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1 Introduction

The existence of Dark Matter (DM) is motivated from different astrophysical observations
like galaxy rotation curves [1–3], bullet cluster [4], gravitational lensing [5], and cosmo-
logical observations like anisotropies in Cosmic Microwave Background (CMB) [6](for a
review, see, for example [7, 8]). However, we still do not know what DM actually is. DM
as a fundamental particle has to be electromagnetic charge neutral and stable at the scale
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of universe life time. From satellite experiments like WMAP and PLANCK [9–13], that
measure anisotropies in CMB, we learn that DM constitutes almost 85% of the total matter
content and 26.4% of the total energy budget of the universe, often expressed in terms of
relic density, which provides an important constraint to abide by. Since no Standard Model
(SM) particle resembles the properties of a DM particle, many possibilities beyond the SM
(BSM) have been formulated to explain the particle nature of the DM, as scalar, fermion
or a vector boson stabilized by an additional symmetry GDM .

Amongst different possibilities, the most popular one assumes DM to be present in
thermal bath in early universe due to non-negligible coupling with the SM, which even-
tually freezes out to provide correct thermal relic as universe expands and cools down.
Weekly Interacting Massive Particles (WIMP) belongs to such thermal relic category and
is widely studied due to its phenomenological richness [14–17]. However, it is also viable
to assume that DM is very weakly coupled to visible sector and therefore does not equi-
librate to hot soup of SM particles in the early universe and gets produced via decay or
annihilation of particles already in equilibrium. Such non-thermal DM production halts
after the temperature of the bath drops smaller than DM mass and the yield freezes in
to provide correct relic density, see for example, [18]. DM particles which freezes in are
often called feebly interacting massive particle (FIMP) and easily evades the bounds from
non-observation of DM in direct or collider searches. Such a DM is mainly studied in the
analysis presented here.

Vector boson DM (VDM) candidate can only appear in models with extended gauge
group, the simplest being an Abelian U(1). Many possibilities of an Abelian VDM have
been studied [19–37], while non-Abelian extensions to adopt VDM are fewer [38–46]. The
VDM can become massive after spontaneous symmetry breaking of the additional gauge
group and often requires additional stabilizing symmetry GDM [20, 38]. The advantage of
the non-Abelian realization of this scenario is that, in this case, there is no need to impose
an extra symmetry by hand that provides stability of vector DM.1 The main parameters
that characterize VDM are DM mass and the portal quartic coupling that connects dark
and visible sectors. Therefore, the portal coupling crucially distinguishes the possibility of
(i) DM freeze-out when the coupling is moderately weak [15, 17, 47, 48] and (ii) freeze-
in [35, 49–62] when the coupling is very tiny. Freeze-in possibilities have also been studied
in the context of non-Abelian cases, for example in [45]. Our goal in this paper is to realize
the presence of a VDM coupled to the SM via effective theory.

Effective DM-SM operators provide a model-independent framework to probe DM
characteristics like relic density, direct search and collider search prospects. Such oper-
ators are usually written as O = OSMODM , where OSM consists of SM fields and ODM
consists of additional DM fields (scalar, fermion or vector boson). The Lagrangian is as-
sumed to be invariant under GSM × GDM , where SM fields in OSM transform only under
SM gauge symmetry (GSM = SU(3)c × SU(2)L × U(1)Y ) and neutral under GDM , while
DM fields transform only under dark symmetry (GDM , often assumed to be Z2) and are
singlets under GSM. A heavy mediator is assumed to couple to both dark and visible

1This statement is valid if no extra degrees of freedom charged under the dark gauge symmetry is present.
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sector weakly and the operators are expected to vanish when the mass of the heavy medi-
ator goes to infinity following decoupling theorem. A complete set of such operators have
been written upto dimension six assuming GSM to be SM gauge group [63, 64] as well as
assuming GSM ∼ U(1)EM after spontaneous electroweak symmetry breaking [65] keeping
dark symmetry intact. Detailed phenomenological analysis assuming the DM to freeze-out
have been carried out including the collider search prospects at Large Hadron Collider
(LHC) [65–73].

Here, we elaborate a model where the dark sector is coupled to visible sector only via
effective dimension five operator. We choose the simplest extension of the SM by Abelian
U(1)X gauge group. The U(1)X vector boson is electromagnetic charge neutral and must
be stable for becoming DM. The stability is guaranteed by imposing an additional Z2
symmetry under which the dark vector boson is odd, then the kinetic mixing XµνBµν is
forbidden. However a direct connection between DM and the visible sector (SM) still could
be introduced if an extra real scalar (Φ) odd under the stabilizing symmetry is present.
Then an operator of mass dimension five, XµνBµνΦ/Λ, is allowed. For dimensional reasons
the interaction must be suppressed by an unknown new physics (NP) scale Λ. This operator
has been listed in [64] and a WIMP phenomenology has recently been performed in [74]. It
is worthy to mention here, even without XµνBµνΦ term, dark sector can couple to the SM,
via the mixing of scalar boson (call it S) that breaks U(1)X and the Higgs doublet (H)
via a portal term |S|2|H|2 [35]. Here however, we will assume that the scalar S is super
heavy and decouples. In addition a quartic portal interaction of the scalar Φ, Φ2|H|2 is also
allowed by the symmetry. The coupling is relevant for Φ being in thermal equilibrium with
the SM, however fails to produce vector boson DM without the dimension five operator.
It is important to note that in absence of the dimension five term, Φ becomes a stable DM
candidate together withX, while the latter is completely decoupled from the SM in the limit
of heavy S. With the presence of the higher dimension interaction term, X becomes stable
DM, givenmΦ > mX , as we assume here. We will show in section 4.1, that even large portal
coupling of Φ2|H|2 fails to contribute significantly to DM (X) production, compared to the
Φ decay after Electroweak symmetry breaking (EWSB). For the consistency of Effective
Field Theory (EFT), the NP scale also requires to be larger than the maximum reheat
temperature Λ > TRH. Together, it is more appealing to assume that the VDM is feebly
connected to the SM and it freezes-in. The paper analyzes such possibility in details. We
also demonstrate the limitation of UV freeze-in which is advocated in context of effective
operators [50]. We show when the reheat temperature comes closer to the DM mass scale
(m) involved in production process with TRH & m, massive kinematics plays an important
role and IR aspects are becoming relevant.

It is worth noticing that owing to feeble DM-SM interaction to account for correct relic
density in FIMP like models, the possibility of detecting such DM candidates at direct or
collider searches is limited. However, if one has an extended dark sector, like we have Φ
having same Z2 symmetry as of VDM (Xµ), there can still be a possibility. We comment on
seeing mono-X (where X stands for jet, photon, W,Z or H) plus missing energy signature
in this framework at the upcoming run of Large Hadron Collider (LHC).

Finally, let’s comment on the so called small scale cosmological problems. Even though
comparison of the standard cosmological model, i.e. the ΛCDM model, with observations
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Fields SU(3)c SU(2)L U(1)Y Z2

Φ 1 1 0 −Φ
X 1 1 0 −X
S 1 1 0 S∗

Table 1. Charges of the new particles under SU(3)c × SU(2)L ×U(1)Y × Z2 symmetry.

is very successful on scales larger than galaxies, the model has some difficulties at sub-
galaxy scales, predicting, via computer simulations, too many dwarf galaxies (”missing-
satellites problem”) and/or too much dark matter (“core-cusp problem”) in central regions
of galaxies. Among possible solutions of this “small scale crisis” are e.g. models of strongly
interacting DM, for VDM see e.g. [35]. However there exist also a simpler explanation of
the crises. Namely, there has been an extensive investigation recently of the possibility
that a realistic treatment of baryonic physics in simulations, such as supernovae feedback,
stellar winds, etc. can eliminate the tension (see [75] and references therein). Therefore in
this work the issue of small scale problems has not been addressed.

The paper is arranged as follows. Section 1 contains an introduction to VDM mod-
els. In section 2 the model considered here is described and its Stueckelberg formulation
specified. Section 3 discusses properties of the Boltzmann equation relevant for the DM
production. Section 4 contains our findings for the DM abundance via the freeze-in and
shows regions of the parameter space consistent with the observed DM abundance. In
section 5 we comment on experimental constraints and collider signatures of the model.
Section 6 shows summary and conclusions. In appendices A-D we collect useful formulae.

2 The model

The minimal VDM model contains a U(1)X gauge boson denoted here by Xµ. In order
to enable direct interactions between Xµ and the SM one also requires presence of a real
scalar Φ. Both of them should be odd under a Z2 which stabilises DM candidate, i.e. the
vector boson (mX < mΦ). Therefore the symmetry group of the model is G = SU(3)C ×
SU(2)L×U(1)Y ×U(1)X×Z2. In order to generate a mass for the dark gauge boson we also
introduce a complex scalar S charged under U(1)X , which acquires a vacuum expectation
value to break U(1)X spontaneously. The Z2 transformation acts on these fields as follows:

Z2 : Xµ → −Xµ, S → S?, Φ→ −Φ . (2.1)

The quantum numbers under SU(3)c × SU(2)L × U(1)Y × Z2 of the new fields are
tabulated in table 1.

With these fields and the charges, we can write the renormalizable SU(3)c× SU(2)L×
U(1)Y × Z2 invariant scalar potential as:

V (H,S,Φ) = −µ2
H |H|2 − µ2

S |S|2 + µ2
ΦΦ2 (2.2)

+λH |H|4 + λS |S|4 + λΦΦ4 + λHΦ|H|2Φ2 + λSΦ|S|2Φ2 + λSH |H|2|S|2 .

The total renormalizable Lagrangian then reads:

Ltot = −1
4XµνX

µν + |DX
µ S|2 +(DSM

µ H)†(DSMµH)+ 1
2∂µΦ∂µΦ−V (H,S,Φ)+LSM , (2.3)
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where H is the SU(2)L SM Higgs doublet and DSM
µ is the SM covariant derivative. The

Xµ field tensor and corresponding covariant derivative are defined as

Xµν = ∂µXν − ∂νXµ; DX
µ S = ∂µS − igXSXµ; (2.4)

where gX denotes U(1)X gauge coupling.
Below we are going to investigate limit of the above model when the mass of one of the

physical scalars contained in the spectrum becomes very large. We expect to reproduce a
version of the Stueckelberg model coupled to the extra scalar Φ and the SM Higgs doublet
H. The goal is to determine, among the degrees of freedom of the considered model,
the Stueckelberg scalar introduced in order to make the Stueckelberg Lagrangian gauge
symmetric. Some subtleties of the limiting procedure will be addressed.

