W
(s)
± (w)
z − w

, (2.12)

G±(z)W (s)
1 (w) ∼

(
s+ 1

2

)
W

(s)
± (w)

(z − w)2 + 1
2
∂W

(s)
± (w)

z − w
, (2.13)

G±(z)W (s)
∓ (w) ∼ ±2sW (s)

0 (w)
(z − w)2 + 2W (s)

1 (w)± ∂W (s)
0 (w)

z − w
. (2.14)

In particular, the conformal dimensions ∆ and U(1) charges q of the different fields in the
spin-s multiplet W (s) are given in table 1.

2As usual, starting from the superconformal primaryW (s)
0 , the other fields in the multiplet are generated

by acting with G± as W (s)
± = G±− 1

2
W

(s)
0 and W (s)

1 = 1
4

(
G+
− 1

2
G−− 1

2
−G−− 1

2
G+
− 1

2

)
W

(s)
0 .
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∆ q

W
(s)
0 s 0

W
(s)
± s+ 1

2 ±1

W
(s)
1 s+ 1 0

Table 1. Conformal dimensions and U(1) charges of Virasoro primaries in an N = 2 spin-s
multiplet.

As explained in [21, 24], the Jacobi identities determine the full structure of the N = 2
super-W algebras up to two free parameters: the central charge c and the self-coupling
c22,2 of the spin-2 primary W (2)

0 . Indeed, the singular part of the OPE of fields in the W (2)

multiplet has the schematic form

W (2)W (2) ∼ n2W
(1) + c22,2W

(2) + c22,3W
(3) . (2.15)

Once a normalization for the currents is chosen, the parameters n2 and c22,3 are fixed in
terms of c and c22,2, which are physically meaningful. The same is true for the structure
constants appearing in the OPE’s of all the other higher spin multiplets.

Quite interestingly, it possible to consistently decouple the multiplets W (s) with s ≥ 3
and truncate the full higher spin algebra to one containing just the super-Virasoro currents
W (1) and the spin-2 multiplet W (2). The resulting algebra is precisely the W(3|2) algebra
we want to study, and from now on we focus exclusively on this case. As discussed in [21],
the truncation happens when the parameter c22,3 introduced above is zero, implying that
the self-coupling c22,2 is no longer independent but a particular function of the central
charge. Fixing n2 = c/2 to comply with the standard normalization for the spin-2 current
W

(2)
0 , the decoupling occurs for

c22,2
2 = ± (c+ 3)(5c− 12)√

2(c+ 6)(c− 1)(2c− 3)(15− c)
≡ κ . (2.16)

Here we have introduced the constant κ so as to make contact with the notation in Ro-
mans’ paper [18]. As pointed out there, the sign ambiguity corresponds to the freedom of
simultaneously flipping the sign of all fields in the W (2) multiplet. Notice that κ is real
only for −6 < c < 1 or 3

2 < c < 15. In particular, it is purely imaginary as c→∞, which
makes the representations of the algebra non-unitarity [18].

In order to spell out the explicit form of the N = 2 super-W3 algebra we adopt the
notation W (2) =

{
V,U+, U−,W

}
for the currents in the spin-2 multiplet. According to

table 1, V has conformal dimension 2 and U(1) charge zero, U± have weight 5/2 and U(1)
charge ±1, and W has conformal dimension 3 and U(1) charge zero. The OPE’s among
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these fields are given in [18] and read3

V (z)V (w) ∼ c/2
(z − w)4 +

( 2
(z − w)2 + 1

z − w
∂

)
A [2](w) , (2.17)

W (z)W (w) ∼ 5c/2
(z − w)6 +

( 2
(z − w)2 + 1

z − w
∂

)
B[4](w)

+
( 60

(z − w)4 + 30
(z − w)3∂ + 9

(z − w)2∂
2 + 2

z − w
∂3
)

B[2](w) , (2.18)

V (z)W (w) ∼ C [4](w)
z − w

+
( 3

(z − w)2 + 1
z − w

∂

)
C [3](w) + 36

(z − w)4 C [1](w) , (2.19)

U+(z)U−(w) ∼ 2c
(z − w)5 + D [4](w)

z − w
+
( 2

(z − w)2 + 1
z − w

∂

)
D [3](w)

+
( 20

(z − w)3 + 10
(z − w)2∂ + 3

z − w
∂2
)

D [2](w)

+
( 24

(z − w)4 + 12
(z − w)3∂ + 4

(z − w)2∂
2 + 1

z − w
∂3
)

D [1](w) , (2.20)

U±(z)U±(w) ∼
E

[4]
± (w)
z − w

, (2.21)

V (z)U±(w) ∼
Φ[7/2]
± (w)
z − w

+
( 5/2

(z − w)2 + 1
z − w

∂

)
Φ[5/2]
± (w)

+
( 12

(z − w)3 + 4
(z − w)2∂ + 1

z − w
∂2
)

Φ[3/2]
± (w) , (2.22)

U±(z)W (w) ∼
Ψ[9/2]
± (w)
z − w

+
( 7/2

(z − w)2 + 3/2
z − w

∂

)
Ψ[7/2]
± (w)

+
( 10

(z − w)3 + 4
(z − w)2∂ + 1

z − w
∂2
)

Ψ[5/2]
± (w)

+
( 60

(z − w)4 + 20
(z − w)3∂ + 5

(z − w)2∂
2 + 1

z − w
∂3
)

Ψ[3/2]
± (w) . (2.23)

The fields A [s], B[s], C [s], D [s], E
[s]
± , Φ[s]

± , Ψ[s]
± are built out of primary and quasi-primary

composite operators, the precise form of which is fixed by the Jacobi identities [18]. We
have reproduced them all in appendix A.1. For example, the operator appearing in the
V V OPE is

A [2] = c

c− 1

(
T − 3

2cJ
2
)

+ κV . (2.24)

Of course, normal ordering is assumed. The full W(3|2) OPE algebra is then given by
equations (2.1)–(2.6), (2.7)–(2.14) with s = 2, and (2.17)–(2.23).

3Notice that W (z) and U±(z) do not have the standard CFT normalization for a weight-s current,
namely,

Js(z)Js(w) ∼ c/s

(z − w)2s + · · · .

Instead, we have adopted the same normalization as in [18] for ease of comparison. In particular, the
currents U± and W are related to their canonically-normalized counterparts by U± =

√
5U±canon and

W =
√

15
2 Wcanon.
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It is important to mention that we have detected some minor typos in the G±U∓, G±W
and V U+ OPE’s in reference [18], which have been corrected in the expressions above. More
importantly, however, [18] has typos in the definitions of the composite operators C [1] and
Φ[7/2]
± entering in the VW and V U± OPE’s.4 These are highlighted in (A.5) and (A.15).

The correct expressions can be found by checking that all the Jacobi identities are in fact
satisfied, a task that we have performed exhaustively using the Mathematica package5

introduced in [25]. These corrections are also required by the spectral flow invariance of
the algebra, as we explain next.

2.2 Spectral flow

It is a well-known fact that the N = 2 superconformal algebra enjoys a continuous class
of automorphisms called spectral flow. Although usually expressed in terms of modes, we
find it more convenient for our purposes to write this symmetry directly in terms of the
currents. It is easy to check that the transformations

T ′(z) = T (z) + η

z
J(z) + cη2

6z2 , J ′(z) = J(z) + cη

3z , G±
′(z) = z±ηG±(z) , (2.25)

where η is a continuous parameter, leave the OPE’s (2.7)–(2.14) invariant. In particular,
for η ∈ Z + 1

2 this operation interpolates between the NS sector and the Ramond sector,
whereas for η ∈ Z it maps each sector onto itself.

As pointed out in [18], the extension of spectral flow to the W(3|2) case is achieved by
letting the spin-2 multiplet currents transform as

V ′(z) = V (z) , W ′(z) = W (z) + 2η
z
V (z) , U±

′(z) = z±ηU±(z) . (2.26)

Using these rules it is straightforward, albeit tedious, to compute how of the various com-
posite fields A [s], B[s], C [s], D [s], E

[s]
± , Φ[s]

± , Ψ[s]
± change. The results are written ap-

pendix A.2, together with an explanation of some of the subtleties involved in the calcu-
lation. Using the Mathematica package of [25], we have thoroughly checked that (2.25)
and (2.26) are in fact a symmetry of the full N = 2 super-W3 OPE algebra. As with
the Jacobi identities, this is true only if the composite operators C [1] and Φ[7/2]

± of [18]
are modified as shown in appendix A.1. For example, spectral flow invariance of the VW
OPE (2.19) requires that the field C [1] transform as (see appendix A.2)

C [1] ′(z) = C [1](z) + cη

36z . (2.27)

This property follows from (2.25) only if we use the correct coefficient in (A.5). A similar
approach can be taken to fix the composite operator Φ[7/2]

± appearing in the V U± OPE
(cf. (A.15)).

The spectral flow automorphism of the W(3|2) algebra will be an important guiding
principle in the upcoming discussion of the holographic dictionary. For the time being, we

4The typo in C [1] was already noted in [14].
5The author kindly shared with us an updated version of the package.
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anticipate that some of the bulk fields turn out to be spectral flow-invariant, so their CFT
duals must posses the same property. Here we construct two such quantities. Using (2.25)
and (2.26), it is easy to see that (normal ordering is implicit)

T ′ − 3
2cJ

′J ′ = T − 3
2cJJ , W ′ − 6

c
J ′V ′ = W − 6

c
JV , (2.28)

leading to two invariant quasi-primary operators of dimensions 2 and 3, respectively. As
we will see below, these particular combinations of fields appear naturally from the bulk
perspective. Coincidentally, it follows from the first relation in (2.28) that A [2]′ = A [2],
resulting in the invariance of the V V OPE. The fact that the composite A [2] does not
change under spectral flow makes this particular check fairly simple. Proving the invariance
of the remaning OPE’s, however, is more involved.

