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1 Introduction

Scattering amplitudes are among the central objects of interest in quantum field theories
(QFT). On the one hand, they are the building blocks for scattering cross sections, which
are the crucial theoretical input for phenomenological studies of high-energy particle colli-
sions. On the other hand, they exhibit intriguing mathematical properties which provide
us an opportunity to understand fundamental structure of QFTs. The coupling constants
of the Standard Model are small in the high-energy regime, which implies that the scatter-
ing amplitudes can be consistently approximated by their perturbative expansion. Beyond
the leading order in the expansion, the amplitudes are represented as sums of Feynman
integrals with increasing number of loops. Only one-loop integrals are known for arbi-
trary scattering processes [1–3]. Evaluation of Feynman integrals with two or more loops
is an open problem and an active area of studies in theoretical physics and mathematics.
While two-loop integrals for many 2→ 2 scattering processes have been already obtained
(for a recent review see [4, 5]), 2 → 3 processes are on the current frontier of research.
Massless Feynman integrals play a special role in QFT. The most abundantly produced
particles in hadron collisions are the partons of quantum chromodynamics (QCD): gluons
and quarks. Both can be treated as massless at sufficiently high energies. On a formal
side, mathematical structure of QFT is more transparent in the absence of (spontaneously)
broken symmetries.

A large number of Feynman integrals contributing to scattering amplitudes can be
reduced to a smaller set of master integrals with the help of integration-by-parts iden-
tities [6]. It is a formidable challenge for multi-scale processes, and a number of novel
ideas and algorithms has been developed to tackle integral reduction of five-particle pro-
cesses [7–18]. Thanks to the advances in integral reduction and functional reconstruction
techniques [8, 9, 19], we have witnessed a tremendous progress in calculation of two-loop
five-particle amplitudes. All planar five-point QCD helicity amplitudes have been obtained
in [17, 20–25]. The first results for non-planar five-point amplitudes were obtained in
N = 4 super-Yang-Mills theory [26, 27] and in N = 8 supergravity [28, 29], followed by the
full-color five-gluon amplitude with all positive helicities [30]. Also the full-color six-gluon
all-plus helicity amplitude was obtained in [31]. Important progress has been made in eval-
uation of five-point amplitudes and integrals with one massive leg [32–34]. The first cross
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section computation of a 2→ 3 process was carried out in [35], where the planar two-loop
amplitudes for the qq̄ → γγγ process were evaluated on a small set of phase space points
to construct an interpolating function.

The master integrals for massless five-point scattering processes have been a subject
of extensive studies in recent years. The method of differential equations (DE) [36–40] in
their canonical form [41–45], and systematic understanding of the transcendental functions
appearing in calculations of multi-scale Feynman integrals [46–50] proved to be indispens-
able to obtain analytic results for five-point massless master integrals for planar [51–53]
and non-planar [27, 30, 54–56] topologies. Differential equations in canonical form provide
a natural framework for expressing master integrals in terms of functions of uniform tran-
scendental (UT) weight order by order in the dimensional regulator. It is advantageous,
both for analyzing analytic structure of scattering amplitudes and for their efficient nu-
merical evaluations, to have a good grasp on the analytic understanding of the relevant
space of transcendental function. Finding a minimal set of transcendental functions that
is sufficient to express all master integrals is essential for deriving compact analytic rep-
resentations of scattering amplitudes and studying their asymptotic behavior in singular
limits (soft, collinear, high-energy, etc.). Successful applications of modern semi-numerical
approaches to analytic reconstruction of amplitudes [8, 9, 17, 21, 23, 25] rely to a large
extent on the knowledge of this set. At the same time, the representation of amplitudes in
terms of a minimal set of transcendental functions achieves the efficiency required in phe-
nomenological applications, where they have to be numerically evaluated on huge samples
of phase space points. In the context of five-particle scattering we refer to this basis set as
pentagon functions.

For planar massless five-point integrals, a set of pentagon functions was constructed
in [53] and a reference implementation of their numerical evaluation was provided. For
the scattering processes involving solely QCD partons, only planar Feynman integrals con-
tribute in the leading-color approximation. Obtaining complete NNLO predictions and
assessing the accuracy of this approximation requires calculation of amplitudes involving
non-planar Feynman integrals. The scattering processes with photons in the final state also
involve non-planar contributions originating from closed fermion loops, which in general
cannot be considered subleading. The knowledge of the full set of pentagon functions is
vital for obtaining scattering amplitudes for these classes of processes. In this work, we
construct a basis set of pentagon functions that is sufficient to express all planar and non-
planar massless five-point two-loop master integrals in any physical scattering channel. We
consider series expansion of the master integrals in the dimensional regulator up to the or-
der sufficient for calculation of two-loop hard functions and next-to-next-to-leading order
(NNLO) cross sections. The pentagon functions manifestly posses only physical branch
cuts. In particular, they are branch-cut-free in the whole physical phase space and do
not require analytic continuation. We find explicit representations of pentagon functions
which admit efficient and stable numerical evaluations, and we implement the latter in a
C++ library (section 7.2). In addition to extending the set of pentagon functions to the
non-planar sector, at the same time we reconsider the analysis of the planar sector car-
ried out in [53]. The planar subset of pentagon functions presented in the current work
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is explicitly closed under permutations of external momenta and involves a much smaller
set of transcendental constants. Furthermore, the numerical evaluation of the pentagon
functions is significantly improved both in speed and precision. Thus, for the first time,
we provide an implementation that is immediately applicable to computations of NNLO
cross sections of any scattering process involving five massless particles.

To find a minimal set of pentagon functions, we follow a constructive approach, which
relies almost entirely on the information contained in the canonical differential equa-
tions [27, 53–58]. We consider the DEs for the planar pentagon-box, hexagon-box, double
pentagon, and the one-loop pentagon integral topologies (see section 3) in all 5! permu-
tations of external momenta. We solve each DE in terms of iterated integrals [49] with
an initial point X0 in the physical scattering region (section 4). To completely fix the
solutions of DEs one needs to provide the initial values — values of the master integrals
at X0. Building on the results of [30, 59], we obtain a complete set of the initial values of
all DEs at X0 from the requirement of absence of unphysical singularities and identify a
generating set of 19 algebraically-independent transcendental constants. We then employ
the shuffle algebra of iterated integrals (see e.g. [48]) to find a set of linear-independent
irreducible iterated integrals up to transcendental weight four in section 5. We evaluate
the iterated integrations up to weight two in terms of logarithms and dilogarithms, and we
derive one-fold integral representations [53, 60] for the iterated integrals of weight three
and weight four. In this way, we find expressions for all master integrals in any scattering
channel sidestepping a difficult problem of analytic continuation. The obtained analytic
expressions allow us to perform a detailed analysis of their behavior in singular limits. As
an example, in section 6 we investigate the behavior of pentagon functions on boundaries
of the physical phase space where all five momenta belong to a three-dimensional sub-
space, but none of the external momenta are soft or collinear. Confirming the observation
of [59], we find that certain weight three and weight four pentagon functions contributing
to non-planar master integrals are divergent on these boundaries.

All results of the paper are made available through data files and can be explored with
the Mathematica package presented in section 7. We elaborate on the implementation
details of pentagon function numerical evaluation by the C++ library and demonstrate its
performance. In section 8, we discuss validation of our results, and we conclude in section 9.

2 Kinematics

We study the scattering of five massless particles in four-dimensional Minkowski space-
time. The particles momenta pi are subject to momentum conservation

∑5
i=1 pi = 0, and

on-shell conditions p2
i = 0. We parametrize points X of the physical phase space as

X = (v1, v2, v3, v4, v5; ε5) := (s12, s23, s34, s45, s15; 4 i ε(p1, p2, p3, p4)) , (2.1)

where sij := (pi + pj)2 are the Mandelstam invariants, and ε(·, ·, ·, ·) is the fully anti-
symmetric Levi-Civita symbol. The parity-odd invariant ε5 is related to the determinant
of the Gram matrix G(p1, p2, p3, p4) as

∆ := (ε5)2 = detG(p1, p2, p3, p4) = det {2 pi · pj}, i, j ∈ {1, 2, 3, 4}. (2.2)
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(a) pentagon. (b) planar pentagon-box.

(c) non-planar hexagon-box. (d) non-planar double pentagon.

Figure 1. All integral topologies with the maximal number of denominators from each integral
family considered in this work. Momenta and propagator indices are shown for the standard per-
mutation σ0. All lines are massless, and all external momenta are incoming. The numbering of the
denominators corresponds to equation (3.2).

In the physical phase space ∆ < 0 [61], so it is convenient to define

δ := Im(
√

∆) = Im(ε5), (2.3)

such that δ ∈ R. It is worth noting that although |δ| is not algebraically independent from
vi, the sign of δ is necessary to fully specify a point in the physical phase space.

Depending on the problem at hand, one can choose different parametrizations of the
scattering kinematics (see e.g. appendix of [53]). Our choice of the parametrization in
equation (2.1) is motivated by the fact that X transforms linearly upon permutations of
momenta pi.

3 Integral topologies

We consider all Feynman integral topologies required in computation of two-loop scattering
amplitudes of five massless particles. There are four topologies, see figure 1. Their legs
are decorated with particle labels what we call the topology permutation. To regularize
the divergences of loop integrals we employ dimensional regularization and extend the
integration measure to D = 4 − 2ε dimensions. We define the integral families Gτ,σ for
each topology τ in permutation σ as

Gτ,σ [~a] := eεLτγE
(
µ2
)εLτ ∫ (Lτ∏

i=1

dD`i
iπ

D
2

)
1
~D
~a

τ,σ

, ~D
~a

τ,σ =
∏
i

Dai
τ,σ i (3.1)
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where γE is the Euler-Mascheroni constant,1 Lτ is a number of loops in topology τ , ~Dτ,σ is
an ordered set of inverse propagators of integral topology τ in permutation σ, the exponents
ai ∈ Z for i ∈ [1, 8] and ai ∈ Z≤0 for i ∈ [9, 11], and µ2 is an arbitrary regularization scale,
which preserves the integer dimensions of the integrals. In this paper, we choose the units
of energy such that µ = 1. The explicit dependence on the regularization scale can then
be restored by the dimensional analysis.

For each of the four integral topologies we choose the standard permutation σ0 =
(1, 2, 3, 4, 5), and define the sets ~Dτ,σ0 as

~Da,σ0
~Db,σ0

~Dc,σ0
~Dd,σ0

1 (`1)2 (`1)2 (`1)2 (`1)2

2 (`1 + p1)2 (`1 + p1)2 (`1 − p1)2 (`1 − p1)2

3 (`1 + p1 + p2)2 (`1 + p1 + p2)2 (`1 − p1 − p2)2 (`1 − p1 − p2)2

4 (`1 − p4 − p5)2 (`1 − p4 − p5)2 (`1 + p4 + p5)2 (`2)2

5 (`1 − p5)2 (`2)2 (`2)2 (`2 + p4 + p5)2

6 (`2 − p4 − p5)2 (`2 + p5)2 (`2 + p5)2

7 (`2 − p5)2 (`1 − `2)2 (`1 − `2)2

8 (`1 − `2)2 (`1 − `2 + p4)2 (`1 − `2 + p3)2

9 (`1 − p5)2 (`2 − p1)2 (`1 + p5)2

10 (`2 + p1)2 (`2 − p1 − p2)2 (`2 − p1)2

11 (`2 + p1 + p2)2 (`2 + p4 + p5)2 (`2 + p1 − p2)2

(3.2)

This choice is illustrated in figure 1, where we show the top topology (the topology with
maximal number of denominators) for each integral family in the standard permutation σ0.
The denominator-variable sets in other permutations σ = (σ1, . . . , σ5) ∈ S5 are generated
by the action of the symmetric group S5 on the set of external momenta pi,

σ(pi) = pσ(i) = pσi . (3.3)

The Feynman integrals from each family Gτ,σ in equation (3.1) form a linear vector
space. For each Gτ,σ (separately) we choose a set of basis elements, which are independent
under the linear relations generated from integration-by-parts identities [6]. We refer to
these sets as master integrals. One can further decrease the number of master integrals in
∪τ,σGτ,σ by identifying integrals among different topologies and permutations. However, as
we explain in section 5, we find that it is more convenient to resolve these relations together
with the functional relations while constructing a basis of transcendental functions.

A choice of a basis in the vector space Gτ,σ is in general arbitrary. Frequently it is
specified by an ordering relation on the set of exponents ai in equation (3.1) [62] (see
also [63, 64]). However, it was observed in [41] that certain integrals have particularly
nice properties. Following the approach of [54, 56], we choose the master integrals with

1In this normalization γE does not appear in the expressions for integrals.
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constant leading singularities in D dimensions. The differential equation for such integrals
can be cast into the canonical form [41], and the integrals can be expressed as Q-linear
combinations of pure functions with uniform transcendentality (UT). In the following
we call them UT master integrals. We discuss the construction and the solution of the
differential equations in the next section.

4 Differential equations

To obtain analytic expressions for all master integrals from integral families defined in
equation (3.1), we construct the corresponding differential equations [36–40] in the canon-
ical form [41]. The differential equations (DE) for all integral topologies in figure 1 have
been extensively studied in literature. The canonical form of differential equations has
been obtained in [27, 53–56]. The sub-topologies of figure 1 with less than five external
momenta were also studied in [57, 58].

For the double-pentagon topology, we directly use the canonical DE of [56]. For
hexagon-box, planar pentagon-box, and one-loop pentagon topologies we repeat the anal-
ysis of [56] to find master integrals with unit leading singularities in D-dimensions. Their
four-dimensional integrands have d log form.

In this section we provide details of the construction and integration of DEs, which
are necessary for the construction of a basis of transcendental functions in section 5.1.

4.1 Construction of canonical differential equations

We would like to find the analytic expressions for all integral topologies in figure 1 in all
5! permutations. One can think of two different approaches to constructing DE solutions
for all permutations. In the first approach, one would consider a single permutation of
each topology, e.g. the one depicted in figure 1, solve it analytically by the method of
differential equations, and then obtain analytic expressions for all other permutations of
the topology by means of analytic continuation. The latter is a highly nontrivial task for
integrals depending on many scales. In particular, some of the non-planar master integrals
develop discontinuities and even divergences inside the physical region on subvarities of
∆ = 0 without collinear or soft momenta [59]; we discuss this in section 6. In this paper
we follow an alternative approach which was advocated in [53]. We work simultaneously
with all 5! permutations of each topology in figure 1 and consider canonical differential
equations (DE) for each of them

d~fτ,σ = ε dÃτ,σ ~fτ,σ, (4.1a)

dÃτ,σ =
31∑
i=1

a(i)
τ,σ d logWi (4.1b)

where ~fτ,σ is a vector of UT master integrals of topology τ taken in permutation σ. Entries
of the matrices a(i)

τ,σ are rational constants, and {Wi}31
i=1 are letters of the pentagon alpha-

bet [65]. The letters are algebraic functions of the Mandelstam variables. We review the
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Topology τ pentagon pentagon-box hexagon-box double pentagon
# master integrals 10|1 53|8 62|11 88|20

# master integrals on top
topology

0|1 1|2 1|2 3|6

Table 1. Number of parity-even|parity-odd master integrals (a single permutation) in the four
integral topologies defined in figure 1.

pentagon alphabet in appendix A. The matrices of the DE in permutation σ are related to
the DE in the standard permutation σ0 as follows,

dÃτ,σ = σ(dÃτ,σ0) =
31∑
i=1

a(i)
τ,σ0d log σ(Wi) , (4.2)

where σ permutes the external momenta according to (3.3). The pentagon alphabet is
closed under S5 permutations of the external momenta, and the letters of the alphabet
have simple transformation properties. In particular, the set of d logWi integration kernels
forms a linear representation of S5. We refer to appendix A for details. Thus, we find
canonical DEs for all permutations starting with the canonical DE for a single permutation.

The master integrals ~fτ,σ are Lorentz-invariant functions of the five momenta, and by
the definition of the topology permutation we have

~fτ,σ(X) = ~fτ,σ0(σX) , (4.3)

where the action of σ ∈ S5 on the kinematic point X (see equation (2.1)) is induced from
the action of σ on momenta pi by equation (3.3). In addition, for arbitrary η ∈ S5, the
following relation holds,

~fτ,σ(ηX) = ~fτ, ησ(X). (4.4)

The UT master integrals in the standard permutation are related to the integrals
from (3.1) by linear transformations

~fτ := ~fτ,σ0 =
∑
~a

~Tτ [~a]Gτ [~a] . (4.5)

The UT master integrals ~fτ of our basis are split in the parity-even ~f
(+)
τ and the parity-odd

~f
(−)
τ ones.

For the parity-even master integrals the transformation coefficients ~T (+)
τ are rational

functions of the Mandelstam invariants, and for the parity-odd integrals, the coefficients
~T

(−)
τ are in addition proportional to the parity-odd invariant ε5 (see equation (2.1)),

T (+)
τ ∈ Q(v1, . . . , v5), (4.6a)

T (−)
τ ∈ ε5Q(v1, . . . , v5) . (4.6b)

The number of parity-even and parity-odd master integrals (i.e. dimensions of ~f (±)
τ ) are

given in table 1. We provide explicit transformations (4.5) in ancillary files (see section 7.1).
In the next section, we solve simultaneously all 4× 5! differential equations (4.1).
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4.2 Integrating DE and iterated integrals

To integrate DEs (4.1) order-by-order in ε, we define ε-expansions of the UT master inte-
grals as

~fτ,σ =
∑
w≥0

1
ε4−w

~f (w)
τ,σ , τ = penta-box (b), hexa-box (c), double pentagon (d) (4.7a)

~fτ,σ =
∑
w≥0

1
ε2−w

~f (w)
τ,σ , τ = pentagon (a) (4.7b)

where ~f (w)
τ,σ are of uniform transcendental weight w. The ε-expansion of the two-loop master

integrals starts with 1
ε4 pole, and with 1

ε2 pole for one-loop pentagons, i.e. the soft-collinear
pole 1

ε2 per loop order. We omit in the following the topology and permutation labels τ, σ
to avoid bulky notations.