2.1 Positivity criteria

In order to formulate conditions for asymptotic positivity (for large field strengths) of the
potential in eq. (2.3) we shall first write down the matrix of quartic couplings in the basis:
|S|2,Φ2, |H|2:

W ≡

 λS
λSΦ

2
λSH

2
λSΦ

2 λΦ
λHΦ

2
λSH

2
λHΦ

2 λH ,

 . (2.5)

Now, a scalar potential biquadratic in fields is bounded from below if the matrix W is
co-positive [76]. Thus, the vacuum stability conditions for the potential in eq. (2.3) are
given by the Sylvester criteria for the co-positivity of W [76, 77]:

λS > 0, λΦ > 0, λH > 0, (2.6)

also,

λ̃SΦ ≡ λSΦ + 2(λSλΦ)1/2 > 0, (2.7)

λ̃HΦ ≡ λHΦ + 2(λΦλH)1/2 > 0, (2.8)

λ̃SH ≡ λSH + 2(λSλH)1/2 > 0, (2.9)

λ
1/2
Φ λSH + λ

1/2
S λHΦ + λ

1/2
H λSΦ + 2(λSλΦλH)1/2 + 2(λ̃SΦλ̃HΦλ̃SH)1/2 > 0. (2.10)

We emphasize that these are necessary and sufficient conditions for vacuum stability [76].

2.2 Minimization conditions and spontaneous symmetry breaking

We parametrize the scalar fields as follows:

H =
(
φ+

h+iφ0
√

2

)
, S = ρ√

2
eiσS/vS . (2.11)

The extrema conditions for the potential in eq. (2.3) read

∂V

∂h

∣∣∣∣
h=vh

= 0, ∂V

∂ρ

∣∣∣∣
ρ=vS

= 0, ∂V

∂Φ

∣∣∣∣
Φ=vΦ

= 0. (2.12)

Hereafter we assume µ2
H , µ

2
S , µ

2
Φ > 0 in order to generate proper symmetry breaking.
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# v2
h v2

S v2
Φ V |extr

1 0 0 0 0

2 0 µ2
S

λS
0 − 1

4
µ4
S

λS

3 µ2
H

λH
0 0 − 1

4
µ4
H

λH

4 2(2λSµ2
H−λSHµ

2
S)

4λHλS−λ2
SH

2(2λHµ2
S−λSHµ

2
H)

4λHλS−λ2
SH

0 −λSµ
4
H−λSHµ

2
Hµ

2
S+λHµ4

S

4λHλS−λ2
SH

Table 2. The table shows possible extrema with vΦ = 0 and corresponding values of the poten-
tial 2.3.

We will require that the above conditions are satisfied by non-zero vacuum expectation
values (vevs) of 〈H〉 = vh 6= 0 and 〈S〉 = vS 6= 0, while for Φ we require zero-vev;
〈Φ〉 = vΦ = 0.

The following relations are implied by the minimization conditions (2.12):

vh(2λHv2
h + λSHv

2
S − 2µ2

H) = 0
vS(2λSv2

S + λSHv
2
h − 2µ2

S) = 0 (2.13)
vΦ(2µ2

Φ + 4λΦv
2
Φ + λHΦv

2
h + λSΦv

2
S) = 0

We will therefore expand H and S around the non-zero vevs as follows

H =
(

φ+

h+vh+iφ0
√

2

)
, S = ρ+ vS√

2
eiσS/vS , (2.14)

where we have used the same notation for the fluctuations around the vacuum as earlier
for the initial fields. In the expression above σS is the Goldstone boson that constitutes
the longitudinal component of the Xµ, while the SM Goldstone bosons are φ±,0. Note
that there is no potential for σS . We have adopted a Cartesian parametrization for the
doublet H together with a polar parametrization for the complex singlet S. The purpose
was to find out the degree of freedom that corresponds to the Stueckelberg scalar, it will
be discussed in details shortly. In table 2 we list all possible extrema that satisfy (2.13) for
vΦ = 0 together with corresponding values of the potential. There may exist three other
extrema with vΦ 6= 0, however for the stability of Φ we are going to choose parameters
that ensure vΦ = 0. We are going to find conditions that guarantee the solution #4 to be
the global minimum. First we must make sure that vΦ = 0 is the only possible vev for Φ,
for that purpose we will assume that for given quartic couplings we adjust µ2

Φ such that
2µ2

Φ + 4λΦv
2
Φ + λHΦv

2
h + λSΦv

2
S > 0, then indeed vΦ = 0 is the only solution of (2.13).

Next, it turns out that

V4 − V2 = −(−2λSµ2
H + λSHµ

2
S)2

4λS(4λHλS − λ2
SH)

(2.15)

V4 − V3 = −(−2λHµ2
S + λSHµ

2
H)2

4λH(4λHλS − λ2
SH)

. (2.16)
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As it will be seen shortly we assume 4λHλS − λ2
SH > 0 in order to ensure positivity of

masses squared, in addition λS,H > 0 for the positivity of the potential, therefore hereby we
have shown that the extremum #4 is the deepest one, and it must be the global minimum
regardless what is the nature of solutions #1, #2 and #3 (refer to tabl. 2).

The mass matrix squared corresponding to the solution #4 for physical degrees of
freedom expressed in the basis {h, s,Φ} reads:

M2 =

 2v2
hλH vhvSλSH 0

vhvSλSH 2v2
SλS 0

0 0 2µ2
Φ + λHΦv

2
h + λSΦv

2
S

 , (2.17)

where it is clearly seen that only {h, ρ} mixes (as they get non-zero vevs) while Φ (the
(3,3) element of the matrix) only receives contribution proportional to the vev of the other
two fields. The eigenvalues of the mass matrix read:

m2
± = λHv

2
h + λSv

2
S ±

√
(λHv2

h + λSv2
S)2 − (vhvS)2(4λSλH − λ2

SH), (2.18)

m2
Φ = 2µ2

Φ + λHΦv
2
h + λSΦv

2
S . (2.19)

Hereafter we will adopt the convention that h1 is always the 125 GeV SM-like Higgs boson
discovered in 2012 at the LHC. Therefore m1 = m± and m2 = m∓ for h1 heavier (upper
sign) or lighter (lower sign) than h2. Hereafter we are going to consider the case of very
heavy h2, i.e. m2 � m1. As it is seen from (2.18), for quartic couplings not exceeding
perturbative limits ∼ 4π, heavy h2 requires large vS , i.e. vS � vh. It is clear that the
presence of a minimum at the extremum #4 requires:

4λSλH − λ2
SH > 0 and 2µ2

Φ + λHΦv
2
h + λSΦv

2
S > 0 . (2.20)

The first condition above together with the potential positivity condition (2.9) implies
λSH < 2

√
λSλH . Note also that 4λSλH − λ2

SH > 0 guarantees positivity of v2
h and v2

S , see
table 2.

Now we can now rotate the weak basis to get the mass basis via:h1
h2
Φ

 = R−1

hs
Φ

 , (2.21)

where R is the Euler rotation matrix of the form:

R =

cosα − sinα 0
sinα cosα 0

0 0 1

 . (2.22)

The mixing angle α is determined by the entries of the mass matrix as follows:2

sin 2α = sign(λSM − λH)2M2
12√

(M2
11 −M2

22)2 + 4(M2
12)2

cos 2α = sign(λSM − λH)(M2
11 −M2

22)√
(M2

11 −M2
22)2 + 4(M2

12)2

(2.23)
2See [28, 78] for a detailed discussion of the H − S system.
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The potential (2.3) has 9 real parameters:

{µH,S , µΦ, λH,S,Φ, λHΦ, λSΦ, λSH}. (2.24)

Amongst these, µH,S can be replaced by the vevs vh and vS following eq. (2.13). Adopt-
ing (2.18) form1 = m− one can express vS through {m2

1 = 2λSMv
2
h, λH , λS , λSH} as follows:

v2
S = v2

h

4λSM(λH − λSM)
4λS(λH − λSM)− λ2

SH

. (2.25)

This reduces the number of free parameters in the theory to seven:

{µΦ, λH,S,Φ, λSH , λHΦ, λSΦ}.

All other useful relations of the parameters in the scalar potential have been furnished
further in appendix A.

2.3 Decoupling limit

Here we would like to explore the decoupling limit of a very heavy new scalar (h2).
From (2.18) it is clear that the limit m2 → ∞ requires vS → ∞. In order to do that,
it is useful to define:

∆ ≡ 4λS(λH − λSM)− λ2
SH (2.26)

From (2.25) we find:

v2
S = v2

h

4λSM(λH − λSM)
∆ , (2.27)

from where we see that large v2
S corresponds to ∆→ 0.

