
J
H
E
P
1
2
(
2
0
2
0
)
1
2
9

Published for SISSA by Springer

Received: November 10, 2020
Accepted: November 19, 2020
Published: December 21, 2020

On asymptotic symmetries in higher dimensions for
any spin

Andrea Campoleoni,a,1 Dario Franciab,c and Carlo Heissenbergd,e
aService de Physique de l’Univers, Champs et Gravitation, Université de Mons,
20 place du Parc, 7000 Mons, Belgium

bCentro Studi e Ricerche E. Fermi,
Piazza del Viminale 1, 00184 Roma, Italy

cRoma Tre University and INFN,
Via della Vasca Navale 84, 00146 Roma, Italy

dNordita, Stockholm University and KTH Royal Institute of Technology,
Roslagstullsbacken 23, 10691 Stockholm, Sweden

eDepartment of Physics and Astronomy, Uppsala University,
75108 Uppsala, Sweden
E-mail: andrea.campoleoni@umons.ac.be, dario.francia@cref.it,
carlo.heissenberg@su.se

Abstract: We investigate asymptotic symmetries in flat backgrounds of dimension higher
than or equal to four. For spin two we provide the counterpart of the extended BMS trans-
formations found by Campiglia and Laddha in four-dimensional Minkowski space. We
then identify higher-spin supertranslations and generalised superrotations in any dimen-
sion. These symmetries are in one-to-one correspondence with spin-s partially-massless
representations on the celestial sphere, with supertranslations corresponding in particular
to the representations with maximal depth. We discuss the definition of the corresponding
asymptotic charges and we exploit the supertranslational ones in order to prove the link
with Weinberg’s soft theorem in even dimensions.

Keywords: Field Theories in Higher Dimensions, Gauge Symmetry, Higher Spin Sym-
metry

ArXiv ePrint: 2011.04420

1Research Associate of the Fund for Scientific Research — FNRS, Belgium.

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP12(2020)129

mailto:andrea.campoleoni@umons.ac.be
mailto:dario.francia@cref.it
mailto:carlo.heissenberg@su.se
https://arxiv.org/abs/2011.04420
https://doi.org/10.1007/JHEP12(2020)129


J
H
E
P
1
2
(
2
0
2
0
)
1
2
9

Contents

1 Introduction 1

2 Higher-spin supertranslations and Weinberg’s soft theorem 4

3 Higher-spin superrotations 9
3.1 Symmetries of the Bondi-like gauge 9
3.2 Equations of motion above the radiation order 12
3.3 Superrotation charges 17

A Notation and conventions 20

B Geometry of the sphere and polarisations 21
B.1 Properties of the n-sphere 21
B.2 Spectrum of ∆ 21
B.3 Polarisation tensors 22

C Symmetries of the Bondi-like gauge 26

D Stationary and static solutions of Fronsdal’s equations 28
D.1 Stationary solutions 28
D.2 Static solutions 29

1 Introduction

In this work we construct higher-spin supertranslations and generalised superrotations at
null infinity, in flat spacetimes of any dimension D ≥ 4. We thus extend the results
of [1], where higher-spin supertranslations and superrotations have been identified in four
dimensions, and of [2], where global higher-spin symmetries have been studied in any D > 4.

Following the seminal works [3–5], the asymptotic symmetry group of four-dimensional
asymptotically flat gravity, and later of spin-one gauge theories [6–9], was long identified as
comprising those transformations of the gauge potentials that preserve the falloffs typical
of radiation, where the norm of the corresponding fields scales to leading order as r−1 in
retarded Bondi coordinates. (See [10] for a review.) However, in striking contrast with the
four-dimensional case, imposing the same requirement in higher-dimensional gravity, where
radiation scales asymptotically as r1−D2 , effectively selects only the (global) transformations
of the Poincaré group within the full group of diffeomorphisms, thus apparently preventing
BMSD>4 to be identified as a physically sensible asymptotic group [11, 12]. The absence
of gravitational memory effects to radiative order beyond D = 4 [13], moreover, provided
further support to the idea that D = 4 was to be regarded as possessing a special status
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as for what concerns the asymptotic structure of asymptotically flat spacetimes. In the
same fashion, in theories of photons or gluons whose associated potentials decay at null
infinity as fast as r1−D2 only global U(1) or SU(N) transformations are kept asymptotically.
Superrotations, in their turn, were originally identified as the infinite-dimensional family
of vector fields providing local solutions to the conformal Killing equation on the two-
dimensional celestial sphere [14, 15]. In this sense, their very existence appeared to be
somewhat specific of four-dimensional Minkowski space.

A different view was advocated for flat spaces in [16–29]. The interpretation of Wein-
berg’s soft theorems as Ward identities of asymptotic symmetries in D = 4 rather naturally
called for a similar correspondence in higher dimensions, thus suggesting the existence of
relevant symmetries beyond the global ones. This picture eventually found two different in-
carnations. Supertranslations were first recovered in any D by weakening the falloffs of the
fields so as to match those of the four-dimensional case [16, 17, 23–25]. Memory effects,
in their turn, were better identified as due to the leading components of the stationary
solutions of the field equations, whose typical Coulombic scale of O(r3−D) is subleading
with respect to the radiation falloffs in any D > 4. While in agreement with the observed
absence of memory effects to leading-order, the identification of such higher-dimensional,
subleading, memory effects also led to consider another class of residual gauge symmetries
akin to supertranslations [20, 26] (see also [18, 19]). For spin-one gauge theories the pres-
ence of angle-dependent asymptotic symmetries in higher dimensions was also confirmed
by an analysis at space-like infinity [30, 31].

Similarly, the idea that additional asymptotic symmetries, other than supertransla-
tions, could be held responsible for subleading soft graviton theorems [32, 33] led to iden-
tify a different extension of the BMS group in four dimensions as the semidirect product
of supertranslations and Diff(S2) [34, 35], differently from the original proposal of [36]
that would link the subleading soft amplitudes to the Ward identities of the superrotations
of [14, 15]. (See also [37] for yet an alternative derivation of subleading soft graviton theo-
rems.) What is relevant to our purposes is that the four-dimensional construction of [34],
contrary to that of [32, 36], is amenable to be pursued in any D [38, 39].

In the following we apply similar considerations both to low (s = 1, 2) and to higher-
spin (s > 2) gauge theories in D ≥ 4. In [2, 40] we showed that, if the asymptotic behaviour
typical of radiation is chosen as the leading falloff in D > 4, the corresponding asymptotic
group only comprises the solutions to the global Killing equations.1 By contrast, here
we begin by imposing in any dimension the same falloffs as those allowing (higher-spin)
supertranslations in D = 4 [1], i.e. we consider fields whose norm scales asymptotically as
r−1 for any D ≥ 4. In our Bondi-like gauge (2.1), this choice naturally leads to asymptotic
symmetries depending on an arbitrary function on the celestial sphere, which we identify
as higher-spin counterparts of BMS supertranslations.2 In addition, we show that, on shell,

1Similar conclusions have been drawn for higher-spin fields in Anti de Sitter spacetimes in [41, 42].
2The authors of [43] identify operators performing spin-dependent supertranslations in any D in the

analysis of the near-horizon symmetries of a black-hole background, although in the (putative) absence of
higher-spin fields. It is conceivable that the chosen class of spin-dependent boundary conditions effectively
subsume the presence of higher-spin fields in the corresponding thermal bath.
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all overleading configurations above the falloffs typical of radiation must be pure gauge and
then, following [26], we propose a prescription to associate finite surface charges to higher-
spin supertranslations. These results suggest to interpret the additional overleading terms
as new global degrees of freedom. We complete our analysis of higher-spin supertranslations
by showing that Weinberg’s factorisation theorems for soft particles of any spin [44, 45]
can be recovered as Ward identities for these asymptotic symmetries, thus extending to
any even space-time dimension the results of [1].

We then compute the full set of residual symmetries of the Bondi-like gauge, without
any prior assumption on the allowed decay rates of the fields. In this way we discover
other classes of infinite-dimensional symmetries that depend on arbitrary traceless tensors
on the celestial sphere of rank 1, 2 . . . , s − 1 and, for s = 2, reduce to the superrotations
of [34, 39]. Their scaling with r gets more and more relevant, so that if one wishes to keep
all of them the norm of the fields should actually blow up as fast as rs−2. However, field
configurations that are overleading with respect to radiation can be shown to be anyway
pure gauge on shell and thus, for instance, they won’t affect the decay rate of the higher-spin
Weyl tensors that can be kept to be those typical of radiation. Interestingly, each family of
asymptotic symmetries appears to be in one-to-one correspondence with partially massless
representations on the celestial sphere [46–50], identified via the kinetic operators ruling
the dynamics of suitable overleading components of the asymptotic field. Similarly to
what happens for gravity in D = 4, the generalised superrotation charges diverge in the
limit r → ∞ and should be properly regularised, in the spirit of [51–53]. Here we do not
address this issue in its full generality and we limit ourselves to discuss the finiteness of
superrotation charges when evaluated on special classes of solutions. In this fashion, for
s = 2, we are at least able to make partial contact with the charges employed in [39] to
relate the subleading soft graviton theorem and the superrotation Ward identities.

Higher-spin gauge theories have long been supposed to rule the high-energy limit of
string theory and to provide a symmetric phase of the latter, in a regime where the string
tension may be taken as negligible [54]. Whereas the actual import of this tantalising
conjecture will remain elusive as long as a concrete mechanism for implementing higher-
spin gauge symmetry breaking is not found, still one may hope to highlight glimpses of such
hypothetical symmetric phase in possible remnants of higher-spin asymptotic symmetries in
string scattering amplitudes. This possibility provides one of the main motivations for the
identification of the proper higher-spin asymptotic symmetry group in higher dimensions.

