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1 Introduction

The gauge-gravity double copy relates perturbative scattering amplitudes in non-abelian
gauge theory to amplitudes of a gravitational theory by replacing color factors with addi-
tional kinematic information [1–4]. Originally formulated to relate open and closed string
amplitudes via the KLT (Kawai-Lewellen-Tye) relations [5], this subject has seen great
progress in recent years: color-kinematic duality and the double copy have been proven at
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tree level [2], appear to hold at loop level [3, 6–10], and are widely believed to hold to all
orders in perturbation theory [11, 12]. The power of the double copy in relating gravity
to gauge theories provides new computational tools that can, for instance, be leveraged to
simplify and improve calculations of black hole merger in-spirals [13–16].

Beyond computational advantages, the double copy offers a new perspective on the
deep mathematical relationship between gauge theories and gravity, which could provide
crucial insights toward developing a consistent theory of quantum gravity. In order to make
progress in this direction, one may wonder if a double copy prescription exists beyond the
amplitude level. While there has been some work hinting at a Lagrangian-level realiza-
tion [2, 17–19], a large body of recent work focuses on developing systematic procedures to
map between certain classes of classical solutions of gauge theory and gravity, and studying
explicit examples of such dual solutions. Many of the examples studied under this classical
double copy have simple and intuitive counterparts; for instance, the Schwarzschild and
Kerr black hole solutions of general relativity can be mapped to solutions of the vacuum
Maxwell equations sourced by a point charge and a rotating disk of charge respectively [20]
(for an overview see [21]).

One may also reverse this logic and perform a “single copy” to obtain gauge ampli-
tudes by replacing color information with kinematic information in a bi-adjoint scalar field
theory — an interacting scalar theory in which the scalar transforms in the adjoint of two
distinct Lie groups [6, 22]. Despite having no known phenomenological realizations, it is
becoming clear that such bi-adjoint scalar theories play an important role in studies of the
perturbative double copy and color-kinematic duality [1], and furthermore correspond to
one node in a web of theories interconnected at the perturbative level [23]. On the classical
side, progress has been made by identifying exact (non-perturbative) solutions of the bi-
adjoint scalar theory and comparing their properties to monopole solutions in non-abelian
gauge theory [24–26].

While an impressive breadth of literature exists which involves discovering particular
examples that display double and single copy behavior, one is left with several lingering
questions on the generality of this prescription. Crucially, the classical double copy pre-
scription appears to be manifest generally only in stationary solutions1 of the vacuum
Einstein equations that can be expressed in Kerr-Schild form [27].2 It would therefore be
desirable to unravel the conditions linking the success of the classical double copy to the
Kerr-Schild form, and to search for possible ways to extend the double copy to more general
spacetimes. There are also salient examples of simple exact solutions in gauge theory, e.g.
electromagnetic dipoles and Yang-Mills instantons, that have no obvious dual solutions on
the gravity side using current techniques.

For the perturbative double copy, progress has been made to include an analysis of
bound state systems [29]; by studying the radiation field sourced by such systems, color
dipoles were identified with a gravity quadrupole moment. Headway has also been made
in understanding the classical double copy by considering solutions that are self-dual in

1Recall that a spacetime is said to be stationary if it admits a Killing vector that is timelike in a
neighborhood of spatial infinity.

2See [28] for work exploring contracting more general Killing vectors with the Einstein equations.
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both the gauge and gravitational theories [20, 30] — in the self-dual double copy prescrip-
tion, one formulates the double copy in terms of a differential operator which generates
gauge and gravity solutions from a harmonic function of the bi-adjoint scalar theory. This
prescription allowed the authors of [30] to identify a dipole-like self-dual gauge field with
the Eguchi-Hanson gravitational instanton [31]. The classical double copy prescription was
also extended to double Kerr-Schild spacetimes by [32], where it was shown that a dyon
on the gauge theory side can be double copied to the Taub-NUT solution on the gravity
side. Furthermore, the classical double copy can also be applied to generalized Kerr-Schild
metrics expanded around a curved background metric, where the dual gauge field solves the
vacuum Maxwell equations on the curved background [33]. Although the classical double
copy has been shown to hold for certain specific non-stationary solutions, such as PP wave
spacetimes [34] and Kinnersley’s accelerating and radiating black hole metric [35, 36], a
systematic approach to studying the classical double copy for non-stationary spacetimes
has heretofore been lacking, except when the spacetime is of Petrov type D or N [34].
Double copy prescriptions for non-vacuum spacetimes have also been proposed — where
for instance, the stress energy tensor on the gravity side is related to the “square” of a
gauge current [36, 37], however such prescriptions can lead to inconsistencies.3 For another
approach to studying non-vacuum solutions in the double copy see [39].