2.3 Semiclassical limit

In order make contact with the holographic description in the next section we need to
extract the semiclassical limit of the OPE relations (2.1)–(2.6), (2.7)–(2.14) and (2.17)–
(2.23), which in the bulk Chern-Simons theory translate into classical Poisson brackets.
This involves taking a “large-c” and “large-current” limit, procedure that is more subtle
than a naive expansion in 1/c. As outlined in [26], the proper way to proceed is to rescale
all the CFT currents as

Ji(z) = c J̃i(z) (2.29)
and then expand for c→∞ while keeping J̃i fixed. One finds that the leading term in the
J̃ J̃ OPE’s is of order 1/c, that is,

J̃i(z)J̃j(w) = 1
c
J̃i(z)J̃j(w)

∣∣∣
semiclass

+O
(
1/c2

)
. (2.30)

Notice that by construction the OPE’s on the right hand side do not depend explicitly on
the central charge. We can now express everything back in terms of the original currents
Ji and write

Ji(z)Jj(w)
∣∣∣
semiclass

= cJ̃i(z)J̃j(w)
∣∣∣
semiclass

. (2.31)

This defines the semiclassical limit of the algebra.
Following the above procedure, we find that the semiclassical version of the N = 2

super-W3 algebra is identical to its quantum progenitor (2.1)–(2.6), (2.7)–(2.14) and (2.17)–
(2.23) with the proviso that we use the semiclassical limit of the composites A [s], B[s],
C [s], D [s], E

[s]
± , Φ[s]

± , Ψ[s]
± , as opposed to their full quantum expressions (A.2)–(A.19). For

example, the V V OPE is still given by

V (z)V (w)
∣∣∣
semiclass

∼ c/2
(z − w)4 +

( 2
(z − w)2 + 1

z − w
∂

)
A [2](w) , (2.32)

but with
A [2] −−−−−→

semiclass
T − 3

2cJ
2 + κV , κ −−−−−→

semiclass
±5i

2 . (2.33)

The full list of semiclassical composite fields is written in the next section. As we will see,
they are in perfect agreement with the corresponding expressions obtained from the bulk
analysis.
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2.4 From the plane to the cylinder

In the final portion of this section we collect some useful relations regarding the hermiticity
and spectral flow properties of the CFT currents cast on the Euclidean cylinder versus the
complex plane. Since bulk observables are naturally defined on the AdS3 cylinder, this will
ease the comparison with the dual Chern-Simons description, especially when discussing
the continuation of the higher spin theory from Euclidean to Lorentzian signature and
identifying the correct real form of the sl(3|2) gauge algebra.

Recall that in radial quantization a real quasi-primary field of dimensions (h, h̄) satisfies
the hermiticity condition

Φplane(z, z̄)† = z̄−2hz−2h̄Φplane

(1
z̄
,

1
z

)
. (2.34)

Similarly, for a pair of charge conjugate fields this is

Φ±plane(z, z̄)† = z̄−2hz−2h̄Φ∓plane

(1
z̄
,

1
z

)
. (2.35)

One can check that in the conventions adopted here the W(3|2) algebra is consistent with
these conditions when imposed on the genetators {J, T, κV, κW} and {G±, κU±}. Impor-
tantly, as required by the OPE structure, the currents in the spin-3 multiplet must always
be accompanied by the coupling κ, which is imaginary in the semiclassical limit [1].

The labels in (2.34) and (2.35) emphasize the fact that these relations are valid on
the complex plane, where the OPE’s are defined. The transition from the plane to the
cylinder is achieved through the conformal transformation z → eζz, where ζ is a bookkeep-
ing device that allows us to accommodate different conventions relating the real cylinder
coordinates −∞ < tE < ∞ and φ ∼ φ + 2π to the complex pair z = ζ−1 (tE + iφ) and
z̄ = ζ̄−1 (tE − iφ). Then, taking into account the conformal weights of the fields, the
hermiticity conditions (2.34) and (2.35) become, respectively,

Φcyl(z, z̄)† =
(
ζ̄

ζ

)h−h̄
Φcyl

(
− ζ̄
ζ
z̄,−ζ

ζ̄
z

)
, (2.36)

and

Φ±cyl(z, z̄)† =
(
ζ̄

ζ

)h−h̄
Φ∓cyl

(
− ζ̄
ζ
z̄,−ζ

ζ̄
z

)
. (2.37)

Ultimately, the different phases can be understood by recalling that in the Euclidean formal-
ism the effect of complex conjugation on the time direction t = −itE must be compensated
in the definition of Hermitian conjugate by taking tE → −tE .6

6In terms of the mode expansions (setting h̄ = 0 for simplicity)

Φplane(z) =
∑
n

Φn
zn+h , Φcyl(z) = ζh

∑
n

Φne−nζz ,

both Hermiticity conditions imply that Φ†n = Φ−n.
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Lastly, we spell out the spectral flow transformations for the CFT currents on the cylin-
der. Upon implementing the conformal map z → eζz, one readily finds that relations (2.25)
and (2.26) become

T ′cyl(z) = Tcyl(z) + ζηJcyl(z) + ζ2cη2

6 ,

J ′cyl(z) = Jcyl(z) + ζcη

3 ,

G±
′

cyl(z) = e±ηζzG±cyl(z) ,

(2.38)

and
V ′cyl(z) = Vcyl(z) ,
W ′cyl(z) = Wcyl(z) + 2ζηVcyl(z) ,

U±
′

cyl(z) = e±ηζzU±cyl(z) .
(2.39)

Of course, the operators appearing in (2.28) remain spectral flow-invariant. This version of
the transformations is better suited for comparison with the analogous relations appearing
in the bulk Chern-Simons theory.

3 The N = 2 super-W3 holographic dictionary

Having reviewed some of the properties of the N = 2 super-W3 algebra, we now move on
to study its realization in terms of higher spin fields on AdS3. We first provide a short
summary of Chern-Simons supergravity theory, touching only on those points that are rel-
evant to the construction of the holographic dictionary. Subsequently, a detailed derivation
of the asymptotic symmetry algebra is given for the sl(3|2) case, followed by a discussion
of sources and the corresponding holographic Ward identities, which are relevant for the
study of higher spin black hole solutions. The correct choice of real form in Lorentzian
signature is also discussed. Our conventions for sl(3|2) follow [1] and are reproduced in
appendix B for completeness. Since this superalgebra has dimension 24 and involves 5× 5
matrices, we have found it necessary to use a mathematical software such as Maple and
Mathematica to perform most of the calculations.

3.1 Higher spin supergravity on AdS3

In its simplest version, the action for three-dimensional higher spin gravity with negative
cosmological constant is7

ICS = kcs
4π

∫
M

Tr
[
CS(A)− CS(Ā)

]
, CS (A) = A ∧ dA+ 2

3A ∧A ∧A , (3.1)

where A and Ā are two independent connections valued in a real Lie algebra g and Tr
denotes the trace in some representation of choice. As appropriate to AdS3, the topology
of the spacetime M is assumed to be that of a solid cylinder, with coordinates (ρ, t, φ) such

7We refer the reader to the extensive literature for a more detailed review; see for example [4, 7, 27, 28]
and references therein.
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that −∞ < t <∞, φ ∼ φ+ 2π and the boundary is located at ρ→∞. The corresponding
equations of motion read

dA+A ∧A = 0 , dĀ+ Ā ∧ Ā = 0 , (3.2)

implying that both connections are flat. Local symmetries include diffeomorphisims and
gauge transformations

δA = dΛ + [A,Λ] , δĀ = dΛ̄ +
[
Ā, Λ̄

]
, Λ, Λ̄ ∈ g , (3.3)

although the former can be seen as a particular case of the latter when on-shell. The grav-
itational sector of the theory is associated with an sl(2;R) subalgebra, whose generators
Li satisfy8

[Li, Lj ] = (i− j)Li+j , Li ∈ g . (3.4)

The spectrum of higher spin fields then depends on the precise way in which this subalgebra
is embedded in g; different embeddings give rise to different field contents in the bulk. A
supersymmetric extension can be obtained by considering instead a Lie superalgebra and
replacing the trace Tr by the supertrace sTr. In this case one must specify the embedding
of osp(1|2) ⊃ sl(2) in the gauge superalgebra.

Two-dimensional CFT’s are usually discussed in Euclidean signature, so is convenient
to also formulate the supergravity theory in this language. Our conventions follow [29, 30]
and are such that after the Wick rotation t = −itE , the light-cone directions x± = t ± φ
become complex coordinates x+ → z and x− → −z̄, subject to the periodicity conditions
z ∼ z+2π and z̄ ∼ z̄+2π. Depending on the type of solutions one is interested in, one can
generalize this condition and let (z, z̄) parametrize any Riemann surface. The cylinder is
the topology most fitting for the analysis of asymptotic symmetries with AdS3 boundary
conditions, whereas the torus (z ∼ z + 2π ∼ z + 2πτ) is appropriate for the discussion of
black hole solutions [1, 13, 14, 27–29, 31–39]. In this paper, will be concerned exclusively
with the former. Notice that in these conventions the map between the cylinder and the
plane is z → eiz.

As it turns out, when continuing to imaginary time, the algebra g needs to be com-
plexified and the two connections A and Ā are no longer independent. Rather, they are
related by

Ā = −A† , (3.5)

a condition that ensures the reality of the action and of all other physical observables.
Recall, however, that a complex algebra can have several real forms, so special care must
be taken in order to reconstruct the appropriate Lorentzian theory. We will come back to
this point below. From now on we focus on the unbarred sector only.

Boundary conditions are a crucial ingredient in the context of the AdS/CFT corre-
spondence. As shown in [3], using the gauge symmetries (3.3) of the Chern-Simons theory,

8The constant kcs appearing in the action is related to Newton’s constant G3 and the AdS3 radius l by
kcs = l

8G3Tr [L2
0] . The Chern-Simons level of the sl(2) gravitational theory is k = l

4G3
.
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we can eliminate the radial dependence of the connection and write

A(ρ, z, z̄) = b−1(ρ)
(
a(z, z̄) + d

)
b(ρ) , (3.6)

for some suitable choice of group element b(ρ). This allows us to work only with the
two-dimensional boundary connection a(z, z̄), whose components satisfy the equation

∂az̄ − ∂̄az + [az, az̄] = 0 . (3.7)

As further argued in [3–6], by a series of gauge transformations, any asymptotically AdS
connection can be brought to the so-called highest weight gauge, or Drinfeld-Sokolov form,

az = L1 +Q(z) , az̄ = 0 , (3.8)

where Q ∈ g is a matrix satisfying [L−1,Q] = 0. The holomorphicity of az follows from the
flatness condition (3.7). These represent source-free solutions. In particular, the connection
corresponding to pure AdS3 has Q = 1

4L−1. Other source-free configurations include
boundary gravitons (higher spin generalizations of Brown-Henneaux states [40]) and conical
defect solutions [41]. The deformation of AdS boundary conditions by the incorporation
of sources will be discussed in section 3.3.