The paper is organised as follows: in section 2 we focus on supertranslations, presenting
the relevant boundary conditions together with our prescription to associate finite surface
charges to them. The latter are then used to derive Weinberg’s soft theorems for any spin.
Some of the relevant results on the structure of asymptotic symmetries are actually proven
in section 3, where the scope of our analysis widens to include higher-spin superrotations.
More technical details can be found in the appendices.
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2 Higher-spin supertranslations and Weinberg’s soft theorem

We consider free gauge fields of spin s on Minkowski spacetime, obeying the Fronsdal
equations in the Bondi-like gauge introduced in [1, 2]:3

ϕrµs−1 = 0 = γijϕijµs−2 . (2.1)

Assuming the asymptotic expansion in retarded Bondi coordinates

ϕus−kik(r, u, x̂) =
∑
n

r−n Uik
(k,n)(u, x̂) , (2.2)

we investigate the asymptotic structure of the gauge symmetries of the form

δϕµs = ∇µεµs−1 with gαβεαβµs−3 = 0 (2.3)

preserving (2.1). In [2] it was shown that, assuming falloffs not weaker than those typ-
ical of radiation, i.e. ϕus−kikϕus−k

ik = O(r2−D) or subleading, the resulting asymptotic
symmetries for any spin in D > 4 comprise only the global solutions to the Killing tensor
equations, with no infinite-dimensional enhancement.

For low spins, however, the latter can be recovered upon assuming weaker fall-off
conditions that, in the radial gauge for s = 1 or in the Bondi gauge for s = 2, essentially
amount to accepting asymptotic falloffs as weak as O(r−1) in any D [16, 17]. Whereas
the appropriate choice of falloffs is in itself a gauge-dependent issue,4 at the physical level
what matters is how to interpret these additional, low-decaying, configurations from the
perspective of observables. In [26] we argued that, for s = 1, no physical inconsistencies
arise in considering such weaker falloffs (of the strength needed in the given gauge) as long as
all the overleading contributions above the D−dimensional radiation behaviour are (large)
pure-gauge configurations. In the following, we shall adopt the same guiding principle. In
this fashion, certainly no issues can arise for all gauge-invariant quantities, like the flux of
energy per unit retarded time carried by the electromagnetic field or quantities depending
on the linearised Weyl tensor for spin two and higher. Nevertheless, the presence of these
overleading field components may be source of subtleties in general, as the definition of
superrotation charges to be discussed in section 3 testifies.

With this proviso, in this section we take the same attitude for any spin: we assume
overall falloffs as weak as ϕus−kikϕus−k

ik = O(r−2) for any s in any D, we then identify the
u−independent residual symmetries preserving (2.1) and we argue that above the radiation
order only pure-gauge configurations survive on shell, while leaving to the next section a
detailed derivation of these results. Following [1], we identify such symmetries as higher-
spin counterparts of BMS supertranslations. Explicitly, upon imposing

ϕus−kik = O(rk−1) (2.4)
3For s > 1, the Bondi-like gauge (2.1) is to be interpreted as an on-shell gauge fixing. Indeed, it fixes a

number of conditions larger than the number of independent components of the gauge parameter.
4See [55, 56] for some comments on this point. For Maxwell fields in the Lorenz gauge, for instance, in

order to identify an infinite-dimensional asymptotic group it is not sufficient to assume falloffs as weak as
O(r−1) and additional terms proportional to log r are needed in any D ≥ 4 [26].
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the residual parameters of the Bondi-like gauge are indeed expressed in terms of an arbitrary
function T (x̂) on the celestial sphere. In particular, one first obtains

εus−k−1ik = r−k
(−1)s−k−1(s− k − 1)!

k!(s− 1)! Di · · · DiT (x̂) + γiiDik−2T (x̂) , (2.5)

where the Dil are suitable rank−l differential operators. For instance, for s = 3, one has

εuu = T (x̂) , εui = −1
r
∂iT (x̂) , εij = 1

2r2

[
DiDj − 1

D
γij(∆− 2)

]
T (x̂) . (2.6)

As discussed in section 3.1 and in appendix C, one can then express the other components
of the gauge parameter in terms of those displayed above. Looking at u-independent resid-
ual symmetries allowed us to focus on supertranslations; removing this assumption while
keeping the falloffs (2.4) one finds in addition only the global symmetries discussed in [2].

We now show how to associate finite surface charges to the symmetries (2.5), to be
used in the derivation of Weinberg’s soft theorems [44, 45]. In the Bondi-like gauge (2.1),
the surface charge at null infinity associated to a gauge transformation is [2]5

Q(u) = lim
r→∞

rD−3
s−1∑
k=0

(
s− 1
k

)∮
dΩD−2

{
(s− k − 2) εus−k−1ik (r∂r +D − 2)ϕus−kik

+ ϕus−kik (r∂r +D + 2k − 2) εus−k−1ik − s− k − 1
r

εus−k−1ikD · ϕus−k−1ik

}
, (2.7)

which, for D > 4, naively diverges as rD−4 if one evaluates it for the symmetries (2.5)
on field configurations decaying at null infinity as (2.4). On the other hand, as discussed
in section 3.2, the equations of motion imply that asymptotically all contributions above
those of a wave solution be pure gauge. On shell one has indeed

ϕus−kik = rk−1 k(D + k − 5)!
s(D + s− 5)! (D·)s−kCik

(1−s)(x̂) +O
(
rk+1−D2

)
, (2.8)

with the rank-s tensor C(1−s) given by

Cis
(1−s)(x̂) = [(s− 1)!]−2Di · · · Di T̃ (x̂) + · · · , (2.9)

where T̃ (x̂) is an arbitrary function and the omitted terms implement the traceless projec-
tion of the symmetrised gradients, as required by the constraints (2.1). Substituting (2.5)
and (2.8) in the expression for the surface charge one obtains

(−1)s−1QT (u)

= lim
r→∞

rD−3
∮
dΩD−2

s−1∑
k=0

r−k

k! T
[
(s− k − 2) r∂r + (s− k − 1)(D − k − 2)

]
(D·)kϕus−k

= lim
r→∞

rD−4
(
s−1∑
k=1

αk

)∮
dΩD−2 T (D·)sC(1−s) +O

(
r
D−4

2
)
, (2.10)

5The charge defined in (2.7) is equal to −(s− 1)! times the charge appearing in appendix A of [2].
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with
αk = (D + k − 5)! [(k − 1)(s− k − 2) + (s− k − 1)(D − k − 2)]

(k − 1)!(D + s− 5)! . (2.11)

Two types of divergences thus arise if one computes the surface charge by first integrating
in (2.7) over a sphere at a given retarded time u and radius r and then taking the limit r →
∞. However, the divergence O(rD−4) induced by the overleading, pure-gauge contributions
actually vanishes because

∑s−1
k=1 αk = 0 for any s. The remaining divergence O(r

D−4
2 ) is

related to the presence of radiation: if one assumes that in a neighbourhood of I +
− , say

for u < u0, there is no radiation and the fields attain a stationary configuration, then the
surface charge is finite. A finite charge QT (u) can then be defined for all values of u as the
evolution of QT (−∞) under the equations of motion [26].6

In order to compute the supertranslation charges, we thus focus on field configura-
tions with the falloffs typical of a stationary solution. Generalising the characterisation of
stationary solutions for fields of spin s ≤ 2 of [58], we consider

ϕus−kik = r3−D+k Uik
(k)(u, x̂) + · · · . (2.12)

As we shall argue in appendix D, this choice is tantamount to evaluating the charges on
solutions that satisfy ∂uU (k,n) = 0 in the far past of I + for n ≤ D − k − 3. Moreover, in
the absence of massless sources, on shell, the rank-k tensors U (k) satisfy

(D·)kU (k) = 0 for 1 ≤ k ≤ s , (2.13)

as can be checked from (D.3) where U (k) = U (k,D−k−3). Taking (2.5), (2.12) and (2.13)
into account, the surface charge (2.7) reads7

QT (u) = (−1)s−1(D + s− 4)
∮
dΩD−2 T (x̂)U (0)(u, x̂) , (2.14)

which is closely analogous to the expression for the spin-2 supertranslation charge in terms
of the Bondi mass aspect, QT ∝

∮
dΩD−2 T mB.

To summarise, assuming that the fields be on shell up to the falloffs of stationary
solutions and defining the charges according to the prescription of [26], one obtains finite
supertranslation charges for any value of s and in any D. Furthermore, let us note that
a pure supertranslation configuration carries away no energy to I + per unit retarded
time, as defined via the canonical stress-energy tensor tαβ stemming from the Fronsdal
Lagrangian, which in the in the gauge (2.1) takes the Maxwell-like form [59, 60]

L = −
√
−g
2

(
∇αϕµs∇αϕµs − s∇ · ϕµs−1∇ · ϕµs−1

)
. (2.15)

Indeed, the canonical stress-energy tensor obtained from this Lagrangian reads

tαβ = 1
2
(
∇α ϕµs∇β ϕµs − s∇ · ϕµs−1∇α ϕβµs−1

)
+ gαβ ( · · · ) , (2.16)

6See also [57] for an alternative procedure to define finite charges in D > 4 for angle-dependent asymp-
totic symmetries in Maxwell’s electrodynamics and [22] for a discussion of supertranslation charges in
higher-dimensional gravity.

7For the scalar case, the charges considered in [19] formally coincide with (2.14) evaluated for s = 0.
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while the energy flux at a given retarded time u is given by

P(u) = lim
r→∞

∮
(tuu − tur) dΩD−2 . (2.17)

In the latter expression, the term of the stress-energy tensor (2.16) proportional to the
background metric gαβ drops out, while the remaining ones involve derivatives with respect
to u. Pure supertranslations however are u-independent, and therefore eventually provide
a vanishing contribution.