From (A.5) we obtain:

m2
2 = v2

h

8λSλSM(λH − λSM)
∆ +O(∆0). (2.28)

So, clearly ∆→ 0 implies m2 →∞ unless λH = λSM.
Now we can investigate the behavior of the mixing angle for ∆ ≈ 0+, it is easy to see

that:

sin 2α = sign(λSM − λH)
( ∆
λSλSM

)1/2
+O(∆3/2) , (2.29)

so it is evident that α→ 0 as ∆→ 0 (m2 →∞). From now on we shall use the following
set of parameters:3

(m1,m2, vh, λS , λH) and (mΦ, λΦ, λHΦ, λSΦ). (2.30)

Then v2
S , λSH , sin 2α and mass parameters could be calculated and expanded in powers

of m2 as follows:

v2
S = m2

2
2λS

+ λSM − λH
λS

v2
h (2.31)

λ2
SH = 4λS

[
λH −

λSMm
2
2

m2
2 + 2(λSM − λH)v2

h

]
= 4λS(λH − λSM) +O

( 1
m2

2

)
(2.32)

3We consider the case m2 > m1, so λH > λSM.
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sin 2α = −2
√

2(λH − λSM) vh
m2

+O
( 1
m3

2

)
(2.33)

µ2
Φ = 1

2

[
m2

Φ + v2
h

(
λSΦ(λH − λSM)

λS
− λHΦ

)
− λSΦ

2λS
m2

2

]
(2.34)

µ2
H = 1

2
(
2λHv2

h + λSHv
2
S

)
=
(
λH − λSM

4λS

)1/2
m2

2 +O
( 1
m0

2

)
(2.35)

µ2
S = 1

2
(
2λSv2

S + λSHv
2
h

)
= m2

2
2 +O

( 1
m0

2

)
. (2.36)

Also note:

4λS(λH − λSM)− λ2
SH = 8λSλSM(λH − λSM) v

2
h

m2
2

+O
( 1
m4

2

)
. (2.37)

With all these relations amongst different parameters of the scalar potential, assuming
large m2, we are now going to construct an effective residual theory in the limit of large
m2. Note that then sin 2α→ 0, such that

h1 = cosα h+ sinα ρ −→ h (2.38)
h2 = − sinα h+ cosα ρ −→ ρ . (2.39)

Therefore all we need to do is to expand the Lagrangian for the SM supplemented by S,
Xµ and Φ around the vacuum adopting the parametrization (2.14) and drop the h2 ↔ ρ

and rename h1 by h. It turns out that the resulting effective Lagrangian reads:

Llim = −1
4XµνX

µν + |DX
µ S|2 + (DSM

µ H)†(DSMµH) + 1
2∂µΦ∂µΦ− Vlim(h,Φ) , (2.40)

where the potential is independent of σS and given by:

Vlim(h,Φ) = 1
2m

2
hh

2 + λHvhh
3 + 1

4λHh
4 (2.41)

+1
2m

2
ΦΦ2 + λHΦvhhΦ2 + λΦΦ4 + 1

2λHΦh
2Φ2 + const.

where mh = m1.
The kinetic terms in the limit m2 →∞ should be written after expanding around the

vacuum and decoupling/removing ρ as follows:

|DµS|2 = 1
2(mXXµ − ∂µσS)(mXX

µ − ∂µσS)

(DSM
µ H)†(DSMµH) = 1

2∂µh∂
µh+ · · · ,

(2.42)

where the ellipsis contain all the interaction terms.

2.4 Stueckelberg Lagrangian in decoupling limit

One can easily notice that the effective Lagrangian (2.40) coincides with the standard form
of the Stueckelberg Lagrangian invariant under the following transformation:

Xµ → X ′µ = Xµ + ∂µθ

σS → σ′S = σS +mXθ (2.43)
Φ → Φ′ = Φ
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Figure 1. Top: the contours show allowed range of the vev vS and mass of the decoupled heavy
scalar m2 as a function of λH and λSH for fixed λS = 0.1. Bottom left: λSH as a functions of m2 for
fixed values of λH . Bottom right: sin(2α) as a functions of m2 for fixed values of λH . Decoupling
of the dark sector is clearly seen in the limit of large m2.

In other words we have just proven that in the limit m2 → ∞ the theory defined by the
Lagrangian (2.3) reduces to the Stueckelberg Lagrangian.

In addition our model is invariant under the Z2:

Xµ → −Xµ, σS → −σS , Φ→ −Φ (2.44)

There are various comments here in order. First, note that the Stueckelberg scalar is
just the Goldstone boson σS . To see this the polar parametrization of S adopted in (2.14)
was crucial. A consequence of that was also the disappearance of the potential for σS .

Now let’s define a current, jµ ≡ (mXXµ − ∂µσS). Then note that the following
potentially relevant term, jµ∂µΦ, is invariant under (2.44) and therefore could be added to
the standard Stueckelberg Lagrangian. However, it turns out that this operator could be
omitted. It has been shown in section 5 of ref. [79] that terms ∝ jµ∂µΦ could be removed
from the Lagrangian by field redefinition: a shift of B and rescaling of Φ. Therefore
hereafter jµ∂µΦ will be ignored. Alternatively one could also follow arguments of ref. [80],
where the author argues that the operator ∝ jµ∂

µΦ does not contribute to the S-matrix
elements between physical states.

Since our model is gauge invariant, the quantization requires fixing a gauge. We adopt
the following gauge fixing term

Lgf = − 1
2ξ (∂µXµ + ξmXσS)2 (2.45)
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The advantage of the adopted gauge fixing is that it cancels mixing between ∂µXµ and σS .
Expanding the Lagrangian one obtains eventually

L = Llim + Lgf = −1
4XµνX

µν + m2
X

2 XµX
µ − 1

2ξ (∂µXµ)2 + 1
2∂µσS∂

µσS −
1
2ξm

2
Xσ

2
S

+1
2∂µΦ∂µΦ + 1

2∂µh∂
µh− Vlim(h,Φ) + · · · . (2.46)

In order to gauge-fix away σS one must adopt the unitary gauge, which corresponds to
ξ → ∞. In the Stueckelberg formalism, in the unitary gauge, in presence of Φ, one could
expect presence of a term like XµX

µΦ2 since it is allowed by symmetries. However, it turns
out that the operator XµX

µΦ2 may only originate from dimension-6 term |DµS|2Φ2 and
therefore must be suppressed by 1/Λ2. This is the only gauge invariant way to generate
an operator ∝ XµX

µΦ2. It explains why the operator XµX
µΦ2 can not appear as an

unsuppressed dimension-4 operator, even though naively it could be added within the
Stueckelberg strategy.

The decoupling limit of the scalar potential consistent with all the theoretical con-
straints is illustrated in figure 1. In the top left panel, we show the allowed region in the
(λH , λSH) plane for m2 > m1 where the colors varying from blue to yellow show larger vs.
Top right panel shows the same but coloring is with respect to m2. Both these top panels
show the decoupling limit at the outer edge of the allowed parameter space. In bottom
left panel, we show λSH as a function of m2 at fixed values of λH . Similarly the bottom
right figure shows sin(2α) as a function of m2, the convergence to zero-mixing angle is
clearly shown.

Since the mixing angle vanishes in the limit m2 →∞, i.e. sin(2α) ∝ vh/m2, therefore
the dimension-4 interaction between dark vector and the SM disappears. Note also that
since λSΦ could be negative, therefore for λSΦ < 0 one can always adjust µ2

Φ so that the Φ
mass squared remains at the weak scale even if vS grows. On the other hand, for λSΦ > 0,
to keepmΦ at the weak scale λSΦ must behave as λSΦ ∝ (vh/vS)2 ∝ (vh/m2)2. In addition,
since we want to retain the vector boson mass, mX = gXvS , of the order of weak scale,
therefore it is necessary that the gauge coupling diminishes as gX ∝ (vh/vS)2 ∝ (vh/m2)2.
Note also that, since for large m2 the value of the potential at the extremum # 4 diverges
as ∼ −m4

2/(16λS) therefore in order to avoid instability while preserving perturbativity we
must limit ourself to large, but finite, values of m2.

Summarizing, to reach the Stueckelberg limit starting from the Lagrangian (2.3) a
carefully adjusted trajectory in the parameter space must be adopted. An important
consequence of approaching the m2 → ∞ limit is the decoupling of the dark sector from
the SM at dimension-4 operators by sin(2α)→ 0 and decoupling of Xµ from S by gX → 0.
It should also be recalled that to avoid instability of the potential m2 must be finite
(although can be large).

2.5 Higher dimensional operator to connect DM and SM sectors

Note that the coupling λHΦ, which parametrizes the quartic portal interactions Φ2|H|2,
remains unsuppressed in the decoupling limit. Besides CP-violating operator XµνX̃

µν ,4 this
4That is irrelevant for DM phenomenology considered in this paper.
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is the only renormalizable (dim-4) communication between the dark and visible sectors in
the limit. Leading corrections to this communication will be provided by dim-5 operators
that are invariant under transformations from G = SU(3)C×SU(2)L×U(1)Y ×U(1)X ×Z2
and under Lorentz transformations and which are made of the scalar Φ, the vector Xµ and
possibly combinations of SM fields. It is easy to see that there are only two non-trivial
operators that satisfy required symmetry conditions:5

Ldim-5 = c

ΛBµνX
µνΦ + c̃

ΛBµνX̃
µνΦ. (2.47)

This operator has already been introduced in [64], where it was mentioned that such
an operator can be generated at the tree level only via antisymmetric tensor mediators.
Finally, one can then write down the complete Lagrangian as:

Ltot = Llim + Lgf + Ldim-5

= −1
4XµνX

µν + m2
X

2 XµX
µ − 1

2ξ (∂µXµ)2 + 1
2∂µσS∂

µσS −
1
2ξm

2
Xσ

2
S

+1
2∂µΦ∂µΦ + 1

2∂µh∂
µh−

{1
2m

2
hh

2 + λHvhh
3 + 1

4λHh
4 (2.48)

+1
2m

2
ΦΦ2 + λHΦvhhΦ2 + λΦΦ4 + 1

2λHΦh
2Φ2 + const.

}
+ · · ·

+ c

ΛBµνX
µνΦ + c̃

ΛBµνX̃
µνΦ ,

where ellipsis denote interactions of the SM Higgs boson h with other SM components that
are not relevant here. We note here that we necessarily assume Λ > m2, otherwise higher
dimensional operators (neglected in this work) would appear in the scalar potential. We
also adopt the following notations hereafter: α(α̃) = c(c̃)

Λ ; β = α̃
α .

3 DM yield via freeze-in

It is clear from the proceeding section that the couplings ΦΦh1h1 and ΦΦh1 remain unsup-
pressed in the decoupling limit that we are exercising here. These interactions are ∝ λHΦ,
which is not suppressed. This is the only renormalizable communication between the dark
and visible sectors. So, it is quite likely to assume that in the early universe Φ is abundant
being in equilibrium with the SM (i.e. with h). Since Φ is the next lightest Z2-odd dark
component its decays and annihilations may produce DM (i.e. X) non-thermally. This the
mechanism (freeze-in) we will investigate hereafter. First, in this section, we will derive
Boltzmann equations governing X production in the early universe. We will also discuss
applicability of neglecting various masses while calculating the amplitudes for decays and
annihilations. Before going into the details, we would like to clarify that in the following
sections, in order to satisfy the EFT limit and also have a successful freeze-in, we will adopt
the following hierarchy amongst the scales and masses involved in the model:

Λ >∼ m2 >∼ TRH > mΦ > mX , (3.1)

where TRH is the reheating temperature at which inflaton decay products thermalize.
5Another dim-5 operator would require a presence of right-handed neutrinos νR. This option will not

be pursued hereafter.
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Figure 2. Decay of Φ → XB before EWSB and Φ → Xγ(Z) after EWSB, which contributes to
the freeze-in production of X. The vertex factor shown here is the one for Φ→ XB.