3.2 Dictionary part I: currents and asymptotic symmetries

The asymptotic symmetries of the higher spin theory with AdS boundary conditions are
defined as those residual gauge transformations (3.3) that preserve the form of the Drinfeld-
Sokolov connection (3.8). Concretely, one looks for gauge parameters Λ such that

∂Λ + [L1 +Q,Λ] = δQ , [L−1, δQ] = 0 . (3.9)

Since Λ must be holomorphic in order for the transformation to be compatible with az̄ = 0,
we can expand it as

Λ = λ(z) + · · · , (3.10)

where [L1,λ] = 0, i.e. a lowest-weight condition. The dots represent higher-weight terms
that are fixed algebraically in terms of Q, λ and their derivatives by the condition (3.9).
Naturally, Q is allowed to change under the asymptotic symmetry transformations, this
being precisely the algebra one is interested in uncovering. According to the AdS/CFT
correspondence, the different components of Q(z) and λ(z) are then identified, respectively,
with the currents Js(z) and parameters εs(z) generating the same symmetry algebra in a
dual CFT. We will now go through some of the details of this analysis in the case of Chern-
Simons supergravity based on the superalgebra g = sl(3|2) and show that the resulting
structure is given by the semiclassical limit of the N = 2 super-W3 algebra reviewed in
section 2.
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3.2.1 Spectrum and operator content

The first step in the construction of the holographic dictionary is to derive the spectrum
of fields in the bulk and verify that it matches the operator content of the dual CFT. To
this purpose, we look at the decomposition of the adjoint representation of sl(3|2) into
irreducible representations of osp(1|2). Concretely, we focus our attention on the principal
embedding of osp(1|2) in sl(3|2), since this is the case that makes contact with the W(3|2)
algebra. The decomposition reads (see e.g. [12])

adj [sl(3|2)] = R1/2 ⊕R1 ⊕R3/2 ⊕R2 , (3.11)

where Rj denotes a spin-j representation of the osp(1|2) superalgebra. In turn, these can
be written as

Rj = Dj−1/2 ⊕Dj , (3.12)

with Dj being a spin-j representation of sl(2). Thus, the bulk theory contains fields of
spin9 (1, 2, 2, 3) and

(
3
2 ,

3
2 ,

5
2 ,

5
2

)
, which under the holographic dictionary map to the scaling

weights of the dual CFT operators. Of course, this coincides with the operator content
(J, T, V,W ) and

(
G+, G−, U+, U−

)
of the W(3|2) algebra.

Following the notation of appendix B, we label the sl(3|2) generators by (J, Li, Ai,Wm)
and (Hr, Gr, Ts, Ss). These correspond to sl(2) multiplets of spin (0, 1, 1, 2) and

(
1
2 ,

1
2 ,

3
2 ,

3
2

)
,

respectively. Then, according to the decomposition (3.11), the Drinfeld-Sokolov connec-
tion (3.8) takes the explicit form

az = L1 +QL(z)L−1 +QJ(z)J +QA(z)A−1 +QW (z)W−2

+QG(z)G− 1
2

+QH(z)H− 1
2

+QS(z)S− 3
2

+QT (z)T− 3
2
. (3.13)

Similarly, the gauge transformation parameter (3.10) becomes

Λ = λJ(z)J + λL(z)L1 + λA(z)A1 + λW (z)W2

+ λG(z)G 1
2

+ λH(z)H 1
2

+ λS(z)S 3
2

+ λT (z)T 3
2

+ (16 higher-weight terms) , (3.14)

while the asymptotic symmetry condition (3.9) reads

∂Λ + [az,Λ] = δQL(z)L−1 + δQJ(z)J + δQA(z)A−1 + δQW (z)W−2

+ δQG(z)G− 1
2

+ δQH(z)H− 1
2

+ δQS(z)S− 3
2

+ δQT (z)T− 3
2
. (3.15)

It is important to emphasize that the currents QG(z), QH(z), QS(z) and QT (z), as well
as the parameters λG(z), λH(z), λS(z) and λT (z) are Grassmann variables since they are
associated with odd elements of the superalgebra.

Expression (3.15) encodes 24 equations, 16 of which (the lower-weight components)
determine the coefficients in front of the higher-weight generators in (3.14), with the re-
maining 8 (the highest-weight components) allowing us to solve for the variations δQ(z) in

9The bulk spin is j + 1.
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terms of the fields Q(z), the parameters λ(z) and their derivatives. For brevity, we omit
the solution to the former.10 We shall write the solution to the latter in a more convenient
basis momentarily.

3.2.2 Field redefinitions

Were we to directly transform the field variations δQ(z) obtained from (3.15) into semiclas-
sical OPE’s we would find the symmetry algebra in a quite awkward form that obscures the
superconformal structure discussed in section 2. This is actually a rather generic feature
of the asymptotic symmetry computations in Chern-Simons theory, present even in much
simpler setups. One such example involves the bosonic theory based on the sl(3) algebra
with diagonally-embedded sl(2), which results in the so-called W(2)

3 algebra [4, 42]. In this
case one finds that the naive bulk stress tensor (analogous to QL(z) in (3.13)) requires a
Sugawara shift by the spin-1 current (analogous to QJ(z) in (3.13)) squared. A simulta-
neous redefinition of the naive infinitesimal U(1) parameter (analogous to λJ in (3.14)) is
necessary in order for the U(1) current to have the appropriate conformal dimension. In
the present context we expect that even more involved modifications are needed because,
in addition to a U(1) current, there is a second bulk spin-2 field. Our goal in the reminder
of this subsection is to provide the precise combinations of bulk fields Q(z) and gauge
transformation parameters λ(z) such that the asymptotic symmetries of the sl(3|2) Chern-
Simons theory with AdS3 boundary conditions take the form dictated by the semiclassical
limit of the N = 2 super-W3 algebra discussed in section 2. Not surprisingly, this turns out
to be a laborious task, but there are a few guiding principles we can use to our advantage.

The starting point to derive necessary field redefinitions is to recognize that the stress
tensor and central charge in the dual CFT are given by

T (z) = −kcs2 sTr
[
a2
z

]
, c = 12kcssTr

[
L2

0

]
. (3.16)

This bit of the holographic dictionary can be derived in multiple ways, e.g. by putting the
Chern-Simons theory on a solid torus with modular parameter τ and studying the variation
of the action under τ → τ + δτ [29, 30]. Consequently, the redefinitions of fields should be
such that the resulting combinations transform as primaries under this stress tensor. In
the present case we find

T (z) = c

6

(
QL(z) + 5

3QA(z) +QJ(z)2
)
, c = 18kcs . (3.17)

Here we see explicitly the Sugawara shift by the U(1) current QJ(z).
An additional clue comes from the observation that when bulk and CFT quantities are

properly aligned, the connection (3.13) and gauge parameter (3.14) should satisfy

− kcs sTr [azΛ] = c

12∂
2ε(z) + 2ε(z)T (z) +

∑
s

s εs(z)Js(z) , (3.18)

10The explicit form is needed to study the preserved symmetries of a given background. See [1] for an
analysis of supersymmetric black holes.
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where ε(z) parameterizes infinitesimal conformal transformations, Js(z) denotes a current
of weight s , εs(z) is the associated infinitesimal parameter, and the sum runs over all the
spins present in the spectrum (minus the stress tensor itself, which is singled out). This
relation has been shown to be valid in the bosonic theory based on the sl(N) algebra [30],
even in non-principal embeddings where U(1) currents are involved. We will verify that it
remains true for sl(3|2) as well. Using (3.17) we get

−kcs sTr [azΛ] = c

12

(
∂2λL(z) + 5

3∂
2λA(z)

)
+ 2

(
λL(z) + 5

3λA(z)
)
T (z) + · · · , (3.19)

from where we infer that the parameter of conformal transformations is

ε(z) = λL(z) + 5
3λA(z) . (3.20)

One also learns from this calculation that the U(1) parameter λJ(z) does in fact need to
be modified as a result of the Sugawara shift in the stress tensor (3.17), although we have
not written it explicitly here since additional changes are required due to the presence of
the other fields and parameters.

The final guiding principle in the construction of the holographic dictionary is the
spectral flow automorphism (2.25) and (2.26) of theW(3|2) algebra. As expected, this piece
of information is properly encoded in the symmetries of the Chern-Simons theory, being
implemented by a gauge transformation associated with the U(1) generator J ∈ sl(3|2).
Indeed, it is easy to see that a (finite) transformation with parameter Λ(z) = λJ(z)J
induces the change11

QJ(z)′ = QJ(z) + ∂λJ(z) , (3.21)

which for λJ(z) ∼ ηz resembles the second equation in (2.38). This naturally leads to the
identification of QJ(z) with the CFT current J(z). Moreover, since the sl(2) multiplets Li,
Ai and Wm in sl(3|2) commute with J , the corresponding fields in the Drinfeld-Sokolov
connection (3.13) are inert under this transformation, that is,

QL(z)′ = QL(z) , QA(z)′ = QA(z) , QW (z)′ = QW (z) . (3.22)

As a consequence, the map between these charges and their dual CFT variables can only in-
volve spectral flow-invariant combinations such as (2.28). As for the fermions one finds that

QG(z)′ = e−λJ (z)QG(z) , QS(z)′ = e−λJ (z)QS(z) ,

QH(z)′ = eλJ (z)QH(z) , QT (z)′ = eλJ (z)QT (z) .
(3.23)

Looking at (2.39), spin and charge assignments then clearly imply that QH(z) ∼ G+(z),
QG(z) ∼ G−(z), QT (z) ∼ U+(z) and QS(z) ∼ U−(z). This way, the spectral flow invari-
ance of the dual CFT severely restricts the form that the bulk/boundary map can take.

11Notice that since z ∼ z + 2π, the gauge transformation with λJ(z) = iηz is singular except for integer
or half-integer η.
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Current Js Parameter εs
J(z) η(z)
T (z) ε(z)
G±(z) α∓(z)
V (z) γ(z)
U±(z) β∓(z)
W (z) χ(z)

Table 2. Pairing between currents and infinitesimal transformation parameters of the supercon-
formal symmetry.

Taking all of these insights into account, and after a detailed look at the transformation
rules for the different charges, we are led to the following redefinitions of bulk fields:

QJ(z) = 3
c
J(z) , QH(z) = −3

c
G+(z) ,

QL(z) = 6
c

(
T (z)− 3

2cJ
2(z) + κ

2V (z)
)
, QG(z) = 3

c
G−(z) ,

QA(z) = −9κ
5c V (z) , QT (z) = 4κ

5c U
+(z) ,

QW (z) = 3κ
5c

(
W (z)− 6

c
J(z)V (z)

)
, QS(z) = −4κ

5c U
−(z) .

(3.24)

Accordingly, the gauge parameters must be redefined as:

λJ(z) = η(z) + 3
c
ε(z)J(z) + 6

c
χ(z)V (z) , λH(z) = α+(z) ,

λL(z) = ε(z) + κ

2

(
γ(z) + 6

c
χ(z)J(z)

)
, λG(z) = −α−(z) ,

λA(z) = −3κ
10

(
γ(z) + 6

c
χ(z)J(z)

)
, λT (z) = −2κ

5 β+(z) ,

λW (z) = 3κ
10χ(z) , λS(z) = 2κ

5 β−(z) .

(3.25)

Condition (3.18) is then satisfied only if the constant κ appearing above is given by

κ = ±5i
2 . (3.26)

Not coincidentally, this corresponds to the c → ∞ limit of (2.16). The transformation
parameters εs(z) associated to the symmetries generated by each conserved current are
identified as in table 2.