Let us denote a point of the kinematic space by X (2.1). We specify it by the set of
five adjacent Mandelstam invariants and the sign of ε5. We choose an initial point X0 and
integrate the DE along a path γ connecting X0 and X. Thus we express weight-w solutions
at an arbitrary kinematic point X as iterated integrals of the initial values ~f (w′)(X0), i.e.
solutions with w′ ≤ w evaluated at X = X0,

~f (w)(X) =
w∑

w′=0

∫
γ

dÃ . . .
∫
γ

dÃ︸ ︷︷ ︸
w′ integrations

~f (w−w′)(X0) . (4.8)

At weight 0 the previous equation simplifies to ~f (0)(X) = ~f (0)(X0), i.e. it is a constant
vector of rational numbers. Moreover, the vector is the same for all permutations of the
given topology,

~f (0)
τ,σ(X) = ~f (0)

τ,σ0(X0) . (4.9)

Equation (4.8) can be rewritten explicitly as a linear combination of iterated integrals
built upon the pentagon alphabet

~f (w)(X) =
w∑

w′=0

31∑
i1,...,iw′=1

~κ
(w−w′)
i1,...,iw′

[Wi1 , . . . ,Wiw′ ]X0
(X) . (4.10)

The coefficients κ(w−w′) of the linear combination are transcendental constants of weight
w − w′,

κ
(w−w′)
i1,...,iw′

= a(i1)a(i2) . . . a(iw′ ) ~f (w−w′)(X0) . (4.11)

Chen iterated integrals [49] of weight w along the path γ are defined recursively as

[Wi1 , . . . ,Wiw ]X0
(X) =

∫
γ

d logWiw(X ′) [Wi1 , . . . ,Wiw−1 ]
X0

(X ′) (4.12)

with []X0 = 1. The iterated integrals vanish at the initial point X = X0 by construction,

[Wi1 , . . . ,Wiw ]X0
(X0) = 0 , w > 0 . (4.13)

– 8 –



J
H
E
P
1
2
(
2
0
2
0
)
1
6
7

The DE guaranties that only homotopy invariant, i.e. invariant under small deforma-
tions of the integration contour γ, linear combinations of the iterated integrals are present
in the solution (4.10). The iterated integrals are in general multi-valued functions since
they pick up a nontrivial monodromy upon integrating around a pole, i.e. zero locus of an
alphabet letter. Thus we have to specify an analyticity region P0 within which the iter-
ated integrals are single-valued and real-analytic functions. Then the result of the iterated
integration depends only on the end points X and X0 of the integration path γ ⊂ P0.

The iterated integral representation is a powerful tool which enables us to classify the
solutions of the DE within the analyticity domain by doing simple algebraic calculations.
In particular, the iterated integrals satisfy the shuffle algebra relations (see e.g. [48]), which
specify how to rewrite a product of several iterated integrals as a sum of iterated integrals,

[Wi1 , . . . ,Wiw1
]
X0

(X) [Wj1 , . . . ,Wjw2
]
X0

(X) =
∑

[Wk1 , . . . ,Wkw1+w2
]
X0

(X) (4.14)

where we sum over all {k1, . . . , kw1+w2} in the shuffle product {i1, . . . , iw1}� {j1, . . . , jw2}.
After applying the shuffle algebra relations, all polynomial identities among the functions
represented by iterated integrals become linear, and only the trivial combination of the
iterated integrals vanishes. In this way we take into account the functional relations among
the DE solutions.

4.3 Physical region

As we have already mentioned, the iterated integrals (4.10) are not single-valued and real-
analytic at any kinematic point X. We choose the following analyticity domain

P0 : s12, s34, s35, s45 > 0, s13, s14, s15, s23, s24, s25 < 0, ∆ < 0, δ > 0 . (4.15)

It is a half of the physical s12-channel scattering region, i.e. 12 → 345 scattering process.
Fixing signs of the Mandelstam invariants implies that the particle energies are positive and
scattering angles are real. ∆ < 0 implies the reality of momenta (see also equations (2.1)
and (2.2)). In addition, we also fix the branch of the square root

√
∆ by the condition

δ > 0. The boundaries of P0 corresponding to vanishing of one or several sij describe the
soft/collinear limits. The boundary ∆ = 0 of P0 lies inside the physical s12-channel and
splits it into two halves. It corresponds to the kinematics with all five momenta lying in
a three-dimensional hyperplane. Crossing of the ∆ = 0 variety separating Im(ε5) > 0 and
Im(ε5) < 0 regions is not innocuous since the master integrals could diverge there [59].

In the following we work strictly inside P0 (4.15) and classify the solutions of the
DE (4.10) only for X ∈ P0. Since we consider all 5! permutations of each topology, we
can immediately translate our results to any physical scattering region. This, we provide
analytic expressions for the master integrals taken in arbitrary permutation (3.1) through
the whole phase space, see section 5.8.

To completely define the iterated integrals (4.12), we also need to specify an initial
point X0 and an integration path γ. We choose X0 inside P0 (4.15) as follows,

X0 = (v0
1, v

0
2, v

0
3, v

0
4, v

0
5; ε05) = (3,−1, 1, 1,−1; i

√
3) . (4.16)

– 9 –
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This point is invariant under permutations (S2 × S3) /Z2 of “incoming” {1, 2} and “outgo-
ing” {3, 4, 5} particles of the s12-scattering channel that preserve sgn(δ).

Given an arbitrary point X ∈ P0, we evaluate the iterated integrals by choosing the
path γ to be a line segment connecting X0 and X, equation (2.1). We parametrize the
segment γ : t 7→ X(t) as

vi(t) = (1− t) v0
i + t vi, ε5(t) =

√
∆(vi(t)), t ∈ [0, 1] . (4.17)

If we are to avoid the problem of analytic continuation, the integration path γ must never
leave the analyticity domain P0 equation (4.15), i.e. for any X ∈ P0, {X(t)}0≤t≤1 ⊂ P0
must be satisfied. To this end, we note that P0 is not a convex.2 Nevertheless, a weaker
statement holds: a line segment connecting X0 (4.16) with an arbitrary point X ∈ P0 lies
entirely inside P0. We outline the proof in appendix B. Thus, integrating in (4.12) along
the straight lines connecting X0 with any X ∈ P0 we obtain real-analytic single-valued
solutions (4.10) throughout P0.

4.4 Initial values

In order to be able to integrate DEs (4.1), we need to know ε-expansion of all UT master
integrals at the reference point X0 (4.16) — the initial values of the DEs. As we pointed
out in section 4.1, we would like to trade the problem of analytic continuation of the UT
master integrals in the standard permutation σ0 to all possible permutations, for solving
the DEs with initial values at X0 in all 5! permutations:

{~fτ,σ0(X0)}+ analytic continuation of ~fτ,σ0(X) to any physical sij-channel~w�
{~fτ,σ(X0)}σ∈S5

We restrict our consideration to weight w ≤ 4 initial values, i.e. we truncate the ε-
expansion (4.7a) of the two-loop topologies at the finite part, and at O(ε2) for the one-loop
pentagon (4.7b).

Initial values of the DE for two-loop five-point topologies have been extensively studied
previously. Weight-0 initial values ~f (0) are rational numbers. They are enough to construct
symbols [46–48] of the UT master integrals, and are relatively easy to obtain. Calculation
of higher weight initial values is much more tedious. The planar pentagon-box topology
(figure 1b) has been solved in any physical region in [53]. In [54] the initial values for
one permutation of the hexagon-box topology (figure 1c) were evaluated in the Euclidean
region. In [56] the initial values in a physical region for one permutation of the double

2For example, let us consider the following line segment γ parametrized by 0 ≤ t ≤ 1,

X(t) : (v1, v2, v3, v4, v5) =
(

7,−1
2 ,

11
2 , 1,−1

)
+ t
(

0, 0,−47
10 , 5, 0

)
We find ∆(X(t = 0)) = − 87

16 < 0 and ∆(X(t = 1)) = − 231
100 < 0 so the end points of γ belong to P0 (4.15).

However, at the intermediate point ∆(X(t = 1
2 )) = 1323

50 > 0, and the segment does not lie inside the
physical s12-channel.
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pentagon topology (figure 1d) were presented with 50 digits precision. In calculation of
a five-point nonplanar amplitude in [30], the initial values at X0 were computed for all
permutations of all four topologies in figure 1 with 200 digit precision, but they were not
explicitly reported. The initial values have been fixed by requiring the absence of the
unphysical singularities in the DE solutions (4.8), see [53, 54, 66, 67], and special care have
been taken owing to the singular behaviour of the nonplanar Feynman integrals at ∆ = 0.
In the present paper, we publish for the first time the complete set of initial values at X0
(all permutations σ of all four topologies τ).

In [59], by integrating the DEs, the initial values at X0 were transported to a point
XRegge ∈ P0 in the Regge asymptotic regime. In this regime the pentagon alphabet enor-
mously simplifies, which leads to a more simple form of the initial values at XRegge as
compared to X0. The available numerical precision is enough for fitting to a basis of tran-
scendental constants. A small generating set SRegge (see table 2 in [59]) of algebraically
independent over Q transcendental constants was identified, and all initial values at XRegge
were written as polynomials Q[SRegge] graded by the transcendentality degree. These an-
alytic expressions for the initial values at XRegge were transported back to X0 (4.16) by
integrating the DEs (4.1) in terms of multiple polylogarithms (MPLs) [46, 68] and evaluat-
ing the latter with GiNaC [69] with 104 digit precision. In this way the initial values at X0
have been found with at least 9 · 103 digit precision. This precision is enough to identify
the generating set S0 of algebraically independent over Q transcendental constants, see
table 2, and to fit the initial values at X0 to graded polynomials Q[S0]. The analytic form
of the initial values can be found in the data files supplied with the Mathematica package
(see section 7.1).

The set S0 consists of only 19 transcendental constants, which we classify as follows.
We assign the Z≥0 × Z2-charge (or grading) to the constants where the first factor refers
to the transcendentality degree while the second factor Z2 = {+,−} = {even, odd} counts
parity. Then the weight-w initial values f (w,+)

τ,σ (X0) of the parity-even master integrals
are homogeneous polynomials Q[S0](w,+), while the initial values f (w,−)

τ,σ (X0) of the parity-
odd master integrals are homogeneous polynomials Q[S0](w,−). In order to be able to
consistently assign the parity to the initial values we have to introduce two copies of iπ of
opposite parity, i.e. parity-odd iπ and parity-even i ◦π. For example, log(3) + i ◦π carries
charge (1,+) and it is an admissible weight-one initial value of a parity-even UT master
integral; π ◦π+ i Im Li2

(
e

iπ
3
)
carries charge (2,−) and it is an admissible weight-two initial

value of a parity-odd UT master integral. Obviously, iπ and i ◦π are numerically identical,
and we are allowed to identify π2 = (◦π)2. We notice that all parity-odd constants are pure
imaginary, and all parity-even constants are real (except for i ◦π). The reality properties
of the transcendental constants imply that the initial-values of the parity-even master
integrals are real and the initial-values of the parity-odd UT master integrals are pure
imaginary modulo i ◦π,

Im ~f (w,+)
τ,σ (X0) ∈ ◦

πQ[S0](w−1,+) , (4.18a)

Re ~f (w,−)
τ,σ (X0) ∈ i ◦πQ[S0](w−1,−) . (4.18b)
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Weight even (+) odd (−)

1 log(2), log(3), i ◦π iπ

2 Li2
(

2
3

)
i Im Li2

(
1
2 + i

√
3

2

)
3 Li3

(
2
3

)
,Li3

(
1
4

)
, ζ3 i Im Li3

(
i√
3

)
, i Im Li3

(
1 + i

√
3
)

4 Li4
(

1
4

)
,Li4

(
1
3

)
,Li4

(
1
2

)
, i Im Li4

(
1
2 + i

√
3

2

)
, i Im Li4

(
i√
3

)
,

Li4
(

2
3

)
,Li4

(
3
4

)
i Im

[
6 Li4

(
1− i√

3

)
+ 6 Li4

(
1 + i

√
3
)

+ 5 Li2,2
(

1
2 + i

√
3

2

)]
Table 2. The basis S0 of algebraically independent over Q transcendental constants specifiying
the initial values {~f (w)

τ,σ (X0)} at weights w = 0, 1, . . . , 4. The elements of S0 are charged by Z≥0
representing their transcendental weight, and by Z2 = {+,−} = {even, odd} representing their
parity. We introduced i ◦

π which equals numerically to iπ but carries even parity. S(w,±)
0 denotes

elements of S0 with (w,±) charge.

If there existed an Euclidean region for all master integrals Gτ [~a] (3.1) where they take
real values, then both parity-even and parity-odd UT master integrals would also be real
in that region. Then, by analytic continuation from the Euclidean region to a physical
scattering region the parity-odd integrals ~f (−)

τ would become imaginary up to the contri-
butions from discontinuities, which are proportional to iπ. This would be in agreement
with equation (4.18). However, non-planar integrals from the double-pentagon topology
(figure 1d) do not have an Euclidean region and they are complex-valued everywhere. Nev-
ertheless, we find the observed correspondence between the reality properties of the initial
values and the parity of the UT master integrals very intriguing.

4.5 Parity of the UT master integrals

As we discussed in the previous section, the initial values at X0, or equivalently the tran-
scendental numbers κ in equation (4.11), obey Z≥0×Z2-grading. The same is true for the
iterated integrals (4.12). Indeed, counting of the parity-odd letters (see appendix A) in the
iterated integral [Wi1 , . . . ,Win ] corresponds to the Z2-grading, and the number of iterated
integrations (weight) corresponds to Z≥0-grading. Both gradings are compatible with the
shuffle algebra (4.14). It then follows that the UT master integrals ~f

(w)
τ,σ (X) inherit the

Z2-grading of the initial values and iterated integrals. This fact allows us to establish an
equivalence between the Z2-grading and the parity of the UT master integrals ~f (±)

τ,σ implied
by the parity-conjugation properties of the coefficients ~Tτ in definition (4.5).

We would like to emphasize that this compatibility is not trivial. Indeed, had we not
introduced two copies of iπ to represent the initial values, the equivalence would not hold.
Moreover, if taken literally, the parity conjugation maps the initial point X0 (4.16) and the
path γ of an iterated integral (4.12) out of the chosen analyticity region P0 into a region
with δ < 0 in addition to parity conjugation of the d log-kernels (see appendix A). The
relations between parity-conjugated iterated integrals could then be established through
analytic continuation. As discussed in the previous section, our strategy is to avoid analytic
continuation in favor of considering momenta permutations of the master integrals, so we
do not pursue this approach in what follows.
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5 Classification of functions

Upon integration of DEs (4.1) for all four topologies τ , each in 5! permutations, we obtain
a number of iterated integrals (4.10) which are not independent. We would like to reduce
them to a minimal set of functions which are sufficient to express all solutions ~f (w)

τ,σ up to
weight w ≤ 4. Before we delve into the classification procedure, it is worth noting that from
(11+61+73+108)×5! UT master integrals involved in DEs (4.1) only 1865 two-loop and 52
one-loop UT master integrals are linear-independent under the topological identifications
among different topologies and permutations of integrals Gτ,σ[~a] (see equation (3.1)) [30].
These relations in the set of UT master integrals are trivialized by solving their DEs in
terms of iterated integrals. For this reason, we do not explicitly implement them in our
classification. In this section, we find the linear-independent solutions at weights w ≤ 4 and
show that their number is smaller than the one obtained from the topological analysis.3

We then further reduce the set of linear-independent iterated integrals to a smaller set
of irreducible iterated integrals, i.e. the ones which cannot be represented as products of
lower-weight iterated integrals. We claim that the latter set is minimal, and we denote it
as pentagon functions.

5.1 Classification strategy

Let us briefly outline our classification strategy. We will assume that the solutions vanish
at X = X0, or in other words we consider ~f

(w)
τ,σ (X) − ~f

(w)
τ,σ (X0). We proceed recursively

in weight. At weights 1 ≤ w1 < w we have already identified {I(w1)
i (X)}Lw1

i=1 the minimal
irreducible sets of iterated integrals. Let {I(w)

1 , . . . , I(w)
Nw
} be the set of all iterated inte-

grals (4.10) — {~f (w)
τ,σ (X)}τ=(a),(b),(c),(d)

σ∈S5
. We rewrite them schematically in the following

form splitting out the term I(w) with the maximal number of iterated integrations,

I(w) = I(w) +
w−1∑
w′=1

∑
a

κ(w−w′)
a R(w′)

a . (5.1)

In other words, I(w) is the symbol of I(w); κ(w−w′)
a are transcendental constants of weight

w−w′ and R(w′) represents Q-linear combination of weight-w′ iterated integrals. We mod
out lower-weight iterated integrals, i.e. we apply the symbol map [46–48] and choose the
subset of Mw ≤ Nw linear independent

I
(w)
i1

, . . . , I
(w)
iMw

(5.2)

in the set {I(w)
1 , . . . , I

(w)
Nw
}. Then we need to eliminate reducible iterated integrals from (5.2),

i.e. iterated integrals which are products of lower weight iterated integrals. In order to
achieve it, we consider symbols of weight-w products of lower weight iterated integrals,
{I(w1)

i }Lw1
i=1 with w1 < w, already classified at the previous steps of our procedure, e.g.