3.1 DM production via decay and annihilation processes

Since we are interested in the freeze-in production of the DM, hence we look for all such
number changing processes with at least one DM particle in the final state. The processes
that produce VDM, can easily be cooked up from interactions introduced in the preceding
section and vertices collected in appendix B. We classify all the DM number changing
processes on the basis of their occurrences before electroweak (EW) symmetry breaking
(EWSB) i.e. for thermal bath temperature T > TEW ' 160 GeV or after EWSB, i.e. for
T < TEW. Due to the presence of the ΦXB vertex the VDM X can always be produced
from the decay of the scalar Φ that maintains thermal equilibrium with the SM bath
via the portal interaction λHΦ |H|2 Φ2. This decay channel, shown in figure 2, is always
present before and after EWSB as mΦ > mX , which is anyway our prime assumption for
the stability of the VDM. After EWSB, the decay occurs to Z, γ. Apart from the decay,
we also have four 2 → 2 annihilation channels with one DM in the final state as shown
in figure 3 before EWSB.6 The processes include two t-channel and two s-channel graphs
including Goldstone bosons (φ0,±). Note that, before EWSB all the SM states are massless
and the Goldstone bosons (GB) are propagating degrees of freedom as the SU(2)L scalar
has the form:

H =
(
φ+

φ0

)
. (3.2)

The dark sector fields {Φ, X}, on the other hand, are massive due to U(1)X breaking,
which occurs at much higher energy scale. Due of the presence of totally anti-symmetric
rank four Levi-Civita symbol in the interaction vertex ΦXB and the momenta dependent
interaction vertices for the GB’s, all the processes involving Goldstone bosons in t-channel
and s-channel identically become zero at the level of amplitude squared. Therefore, all
those processes with GB’s drop out leaving only the Φ→ X,B decay channel, along with
the two 2→ 2 annihilation diagrams fΦ→ fX, ff → XΦ (the top right and bottom left
diagram of figure 3) for DM production via freeze-in before EWSB. However, as we shall
see in subsequent sections, the decay before EWSB is sub-dominant as compared to the
annihilation processes for large reheat temperature (TRH � m).

Once the EW symmetry is broken, the GB’s are no more individual physical degrees
of freedom, instead they become longitudinal polarizations of the charged and neutral SM

6All such processes with a pair of DM in the final state are suppressed by ∼ 1/Λ2 and hence sub-
dominant.
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Figure 3. Annihilations via t-channel (top) and s-channel (bottom) leading to the production of
VDM X before EWSB. The diagrams with Goldstone bosons identically vanish, leaving only two
diagrams with SM fermions.

Figure 4. Annihilations via t-channel (left panel) and s-channel (right panel) leading to the
production of X after EWSB.

gauge bosons with vh = 246 GeV. Also, the physical gauge bosons can be obtained in the
mass basis by rotating the weak basis as:(

Bµ
W3µ

)
=
(
cw −sw
sw cw

)(
Aµ
Zµ

)
, (3.3)

where c(s)w is the (co)sine of the Weinberg angle. Thus, after EWSB, the decay corresponds
to Φ → X, γ(Z), while all 2 → 2 annihilation channels giving rise to DM final states are
shown in figure 4. Due to massive propagator contributions after EWSB, the decay becomes
more relevant for the determination of the DM yield, as we will demonstrate and discuss
later. The decay widths and squares of the annihilation processes appearing before and
after EWSB are collected in appendix D.
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3.2 Boltzmann equations for DM production

The key for freeze-in DM production is to assume that DM was not present in the early
universe. In case it is produced via a decay as Φ → BX, the Boltzmann equation (BEQ)
for the number density of X can be written as:

˙nX + 3HnX =
∫
dΠXdΠBdΠΦ (2π)4 δ4 (pX + pB − pΦ) |M|2D fΦ, (3.4)

where dΠj = d3pj

2Ej(2π)3 are Lorentz invariant phase space elements, and fi is the phase space
density of the ith particle with corresponding number density being:

ni = gi

(2π)3

∫
d3pfi, (3.5)

where gi is the number of internal DOFs. It is important to note that we assume negligi-
ble abundance of X as the initial condition, also we disregard Pauli-blocking/stimulated
emission effects, i.e. we assume 1 ± fi ≈ 1. Indeed it has been assumed that Φ’s are in
equilibrium with the thermal bath (SM).

Similarly, the BEQ for DM production via generic annihilation process i, j → X, k

(with one DM in the final state) reads [14]:

˙nX + 3HnX =
∑
i,j,k

∫
dΠXdΠidΠjdΠk (2π)4 δ4 (pX + pk − pi − pj) |M|2i,j→X,k fifj . (3.6)

The BEQ in eq. (3.6) can be rewritten as an integral over the CM energy as [18, 81]:

˙nX + 3HnX ≈
T

512π6

∑
i,j,k

∫ ∞
0

dsdΩPijPXk |M|2i,j→X,k
1√
s
K1

(√
s

T

)
, (3.7)

where Pab = 1
2
√
s

√
s− (ma +mb)2

√
s− (ma −mb)2 →

√
s

2 in the limit ma,b → 0.
Next we define the yield YX ≡ nX/s, as a ratio of DM number density nX and the

comoving entropy density in the visible sector s. The BEQ corresponding to the decay in
terms of the yield YX can be written in the differential form as:

−s(T )H(T )T dY
D
X

dT
= gΦm

2
ΦΓΦ→X,B
2π2 TK1 (mΦ/T ) , (3.8)

where we have defined:

ΓΦ→X,B =
∫ 1

2mΦ

|M|2Φ→X,B
gΦ

(2π)4 δ4 (pX + pB − pΦ) dΠXdΠB (3.9)

as the decay width of Φ. It is possible to express eq. (3.8) in terms of the dimensionless
quantity x ≡ mX/T and the reaction density γD for decay as:

xHs
dY D

X

dx
= γD, (3.10)

where γD, called reaction density, is defined in appendix C.
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For the case of annihilation one can similarly write:

−s(T )H(T )T dY
ann
X

dT
= T

512π6

∑
i,j,k

∫ ∞
0

dsdΩPijPXk |M|2i,j→X,k
1√
s
K1

(√
s

T

)
. (3.11)

Note that the sum over i, j, k indicates all the possibilities of producing DM following
figures 3, and 4. Again, in terms of the reaction density defined in appendix C, one can
express the yield due to annihilation as:

xHs
dY ann

X

dx
= γann. (3.12)

Following eq. (3.8) and eq. (3.11) the total yield due to decay and due to annihilation
can be written as:

Y total
X = Y D

X + Y ann
X ,

=
∫ Tmax

Tmin
dT

m2
ΦΓΦ→X,B

2π2
K1 (mΦ/T )
s(T )H(T )

+ 1
512π6

∑
i,j,k

∫ Tmax

Tmin

dT

s(T )H(T )

∫ ∞
s=0

dsdΩ
(√

s

2

)2

|M|2i,j→X,k
1√
s
K1

(√
s

T

)
.

(3.13)

The maximum temperature available to the process is what we call reheat tempera-
ture TRH. Also, we note that the processes after EWSB, are different from those before.
Therefore, taken all such processes together, the yield at temperature T0 can finally be
written as:

Y total
X (T0) =

{∫ TRH

TEW
dT

m2
ΦΓΦ→X,B

2π2
K1 (mΦ/T )
s(T )H(T )

+ 1
512π6

∑
i,j,k

∫ TRH

TEW

dT

s(T )H(T )

∫ ∞
0

dsdΩ

×
(√

s

2

)2 ∣∣∣MbEWSB
∣∣∣2
i,j→X,k

1√
s
K1

(√
s

T

)}

+
{∫ TEW

T0
dT

m2
ΦΓΦ→X,γ(Z)

2π2
K1 (mΦ/T )
s(T )H(T )

+ 1
512π6

∑
i,j,k

∫ TEW

T0

dT

s(T )H(T )

∫ ∞
0

dsdΩ

×
(√

s

2

)2 ∣∣∣MaEWSB
∣∣∣2
i,j→X,k

1√
s
K1

(√
s

T

)}
,

(3.14)

where the first parenthesis corresponds to contribution before EWSB while the second
one describes the after EWSB production and M(a)bEWSB stands for the amplitude for
processes appearing (after) before EWSB. Note that for the annihilation processes we have
considered the massless approximation which makes the expression less complicated. One
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can, equivalently, express the BEQ in a more general manner in terms of the reaction
densities utilising eq. (3.10) and eq. (3.12) as:

xHs
dYX
dx

= γann + γD. (3.15)

This is rather more common and convenient way of parametrization. In section 4 we will
be using these reaction densities to compare DM yield before and after the EWSB.

3.3 UV limit and limitations

In this section, we demonstrate the difference between massless and massive limit of DM
production cross-section and therefore we will be able comment on limitations of the Ultra
Violet (UV) freeze-in advocated in [50, 82]. Here we limit ourself to the period before
EWSB so all the SM particles are massless. The masses of the dark sector Φ and X are
assumed to be of the same order, typically mΦ ∼ mX ∼ m ∼ O(1TeV). Hereafter the
“massless limit” refers to zero-mass approximations, i.e. both SM and dark masses are
zero. Our task in this section is to estimate size of mass effects, i.e. contributions to the
yield that depend on the dark masses. Since we limit ourself to the temperatures above
TEW therefore eq. (3.14) can be simplified7 as:

YX(TEW) = 1
4 · 512π6

∫ TRH

TEW

dT

s(T )H(T )

×
∫ ∞

0
ds

{∫
dΩ
∣∣∣MbEWSB[s, cos θ]

∣∣∣2
i,j→X,k

}√
sK1

(√
s

T

)
.