Relations (3.24) and (3.25) are one of the main results of this paper. They constitute
the first piece of the holographic dictionary, establishing the map between bulk currents
and symmetry parameters in the sl(3|2) Chern-Simons theory and their boundary CFT
counterparts, and completing the partial analysis in [9, 10, 14]. Of course, the ultimate
check of this result is the agreement between the OPE algebra for the redefined currents
and the semiclassical limit of the N = 2 super-W3 algebra reviewed in section 2.

– 16 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
7

3.2.3 Variations and semiclassical OPE’s

In order to exhibit the transformation rules of the redefined fields under the asymptotic
symmetries, it is convenient to introduce the operator

M s′′
s,s′ (λ;φ) ≡

s+s′−s′′∑
i=1

(s+s′−s′′−1)!
(s+s′−s′′−i)!

(s+s′+s′′−2)!
(s+s′+s′′−i−1)!

(2s−2)!
(2s−i−1)!

∂(i−1)λ

(i− 1)! ∂
(s+s′−s′′−i)φ . (3.27)

Its interpretation is as follows: M s”
s,s′(λ;φ) gives the contribution of a field φ of spin-s′′

to the variation of a spin-s′ primary under the symmetry generated by a spin-s primary
with associated infinitesimal parameter λ. The reason this particular operator simplifies
the task of writing down the field variations is that the structure constants appearing in
the OPE’s of Virasoro primaries are constrained by the sl(2,R) covariance of the algebra;
the coefficients appearing in (3.27) are then related to Clebsch-Gordan coefficients.

Using the above notation, and in terms of the redefined charges and parameters (3.24)
and (3.25), the asymptotic symmetry variations coming from (3.15) are found to be

δJ = c

3∂η + ε∂J + ∂εJ + 2χ∂V + 2∂χV + α+G− − α−G+ + β+U− − β−U+ , (3.28)

δT = ∂ηJ + ε∂T + 2∂εT + c

12∂
3ε+ γ∂V + 2∂γV + 2χ∂W + 3∂χW

+ 1
2α

+∂G− + 3
2∂α

+G− + 1
2α
−∂G+ + 3

2∂α
−G+

+ 3
2β

+∂U− + 5
2∂β

+U− + 3
2β
−∂U+ + 5

2∂β
−U+ , (3.29)

δV = ε∂V + 2∂εV + c

12∂
3γ +M2

2,2

(
γ; A [2]

)
+ 6M1

3,2

(
χ; C [1]

)
+ 2M3

3,2

(
χ; C [3]

)
−M4

3,2

(
χ; C [4]

)
+ α+U− − α−U+

− 3M
3
2
5
2 ,2

(
β+; Φ[3/2]

−

)
+ 3

2M
5
2
5
2 ,2

(
β+; Φ[5/2]

−

)
−M

7
2
5
2 ,2

(
β+; Φ[7/2]

−

)
− 3M

3
2
5
2 ,2

(
β−; Φ[3/2]

+

)
+ 3

2M
5
2
5
2 ,2

(
β−; Φ[5/2]

+

)
−M

7
2
5
2 ,2

(
β−; Φ[7/2]

+

)
, (3.30)

δW = 2∂ηV + ε∂W + 3∂εW + 6∂3γC [1] +M3
2,3

(
γ; C [3]

)
+ γC [4]

+ 2M2
3,3

(
χ; B[2]

)
+M4

3,3

(
χ; B[4]

)
+ c

48∂
5χ

+ 1
2M

5
2
3
2 ,3

(
α+;U−

)
+ 1

2M
5
2
3
2 ,3

(
α−;U+

)
+M

3
2
5
2 ,3

(
β−; Ψ[3/2]

+

)
+M

5
2
5
2 ,3

(
β−; Ψ[5/2]

+

)
+ 3

2M
7
2
5
2 ,3

(
β−; Ψ[7/2]

+

)
+ β−Ψ[9/2]

+ +M
3
2
5
2 ,3

(
β+; Ψ[3/2]

−

)
+M

5
2
5
2 ,3

(
β+; Ψ[5/2]

−

)
+ 3

2M
7
2
5
2 ,3

(
β+; Ψ[7/2]

−

)
+ β+Ψ[9/2]

− , (3.31)

δG± = ±ηG± + ε∂G± + 3
2∂εG

± ± γU± + 2χ∂U± + 5
2∂χU

±

+ α± (2T ∓ ∂J)∓ 2∂α±J + c

3∂
2α± + β± (2W ∓ 3∂V )∓ 4∂β±V , (3.32)
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δU± = ±ηU± + ε∂U± + 5
2∂εU

± + γΦ[7/2]
± +M

5
2

2, 5
2

(
γ; Φ[5/2]

±

)
+M

3
2

2, 5
2

(
γ; Φ[3/2]

±

)
− χΨ[9/2]

± + 2M
7
2

3, 5
2

(
χ; Ψ[7/2]

±

)
− 2M

5
2

3, 5
2

(
χ; Ψ[5/2]

±

)
+ 4M

3
2

3, 5
2

(
χ; Ψ[3/2]

±

)
+ α± (2W ∓ ∂V )∓ 4∂α±V + c

12∂
4β± + β±D [4] + β∓E

[4]
±

∓M1
5
2 ,

5
2

(
β±; D [1]

)
+ 3M2

5
2 ,

5
2

(
β±; D [2]

)
∓M3

5
2 ,

5
2

(
β±; D [3]

)
, (3.33)

where the fields A [s], B[s], C [s], D [s], E
[s]
± , Φ[s]

± , Ψ[s]
± are given by

A [2] = T − 3
2cJ

2 + κV , (3.34)

B[2] = 1
20

(
5T − 3

2cJ
2
)

+ κ

20V , (3.35)

B[4] = 3
2c

{
16T 2 + 7

2
(
∂G+G− −G+∂G−

)
+ 24

c

(
JG+G− − J2T

)
(3.36)

+ 3
(
J∂2J − 3

10∂
2J2

)}
+ 3κ

5c

{
16TV + 11

2
(
G−U+ −G+U−

)
+ 6JW

}
,

C [1] = 1
6 ×

1
2J , (3.37)

C [3] = 1
2c

{
15
2 G

+G− + 8JT − 12
c
J3
}

+ κ

5

{
W + 14

c
JV

}
, (3.38)

C [4] = 2
c

(J∂T − 2∂JT ) + κ

c

{
2 (J∂V − 2∂JV )− 3

(
G+U− +G−U+

)}
, (3.39)

D [1] = 1
4J , (3.40)

D [2] = 1
10

(
5T − 3

c
J2
)

+ κ

5V , (3.41)

D [3] = 3
2c

{
10JT − 12

c
J3 + 13

2 G
+G−

}
+ 2κ

5

{
21
c
JV −W

}
, (3.42)

D [4] = 3
c

{
9T 2 + 5

4
(
∂G+G− −G+∂G−

)
+ 12

c

(
JG+G− − J2T

)
(3.43)

+ 1
4

(
J∂2J − 3

10∂
2J2

)}
+ 12κ

5c

{
9TV + 2

(
G−U+ −G+U−

)
− JW

}
,

E
[4]
± = −6

c
∂G±G± ∓ 12κ

c
G±U± , (3.44)

Φ[3/2]
± = ±1

4G
± , (3.45)

Φ[5/2]
± = − 6

5cJG
± + 2κ

5 U± , (3.46)

Φ[7/2]
± = 2× 3

4c

{
± 9TG± ∓ 12

c
J2G± − 1

10
(
2J∂G± − 3∂JG±

)}
(3.47)

± 6κ
5c

{
9V G± − JU±

}
,
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∆ q

J(z) 1 0 (anom)
T (z) 2 (anom) 0
G±(z) 3/2 ±1
V (z) 2 0
U±(z) 5/2 ±1
W (z) 3 0

Table 3. Conformal dimensions and U(1) charges of the redefined currents.

Ψ[3/2]
± = 1

8G
± , (3.48)

Ψ[5/2]
± = ∓ 3

10cJG
± ± κ

10U
± , (3.49)

Ψ[7/2]
± = 3

14c

{
55TG± − 84

c
J2G± ∓ 47

10
(
2J∂G± − 3∂JG±

)}
(3.50)

+ 6κ
35c

{
23V G± + 13JU±

}
,

Ψ[9/2]
± = 3

7c

{
2
(
3∂TG± − 4T∂G±

)
−
(
±2∂2JG± ∓ 4∂J∂G± ± J∂2G±

)}
(3.51)

+ 3κ
7c

{
± 14TU± ∓ 14WG± + 3∂V G± − 4V ∂G± + 2J∂U± − 5∂JU±

}
.

It is reassuring to verify that expressions (3.34)–(3.51), which emerge entirely from a bulk
analysis, correspond precisely to the semiclassical limit, taken as explained in section 2.3, of
the full quantum composites (A.2)–(A.19) that appear in theW(3|2) OPE algebra.12 At this
point it also becomes clear that the fields defined through (3.24) have conformal dimensions
∆ and U(1) charges q as given in table 3, in agreement with the N = 2 multiplet structure
described in section 2. These two facts are a non-trivial test for the validity of our results.

The final step in identifying the asymptotic symmetry algebra is to convert the vari-
ations (3.28)–(3.33) into semiclassical OPE’s using Noether’s theorem. To this purpose,
following the assignments exhibited in table 2, we define the total current

Jtot(z) = η(z)J(z) + ε(z)T (z) + γ(z)V (z) + χ(z)W (z)
+ α−(z)G+(z) + α+(z)G−(z) + β−(z)U+(z) + β+(z)U−(z) . (3.52)

Then, after mapping the boundary cylinder to the complex plane via z → eiz, the trans-
formations can be rewritten as

δO(w) =
∮
w

dz

2πiJtot(z)O(w) , (3.53)

12Compared to [18], the modifications highlighted in red are necessary to match the holographic descrip-
tion.
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expression from which the OPE algebra can be read. For example, setting all the transfor-
mation parameters but γ to zero, the variation δV in (3.30) becomes

c

12∂
3γ(w) + 2∂γ(w)A [2](w) + γ(w)∂A [2](w) =

∮
w

dz

2πiγ(z)V (z)V (w) , (3.54)

leading to the V V OPE

V (z)V (w) ∼ c/2
(z − w)4 +

( 2
(z − w)2 + 1

z − w
∂

)
A [2](w) . (3.55)

We have checked that, quite satisfactorily, the full OPE algebra derived from the asymptotic
symmetry variations (3.28)–(3.33) is given precisely by the semiclassical limit of the N = 2
super-W3 algebra written in (2.1)–(2.6), (2.7)–(2.14) and (2.17)–(2.23). This shows that
the identifications (3.24) and (3.25) between bulk and CFT quantities are indeed correct.

3.3 Dictionary part II: sources and Ward identities

Having successfully aligned bulk and boundary currents Js and infinitesimal parameters εs,
we now turn to the study of sources (or chemical potentials). These play a central role in
the discussion of black hole solutions and their thermodynamics [1, 13, 14, 27–29, 31–39].
We closely follow the work of [30], which offered a detailed account of sources in the context
of the AdS3/CFT2 correspondence. As before, the treatment of the two connections A and
Ā is completely analogous, so we focus on the unbarred sector for concreteness.