Let us also rewrite the surface charge evaluated at I +
− in terms of an integral over

I + according to
QT
∣∣
I +

−
= QT

∣∣
I +

+
−
∫ +∞

−∞

dQT (u)
du

du , (2.18)

where the first contribution accounts for the presence of stable massive particles in the
theory. In their absence, making use of (2.14), one finds

QT
∣∣
I +

−
= (−1)s (D + s− 4)

∫ +∞

−∞
du

∮
dΩD−2 T (x̂) ∂u U (0)(u, x̂) . (2.19)

We can now connect the charge (2.19) to Weinberg’s soft theorem in even D. As usual, the
strategy is to express the Coulombic contributions appearing in the charge in terms of the
radiative contributions making use of the equations of motion, so as to make contact with
the free field oscillators naturally contained in the radiation components. The soft theorem
can then be retrieved by simplifying the insertions of these operators in the corresponding
Ward identities so as to highlight the factorisation of S-matrix elements that takes place
in the soft limit

Let us consider the spin-three case first. The equations of motion in the Bondi-like
gauge allow one to express the charge (2.19) in terms of the spin-three generalisation of
the Bondi news tensor via

∂
D−4

2
u U (0) = D (D·)3C(D−8

2 )
(D − 1)(D − 2)(D − 3) , (2.20)

where the operator D is defined as

D =
D−3∏
l=D

2

Dl , with Dl = ∆− (l − 1)(D − l − 2)
D − 2l − 2 . (2.21)

One can therefore rewrite the charge (2.19) as follows

QT
∣∣
I +

−
= − 1

(D − 2)(D − 3)

∫ +∞

−∞
du

∮
dΩD−2 T (x̂) ∂

6−D
2

u D DiDjDkC(D−8
2 )

ijk (u, x̂) (2.22)

= 1
4(D − 2)(D − 3) lim

ω→0+

∑
λ

∮
dΩD−2

(2π)
D−2

2
T (x̂)DDiDjDkε(λ)

ijk(x̂)ωaλ(ωx̂) + H.c. ,

where in the last equality we inserted the expansion in oscillators of the leading radiation
contribution to ϕijk,

C
(D−8

2 )
ijk (u, x̂) = 1

2(2iπ)
D−2

2

∫ ∞
0

dω

2π ω
D−4

2 e−iωu
∑
λ

ε
(λ)
ijk(x̂)ωaλ(ωx̂) + H.c. , (2.23)
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and we used the relations

(i∂u)
6−D

2

∫ ∞
0

ω
D−4

2 e−iωuf(ω)dω =
∫ ∞

0
ωe−iωuf(ω)dω , (2.24)

1
2π

∫ +∞

−∞
du

∫ ∞
0

ωe−iωuf(ω) dω = 1
2 lim
ω→0+

[ωf(ω)] . (2.25)

The charge (2.22) enters the Ward identity

〈out|
(
QI +

−
S − SQI −

+

)
|in〉 =

∑
`

g
(3)
` E2

` T (x̂`)〈out|S|in〉 , (2.26)

under the assumption that higher-spin supertranslations are symmetries of a putative scat-
tering matrix involving particles with arbitrary spins. More precisely, we follow the pro-
cedure detailed in [1, 61] for connecting the soft portion of the asymptotic charge to the
Ward identity (2.26), which avoids the need to explicitly discuss external currents. In order
to highlight the relation to Weinberg’s soft theorem it is useful to choose a specific form
for the function T (x̂):

Tŵ(x̂) = (Dŵ)i(Dŵ)j(Dŵ)k
ε
(ijk)
lmn (ŵ)(x̂)l(x̂)m(x̂)n

1− x̂ · ŵ , (2.27)

where the choice of polarisations is discussed in appendix B.3. Inserting (2.27) in (2.22)
one finds

QTŵ

∣∣
I +

−
= −1

2 lim
ω→0+

DiŵD
j
ŵD

k
ŵ

[
ωaijk(ωŵ) + ωa†ijk(ωŵ)

]
. (2.28)

Substituting this relation into the Ward identity (2.26) then yields the 3-divergence of
Weinberg’s theorem,

lim
ω→0+

〈out|ωaijk(ωŵ)S|in〉 = −
∑
`

g
(3)
` E2

`

ε
(ijk)
lmn (ŵ)(x̂`)l(x̂`)m(x̂`)n

1− ŵ · x̂`
〈out|S|in〉 . (2.29)

This argument holds for any values of the couplings g(3)
` , thus showing that the relation

between the Ward identity and the soft theorem is actually universal and does not rely on
the actual possible dynamical incarnations of the theory itself.

The proof extends verbatim to the spin-s case. One starts with the charge

QT
∣∣
I +

−
= (−1)s(D − 4 + s)

∫ +∞

−∞
du

∮
dΩD−2 T ∂uU (0) , (2.30)

and makes repeated use of the equations of motion, using in particular

∂
D−4

2
u U (0) = (D − 4)!

(D + s− 4)! D (D·)sC(D−2s−2
2 ) , (2.31)

to put it in the form

QT
∣∣
I +

−
= (−1)s(D − 4)!

(D + s− 5)!

∫ +∞

−∞
du

∮
dΩD−2 T ∂

2−D−2
2

u D(D·)sC(D−2s−2
2 )

= (−1)s−1(D − 4)!
4(D + s− 5)! lim

ω→0+

∑
λ

∮
dΩD−2

(2π)
D−2

2
TD(D·)sε(λ)(x̂)ωaλ(ωx̂) + H.c. ,

(2.32)
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where in the last equality we substituted the asymptotic limit of the free field near I +

while the operator D is defined as in (2.21). In order to connect the Ward identity of
higher-spin supertranslations to the soft theorem it is useful once again to make use of a
specific form of T (x̂),

Tŵ(x̂) = (Dŵ)is
ε
(is)
js

(ŵ)(x̂)js

1− x̂ · ŵ , (2.33)

in terms of which the charge reads

QTŵ

∣∣
I +

−
= −1

2 lim
ω→0+

Disŵ
[
ωais(ωŵ) + ωa†is(ωŵ)

]
. (2.34)

Substituting this relation into the spin-s version of the Ward identity (2.26) then yields the
s-divergence of Weinberg’s theorem. The reverse implication, on the other hand, namely
that Weinberg’s theorem yields the Ward identity (2.26) as well as its spin-s counterpart,
is of less relevance in the context of higher spins given that Weinberg’s result also implies
the vanishing of the soft couplings for s > 2.

3 Higher-spin superrotations

In this section we classify all residual symmetries of the Bondi-like gauge (2.1) and we show
that they comprise, in any dimension and for any value of the spin, suitable generalisations
of the superrotations introduced for s = 2 andD = 4 in [34]. In particular, within the limits
of our linearised analysis, for s = 2 we find extended BMS symmetries comprising both
supertranslations and Diff(SD−2) transformations as in [39]. For arbitrary values of the
spin we find instead asymptotic symmetries generated by a set of traceless tensors on the
celestial sphere of rank 0, 1, . . . , s−1, that turn out to be in one-to-one correspondence with
the partially massless representations of spin s, with supertranslations corresponding in
particular to the representations with maximal depth. To keep all such residual symmetries
of the Bondi-like gauge, the non-vanishing components of the fields must scale as

ϕus−kik = O(rs+k−2) , (3.1)

although, eventually, only pure-gauge contributions are allowed on shell above the order
typical of a radiative solution, ϕus−kik = O(rk+1−D/2). Still, the definition of surface
charges for (higher-spin) superrotations entails a number of subtleties that here we are
able to face only to a partial extent and that require further investigations.

3.1 Symmetries of the Bondi-like gauge

We begin by identifying the residual symmetries allowed by the Bondi-like gauge (2.1),
without any further specifications on the falloffs of the components ϕus−kik . To this end,
it is convenient to split the components of the gauge parameter in two groups: those
without any index u, that we denote by εik(k) ≡ εrs−k−1ik , and the rest. Notice that not all
components are independent because the gauge parameter is traceless: here we chose to
express those with at least one index r and one index u in terms of the others.
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The elements of the first group are constrained by

δϕrs−k = 1
r

{
(s− k) (r∂r − 2k) ε(k) − γ ε(k)′

}
+Dε(k−1) + r γ ε(k−2) = 0 , (3.2)

where a prime denotes a contraction with γij and where we omitted all sets of symmetrised
angular indices. These equations are solved by

ε(k)(r, u, x̂) = r2kρ(k)(u, x̂) +
2k−1∑
l= k

rlε(k,l)(u, x̂) , (3.3)

where, at this stage, ρ(k)(u, x̂) is an arbitrary traceless tensor because r2k belongs to the
kernel of (r∂r − 2k). It is however bound to be traceless because of Fronsdal’s trace
constraint. The ε(k,l) are instead determined recursively (and algebraically) in terms of
the ρ(l) with l < k. The precise form of the tensors ε(k,l) is not relevant for the ensuing
considerations; we thus refer to appendix C for more details.

One can express the remaining components εus−k−1ik in terms of the ρ(k) by impos-
ing that all traces of the fields be gauge invariant, i.e. γmnδϕus−kik−2mn = 0. Imposing
δϕrs−kulik = 0 for k + l < s leads instead to a constraint on the free tensors in (3.3):

∂uρ
(k) + s− k − 1

D + s+ k − 4 D · ρ
(k+1) = 0 (3.4)

for any k < s− 1 (see appendix C).
For a field of spin s, we thus obtain residual symmetries parameterised by the s − 1

traceless tensors on the celestial sphere ρ(0), ρ(1)
i , . . . , ρ(s−1)

is−1
, where the tensor of highest

rank still admits an arbitrary dependence on u. As we shall see in the next subsection, one
can eliminate the u-dependence by demanding that ϕis falloffs as fast as the δϕis induced
by (3.3) and imposing the equations of motion above the radiation order. Under these
assumptions, one obtains the falloffs (3.1), while the differential equation (3.4) holds for
any value of k, so that ∂uρ(s−1) = 0.

When s = 2, the residual symmetries of the Bondi gauge hrr = hru = hri = γijhij = 0
are generated by

εr = f , εi = r2vi + r ∂if , εu = εr + r−1

D − 2 D · ε , (3.5)

with the constraint
∂uf + 1

D − 2 D · v = 0 . (3.6)

Imposing the falloffs (3.1), that is hij = O(r2), hui = O(r) and huu = O(1), one obtains
the additional condition

∂uvi = 0 ⇒ f(u, x̂) = T (x̂)− u

D − 2 D · v(x̂) . (3.7)

For any value of the space-time dimension, we thus recovered the supertranslations dis-
cussed in the previous section, together with a transformation generated by a free vector
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on the celestial sphere. To leading order, the latter acts on hij as the traceless projection
of a linearised diffeomorphism,

δhij = r2
(
D(ivj) −

2
D − 2 γijD · v

)
+O(r) . (3.8)

In a full, non-linear theory this transformation corresponds to the superrotations of [34, 39]
(see also [62] for a related discussion).