In this work we introduce the Newman-Penrose map — a novel map, closely related to
the classical double copy, that associates a self-dual solution of the vacuum Maxwell equa-
tions to certain Kerr-Schild spacetimes that need be neither stationary nor pure vacuum.
We make only the mild assumptions that the Kerr-Schild vector is tangent to a shear-free,
null geodesic congruence (SNGC), and that this congruence has non-vanishing expansion
(see section 3.2 for a review of the optical properties of such congruences).

The assumption that the Kerr-Schild vector be geodesic is standard; the Kerr-Schild
vector kµ is geodesic if and only if the stress tensor obeys the condition Tµνk

µkν = 0,
which includes both vacuum spacetimes and spacetimes with a pure radiation stress tensor
Tµν ∝ kµkν . Moreover, the assumption that kµ is geodesic implies that it is also a repeated
principal null direction of the Weyl tensor, so that the spacetime is algebraically special [40].
If, additionally, the vacuum Einstein equations are imposed, then the Goldberg-Sachs the-
orem ensures that the Kerr-Schild vector must be shear-free [41]. Since we do not want
to restrict ourselves to vacuum spacetimes, we impose the shear-free condition explicitly.
Among vacuum Kerr-Schild spacetimes with a geodesic Kerr-Schild vector, the restriction
that the expansion of the congruence generated by the Kerr-Schild vector be non-vanishing
excludes only a subset of vacuum Kerr-Schild spacetimes consisting of certain exact grav-
itational wave solutions — in particular, it excludes the solutions of Petrov type N, but
includes the class of solutions of Petrov type II or D [40, 42, 43]. Given that Type II solu-
tions have fewer restrictions compared to Type D, our expectation is that this is a much
larger class, but this intuition remains to be confirmed as we currently cannot point to a
single analytic Kerr-Schild solution of Type II, let alone a family of solutions. Among the

3The source terms introduced in [20] cannot simultaneously satisfy the weak and strong energy condi-
tions [38].
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Kerr-Schild spacetimes with an expanding SNGC, there are also non-vacuum solutions of
physical interest, including Kinnersley’s “photon rocket” — an exact solution of Einstein’s
equations with a pure radiation stress tensor that describes the gravitational field produced
by an arbitrarily accelerating massive particle [35].

Under the Newman-Penrose map, the approach taken in the self-dual classical double
copy can be extended to a broad class of non-self-dual Kerr-Schild spacetimes. In particular,
associated with every Kerr-Schild spacetime admitting an expanding SNGC, there exists
a harmonic complex scalar field Φ such that A = k̂Φ is a self-dual solution of the vacuum
Maxwell equations, where k̂ = dxµk̂µ is a universal, one-form valued operator, whose
origin may be understood from the spinorial realization of the Newman-Penrose map. This
prescription relies on elements of the Newman-Penrose formalism — the natural formalism
for constructing algebraically special spacetimes in four dimensions. Note that in this
construction we do not require that Φ satisfies the Plebański equation for self-dual gravity,
and consequently, we necessarily lose the explicit double copy nature of the graviton, i.e.
hµν 6= k̂µk̂νΦ. However, we gain a precise map that can be applied to a more general class
of spacetimes which reproduces and extends upon known classical double copy results.

This paper is organized as follows: in section 2, we review the recent progress in
relating classical solutions of gauge theory and gravity via the double copy program, paying
particular attention to the Kerr-Schild and self-dual double copies. In section 3 we review
the Newman-Penrose formalism [44] for Kerr-Schild spacetimes with an expanding SNGC,
largely based on [43]. In section 4.1 we introduce the Newman-Penrose map, which we
then illustrate by studying the examples of the Schwarzschild and Kerr black holes and
Kinnersley’s photon rocket in section 4.2. In section 4.3 we comment on the many-to-one
nature of the Newman-Penrose map, emphasizing that information contained in solutions
on the gravitational side that does not have an analog on the gauge theory side is “projected
out”: for instance, the electric charge in electro-vacuum solutions of the Einstein-Maxwell
equations, or the Bondi mass aspect in solutions with a pure radiation stress tensor. We
conclude in section 5 with a discussion of our main results and some possible directions
for future work. Appendices are included. In appendix A we provide a brief review of
the spinorial formalism for general relativity, which we use to summarize the proof of
Kerr’s Theorem — a crucial result for the construction of algebraically special Kerr-Schild
spacetimes. In appendix B we provide a spinorial realization of the Newman-Penrose map,
giving insight into the origin of the operator k̂, which appears somewhat mysterious in the
tensorial approach. In appendix C we confirm the Schwarzschild and Kerr metrics can be
generated from the Φ originally presented in [43], albeit in a different coordinate system
from the usual double copy starting point.