(3.16)

Here onward we shall refer toMbEWSB asM.
For strictly massless case the integration over s can be performed analytically, so the

result reads

Ym=0 = AI(θmin)45TRH
512π7

16Mpl
1.66g?s

√
g?ρ

, (3.17)

where A contains all the couplings and constant factors that arise in the computation of∣∣Mm=0[s, cos θ]
∣∣2
i,j→X,k, and it is defined through the following relation:

∣∣∣Mm=0[s, cos θ]
∣∣∣2
i,j→X,k

= Asm(cos θ), (3.18)

with m(cos θ) containing all the angular dependance of the amplitude squared while

I(θmin) ≡ 1
2

∫ cos θmin

−1
d cos θm(cos θ), (3.19)

where θmin is an angular cutoff necessary to avoid singularities that appear in the forward
direction for t-channel diagrams, in the following θmin = 10−2 will be adopted.

7The contribution from Φ decays are negligible here.
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Figure 5. Top panels: comparison of the yield at TEW in the massive case versus that in the massless
case with respect to the reheat temperature, where the red, green and blue curves correspond to
the massive cases while the black curve represents the massless case. Bottom panel: Variation of
∆Y/Ym=0 with the reheat temperature for different choices of the masses shown in different colors.
In all the plots “massless” refers to → m = 0.

Now, we would like to estimate the difference between the massless and massive limit.
For that, let us define:

∆Y (T ) ≡ Y (T )|m=0 − Y (T )|m 6=0. (3.20)

Also, note that,∣∣∣Mm 6=0[s, cos θ]
∣∣∣2
i,j→X,k

=
∣∣∣Mm=0[s, cos θ]

∣∣∣2
i,j→X,k

+O
(
m2

s

)
. (3.21)

We assume here that the terms O
(
m2

s

)
are negligible, note however that the mass depen-

dance remains in smin = m2. Then, for processes with amplitude squared of the form given
in eq. (3.18) we find:

∆Y (TEW) ≈ A 45
512π7

I(θmin)Mpl
1.66 · (g?)1/2gs?

∫ TRH

TEW
dT ′

∫ m
T ′

0
dxx4K1(x), (3.22)

where x ≡
√
s/T . As an example, let’s consider a t-channel process Φf → Xf , where

f stands for the SM fermions. Then we find I(θmin) = 1/2
∫ cos θmin
−1 d cos θ(5 + cos θ −

cos 2θ)/(1− cos θ) ≈ 75. For TRH � m,TEW we can estimate ∆Y (TEW) as follows

∆Y (TEW) ≈ AI(θmin) 45
512π7

Mpl
1.66g?s

√
g?ρ

4.65m. (3.23)
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Note that ∆Y (TEW) is linear in m as it obviously should vanish in the limit m → 0. We
should also note that eq. (3.23) is process independent and can be written in this particular
form whenever the matrix element squared can be expressed in the form of eq. (3.18).

Now, let us find out the condition under which ∆Y becomes as large as Ymassless, as
that will dictate the condition for which massless limit can be no longer adopted for the
UV freeze-in scenario. This can simply be found out by equating eq. (3.23) and eq. (3.17):

∆Y = AI(θmin) 45
512π7

Mpl
1.66g?s

√
g?ρ

(
m

∫ TRH/m

0
dug(u)

)
<∼ Ym=0

=⇒ m <∼ 3.5 TRH.

(3.24)

This implies that, as long as the masses involved in the freeze-in process are approx-
imately less that three times of the reheat temperature, one can overlook the masses and
the yield can be computed in the massless limit. This, in other words, justifies the fact that
for large reheat temperature the massless limit is a good approximation for obtaining the
UV freeze-in yield. In figure 5, we demonstrate the difference between the yield obtained
for massive and massless case of DM production for all the processes before EWSB put
together. We plot YX(T = TEW) as a function of TRH and see that massive case sharply
differs from the massless case (black line) at small TRH, while they exactly merge as the
reheat temperature becomes large. In the bottom panel we show the same feature in terms
of ∆Y

Ym=0
for different choices of mX,Φ.

4 DM relic abundance via freeze-in

As described in details in the last section, within the freeze-in paradigm, the DM yield is
controlled by the annihilation and/or decay of SM as well as dark sector particles. Following
eq. (3.15) we write down the BEQ governing the DM yield as [35]:

xHs
dYX
dx

= γann + γD, (4.1)

where YX = nX/s. H is the Hubble parameter given by H = 1.66√g?ρT 2/Mpl and
x = mX/T is a dimensionless quantity to parametrize the temperature of the thermal bath.
As mentioned earlier, the γ’s denote the so-called reaction density for different particles
annihilating (decaying) to the DM. The detail expressions of the reaction densities for
2 → 2 annihilations and 1 → 2 decays are given in appendix. C. In order to compute
the DM yield, we solve eq. (4.1) with the initial condition YX ≈ 0 at large T i.e. small
x in accordance with the usual FIMP set-up.8 By solving eq. (4.1) one can obtain the
total DM yield YX at the present epoch i.e. YX(T0). The relic abundance of X at present
temperature can then be obtained via:

ΩXh
2 =

(
2.75× 108

)(mX

GeV

)
YX(T0). (4.2)

8The zero intial abundance of the DM could be a result of reheating itself when the inflaton decays
preferentially to the visible sector without reheating the hidden sector, or may be due to some other
mechanism.
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We must also remind that the PLANCK [13] allowed relic density reads:

Ωh2 = 0.11933± 0.00091, (4.3)

which we will use to find the relic density allowed parameter space of the model.
Since in our case the connection between the dark and the visible sector proceeds

via a non-renormalizable interaction, the DM abundance is usually characterized by UV
freeze-in [50, 82] limit, where the DM abundance is sensitive to the reheat temperature
TRH of the universe and NP scale Λ only. This is in sharp contrast to the Infra-Red or
IR freeze-in scenario where the two sectors communicate via renormalizable operators,
and the DM abundance is set by the IR physics i.e. the yield becomes maximum at low
temperature, typically at T ∼ mX [18]. Now, the reheat temperature TRH is very loosely
bounded. Typically, the lower bound on TRH comes from the measurement of light element
abundance during Big Bang Nucleosynthesis (BBN), which requires TRH & 4.7 MeV [83].
The upper bound, on the other hand, comes from (a) cosmological gravitino problem [84, 85]
in the context of supersymmetry, that demands TRH . 1010 GeV to prohibit gravitino
over production and (b) simple inflationary scenarios that require TRH ∼ 1016 GeV [86,
87] for a successful inflation. The reheat temperature, thus, can be regarded as a free
parameter for our analysis. As we have already shown in the preceding section, when
reheat temperature drops close to the masses involved in the annihilation or DM production
process, massive kinematics start playing a key role in the yield and UV limit can not be
trusted. Therefore our analysis will be divided into two regimes, depending on the scale of
the reheat temperature (TRH):

• TRH � mi, where the reheat temperature lies way above different masses that appear
in the model.

• TRH & mi, where the reheat temperature lies close to the masses in the theory.

In the following sub-sections we will consider the above two cases. It is important to point
out that our calculations of cross-sections have all been done analytically (see appendices)
and then the relic density is found out by solving BEQ in Mathematica numerically.

4.1 Large reheat temperature: TRH � m

In this sub-section the reheat temperature is assumed to be much larger than the dark sector
masses. We would like to mention that computing the reaction densities, we consider both
2→ 2 annihilation channels and Φ→ XB decay channel before EWSB, while after EWSB
we only take into account the Φ → XZ(γ) decays for reasons elaborated soon. Also note
that, all the SM fields are massless before EWSB but the dark sector fields (mΦ,mX) are
massive irrespective of the era, thanks to U(1)X breaking at very high scale. First we
compare reactions densities for annihilation and the decay as a function of x ≡ mX/T .
Often we use a dimensionless variable r = mX

mΦ
< 1 to illustrate scan results.

In figure 6 we show individual contributions of annihilations and the decay to the
reaction densities as a function of x keeping the DM mass, the Φ mass, and the coupling
α(α̃) fixed. The vertical dashed-dotted line represents EWSB xEW = mX/TEW. Here
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Figure 6. Comparison of reaction densities (γann,D) for annihilation and the decay. Before EWSB
we show the s-channel f̄f → XΦ process (black dashed) and t-channel Φf → Xf (red) and also the
decay contribution (black doted), while after EWSB we plot the density for the decay (solid black)
only. The solid black line (hidden beneath the red line before EWSB) shows both contributions
from the annihilation and the decay together. In the left panel we choose mΦ = 500 GeV, mX =
100 GeV, while in the right, we choose mΦ = 100 GeV, mX = 20 GeV. In both cases we have
α = 10−16 GeV−1, β = 0.1. The vertical dashed-dotted lines shows x corresponding to EWSB.

we clearly see that the reaction densities due to the s-channel and t-channel annihilation
processes are much larger than that due to decay before EWSB, while after EWSB the
reaction density falls to a very small value.

The suppression of the decay before EWSB can be understood comparing the analytical
forms of reaction densities for annihilation (in massless limit) and decay as follows:

q ≡ γann
γD
∼
∫∞

0 dss3/2σann(s)K1 (
√
s/T )

α2(1 + β2)m5
ΦK1 (mΦ/T )

∼
(
T

mΦ

)5 1
K1 (mΦ/T ) , (4.4)

where σann(s) ∝ α2(1 + β2) × const. was assumed. It then follows that for T � mΦ =⇒
q � 1 and for T ∼ mΦ =⇒ q ∼ 1. We however, would like to caution the reader that
above formula is not strictly valid at T close to EWSB when massive kinematics become
important for computing annihilation cross-sections as elaborated in section 3.3.

This implies that the DM is dominantly produced before EWSB, while the yield accu-
mulated after EWSB is negligibly small. This is a typical feature of UV freeze-in where the
maximum yield production happens at high temperature. An evolution of the total reaction
density taking into account all annihilation processes occurring before EWSB together with
the decay after EWSB for different sets of {mΦ,mX} is shown in figure 7. It is clear from
the discussion above that decay contribution before EWSB is very small, while the con-
tribution from decay is dominant over annihilation processes after EWSB. Note here that
the vertical dashed-dotted lines in different colors represent EWSB at xEW = mX/TEW
corresponding to those mX values chosen for illustration.