This pattern continues for arbitrary values of the spin. For instance, for s = 3 the
residual symmetries of the Bondi-like gauge are generated by

εrr = f , (3.9a)

εri = r2vi + r

2 ∂if , (3.9b)

εij = r4Kij + r3
(
D(ivj) −

2
D − 1 γijD · v

)
+ r2

2

(
DiDj −

1
D
γij (∆− 2)

)
f, (3.9c)

where Kij must be traceless to fulfil the constraint gµνεµν = 0, while

∂uf + 2
D − 1 D · v = 0 , ∂uvi + 1

D
D ·Ki = 0 . (3.10)

Out of the remaining components of the gauge parameter one finds 2εru = εrr + r−2ε′,
while the conditions γjkδϕijk = 0 and γijδϕuij = 0 imply, respectively,

εui = εri + r−1

2D
(
2D · εi +Diε′

)
, εuu = εru + r−1

2(D − 2)
(
2D · εu + ∂uε

′) . (3.11a)

Imposing the boundary conditions (3.1) then selects the following solution for (3.10):

Kij = Kij(x̂) , (3.12a)

vi = ρi(x̂)− u

D
D ·Ki(x̂) , (3.12b)

f = T (x̂)− 2u
D − 1 D · ρ(x̂) + u2

D(D − 1) D · D ·K(x̂) . (3.12c)

As expected, keeping only the u-independent contributions forces ρi = 0 and Kij = 0 so
that one recovers (2.6).

In Bondi coordinates, the solutions of the Killing tensor equation δϕµs = ∇µεµs−1 = 0
take the same form, but the tensors Kij , ρi and T are bound to satisfy the following
additional (traceless) differential constraints, that only leave a finite number of solutions
for D > 4 [2]:

D(iKjk) −
2
D
γ(ijD ·Kk) = 0 , (3.13a)

D(iDjρk) −
2
D
γ(ij

[
(∆ +D − 3) ρk) + 2Dk)D · ρ

]
= 0 , (3.13b)

D(iDjDk)T −
2
D
γ(ijDk) (3 ∆ + 2(D − 3))T = 0 . (3.13c)
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With the boundary conditions (3.1) we thus observe an infinite-dimensional enhancement
of all classes of higher-spin symmetries appearing in (3.9), but of a different kind com-
pared to the higher-spin superrotations introduced for D = 4 where, following the spin-2
proposal of [15], we showed that the first two constraints in (3.13) admit locally an infinite-
dimensional solution space [1].

3.2 Equations of motion above the radiation order

We now show that on shell only local pure-gauge field configurations are allowed above the
radiation order for fields that admit the asymptotic expansion (2.2).8 Let us stress that
most of the conclusions in this section apply to both even and odd values of the space-time
dimension D, with the proviso that in the latter case one also has to consider half-integer
values of n. For simplicity, however, in the following we focus on the case of even D, and
thus consider n ∈ Z. See also [25] for the corresponding analysis in D = 5.

We study the equations of motion above the falloffs typical of radiation discussed
in [2], and in this range matter sources cannot contribute. Furthermore, since the number
of angular indices carried by each tensor U (k,n) appearing in the radial expansion (2.2)
is equal to k, from now on we shall omit them altogether. Introducing the shorthand
C(n) ≡ U (s,n), the source-free Fronsdal equations in the Bondi-like gauge imply

U (k,n) = (n+ 2k − 1)(D − n− 4)!
(n+ s+ k − 1)(D − n+ s− k − 4)! (D·)s−kC(n−s+k) (3.14)

for 2− s− k ≤ n ≤ D − 4, and

(D − 2n− 2s− 2)∂uC(n) = [∆− (n− 1)(D − n− 2s− 2)− s(D − s− 2)]C(n−1)

− D + 2(s− 3)
(n+ 2s− 2)(D − n− 3)

(
DD · C(n−1) − 2

D + 2(s− 3) γD · D · C
(n−1)

) (3.15)

for 3 − 2s ≤ n ≤ D − 4. Out of the specified ranges of n, some of the U (k,n) may not be
expressed solely in terms of the C(n) and they satisfy differential equations in u similar
to (3.15) (see appendix D).

The last equation shows that C(D−2s−2
2 )(u, x̂) is an arbitrary function, corresponding

to the “radiation order”. For n = D−2s−2
2 one thus obtains

0 =
[
∆− (D − 2s− 2)(D − 2s− 4)

4 − s(D − s− 2)
]
C(D−2s−4

2 ) + · · · , (3.16)

that, on a compact manifold like the celestial sphere, implies C(D−2s−4
2 ) = 0. One can

reach this conclusion by first eliminating the divergences of the tensor via the divergences
of (3.16), and then by noticing that the differential operator (∆ − λ) entering (3.16) is
invertible. This is so because the eigenvalues of the Laplacian acting on a traceless and
divergenceless tensor of rank s are always negative (see (B.7)), while λ > s.

8For s = 1 we thus show that the pure-gauge configurations above the usual radiation falloffs that we
introduced in [26] exhaust all solutions of the equations of motions. See also [58] for a similar analysis of
the equations of motion for s ≤ 2.
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The previous procedure can be iterated to get

C(n) = 0 for 1− s < n <
D − 2s− 2

2 , (3.17)

where the two extrema correspond to the radiation order and to the order at which su-
pertranslations act on the purely angular component ϕis , respectively. Notice that they
coincide when D = 4 for any value of the spin: in this case supertranslations act at the
radiation order, that in the Bondi-like gauge encodes information about the local degrees
of freedom of a propagating wave packet [1]. To prove (3.17) it is useful to compute the
divergences of (3.15):

(D − 2n− 2s− 2)∂u(D·)kC(n) = (n+ 2s− k − 2)(D − n− k − 3)
(n+ 2s− 2)(D − n− 3) ×

× [∆− (n+ k − 1)(D − n− 2s+ k − 2)− (s− k)(D − s+ k − 2)] (D·)kC(n−1)

− D + 2(s− k − 3)
(n+ 2s− 2)(D − n− 3)

(
D − 2

D + 2(s− k − 3) γD·
)

(D·)k+1C(n−1).

(3.18)

For D−2s−4
2 ≤ n ≤ 3−s these equations set to zero recursively all divergences of C(n−1) and

eventually the whole tensor itself since all operators in the second line are invertible. To
make this analysis more transparent it is convenient to let n = D− s−2 + `, so that (3.18)
takes the form

(2−D − 2`)∂u(D·)kC(D−s−2+`)

= (D − 4 + s+ `− k)(s− 1− `− k)
(D − 4 + s+ `)(s− 1− `) [∆ + `(`+D − 3)− (s− k)] (D·)kC(D−s−3+`)

− D + 2(s− k − 3)
(D − 4 + s+ `)(s− 1− `)

(
D − 2

D + 2(s− k − 3) γD·
)

(D·)k+1C(D−s−3+`) . (3.19)

The values of ` at which the operator appearing in the second line fails to be invertible are

` = 4−D + k − s , ` = s− 1− k , (3.20)

where the overall coefficient vanishes, or

` = s− k, s− k + 1, s− k + 2, . . . , (3.21)

as dictated by the eigenvalues of the Laplacian on divergence-free tensors (see (B.7)).
The iterative procedure that sets the C(n) to zero thus stops at n = 2 − s, since for

k = s the overall coefficient in the second line of (3.18) vanishes and one does not obtain
any information on (D·)sC(1−s). This result agrees with those of section 3.1: one cannot
conclude C(1−s) = 0 because under a supertranslation this tensor transforms as

δC(1−s) = [(s− 1)!]−2DsT + · · · , (3.22)

where the omitted terms implement a traceless projection.9 This can be easily verified for
s = 2 and s = 3 by substituting (3.5) in δhij and (3.9) in δϕijk.

9Let us note that the operator implicitly defined in (3.22) provides the spin-s counterpart of the differ-
ential operator computing the linear memory effect in terms of the supertranslation parameter for spin two
in D = 4, where it indeed acts at the correct Coulombic order [63].
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This phenomenon extends to all instances of (3.15) in the range 3 − 2s ≤ n ≤ 2 − s.
To make this manifest, let us relabel n→ 2− s− t: the r.h.s. of (3.15) then becomes

M(s,t) ≡ [∆− (D + s− 4) + t(D + t− 5)]C(1−s−t) (3.23)

− D + 2(s− 3)
(s− t)(D + s+ t− 5)

(
DD · C(1−s−t) − 2

D + 2(s− 3) γD · D · C
(1−s−t)

)
,

and in the range 0 ≤ t ≤ s− 1 eq. (3.18) implies

(D·)s−tM(s,t) = − D + 2(t− 3)
(s− t)(D + s+ t− 5)

(
D − 2

D + 2(t− 3) γD·
)

(D·)s−t+1C(1−s−t) .

(3.24)
The latter can be interpreted as a Bianchi identity for the operator M(s,t) and, indeed, it
allows one to prove that it is invariant under

δC(1−s−t) = Ds−tλ(t) with D · λ(t) = λ(t) ′ = 0 . (3.25)

In our context, these transformations can be identified with the portion of the asymp-
totic symmetries generated by the u-independent and divergence-free part of the parame-
ters (3.3). The other contributions to the residual symmetries of the Bondi-like gauge are
reinstated by the sources on the l.h.s. of (3.18), while their action on the other non-vanishing
components of the field, i.e. δϕus−kik , can be recovered from (3.14) since gauge symmetries
map solutions of the eom into other solutions. For instance, for s = 2 one obtains

δCij
(−2) = D(ivj) −

2
D − 2 γijD · v , (3.26a)

δCij
(−1) = 2

(
DiDj −

1
D − 2 γij∆

)
f, (3.26b)

and, correspondingly,

δhui = D · δCi
(−1)

2(D − 3) = Di (∆ +D − 2) f
D − 2 , (3.27a)

δhuu = − D · D · δC
(−2)

(D − 2)(D − 3) = −2 (∆ +D − 2)D · v
(D − 2)2 . (3.27b)

Let us also observe that the differential operator (∆ − m2
s,t) in (3.23) identifies the

mass shell of a partially-massless field of spin s and depth t (see e.g. [49]). Moreover, for
t = s − 1 one recovers in (3.23) the Maxwell-like kinetic operator for a massless field of
spin s propagating on a constant curvature background [60], while for the other values of t
one obtains kinetic operators describing more complicated spectra. In particular, for s = 2
and t = 0 eq. (3.18) gives the conformally-invariant equation of motion introduced in [64],
that does not describe only a partially-massless spin-2 field.