I(w−1) × I(1) , I(w−2) × I(2) , I(w−2) × I(1) × I(1) , . . . (5.3)

3It is expected that this redundancy should be lifted by considering higher orders in ε-expansion (4.7a).
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Weight 1 2 3 4
# iterated integrals mod lower

weights (symbols)
10|0 70|9 460|22 1185|277

# irreducible iterated integrals 10|0 15|9 90|21 316|156

Table 3. Number of the parity even|odd independent iterated-integral solutions of DEs (4.1) for
all four topologies and all 5! orientations combined.

which are linear independent by induction. Using the shuffle algebra (4.14) we rewrite
them as sums and complement them with the symbols (5.2). The resulting set of symbols
is overcomplete. Then we choose a basis in their Q-linear span. We include the maximal
possible number of the products (5.3) in the basis and complement them by a subset
of (5.2), {I(w)

j1
, . . . , I

(w)
jLw
} with Lw ≤ Mw. The linear span of the subset does not contain

products of lower weights, i.e. it is irreducible. Let us now relabel the iterated integrals
by 1, . . . , Lw. Complementing the symbols to the complete solutions of the DEs by means
of (5.1) we would like to choose

I(w)
1 , . . . , I(w)

Lw
(5.4)

as an irreducible set of iterated integrals at weight w. However, it could happen that not
all weight-w solutions of the DE are expressible in terms of (5.4) and products of already
classified lower-weight iterated integrals, {I(w1)

i }Lw1
i=1 with w1 < w. We could encounter a

solution J of the DE which is expressible in the constructed basis at the symbol level, but
it also contains “beyond-the-symbol” terms,

J =
Lw∑
k=1

bkI
(w)
k +

L1∑
n=1

Lw−1∑
m=1

bn,mI(1)
n I(w−1)

m + . . .︸ ︷︷ ︸
products of lower weights

+
w−1∑
w′=1

∑
a

κ(w−w′)
a R̄(w′)

a . (5.5)

Here bk, bn,m, . . . are rational numbers, and R̄
(w′)
a is a Q-linear span of weight-w′ with

w′ < w iterated integrals which have not been included in the weight-w′ basis of iterated
integrals at the previous steps of the classification. Then to classify weight-w iterated
integrals we would need to reconsider the classification of all lower weights. Fortunately,
this complication can be very easily resolved. We find that it is sufficient to only extend
the set of weight-1 iterated integrals {I(1)

i }
L1
i=1. These extra integrals do not appear in the

weight-1 solutions ~f
(1)
τ,σ (see equation (5.13)). But their powers and their products with

{I(w1)
i }Lw1

i=1 , w1 < w, take into account all R̄(w′)
a terms in equation (5.5).

As a result of this classification, we find that we need 24 weight-2 functions, 111
weight-3 functions and 472 weight-4 functions to express all UT master integrals for all
four topologies in all orientations (up to weight 4), see table 3. This counting of pentagon
functions should be compared with the counting of integrable symbols summarized in
table 1 from [65]. Predictably, integrating the DEs we find considerably fewer solutions
than one obtains by imposing the second-entry restriction, inspired by the Steinmann
relations [70, 71], on the space of integrable symbols. In the rest of this section we elaborate
the details of the pentagon function classification.
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5.2 Parity-even letters of the alphabet in the analyticity region

The iterated integrals (4.12) involve d log kernels d log(Wi), i = 1, . . . , 31, so while imple-
menting integrations in the region P0 (4.15) we need to keep track of possible singularities
of d log(Wi). Let us consider first the parity-even letters of the alphabet (A.2). The
parity-odd ones are discussed in section 5.3.2.

Most of the parity-even letters have definitive sign within P0,

W1 = s12 > 0 W16 = −s13 > 0
W2 = s23 < 0 W11 = s34 + s35 > 0 W17 = −s24 > 0
W3 = s34 > 0 W13 = −s35 − s45 < 0 W18 = −s35 < 0
W4 = s45 > 0 W14 = s45 − s23 > 0 W19 = −s14 > 0
W5 = s15 < 0 W15 = s15 − s34 < 0 W20 = −s25 > 0
W6 = s34 + s45 > 0
W8 = −s13 − s14 > 0 W24 = −s13 − s15 > 0
W9 = s45 − s13 > 0 W25 = s23 + s25 < 0

(5.6)

and W31 = ε5 ≡ i δ with δ > 0 inside P0. The corresponding d log(Wi) kernels are real-
analytic inside P0 and integration along a path γ, γ ⊂ P0, is well defined. Missing in
equation (5.6) are the parity-even letters

W7 = v4 + v5, W21 = v3 + v4 − v1 − v2,

W10 = v2 + v3, W22 = v4 + v5 − v2 − v3,

W12 = v2 − v5, W23 = v1 + v5 − v3 − v4,

(5.7)

which all vanish at the initial point X0 (4.16). Since they are linear in the Mandelstam
invariants, along any line segment γ = [X0;X] parametrized by 0 ≤ t ≤ 1 (see equa-
tion (4.17)),

Wk(X(t)) = bk(X) t , k ∈ α := {7, 10, 12, 21, 22, 23} , (5.8)

where bk = bk(X) is a constant along the path γ. Thus, either d logWk ≡ 0 or d logWk =
d log t. In the latter case, the d log kernel has a simple pole at t = 0, and we should verify
that the corresponding integration in equation (4.12) is well-defined.

5.3 Weight-one solutions

Weight-1 solutions of DEs (4.1) have a very simple form. According to (4.8)

~f (1)
τ,σ(X) =

31∑
i=1

a(i)
τ,σ
~f (0)
τ [Wi]X0

(X) + ~f (1)
τ,σ(X0) . (5.9)

The previous equation involves only letters {Wi}5i=1 ∪ {Wi}20
i=16 , i.e. the vector ~f

(0)
τ of

rational numbers (see (4.9)) is annihilated by the components of dÃτ,σ (4.1) corresponding
to the remaining letters,

a(i)
τ,σ
~f (0)
τ = 0 , i = 6, . . . , 15, 21, . . . , 31 . (5.10)
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The one-fold integrals [Wi]X0
(X) from (5.9) are calculated straightforwardly, see (4.12)

and (4.16). For example,

[W1]X0
(X) = log(s12)− log(3) , [W2]X0

(X) = log(−s23) . (5.11)

The last term in (5.9) is in the Q-span of log(3), i ◦π (see table 2). In fact, the transcendental
constant log(3), which comes from the one-fold integrations and from weight-1 initial values,
cancels out in (5.9).

The spurious transcendental constants related to the specific choice of X0 (4.16) is one
of the reasons why we prefer not to evaluate iterated integrals as in (5.11). Instead, we
introduce a set of the following ten functions {g(1)

1,i }10
i=1,

g
(1)
1,1 = log(s12) , g

(1)
1,2 = log(−s23) , g

(1)
1,3 = log(s34) ,

g
(1)
1,4 = log(s45) , g

(1)
1,5 = log(−s15) , g

(1)
1,6 = log(−s13) ,

g
(1)
1,7 = log(−s24) , g

(1)
1,8 = log(s35) , g

(1)
1,9 = log(−s14) , g

(1)
1,10 = log(−s25) .

(5.12)

They are well-defined in the analyticity region P0 (4.15). The arguments of logarithms
in (5.12) are equal up to a sign to the letters {Wi}5i=1 ∪ {Wi}20

i=16, and they are listed in
the first and the third columns of (5.6). We can assign even parity to {g(1)

1,i }10
i=1. Then

we represent functions (5.12) as one-fold integrals with the initial point X0, resolve the
one-fold integrals in terms of functions (5.12), and substitute the former in (5.9). In this
way, we find weight-1 solutions ~f (1,±)

τ,σ (5.9) in the parity-even and parity-odd sectors

~f (1,+)
τ,σ (X) =

10∑
i=1

~bτ,σ,i g
(1)
1,i (X) + i ◦π~cτ,σ , (5.13a)

~f (1,−)
τ,σ (X) = 0, (5.13b)

where ~b, ~c are vectors of rational numbers. Of course, at weight 1 the two approaches are
completely equivalent, but at higher weights the second one is more practical.

5.3.1 Extra weight-one functions

As we have noted at the end of section 5.1, we need to supplement functions (5.12), ap-
pearing in the weight-1 solutions (5.13), by some extra weight-1 functions that are needed
to describe higher weight solutions of the DEs.

Let us start with the parity-even functions. We define ten functions which are loga-
rithms of the remaining arguments from (5.6)

g
(1)
2,1 = log(s34 + s45) , g

(1)
2,2 = log(−s13 − s14) , g

(1)
2,3 = log(s45 − s13) ,

g
(1)
2,4 = log(s34 + s35) , g

(1)
2,5 = log(s35 + s45) , g

(1)
2,6 = log(s45 − s23) ,

g
(1)
2,7 = log(s34 − s15) , g

(1)
2,8 = log(−s13 − s15) , g

(1)
2,9 = log(−s23 − s25) ,

g
(1)
2,10 = log(W31) = log( i δ) .

(5.14)
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a = 0

a > 0

a < 0

∆ < 0

+2iπ

a = 0

a > 0

a < 0

∆ < 0

−2iπ

Figure 2. Definition of the single-valued logarithms of the parity odd letters in the physical region
∆ < 0 (shaded). The discontinuity at ak = 0 is added or subtracted depending on the direction of
the branch-cut crossing.

They are well-defined everywhere inside P0 (4.15). Let us note that we do not introduce
logarithms of letters (5.7) which do not have definitive signs in P0. We assign positive
parity to {g(1)

2,i }10
i=1.

We will also need parity-odd weight-1 functions. They are one-fold integrals (4.12) of
the parity-odd letters {Wi}30

i=26 along a path γ connecting X0 and X ∈ P0,

g
(1)
3,k(X) = [W25+k]X0

(X) =
∫
γ

d logW25+k , k = 1, . . . , 5. (5.15)

In the next section, we explain that they are well-defined and single-valued within P0 (4.16)
and provide explicit expressions (5.21), (5.22) for them.

5.3.2 One-fold iterated integrals of the parity odd letters

The parity odd-letters {Wi}30
i=26 have the following form (see equations (A.1) and (A.2)),

W25+k(X) = ak − i δ
ak + i δ = exp( iϕk(X)) , k = 1, . . . , 5 (5.16)

with ε5 = i δ and δ > 0 and real ak inside P0 (4.16), so they are pure phases (A.3). Then
integrals (5.15) evaluate to

g
(1)
3,k(X) = iϕk(X)− iϕk(X0) (5.17)

provided the phases ϕk do not have discontinuities inside P0. At the initial point X0 (4.16)
we have δ =

√
3 and

a1(X0) = a2(X0) = a3(X0) = 3 , a4(X0) = a5(X0) = −1 , (5.18)

then choosing the principal branch4 of the logarithm we find

ϕ1(X0) = ϕ2(X0) = ϕ3(X0) = −π3 , ϕ4(X0) = ϕ5(X0) = 2π
3 . (5.19)

4We define the principal branch of the logarithm such that log
(
e iϕ) = iϕ for −π < ϕ ≤ π.
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Let us now define continuous phases ϕk (5.16) inside P0. The phase ϕk never takes
values 0,±2π,±4π, . . .. Indeed,

ReW25+k = a2
k − δ2

a2
k + δ2 , ImW25+k = − 2akδ

a2
k + δ2 , (5.20)

with δ > 0 in the analyticity region P0 (4.15), and ImW25+k = 0 implies ReW25+k = −1.
Thus, −2π < ϕk < 0 at k = 1, 2, 3, and 0 < ϕk < 2π at k = 4, 5. We need to match them
with the principal branch of the logarithm. We cross the branch cut and go to another
Riemann sheet of the logarithm only at ak = 0, see (5.20). If we go from the region ak > 0
to the region ak < 0, then we decrease the phase ϕk, and we should add −2 iπ to the
principal value of the logarithm. If we go from the region ak < 0 to the region ak > 0, then
we increase the phase ϕk, so we should add +2 iπ to the principal value of the logarithm.
We illustrate this in figure 2

Thus we obtain the following continuous and real-analytic expressions for inte-
grals (5.15) inside P0 (4.15):

g
(1)
3,k(X) = θ(ak) logW25+k + θ(−ak) (logW25+k − 2 iπ)− iπ δ0ak + iπ

3 (5.21)

for k = 1, 2, 3, and

g
(1)
3,k(X) = θ(−ak) logW25+k + θ(ak) (logW25+k + 2 iπ) + iπ δ0ak −

2 iπ
3 (5.22)

for k = 4, 5. Here δij is the Kronecker delta, and the function θ(x) is defined as

θ(x) =

1, x > 0,
0, x ≤ 0,

(5.23)

5.4 Weight-two solutions

According to (4.8), weight-2 solutions of DEs (4.1) can be represented as

~f (2)
τ,σ(X) =

31∑
i,j=1

a(i)
τ,σa

(j)
τ,σ
~f (0)
τ [Wi,Wj ]X0

(X) +
31∑
i=1

a(i)
τ,σ
~f (1)
τ,σ(X0) [Wi]X0

(X) + ~f (2)
τ,σ(X0) . (5.24)

The first term in the previous equation corresponds to the symbol of the solution. Instead
of evaluating one-fold and two-fold iterated integrals from (5.24), and then looking for
cancellation of the spurious transcendental constants among the three terms in (5.24), we
prefer to start with a set of 15 parity-even and 9 parity-odd weight-2 functions and to
express (5.24) in terms of them.
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5.4.1 Parity-even functions

We introduce 15 weight-2 parity-even pentagon functions {g(2)
1,i }15

i=1,

g
(2)
1,1 = Li2

(
1− s34

s12

)
, g

(2)
1,2 = Li2

(
1− s45

s12

)
, g

(2)
1,4 = Li2

(
1− s15

s23

)
,

g
(2)
1,7 = Li2

(
1− s24

s15

)
, g

(2)
1,8 = Li2

(
1− s24

s13

)
, g

(2)
1,9 = Li2

(
1− s35

s12

)
,

g
(2)
1,11 = Li2

(
1− s14

s23

)
, g

(2)
1,14 = Li2

(
1− s25

s13

)
, g

(2)
1,15 = Li2

(
1− s25

s14

)
,

g
(2)
1,3 = −Li2

(
s45
s23

)
− log

(
1− s45

s23

)
log

(
−s45
s23

)
,

g
(2)
1,5 = −Li2

(
s15
s34

)
− log

(
1− s15

s34

)
log

(
−s15
s34

)
,

g
(2)
1,6 = −Li2

(
s13
s45

)
− log

(
1− s13

s45

)
log

(
−s13
s45

)
,

g
(2)
1,10 = −Li2

(
s35
s24

)
− log

(
1− s35

s24

)
log

(
−s35
s24

)
,

g
(2)
1,12 = −Li2

(
s14
s35

)
− log

(
1− s14

s35

)
log

(
−s14
s35

)
,

g
(2)
1,13 = −Li2

(
s25
s34

)
− log

(
1− s25

s34

)
log

(
−s25
s34

)
.

(5.25)

They are well-defined inside P0 (4.15). Indeed, the arguments of log are positive, and the
arguments of Li2 are less than 1, so no branch cuts are crossed.

5.4.2 Parity-odd functions

In order to describe the weight-2 parity-odd pentagon functions, it is helpful to introduce
the following combination

ψ(a, b) := 2 i (Cl2(a) + Cl2(b) + Cl2(−a− b)) (5.26)

of the order-two Clausen functions Cl2. The latter are defined by the dilogarithm evaluated
on the unit circle,

Cl2(ϕ) = 1
2 i
(
Li2(e iϕ)− Li2(e− iϕ)

)
, Cl2(ϕ+ 2π) = Cl2(ϕ), (5.27)

and thus it is single-valued on the circle. The parity-odd letters inside the analyticity region
P0 are pure phases {e iϕk(X)}5k=1, see (A.3). We then introduce nine parity-odd functions
{g(2)

2,i }9i=1,

g
(2)
2,1 = ψ(−ϕ2,−ϕ3) , g

(2)
2,2 = ψ(−ϕ3,−ϕ4) ,

g
(2)
2,3 = ψ(−ϕ2 − ϕ3, ϕ3 + ϕ4 − ϕ1) , g

(2)
2,4 = ψ(−ϕ1,−ϕ5) ,

g
(2)
2,5 = ψ(ϕ1 + ϕ2, ϕ3 − ϕ1 − ϕ5) , g

(2)
2,6 = ψ(−ϕ4,−ϕ5) ,

g
(2)
2,7 = ψ(ϕ4 + ϕ5, ϕ3 − ϕ1 − ϕ5) , g

(2)
2,8 = ψ(−ϕ1 − ϕ5, ϕ1 + ϕ2 − ϕ4) ,

g
(2)
2,9 = ψ(−ϕ3 − ϕ4, ϕ2 + ϕ3 − ϕ5) .