2 The classical double copy

In this section we briefly review the Kerr-Schild classical double copy, and summarize
the result for Schwarzschild spacetime. Additionally, we review the zeroth and single copy
relating solutions in gauge theory to bi-adjoint scalar theory. Finally, we include a summary
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of the self-dual double copy [20], the formalism of which parallels some of the framework
introduced here.

2.1 The Kerr-Schild double copy

Kerr-Schild solutions are a class of solutions to Einstein’s equations that can be written in
the form

gµν = ηµν − ϕkµkν , (2.1)

where ηµν is a flat metric with signature4 (+,−,−,−) (though we do not necessarily use
Cartesian coordinates), ϕ is a real function, kµ is null with respect to both gµν and ηµν and
geodesic kµ∂µkν = kµ∇µkν = 0 with respect to either metric. In general, kµ is tangent to
a null geodesic congruence if and only if the stress tensor obeys [40]

Tµνk
µkν = 0 , (2.2)

which includes vacuum spacetimes with Tµν=0, pure radiation spacetimes with Tµν=fkµkν ,
as well as null and non-null electro-vacuum solutions.5 With these assumptions, the Ricci
tensor with mixed indices truncates at linear order in graviton hµν ≡ϕkµkν :

Rµν = 1
2∂ρ [∂νhµρ + ∂µh ρ

ν − ∂ρhµν ] , (2.3)

where we denote by ∂µ the covariant derivative operator associated with ηµν and we have
defined ∂µ ≡ ηµν∂ν . For stationary spacetimes admitting a timelike killing vector, Ein-
stein’s equations then reduce to (where we have chosen the normalization k0 = 1)

Rµ0 = 1
2∂ρ [∂µ(ϕkρ)− ∂ρ(ϕkµ)] = 0 , (2.4)

which are exactly the vacuum equations of motion (Maxwell’s equations) ∂µFµν = 0, for
an abelian gauge field Aµ ≡ ϕkµ and, when dressed with a color factor ca, can be inter-
preted as the linearized Yang-Mills equations for a non-ablelian gauge field Aaµ = caϕkµ.
The prototypical example of this correspondence relates the Schwarzschild black hole to a
Coulomb field.

Written in Kerr-Schild form and using spherical coordinates, the Schwarzschild solu-
tion is

gµν = ηµν − ϕkµkν , (2.5)
kµdx

µ = dt+ dr ,

4Note that we use the mostly minus sign convention for the metric which is typical of the Newman-
Penrose formalism, though unusual in the context of the double copy and much of the general relativity
literature. This will introduce relative minus signs in many formulae familiar from the classical double copy
literature (e.g. the sign in front of ϕ in eq. (2.1)).

5We comment on the novel treatment of such solutions e.g. Kerr-Newman black holes, under the Newman-
Penrose map in section 4.3.
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where ϕ = 2GM/r, which corresponds to the line element

ds2 =
(

1− 2GM
r

)
dt2 − 4GM

r
dt dr −

(
1 + 2GM

r

)
dr2 − r2dΩ2 . (2.6)

Taking the single copy of this solution and making the replacements, 8πG→ 1/ε0, M → Q

gives, after a gauge transformation,

A = Aµdx
µ = Q

4πε0r
dt , (2.7)

which is a Coulomb field. This prescription has been tested for many different Kerr-Schild
spacetimes (see [21] for a review), usually mapping a particular mass distribution on the
gravitational side to an intuitively similar charge distribution on the gauge side. The
example we have just presented is particularly striking: the gravitational field due to a
spherically symmetric mass distribution or black hole maps directly onto the electric field
of a spherically symmetric charge distribution or point charge.

2.2 The self-dual double copy

There has also been progress in studying the double copy for self-dual solutions in gauge
theory and gravity [20, 30] — i.e. complex solutions with a single physical degree of freedom
for the photon or graviton characterized by the conditions6

F = ± i ?0 F , Cab = ± i ? Cab , (2.8)

where ?0 is the Hodge star operator associated with the flat metric ηµν , ? is the Hodge
star operator of the dynamical spacetime metric gµν , F = dA is the field strength two-form
associated with the gauge field A, and Cab = Cabµν dx

µ ∧ dxν is the Weyl two-form written
in an arbitrary basis eaµ. In the self-dual double copy, the null vector kµ is promoted to a
differential operator:

gµν = ηµν − 2k̂µk̂ν(φ), gµν = ηµν + 2k̂µk̂ν(φ), (2.9)

where φ is a complex scalar field. Symmetry of the graviton requires that the operator
commutes with itself

[
k̂µ, k̂ν

]
= 0 and the null and geodesic conditions correspond to

ηµν k̂
µk̂ν(ψ) = k̂2(ψ) = 0 and (k̂ · ∂)ψ = 0 respectively, where ψ is an arbitrary function.