We now impose the additional condition that the field components above the order at
which asymptotic symmetries act be zero, that is

C(n) = 0 for n < 2− 2s , (3.28)
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or more generally U (k,n) = 0 for n < 2 − s − k. This corresponds to the boundary
conditions (3.1). Thanks to (3.17), under this assumption the only non-vanishing C(n)

above the radiation order are those with 2−2s ≤ n ≤ 1− s and we wish to argue that only
the pure-gauge configurations that we discussed above satisfy the equations of motion.

In order to support this statement, let us examine in detail the low-spin examples.
For spin one, the only nontrivial overleading component is Ci(0) and it satisfies the free
Maxwell equation on the Euclidean sphere

[∆−D + 3]Ci(0) −DiD · C(0) = 0 . (3.29)

We can separate Ci(0) into a divergence-free part, C̃i with D · C̃ = 0, and a pure gradient
part according to

Ci
(0) = C̃i + ∂iT . (3.30)

Furthermore, since Ci(−1) = 0, the equations of motion also imply ∂uCi(0) = 0, so that C̃i
and T can be chosen to be u-independent. Equation (3.29) thus reduces to

[∆−D + 3] C̃i = 0 . (3.31)

This implies C̃i = 0 because [∆−D + 3] is invertible and hence that Ci(0) is a pure-gauge
configuration, Ci(0) = ∂iT .

Moving to spin two, we need to discuss

0 = [∆−D + 2]Cij(−1) − D − 2
2(D − 3)

[
D(iD · Cj)(−1) − 2

D − 2 γijD · D · C
(−1)

]
, (3.32)

(D − 4) ∂uCij(−1) = [∆− 2]Cij(−2) −
[
D(iD · Cj)(−2) − 2

D − 2 γij(D·)
2C(−2)

]
, (3.33)

which are the only two instances of (3.15) above the radiation order that are not identically
satisfied on account of (3.17) and (3.28). Note also that, in view of (3.28),

∂uCij
(−2) = 0 ⇒ ∂2

uCij
(−1) = 0 . (3.34)

That is, Cij(−2) is u-independent while Cij(−1) is at most linear in u:

Cij
(−2)(x̂) = Hij(x̂) , Cij

(−1)(u, x̂) = Fij(x̂) + uGij(x̂) . (3.35)

We then have

0 = [∆−D + 2]Fij −
D − 2

2(D − 3)

[
D(iD · Fj) −

2
D − 2 γij(D·)

2F

]
, (3.36)

0 = [∆−D + 2]Gij −
D − 2

2(D − 3)

[
D(iD ·Gj) −

2
D − 2 γij(D·)

2G

]
, (3.37)

(D − 4)Gij = [∆− 2]Hij −
[
D(iD ·Hj) −

2
D − 2 γij(D·)

2H

]
. (3.38)

The first two relations imply

Fij(x̂) = 2
(
DiDj −

1
D − 2 γij∆

)
T (x̂) , Gij(x̂) =

(
DiDj −

1
D − 2 γij∆

)
S(x̂) . (3.39)
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To see why this is the case, let us focus on the second one and use the decomposition

Gij = G̃ij +D(iṽj) +
(
DiDj −

1
D − 2 γij∆

)
S , (3.40)

where
D · G̃i = 0 , γijG̃ij = 0 , D · ṽ = 0 , (3.41)

which is tantamount to the decomposition of the irreducible so(D − 2) tensor Gij in irre-
ducible so(D − 3) components. Substituting into the divergence of (3.37), we find

[∆−D + 3] [∆ +D − 3] ṽi = 0 . (3.42)

This implies that ṽi belongs to the kernel of [∆ +D− 3], i.e., ṽi is an irreducible harmonic
with ` = 1 as discussed in appendix B.2. Such vectors give zero contribution to (3.40).
Then, from (3.37),

[∆−D + 2] G̃ij = 0 ⇒ G̃ij = 0 . (3.43)

This proves (3.39) given (3.37).
The condition in (3.38) can be then regarded as an equation for Hij(x̂) given the source

term Gij(x̂), or equivalently S(x̂) in view of (3.39). To solve it, it is convenient to resort
to the following decomposition for the traceless tensor Hij ,

Hij = H̃ij +D(ivj) −
2

D − 2 γijD · v , (3.44)

where D·H̃i = 0, while vi is now a generic vector. Substituting (3.39) and (3.44) into (3.38)
and taking divergences eventually allows one to show that H̃ij = 0 and that

S = − 2
D − 2 D · v (3.45)

up to a constant terms and ` = 1 scalar harmonics. Substituting into (3.35), we find that
the most general solution for the overleading terms is

C
(−2)
ij (x̂) = D(ivj)(x̂)− 2

D − 2 γijD · v(x̂) , (3.46)

C
(−1)
ij (u, x̂) = 2

(
DiDj −

1
D − 2 γij∆

)(
T (x̂)− u

D − 2 D · v(x̂)
)
, (3.47)

where we recognise a supertranslation and a superrotation, parametrised by T (x̂) and vi(x̂)
respectively.

A very similar chain of arguments allows one to prove explicitly that, even for spin-
three fields, the only nontrivial overleading components C(−4)

ijk , C(−3)
ijk , C(−2)

ijk allowed by the
equations of motion take precisely the form of the asymptotic symmetries identified in the
previous sections. It is natural to expect that this pattern actually holds for all spins so
that, in this setup, only the structures trivially allowed by the gauge symmetry can appear
to overleading orders.
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3.3 Superrotation charges

We now discuss the structure of surface charges that could be associated to all higher-spin
superrotations. To identify it we shall follow, at least in some steps, a strategy similar
to that we employed in section 2 to define finite supertranslation charges. Let us stress,
however, that the setup is not completely equivalent, as it is manifest already for spin-two
fields. Indeed, evaluating the surface charge (2.7) for all residual symmetries (3.5) of the
Bondi gauge on field configurations with overleading, pure-gauge terms

huu = −2 (∆ +D − 2)
(D − 2)2 D · ṽ(x̂) +O(r1−D2 ) , (3.48)

hui = Di (∆ +D − 2)
D − 2

(
T̃ (x̂)− u

D − 2 D · ṽ(x̂)
)

+O(r2−D2 ) (3.49)

one obtains

Q(u) = lim
r→∞

2 rD−3

D − 2

∮
dΩD−2

{
T (x̂) (∆ +D − 2)D · ṽ(x̂)−D · v(x̂) (∆ +D − 2) T̃ (x̂)

}
+O(r

D−2
2 ) . (3.50)

Contrary to the discussion in section 2, based on the more restrictive boundary condi-
tions (2.4) only allowing for asymptotic supertranslations, here the pure-gauge overleading
field configurations give a divergent contribution to the charge of O(rD−3). Notice, however,
that the surface charge (3.50) already diverges linearly in four space-time dimensions. In
this context, the charge has been regularised in [51, 52] (see also [35, 65]) and in the following
we assume that a similar regularisation is possible also for higher values of the space-time
dimension D. This conjecture will be cross-checked by comparing with the charges that
have been used to derive subleading soft theorems from asymptotic symmetries [34, 39].

Assuming that the divergence of O(rD−3) associated to the overleading terms can be
cancelled by adding suitable counterterms to the surface charge (3.50), one is left with a
divergence of O(r

D−2
2 ) related to radiation. In analogy with section 2, the latter could be

eliminated by defining the charge as the evolution under the equations of motion of Q(−∞)
and assuming that no radiation is present for u smaller than a given u0. This would amount
to computing the surface charge (2.7) for u < u0 on stationary field configurations, that is
on [58]

huu = r3−DU (0,D−3)(x̂) +O(r2−D) , (3.51a)

hui = r4−DUi
(1,D−4)(x̂) + r3−DUi

(1,D−3)(u, x̂) +O(r2−D) . (3.51b)

Notice that Ui(1,D−4)(x̂) is restricted to be u-independent and divergence-free on stationary
solutions, but it need not vanish. Substituting these solutions into the charge (2.14) and
including both supertranslations and superrotations for completeness, one gets

Q(u) = −(D − 2)
∮
dΩD−2 T U

(0,D−3)

+ lim
r→∞

r (D − 2)
∮
dΩD−2 v

iUi
(1,D−4)

−
∮
dΩD−2 v

i
{
u ∂iU

(0,D−3) − (D − 1)Ui(1,D−3)
}
.

(3.52)
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In the first line we recovered the (finite) supertranslation charge (2.14) already discussed
in section 2. The second line exhibits instead a linear divergence10 in r involving the su-
perrotation vector vi. In other words, for superrotations, restricting to stationary solutions
does not completely solve the issue of the O(r

D−2
2 ) contributions related to radiation.

Actually, this singular behaviour in r is not the only puzzling feature of (3.52). Even
its last line, which is finite in the limit r →∞ for fixed u, seems to diverge as u is then sent
to −∞, i.e. as one approaches I +

− . Indeed the equations of motion for stationary solutions
require

u ∂iU
(0,D−3)(x̂)− (D − 1)

[
Ui

(1,D−3)(u, x̂)− qi(x̂)
]

= u [∆− 1]U (1,D−4)
i (x̂) , (3.53)

where qi(x̂) is an arbitrary u-independent integration function, so that (3.52) can be recast
as

Q(u) = −(D − 2)
∮
dΩD−2 T U

(0,D−3) + (D − 1)
∮
dΩD−2 v

iqi

+ lim
r→∞

r (D − 2)
∮
dΩD−2 v

iUi
(1,D−4) − u

∮
dΩD−2 v

i [∆− 1]U (1,D−4)
i .