(5.28)
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They belong to the orbit of
ψ(ϕ1, ϕ2) (5.29)

under the action of the permutation group S5 on the external momenta. In fact, the orbit
consists of ten functions that are not trivially equivalent. However, a nontrivial combination
of the ten ψ functions vanishes [65],∑

σ∈S5

(−1)sgn(σ)ψ(σ(ϕ1), σ(ϕ2)) = 0 (5.30)

or more explicitly

5∑
i=1

[−ψ(ϕi, ϕi+1) + ψ(ϕi + ϕi+1, ϕi+2 − ϕi−1 − ϕi)] = 0 . (5.31)

This allows us to choose nine linear independent functions (5.28) from the orbit.

5.4.3 All master UT integrals at weight two

Now we have all necessary ingredients to express weight-2 solutions ~f (2)
τ,σ . We transform 15

parity-even (5.25) and 9 parity-odd (5.28) functions into the iterated-integral representation
which involves one-fold [Wi]X0(X) and two-fold [Wi,Wj ]X0(X) iterated integrations. We
also transform all weight-1 functions in equations (5.12), (5.14) and (5.15) into the iterated
integral representation, i.e. one-fold integrations. Then we resolve the iterated integrals
[Wi]X0 and [Wi,Wj ]X0 for the weight-1 and weight-2 functions, and, by substituting these
relations into (5.24), we express all weight-2 solutions in terms of the functions g.

The parity-even and parity-odd solutions, defined in section 4.5, involve different sub-
sets of functions. We find that the parity-even solutions have the following form

~f (2,+)
τ,σ =

15∑
i=1

~bτ,σ,i g
(2)
1,i +

10∑
i,j=1

~bτ,σ,i,j g
(1)
1,i g

(1)
1,j + i ◦π

2∑
a=1

∑
i

~cτ,σ,a,i g
(1)
a,i + ~dτ,σ

◦
π

2
(5.32a)

and the parity odd ones

~f (2,−)
τ,σ =

9∑
i=1

~bτ,σ,i g
(2)
2,i + i ◦π

5∑
i=1

~cτ,σ,i g
(1)
3,i + ~dτ,σπ

◦
π (5.32b)

where ~b, ~c, and ~d are vectors of rational numbers. These expressions respect Z≥0 × Z2-
grading. As we can see upon identifying two copies of iπ the only transcendental constants
in the solution are iπ and π2. In fact, not all extra weight-1 functions (5.14), (5.15) are
present. The weight-2 solutions contain only parity even g

(1)
2,k with k = 2, 3, 6, 7, 8, 9 and

parity odd g(1)
3,k with k = 1, 3, 4, 5.

As we can see, the weight-1 functions in equations (5.14) and (5.15) that are not
needed to express the weight-1 solutions (5.13) start appearing in the weight-2 solutions
equations (5.32a) and (5.32b) in the “beyond-the-symbol” part. This phenomenon illus-
trates the statements from section 5.1.
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5.5 Weight-three solutions

5.5.1 Weight-three pentagon functions

We follow the classification procedure from section 5.1 and find 90 parity-even and 21
parity-odd weight-3 irreducible iterated integrals. Let us recall that they have the form
of equation (5.1) with w = 3. At weights one and two we started with the nice choices
of logarithmic and dilogarithmic pentagon functions and expressed all iterated integrals in
terms of these functions. It was argued in [60] that at higher weights explicit representations
of iterated integrals in terms of MPLs are not always beneficial, especially for the purpose of
their efficient numerical evaluation. We find that this also applies to the iterated integrals
studied in this paper (see section 5.7). We then choose a set {g(3)

i }111
i=1 of irreducible iterated

integrals as our weight-3 pentagon functions. Taken together with already classified iterated
integrals at weights one and two, they are sufficient to express any weight-3 solution ~f

(3)
τ,σ in

equation (4.10). The functions {g(3)
i }111

i=1 take the form of a one fold integral along a path
γ connecting X0 (4.16) and X ∈ P0,

g
(3)
i (X) =

31∑
j=1

∫
γ

d logWj(X ′)h(2,±)
i,j (X ′) , i = 1, . . . , 111, (5.33)

where h(2,±)
i,j are weight-2 polynomials of definite parity,

h(2,+) ∈ Q
[

i ◦π, {g(2)
1,i }

15
i=1, {g

(1)
1,i }

10
i=1, {g

(1)
2,i }i=2,3,6,7,8,9

]
(2,+)

,

h(2,−) ∈ Q
[

iπ, i ◦π, {g(2)
2,i }

9
i=1, {g

(1)
3,i }i=1,3,4,5

]
(2,−)

. (5.34)

In fact, the parity-even and parity-odd h(2)-functions have exactly the same form as (5.32a)
and (5.32b) weight-2 solutions, respectively. The iterated integrals {g(3)

i }111
i=1 by construc-

tion have definite parity induced by the Z2-grading, which was introduced in section 4.5.
The parity-even weight-3 pentagon functions have the form

g
(3,+)
i =

25∑
j=1

∫
γ

d logWj · h(2,+)
i,j +

30∑
j=26

∫
γ

d logWj · h(2,−)
i,j (5.35a)

and the parity-odd ones

g
(3,−)
i =

∑
j∈{1,...,5,

16,...,20,31}

∫
γ

d logWj · h(2,−)
i,j +

30∑
j=26

∫
γ

d logWj · h(2,+)
i,j . (5.35b)

We must verify that the integrations in equation (5.33) are well-defined. As in equa-
tion (4.17), we choose the path γ as the line segment γ = [X0;X]. The functions h(2)

i,j

are well-defined on γ, since they are polynomials of weight-1 and weight-2 pentagon
functions. The only possible source of potential problems is d logWk with k ∈ α :=
{7, 10, 12, 21, 22, 23}, i.e. d log-forms of the letters that do not have a definite sign in the
analyticity region P0 (see equation (5.7)). As we showed in equation (5.8), on the path X(t)
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either they are d log(t) with a pole at t = 0 or they are identically zero. Fortunately, the
pole is compensated by the accompanying h(2)

i,k which vanishes at t = 0. Indeed, inspecting
h

(2)
i,k for k ∈ α we find that they involve very simple pentagon functions: {g(1)

1,i }10
i=1 (equa-

tion (5.12)) and g(2)
1,i for i = 4, 7, 8, 11, 14, 15 (equation (5.25)). Resolving Wk = 0 (A.2) as

a constraint on {vi}5i=1 and evaluating h(2)
i,k on this subspace we find that it vanishes,

h
(2)
i,k

∣∣∣
Wk=0

= 0 , k ∈ α . (5.36)

Thus the integrations in the definition of the weight-3 pentagon functions (5.33) are well-
defined for any point of the analyticity domain P0 (see equation (4.15)).

5.5.2 All master UT integrals at weight three

We are now ready to express the weight-3 solutions (4.8) of DEs (4.1) in terms of the clas-
sified pentagon functions of weights one (equations (5.12), (5.14) and (5.15)), two (equa-
tions (5.25) and (5.28)), and three (equation (5.33)), and transcendental constants S0 from
table 2. All steps of our construction respect the grading Z≥0 × Z2. The parity-even
solutions take the following form

~f (3,+)
τ,σ ∈ Q

[
g(3,+), {g(2)

1,i }
15
i=1, {g

(1)
1,i }

10
i=1, {g

(1)
2,i }i=2,3,6,7,8,9, i ◦π,S(1,+)

0 ,S(2,+)
0 ,S(3,+)

0

]
(3,+)
(5.37a)

and the parity odd ones

~f (3,−)
τ,σ ∈ Q

[
g(3,−), {g(2)

2,i }
9
i=1, {g

(1)
1,i }

10
i=1, g

(1)
2,10, {g

(1)
3,i }i=1,3,4,5,

iπ, i ◦π, log(3),S(2,−)
0 , i Im Li3

( i√
3

)]
(3,−)

. (5.37b)

Explicit expressions for the UT master integrals are provided in the ancillary files (see
section 7.1). Let us note that one new extra weight-1 function g(1)

2,10 appears in the weight-3
solution as compared to the weight-2 solution in equations (5.32a) and (5.32b). Of course,
the extra weight-1 functions (5.14) and (5.15) appear only in the “beyond-the-symbol” part
of the solution.

5.6 Weight-four solutions

5.6.1 Weight-four pentagon functions

At weight 4 the classification procedure from section 5.1 results in 316 parity-even and 156
parity-odd irreducible iterated integrals having the form of equation (5.1) with w = 4. As
at weight 3, we choose a set of 472 irreducible iterated integrals {g(4)

i }472
i=1 as our weight

4 pentagon functions. To bring them into a more explicit form, we use the definition in
equation (4.12) and perform the two innermost integrations. The functions g(4)

i are then
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expressed as two-fold iterated integrals over functions g(1)
i,j and g(2)

i,j introduced above,

g
(4)
i (X) =

31∑
j,k=1

∫
γ

d logWj(X ′)
∫
γ

d logWk(X ′′)h
(2)
i,j,k(X

′′) +
31∑
j=1

κ
(3)
j

∫
γ

d logWj(X ′) ,

(5.38)

where the weight-2 functions h(2)
i,j,k have definite parity, and they are of the same form as in

equation (5.34). The transcendental constants κ(3) ∈ Q[S0](3,±) are given in table 2. Equa-
tion (5.38) respects Z≥0 × Z2-grading, i.e. the transcendental weight and parity counting.
In order to render the weight-4 pentagon functions (5.38) to a form better adapted for
numerical evaluations, we rewrite them as one-fold integrals in the next section.

5.6.2 One-fold integral representation of weight-four pentagon functions

We apply the technique from [60] to rewrite the two-fold iterated integrals in (5.38) into
one-fold integrals. We introduce parametrization (4.17) of the path γ which we choose as
the line segment, γ = [X0;X], such that X(1) = X and X(0) = X0, and interchange the
order of integrations∫ 1

0
dt ∂t log(Wj(t))

∫ t

0
du ∂u log(Wk(u))h(2)

i,j,k(X(u))

=
∫ 1

0
du
∫ 1

u
dt ∂t log(Wj(t)) · ∂u log(Wk(u))h(2)

i,j,k(X(u)) (5.39)

where Wi(t) := Wi(X(t)). Thus, one of the integrations in equation (5.39) becomes trivial,
and naively we obtain∫ 1

u
dt ∂t log(Wj(t)) = log(Wj(u = 1))− log(Wj(u)) . (5.40)

However, the right-hand-side of (5.40) should be well-defined for 0 ≤ u ≤ 1. It is straight-
forward to express it in terms of the weight-1 pentagon functions (equations (5.12), (5.14)
and (5.15)). Indeed, for the parity-odd letters we use equations (5.21) and (5.22),∫ 1

u
dt ∂t log(Wj(t)) = g

(1)
3,j−25(X(1))− g(1)

3,j−25(X(u)) , j = 26, . . . , 30 . (5.41)

For the parity-even letters that are linear in the Mandelstam invariants∫ 1

u
dt ∂t log(Wj(t)) = log(sj ·Wj(1))− log(sj ·Wj(u)) ,

sj := sgn(Wj(1)) , j = 1, . . . , 25 . (5.42)

Let us note that here we have to consider letters (5.7), i.e. j ∈ α := {7, 10, 12, 21, 22, 23},
which do not have definitive sign in P0. Still, they do have definitive sign on the line
segment γ, see (5.8), and they vanish at u = 0. Unlike other letters, which do not vanish
inside P0, they introduce logarithmic singularity at u = 0, and thus they are not among
pentagon functions (5.12) and (5.14). Finally, for the remaining parity-even letter W31,∫ 1

u
dt ∂t log(W31(t)) = log(δ(1))− log(δ(u)) . (5.43)

In this away, we arrive at the one-fold integral representation of the weight-4 pentagon
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functions (5.38),

g
(4)
i (X) =

31∑
k=1

∫ 1

0
du ∂u log(Wk(u))

[∫ 1

u
dt ∂t log(Wj(t)) · h(2)

i,j,k(X(u)) + κ
(3)
k

]
. (5.44)

We need to verify that integrations in (5.44) are well-defined. The analysis is similar to
the one from section 5.5.1. The weight-2 functions h(2) are polynomials in the pentagon
functions as in (5.34), and they are real-analytic. A potential source of pole singularities
in the integrand is ∂u log(Wk(u)) at k ∈ α. We find that the pole is suppressed since

h
(2)
i,j,k

∣∣∣
Wk=0

= 0 , κ
(3)
k = 0 , for k ∈ α . (5.45)

Summarizing, we find that the integrations in equation (5.44) are well-defined. All
terms of the integrands are real-analytic at 0 ≤ u ≤ 1, except for the terms with j ∈
α, which are real-analytic at 0 < u ≤ 1. The only singularity of the integrands is the
logarithmic singularity log(u) in the terms with j ∈ α. This singularity is integrable.
Nevertheless, some care should be taken in an algorithm for numerical evaluations, see
section 7.2 for details.

5.6.3 All master UT integrals at weight four

We express all weight-4 solutions (4.8) of the DEs as homogeneous polynomials of
definite parity in the pentagon functions of weight one (5.12), (5.14), (5.15), weight
two (5.25), (5.28), weight three (5.33), and weight four (5.38), and in transcendental con-
stants from table 2, and we find that the parity-even solutions have the following form

~f (4,+)
τ,σ ∈ Q

[
g(4,+), g(3,+), {g(2)

1,i }
15
i=1, {g

(2)
2,i }

9
i=1, {g

(1)
1,i }

10
i=1, {g

(1)
2,i }i=2,3,6,7,8,9, {g(1)

3,i }i=1,3,4,5,

S(4,+)
0 ,S(3,+)

0 ,S(2,±)
0 ,S(1,±)

0

]
(4,+)

(5.46a)

and the parity odd ones

~f (4,−)
τ,σ ∈ Q

[
g(4,−), g(3,−), {g(2,)

2,i }
9
i=1, {g

(1)
1,i }

10
i=1, g

(1)
2,10, {g

(1)
3,i }i=1,3,4,5,

S(4,−)
0 ,S(3,−)

0 , ζ3,S(2,−)
0 ,S(1,±)

0

]
(4,−)

. (5.46b)

Explicit expressions are provided in the ancillary files (see section 7.1). It is worth noting
that not all of the allowed by the Z≥0 × Z2-grading terms are present in the solutions.

Thus, we have classified all pentagon functions up to transcendental weight four, and
we identified the minimal generating set in the pentagon function space. All constructed
pentagon functions are well-defined within the physical region P0 (4.15). We also provided
ε-expansion of all two-loop UT master integrals that describe the massless five-particle
scattering in terms of the pentagon functions.
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5.7 Alternative representation of the pentagon functions

We provided expressions for the pentagon functions in terms of the familiar polylogarith-
mic functions only at weights one and two, i.e. logarithms and dilogarithms, respectively.
We preferred to express the pentagon functions of higher weights as one-fold integrations,
see (5.33) and (5.44). This approach provides a convenient setup for numerical evaluations
of the pentagon functions, and thus it is completely sufficient for all imaginable phenomeno-
logical applications of the pentagon functions. We implemented this approach in a public
C++ library and a public Mathematica package, which we describe in sections 7.1 and 7.2.

Nevertheless, one could ask a question how to express weight three and four pentagon
functions in terms of polylogarithmic functions. We found expressions for all 90|21 weight-
3 pentagon functions (5.33) in terms of logarithms, dilogarithms and trilogarithms with
arguments built from the letters of the pentagon alphabet. Using this weight-3 result it is
straightforward to obtain and alternative integral representation for all 315|156 weight-4
pentagon functions (5.38). Indeed, we explicitly implement all inner three-fold iterated
integrations and obtain

g
(4)
i (X) =

31∑
j=1

∫
γ

d logWj(X ′)h(3)
i,j (X ′) (5.47)

where h(3) are weight-3 polylogarithmic functions, which involve logarithms, dilogarithms
and trilogarithms. Thus, we have at hand two alternative ways to evaluate weight-3 and
weight-4 pentagon functions — the one extensively described in the previous subsections
and the one briefly outlined in this subsection. We stick to the first approach and use our
private Mathematica implementation of the second approach as a highly-nontrivial test for
the public library and the public package.

5.8 Master integrals in arbitrary channel

All previous considerations were restricted to the subset P0 (4.15) of the physical region,
the s12-scattering channel. We classified pentagon functions up to weight four, which
are well-defined inside P0, and we provided ε-expansion of all UT master integrals in all
orientations in terms of the pentagon functions. Thus, we are able to evaluate all master
integrals within P0. In this section we demonstrate that having at hand results for all 5!
orientations of the master integrals is equivalent to knowing them in any physical region.

Let X be a kinematic point in an arbitrary scattering channel of the physical region.
We can always find an element σ̃ in S5 which maps the point X into a point X̃ from the
s12-scattering channel,

X̃ = σ̃X ∈ P0. (5.48)

The previous equation implies that X belongs to the scattering channel σ̄1σ̄2 → σ̄3σ̄4σ̄5
where σ̄ := (σ̃)−1 and the following inequalities which specify the scattering channel hold

sσ̄1σ̄2 , sσ̄3σ̄4 , sσ̄3σ̄5 , sσ̄4σ̄5 > 0 ,
X : sσ̄1σ̄3 , sσ̄1σ̄4 , sσ̄1σ̄5 , sσ̄2σ̄3 , sσ̄2σ̄4 , sσ̄2σ̄4 < 0 ,

sgn(σ̄) σ̄(δ) > 0 . (5.49)
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Then we can use equations (4.3) and (4.4) to evaluate master integrals ~fτ,σ (in arbitrary
orientation σ) at the point X from the arbitrary scattering channel as follows,

~fτ,σ(X) = ~fτ,σ
(
σ̃−1X̃

)
= ~fτ, σ̃−1σ

(
X̃
)
. (5.50)

Let us note that the UT master integrals by definition in equation (4.6) are eigenvectors
of the parity conjugation. Hence, if we evaluated the UT master integrals at a point
X = (v1, . . . , v5; ε5), we can obtain their values at the parity-conjugated point XP =
(v1, . . . , v5;−ε5) by inverting the signs of the parity-odd integrals,

~f (+)
τ,σ (XP) = ~f (+)

τ,σ (X), (5.51a)
~f (−)
τ,σ (XP) = −~f (−)

τ,σ (X) . (5.51b)

The Z2-grading discussed in sections 4.5 and 5 guaranties that also the pentagon functions
and the transcendental constants are the eigenvectors of parity conjugation. Consequently,
one can parity-conjugate each function and constant individually in the way that is com-
patible with equation (5.51).