The vacuum Einstein equations, Rµν = 0, then reduce to a single equation for the scalar φ:

∂2φ+ (k̂µk̂νφ)(∂µ∂νφ) = 0 , (2.10)

which when written in light-cone coordinates (u, v, ζ, ζ̄) (defined below in (3.1)) reproduces
the Plebański equation [20, 30, 46, 47]

φ,vu − φ,ζζ̄ = (φ,uζ)2 − φ,ζζφ,vv (2.11)

6Where ??Ω = (−1)s+p(n−p)Ω for any p-form Ω in n-dimensional spacetime with signature s. Note that
defining self-dual vs. anti self-dual solutions in Lorentzian signature is ambiguous up to a sign [45], and we
will use “self-dual” to refer to either choice of sign.
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for self-dual gravity. Finally, demanding that the graviton can be factorized into the Kerr-
Schild form hµν ∝ kµkν leads to an additional constraint equation on φ, which together
with the Plebański equation, implies that φ is harmonic with respect to the flat-space
D’Alembertian (∂2φ = 0). This condition can be interpreted as a linearized equation of
motion for a biadjoint scalar Φaa′ = cac̃a

′
φ with trivial color dependence ca, c̃a′ . It is then

straightforward to show that Aaµ = cak̂µφ and hµν = k̂µk̂νφ are self-dual solutions of the
Yang-Mills and Einstein equations. In section 4.1, we will reproduce explicitly the fact
that A = k̂φ with k̂ = dxµk̂µ is a self-dual Maxwell field, i.e. F = ±i ?0 F whenever φ is
harmonic with respect to the flat-space D’Alembertian (∂2φ = 0).

The Newman-Penrose map presented in this work will follow a similar construction as
the one reviewed here. We will find that k̂ yields a self-dual gauge field when acting upon a
harmonic function associated with a Kerr-Schild spacetime. However, as stated above, we
will not use the self-dual graviton definition hµν = k̂µk̂νφ and will instead consider more
general spacetimes.

3 Newman-Penrose formalism for Kerr-Schild spacetimes

In this section we present a brief overview of Kerr-Schild spacetimes in the Newman-Penrose
formalism, following closely the works of Kerr and Wilson [48], McIntosh [42] and McIntosh
and Hickman [43] (see also chapter 1 of [49], and chapter 32 of [40]). We make a few mild
assumptions, but the considerations in this section are otherwise quite general. First, we
restrict our attention to real, Lorentzian spacetimes of dimension four. Second, we assume
that the Kerr-Schild vector kµ is tangent to an SNGC. While this condition sounds quite
strong, a review of the literature reveals that most Kerr-Schild spacetimes of interest are
of this type. When the Kerr-Schild vector kµ is tangent to a geodesic congruence, it can be
shown (see theorem 32.3 of [40]) that the spacetime is algebraically special, with kµ being
a repeated principal null direction of the Weyl tensor.7 Finally, we will assume that the
expansion scalar of the SNGC is non-vanishing. Within the class of vacuum Kerr-Schild
solutions, this last assumption excludes exactly the solutions of Petrov type N, which, alas,
includes some interesting exact gravitational wave solutions, e.g., PP waves.

3.1 Metric, null coordinates, and null tetrad

We adopt coordinates (u, v, ζ, ζ̄), where u, v are real light-cone coordinates, and ζ, ζ̄ are
complex conjugate coordinates related to the usual Cartesian coordinates (t, x, y, z) by

u = 1√
2

(t− z) , v = 1√
2

(t+ z) , ζ = 1√
2

(x+ iy) , ζ̄ = 1√
2

(x− iy) . (3.1)

In these coordinates, one can write a null tetrad for any Kerr-Schild metric with an
expanding SNGC, lµ, which is proportional to kµ of the Kerr-Schild double copy. In this