Consider deforming a two-dimensional CFT with W-symmetry by coupling the set of
(would-be) conserved higher spin currents Js(z, z̄) to some external fields µs(z, z̄). Re-
stricting to chiral deformations, one natural possibility is to perturb the CFT action by

S = SCFT +
∫
d2z

∑
s

µsJs . (3.56)

Another is to write the deformed Hamiltonian

H = HCFT +
∮
dφ

∑
s

µsJs . (3.57)

In either case, theW-symmetry is still realized at the level of the partition function provided
that one transforms the sources µs(z, z̄) accordingly [30]. This results in the existence of
Ward identities for the one-point functions of the currents in the presence of sources.

It is common knowledge that a holographic description of these deformations requires
generalizing the AdS boundary conditions (3.8), such that the bulk Chern-Simons fields
now include the deformation parameters in their asymptotics. As argued in [30], the
ensuing structure is best described in terms of a “Drinfeld-Sokolov pair”, consisting of one
component of the connection a(z, z̄) carrying the bulk currents as highest-weights, and
a conjugate component carrying the corresponding sources as lowest-weights. Since all
source-free solutions satisfy az̄ = 0, sources should certainly be included in this component
of the connection. However, in their presence, the question arises of whether the currents
should be incorporated in az or in az + az̄ 6= az. This leads to two natural choices of

– 20 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
7

boundary conditions for the gauge fields, namely, holomorphic boundary conditions, given
by the Drinfeld-Sokolov pair

az = L1 +Q(z, z̄) , 2az̄ = ν(z, z̄) + · · · , (3.58)

and canonical boundary conditions, implemented by

az + az̄ = L1 +Q(z, z̄) , 2az̄ = ν(z, z̄) + · · · . (3.59)

The matrices Q and ν are such that [L−1,Q] = 0 and [L1,ν] = 0 (highest and lowest-
weight, respectively), and the dots represent higher-weight terms that are fixed algebraically
by the flatness condition (3.7). Of course, the source-free solution (3.8) is recovered
for ν = 0.

From the field theory point of view, it was shown in [30, 31, 42] that holomor-
phic boundary conditions correspond precisely to deformations (3.56) of the CFT action,
whereas the canonical choice maps to deformations (3.57) of the Hamiltonian. In either
case the connection a(z, z̄) is no longer holomorphic, and the bulk equations of motion
become the CFT’s Ward identities. Below we will exemplify in detail the incorporation of
sources in the holomorphic case, where they are more symmetrical. Then we will point out
the changes needed to accomplish this in the canonical case.

3.3.1 Action deformations and holomorphic boundary conditions

Most of the analysis of asymptotic symmetries in the previous section consisted in finding
the correct combinations of bulk currents in Q such that the transformation rules took the
form dictated by theW(3|2) algebra. By the same token, the analysis of deformed boundary
conditions boils down to finding the precise combination of bulk sources in ν such that
the equations of motion for the Drinfeld-Sokolov pair of connections reproduce the CFT’s
Ward identities. Happily, in the case of holomorphic boundary conditions (3.58), all of the
necessary algebra can be recycled from the asymptotic symmetry calculations by noticing
that the flatness equation (3.7), written as

∂az̄ + [az, az̄] = ∂̄az , (3.60)

is essentially the same as equation (3.9) for the variations δQ and transformation param-
eters Λ, with the replacements δQ→ ∂̄Q and Λ→ az̄. Moreover, the condition

−kcs sTr
[
azaz̄

]
= c

12∂
2µ2(z, z̄) + 2µ2(z, z̄)T (z, z̄) +

∑
s

sµs(z, z̄)Js(z, z̄) , (3.61)

which must also be satisfied when bulk and boundary quantities are properly aligned [30],
follows from (3.18) by the same replacements.

– 21 –



J
H
E
P
1
2
(
2
0
2
0
)
1
7
7

Current Source
J(z, z̄) µ1(z, z̄)
T (z, z̄) µ2(z, z̄)
G±(z, z̄) µ±3

2
(z, z̄)

V (z, z̄) µ̃2(z, z̄)
U±(z, z̄) µ±5

2
(z, z̄)

W (z, z̄) µ3(z, z̄)

Table 4. Correspondence between redefined currents and sources.

These considerations allow us to directly state the second piece of the holographic
dictionary, namely, the one relating the chemical potentials in the sl(3|2) Chern-Simons
theory with the sources coupling to the conserved currents in a CFT displaying W(3|2)
symmetry. Writing a lowest-weight ansatz similar to (3.14),

az̄ = νJ(z, z̄)J+νL(z, z̄)L1+νA(z, z̄)A1+νW (z, z̄)W2

+νG(z, z̄)G 1
2
+νH(z, z̄)H 1

2
+νS(z, z̄)S 3

2
+νT (z, z̄)T 3

2
+(higher-weight terms) , (3.62)

we find that the correct combination of bulk fields coupling to the CFT currents is13

(cf. (3.25))

νJ = µ1 + 3
c
µ2J + 6

c
µ3V , νH = µ+

3
2
,

νL = µ2 + κ

2

(
µ̃2 + 6

c
µ3J

)
, νG = −µ−3

2
,

νA = −3κ
10

(
µ̃2 + 6

c
µ3J

)
, νT = −2κ

5 µ+
5
2
,

νW = 3κ
10µ3 , νS = 2κ

5 µ−5
2
,

(3.63)

where κ = ±5i/2 as before. Expression (3.13) for az, as well as the map (3.24) between
bulk and boundary charges, still apply in the deformed theory, albeit with an additional
anti-holomorphic dependence. Importantly, with these redefinitions, the Drinfeld-Sokolov
connection automatically verifies relation (3.61) for the principally-embedded osp(1|2) ⊂
sl(3|2) spectrum, leading to the pairing of the different CFT sources and currents shown
in table 4.

Finally, the solution to the highest-weight components of the equation of motion, that
is, the solution for ∂̄Q(z, z̄), follows directly from the transformation rules (3.28)–(3.33),

13We omit the dependence in (z, z̄) for simplicity.
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yielding

∂̄J = c

3∂µ1 + µ2∂J + ∂µ2J + 2µ3∂V + 2∂µ3V

+ µ+
3
2
G− − µ−3

2
G+ + µ+

5
2
U− − µ−5

2
U+ , (3.64)

∂̄T = ∂µ1J + µ2∂T + 2∂µ2T + c

12∂
3µ2 + µ̃2∂V + 2∂µ̃2V + 2µ3∂W + 3∂µ3W

+ 1
2µ

+
3
2
∂G− + 3

2∂µ
+
3
2
G− + 1

2µ
−
3
2
∂G+ + 3

2∂µ
−
3
2
G+

+ 3
2µ

+
5
2
∂U− + 5

2∂µ
+
5
2
U− + 3

2µ
−
5
2
∂U+ + 5

2∂µ
−
5
2
U+ , (3.65)

∂̄V = µ2∂V + 2∂µ2V + c

12∂
3µ̃2 +M2

2,2

(
µ̃2; A [2]

)
+ 6M1

3,2

(
µ3; C [1]

)
+ 2M3

3,2

(
µ3; C [3]

)
−M4

3,2

(
µ3; C [4]

)
+ µ+

3
2
U− − µ−3

2
U+

− 3M
3
2
5
2 ,2

(
µ+

5
2
; Φ[3/2]
−

)
+ 3

2M
5
2
5
2 ,2

(
µ+

5
2
; Φ[5/2]
−

)
−M

7
2
5
2 ,2

(
µ+

5
2
; Φ[7/2]
−

)
− 3M

3
2
5
2 ,2

(
µ−5

2
; Φ[3/2]

+

)
+ 3

2M
5
2
5
2 ,2

(
µ−5

2
; Φ[5/2]

+

)
−M

7
2
5
2 ,2

(
µ−5

2
; Φ[7/2]

+

)
, (3.66)

∂̄W = 2∂µ1V + µ2∂W + 3∂µ2W + 6∂3µ̃2C
[1] +M3

2,3

(
µ̃2; C [3]

)
+ µ̃2C

[4]

+ 2M2
3,3

(
µ3; B[2]

)
+M4

3,3

(
µ3; B[4]

)
+ c

48∂
5µ3

+ 1
2M

5
2
3
2 ,3

(
µ+

3
2
;U−

)
+ 1

2M
5
2
3
2 ,3

(
µ−3

2
;U+

)
+M

3
2
5
2 ,3

(
µ−5

2
; Ψ[3/2]

+

)
+M

5
2
5
2 ,3

(
µ−5

2
; Ψ[5/2]

+

)
+ 3

2M
7
2
5
2 ,3

(
µ−5

2
; Ψ[7/2]

+

)
+ µ−5

2
Ψ[9/2]

+ +M
3
2
5
2 ,3

(
µ+

5
2
; Ψ[3/2]
−

)
+M

5
2
5
2 ,3

(
µ+

5
2
; Ψ[5/2]
−

)
+ 3

2M
7
2
5
2 ,3

(
µ+

5
2
; Ψ[7/2]
−

)
+ µ+

5
2
Ψ[9/2]
− , (3.67)

∂̄G± = ±µ1G
± + µ2∂G

± + 3
2∂µ2G

± ± µ̃2U
± + 2µ3∂U

± + 5
2∂µ3U

±

+ µ±3
2

(2T ∓ ∂J)∓ 2∂µ±3
2
J + c

3∂
2µ±3

2
+ µ±5

2
(2W ∓ 3∂V )∓ 4∂µ±5

2
V , (3.68)

∂̄U± = ±µ1U
± + µ2∂U

± + 5
2∂µ2U

± + µ̃2Φ[7/2]
± +M

5
2

2, 5
2

(
µ̃2; Φ[5/2]

±

)
+M

3
2

2, 5
2

(
µ̃2; Φ[3/2]

±

)
− µ3Ψ[9/2]

± + 2M
7
2

3, 5
2

(
µ3; Ψ[7/2]

±

)
− 2M

5
2

3, 5
2

(
µ3; Ψ[5/2]

±

)
+ 4M

3
2

3, 5
2

(
µ3; Ψ[3/2]

±

)
+ µ±3

2
(2W ∓ ∂V )∓ 4∂µ±3

2
V + c

12∂
4µ±5

2
+ µ±5

2
D [4] + µ∓5

2
E

[4]
±

∓M1
5
2 ,

5
2

(
µ±5

2
; D [1]

)
+ 3M2

5
2 ,

5
2

(
µ±5

2
; D [2]

)
∓M3

5
2 ,

5
2

(
µ±5

2
; D [3]

)
. (3.69)

The composite fields A [s], B[s], C [s], D [s], E
[s]
± , Φ[s]

± , Ψ[s]
± and the operators M s”

s,s′(λ;φ) are
the same as in section 3.2. These are the holographic Ward identities corresponding to the
deformation (3.56) of the CFT action.