Finally, we note that we could restrict our attention to even smaller portion of the
physical phase space than P0. Indeed, the s12-channel is invariant under the S2 × S3-
permutations, which preserve signs of the Mandelstam invariants in (4.15). Then equa-
tion (5.50) at σ̃ ∈ S2 × S3 and sgn(σ̃) = +1 relates all UT master integrals evaluated at
a pair of points of P0. If sgn(σ̃) = −1, then equation (5.50) should be supplemented with
equation (5.51). Thus, knowing the values of the master integrals in the region P0/S2×S3,
which is six times smaller than P0, we can reconstruct values of the master in the whole
P0, and consequently, in the whole physical phase space.

In conclusion, we reduced the problem of evaluating the master integrals in arbitrary
physical channel to evaluating their permutations in the s12-channel. Our classification of
the pentagon functions in the s12-channel is thus sufficient to evaluate the master integrals
in an arbitrary physical channel.

6 Behavior near the boundary ∆ = 0

The obtained analytic expressions for the pentagon functions, enable us to evaluate master
integrals in the physical channels and also to study their asymptotic regimes. In [59], the
multi-Regge asymptotics in the non-planar sector of five-particle massless amplitudes has
been studied. One could also study soft or collinear asymptotics by approaching sij = 0
boundaries of the physical scattering channels. We are not going to plunge here into the
detailed study of all possible singular regimes of the master integrals. Instead, we consider
asymptotic behaviour of the master integrals (pentagon functions) when approaching ∆ = 0
boundary of P0. The surface ∆ = 0 separates any physical channel into to halves: δ > 0
and δ < 0. It was demonstrated in [59] that the five-particle non-planar Feynman integrals
have discontinuities on subvarieties of ∆ = 0 and can even be divergent there. This is a
peculiar feature of the non-planar five-particle scattering, which does not manifest itself
in simpler planar master integrals studied in the past. To gain more experience with the
non-planar master integrals we consider ∆→ 0 asymptotics of the pentagon functions.
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We should stress that discontinuities and divergences at ∆ = 0 appear in the Feynman
integrals, but the scattering amplitudes are expected to be free of these singularities in the
physical region. In other words, only certain combinations of the Feynman integrals are
allowed to contribute to the physical amplitude. The superamplitudes presented in [59]
have been tested to satisfy this property. One could try to reverse the argumentation and
apply the bootstrap approach to amplitudes [65, 72–74]. In the spirit of the Steinmann
relations [70, 71] for the planar hexagon scattering in N = 4 super-Yang-Mills theory, one
could exploit the absence of discontinuities at ∆ = 0 as a nontrivial dynamical input on
an amplitude ansatz consisting of the pentagon functions. It would be interesting to see
how strong is this restriction, and to which extent it fixes nonplanar five-point two-loop
amplitudes, in particular the QCD helicity amplitudes.

We choose a generic kinematic point Xb on the boundary ∆ = 0 of P0 (4.15). It
describes a configuration of momenta {pµi }5i=1 lying in a 3-dimensional hyperplane, but
none of the momenta are soft or collinear, i.e. none of the Mandelstam invariants sij vanish,

Xb : s12, s34, s35, s45 > 0 , s13, s14, s15, s23, s24, s25 < 0 , ∆ = 0 . (6.1)

One can easily check that all parity-odd letters are equal to 1 at X = Xb,

ak(Xb) 6= 0 , W25+k(Xb) = 1 for k = 1, . . . , 5 , (6.2)

and the statement does not depend on the path5 we choose to approach Xb.
Let us inspect the pentagon functions in the asymptotic regime X → Xb. The results

of this subsection are implemented in the Mathematica package (see section 7.1).

6.1 Weights one and two

We start with weights one and two. In view of equation (6.2), the parity-odd functions in
equations (5.21), (5.22) and (5.25) take the following form

g
(2)
2,i (Xb) = 0 , for i = 1, . . . , 9 , (6.3a)

g
(1)
3,k(Xb) = −2 iπ θ(−ak(Xb))− iπ δ0ak(Xb) + iπ

3 , for k = 1, 2, 3, (6.3b)

g
(1)
3,k(Xb) = 2 iπ θ(ak(Xb)) + iπ δ0ak(Xb) −

2 iπ
3 , for k = 4, 5 , (6.3c)

while among the parity-even pentagon functions in equations (5.12), (5.14) and (5.25) only
the form of g(1)

2,10(X) = logW31(X) changes at X → Xb: it is divergent on ∆ = 0.
Let us note that g(1)

2,10 is absent in the weight-1 (5.13) and weight-2 (5.32a), (5.32b)
solutions of the DE. Thus, they are finite at ∆ = 0. Approaching the surface ∆ = 0 from
the opposite sides — δ > 0 and δ < 0 — inside any physical channel, we find a discontinuity
in the parity-odd UT master integrals if they do not vanish at ∆ = 0. Inspecting the parity-
odd weight-2 solutions given in equation (5.32b) at ∆ = 0, which involve only weight-1
pentagon functions g(1)

3,k(Xb), we find that they are not identically zero [59]. More precisely,
they vanish on some parts of ∆ = 0 carved out by {ak(X) = 0}k=1,3,4,5, while are constant
and nonzero on the remaining parts. This is illustrated in figure 3.

5The statement does not apply to non-generic points on the ∆ = 0 surface for which one or several sij
vanish simultaneously.

– 27 –



J
H
E
P
1
2
(
2
0
2
0
)
1
6
7

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

Figure 3. Section of the physical region P0 by the plane v1 = 3, v3 = v4 = 1. The physical
region is inside the orange ellipse depicting ∆ = 0. The four gray lines, representing ak = 0
with k = 1, 3, 4, 5 (see equation (A.1)), split the surface ∆ = 0 in six arcs. The functions g(1)

3,k,
k = 1, 3, 4, 5, are constant on each arc.

6.2 Weight three

Let us find asymptotics of the weight-3 pentagon functions at ∆ → 0 using their integral
representation in equation (5.33). The integration path γ is a line segment (4.17) with
the end point X(t = 1) = Xb. The functions h(2)(X(t)) from equation (5.33) are finite at
t = 1. On the line segment γ, we find (see equations (6.2) and (A.2)) that

ε5(t) = O(
√

1− t), logWk(t) = O(
√

1− t), for k = 26, . . . , 30. (6.4)

Then the integration kernels in equation (5.33) involve the following singularities at t→ 1:

d logW31(t) = O
( 1

1− t

)
dt , (6.5a)

d logWk(t) = O
( 1√

1− t

)
dt, for k = 26, . . . , 30. (6.5b)

The latter are integrable singularities, and only d logW31(t) introduces a divergence. We
regularize it with ε→ 0 as follows,

reg

 1∫
0

dt ∂t log(W31(t)) · f(t)

 =

1∫
0

dt ∂t log (W31(t)) · (f(t)− f(1)) + f(1)
1−ε∫
0

dt ∂t log (W31(t)) , (6.6)

where f(t) is a regular function, and the last term contains logarithmic divergence if
f(1) 6= 1,

1−ε∫
0

dt ∂t log (W31(t)) = log (ε5(1− ε))− log ( i
√

3) . (6.7)
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Inspecting all weight-3 pentagon functions {g(3)
i }111

i=1 (5.33), we find that only parity-odd
g

(3)
98 and g(3)

103 are singular at ∆ = 0.
Parity-odd weight-3 solutions (5.37b) of the DEs involve logarithmically divergent at

∆ → 0 weight-1 and weight-3 pentagon functions g(1)
2,10, g

(3)
98 , g(3)

103, and indeed we observe
divergences of the UT master integrals at ∆ = 0.

6.3 Weight four

In a similar spirit, we study asymptotics of the weight-4 pentagon functions given in equa-
tion (5.44). Only terms with k = 31 and/or j = 31 produce singularities at X = Xb. Thus,
we need to regularize three types of terms:∫ 1

0
du ∂u log(W31(u)) · f(u) , (6.8a)∫ 1

0
du
∫ 1

u
dt ∂t log(W31(t)) · f(u) , (6.8b)∫ 1

0
du ∂u log(W31(u))

∫ 1

u
dt ∂t log(W31(t)) · f(u), (6.8c)

where f(u) is a regular function. We have already regularized the first term (6.8a) in (6.6).
Taking into account equation (5.43), we regularize the second term, equation (6.8b), as
follows:

reg[6.8b] =
1−ε∫
0

du
1−ε∫
u

dt ∂t log(W31(t)) · f(u) =

= log(ε5(1− ε))
∫ 1

0
du f(u)−

∫ 1

0
du log(ε5(u)) f(u) . (6.9)

Let us note that log (ε5(u)) is an integrable singularity at u→ 1. Finally, we regularize the
third term (6.8c) as follows:

reg[6.8c] =
1−ε∫
0

du ∂u log(W31(u))
1−ε∫
u

dt ∂t log(W31(t)) · f(u) =

−
∫ 1

0
du log(ε5(u)) ∂t log(W31(t)) · (f(u)− f(1))

+ log (ε5(1− ε))
∫ 1

0
du ∂u log (ε5(u)) · (f(u)− f(1))

+ f(1)
2

(
log (ε5(1− ε))− log ( i

√
3)
)2

(6.10)

The integrations in equation (6.10) are convergent, and singularities are revealed in the
form of divergent log (ε5(1− ε)) as ε→ 0.

The divergent terms in equations (6.8a) to (6.8c) are present only in the parity-odd
pentagon functions of weight four. Thus, only they contain logarithmic divergences log ε5
and log2 ε5 in the limit ∆ → 0. These divergences of the pentagon functions are also
inherited by the parity-odd weight-4 solutions of the DEs given by equation (5.46b).
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P pentagon
PB planar pentagon-box
HB hexagon-box
DP double pentagon

Table 4. The abbreviations for the Feynman integral topologies shown in figure 1, which are used
by the interface of PentagonMI.

7 Numerical evaluation

In section 5, we constructed a complete set of pentagon functions required to analytically
represent (up to weight 4) all UT master integrals of the topologies shown in figure 1.
In this section, we describe our implementation of numerical evaluation of the pentagon
functions and the UT master integrals.

All results of sections 5.8 and 6 are implemented in a Mathematica package, discussed
in section 7.1. The package is provided mainly for the purpose of demonstration, and it
is not intended for the use cases where high throughput and/or numerical robustness is
required. For the later, we provide a C++ library, which we present in section 7.2. The
library is optimized for performance, and its numerical efficiency makes it well-suited for
evaluation of phase-space integrals with the Monte-Carlo method — the key ingredient for
obtaining theoretical predictions for any observable cross section.

7.1 Mathematica package PentagonMI

The Mathematica package PentagonMI implements numerical evaluation of all UT master
integrals ~fτ,σ, defined in equations (4.5), (4.7a) and (4.7b), at any point of the physical
phase space. The master integrals are expressed in the basis of the pentagon functions,
constructed in section 5. The package consists of three main components. The first com-
ponent is data files containing the definitions of the objects employed in this paper. The
data files are in Mathematica format. However, they are made to be self-consistent and
understandable as plain text, such that they can be used outside of this package.6 The
second component uses the definitions of master integrals from datafiles/ to construct
their analytic expressions in terms of pentagon functions. The third component implements
numerical evaluation of the pentagon functions. The package can be obtained from the
git repository [75] with

git clone https://gitlab.com/pentagon-functions/PentagonMI.git

To install the package, follow the instructions in the “Installation” section of the README.md
file in the root directory of the distribution.

Let us first describe the data files in the directory datafiles/ provided with the pack-
age. Our choice of UT master integrals, i.e. equation (4.5), is specified for each Feynman
integral topology by a corresponding file in the directory datafiles/UT-MI/ (see abbrevia-
tions of topologies τ in table 4). To reduce the size of files, we write all UT master integrals

6The file datafiles/constants_numerical.m is an exception.
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as Q-linear combinations of a smaller subset of 1917 UT integrals {G} ⊂ {~fτ,σ} as

~fτ,σ(X) =
∑
i

(~cτ,σ)i Gi(X), (7.1)

which we found by identifying Feynman integrals among different topologies and per-
mutations [30]. Each UT master integral is rewritten as a linear combination of
UT integrals G in the file datafiles/MI_in_G.m. UT integrals G expressed in
terms of pentagon functions, as given by equations (5.13), (5.32a), (5.32b), (5.37a),
(5.37b), (5.46a) and (5.46b), can be found in files datafiles/GtoF_weight*.m. The
algebraically-independent transcendental constants, shown in table 2, are defined in
datafiles/constants.m. We provide weight-0 initial values (see equation (4.9)) for all
four topologies in datafiles/initial_values_weight0.m. These values are invariant un-
der permutations, so we provide them for each topology in a single permutation σ. Finally,
the definitions of pentagon functions as given in equations (5.12), (5.14), (5.15), (5.25),
(5.28), (5.35a), (5.35b) and (5.44) can be found in files

datafiles/functions_weight1.m
datafiles/functions_weight2.m
datafiles/functions_weight3_onefold.m
datafiles/functions_weight4_onefold.m

The parity grading of the alphabet, master integrals, pentagon functions, and transcen-
dental constants plays an important role in our classification. We list all parity-odd
objects in the file datafiles/parity-grading.m. Further details can be found in the
datafiles/README.md file supplied along with the distribution.

The main interface of PentagonMI is given by the function EvaluateMI, which accepts
a list of master integrals to be evaluated, and a kinematical point in the physical region
given by the five Mandelstam invariants in equation (2.1). The master integrals are indexed
according to their definitions found in the directory datafiles/UT-MI/. A UT master
integral

(
~fτ,σ

)
i
is identified in PentagonMI by its topology abbreviation (see table 4),

the index of permutation σ taking integer values from 1 to 120 and defined in the file
datafiles/permutations.m/, and the index i of the UT integral within the given family.
For example,

EvaluateMI[
{DP[3,108], HB[100,21], PB[120,61]},
{4, -(113/47), 281/149, 349/257, -(863/541)}

]

will evaluate the double pentagon integral #108 in permutation σ = {1, 2, 4, 3, 5}, which
is indexed by 3, the hexagon-box integral #21 in permutation σ = {5, 1, 3, 4, 2}, which is
indexed by 100, and the pentagon-box integral #61 in permutation σ = {5, 1, 3, 4, 2}, which
is indexed by 120, at the kinematical point {4,−(113/47), 281/149, 349/257,−(863/541)}.
The function returns coefficients of the ε-expansion (see equations (4.7a) and (4.7b)) of
each UT master integral. If the kinematical point does not belong to the s12-channel
P0 (4.15), EvaluateMI uses equation (5.50) to find a permutation that maps it to P0. By
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default, δ > 0 is assumed, and evaluation of master integrals at a parity-conjugated point
(δ < 0) can be requested with the option "ParityConjugation" -> True. Several other
options that can be used to modify certain aspects of evaluation are available; we refer to
the documentation provided in the file PentagonMI.m. For an example, see the program
test/all_master_integrals.m, which evaluates all master integrals in all permutations
at a single phase-space point.

EvaluateMI is only responsible for constructing a representation of each UT master
integral in terms of pentagon functions. In order to obtain numerical values of the mas-
ter integrals, numerical values of the pentagon functions at the given kinematical point are
required. Numerical evaluation of the pentagon functions is carried out either with the (sub-
)package PentagonFunctionsM, described in the next section, or through a Mathematica
interface of the C++ library (see section 7.2). By default, the latter is chosen if available,
and the option "UseCppLib" -> False can be used to choose the Mathematica implemen-
tation instead.

Numerical evaluation of pentagon functions. We implemented numerical evaluation
of pentagon functions in a Mathematica package PentagonFunctionsM. The package can
be used independently or as a part of PentagonMI.

All functions are evaluated in the analyticity region P0 (4.15). We evaluate
weight-1 and weight-2 functions, explicitly given by equations (5.12), (5.14), (5.15), (5.25)
and (5.28), using the standard Mathematica functions Log and PolyLog. For weight-3 and
weight-4 functions, we use one-fold integral representations in equations (5.35a), (5.35b)
and (5.44). We carry out the numerical integration with the built-in Mathematica func-
tion NIntegrate.

The pentagon functions are represented as F[w,i,j] at weights w = 1, 2 and as F[w,i]
at weights w = 3, 4, where indices i, j are in one-to-one correspondence with the indices of
equations (5.12), (5.14), (5.15), (5.25) and (5.28) and equations (5.35a), (5.35b) and (5.44)
respectively. Numerical values of a list of functions can be obtained by calling the function
EvaluatePentagonFunctions. For example,

EvaluatePentagonFunctions[
{F[1,3,1], F[3,17], F[4,113], F[4,470]},
{4, -(113/47), 281/149, 349/257, -(863/541)}

]

evaluates the pentagon functions g
(1)
3,1, g

(3)
17 , g

(4)
113, g

(4)
470. The requested numerical in-

tegration error of weight-3 and weight-4 functions can be set with the option
"IntegrationPrecisionGoal". Its default value is 10, which means that the integration
is terminated when the (negative) log10 of an estimate of either relative or absolute error
reaches 10. The requested functions are evaluated in parallel by default, using all available
CPUs. Parallelization can be disabled by setting the option "Parallel" -> False.