7Recall that the Weyl tensor of any four-dimensional spacetime yields a set of four null eigenvectors
referred to as principal null directions. If at least two of these directions coincide, the spacetime is said to be
algebraically special, with the corresponding direction(s) referred to as “repeated principal null direction(s)”.
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language, a Kerr-Schild metric is one that can be written in the form8

g = g0 + V ω2 ⊗ ω2, (3.2)

where g0 is a flat metric and ω2 is a null one-form with lµ = gµνω2
ν , denoted as such since

it will be identified with the second element of a preferred set of null basis one-forms

ω1 = dv + 1
2V ω2,

ω2 = du+ Φ̄dζ + Φdζ̄ + ΦΦ̄dv ,
ω3 = Φdv + dζ ,

ω4 = Φ̄dv + dζ̄ , (3.3)

where V is a real function and Φ, Φ̄ are complex conjugates.9,10 The full metric is deter-
mined completely once V and Φ are specified. Although V satisfies its own potentially
interesting set of constraints (see [40]), from now on we focus on the complex function
Φ, which will turn out to be harmonic with respect to the background metric and so an
intuitive starting point for mapping gravitational solutions to self-dual gauge fields. For
vacuum spacetimes V is completely determined in terms of Φ and the mass M .11

The form of (3.3) can be understood from Kerr’s Theorem [50, 51], which gives the
most general form of an SNGC in Minkowski space (see appendix A for more details in
the spinorial representation). The result of the theorem states that the dual of the tangent
vector of any such SNGC in Minkowski space is either equal to dv, in which case it has
vanishing expansion, or it is of the form ω2 in (3.3), where the complex function Φ is
defined implicitly through the vanishing of an arbitrary function F that is analytic in three
variables [50–52]

F (Φ, u+ Φζ̄, ζ + Φv) = 0 . (3.4)

The optical scalars of lµ — the expansion, shear and twist — are the same whether
measured with respect to the flat background metric g0 or the full spacetime metric g (see
section 3.2 for details). Moreover, it can be shown that lµ is geodesic with respect to g0 if
and only if it is geodesic with respect to g. Taken together, these facts imply that ω2 is
dual to an expanding SNGC of the full spacetime metric g.

The full metric can then be written in terms of the basis one-forms (3.3) as

g = 2(ω1ω2 − ω3ω4) , (3.5)

which has the form (3.2) with the flat metric

g0 = 2(dudv − dζdζ̄) . (3.6)
8V and ω2 are related to ϕ and kµ of section 2.1 up to overall normalizations.
9When the spacetime is complex, Φ and Φ̄ may be regarded as independent complex functions. However,

in this article we will restrict our attention to real spacetimes.
10Our definitions differ from [40], chapter 32 by the exchange {ω1,ω2} ↔ {ω3,ω4} due to our choice of

signature.
11For the Schwarzschild solution, see (4.7).
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We also define the null tetrad vectors

l = ∂v − Φ∂ζ − Φ̄∂ζ̄ + ΦΦ̄∂u ,

n = ∂u −
1
2V l ,

m = ∂ζ − Φ̄∂u ,
m̄ = ∂ζ̄ − Φ∂u , (3.7)

where l = lµ∂µ, etc., and we denote the covariant directional derivative operators associated
with these basis vectors by

D = lµ∇µ , ∆ = nµ∇µ , δ = mµ∇µ , δ̄ = m̄µ∇µ . (3.8)

Given the metric g in equation (3.5), one can check that the null tetrad (3.7) satisfies
the standard normalization conditions

lµnµ = 1 = −mµm̄µ , (3.9)

with all other contractions vanishing,12 and that we may write the inverse metric as

gµν = lµnν + nµlν −mµm̄ν − m̄µmν = gµν0 − V l
µlν , (3.10)

which reproduces the inverse Kerr-Schild metric of equation (2.1). As discussed above, we
will assume that lµ is tangent to an SNGC. Since lµ is tangent to a geodesic congruence,
it must satisfy

Dlµ = flµ. (3.11)

If the geodesic congruence to which lµ is tangent is affinely parameterized, then the function
f on the right hand side of (3.11) is zero:

Dlµ = 0 . (3.12)

Henceforth, we will always assume that geodesic congruences are affinely parameterized
unless we explicitly state otherwise.

3.2 Optical scalars

Given a null geodesic congruence with tangent vector lµ, the complex optical scalars ρ and
σ, as in e.g. [53], are defined via

ρ := mνm̄µ∇µlν = mν δ̄lν , (3.13)
σ := mνmµ∇µlν = mνδlν . (3.14)

The optical scalars ρ and σ are often called the complex divergence and the complex shear.
A null geodesic congruence with vanishing σ is said to be shear-free. It is common to
decompose ρ = −θ+ iω, where θ is the expansion scalar, and ω is the twist. Null geodesic
congruences with θ 6= 0, ω 6= 0 are said to be expanding, twisting respectively.