(3.54)

In view of these observations, we note that further restricting to the set of Coulombic
stationary solutions already considered in [2], for which the divergence-free component
U

(1,D−4)
i is zero, namely

huu = r3−DU (0,D−3)(x̂) +O(r2−D) , (3.55a)

hui = r3−DUi
(1,D−3)(u, x̂) +O(r2−D) , (3.55b)

solves both problems at once. The second line of (3.54) indeed vanishes identically and we
retrieve a well-behaved expression for the charge near I +

− ,

Q
∣∣
I +

−
= −(D − 2)

∮
dΩD−2 T (x̂)U (0,D−3)(x̂) + (D − 1)

∮
dΩD−2 v

i(x̂)qi(x̂) , (3.56)

where qi(x̂) is defined by

qi(x̂) = Ui
(1,D−3)(u, x̂)− u

D − 1 ∂iU
(0,D−3)(x̂) . (3.57)

Relabelling U (0,D−3) ≡ M and qi ≡ Ni, the expression (3.56) for the charge thus agrees
with the one presented in [2] for global symmetries.

The behaviour of Q(u) for generic u can be then retrieved from (3.56) by considering
its evolution under the equations of motion, in the same way as we discussed for the
supertranslation charge in section 2. In particular, considering that both U (0,D−3) and
U (1,D−3) will acquire a non-trivial u-dependence as dictated by the equations of motion in

10The linear divergence vanishes on shell (as it should) if vi generates a global symmetry: indeed in this
case Ui

(1,D−4) ∼ D · Ci(D−5) (see eq. (3.14)), while vi satisfies the conformal Killing equation.
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the presence of radiation, rewriting the charge as in (2.18) we find

Q|I +
+
−Q|I +

−
= −(D − 2)

∫ +∞

−∞
du

∮
dΩD−2 T ∂uU

(0,D−3)

−
∫ +∞

−∞
du

∮
dΩD−2 uD · v ∂uU (0,D−3)

+
∫ +∞

−∞
du

∮
dΩD−2 v

i
{
∂iU

(0,D−3) − (D − 1)∂uUi(1,D−3)
}
.

(3.58)

If one considers a global, Poincaré transformation the right-hand side of this relation van-
ishes identically, and indeed the surface charge Q(u) must be independent of u in this
case, even in the presence of radiation [2]. The same result can be achieved by instead re-
stricting the calculation to static (i.e. u-independent), rather than stationary or Coulombic
solutions (see appendix D). The first line is just the soft supertranslation charge that has
been employed in section 2 to derive the leading soft theorem in any even dimension. The
second line exhibits a term linear in u and corresponds to the superrotation charge that has
been used in [39] to derive the subleading soft-graviton theorem in any even dimension [33].
Recovering it in our approach supports our conjecture that the regularisation of [51, 52]
can be extended also to higher space-time dimensions and successfully applied to (2.7).

We now move to the higher-spin case. All types of divergences encountered above for
spin two continue to be present and they are even more severe for s > 2.11 Let us observe,
however, that for any value of the spin all divergences in r can be eliminated by evaluating
the charge on static, rather than stationary, solutions for u < u0 and that this operation
gives a consistent surface charge even if we are not dealing with global symmetries. Static
solutions are indeed defined by

∂uU
(k,n) = 0 ∀ n , (3.59)

and we argue in appendix D that this condition implies

U (k,n) = 0 for n < D − 3 (3.60)

together with
K(k) ≡ DU (k,D−3) − 2

D + 2(k − 2) γD · U
(k,D−3) = 0 . (3.61)

The latter traceless combination is the conformal Killing equation for the rank-k tensor
U (k,D−3)(x̂) on the celestial sphere [66].

Given (3.60), with this prescription the surface charge is manifestly finite in the limit
r → ∞ and we now show that the property (3.61) of the leading contributions of any
static solution guarantees that the charge thus defined is also conserved in u. Notice that
this is not obvious a priori, since the gauge parameters generating superrotations bring a
polynomial dependence in u (cf. (3.3) or, e.g., (3.5) and (3.9)):

Qstatic(u) =
∮
dΩD−2

s−1∑
k=0

(−1)s+k
(
s− 1
k

)
(D + s+ k − 4) ρ(k)(u, x̂)U (k,D−3)(x̂) . (3.62)

11The overleading pure-gauge contributions to the boundary conditions (3.1) bring a divergence of
O(rD+2s−7), radiation brings a divergence of O(r

D+2s−6
2 ), while stationary configurations bring a divergence

of O(rs−1).
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A dependence on u could imply that the charge is not conserved even in the absence of
radiation and would also create problems in evaluating it for u→ ±∞. The u-dependence
of the rank-k traceless tensors ρ(k) is however fixed by (3.4) as

ρ(k)(u, x̂) = K(k)(x̂) +
s−k−1∑
m=1

(−1)m um

(D + s+ k − 4)m

(
s− k − 1

m

)
(D·)mK(k+m)(x̂) , (3.63)

where, for a field of spin s, we introduced the s− 1 traceless tensors on the celestial sphere
K(0), K(1)

i ,. . . , K(s−1)
is−1

(for s = 3 they correspond to K(0) = T , K(1)
i = ρi and K(2)

ij = Kij in
the notation of (3.12)). When the field configuration is static, each term in the charge (3.62)
which depends on u thus contains at least one divergence of the tensors K(l). Integrating
it by parts one reconstructs the conformal Killing equation for the tensors U (k,D−3) and
thus the contribution vanishes on shell on account of (3.61). The surface charge associated
to higher-spin superrotations thus becomes

Qstatic =
∮
dΩD−2

s−1∑
k=0

(−1)s+k
(
s− 1
k

)
(D + s+ k − 4)K(k)(x̂)U (k,D−3)(x̂) . (3.64)

The result has the same form as the charge associated to global higher-spin symmetries [2],
with the difference that now the traceless tensors K(k) do not satisfy any differential equa-
tion (e.g., for s = 3 they need not obey (3.13)). In analogy with the discussion in section 2,
a contribution from radiation might be obtained by substituting in (3.64) the U (k,D−3)(u, x̂)
obtained via the evolution under the equations of motion of a field configuration that is
static for u smaller than a given u0. It would be obviously preferable, however, to imple-
ment a procedure leading to finite charges for more general configurations. We hope to
come back to this issue in future work, with the goal of finding a proper renormalisation
scheme valid in higher dimensions and for any value of the spin.
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A Notation and conventions

Throughout the paper we employ retarded Bondi coordinates (xµ) = (u, r, xi), where xi,
for i = 1, 2, . . . , n, denotes the n := D−2 angular coordinates on the sphere at null infinity.
In these coordinates, the Minkowski metric reads

ds2 = −du2 − 2dudr + r2γij dx
idxj , (A.1)
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where γij is the metric of the Euclidean n-sphere Sn. We denote by D the covariant deriva-
tive on the sphere while D· and ∆ stand for the corresponding divergence and Laplacian,
respectively.

We use a symbol with a subscript, like µk or ik, to denote a group of symmetrised
indices, whose number is specified by the subscript k. Repeated indices denote instead
a symmetrisation without any overall factor. For instance, ∇µεµs−1 is a shorthand for
∇µ1εµ2···µs +∇µ2εµ3···µsµ1 + · · · . In section 3 and in appendices C and D, we also employ
an index-free notation, where all symmetrised indices are omitted and the trace is denoted
by a prime. In this case, the previous expression is denoted by ∇ε.

B Geometry of the sphere and polarisations

B.1 Properties of the n-sphere

Let us recall here some properties of the embedding of the unit n-sphere Sn in the Eu-
clidean space Rn+1. Changing coordinates according to xI = r x̂I where xI are Cartesian
coordinates on Rn+1 and x̂I is a parametrisation of unit vectors in terms of the angles xi,
the Euclidean metric reads

ds2 = dxI dxI = dr2 + r2γijdx
idxj , (B.1)

where
γij = eIi e

I
j , eIi = ∂ix̂

I . (B.2)

The induced metric on the unit sphere γij also defines a covariant derivative Di thereon.
As a consequence of ∂I∂JxK = 0, one can show the useful identity

DiDj x̂I + γij x̂
I = 0 . (B.3)

The metric γij can be also represented by the rank-n matrix

γIJ = δIJ − x̂I x̂J (B.4)

which projects any vector to its component tangent to the sphere. Therefore, for any unit
vector q̂I , its projection on the sphere q̂i = q̂IeIi obeys

q̂iγ
ij q̂j = 1− (x̂I q̂I)2 . (B.5)

B.2 Spectrum of ∆

The eigenvalues λ of the operator ∆ = DiDi acting on symmetric, traceless, divergence-free
tensors Ki1i2···is , i.e. irreducible tensors of rank s,

(∆− λ)Ki1i2···is = 0 , (B.6)

are
λ = −`(`+ n− 1) + s , ` = s, s+ 1, s+ 2, . . . . (B.7)
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Explicit eigenfunctions are provided by the irreducible tensor spherical harmonics. They
can be constructed starting from tensors with constant Cartesian components

C[A1I1][A2I2]···[AsIs]Is+1···I` for ` ≥ s , (B.8)

which are assumed to be completely traceless, symmetric under permutations of
Is+1, . . . , I`, symmetric under permutations of the pairs [AkIk], and antisymmetric under
exchanges of an Ak with its corresponding Ik index. It then follows that the tensors

KA1A2···As = C[A1I1][A2I2]···[AsIs]Is+1···I` x
I1xI2 · · ·xI` (B.9)

are symmetric, harmonic ∆Rn+1KA1A2···As = 0 and homogeneous of degree ` under rescal-
ings of xI . They are also tangent to the sphere xAKAA2···As = 0 and the corresponding
tensors Ki1i2···is on the sphere, defined by

KA1A2···As = r`eA1
i1
eA2
i2
· · · eAsis K

i1i2···is , (B.10)

are divergence-free and trace-free, as can be checked using (B.2), (B.3) and (B.4), together
with the above properties. Using also

∆Rn+1f = 1
rn
∂r (rn∂rf) + 1

r2 ∆f , (B.11)

together with the properties of Ki1i2···is and the action (B.3), one then obtains

0 = ∆Rn+1KA1A2···As = r`−2eA1
i1
eA2
i2
· · · eAsis [∆ + `(`+ n− 1)− s]Ki1i2···is , (B.12)

thus retrieving (B.6) with the eigenvalues (B.7). The uniqueness of these eigenvalues can
be inferred from the density of the homogeneous polynomials in the domain of ∆ under
consideration.