Also note that for mΦ . 100 GeV, the reaction densities in two regimes before and
after EWSB can be distinctively identified by a step, while that for larger mΦ they are
continuous. This is because with temperature dropping, the 2 → 2 production cross-
sections drops and around TEW the decay contribution dominates over them, resulting
a continuous curve before and after EWSB. However, after EWSB, the decay final state
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Figure 7. Total reaction density over the whole range of temperature before and after EWSB
taking into account both annihilation and decay before EWSB, but only decay after EWSB. We
consider all SM states to be massless before EWSB, while dark sector particles are massive. The
dashed-dotted vertical lines correspond to xEW = mX

TEW
for each choice of DM mass. In the left

panel we show densities for different choices of mΦ = {50, 100, 300, 500} GeV (in red, green, blue,
black, respectively) for fixed r = mX

mΦ
= 0.2, while in the right one they are shown for different

r = {0.2, 0.4, 0.6, 0.8} (in red, green, blue, black, respectively) for fixed mΦ = 100 GeV. In both
cases we choose α = 10−14 GeV−1, β = 0.1.

changes from Φ → X,B to Φ → X, γ(Z). Therefore when mΦ < mX + mZ , one of the
decay processes, Φ→ X,Z, become kinematically forbidden showing a distinct drop in the
reaction density. The values of different parameters chosen for illustration are mentioned
in figure inset.

The effect of large reheat temperature and large reaction densities at high temperature
is reflected in the DM yield shown in the top panels of figure 8. In both scans we keep
TRH = 108 GeV. In the top panel of figure 8 we see that the DM yield builds up quickly
with x (i.e. with lowering temperature) and reaches its maximal value already at very high
temperature T ∼ TRH. Then it freezes-in immediately producing an yield that remains
constant till T = T0 ' 2.73 K. The asymptotic value of the yield, Y0 ≡ Y (T0), directly
implies the PLANCK observed DM relic abundance via (4.2). As seen from (4.2) each
choice of the DM mass requires appropriate Y0 what results in the splitting of the colored
curves at large x observed in figure 8. On the other hand each Y0 requires the couplings
α, α̃ tuned appropriately, as shown in the legend of figure 8. The left top panel corresponds
to mΦ = 500GeV, while the top right panel to slightly smaller value mΦ = 100GeV. The
vertical dashed lines show the locations of EWSB, although its effect on the final yield is
invisible. In the bottom panels of figure 8 we show contours corresponding to the central
value of the PLANCK observed relic abundance (Ωh2 ' 0.1199) in the α −mX plane for
fixed mΦ = 500 GeV and 100 GeV and two different values of TRH. The left and right
lower panels correspond to the reheat temperature TRH = 108 and 106 GeV, respectively.
The relic abundance is obtained following eq. (4.2). Since ΩX ∝ mX , we see for larger
DM mass smaller α is required to compensate for the over abundance. Note, that in each
panel the kinematical condition mΦ & mX is obeyed. As expected, for the same DM mass,
growing TRH requires lower couplings. We would finally note that to find yield in such a
scenario, the masses in all reactions can be safely neglected and the processes after EWSB
contributes negligibly.
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Figure 8. Top left: evolution of the DM yield YX for parameters which imply correct relic DM
abundance as a function of x = mX/T obtained by solving eq. (4.1). Here different colored curves
indicate different choices of r = mX

mΦ
= {0.1, 0.2, 0.4, 0.6} in red, green, blue and black respectively

for a fixed mΦ = 100 GeV, α = 10−16 GeV−1, β = 0.1 and reheat temperature TRH = 108 GeV.
The vertical dashed-dotted lines correspond to xEW = mX/TEW for different values of mX . Top
right: same as top left but with mΦ = 500 GeV. Bottom left: relic density allowed parameter
space in terms of mX − α where different colored contours correspond to mΦ = 500 GeV (red) and
mΦ = 100 GeV (blue) for a fixed β = α̃

α = 0.1 and reheat temperature TRH = 108 GeV. Bottom
right: same as bottom left but with TRH = 106 GeV.

DM production via annihilation or decay processes can also be compared (at T0 ∼
0 GeV) by naive dimensional analysis as advocated in [18, 88]:

Y ann
X

Y D
X

∼ σMplTFI
ΓΦMpl/T 2

FI
∼ α2MplTRH(

α2m3
Φ
)
Mpl/m2

Φ
∼ TRH

mΦ
, (4.5)

where TFI denotes the characteristic freeze-in temperature scale at which the yield reaches
the constant value (see e.g the plateau in upper panels of figure 8) for DM production
via annihilation process or decay, which are not quite the same. For decays, the freeze-
in temperature can be assumed to be the mass of the decaying particle, i.e. TFI ∼ mΦ,
which is used in the second step of the above analysis. On the other hand, for DM yield
produced via annihilation process, the freeze-in temperature can be assumed to be the
highest temperature available for the process, i.e. TFI ∼ TRH. Therefore, for TRH � mΦ
ensures that annihilation contribution dominates over decay contribution in the final yield
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for UV limit. This brings us to an asymptotic formula of the yield in UV limit, which can
simply be written as:

YX(x = 0) ∼ α2MplTRH, (4.6)

neglecting the decay contribution and is validated in figure 11, as we explain in a moment.

4.2 Low reheat temperature: TRH & m

This case is more interesting. It turns out that when the reheat temperature drops down
to ∼ TeV scale, then processes that take place after EWSB are relevant and contribute
significantly to final yield. After EWSB all the SM states also become massive, and hence
in order to get meaningful results, all masses shall be kept. As we shall see, in such a case
the IR freeze-in starts showing up, i.e. the freeze-in takes place at a temperature T ∼ mX .

Before solving BEQ, let us estimate first the hierarchy of reaction densities. For il-
lustration, in figure 9, we compare reaction densities for the Φ decay and those for an-
nihilations into X, γ(Z) final states. For the later final state two annihilation diagrams
contribute: (a) t-channel annihilation h,Φ → X,Z via Z boson mediation and (b) s-
channel process h,Φ → X, γ(Z) via Φ mediation. We consider all the states involved in
these two processes to be massive. Note that the s-channel amplitude for h,Φ → X, γ(Z)
is proportional to λHΦ, therefore it could be amplified. We show the reaction density as
a function of x for decay as the black curve in all the figures, while we choose three val-
ues of λHΦ = {0.1, 1, 4π}, shown respectively in red, green and blue, for the annihilation
processes. It is seen that for small mX ' 100 GeV, after EWSB the decay dominates over
annihilation even when the portal coupling is close to its limiting perturbative value i.e.
4π. However for mX & 400 GeV and λHΦ ' 4π the s-channel annihilation starts domi-
nating over decay for x <∼ 7. This is expected since growing DM mass causes phase space
suppression of the decay width. However, even for mX ' 499 GeV for large enough x again
the decay dominates over annihilation. Therefore, it is fair to conclude that as long as
λHΦ . O(1), one can safely ignore all the annihilation processes even for large DM mass.
In the bottom panel of figure 9 we show variation of Φ-branching ratio to X and photon
or Z-boson. For light X, Φ decays into X,Z dominate while for r = mX/mΦ >∼ 0.008 Φ
decays mostly into Xγ.

Now let us find relic density in the low TRH regime. In the left and right upper panels
of figure 10 we have shown the DM yield for several values of mX as a function of x for
TRH = 104 GeV and 103 GeV, respectively. In order to satisfy the relic abundance, for
smaller TRH, we need larger α as YX ∼ TRHα

2. Note that the left panel already shows
formation of IR-like behavior of the yield that is typical for low TRH: the “second slopes”
that appear for larger x in the left panel (TRH = 104 GeV) reach their corresponding
plateaus at the same location as in the right panel for TRH = 103 GeV. In the right
panel, the typical UV-like sudden DM production disappeared leaving only after-EWSB
IR-production (decays) at much larger x. The IR behavior is, of course, more prominent
for smaller TRH. In the lower panels we have shown curves in the mX − α plane that
reproduce proper DM abundance for a fixed TRH. Comparing with the high TRH regime,
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Figure 9. Top panel: comparison of reaction densities due to annihilation (colorful lines) and decay
(shown in black) after EWSB. Contributions of two annihilation channels are shown: h,Φ→ X,Z

via Z boson mediation in t-channel and h,Φ → X, γ(Z) via Φ mediation in s-channel. All states
are assumed to be massive. The amplitudes for h,Φ → X, γ(Z) channel are proportional to the
portal coupling λHΦ that is being varied in the plots. The choice of parameters is specified in the
headings. Bottom panel: Decay branching fraction of Φ→ Xγ(Z) as function of r = mX

mΦ
.

figure 8, one can observe that since YX ∼ TRHα
2 the required α had to be two orders of

magnitude smaller than here.

Finally, let us present an approximate formula for the yield for the case of low reheat
temperature (TRH ∼ m). Proceeding in a similar way as in the previous subsection, we can
estimate the contribution to Yield from annihilation and decay via dimensional argument
as in eq. 4.5. However, we need to remind that now the freeze-in temperatures (TFI) are
roughly the same for both annihilation and decay when TRH ∼ mΦ, resulting in similar
decay and annihilation contributions to the yield, i.e.

Y ann
X

Y D
X

∼ σMplTFI
ΓΦMpl/T 2

FI
∼ α2MplTRH(

α2m3
Φ
)
Mpl/m2

Φ
∼ TRH

mΦ
∼ 1. (4.7)
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Figure 10. Top left: DM yield as a function of x = mX/T for a reheat temperature TRH = 10 TeV
considering both annihilation and decay to be active before EWSB, while keeping only decay after
EWSB. We choose mΦ = 100 GeV and β = 0.1 while for each value of mX , α is adjusted to
reproduce the central value of the measured relic abundance. Top right: same as top left but with
TRH = 1 TeV. In both of the plots the vertical dashed lines denote EWSB (xEW). Bottom left: relic
density allowed parameter space in mX − α plane for TRH = 10 TeV and α adjusted to reproduce
the DM abundance. Bottom right: same as bottom left but with TRH = 1 TeV.

Therefore, the final yield for such a situation can be written as:

YX(x = 0) ∼ 2α2MplTFI ∼ 2α2Mplm, (4.8)

where TFI ∼ m characterizes dark sector mass.