12Note that with these conventions we have

ω1
µ = nµ , ω2

µ = lµ , ω3
µ = −m̄µ , ω4

µ = −mµ .
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Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1 Generating a Lepton Asymmetry

Now instead of a dark baryon, consider charging a dark sector state (a Dirac fermion  )

under lepton number which interacts with the SM through a higher dimensional operator

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1 Generating a Lepton Asymmetry

Now instead of a dark baryon, consider charging a dark sector state (a Dirac fermion  )

under lepton number which interacts with the SM through a higher dimensional operator

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

!�� (0.5)

Twist ! (0.6)

Expansion ✓ (0.7)

(1 + |�|��) ✏ (0.8)

(1� |�|��) ✏ (0.9)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1 Generating a Lepton Asymmetry

Now instead of a dark baryon, consider charging a dark sector state (a Dirac fermion  )

under lepton number which interacts with the SM through a higher dimensional operator

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1 Generating a Lepton Asymmetry

Now instead of a dark baryon, consider charging a dark sector state (a Dirac fermion  )

under lepton number which interacts with the SM through a higher dimensional operator

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1 Generating a Lepton Asymmetry

Now instead of a dark baryon, consider charging a dark sector state (a Dirac fermion  )

under lepton number which interacts with the SM through a higher dimensional operator

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1 Generating a Lepton Asymmetry

Now instead of a dark baryon, consider charging a dark sector state (a Dirac fermion  )

under lepton number which interacts with the SM through a higher dimensional operator

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

Expansion ✓ (0.5)

(1 + |�|��) ✏ (0.6)

(1� |�|��) ✏ (0.7)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1 Generating a Lepton Asymmetry

Now instead of a dark baryon, consider charging a dark sector state (a Dirac fermion  )

under lepton number which interacts with the SM through a higher dimensional operator

1

L
e
p
to

g
e
n
e
si
s
a
n
d

D
a
rk

M
a
tt
e
r
fr
o
m

M
e
so

n
s

m
(0
.1
)

m̄
(0
.2
)

✏
(0
.3
)

(1
+
✓�
�
)
✏

(0
.4
)

E
x
p
an

si
on

✓
(0
.5
)

(1
+
|�
|��

)
✏

(0
.6
)

(1
�
|�
|��

)
✏

(0
.7
)

T
h
is

w
ou

ld
b
e
a
m
ec
h
an

is
m

of
lo
w

sc
al
e
L
ep
to
ge
n
es
is

an
d

D
ar
k
M
at
te
r
p
ro
d
u
ct
io
n

u
ti
li
zi
n
g
M
es
on

s,
th
at

d
o
es

n
ot

in
vo
lv
e
L
ep
to
n
or

B
ar
yo
n
n
u
m
b
er

v
io
la
ti
on

an
d
d
o
es

n
ot

re
q
u
ir
e
sp
h
al
er
on

s.
M
ea
n
w
h
il
e
th
is

m
ec
h
an

is
m

co
u
ld

h
av
e
m
u
lt
ip
le

te
st
ab

le
si
gn

al
s
at
:

co
ll
id
er
s,
B
-f
ac
to
ri
es
,
m
ay
b
e
K
ao
n
fa
ct
or
ie
s,
d
ar
k
m
at
te
r
d
ir
ec
t
d
et
ec
ti
on

ex
p
er
im

en
ts

an
d

n
eu
tr
in
o
ex
p
er
im

en
ts
.

T
h
e
m
ec
h
an

is
m

of
[1
]
ac
h
ie
ve
d
b
ar
yo
ge
n
es
is

b
y
m
ak

in
g
u
se

of
th
e
C
P
V

in
n
eu
tr
al

B
0 q

m
es
on

s
an

ti
-m

es
on

os
ci
ll
at
io
n
s.

In
[1
],
th
e
d
ar
k
m
at
te
r
w
as

ch
ar
ge
d
u
n
d
er

b
ar
yo
n
n
u
m
b
er

an
d
co
u
p
le
d
to

B
-m

es
on

s
th
ro
u
gh

a
h
ig
h
er

d
im

en
si
on

al
op

er
at
or
,
so

th
at

th
e
B
-m

es
on

s

co
u
ld

d
ec
ay

in
to

a
d
ar
k
se
ct
or

le
ad

in
g
to

an
eq
u
al

an
d
op

p
os
it
e
b
ar
yo
n
as
y
m
m
er
ty

b
et
w
ee
n

th
e
d
ar
k
an

d
v
is
ib
le
se
ct
or

(b
u
t
n
o
n
et

b
ar
yo
n
n
u
m
b
er

v
io
la
ti
on

in
th
e
U
n
iv
er
se
).