The spectrum on reducible tensors can be obtained from the above one by first de-
composing the desired tensor in terms of symmetrised gradients of irreducible tensors and
then using the commutation relation

[Di,Dj ]vk = Rklijv
l , Rijkl = γikγjl − γilγjk . (B.13)

For instance, for a traceless but generically not divergence free tensor C(s)
i1i2···is , the desired

decomposition can be cast in the form

C
(s)
i1i2···is = K

(s)
i1i2···is +D(i1K

(s−1)
i2···is) +D(i1Di2K

(s−2)
i3···is) + · · ·+D(i1Di2 · · · Dis)K

(0) + · · · , (B.14)

where the dots implement a traceless projection. More details for s = 0, 1, 2 are available
in [67] for irreducible case and in [68] for the reducible case.

B.3 Polarisation tensors

In this appendix we sketch the construction of a useful set of polarization tensors. We
apply the notation of appendix B.1 for quantities defined on the n = D − 2 sphere.
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To construct the physical polarisations for the electromagnetic potential Aµ, we start
from the Fierz system written in Minkowski coordinates,

�Aµ = 0 , ∂ · A = 0 , �Λ = 0 , (B.15)

where Λ is the gauge parameter. According to the first equation, the Fourier transform εµ
of Aµ has support restricted to null vectors

qµ = ω(1, x̂I) (B.16)

and satisfies, letting εµ = (ε0, εI),
ε0 = −x̂IεI . (B.17)

The residual gauge parameters must also have support on vectors of the form (B.16) and
thus εµ is equivalent, up to a gauge transformation, to

εµ ∼ εµ − iω(−1, x̂I)λ , (B.18)

where λ stands for the Fourier transform of Λ. Taking (B.17) into account and choosing a
gauge parameter such that iωλ = x̂IεI thus leads to

εµ ∼ (0, γIJεJ) (B.19)

with γIJ as in (B.4). Therefore, εµ can be parametrised by the projection on the unit
sphere of a generic vector εI and has D − 2 = n independent components, up to gauge
equivalence.

Given a set of coordinates xi on the sphere, we can choose the following basis for
physical polarisations,

ε(i)µ (x̂) = (0, Dix̂I). (B.20)

In retarded components, one then finds

ε(i)u = 0 = ε(i)r , ε
(i)
j = δij . (B.21)

With this choice all sums over polarisations can be understood as contractions with the
metric γij , while the projection over the space of physical polarisations is just the projection
on the sphere.

The spin-two Fierz system,

�hµν = 0 ,
�Λµ = 0 ,

∂ · hµ = 0 ,
∂ · Λ = 0

h′ = 0 , (B.22)

implies that the Fourier transforms εµν and λµ of hµν and Λµ have support on the null
vectors (B.16), and λµ = (λ0, λI) satisfies

λ0 = −x̂IλI . (B.23)

Furthermore εµν satisfies

ε0I = −x̂IεIJ , ε00 = x̂IεIJ x̂
J = δIJεIJ . (B.24)
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The latter condition implies that εIJ has a traceless projection on the sphere, γIJεIJ = 0.
Up to gauge equivalence, the polarization tensor reads

ε00 ∼ x̂IεIJ x̂
J − 2iωx̂IλI , (B.25)

ε0I ∼ −εIJ x̂J + iω(λI + x̂I x̂Jλ
J) , (B.26)

εIJ ∼ εIJ − iω(x̂IλJ + x̂JλI) . (B.27)

We parametrise the gauge vector as follows,

λI = A x̂+BieIi , (B.28)

with eIi as in (B.2). Imposing that the right-hand sides of (B.25) and (B.26) vanish, we
have

x̂IεIJ x̂
J − 2iωA = 0 ,

−εIJ x̂J + 2iωx̂IA+ iωeiIBi = 0 ,
(B.29)

where the index i is raised and lowered using γij . This fixes the coefficients A and Bi to
be

2iωA = x̂IεIJ x̂
J , iωBi = eIi εIJ x̂

J , (B.30)

upon taking suitable projections of the second equation in (B.29). One thus finally arrives
at the expression

ε00 ∼ 0 , ε0I ∼ 0 , εIJ ∼ γIK γJL εKL (B.31)

substituting (B.28) and (B.30) into (B.27). Recalling the constraint γIJεIJ = 0, this
implies that the most general polarization tensor, up to gauge equivalence, is identified by
a symmetric traceless tensor on the (D − 2)-sphere and thus characterises (D−2)(D−1)

2 − 1
degrees of freedom.

A convenient basis for symmetric tensors on the sphere is furnished by

E
(ij)
kl = δikδ

j
l + δilδ

j
k , (B.32)

whose traceless projection reads

2ε(ij)kl = δikδ
j
l + δilδ

j
k −

2
D − 2γ

ijγkl . (B.33)

We therefore adopt polarization tensors ε(ij)µν such that, in retarded components, ε(ij)uu = 0,
ε
(ij)
ur = 0, ε(ij)uk = 0, ε(ij)rr = 0, ε(ij)rk = 0 and with angular components ε(ij)kl specified by
equation (B.33).

We consider the spin-three Fierz system

�ϕµνρ = 0 ,
�Λµν = 0 ,

∂ · ϕµν = 0 ,
∂ · Λµ = 0

ϕ′µ = 0 ,
Λ′ = 0 .

(B.34)

The Fourier transforms εµνρ and λµν of ϕµνρ and Λµν have support on the null vec-
tors (B.16). The gauge parameter satisfies

λ0I = −x̂IλIJ , λ00 = x̂IλIJ x̂
J = δIJλIJ , (B.35)
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so that in particular γIJλIJ = 0. The polarization is instead constrained by

ε0IJ = −εIJK x̂K ,
ε00I = εIJK x̂

I x̂K ,

ε000 = −εIJK x̂I x̂J x̂K ,
(B.36)

and satisfies the trace conditions

γIJε0IJ = 0 , γIJεIJK = 0 . (B.37)

Up to gauge equivalence, the polarization tensor reads

ε000 ∼ −εIJK x̂I x̂J x̂K + 3iωx̂I x̂JλIJ , (B.38)

ε00K ∼ x̂I x̂JεIJK − 2iωx̂IλIK − iωx̂K
(
x̂IεIJ x̂

J
)
, (B.39)

ε0IJ ∼ −εIJK x̂K + iωλIJ + iω(x̂IλJK + x̂JλIK)x̂K , (B.40)
εIJK ∼ εIJK − iω(x̂IλJK + x̂JλKI + x̂KλIJ) . (B.41)

We parametrise the gauge tensor as

λIJ = Ax̂I x̂J +Bi(x̂IeiJ + x̂Je
i
I) + Cije

i
Ie
j
J , (B.42)

where Cij are symmetric traceless coefficients. Imposing that the right-hand sides
of (B.38), (B.39) and (B.40) vanish then fixes the coefficients A, Bi and Cij to be

3iωA = εIJK x̂
I x̂J x̂K , 2iωBi = eIi εIJK x̂

J x̂K , iωCij = eIi e
J
j εIJK x̂

K . (B.43)

One thus arrives at

ε000 ∼ 0 , ε00I ∼ 0 , ε0IJ ∼ 0 , εIJK ∼ γIL γJM γKN εLMN . (B.44)

substituting into (B.41). Recalling the constraint γIJεIJK = 0, this means that the most
general polarization tensor, up to gauge equivalence, is identified by a symmetric traceless
tensor on the n-sphere and thus characterises (D−2)(D−1)D

3! − (D − 2) degrees of freedom.
A convenient basis for such tensors is furnished by

3! ε(ijk)
lmn = δi(lδ

j
mδ

k
n) −

2
D
γ(lmγ

(ijδ
k)
n) . (B.45)

We therefore adopt polarization tensors whose only nonzero components are the one with
indices on the sphere ε(ij)kl specified by equation (B.45).

For spin-s, the Fierz system reads

�ϕµs = 0 ,
�Λµs−1 = 0 ,

∂ · ϕµs−1 = 0 ,
∂ · Λµs−2 = 0

ϕ′µs−2 = 0 ,
Λ′µs−3 = 0 .

(B.46)

As in the previous cases, the transversality conditions in Fourier space imply that one can
always trade a 0 index for a projection along x̂, namely

ε0mIs−m = −ε0m−1Is−mJ x̂
J . (B.47)
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This fact allows us to take the independent components of the gauge parameter and of the
polarization tensor to be contained in λIs−1 and εIs and the trace conditions imply that
such tensors have traceless projections on the sphere. Parametrising λIs−1 as

λIJ ···K = Ax̂I x̂J · · · x̂K +Bie
i
(I x̂J · · · x̂K) + · · ·+ Cij···ke

i
(Ie

j
J · · · e

k
K) , (B.48)

with suitable traceless coefficients, one can then solve for

ε0mIs−m ∼ 0 , m ≥ 1 , (B.49)

which maps εIs to its projection on the sphere,

εIJ ···K = γILγJM · · · γKN εLM ···N . (B.50)

Symmetric traceless tensors on the n-sphere indeed possess
(D−3+s

s

)
−
(D−5+s

s−2
)
degrees of

freedom.

C Symmetries of the Bondi-like gauge

In this appendix we provide an algorithm to fix the structure of the subleading terms in
the radial expansion of the components εrs−k−1ik of the gauge parameter, while checking
the consistency of the solution with all constraints coming from the Bondi-like gauge.