3.3.2 Hamiltonian deformations and canonical boundary conditions

For the implementation of canonical boundary conditions it is convenient to switch to the
real coordinates φ = (z + z̄) /2 and tE = i (z − z̄) /2, in terms of which the Drinfeld-Sokolov
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pair (3.59) becomes

aφ = L1 +Q(tE , φ) , aφ − iatE = ν(tE , φ) + · · · . (3.70)

Bulk charges and sources are then included as in (3.13) and (3.62), but with az → aφ
and az̄ → aφ − iatE . Since the holographic dictionary for the charges is derived from the
source-free solutions, where aφ = az, we still have (3.24). Moreover, the Drinfeld-Sokolov
pair now satisfies the relation [30]

−kcs sTr
[
aφ (aφ − iatE )

]
= c

12∂
2µ2(tE , φ) + 2µ2(tE , φ)T (tE , φ)

+
∑
s

sµs(tE , φ)Js(tE , φ) , (3.71)

leading to the same map (3.63) for the sources, with the pairing displayed in table 4. As
explained in [30], the Ward identities corresponding to the Hamiltonian deformation (3.57)
follow from (3.64)–(3.69) by replacing ∂̄ → i∂tE − ∂φ and ∂ → ∂φ. For example, the
canonical stress tensor Ward identity reads

i∂tET − ∂φT = c

12∂
3
φµ2 + ∂φµ1J + µ2∂φT + 2∂φµ2T

+ µ̃2∂φV + 2∂φµ̃2V + 2µ3∂φW + 3∂φµ3W

+ 1
2µ

+
3
2
∂φG

− + 3
2∂φµ

+
3
2
G− + 1

2µ
−
3
2
∂φG

+ + 3
2∂φµ

−
3
2
G+

+ 3
2µ

+
5
2
∂φU

− + 5
2∂φµ

+
5
2
U− + 3

2µ
−
5
2
∂φU

+ + 5
2∂φµ

−
5
2
U+ . (3.72)

The remaining Ward identities are derived in a similar fashion.
We close this section by commenting that when putting the theory at finite temper-

ature, i.e. on a torus, one also needs to specify how the thermal sources scale with the
temperature; only then is the partition function (and consequently the free energy) well-
defined [30]. Moreover, in this context it is redundant to include the source for the stress
tensor in the connection aφ − iatE , since it can be incorporated as the modular parameter
of the torus. From (3.63), we see that setting µ2 = 0 amounts to fixing νA = −3

5νL, so that
only the source for the combination of generators L1 − 3

5A1 is turned on. These issues are
discussed in our companion paper [1], where the thermodynamics of black hole solutions
in the sl(3|2) theory with canonical boundary conditions were studied.

3.4 Lorentzian connections and su(2, 1|1, 1)

The preceding construction of the holographic dictionary was carried out in the Euclidean
formalism, where the Chern-Simons connection a(z, z̄) is valued in the complex superalge-
bra sl(3|2;C). When continuing back to Lorentzian signature the question arises of which
real form appropriately describes the CFT structure that we have uncovered. According
to [43], the candidate superalgebras are

sl(3|2;R) ⊃ sl(3;R)⊕ sl(2;R)⊕R ,

sl(3|2;H) ⊃ su∗(3)⊕ su∗(2)⊕R ,

su(p, 3− p|q, 2− q) ⊃ su(p, 3− p)⊕ su(q, 2− q)⊕ iR . (3.73)
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As we will now see, the real form su(2, 1|1, 1) is singled out after imposing the standard
hermiticity conditions on the generators of the N = 2 super-W3 algebra and applying
the holographic map. To make the analysis more transparent we will focus on source-free
solutions (3.8); having understood the reality properties of the charges those of the sources
follow directly.

All throughout section 3 we have complied with the conventions of [29, 30], which
implemented the continuation of the Lorentzian higher spin theory to Euclidean signature
by taking t+φ→ z and t−φ→ −z̄. In particular, the definition (3.16) of the stress tensor
and the condition (3.18) between bulk and boundary quantities, both of which where crucial
in the derivation of the holographic dictionary, pend on this choice. This means that our
conventions are such that the N = 2 super-W3 generators on the cylinder satisfy

J(z)† = −J (z̄) , G+(z)† = e
iπ
2 G− (z̄) ,

T (z)† = T (z̄) , G−(z)† = e
iπ
2 G+ (z̄) ,

κ̄V (z)† = κV (z̄) , κ̄U+(z)† = e−
iπ
2 κU− (z̄) ,

κ̄W (z)† = −κW (z̄) , κ̄U+(z)† = e−
iπ
2 κU− (z̄) ,

(3.74)

as follows from (2.36) and (2.37) with ζ = i. Thus, in light of the map (3.24), the different
components in the Drinfeld-Sokolov connection must obey the following reality conditions:

QJ(z) = −QJ(z̄) , QG(z) = e−
iπ
2 QH(z̄) ,

QL(z) = QL(z̄) , QH(z) = e−
iπ
2 QG(z̄) ,

QA(z) = QA(z̄) , QT (z) = e
iπ
2 QS(z̄) ,

QW (z) = −QW (z̄) , QT (z) = e
iπ
2 QS(z̄) .

(3.75)

In order to figure out the appropriate real form of sl(3|2) that is compatible with (3.75)
we seek for combinations of currents that are real when continued back to Lorentzian
signature via z → x+. Then, the correct superalgebra will be the one spanned by those
generators accompanying these charges in az → a+. With this in mind, a more suggestive
way of writing the Drinfeld-Sokolov connection (3.13) is

az = L1 + iQ1(z)J +Q2(z)L−1 + Q̃2(z)A−1 + iQ3(z)W−2

+ e
iπ
4 Q+

1
2
(z)

(
H− 1

2
+G− 1

2

)
+ e−

iπ
4 Q−1

2
(z)

(
H− 1

2
−G− 1

2

)
+ e−

iπ
4 Q+

3
2
(z)

(
T− 3

2
+ S− 3

2

)
+ e

iπ
4 Q−3

2
(z)

(
T− 3

2
− S− 3

2

)
, (3.76)

where
Q1(z) = −iQJ(z) , Q+

1
2
(z) = 1

2e
− iπ4 (QH(z) +QG(z)) ,

Q2(z) = QL(z) , Q−1
2
(z) = 1

2e
iπ
4 (QH(z)−QG(z)) ,

Q̃2(z) = QA(z) , Q+
3
2
(z) = 1

2e
iπ
4 (QT (z) +QS(z)) ,

Q3(z) = −iQW (z) , Q−3
2
(z) = 1

2e
− iπ4 (QT (z)−QS(z)) .

(3.77)
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It is easy to check using (3.75) that all these combinations of charges satisfy Q(z) = Q(z̄),
implying that they are real if restricted to real arguments. In other words, Q(x+) = Q(x+).
This way we learn that the CFT structure of the Euclidean theory dictates that a general
Lorentzian connection on the cylinder takes values in the real form of the sl(3|2) algebra
generated by

iJ , Li , Ai , iWm ,

e
iπ
4 (Hr +Gr) , e−

iπ
4 (Hr −Gr) , e−

iπ
4 (Ts + Ss) , e

iπ
4 (Ts − Ss) ,

(3.78)

As discussed in appendix B, this corresponds to the superalgebra su(2, 1|1, 1).14

4 Conclusion

The purpose of this note was to provide the explicit form of the holographic dictionary be-
tween sl(3|2) Chern-Simons supergravity on AdS3 and two-dimensional CFT’s with N = 2
super-W3 symmetry that was used in [1]. The main entries of the dictionary are the iden-
tification of bulk and boundary currents given in (3.24), with their corresponding trans-
formation parameters (3.25), and the identification of the Chern-Simons and CFT sources
in (3.63). This allowed us to display in full detail the holographic Ward identities (3.64)–
(3.69). The other entry is the identification of su(2, 1|1, 1) as the correct real form of sl(3|2)
in Lorentzian signature. Along the way, we also corrected some typos in the original refer-
ence [18] on theW(3|2) algebra. These corrections were verified by three independent meth-
ods: i) fulfillment of the Jacobi identities for the OPE’s, ii) spectral flow invariance of the
OPE algebra, and iii) agreement with the asymptotic symmetries of Chern-Simons theory.

It is worth highlighting the role of the spectral flow automorphism in building the
holographic dictionary. Our discussion in section 3.2.2 applies broadly to any gauge al-
gebra g that contains a U(1) generator that would lead to spectral flow symmetry in the
boundary W-algebra. In particular, following the argument around (3.21), it should be
straightforward to identify the components of Q(z) that are spectral flow invariant in a
highest-weight gauge (3.8) for the connection. This, combined with (3.18), leads to a clear
and simple basis in which to setup the dictionary with CFT variables.

Naturally, some of our results can be extended to the analysis of Lorentzian solutions
in the sl(N |N−1) theory, where the same reasoning shows that the correct real form of the
bulk gauge algebra that is consistent with the structure of N = 2 supersymmetric higher
spin symmetries is su(p,N − p|q,N − 1− q) and not sl(N |N − 1;R) as naively expected.
Perhaps the easiest way to see this is to note that su(p,m−p|q, n− q) is the only real form
of sl(m|n;C) that possesses a compact Abelian generator in the bosonic subalgebra [43].
As shown [1], this property is crucial for compatibility with R-charge quantization and
the existence of Killing spinors with non-trivial angular dependence. Ultimately, this is

14Another way to derive this result, purely from the bulk perspective, is to start from az = L1 +Q(z)
and make the change of coordinates z′ = ζz. Then, an additional gauge transformation with parameter
Λ = ζL0 is necessary in order to bring the new connection az′ = ζ−1az back to Drinfeld-Sokolov form,
a′z′ = L1 + Q′(z′). The new charges read Q′(z′) = ζ−1ζ−L0Q(z)ζL0 . Setting ζ = e

iπ
2 , it follows that

Q′ ∈ sl(3|2;R)⇔ Q ∈ su(2, 1|1, 1).
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tied to the fact that we have performed a Drinfeld-Sokolov reduction based on an sl(2|1)
embedding instead of an osp(2|2) embedding as required to reproduce the N = 2 CFT
structure (see e.g. [10, 12]). To our knowledge, the issue of identifying the appropriate real
form has not been discussed in the literature so far. It is, however, an important ingredient
in the holographic dictionary if one is to match bulk and boundary results correctly.