Kinematical points are allowed to lie on the surfaces of spurious singularities exactly.
In this case, the corresponding d log-kernels are set to zero, see discussion around equa-
tions (5.8), (5.35b) and (5.42).

– 32 –



J
H
E
P
1
2
(
2
0
2
0
)
1
6
7

As a special case, EvaluatePentagonFunctions also evaluates asymptotics of the
pentagon functions at ∆ → 0 as discussed in section 6. The special case is acti-
vated automatically whenever evaluation at a kinematical point sitting on the bound-
ary ∆ = 0 is requested. Concretely, for weight-3 and weight-4 pentagon functions, we
implemented the regularization of the divergent one-fold integrals as introduced in equa-
tions (6.6), (6.9) and (6.10). The asymptotics, which is divergent in the limit ∆ → 0,
is (at most quadratic) polynomial in log(ε5) with numerical coefficients resulting from
the regularized one-fold integrations. An example can be found in the test program
test/functions_delta_singular.m. In this program all pentagon functions are evalu-
ated at a kinematical point Xb with ∆(Xb) = 0. Also, as a consistency check, asymptotics
of the divergent at the point Xb weight-4 functions are compared to their values at a point
that is slightly deformed away from ∆ = 0.

7.2 C++ library PentagonFunctions++

One of the main goals of this paper is to take advantage of analytic understanding of the
five particles massless scattering to derive a representation of the corresponding two-loop
master integrals that is suitable for phenomenological applications. In particular, this rep-
resentation should lend itself to a numerically efficient and stable implementation. We
believe that the classification of pentagon functions, which we carried out in section 5,
indeed provides such a representation. Nonetheless, we find that the Mathematica im-
plementation described in the previous section does not realize the full potential of our
method. To this end, we implement numerical evaluation of pentagon functions in a C++
library PentagonFunctions++, which we present in this section.

7.2.1 Features

PentagonFunctions++ is a C++14 library, which implements numerical evaluation of the
pentagon functions, classified in section 5, in their analyticity region P0 (4.15).

For numerical evaluation of weight-1 and weight-2 functions, we use their explicit rep-
resentation in equations (5.12), (5.14), (5.15), (5.25) and (5.28) in terms of the log, Li2,
and Cl2 functions. The latter are evaluated numerically with a custom C++ implemen-
tation [76] based on the algorithms of [77]. For weight-3 and weight-4 functions, we use
the one-fold integral representations in equations (5.35a), (5.35b) and (5.44) and evaluate
the integrals numerically. The integrands of certain weight-3 and weight-4 functions are
somewhat lengthy. Thus, to speed up their numerical evaluation, we optimize the inte-
grands with respect to the number of floating-point operations with the code-optimization
facilities [78] of the computer algebra system FORM [79].7

The choice of a numerical integration algorithm for the evaluation of the one-fold
integrals (quadrature) can significantly impact evaluation times. Thus, it is essential to
choose an algorithm that is suitable for the problem at hand. We employ the double
exponential tanh-sinh quadrature [80]. The quadrature exploits a change of an integration

7We remark that this optimization can potentially be in conflict with numerical stability, see the discus-
sion in section 7.2.3.
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variable t ∈ (0, 1),

t = 1
2

(
1 + tanh

(
π

2 sinh(x)
))

, (7.2)

which maps the endpoints of the integration region to infinities, x ∈ (−∞,+∞), and the
transformed integrand decays double exponentially, i.e. as exp

(
−π

2 exp(|x|)
)
with x→ ±∞.

It can then be shown [80] that the integral can be approximated remarkably well by a sim-
ple trapezoidal rule. In fact, it was proven in [80, 81] that the tanh-sinh quadrature is
the optimal choice for integrands that are analytic inside the integration domain (exclud-
ing, perhaps, the endpoints) in a sense that it requires the least number of evaluations of
the integrand to reach a given integration error. For this class of integrands, the tanh-
sinh quadrature converges exponentially, i.e. the number of correct digits in the numerical
approximation is proportional to the number of evaluations of the integrand. Integrable
singularities at the endpoints of the integration domain, such as the logarithmic singularity
in the integrands of the weight-4 functions (see section 5.6.2), do not introduce any compli-
cations for this quadrature, hence no special handling is required. PentagonFunctions++
uses an adapted implementation of the tanh-sinh quadrature from Boost C++ [82].

We pointed out in equations (5.7) and (5.8) that several letters Wk∈α of the pentagon
alphabet do not have a definite sign inside the analyticity region P0 and vanish at the
endpoint t = 0 of the integration interval. Thus, their d log-forms have a simple pole at
t = 0. As we discussed around equations (5.36) and (5.45), these poles are compensated by
vanishing combinations of weight-2 functions. The quadrature algorithm discussed above
might require evaluation of the integrands very close to the endpoints. It is thus important
to ensure that the cancellation of the poles is numerically stable. To this end, in the
neighborhood of t = 0, t < t̃ we evaluate the kernels d log (Wk(t)) together with their
coefficients hk(t) through their generalized series expansion around t = 0 as

hk(t)
d log(Wk(t))

dt
t<t̃�1−−−−→ h0,0

k + h0,1
k log(t) + h1,0

k t+ h1,1
k t log(t) +O(t2), (7.3)

such that no numerical cancellation of the pole has to occur. The threshold t̃ is chosen
such that t̃2 � εT, where εT is the roundoff error (or machine epsilon) of the floating-point
number type T (e.g. εdouble ' 10−16).

On certain subvarieties of the physical phase space (spurious singularities) the let-
ters Wk∈α might be identically zero. As we mentioned around equation (5.8), on these
subvarieties the corresponding integration kernels also vanish. However, in small neighbor-
hoods of these subvarieties the letters Wk∈α(γ(t)) = bk(X) t almost vanish along the whole
line segment γ = [X0;X], i.e. 0 < |bk(X)| � 1. Then the contribution from hk d logWk

to the integral is rendered small by potentially large cancellations in hk(t). In principle,
this situation can be avoided by using an appropriate representation of hk(t) and/or path
deformations. However, we find that it is sufficient to simply set the integration kernels
d log (Wk) to zero exactly whenever |bk(X)| is below a certain threshold. We note that
the pentagon functions are analytic on the surfaces of spurious singularities, and only the
functions that vanish on a particular spurious-singularity surface can be significantly im-
pacted by this procedure. The threshold can thus be adjusted in such a way that only
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insignificant neighborhoods of the spurious-singularity surfaces are potentially affected.
We demonstrate this a posteriori in section 7.2.3. We leave a more refined analysis of the
spurious singularities for future study.

PentagonFunctions++ is able to perform all evaluations in three fixed-precision
floating-point types: double, quadruple and octuple precision, which respectively represent
significands of approximately 16, 32, and 64 decimal digits. We use a C++ implementation
of quadruple and octuple numerical types from the qd library [83]. Numerical evaluation
in multiple fixed-precision types is indispensable for understanding numerical stability of
the implementation, as well as for adaptively balancing precision against performance.

7.2.2 Usage

The library can be obtained from the git repository [84] with

git clone https://gitlab.com/pentagon-functions/PentagonFunctions-cpp.git

To install the library, follow the instructions in the “Installation” section of the README.md
file in the root directory of the distribution [84].

The intended way to use PentagonFunctions++ is to write a C++ program, which links
to the provided static or shared library. Further details can be found in the “Usage” section
of the README.md file found in the root directory of the distribution [84].

The main interface of the library is provided by a struct FunctionID, which is de-
clared in the header file src/FunctionID.h. An instance of FunctionID, constructed with
integer arguments (w,i,j) or (w,i), represents the pentagon function of weight w and
indices i,j, according to the definitions in equations (5.12), (5.14), (5.15), (5.25), (5.28),
(5.35a), (5.35b) and (5.44). The instances of FunctionID can be used to obtain callable
function objects of numerical type T (e.g. double, dd_real, qd_real) with the method
get_evaluator<T>(). For example, with

FunctionID fid{4,471};
auto f = fid.get_evaluator<double>();

one creates a function object f, which can be used to numerically evaluate the pen-
tagon function g(4)

471 at any number of kinematical points in double precision. The method
get_evaluator<T> performs an initialization stage of the integration framework that need
not be repeated for each subsequent evaluation. Several example programs can be found
in examples/ directory of the distribution.

The termination condition of the numerical integration is controlled by the global vari-
able

template <typename T> extern T IntegrationTolerance;

which specifies the tolerance for each numerical type T independently. It is declared in the
header file src/Constants.h. The numerical integration is terminated when the difference
of two subsequent estimates of the integral have absolute value less than the tolerance
multiplied by an estimate of the L1 norm of the integral. The default value is chosen
such that the integration error is close to the rounding error of the numerical type T. Finer
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Precision Correct digits Timing (s)
double 13 2.5

quadruple 29 180
octuple 60 3900

Table 5. Evaluation times of all pentagon functions on a typical phase-space point. Evaluation is
performed in a single thread.

control over tolerance might be exploited for improving either integration speed or precision
of the results.

For convenience, we also provide a Mathematica interface. It is realized as a
Mathematica package PentagonFunctions, which interacts with the program
mathematica_interface/evaluator_math.cpp. The interface is similar to the one of the
package PentagonFunctionsM, described in the previous section. An example of the inter-
face usage can be found in examples/math_interface.m.

7.2.3 Performance

In this section, we demonstrate performance of our implementation with respect to evalu-
ation speed and numerical stability, which are the most important properties of a numeri-
cal algorithm.

To characterize evaluation speed of our implementation, we evaluate all pentagon func-
tions with PentagonFunctions++ (with the standard settings) at a random generic point
from the physical phase space. We perform the evaluation on a single core of Intel(R)
Core(TM) i7-7700 CPU @ 3.60GHz. We show the evaluation times as well as the (min-
imal) number of correct digits8 for the three supported floating-point types in table 5.
Evaluation of the planar subset of the pentagon functions9 takes approximately 40% of the
total evaluation time. Comparing to the evaluation times of the planar pentagon functions
of [53] reported in [35], we observe that the planar subset of our implementation evaluates
approximately 100 times faster.

Further, we demonstrate the numerical stability of our implementation by evaluating
all pentagon functions on a sample of 90000 phase-space points, drawn from a typical
distribution employed in computations of differential cross sections for processes with five
massless particles.10 We evaluate all pentagon functions in double and quadruple precision
at each phase space point, and we use the latter to compute the accuracy of the former.
We characterize the accuracy of the evaluation ĝi(X) of the i-th pentagon function on a
kinematical point X by the logarithmic relative error (“correct digits”) ri(X) which we

8The target values are obtained with the package PentagonFunctionsM, see section 7.1.
9The subset of the pentagon functions contributing to master integrals of the pentagon and the planar

pentagon-box topologies.
10More concretely, we use an integration grid, optimized for Monte-Carlo integration of the leading order

qq̄ → γγγ matrix elements over the fiducial phase space defined by the analysis of [85]. We used MATRIX [86]
to obtain the integration grid.
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define as

ri(X) = − log10

∣∣∣∣∣ ĝi(X)− ĝ(q)
i (X)

ĝ
(q)
i (X)

∣∣∣∣∣ , (7.4)

where ĝ(q)
i (X) is the numerical evaluation of the same function in quadruple precision.

We define the minimal logarithmic relative error among all pentagon functions at the
kinematical point X as

R(X) = min
i

[ri(X)], i ∈ {all pentagon functions}. (7.5)

We display the distribution of R(X) over the phase space in figure 4. We observe very
good numerical stability in the bulk of the phase space: only 0.1% of the phase-space
points evaluate with less than 8 correct digits.

All 12 kinematical points X(R<6) with R < 6 are from the region of the phase space
with 0 < δ � 1. As we discussed in section 6, some pentagon functions diverge in the
limit δ → 0. But the divergence is only logarithmic. So, with minX(R<6) [δ] & 10−7, the
absolute values of the divergent pentagon functions still remain relatively small. However,
the condition number κ of e.g. the function g(1)

2,10 = log( i δ) diverges much faster,

κ(g(1)
2,10) δ→0−−−→ O

(
1

δ2 log2(δ)

)
. (7.6)

In other words, numerical evaluation of the function g
(1)
2,10 in the regime δ � 1 becomes

dominated by the rounding error of the input data (Mandelstam invariants) much ear-
lier than the function itself becomes large. Let us mention that it should be possible to
circumvent this issue in applications to numerical evaluation of complete two-loop am-
plitudes expressed in terms of the pentagon functions. We leave these considerations for
future studies.

We would like to note that the desired precision of pentagon function evaluation heavily
depends on the intended application. For this reason, we did not attempt to reach any
given accuracy threshold. Instead, we have studied the numerical stability of double-
precision evaluation in the default running mode of PentagonFunctions++. If a certain
accuracy threshold is to be guaranteed, the following strategy can be attempted. Only
the kinematical points close to either spurious singularities or δ = 0 are expected to be
problematic, which can be detected before any integrations take place. Then the potentially
problematic functions can be evaluated in higher precision with the help of multi-precision
facilities of PentagonFunctions++.

We conclude that the performance of our numerical implementation of the pentagon
functions will almost certainly be sufficient for the main anticipated application in phe-
nomenological studies.

8 Validation

The presented analytic expressions for the master integrals as well as their numerical im-
plementations have passed a number of cross checks which we report in this section.
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Figure 4. Histogram of minimal logarithmic relative error of pentagon functions (see equa-
tion (7.5)) sampled on 90000 kinematical points of a generic five-particle physical phase space.
The average evaluation time in double precision is obtained from running 64 parallel jobs on a
server with Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz.

The classification of all pentagon functions (planar and nonplanar) elaborated in this
paper does not directly rely on the planar classification from [53], which brings forward the
cyclic symmetry. In other words, the analytic expressions for the master integrals of the
planar pentagon-box topology provided here are not literally the same as in [53], but of
course both should be in agreement. Indeed, using our code, we reproduce numerical val-
ues of the planar integrals calculated by the code from [53]. Furthermore, we employed an
implementation of numerical unitarity framework [16, 17, 22] in Caravel [87] to success-
fully reproduce the numerical evaluations of the leading-color two-loop five-gluon helicity
amplitudes in the physical region presented in [20].

One of the crucial ingredients in the analytic solution of the DEs for the master integrals
are initial values, see section 4.4. For the double-pentagon family we use the initial values
from [56], which have been already validated independently with pySecDec [88, 89] for
several permutations of this topology.11 Multi-digit numerical values of the full set of initial
values presented in this paper have been already employed in [26, 59], where expected
physical properties have been observed. In particular, the weight-3 and weight-4 initial
values have been probed in [26], where the weight-drop of the five-gluon two-loop hard
function has been explicitly verified. This provides an indirect consistency check.

We check our analytic solutions of the DEs comparing their numerical evaluations with
the numerical integration of the DEs via generalized series expansions [90], implemented in
DiffExp [91]. We employed DiffExp to transport the initial values at the reference point
equation (4.16) to an arbitrary point in the physical region that can be reached without

11Version two of the preprint [56] contains a relative error of ≈ 1% in the initial values, which was
corrected in version three.
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leaving the analyticity region and compared the result with our evaluations. We found
perfect agreement within numerical precision. We should mention that we integrate each
permutation of the DE separately and never cross the physical region boundaries. It would
be interesting to analytically continue nonplanar topologies from one scattering channel to
another with DiffExp.

Also we numerically evaluated a number of the nonplanar master integrals with
pySecDec [88, 89] at arbitrary points of the physical phase space and compared the re-
sult with our evaluations of the pentagon functions finding a perfect agreement. The latter
check is sensitive to the initial values and the DE integration.

In order to verify the one-fold representations of the pentagon functions, see (5.33)
and (5.44), and their numerical implementation, we constructed alternative representations
of the weight-three and four pentagon functions. The weight-three functions are written
explicitly as polynomials in the polylogarithmic functions, and weight-four functions are
one-fold d log integrals with the weight-three integrands (see section 5.7). We find that
both implementations of the pentagon functions agree numerically. Obviously, the analytic
expressions for the pentagon functions — the one implemented in the public library and
the alternative one — are completely different. They correspond to different rewritings
of the iterated integral form of the pentagon functions into a more tangible form. The
numerical agreement of the two representations is a strong check for both of them as well
as for their numerical implementations.

Last but not least, the two public numerical implementations of the pentagon functions
— the Mathematica package and the C++ library — enables us to control the quadrature
accuracy.

9 Conclusions

In this paper, we constructed a complete set of transcendental functions, pentagon func-
tions, which are sufficient to represent all planar and non-planar master integrals for mass-
less five-point two-loop and one-loop scattering amplitudes up to transcendental weight
four. Our analytic results are valid over the whole physical phase space. This was achieved
by expressing all external momenta permutations of master integrals in the same set of
pentagon functions. We expressed the pentagon functions of weights one and two in terms
of (di-)logarithms, and we constructed one-fold integral representations for the pentagon
functions of weights three and four. We presented an implementation of numerical eval-
uation of pentagon functions in a public C++ library. The latter was designed to satisfy
demands of phenomenological applications. Thus, for the first time, all massless five-point
two-loop Feynman integrals are available for immediate application in computations of fully
differential cross sections. Together with the ongoing advances in reduction of five-point
two-loop amplitudes, our results pave the way for computation of NNLO predictions for a
number of key scattering processes at hadron colliders. The latter include production of
three hard jets, two-photon and three-photon production in association with jets.