In Bondi coordinates, the gauge variation of a generic field component reads

δϕrs−k−lul = l ∂uεrs−k−lul−1 + s− k − l
r

(r∂r − 2k) εrs−k−l−1ul

+Dεrs−k−lul + 2 r γ
(
εrs−k−l+1ul − εrs−k−lul+1

)
,

(C.1)

where, as in section 3.1, we omitted all sets of symmetrised angular indices.
Focussing on the variation of the components without any index u and using the trace

constraint on the gauge parameter, implying

εrs−ku = 1
2

(
εrs−k+1 + 1

r2 ε
′
rs−k−1

)
, (C.2)

one finds (3.2):

δϕrs−k = 1
r

{
(s− k) (r∂r − 2k) ε(k) − γ ε(k)′

}
+Dε(k−1) + r γ ε(k−2) = 0 . (C.3)

Let us recall that we denoted by ε(k) the components εrs−k−1ik of the gauge parameter,
while a prime denotes a contraction with γij . Looking at (C.3), it is clear that the general
solution of this equation has the form (3.3),

ε(k)(r, u, x̂) = r2kρ(k)(u, x̂) +
2k−1∑
l= k

rlα(k,l)(u, x̂) , (C.4)
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where the α(k,l) are determined recursively (and algebraically) in terms of the ρ(l) with
l < k. Indeed, ε(k−1) and ε(k−2) are fixed by the previous iterations, while the traces of
each α(k,l) can be eliminated by computing the traces of (C.3):

1
r

{
[(k − s) (r∂r − 2k) +m(D + 2(k −m− 2))] ε(k)[m] + γ ε(k)[m+1]

}
(C.5)

= 2mD · ε(k−1)[m−1] +Dε(k−1)[m] + r
[
m(D + 2(k −m− 2)) ε(k−2)[m−1] + γ ε(k−2)[m]

]
,

where ε(k)[l+1] ≡ γ · ε(k)[l]. For instance, for k even, introducing for simplicity α(k,2k) ≡ ρ(k),
the last available trace gives[

(2k − l)(s− k) + k(D + k − 4)
2

]
α(k,l)[ k2 ]

= kD · α(k−1,l−1)[ k−2
2 ] + k(D + k − 4)

2 α(k−2,l−2)[ k−2
2 ] ,

(C.6)

and one can substitute the result in (C.5) to determine α(k,l)[ k−2
2 ] and proceed recursively.

The recursion relations become rather cumbersome after the first few values of k, but,
as an example, we can provide their explicit solution up to k = 3 (with s generic), that
suffices to capture all residual symmetries of the Bondi-like gauge for fields of spin s ≤ 4:

εrs−1 = ρ(0) , (C.7)

εrs−2 = r2ρ(1) + r

s−1 ∂ρ
(0) , (C.8)

εrs−3 = r4ρ(2) + r3

s−2

(
Dρ(1)− 2

D+s−4 γD·ρ
(1)
)

+ (s−3)!r2

2(s−1)!

(
D2ρ(0)− 2

D+2s−6 γ [∆−(s−1)(s−2)]ρ(0)
)
, (C.9)

εrs−4 = r6ρ(3) + r5

s−3

(
Dρ(2)− 2

D+s−3 γD·ρ
(2)
)

+ (s−4)!r4

2(s−2)!

(
D2ρ(1)

− 2
D+2s−6 γ

[
(∆+D−s(s−5)−9)ρ(1) + 2(D+2s−7)

D+s−4 DD·ρ(1)
])

+ (s−4)!r3

6(s−1)!

(
D3ρ(0)− 2

D+2s−6 γD (3∆+2D−s(3s−13)−18)ρ(0)
)
. (C.10)

Setting to zero all ρ(k) with k > 0, one recovers the full structure of the supertranslation
parameters (cf. (2.5)) up to k = 3 for any value of s.

The ε(k) are the only components of the gauge parameter that enter the surface
charge (2.7). Still, we imposed only part of the conditions necessary to preserve the Bondi-
like gauge (2.1) and we have to check if the rest imposes additional constraints on the tensors
ρ(k). Preserving the vanishing of the traces of the non-zero components of the field yields

δϕ′us−k = − 2r
[
(D + 2(k − 3))εus−k−1 + γ ε′us−k+1

]
+ (s− k) ∂uε′us−k−1

+ 2D · εus−k +Dε′us−k + 2r
[
(D + 2(k − 3))εrus−k + γ ε′rus−k

]
= 0 ,

(C.11)

which fixes the components εus−k−1 using the same strategy we employed in the analysis
of (3.2). Indeed, all components with at least one index r and one index u, like those
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appearing in the last line of (C.11), can be rewritten in terms of the ε(k) using the trace
constraint on the gauge parameter:

ξrαuβ = 1
2

(
ξrα+1uβ−1 + 1

r2 ξ
′
rα−1uβ−1

)
. (C.12)

At this stage we have fixed all components of the gauge parameter in terms of the
tensors ρ(0)(u, x̂), . . . , ρ(s−1)(u, x̂), but we still have to check if the vanishing of the varia-
tions (C.1) with l ≥ 1 and k+ l < s imposes additional constraints on them. This question
has been already addressed in section 5.2 of [2], where it has been shown that preserving
the Bondi-like gauge requires (3.4), that is

∂uρ
(k) + s− k − 1

D + s+ k − 4 D · ρ
(k+1) = 0 for k < s− 1 . (C.13)

D Stationary and static solutions of Fronsdal’s equations

In this appendix we characterise the behaviour near I + of stationary and static solutions of
Fronsdal’s equations, assuming that asymptotically the fields can be expanded in powers of
the radial coordinate as in (2.2). Under this hypothesis, the source-free Fronsdal equations
Frs−kik = 0 imply

(n+ 2k)(D − n− 3)U (k,n) = (n+ 2k − 1)D · U (k+1,n−1) , (D.1)

while the equations Fus−kik = 0 give

[(D − n− 2)(s− k − 1) + (n+ 2k)] ∂uU (k,n) = (s− k) ∂uD · U (k+1,n−1)

− [∆− (n− 1)(D − n− 2k − 2)− k(D − k − 2)]U (k,n−1) +DD · U (k,n−1)

− (D − n− 4)DU (k−1,n) − 2 γD · U (k−1,n) + 2(D − n− 4) γ U (k−2,n+1) .

(D.2)

All other equations of motion are identically satisfied in the Bondi-like gauge. Combin-
ing (D.1) with the traces of (D.2) one obtains (3.14), and using the latter in (D.2) with
k = s one eventually obtains (3.15). In the following, instead, we shall also have to consider
the equations above for values of n for which some of these substitutions are not possible.
For instance, for n = D − 3 the l.h.s. of (D.1) vanishes and this implies

(D·)k−lU (k,D−k+l−3) = 0 , (D.3)

that for l = 0 gives the constraint (2.13) that we use in the evaluation of supertranslation
charges.

D.1 Stationary solutions

In analogy with [58], we identify stationary solutions of Fronsdal’s equations as those
satisfying

∂uU
(k,n) = 0 for n ≤ D − k − 3 , (D.4)
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and we now prove that, up to pure-gauge contributions, this definition implies

U (k,n) = 0 for n < D − k − 3 . (D.5)

The latter condition corresponds to eq. (2.12), that we used in the evaluation of higher-spin
supertranslations charges.

To begin with, we now prove that (D.4) implies U (k,D−k−4) = 0. To this end, let us
first consider (D.2) for k = 0 and n = D − 3. Taking (D.4) into account, this gives

0 = [∆−D + 4]U (0,D−4) ⇒ U (0,D−4) . (D.6)

We can now proceed by induction on k. Assuming U (l,D−l−4) = 0 for l < k one first obtains
D · U (k,D−k−4) from (D.1) and, then, evaluating (D.2) at n = D − k − 3,

0 = [∆− (D + k − 4)]U (k,D−k−4) ⇒ U (k,D−k−4) = 0 . (D.7)

The last implication follows from (B.7), implying, in particular, that the eigenvalues of the
Laplacian on an irreducible tensor of any rank are always negative. The same argument
can be extended, modulo pure-gauge contributions, also to all n < D − k − 4 with an
induction in n. Assuming U (0,n) = 0 eq. (D.2) gives indeed

0 = [∆− (n− 1)(D − n− 2)]U (0,n−1) = [∆ + `(`+D − 3)]U (0,D−3+`) , (D.8)

which implies U (0,D−3+`) = 0 for ` ≤ −1 or, equivalently, U (0,n) = 0 for n ≤ D − 4. All
tensors U (k,n+k−1) can then be set to zero with the same strategy that led to (D.7).

D.2 Static solutions

Static solutions are defined by
∂uU

(k,n) = 0 ∀ n , (D.9)

and we now argue that this condition implies, up to pure-gauge configurations,

U (k,n) = 0 for n < D − 3 (D.10)

together with
K(k) ≡ DU (k,D−3) − 2

D + 2(k − 2) γD · U
(k,D−3) = 0 . (D.11)

For the U (k,n) with 1− k < n < D − k − 3 the same considerations as in the previous
subsection apply, so that (D.5) is valid also for static solutions. Outside of this range, we
have to go back to equations (D.1) and (D.2). For n = D − 3, they imply

0 = [∆ + (2k − 1)(D − 4)− k(D − k − 2)]U (k,D−4) −K(k−1) , (D.12)

where K(k) denotes the conformal Killing equation for U (k,D−3) as in (D.11). For n = D−2
one can use again (D.1) for all tensors in the second line of (D.2) to obtain

0 = D · K(k) . (D.13)
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For static fields, the equations of motion thus set to zero the divergence of the conformal
Killing tensor equation (3.61) and on a compact space like the celestial sphere this suffices
to set it to zero altogether. To support this statement let us notice that, assuming that
the divergence of U (k,D−3) satisfies(
D2 + 2 γ

)
D·U (k,D−3)− 1

D + 2k − 5 γ
(
D − 2

D + 2k − 6 γD·
)
D·D·U (k,D−3) = 0 , (D.14)

the symmetrised gradient of (D.13) can be rewritten as

0 = DD · K(k) = [∆ + (k − 1)(k +D − 4)− (k + 1)]K(k) + 2
D + 2(k − 2) γD · D · K

(k).

(D.15)
The second term vanishes on shell, while the invertibility on SD−2 of the differential oper-
ator in the first term guarantees

K(k) = 0 . (D.16)

In the previous step we used the identity (D.15) that one can prove with a similar approach
starting from the double symmetrised gradient of D · D · K(k) = 0 and progressing by
recursion to identify a series of identities of the type Dk+1(D·)kU (k,D−3) = γ (· · · ). We do
not have a complete proof that (D.13) implies (D.16), but we checked that this is true up
to s = 3 and we shall assume this implication.

Eq. (D.12) then allows one to set to zero all U (k,D−4) and, via (D.1), also all U (k,n) in
the range D − k − 4 ≤ n ≤ D − 4, thus providing the missing instances of (D.10).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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