C
ri
ti
ca
l
to

th
is
se
t
u
p
w
as

th
at

p
ro
to
n
d
ec
ay

w
as

si
m
p
ly

ev
ad

ed
b
y
k
in
em

at
ic
s
as

th
e
d
ar
k
m
at
te
r
w
as

m
ad

e
h
ea
v
ie
r
th
en

m
p
=

93
8
M
eV

,
ad

d
it
io
n
al
ly

b
ou

n
d
s
fr
om

n
eu
tr
on

st
ar
s
re
q
u
ir
ed

d
ar
k

m
at
te
r
ch
ar
ge
d
u
n
d
er

b
ar
yo
n
n
u
m
b
er

to
b
e
h
ea
v
ie
r
th
an

1.
2
G
eV

.
T
h
is

re
st
ri
ct
io
n
ea
si
ly

ac
co
m
m
o
d
at
ed

th
e
m
ec
h
an

is
m

of
[1
]
w
h
er
e
n
eu
tr
al

B
-m

es
on

s
d
ec
ay
ed

(a
ft
er

os
ci
ll
at
in
g)

in
to

b
ar
yo
n
n
u
m
b
er

ch
ar
ge
d
d
ar
k
m
at
te
r
as

m
B

0
⇠

5.
3
G
eV

.
C
le
ar
ly
,
th
is

m
ec
h
an

is
m

ca
n
n
ot

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

Shear � (0.5)

Expansion ✓ (0.6)

(1 + |�|��) ✏ (0.7)

(1� |�|��) ✏ (0.8)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

Expansion ✓ (0.5)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

the dark and visible sector (but no net baryon number violation in the Universe). Critical to

this set up was that proton decay was simply evaded by kinematics as the dark matter was

made heavier then mp = 938 MeV, additionally bounds from neutron stars required dark

matter charged under baryon number to be heavier than 1.2 GeV. This restriction easily

accommodated the mechanism of [1] where neutral B-mesons decayed (after oscillating) into

baryon number charged dark matter as mB0 ⇠ 5.3GeV. Clearly, this mechanism cannot

be made more general and applied to the D0 system mD0 ⇠ 1.8GeV or Kaon system

mK0 ⇠ 0.5GeV, simply due to kinematics. To generalize this mechanism, and leverage the

CPV in all meson oscillating systems we would like to allow for dark matter to be lighter

than a GeV.

1 Generating a Lepton Asymmetry

Now instead of a dark baryon, consider charging a dark sector state (a Dirac fermion  )

under lepton number which interacts with the SM through a higher dimensional operator

1

Leptogenesis and Dark Matter from Mesons

m (0.1)

m̄ (0.2)

✏ (0.3)

(1 + ✓��) ✏ (0.4)

!�� (0.5)

Twist ! (0.6)

Expansion ✓ (0.7)

(1 + |�|��) ✏ (0.8)

(1� |�|��) ✏ (0.9)

This would be a mechanism of low scale Leptogenesis and Dark Matter production

utilizing Mesons, that does not involve Lepton or Baryon number violation and does not

require sphalerons. Meanwhile this mechanism could have multiple testable signals at:

colliders, B-factories, maybe Kaon factories, dark matter direct detection experiments and

neutrino experiments.

The mechanism of [1] achieved baryogenesis by making use of the CPV in neutral B0
q

mesons anti-meson oscillations. In [1], the dark matter was charged under baryon number

and coupled to B-mesons through a higher dimensional operator, so that the B-mesons

could decay into a dark sector leading to an equal and opposite baryon asymmerty between

1

Figure 1. Geometric interpretations of the optical scalars. The cross section of a geodesic congru-
ence with non-zero expansion, shear, and twist, is depicted from left to right; assuming a circular
cross section (red), the cross section of the congruence a small affine parameter distance δλ away
is depicted (blue).

The expansion and twist have the following geometric interpretations. An infinitesimal
circle in the plane spanned by m and m̄ determines an infinitesimal tube by transporting
points on the initial circle a small affine parameter distance δλ along the null geodesics of
the preferred shear-free congruence. When σ = 0, the final boundary of the tube will also
be a circle. If the initial circle has radius ε, the final circle will have radius (1 + θδλ)ε,
hence, θ determines the rate of expansion of the geodesics. Similarly, the final circle will
be rotated by an angle ωδλ, so that ω measures the degree to which geodesics in the
congruence locally twist around each other. When ρ = 0, it can be shown that the final
boundary of the infinitesimal tube, whose initial boundary was a circle of radius ε, will be
an ellipse having the same area as the circle, with semi-major and semi-minor axes given by
(1± |σ|δλ)ε, while the argument of σ determines the orientation of the major axis. A nice
discussion of this geometry can be found in chapter 7 of [52]. The geometric interpretation
of these optical scalars is summarized in figure 1.