4.3 Summary results

Effects of varying reheat temperature for DM yield evolution has been shown in the top
panels of figure 11 for two different sets of dark sector masses. For TRH = 108 GeV
(shown by the red curve) i.e. for the TRH � m, we observe yield that follows typical
UV freeze-in pattern and becomes maximum at T ∼ TRH. With gradual decrease in
TRH, although the characteristic UV freeze-in is still visible at smaller x, however the
yield also builds up at larger x and final freeze-in occurs at T ∼ mX , as shown by the
blue (TRH = 104 GeV) and black curves (TRH = 103 GeV). For TRH = 1 TeV the IR
characteristic of freeze-in is more prominent. Note that, all the parameters chosen in these
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Figure 11. Top panel: DM yield as a function of temperature for different choices of the reheat
temperature TRH : {105, 102, 10, 1} TeV shown in red, green, blue and black curves respectively.
Here we have considered both annihilation and decay channels before EWSB where SM particles
are massless while the dark particles are massive. In the post-EWSB scenario we have considered
only the decays with massive states. The parameters chosen correspond to right relic abundance.
In each of these plots the vertical dashed-dotted lines denote EWSB (xEW). Middle left: relic
density allowed parameter space in terms of α − TRH where different colored contours correspond
to different mX for a fixed mΦ = 100 GeV. Middle right: same as middle left panel, but for a
different fixed mΦ = 500 GeV. Bottom left: same as middle panel but for different choices of
β : {0.001, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0} for mΦ = 100 GeV and mX = 10 GeV. Bottom right: same as
bottom left with mΦ = 500 GeV and mX = 100 GeV
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Figure 12. Left: inelastic DM scattering off the nuclei N for direct search of DM; right: DM
annihilating to photon final states via Φ mediation for indirect search of DM.

plots reproduce the observed relic abundance and hence the yields for the same mX at
low x converge to the same asymptotic value, as they indeed must do according to (4.2).
Colorful curves in the upper panels correspond to different values of α adjusted so that in
spite of varying TRH, the asymptotic value is the same and corresponds to the observed
abundance.9 For large TRH one requires a smaller α to obtain the right abundance to
compensate the effect of larger integration region. We also note that the yield Y (x → 0)
values in these the two upper panels are different due to different choices of DM masses.
In the middle panel of figure 11 we show curves in the α − TRH space that imply proper
DM abundance. It is interesting to note that for TRH . 1 TeV, the relic density becomes
independent of the reheat temperature as the IR freeze-in dominates over UV freeze-in.
Beyond 1TeV the effective coupling α must decreases with grow of TRH for a fixed DM
mass in order to satisfy the central value of the PLANCK observed relic abundance as
YX ∝ TRHα

2. Also for a fixed TRH, larger DM mass requires smaller α simply because
ΩX ∝ mX following eq. (4.2). In the bottom panel of figure 11, we illustrate the effect of
α̃ by varying β = α̃

α = {0.001, 0.1, 0.3, 0.5, 1.0, 3.0, 5.0} (shown in different colors) on the
resulting relic density allowed parameter space. Note that quantities like reaction rates,
DM yields or Φ-lifetime depend on α and β via α2 + α̃2 = α2 (1 + β2). We have decided to
present those quantities for fixed β = 0.1 and various values of α. Equivalently the numbers
shown in plots could be parametrized by α

(
1 + β2)1/2 = αold

(
1 + (0.1)2)1/2, where αold

is the parameter specified in our plots with β = 0.1. Clearly, larger β requires smaller α
and this is what we see in the orange (β = 1.0), magenta (β = 3.0) and cyan (β = 5.0)
colored contours.

5 Signature of the model

As we have already demonstrated, the dimensionful Φ − B − X vertex (α(α̃)) is con-
strained by relic density of DM to be α(α̃) . 10−12 GeV−1 for TRH & 103 GeV. There-
fore, assuming c ∼ O(1),10 one can conclude that freeze-in of the VDM requires the NP
scale Λ >∼ 1012 GeV at least or higher for larger reheat temperature. If the effective opera-
tors (2.47) where n-loop generated, then we would roughly conclude that Λ >∼ 1012−2n GeV.
Hereafter we assume that the Lagrangian (2.47) is indeed tree-level generated. Therefore,

9The initial condition for all our solutions of the freeze-in BEQ assumes no DM at TRH, i.e.
YX(mX/TRH) = 0. On the other hand α is adjusted so that the observed abundance is satisfied, i.e.
for the same mX the curves in upper panels of figure 11 converge to the same value for x→ 0.

10As mentioned in ref. [64] the Lagrangian (2.47) can be generated at the tree-level by integrating out
anti-symmetric tensor mediators, then indeed c ∼ O(1).
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Figure 13. The contours show different decay lengths of Φ for particular choices of the parameters
that can produce right relic abundance for the DM. On left panel, we choose mΦ = 100GeV,
while on the right panel we show the case for mΦ = 500GeV. The shaded region at the bottom is
excluded by BBN constraint τΦ <∼ τBBN ∼ 1 sec.

Figure 14. /ET + jets signature that the model can produce at the collider.

the phenomenology of the model is severely constrained. First of all, note that there is
no XX − SM vertex, therefore no elastic scattering of the DM against nuclei is possible.
So, this model easily avoids stringent constraints from non-observation of DM scattering
at direct search experiments. DM can only scatter off nuclei inelastically with Φ in the
final state as shown in left panel of figure 12. Since mΦ > mX , hence such an inelastic
scattering is forbidden even if the mass difference δm = mΦ−mX & O(100) MeV [89]. On
the other hand, due to the presence of Φ − X − γ vertex, the DM pair annihilation may
give rise to monochromatic X-ray line (right panel of figure 12) but such photon flux will
be hugely suppressed by 1/Λ2 and can not account for the, say, galactic-center gamma ray
excess as observed. Hence this model in its freeze-in realization of DM can not be probed
from either direct nor indirect DM search experiments.

However, since the portal coupling λHΦ is unconstrained by existing observations and
as argued before this coupling can be as large as λHφ ∼ O(1), hence the non-standard
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scalar Φ can be produced at the collider via Higgs mediation (see figure 14). Once these
φ’s get produced at colliders they will eventually decay via figure 2 to DM and SM final
states like Z, γ. This is the same channel that also gives rise to DM production via freeze-
in. For particular choice of the effective coupling α that gives rise to right relic abundance,
the Φ remain stable over the detector length. This is shown in figure 13, where we see
that for α = 10−14 − 10−13 GeV−1 the average decay length of Φ is LΦ = cτΦ & 100 km,
where c = 3× 108 m/sec. In such a case the Φ’s basically escapes LHC detector and gives
rise to missing energy (/ET ), which can be constructed out of the recoil of an initial state
radiation (ISR) of a gluon, γ, W±, Z,H as

/ET = −

√√√√√∑
`,j

px

2

+

∑
`,j

py

2

, (5.1)

where the sum runs over all visible objects that include leptons and jets, and unclustered
components. Therefore, the model can finally produce monojet11 plus missing energy signal
that has extensively been searched at the LHC [90–92] as a vanilla DM signal particularly
for Higgs portal DM models. However, usually, when one produces DM that is connected
with the SM via a Higgs portal, then the coupling is tightly constrained from direct search.
Therefore, such signals are pretty small and submerged into huge SM background. In our
case, as mentioned, the coupling (λHφ) can be large and can produce a significant number
of such mono-X signal events, that may be of interest for next run of LHC.

It is worth noting that decays of Φ have to be completed before the onset of Big
Bang Nucleosynthesis (BBN) [14, 93], so that it does not alter the standard BBN picture.
Therefore here we will require that τΦ <∼ τBBN ∼ 1 sec which, for fixed mΦ and mX < mΦ
puts a lower bound on α. This has been illustrated in figure 14 where we show, for
mΦ = 100 GeV and 500 GeV, regions allowed by the BBN constraint (cτ = 105 km).
Concluding one can see that usually α >∼ 10−15 GeV is allowed, while the region mX ∼ mΦ
is forbidden for any value of α.

6 Summary and conclusions

A vector boson DM weakly coupled to the visible SM sector via dimension-5 operator
has been presented and the parameter space allowed by observed relic DM density has
been found. The advantage of the model is the absence of tree-level elastic DM scattering
against nuclei and a double suppression of present time DM annihilation in, for instance,
dwarf galaxies. Therefore this scenario easily and naturally satisfies existing experimental
constraints. The model contains a dark sector composed, in a unitary gauge, of a massive
vector Xµ, and a real scalar Φ. Xµ is a gauge boson of spontaneously broken extra U(1)X
gauge symmetry. The vector Xµ and the scalar Φ are odd under a Z2 symmetry introduced
to stabilize the DM candidate, Xµ. Φ is assumed to be heavier than Xµ. The SM sector
is extended by an extra heavy neutral Higgs boson that decouples when its mass goes
to infinity, as we assume here. The lowest dimensional operator responsible for DM-SM

11Multijet final states will be infested with huge SM backgrounds.
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interaction are 1/Λ XµνBµνΦ and 1/Λ X̃µνBµνΦ. It has been shown that the model
can be formulated in a Stueckelberg-like fashion as a limit of the SM extended by the
U(1)X gauge symmetry together with a complex scalar charged under the U(1)X (needed
to spontaneously break the symmetry) and a real scalar Φ.

We have investigated a possibility of DM production via a freeze-in mechanism through
decays of Φ and annihilations including Φ. It turned out to be convenient to consider two
distinct regimes of the reheat temperature. The first one is when the reheat temperature
is significantly higher than masses involved in the production process. This situation
mimics the case of UV freeze-in, when the production happens mostly before EWSB and
all processes after EWSB are insignificant. However the situation alters, when reheat
temperature (which can be thought of a free parameter, being very loosely constrained
by BBN) drops to lower values close to the mass scale (m) typical for the dark sector.
It has been shown that UV freeze-in, although advertised to describe the case of freeze-
in production of DM in EFT formalism, is not fully correct, massive contributions start
playing an important role and effects of IR freeze-in i.e. DM yield building even up to lower
temperature (T ∼ m) starts showing up.