The pentagon functions are crucial for finding compact analytic representations of
scattering amplitudes as well as for studying their asymptotic limits. In fact, the analytic
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form of amplitudes can be directly reconstructed from their numerical evaluations over
finite fields [8]. This approach has lead to remarkable progress in calculation of planar
five-point amplitudes [17, 20–29, 35]. We expect that our results will open a possibility of
extending these methods to non-planar sector.

Our strategy of constructing bases of transcendental functions can be generalized to
scattering processes with even larger number of scales, such as five-point processes with
massive particles. It might be also possible to apply our approach for the cases where
Feynman integrals evaluate to iterated integrals over more complicated differential forms,
such as modular forms (see e.g. [92–94]). It would be interesting to explore this in the
future. Finally, an interesting question is to compare efficiency of the numerical evaluation
of our analytic results to the approach of solving DEs numerically via generalized series
expansions [90, 91].
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A Pentagon alphabet

We recall the definition of the nonplanar pentagon alphabet [51, 65]. We use shorthand
notations

ai := vivi+1 + vi+2vi+3 − vi+1vi+2 − vivi+4 − vi+3vi+4 , i = 1, . . . , 5 (A.1)

where we assume cyclicity of v-variable labels, see equation (2.1), and for the sake of
presentation we split 31 letters {Wi}31

i=1 of the alphabet in the orbits of the cyclic group Z5,

W1 = v1, W2 = v2, W3 = v3, W4 = v4, W5 = v5,

W6 = v3 + v4, W7 = v4 + v5, W8 = v1 + v5, W9 = v1 + v2, W10 = v2 + v3,

W11 = v1 − v4, W12 = v2 − v5, W13 = v3 − v1, W14 = v4 − v2, W15 = v5 − v3,

W16 = v1 + v2 − v4, W17 = v2 + v3 − v5, W18 = v3 + v4 − v1,

W19 = v4 + v5 − v2, W20 = v1 + v5 − v3,

W21 = v3 + v4 − v1 − v2, W22 = v4 + v5 − v2 − v3, W23 = v1 + v5 − v3 − v4,

W24 = v1 + v2 − v4 − v5, W25 = v2 + v3 − v1 − v5,

W26 = a1 − ε5
a1 + ε5

, W27 = a2 − ε5
a2 + ε5

, W28 = a3 − ε5
a3 + ε5

, W29 = a4 − ε5
a4 + ε5

, W30 = a5 − ε5
a5 + ε5

,

W31 = ε5 .

(A.2)
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In the physical scattering region ∆ < 0 and ε5 is pure imaginary, see section 4.3. Since the
Mandelstam variables are real, the letters {W25+i}5i=1 are pure phases,

W25+i(X) = exp( iϕi(X)) and ϕi(X) is real , i = 1, . . . , 5 . (A.3)

We call letters parity-even or parity-odd according to parity-conjugation properties of their
d log-forms,

d logWi
ε5→−ε5−−−−−→ d logWi , i = 1, . . . , 25, 31 , (A.4a)

d logWi
ε5→−ε5−−−−−→ −d logWi , i = 26, . . . , 30 . (A.4b)

Thus, {Wi}25
i=1 and W31 are parity-even and {Wi}30

i=26 are parity-odd. Note that, since ε5
is imaginary in the physical region, the parity-conjugation is equivalent to the complex
conjugation in this region.

Working in the non-planar sector we have to consider all S5 permutations of the exter-
nal momenta pµ1 , . . . , p

µ
5 . The alphabet is closed under this action, which induces represen-

tation of S5 in the space of the letters. The decomposition in the irreducible representations
of S5 can be found in [65]. Here we prefer to work with reducible representations, and we
summarize the action of S5 on the letters:

• The sets of ten even letters {Wi}5i=1 ∪ {Wi}20
i=16 and fifteen even letters {Wi}15

i=6 ∪
{Wi}25

i=21 are closed under S5. The permutations map letters into each other up to
sign, i.e. Wi →Wj or Wi → −Wj .

• The five parity-odd letters {Wi}30
i=26 transform non-linearly under S5. The trans-

formations look like: Wi → Wj , Wi → W−1
j , Wi → WjWj+1, Wi → W−1

j W−1
j+1,

Wi → WjWj+1W
−1
j+3 and Wi → W−1

j W−1
j+1Wj+3 where all indices run cyclically over

26, . . . , 30, so only the five parity-odd letters appear in the transformation rules.

• W31 is mapped to itself up to sign, i.e. W31 → W31 or W31 → −W31 depending on
the signature of S5 permutation.

• Considering d log-forms of the letters, the previous transformations simplify. For the
parity-even letters, the action of S5 on {d logWi}5i=1∪{d logWi}20

i=16, {d logWi}15
i=6∪

{d logWi}25
i=21 and {d logW31} is by permutations, and for the parity-odd letters,

{d logWi}30
i=26 transform linearly.

B Physical region geometry

The analyticity region P0 (4.15) is not convex, but any line segment from X0 (4.16) to
any X ∈ P0 lies inside P0. Let us prove this statement. We are going to show that any
ray from X0 crosses the boundary of P0 only once, i.e. it cannot enter back inside P0. We
need to consider only ∆ = 0 boundary of P0. For other boundaries of P0, i.e. sij = 0 with
i, j = 1, 2 or i, j = 3, 4, 5 or i = 1, 2 and j = 3, 4, 5, the statement is obvious. Let us choose
an arbitrary X1 on the boundary of P0,

∆(X1) = 0 , s12, s34, s35, s45|X1 ≥ 0 , s13, s14, s15, s23, s24, s25|X1 ≤ 0 , (B.1)
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and connect it with X0 by the line segment γ = [X0;X1] parametrized by 0 ≤ t ≤ 1. We
need to prove that ∆(t) ≡ ∆(γ(t)) < 0 at 1 − ε < t < 1 for small positive ε. Since ∆ is
a degree-4 polynomial in the Mandelstam variables, it is enough to show that none of the
following four inequalities is compatible with (B.1),

∆′(1) < 0 at ∆(1) = 0 ; (B.2a)
∆′′(1) > 0 at ∆′(1) = 0 , ∆(1) = 0 ; (B.2b)
∆′′′(1) < 0 at ∆′′(1) = 0 , ∆′(1) = 0 , ∆(1) = 0 ; (B.2c)
∆′′′′(1) > 0 at ∆′′′(1) = 0 , ∆′′(1) = 0 , ∆′(1) = 0 , ∆(1) = 0 . (B.2d)

This can be verified using a computer algebra system. Extra simplification of the in-
equalities is achieved by fixing value of one of sij (since all expressions are homogeneous
polynomials in the Mandelstam invariants) and by using ∆(k−1)(1) = 0 to lower the degree
of ∆(k)(1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] A. van Hameren, OneLOop: For the evaluation of one-loop scalar functions, Comput. Phys.
Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].

[2] A. Denner, S. Dittmaier and L. Hofer, Collier: a fortran-based Complex One-Loop LIbrary in
Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792]
[INSPIRE].

[3] S. Carrazza, R.K. Ellis and G. Zanderighi, QCDLoop: a comprehensive framework for
one-loop scalar integrals, Comput. Phys. Commun. 209 (2016) 134 [arXiv:1605.03181]
[INSPIRE].

[4] S. Amoroso et al., Les Houches 2019: Physics at TeV Colliders: Standard Model Working
Group Report, in 11th Les Houches Workshop on Physics at TeV Colliders: PhysTeV Les
Houches, (2020) [arXiv:2003.01700] [INSPIRE].

[5] G. Heinrich, Collider Physics at the Precision Frontier, arXiv:2009.00516 [INSPIRE].

[6] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate
β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[7] H.A. Chawdhry, M.A. Lim and A. Mitov, Two-loop five-point massless QCD amplitudes
within the integration-by-parts approach, Phys. Rev. D 99 (2019) 076011
[arXiv:1805.09182] [INSPIRE].

[8] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction,
JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

[9] T. Peraro, FiniteFlow: multivariate functional reconstruction using finite fields and dataflow
graphs, JHEP 07 (2019) 031 [arXiv:1905.08019] [INSPIRE].

[10] D. Bendle et al., Integration-by-parts reductions of Feynman integrals using Singular and
GPI-Space, JHEP 02 (2020) 079 [arXiv:1908.04301] [INSPIRE].

– 42 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.cpc.2011.06.011
https://doi.org/10.1016/j.cpc.2011.06.011
https://arxiv.org/abs/1007.4716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1007.4716
https://doi.org/10.1016/j.cpc.2016.10.013
https://arxiv.org/abs/1604.06792
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1604.06792
https://doi.org/10.1016/j.cpc.2016.07.033
https://arxiv.org/abs/1605.03181
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.03181
https://arxiv.org/abs/2003.01700
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.01700
https://arxiv.org/abs/2009.00516
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.00516
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB192%2C159%22
https://doi.org/10.1103/PhysRevD.99.076011
https://arxiv.org/abs/1805.09182
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.09182
https://doi.org/10.1007/JHEP12(2016)030
https://arxiv.org/abs/1608.01902
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.01902
https://doi.org/10.1007/JHEP07(2019)031
https://arxiv.org/abs/1905.08019
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.08019
https://doi.org/10.1007/JHEP02(2020)079
https://arxiv.org/abs/1908.04301
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.04301


J
H
E
P
1
2
(
2
0
2
0
)
1
6
7

[11] Y. Wang, Z. Li and N. Ul Basat, Direct reduction of multiloop multiscale scattering
amplitudes, Phys. Rev. D 101 (2020) 076023 [arXiv:1901.09390] [INSPIRE].

[12] J. Klappert and F. Lange, Reconstructing rational functions with FireFly, Comput. Phys.
Commun. 247 (2020) 106951 [arXiv:1904.00009] [INSPIRE].

[13] J. Klappert, S.Y. Klein and F. Lange, Interpolation of Dense and Sparse Rational Functions
and other Improvements in FireFly, arXiv:2004.01463 [INSPIRE].

[14] J. Klappert, F. Lange, P. Maierhöfer and J. Usovitsch, Integral Reduction with Kira 2.0 and
Finite Field Methods, arXiv:2008.06494 [INSPIRE].

[15] J. Böhm, A. Georgoudis, K.J. Larsen, H. Schönemann and Y. Zhang, Complete
integration-by-parts reductions of the non-planar hexagon-box via module intersections, JHEP
09 (2018) 024 [arXiv:1805.01873] [INSPIRE].

[16] H. Ita, Two-loop Integrand Decomposition into Master Integrals and Surface Terms, Phys.
Rev. D 94 (2016) 116015 [arXiv:1510.05626] [INSPIRE].

[17] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic Form of Planar
Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002
[arXiv:1812.04586] [INSPIRE].

[18] X. Guan, X. Liu and Y.-Q. Ma, Complete reduction of integrals in two-loop five-light-parton
scattering amplitudes, Chin. Phys. C 44 (2020) 093106 [arXiv:1912.09294] [INSPIRE].

[19] A. von Manteuffel and R.M. Schabinger, A novel approach to integration by parts reduction,
Phys. Lett. B 744 (2015) 101 [arXiv:1406.4513] [INSPIRE].

[20] S. Badger et al., Applications of integrand reduction to two-loop five-point scattering
amplitudes in QCD, PoS LL2018 (2018) 006 [arXiv:1807.09709] [INSPIRE].

[21] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop
five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229]
[INSPIRE].

[22] S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon
Amplitudes from Numerical Unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946]
[INSPIRE].

[23] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes
for two-loop five-gluon scattering: the single-minus case, JHEP 01 (2019) 186
[arXiv:1811.11699] [INSPIRE].

[24] S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton
Amplitudes from Numerical Unitarity, JHEP 11 (2018) 116 [arXiv:1809.09067] [INSPIRE].

[25] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Analytic Form of
the Planar Two-Loop Five-Parton Scattering Amplitudes in QCD, JHEP 05 (2019) 084
[arXiv:1904.00945] [INSPIRE].

[26] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, Analytic result for
a two-loop five-particle amplitude, Phys. Rev. Lett. 122 (2019) 121602 [arXiv:1812.11057]
[INSPIRE].

[27] S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude
in N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 122 (2019) 121603 [arXiv:1812.08941]
[INSPIRE].

– 43 –

https://doi.org/10.1103/PhysRevD.101.076023
https://arxiv.org/abs/1901.09390
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.09390
https://doi.org/10.1016/j.cpc.2019.106951
https://doi.org/10.1016/j.cpc.2019.106951
https://arxiv.org/abs/1904.00009
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.00009
https://arxiv.org/abs/2004.01463
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2004.01463
https://arxiv.org/abs/2008.06494
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.06494
https://doi.org/10.1007/JHEP09(2018)024
https://doi.org/10.1007/JHEP09(2018)024
https://arxiv.org/abs/1805.01873
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.01873
https://doi.org/10.1103/PhysRevD.94.116015
https://doi.org/10.1103/PhysRevD.94.116015
https://arxiv.org/abs/1510.05626
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.05626
https://doi.org/10.1103/PhysRevLett.122.082002
https://arxiv.org/abs/1812.04586
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.04586
https://doi.org/10.1088/1674-1137/44/9/093106
https://arxiv.org/abs/1912.09294
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09294
https://doi.org/10.1016/j.physletb.2015.03.029
https://arxiv.org/abs/1406.4513
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1406.4513
https://doi.org/10.22323/1.303.0006
https://arxiv.org/abs/1807.09709
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09709
https://doi.org/10.1103/PhysRevLett.120.092001
https://arxiv.org/abs/1712.02229
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.02229
https://doi.org/10.1103/PhysRevD.97.116014
https://arxiv.org/abs/1712.03946
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.03946
https://doi.org/10.1007/JHEP01(2019)186
https://arxiv.org/abs/1811.11699
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11699
https://doi.org/10.1007/JHEP11(2018)116
https://arxiv.org/abs/1809.09067
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.09067
https://doi.org/10.1007/JHEP05(2019)084
https://arxiv.org/abs/1904.00945
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.00945
https://doi.org/10.1103/PhysRevLett.122.121602
https://arxiv.org/abs/1812.11057
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11057
https://doi.org/10.1103/PhysRevLett.122.121603
https://arxiv.org/abs/1812.08941
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.08941


J
H
E
P
1
2
(
2
0
2
0
)
1
6
7

[28] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, The two-loop
five-particle amplitude in N = 8 supergravity, JHEP 03 (2019) 115 [arXiv:1901.05932]
[INSPIRE].

[29] S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude
in N = 8 supergravity, JHEP 03 (2019) 123 [arXiv:1901.08563] [INSPIRE].

[30] S. Badger et al., Analytic form of the full two-loop five-gluon all-plus helicity amplitude,
Phys. Rev. Lett. 123 (2019) 071601 [arXiv:1905.03733] [INSPIRE].

[31] A.R. Dalgleish, D.C. Dunbar, W.B. Perkins and J.M.W. Strong, Full color two-loop six-gluon
all-plus helicity amplitude, Phys. Rev. D 101 (2020) 076024 [arXiv:2003.00897] [INSPIRE].

[32] S. Abreu, H. Ita, F. Moriello, B. Page, W. Tschernow and M. Zeng, Two-Loop Integrals for
Planar Five-Point One-Mass Processes, JHEP 11 (2020) 117 [arXiv:2005.04195] [INSPIRE].

[33] H.B. Hartanto, S. Badger, C. Brønnum-Hansen and T. Peraro, A numerical evaluation of
planar two-loop helicity amplitudes for a W-boson plus four partons, JHEP 09 (2019) 119
[arXiv:1906.11862] [INSPIRE].

[34] C.G. Papadopoulos and C. Wever, Internal Reduction method for computing Feynman
Integrals, JHEP 02 (2020) 112 [arXiv:1910.06275] [INSPIRE].

[35] H.A. Chawdhry, M.L. Czakon, A. Mitov and R. Poncelet, NNLO QCD corrections to
three-photon production at the LHC, JHEP 02 (2020) 057 [arXiv:1911.00479] [INSPIRE].

[36] A.V. Kotikov, Differential equation method: The calculation of N point Feynman diagrams,
Phys. Lett. B 267 (1991) 123 [Erratum ibid. 295 (1992) 409] [INSPIRE].

[37] A.V. Kotikov, Differential equations method: New technique for massive Feynman diagrams
calculation, Phys. Lett. B 254 (1991) 158 [INSPIRE].

[38] E. Remiddi, Differential equations for Feynman graph amplitudes, Nuovo Cim. A 110 (1997)
1435 [hep-th/9711188] [INSPIRE].

[39] Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl.
Phys. B 412 (1994) 751 [hep-ph/9306240] [INSPIRE].

[40] T. Gehrmann and E. Remiddi, Differential equations for two loop four point functions, Nucl.
Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[41] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.
110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[42] C. Meyer, Algorithmic transformation of multi-loop master integrals to a canonical basis with
CANONICA, Comput. Phys. Commun. 222 (2018) 295 [arXiv:1705.06252] [INSPIRE].

[43] C. Dlapa, J. Henn and K. Yan, Deriving canonical differential equations for Feynman
integrals from a single uniform weight integral, JHEP 05 (2020) 025 [arXiv:2002.02340]
[INSPIRE].

[44] J. Henn, B. Mistlberger, V.A. Smirnov and P. Wasser, Constructing d-log integrands and
computing master integrals for three-loop four-particle scattering, JHEP 04 (2020) 167
[arXiv:2002.09492] [INSPIRE].