An important asset of the dualities addressed in this paper is that they exploit the topo-
logical formulation of the Chern-Simons theory in order to set up and perform tractable cal-
culations that are quite challenging in CFT’s with W-algebra using solely field-theoretical
techniques. The analysis here is one very modest example in the context of supersymmet-
ric dualities. In recent years this asset has been applied to Wilson lines in Chern-Simons
theory as one efficient approach to evaluate W-conformal blocks in the CFT [44–46]. In
our case it would be interesting to evaluate a supersymmetric Wilson line and include
quantum corrections following the approach of [47–52]. This would allow us to improve the
semiclassical limit discussed in section 2.3, and attempt to study the duality in a healthier
regime where the representations of the W-algebra are unitary.
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A Composite operators

In this appendix we display the full quantum composite operators A [s], B[s], C [s], D [s],
E

[s]
± , Φ[s]

± , Ψ[s]
± appearing in theW(3|2) algebra together with their transformation properties

under the spectral flow automorphism.

A.1 Definition

In what follows, all combinations of fields enclosed by square brackets are quasi-primary.
Naturally, normal-ordering is assumed. As in [18] we define

γ ≡ 1
(c− 1) (c+ 6) (2c− 3) , κ ≡ ± (c+ 3)(5c− 12)√

2(c+ 6)(c− 1)(2c− 3)(15− c)
. (A.1)

The composite operators appearing in the W(3|2) algebra then read

A [2] = c

c−1

(
[T ]− 3

2c
[
J2
])

+κ [V ] , (A.2)

B[2] = 1
20(c−1)

(
(5c−4) [T ]− 3

2
[
J2
])

+ κ

20 [V ] , (A.3)
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B[4] = 3γ
{(

16c2−27c+18
)[
T 2− 3

10∂
2T

]
(A.4)

+ 7
2c(c−6)

[
∂G+G−−G+∂G−+ 2

5∂
2T+ 1

6∂
3J

]
+6(4c+3)

([
JG+G−−J∂T− 1

3J∂
2J

]
−
[
J2T

])

+ 1
4
(
12c2−61c+42

)[
J∂2J− 3

10∂
2J2

]}

+ 3κ
(c+3)(5c−12)

{
4(4c+3)

[
TV − 3

10∂
2V

]

+ 1
2 (11c+24)

[
G−U+−G+U−+ 2

5∂
2V

]
+6(c+6)[JW ]

}
,

C [1] = 1
6×

1
2 [J ] , (A.5)

C [3] = γ

{
3
2c(5c−12)

[
G+G−−∂T− 1

3∂
2J

]
+
(
8c2−9c+36

)
[JT ] (A.6)

−3(4c+3)
[
J3
]}

+ κ

5c−12

{
(c−8) [W ]+14[JV ]

}
,

C [4] = 2
c−1 [J∂T−2∂JT ]+ κ

c+3

{
2[J∂V −2∂JV ] (A.7)

−3
[
G+U−+G−U+− 4

3∂W
]}

,

D [1] = 1
4 [J ] , (A.8)

D [2] = 1
10(c−1)

(
(5c−3) [T ]−3

[
J2
])

+κ

5 [V ] , (A.9)

D [3] = 3γ
{

2
(
5c2+9

)
[JT ]−3(4c+3)

[
J3
]

(A.10)

+ 1
2 (c−3)(13c−6)

[
G+G−−∂T− 1

3∂
2J

]}
+ 2κ

5c−12

{
21[JV ]−(c+6)[W ]

}
,

D [4] = 6γ
{

9c(c−1)
[
T 2− 3

10∂
2T

]
(A.11)

+ 1
4
(
5c2−51c+18

)[
∂G+G−−G+∂G−+ 2

5∂
2T+ 1

6∂
3J

]
+3(4c+3)

([
JG+G−−J∂T− 1

3J∂
2J

]
−
[
J2T

])

+ 1
4
(
c2−53c+66

)[
J∂2J− 3

10∂
2J2

]}
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+ 6κ
(c+3)(5c−12)

{
18(c−1)

[
TV − 3

10∂
2V

]
+(4c+3)

[
G−U+−G+U−+ 2

5∂
2V

]

−2(c−15) [JW ]
}
,

E
[4]
± =− 6

c−1
[
∂G±G±

]
∓ 12κ
c+3

[
G±U±

]
, (A.12)

Φ[3/2]
± =±1

4
[
G±
]
, (A.13)

Φ[5/2]
± =− 6

5(c−1)

[
JG±∓ 1

3∂G
±
]
+ 2κ

5
[
U±
]
, (A.14)

Φ[7/2]
± = 2× 3γ

2

{
±9c(c−1)

[
TG±− 3

8∂
2G±

]
−3(4c+3)

[
±J2G±−∂JG±

]
(A.15)

− 1
10
(
c2−93c+36

)[
2J∂G±−3∂JG±∓ 1

4∂
2G±

]}

+ 6κ
(c+3)(5c−12)

{
9(c−1)

[
±V G±− 3

5∂U
±
]
−(c−15)

[
±JU±− 1

5∂U
±
]}

,

Ψ[3/2]
± = 1

8
[
G±
]
, (A.16)

Ψ[5/2]
± =− 3

10(c−1)

[
±JG±− 1

3∂G
±
]
± κ

10
[
U±
]
, (A.17)

Ψ[7/2]
± = 3γ

7

{(
55c2−99c+72

)[
TG±− 3

8∂
2G±

]
−21(4c+3)

[
J2G±∓∂JG±

]
(A.18)

− 1
10
(
47c2−471c−108

)[
±2J∂G±∓3∂JG±− 1

4∂
2G±

]}

+ 6κ
7(c+3)(5c−12)

{
(23c+33)

[
V G±∓ 3

5∂U
±
]
+(13c+57)

[
JU±∓ 1

5∂U
±
]}

,

Ψ[9/2]
± = 3

7(c−1)

{
2
[
3∂TG±−4T∂G±+ 4

5∂
3G±

]
(A.19)

−
[
±2∂2JG±∓4∂J∂G±±J∂2G±− 1

15∂
3G±

]}

+ 3κ
7(c+3)

{
±14

[
TU±− 1

4∂
2U±

]
∓14

[
WG±− 5

6∂
2U±

]

+
[
3∂V G±−4V ∂G±±∂2U±

]
+
[
2J∂U±−5∂JU±∓ 1

6∂
2U±

]}
. (A.20)

We have highlighted in red the coefficients in C [1] and Φ[7/2]
± that need to be modified

with respect to [18] so that the Jacobi identities are satisfied and the algebra is spectral
flow-invariant.
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A.2 Spectral flow

In order to derive the spectral flow rules for the composite operators we need to recall
the definition of normal-ordering as the regular part of the OPE in the coincidence limit.
Following the conventions of [18, 25] such that the OPE between two holomorphic operators
A and B is written as

A(z)B(w) =
∑
l≤h

[AB]l(w)
(z − w)l , (A.21)

with h ≤ hA + hB, the normal-ordering prescription is

:AB:(w) ≡ lim
z→w

A(z)B(w)−
∑
l>0

[AB]l(w)
(z − w)l

 = [AB]0(w) . (A.22)

Products of more than two fields are defined recursively, grouping them as

: A1A2 · · ·Ai : = (: A1 (: A2 (· · · (: Ai−1Ai :) · · · ) :) :) .

These definitions, together with the OPE algebra, allow us to compute the spectral flow of
any composite starting from the transformation rules for the fundamental fields.

Take as an example the composite :G+G−:(w), entering in the definition of C [3] and
D [3]. Using (2.25), we first compute the OPE between the spectral flowed operators, which
in the above notation becomes

G+′(z)G−′(w) = zηw−ηG+(z)G−(w) = zηw−η
3∑

l=−∞

[G+G−]l(w)
(z − w)l . (A.23)

Since the z dependence on the right hand side can only involve powers of z−w, we expand

zη = wη
∞∑
k=0

(
η

k

)(
z − w
w

)k
. (A.24)

Relabeling the indices and swapping the sums we find

G+′(z)G−′(w) = G+(z)G−(w) +
3∑

l=−∞

3−l∑
k=1

(
η

k

)
w−k[G+G−]l+k(w)

(z − w)l . (A.25)

The new OPE can be read directly from this expression. In particular, the regular part is

:G+′G−
′ :(w) = :G+G−:(w) +

3∑
k=1

(
η

k

)
w−k[G+G−]l(w) , (A.26)

which, after extracting

[G+G−]3(w) = 2c
3 , [G+G−]2(w) = 2J(w) , [G+G−]1(w) = 2T (w) + ∂J(w) , (A.27)

from (2.6), reads

:G+′G−
′ :(w) = :G+G−:(w) + η

w
(2T (w) + ∂J(w)) + η(η − 1)

w2 J(w) + cη(η − 1)(η − 2)
9w3 .

(A.28)
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It also follows from the singular part that

G+′(z)G−′(w) ∼ 2c/3
(z − w)3 + 2J ′(w)

(z − w)2 + 2T ′(w) + ∂J ′(w)
(z − w) , (A.29)

showing the invariance of this particular OPE.
The procedure is similar in all other cases, always relying on the OPE algebra and the

expansion (A.24) for different values of η. This way, starting from the definitions (A.2)–
(A.19) of the quantum composites and using the transformation rules (2.25) and (2.26) for
the fundamental fields, we find that the spectral flowed-version of these operators is

A [2] ′ = A [2] , (A.30)

B[2] ′ = B[2] + 12η
5z C [1] + cη2

30z2 , (A.31)

B[4] ′ = B[4] + 6η
z

C [3] + 36η
5z

(
∂2 + 3

z
∂ + 2

z2

)
C [1] + 4η2

z2 A [2] + cη2

10z4 , (A.32)

C [1] ′ = C [1] + cη

36z , (A.33)

C [3] ′ = C [3] + 4η
3zA [2] , (A.34)

C [4] ′ = C [4] + 2η
3z

(
∂ + 2

z

)
A [2] , (A.35)

D [1] ′ = D [1] + cη

12z , (A.36)

D [2] ′ = D [2] + 6η
5zD [1] + cη2

20z2 , (A.37)

D [3] ′ = D [3] + 10η
z

D [2] + 6η2

z2 D [1] + cη3

6z3 , (A.38)

D [4] ′ = D [4] + 2η
z

D [3] + 10η2

z2 D [2] + 2η
5z

(
∂2 + 3

z
∂ + 2(1 + 5η2)

z2

)
D [1]

+ cη2(1 + 5η2)
60w4 , (A.39)

E
[4]
±
′ = z±2ηE

[4]
± , (A.40)

Φ[3/2]
±

′ = z±ηΦ[3/2]
± , (A.41)

Φ[5/2]
±

′ = z±η
[
Φ[5/2]
± ∓ 8η

5zΦ[3/2]
±

]
, (A.42)

Φ[7/2]
±

′ = z±η
[
Φ[7/2]
± ∓ η

z
Φ[5/2]
± ± η

5z

(
−2∂ + 3

z
(±η − 1)

)
Φ[3/2]
±

]
, (A.43)

Ψ[3/2]
±

′ = z±ηΨ[3/2]
± , (A.44)