In order to predict properly the observed DM abundance, the scale of the dimension-5
operators must be large Λ ∼ 1012 − 1016 GeV depending on the DM mass mX , the reheat
temperature TRH and an underlying mechanism for the generation of the relevant effective
operators. The huge size of Λ implies that at the lowest level of perturbative expansion
neither elastic scattering off nuclei is allowed nor present time annihilations of DM in e.g.
centers of galaxies are possible. However, it turns out that LHC collider signals mediated
by Higgs boson exchange are possible, gg → H∗ → ΦΦ. Since the scale of Λ required
by the DM abundance is large Λ ∼ 1012 − 1016 GeV the heavier scalar Φ is effectively
stable at the detector length scale and hence can produce mono-jet, photon, Z,W± or H
events accompanied by missing energy drifted away by pairs of Φ bosons.The signal cross-
section could be quite substantial as the portal coupling between Φ and the SM remains
unconstrained.

Finally, we must mention that a freeze-out possibility of the same model can also be
thought of. In that case, the phenomenological signatures will become richer. In contrast to
the case considered here the freeze-out scenario implies constraints that are more difficult
to satisfy [74].
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A The parameters of the scalar potential

Here we collect useful relations between potential parameters.

m2
1 = sec(2α)

(
2λHv2

h cos2 α− 2λSv2
S sin2 α

)
,

m2
2 = sec(2α)

(
2λSv2

S cos2 α− 2λHv2
h sin2 α

)
,

m2
Φ = 2µ2

Φ + λHΦv
2
h + λSΦv

2
S .

(A.1)

The couplings, likewise, can be expressed in terms of the physical masses and mixing:

λH = m2
1 cos2 α+m2

2 sin2 α

2v2
h

, λS = m2
1 sin2 α+m2

2 cos2 α

2v2
S

,

λSH = sinα cosα
(
m2

1 −m2
2
)

vhvS
, λSΦ = −2µ2

Φ +m2
3 − λHΦv

2
h

v2
S

,

(A.2)

with,

sin (2α) =
( 2vhvS
m2

1 −m2
2

)
λSH . (A.3)

Now, from eq. (A.1) we see:

m2
1 +m2

2 = 2
(
λHv

2
h + λSv

2
S

)
. (A.4)

From (2.25)–(A.4) we find a useful expression for m2:

m2
2 = v2

h

2(λH − λSM)(4λHλS − λ2
SH)

4λS(λH − λSM)− λ2
SH

(A.5)

B Relevant vertices

Adopting the Lagrangian of the model in eq. (2.48), one finds relevant vertices and prop-
agators collected in the table 3. Here the notation have usual meaning, for example, g1,2
are the gauge couplings corresponding to U(1)Y and SU(2)L gauge groups, respectively.
cv and ca are defined as: cfv = T3L − 2 sin2 θwQf and cfa = T3L, where T3L is the SU(2)L
isospin quantum number and Qf is the charge of the SM fermion f concerned.

C Reaction densities

For a 2→ 2 annihilation channel the reaction density is defined as:

γ (a, b→ 1, 2) =
∫ 4∏

i=1
dΠi (2π)4 δ(4)(pa + pb − p1 − p2

)
f eqa f

eq
b |Ma,b→1,2|2

= T

32π4 gagb

∫ ∞
smin

ds

[(
s−m2

a−m2
b

)2 − 4m2
am

2
b

]
√
s

σ (s)a,b→1,2K1

(√
s

T

)
,

(C.1)

where a, b(1, 2) are the incoming (outgoing) states and ga,b are corresponding degrees of free-
dom. Here f eqi ≈ exp−Ei/T is the Maxwell-Boltzmann distribution. The Lorentz invarint 2-
body phase space is denoted by: dΠi = d3pi

(2π)32Ei
. The amplitude squared (summed over final
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Vertex Vertex factors

iα̃εµνρσp
ρ
1p
σ
2 + iα

(
ηµνp1.p2 − p1νp2µ

)

− ig1
2 (p2 − p4)µ

−ie [(k1 − k2)a gbc + (k2 − k3)b gac + (k1 − k3)c gab]

−ig2cw [(k1 − k2)a gbc + (k2 − k3)b gac + (k1 − k3)c gab]

ffBµ
ig1
2 γ

µ 1
2


(
Y `L + Y `R

)
− γ5

(
Y `L − Y `R

)
(
Y QL + Y QR

)
− γ5

(
Y QL − Y

Q
R

)
hΦΦ 2iλHΦvh

hZZ ivh
4
(
g2

1 + g2
2
)

ffZµ −i g2
cw
γµ

1
2


(
c`v − c`aγ5

)
(
cQv − cQa γ5

)
ffγ −ieQfγµ

Propagator Rξ gauge Feynman rules

i
k2−m2

Z

[
−gµν + (1− ξ) kµkν

k2−ξm2
Z

]
i
k2

[
−gµν + (1− ξ) kµkνk2

]

Table 3. Relevant DM-SM interaction vertices and vertex factors along with SM propagators. All
momenta are assumed flowing towards the vertices. Here ` stands for SM leptons and Q stands
for the SM quark generations. Y `(Q)

L,R is the hypercharge for left and right-chiral leptons (quarks):
Y νL = −1, Y eL = −1, Y eR = −2;Y QL = 1/3, Y uR = 4/3, Y dR = −2/3.

and averaged over initial states) is denoted by |Ma,b→1,2|2 for a particular 2→ 2 scattering
process. The lower limit of the integration over s is smin = max

[
(ma +mb)2 , (m1 +m2)2].

For a 1→ 2 decay process the reaction density is given by:

γ (a→ 1, 2) =
∫ 3∑

i=1
dΠi (2π)4 δ(4)

(
pa − p1 − p2

)
f eqa |Ma→1,2|2

= ga
2π2m

2
aΓa→1,2TK1

(
ma

T

)
.

(C.2)
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D Expressions for squared amplitudes before EWSB

D.1 t-channel annihilation before EWSB

The spin averaged amplitude squared for fΦ→ fX process is given by:

∣∣∣M∣∣∣2
fΦ→fX

= g2
1Nc

128s
(
s−m2

X

) (
s−m2

Φ
) (

cos θ − 1
) ([Y f

L + Y f
R

]2
+
[
Y f
L − Y

f
R

]2)
×
[
α2
(
1+β2

){
4 cos θ

(
s−m2

X

) (
m2

Φ−s
) [

3s2+ s
(
m2

Φ− 5m2
X

)
+m2

Xm
2
Φ

]
+ cos 2θ

(
s−m2

X

)2 (
s−m2

Φ

)2
+ s

(
2m2

Xm
4
Φ − 22m4

Xm
2
Φ

)
+ s2

(
27m4

X − 4m2
Xm

2
Φ + 3m4

Φ

)
+ s3

(
10m2

Φ − 14m2
X

)
− 5s4

}
+ α2

(
1− β2

){
16m2

Xs sin2
(
θ

2

)(
m2
X − s

) (
m2

Φ − s
)}]

,

(D.1)

where Nc = 1(3) for the SM leptons (quarks). Also note that all the SM fermions are
massless. In the limit mΦ = mX = 0 this reduces to a relatively simplified form:
∣∣∣M∣∣∣2

f,Φ→f,X
= g2

1Ncsα
2
(
1 + β2

)([
Y f
L + Y f

R

]2
+
[
Y f
L − Y

f
R

]2)(5 + 12 cos θ − cos 2θ
128(1− cos θ)

)
.

(D.2)
Corresponding annihilation cross-section is given by:

σ (s)fΦ→fX '
6g2

1Nc

25 α2
(
1 + β2

)([
Y f
L + Y f

R

]2
+
[
Y f
L − Y

f
R

]2)
. (D.3)

D.2 s-channel annihilation before EWSB

The spin averaged amplitude squared for ff → XΦ process is given by:

∣∣∣M∣∣∣2
f,f→Φ,X

= g2
1Nc

256s3

([
Y f
L + Y f

R

]2
+
[
Y f
L − Y

f
R

]2)
×
[
α2
(
1 + β2

){
3m4

Xm
4
Φ − 2m4

Xm
2
Φs+ 3m4

Xs
2 + 2m2

Xm
4
Φs (D.4)

− 4m2
Φ cos θ

(
m2
X − s

) (
m2
X + s

) (
m2

Φ − s
)

+ cos 2θ
(
s−m2

X

)2 (
s−m2

Φ

)2

+ 2m2
Xs

3 + 3m4
Φs

2 − 6m2
Φs

3 + 3s4
}

+ 8α2
(
1− β2

)
m2
Xs

3
]
,

with Nc = 1(3) for SM leptons (quarks). In the limit mX = mΦ = 0 this reduces to:

∣∣∣M∣∣∣2
ff→Φ,X

= g2
1Nc

64 sα2
(
1 + β2

)
(cos 2θ + 3)

([
Y f
L + Y f

R

]2
+
[
Y f
L − Y

f
R

]2)
, (D.5)

Corresponding annihilation cross-section is given by:

σ (s)ff→ΦX '
g2

1Nc

1000α
2
(
1 + β2

)([
Y f
L + Y f

R

]2
+
[
Y f
L − Y

f
R

]2)
. (D.6)
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D.3 Decay of Φ

D.3.1 Before EWSB

The amplitude squared for the Φ→ X,B decay is given by:

|M|2D = m4
Φ

2 α2
(
1 + β2

) (
1− r2

)2
. (D.7)

The resulting decay width can be written as:

ΓΦ→X,B = m3
Φ

32πα
2
(
1 + β2

) (
1− r2

)3
, (D.8)

D.3.2 After EWSB

After EWSB Φ decays to photon and Z final states resulting:

Γtotal = ΓΦ→X,Z + ΓΦ→X,γ . (D.9)

The squared amplitude for decay to photon and massive Z-boson final state takes the form:

|M|2total = m4
Φ

2 α2
(
1 + β2

) (
1− r2

)2
c2
w︸ ︷︷ ︸

due to photon

+ 1
2α

2s2
w

[
m4

Φ

(
1 + β2

) (
1− r2 − y2

)2
− 4β2m2

Xm
2
Z + 2m2

Xm
2
Z

]
︸ ︷︷ ︸

due to massive Z-boson

(D.10)

Thus, the total decay width after EWSB can be expressed as:

Γtotal = α2m3
Φ
(
1 + β2)

32π

[
c2
w

(
1− r2

)3
+ s2

w

(
r4 − 2r2 +

(
y2 − 1

)2
)

×
√

1− (r − y)2
√

1− (r + y)2
]
,

(D.11)

where 0 < r = mX/mΦ ≤ 1 and 0 < y = mZ/mΦ ≤ 1.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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