[45] J. Chen, X. Xu and L.L. Yang, Constructing Canonical Feynman Integrals with Intersection
Theory, arXiv:2008.03045 [INSPIRE].

[46] A.B. Goncharov, Multiple polylogarithms and mixed Tate motives, math/0103059 [INSPIRE].

– 44 –

https://doi.org/10.1007/JHEP03(2019)115
https://arxiv.org/abs/1901.05932
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.05932
https://doi.org/10.1007/JHEP03(2019)123
https://arxiv.org/abs/1901.08563
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.08563
https://doi.org/10.1103/PhysRevLett.123.071601
https://arxiv.org/abs/1905.03733
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1905.03733
https://doi.org/10.1103/PhysRevD.101.076024
https://arxiv.org/abs/2003.00897
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.00897
https://doi.org/10.1007/JHEP11(2020)117
https://arxiv.org/abs/2005.04195
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.04195
https://doi.org/10.1007/JHEP09(2019)119
https://arxiv.org/abs/1906.11862
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11862
https://doi.org/10.1007/JHEP02(2020)112
https://arxiv.org/abs/1910.06275
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.06275
https://doi.org/10.1007/JHEP02(2020)057
https://arxiv.org/abs/1911.00479
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1911.00479
https://doi.org/10.1016/0370-2693(91)90536-Y
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB267%2C123%22
https://doi.org/10.1016/0370-2693(91)90413-K
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB254%2C158%22
https://arxiv.org/abs/hep-th/9711188
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711188
https://doi.org/10.1016/0550-3213(94)90398-0
https://doi.org/10.1016/0550-3213(94)90398-0
https://arxiv.org/abs/hep-ph/9306240
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9306240
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://arxiv.org/abs/hep-ph/9912329
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9912329
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1304.1806
https://doi.org/10.1016/j.cpc.2017.09.014
https://arxiv.org/abs/1705.06252
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.06252
https://doi.org/10.1007/JHEP05(2020)025
https://arxiv.org/abs/2002.02340
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.02340
https://doi.org/10.1007/JHEP04(2020)167
https://arxiv.org/abs/2002.09492
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.09492
https://arxiv.org/abs/2008.03045
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.03045
https://arxiv.org/abs/math/0103059
https://inspirehep.net/search?p=find+EPRINT%2Bmath%2F0103059


J
H
E
P
1
2
(
2
0
2
0
)
1
6
7

[47] A.B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, Classical Polylogarithms for
Amplitudes and Wilson Loops, Phys. Rev. Lett. 105 (2010) 151605 [arXiv:1006.5703]
[INSPIRE].

[48] F. Brown, Iterated integrals in quantum field theory, in 6th Summer School on Geometric and
Topological Methods for Quantum Field Theory, pp. 188–240, 2013, DOI [INSPIRE].

[49] K.-T. Chen, Iterated path integrals, Bull. Am. Math. Soc. 83 (1977) 831 [INSPIRE].

[50] C. Duhr, H. Gangl and J.R. Rhodes, From polygons and symbols to polylogarithmic
functions, JHEP 10 (2012) 075 [arXiv:1110.0458] [INSPIRE].

[51] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon
all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116
(2016) 189903] [arXiv:1511.05409] [INSPIRE].

[52] C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the
Simplified Differential Equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404]
[INSPIRE].

[53] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar
scattering amplitudes, JHEP 10 (2018) 103 [arXiv:1807.09812] [INSPIRE].

[54] D. Chicherin, T. Gehrmann, J.M. Henn, N.A. Lo Presti, V. Mitev and P. Wasser, Analytic
result for the nonplanar hexa-box integrals, JHEP 03 (2019) 042 [arXiv:1809.06240]
[INSPIRE].

[55] S. Abreu, B. Page and M. Zeng, Differential equations from unitarity cuts: nonplanar
hexa-box integrals, JHEP 01 (2019) 006 [arXiv:1807.11522] [INSPIRE].

[56] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All Master
Integrals for Three-Jet Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 123
(2019) 041603 [arXiv:1812.11160] [INSPIRE].

[57] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The planar
topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

[58] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The nonplanar
topologies, Nucl. Phys. B 601 (2001) 287 [hep-ph/0101124] [INSPIRE].

[59] S. Caron-Huot, D. Chicherin, J. Henn, Y. Zhang and S. Zoia, Multi-Regge Limit of the
Two-Loop Five-Point Amplitudes in N = 4 Super Yang-Mills and N = 8 Supergravity, JHEP
10 (2020) 188 [arXiv:2003.03120] [INSPIRE].

[60] S. Caron-Huot and J.M. Henn, Iterative structure of finite loop integrals, JHEP 06 (2014)
114 [arXiv:1404.2922] [INSPIRE].

[61] N. Byers and C.N. Yang, Physical Regions in Invariant Variables for n Particles and the
Phase-Space Volume Element, Rev. Mod. Phys. 36 (1964) 595 [INSPIRE].

[62] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations,
Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[63] A.V. Smirnov and V.A. Smirnov, How to choose master integrals, Nucl. Phys. B 960 (2020)
115213 [arXiv:2002.08042] [INSPIRE].

[64] J. Usovitsch, Factorization of denominators in integration-by-parts reductions,
arXiv:2002.08173 [INSPIRE].

– 45 –

https://doi.org/10.1103/PhysRevLett.105.151605
https://arxiv.org/abs/1006.5703
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1006.5703
https://doi.org/10.1017/CBO9781139208642.006
https://inspirehep.net/search?p=find+doi%20%2210.1017%2FCBO9781139208642.006%22
https://doi.org/10.1090/S0002-9904-1977-14320-6
https://inspirehep.net/search?p=find+J%20%22Bull.Am.Math.Soc.%2C83%2C831%22
https://doi.org/10.1007/JHEP10(2012)075
https://arxiv.org/abs/1110.0458
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1110.0458
https://doi.org/10.1103/PhysRevLett.116.062001
https://arxiv.org/abs/1511.05409
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.05409
https://doi.org/10.1007/JHEP04(2016)078
https://arxiv.org/abs/1511.09404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.09404
https://doi.org/10.1007/JHEP10(2018)103
https://arxiv.org/abs/1807.09812
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.09812
https://doi.org/10.1007/JHEP03(2019)042
https://arxiv.org/abs/1809.06240
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1809.06240
https://doi.org/10.1007/JHEP01(2019)006
https://arxiv.org/abs/1807.11522
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.11522
https://doi.org/10.1103/PhysRevLett.123.041603
https://doi.org/10.1103/PhysRevLett.123.041603
https://arxiv.org/abs/1812.11160
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.11160
https://doi.org/10.1016/S0550-3213(01)00057-8
https://arxiv.org/abs/hep-ph/0008287
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0008287
https://doi.org/10.1016/S0550-3213(01)00074-8
https://arxiv.org/abs/hep-ph/0101124
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0101124
https://doi.org/10.1007/JHEP10(2020)188
https://doi.org/10.1007/JHEP10(2020)188
https://arxiv.org/abs/2003.03120
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.03120
https://doi.org/10.1007/JHEP06(2014)114
https://doi.org/10.1007/JHEP06(2014)114
https://arxiv.org/abs/1404.2922
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.2922
https://doi.org/10.1103/RevModPhys.36.595
https://inspirehep.net/search?p=find+J%20%22Rev.Mod.Phys.%2C36%2C595%22
https://doi.org/10.1016/S0217-751X(00)00215-7
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0102033
https://doi.org/10.1016/j.nuclphysb.2020.115213
https://doi.org/10.1016/j.nuclphysb.2020.115213
https://arxiv.org/abs/2002.08042
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08042
https://arxiv.org/abs/2002.08173
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2002.08173


J
H
E
P
1
2
(
2
0
2
0
)
1
6
7

[65] D. Chicherin, J. Henn and V. Mitev, Bootstrapping pentagon functions, JHEP 05 (2018) 164
[arXiv:1712.09610] [INSPIRE].

[66] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar
diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

[67] J.M. Henn and B. Mistlberger, Four-graviton scattering to three loops in N = 8 supergravity,
JHEP 05 (2019) 023 [arXiv:1902.07221] [INSPIRE].

[68] A.B. Goncharov, Multiple polylogarithms, cyclotomy and modular complexes, Math. Res.
Lett. 5 (1998) 497 [arXiv:1105.2076] [INSPIRE].

[69] C.W. Bauer, A. Frink and R. Kreckel, Introduction to the GiNaC framework for symbolic
computation within the C++ programming language, J. Symb. Comput. 33 (2002) 1
[cs/0004015].

[70] S. Caron-Huot, L.J. Dixon, A. McLeod and M. von Hippel, Bootstrapping a Five-Loop
Amplitude Using Steinmann Relations, Phys. Rev. Lett. 117 (2016) 241601
[arXiv:1609.00669] [INSPIRE].

[71] L.J. Dixon, J. Drummond, T. Harrington, A.J. McLeod, G. Papathanasiou and M. Spradlin,
Heptagons from the Steinmann Cluster Bootstrap, JHEP 02 (2017) 137 [arXiv:1612.08976]
[INSPIRE].

[72] L.J. Dixon, J.M. Drummond and J.M. Henn, Bootstrapping the three-loop hexagon, JHEP 11
(2011) 023 [arXiv:1108.4461] [INSPIRE].

[73] L.J. Dixon, J.M. Drummond, M. von Hippel and J. Pennington, Hexagon functions and the
three-loop remainder function, JHEP 12 (2013) 049 [arXiv:1308.2276] [INSPIRE].

[74] L.J. Dixon and Y.-T. Liu, Lifting Heptagon Symbols to Functions, JHEP 10 (2020) 031
[arXiv:2007.12966] [INSPIRE].

[75] https://gitlab.com/pentagon-functions/PentagonMI.

[76] https://gitlab.com/VasilySotnikov/Li2pp.

[77] A. van Hameren, J. Vollinga and S. Weinzierl, Automated computation of one-loop integrals
in massless theories, Eur. Phys. J. C 41 (2005) 361 [hep-ph/0502165] [INSPIRE].

[78] J. Kuipers, T. Ueda and J.A.M. Vermaseren, Code Optimization in FORM, Comput. Phys.
Commun. 189 (2015) 1 [arXiv:1310.7007] [INSPIRE].

[79] B. Ruijl, T. Ueda and J. Vermaseren, FORM version 4.2, arXiv:1707.06453 [INSPIRE].

[80] H. Takahasi and M. Mori, Double exponential formulas for numerical integration, Publ. Res.
Inst. Math. Sci. 9 (1973) 721.

[81] D.H. Bailey, K. Jeyabalan and X.S. Li, A comparison of three high-precision quadrature
schemes, Exper. Math. 14 (2005) 317.

[82] N. Thompson and J. Maddock, Double-exponential quadrature, https://www.boost.org/doc/
libs/1_73_0/libs/math/doc/html/math_toolkit/double_exponential.html, (2017).

[83] Y. Hida, S. Li and D. Bailey, Quad-double arithmetic: Algorithms, implementation, and
application, http://crd-legacy.lbl.gov/~dhbailey/mpdist/, (2001).

[84] https://gitlab.com/pentagon-functions/PentagonFunctions-cpp.

– 46 –

https://doi.org/10.1007/JHEP05(2018)164
https://arxiv.org/abs/1712.09610
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.09610
https://doi.org/10.1007/JHEP03(2014)088
https://arxiv.org/abs/1312.2588
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2588
https://doi.org/10.1007/JHEP05(2019)023
https://arxiv.org/abs/1902.07221
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.07221
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://doi.org/10.4310/MRL.1998.v5.n4.a7
https://arxiv.org/abs/1105.2076
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1105.2076
https://doi.org/10.1006/jsco.2001.0494
https://arxiv.org/abs/cs/0004015
https://doi.org/10.1103/PhysRevLett.117.241601
https://arxiv.org/abs/1609.00669
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1609.00669
https://doi.org/10.1007/JHEP02(2017)137
https://arxiv.org/abs/1612.08976
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.08976
https://doi.org/10.1007/JHEP11(2011)023
https://doi.org/10.1007/JHEP11(2011)023
https://arxiv.org/abs/1108.4461
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.4461
https://doi.org/10.1007/JHEP12(2013)049
https://arxiv.org/abs/1308.2276
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1308.2276
https://doi.org/10.1007/JHEP10(2020)031
https://arxiv.org/abs/2007.12966
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.12966
https://gitlab.com/pentagon-functions/PentagonMI
https://gitlab.com/VasilySotnikov/Li2pp
https://doi.org/10.1140/epjc/s2005-02229-6
https://arxiv.org/abs/hep-ph/0502165
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0502165
https://doi.org/10.1016/j.cpc.2014.08.008
https://doi.org/10.1016/j.cpc.2014.08.008
https://arxiv.org/abs/1310.7007
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1310.7007
https://arxiv.org/abs/1707.06453
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06453
https://doi.org/10.2977/prims/1195192451
https://doi.org/10.2977/prims/1195192451
https://doi.org/10.1080/10586458.2005.10128931
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/double_exponential.html
https://www.boost.org/doc/libs/1_73_0/libs/math/doc/html/math_toolkit/double_exponential.html
http://crd-legacy.lbl.gov/~dhbailey/mpdist/
https://gitlab.com/pentagon-functions/PentagonFunctions-cpp


J
H
E
P
1
2
(
2
0
2
0
)
1
6
7

[85] ATLAS collaboration, Measurement of the production cross section of three isolated photons
in pp collisions at

√
s = 8TeV using the ATLAS detector, Phys. Lett. B 781 (2018) 55

[arXiv:1712.07291] [INSPIRE].

[86] M. Grazzini, S. Kallweit and M. Wiesemann, Fully differential NNLO computations with
MATRIX, Eur. Phys. J. C 78 (2018) 537 [arXiv:1711.06631] [INSPIRE].

[87] S. Abreu et al., Caravel: A C++ Framework for the Computation of Multi-Loop Amplitudes
with Numerical Unitarity, arXiv:2009.11957 [INSPIRE].

[88] S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals,
Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].

[89] S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner and J. Schlenk, A GPU compatible
quasi-Monte Carlo integrator interfaced to pySecDec, Comput. Phys. Commun. 240 (2019)
120 [arXiv:1811.11720] [INSPIRE].

[90] F. Moriello, Generalised power series expansions for the elliptic planar families of Higgs +
jet production at two loops, JHEP 01 (2020) 150 [arXiv:1907.13234] [INSPIRE].

[91] M. Hidding, DiffExp, a Mathematica package for computing Feynman integrals in terms of
one-dimensional series expansions, arXiv:2006.05510 [INSPIRE].

[92] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals
on elliptic curves. Part I: general formalism, JHEP 05 (2018) 093 [arXiv:1712.07089]
[INSPIRE].

[93] J. Broedel, C. Duhr, F. Dulat and L. Tancredi, Elliptic polylogarithms and iterated integrals
on elliptic curves II: an application to the sunrise integral, Phys. Rev. D 97 (2018) 116009
[arXiv:1712.07095] [INSPIRE].

[94] L. Adams and S. Weinzierl, Feynman integrals and iterated integrals of modular forms,
Commun. Num. Theor. Phys. 12 (2018) 193 [arXiv:1704.08895] [INSPIRE].

– 47 –

https://doi.org/10.1016/j.physletb.2018.03.057
https://arxiv.org/abs/1712.07291
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07291
https://doi.org/10.1140/epjc/s10052-018-5771-7
https://arxiv.org/abs/1711.06631
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.06631
https://arxiv.org/abs/2009.11957
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2009.11957
https://doi.org/10.1016/j.cpc.2017.09.015
https://arxiv.org/abs/1703.09692
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.09692
https://doi.org/10.1016/j.cpc.2019.02.015
https://doi.org/10.1016/j.cpc.2019.02.015
https://arxiv.org/abs/1811.11720
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.11720
https://doi.org/10.1007/JHEP01(2020)150
https://arxiv.org/abs/1907.13234
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.13234
https://arxiv.org/abs/2006.05510
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.05510
https://doi.org/10.1007/JHEP05(2018)093
https://arxiv.org/abs/1712.07089
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07089
https://doi.org/10.1103/PhysRevD.97.116009
https://arxiv.org/abs/1712.07095
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1712.07095
https://doi.org/10.4310/CNTP.2018.v12.n2.a1
https://arxiv.org/abs/1704.08895
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1704.08895

	Introduction
	Kinematics
	Integral topologies
	Differential equations
	Construction of canonical differential equations
	Integrating DE and iterated integrals
	Physical region
	Initial values
	Parity of the UT master integrals

	Classification of functions
	Classification strategy
	Parity-even letters of the alphabet in the analyticity region
	Weight-one solutions
	Extra weight-one functions
	One-fold iterated integrals of the parity odd letters

	Weight-two solutions
	Parity-even functions
	Parity-odd functions
	All master UT integrals at weight two

	Weight-three solutions
	Weight-three pentagon functions
	All master UT integrals at weight three

	Weight-four solutions
	Weight-four pentagon functions
	One-fold integral representation of weight-four pentagon functions
	All master UT integrals at weight four

	Alternative representation of the pentagon functions
	Master integrals in arbitrary channel

	Behavior near the boundary Delta=0
	Weights one and two
	Weight three
	Weight four

	Numerical evaluation
	Mathematica package PentagonMI
	C++ library PentagonFunctions++
	Features
	Usage
	Performance


	Validation
	Conclusions
	Pentagon alphabet
	Physical region geometry