Ψ[5/2]
±

′ = z±η
[
Ψ[5/2]
± ± 4η

z
Ψ[3/2]
± − 12η

5z Φ[3/2]
±

]
, (A.45)

Ψ[7/2]
±

′ = z±η
[
Ψ[7/2]
± ± 12η

7z Ψ[5/2]
± + 6η

35z

(
±22∂ + 47

z
(η ∓ 1)

)
Ψ[3/2]
±

+10η
7z Φ[5/2]

± − 2η
7z

(
16∂ ± 24η

z

)
Φ[3/2]
±

]
, (A.46)
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Ψ[9/2]
±

′ = z±η
[
Ψ[9/2]
± ± 2η

z
Ψ[7/2]
± ∓ 2η

7z

(
2∂ ∓ 5

z
(η ∓ 1)

)
Ψ[5/2]
±

− 4η
35z

(
±67∂2 + 164

z
(η ∓ 1)∂ ± 62

z2 (η ∓ 2)(η ∓ 1)
)

Ψ[3/2]
± − 2η

z
Φ[7/2]
±

+ η

7z

(
6∂ ± 5

z
(4η ± 3)

)
Φ[5/2]
± + 2η

35z

(
57∂2 ± 4

z
(26η − 51)∂

+ 12
z2 (η2 ∓ 23η + 7)

)
Φ[3/2]
±

]
. (A.47)

We emphasize that the above rules were not derived by demanding that the full W(3|2)
algebra be spectral flow-invariant. Instead, we have verified this fact a posteriori using the
Mathematica package of [25]. It is instructive, however, to follow the reverse process and
deduce the transformation properties of the composites C [1], C [3] and C [4] by requiring
the invariance of the VW OPE. We choose this particular example because it is simple
and involves the composite C [1], which we claim needs to be corrected with respect to [18].
Using (2.26) and (2.19) we get

V ′(z)W ′(w) ∼ C [4](w)
z − w

+
( 3

(z − w)2 + 1
z − w

∂

)
C [3](w) + 36

(z − w)4 C [1](w) (A.48)

+ 2η
w

(
c/2

(z − w)4 +
( 2

(z − w)2 + 1
z − w

∂

)
A [2](w)

)
. (A.49)

Collecting poles of same order we find that spectral flow invariance demands that

C [4] ′(w) + ∂C [3] ′(w) = C [4](w) + ∂C [3](w) + 2η
w
∂A [2](w) ,

C [3] ′(w) = C [3](w) + 4η
3wA [2](w) ,

C [1] ′(w) = C [1](w) + cη

36w .

(A.50)

(A.51)

(A.52)

After substituting the second equation into the first one, these rules agree with (A.33),
(A.34) and (A.35). Notice that the transformation property of C [1] follows from that of J
only if we correct the coefficient in (A.5). A similar approach can be taken to fix (A.15).

B The sl(3|2) superalgebra

In this appendix we collect some useful facts and formulae regarding the superalgebra
sl(3|2) and its real form su(2, 1|1, 1) .

B.1 Definition and (anti-)commutation relations

The superalgebra sl(m|n;C) consists of all complex (m + n) × (m + n) supermatrices of
the form

M =
(
A B

C D

)
, (B.1)

equipped with the supercommutator

[M,M ′} =
(
AA′ −A′A+BC ′ +B′C AB′ −A′B +BD′ −B′D
CA′ − C ′A+DC ′ −D′C CB′ + C ′B +DD′ −D′D

)
, (B.2)
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and satisfying the supertraceless condition

sTr(M) ≡ Tr [A]− Tr [D] = 0 . (B.3)

The complex dimension of the superalgebra is (m + n)2 − 1. Elements with B = 0 and
C = 0 are called even or bosonic, while those with A = 0 and D = 0 are termed odd
or fermionic. The even subalgebra is sl(m;C) ⊕ sl(n;C) ⊕ C. In what follows we deal
specifically with m = 3 and n = 2. We comment on the real form of interest below.

In the principal embedding of sl(2|1) in sl(3|2) [12, 13], the even-graded sector of the
superalgebra is decomposed into the sl(2) generators, Li, one spin 1 multiplet, Ai, one spin
2 multiplet, Wm, and a spin 0 element, J . By spin we mean the sl(2) spin, S. Within
each multiplet the indices range from −S to S, giving a total of 3 + 3 + 5 + 1 = 12 bosonic
generators. This structure is encoded in the commutation relations

[Li, Lj ] = (i− j)Li+j , [Li, Aj ] = (i− j)Ai+j , [Li,Wm] = (2i−m)Wi+m . (B.4)

The remaining non-vanishing commutators read

[Ai, Aj ] = (i− j)Li+j , [Ai,Wm] = (2i−m)Wi+m ,

[Wm,Wn] = −1
6(m− n)(2m2 + 2n2 −mn− 8)(Lm+n +Am+n) .

(B.5)

Therefore, the bosonic part of the sl(3|2) algebra is sl(3)⊕ sl(2)⊕ u(1), where the sl(3) is
generated by (Li + Ai)/2 together with Wm, while the sl(2) corresponds to (Li − Ai)/2.
The latter factor should not be confused with the “gravitational” sl(2) spanned by Li. Of
course, the Abelian generator is J . In turn, the odd-graded elements consist of two spin
1/2 multiplets, Hr and Gr, and two spin 3/2 multiplets, Ts and Ss;

[Li, Gr] =
(
i

2 − r
)
Gi+r , [Li, Hr] =

(
i

2 − r
)
Hi+r ,

[Li, Ss] =
(3i

2 − s
)
Si+s , [Li, Ts] =

(3i
2 − s

)
Ti+s .

(B.6)

The number of fermionic generators is 2+2+4+4 = 12. Their U(1) charge assignments are

[J,Gr] = Gr , [J,Hr] = −Hr , [J, Ss] = Ss , [J, Ts] = −Ts . (B.7)

Additionally, they satisfy

[Ai, Gr] = 5
3

(
i

2 − r
)
Gi+r + 4

3Si+r , [Ai, Hr] = 5
3

(
i

2 − r
)
Hi+r −

4
3Ti+r , (B.8)

[Ai, Ss] = 1
3

(3i
2 − s

)
Si+s −

1
3

(
3i2 − 2is+ s2 − 9

4

)
Gi+s ,

[Ai, Ts] = 1
3

(3i
2 − s

)
Ti+s + 1

3

(
3i2 − 2is+ s2 − 9

4

)
Hi+s ,
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[Wm, Gr] = −4
3

(
m

2 − 2r
)
Sm+r , [Wm, Hr] = −4

3

(
m

2 − 2r
)
Tm+r , (B.9)

[Wm, Ss] = −1
3

(
2s2 − 2sm+m2 − 5

2

)
Sm+s

− 1
6

(
4s3 − 3s2m+ 2sm2 −m3 − 9s+ 19

4 m
)
Gm+s ,

[Wm, Ts] = 1
3

(
2s2 − 2sm+m2 − 5

2

)
Tm+s

− 1
6

(
4s3 − 3s2m+ 2sm2 −m3 − 9s+ 19

4 m
)
Hm+s ,

together with the anti-commutation relations

{Gr, Hs} = 2Lr+s + (r − s)J , (B.10)

{Gr, Ts} = −3
2Wr+s + 3

4(3r − s)Ar+s −
5
4(3r − s)Lr+s ,

{Hr, Ss} = −3
2Wr+s −

3
4(3r − s)Ar+s + 5

4(3r − s)Lr+s ,

{Sr, Ts} = −3
4(r − s)Wr+s + 1

8

(
3s2 − 4rs+ 3r2 − 9

2

)
(Lr+s − 3Ar+s)

− 1
4(r − s)

(
r2 + s2 − 5

2

)
J .

Notice that the elements Li, J , Hr and Gr generate sl(2|1) ⊂ sl(3|2), while osp(1|2) ⊂
sl(2|1) is spanned by Li and (Hr +Gr)/

√
2.

B.2 Matrix representation

For convenience, we have chosen to work in a representation where all matrices are real
and satisfy

L†i = (−1)iL−i , A†i = (−1)iA−i , W †m = (−1)mW−m , (B.11)

and
H†r = (−1)r+

1
2G−r , T †s = (−1)s+

1
2S−s . (B.12)

The generators in this basis are [13]

L1 =


0 0 0 0 0√
2 0 0 0 0

0
√

2 0 0 0
0 0 0 0 0
0 0 0 1 0

 , L0 =


1 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 1

2 0
0 0 0 0 −1

2

 , (B.13)

A1 =


0 0 0 0 0√
2 0 0 0 0

0
√

2 0 0 0
0 0 0 0 0
0 0 0 −1 0

 , A0 =


1 0 0 0 0
0 0 0 0 0
0 0 −1 0 0
0 0 0 −1

2 0
0 0 0 0 1

2

 , (B.14)
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W2 =


0 0 0 0 0
0 0 0 0 0
4 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , W1 =


0 0 0 0 0√
2 0 0 0 0

0 −
√

2 0 0 0
0 0 0 0 0
0 0 0 0 0

 , (B.15)

W0 =



2
3 0 0 0 0
0 −4

3 0 0 0
0 0 2

3 0 0
0 0 0 0 0
0 0 0 0 0

 , J =


2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 3 0
0 0 0 0 3

 , (B.16)

G 1
2

=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
2 0 0 0 0
0
√

2 0 0 0

 , H 1
2

=


0 0 0 0 0
0 0 0

√
2 0

0 0 0 0 2
0 0 0 0 0
0 0 0 0 0

 , (B.17)

S 3
2

=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−3 0 0 0 0

 , S 1
2

=


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0
√

2 0 0 0

 , (B.18)

T 3
2

=


0 0 0 0 0
0 0 0 0 0
0 0 0 −3 0
0 0 0 0 0
0 0 0 0 0

 , T 1
2

=


0 0 0 0 0
0 0 0 −

√
2 0

0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

 . (B.19)

B.3 The real form su(2, 1|1, 1)

The superalgebra su(2, 1|1, 1) ⊃ su(2, 1)⊕su(1, 1)⊕iR is defined as the set of supertraceless
5× 5 supermatrices M satisfying

M †K +KM = 0 , (B.20)

where K is a non-degenerate Hermitian form of signature (2, 1|1, 1). One can check that
in our representation of sl(3|2) the generators

Li, Ai, iWm, iJ, (B.21)

and

eiπ/4 (Hr +Gr) , e−iπ/4 (Hr −Gr) , e−iπ/4 (Ts + Ss) , eiπ/4 (Ts − Ss) , (B.22)
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satisfy the above property with

K =


0 0 −1 0 0
0 1 0 0 0
−1 0 0 0 0
0 0 0 0 i

0 0 0 −i 0

 . (B.23)

Notice that K has the correct eigenvalues. Therefore, these particular combinations of
generators, with the above pre-factors included, form a basis for the real superalgebra
su(2, 1|1, 1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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