As defined in (3.14), the optical scalars ρ and σ are two of the spin coefficients of
the null tetrad, and it is not immediately obvious that they encode invariant geometrical
information about the null congruence generated by l independently of the choice of tetrad.
One can however check that when l is tangent to a geodesic, so that the spin coefficient κ
(discussed in the following section) vanishes, the tetrad transformations belonging to the
little group of l leave ρ invariant and can only transform σ by an overall phase (see chapter
1 of [49], for instance). Alternatively, one can verify that (see chapter 6 of [40])

θ = 1
2∇µl

µ, ω2 = 1
2∇[µlν]∇µlν , σσ̄ = 1

2∇(µlν)∇µlν − θ2, (3.15)

which clearly depend only on l. We note again for emphasis that for Kerr-Schild spacetimes,
the optical scalars are the same whether computed with respect to the background flat
metric, or the full spacetime metric.
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3.3 Shear-free and geodesic conditions

The metric (3.5) can be used to describe any expanding Kerr-Schild spacetime, i.e. any
Kerr-Schild spacetime admitting an SNGC with θ 6= 0. In the language of the Newman-
Penrose formalism, the condition that lµ is shear-free is simply σ = 0, while the geodesic
condition becomes κ = 0, where the spin coefficient κ is defined by

κ := mν lµ∇µlν = mνDlν . (3.16)

For the null tetrad (3.7), one can directly compute κ and σ in terms of Φ:

κ = Φ̄,ζ − Φ̄Φ̄,u , (3.17)

σ = Φ
(
Φ̄Φ̄,u − Φ̄,ζ

)
− Φ̄Φ̄,ζ̄ + Φ̄,v . (3.18)

From the expressions (3.17) and (3.18), it can be seen that κ = 0 = σ holds whenever Φ
satisfies

DΦ = 0 = δΦ . (3.19)

The two conditions (3.19) directly imply the following partial differential equations for Φ:

Φ,v = ΦΦ,ζ , Φ,ζ̄ = ΦΦ,u . (3.20)

We note that the general solution to these two equations for Φ is given by the arbitrary
analytic function F in the statement of Kerr’s theorem, (3.4). Inserting the complex
conjugate of (3.20) into (3.17) and (3.18) then gives κ = 0 = σ. Differentiating the first
equation of (3.20) with respect to u, and the second with respect to ζ, one gets Φ,uv = Φ,ζζ̄ ,
which implies that

�0Φ = 0 , (3.21)

so that Φ is harmonic with respect to the flat-space Laplacian �0 = 2(∂u∂v − ∂ζ∂ζ̄). Note
that Φ does not satisfy the Plebański equation (2.11).

The function Φ can be found in this way for any expanding Kerr-Schild spacetime,
including non-stationary and non-vacuum solutions, and will provide the basis for the
Newman-Penrose map described in the next section.

4 The Newman-Penrose map

In the previous section we laid the groundwork for understanding Kerr-Schild spacetimes
with an expanding SNGC in the Newman-Penrose formalism. We are now in a position to
present the main result of this article: given any Kerr-Schild spacetime, whose Kerr-Schild
vector lµ is tangent to an expanding SNGC, one may identify a certain complex harmonic
function (3.21) that enjoys a distinguished role in the construction of a preferred null tetrad
aligned with the tangent vector lµ of the SNGC (3.3). One can then associate to any such
spacetime a self-dual solution of the vacuum flat-space Maxwell equations defined by the
Newman-Penrose map A = k̂Φ.
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While this construction is, a priori, independent of previous approaches to the classical
double copy, we argue that it is in fact a novel manifestation of the same correspondence.
We provide evidence for this claim by showing that the real part of the self-dual gauge
fields associated to the Schwarzschild and Kerr spacetimes by the Newman-Penrose map
are gauge equivalent to the usual single copy gauge fields obtained from the standard Kerr-
Schild double copy outlined in section 2.1. We also examine the Kinnersley photon rocket
solution [35], which we find under our correspondence to be directly gauge equivalent to
the Liénard-Wiechert potential of a moving point charge. This is different than the naïve
single copy of the solution, however in [36] it was shown that these solutions are equivalent
with the addition of a radiation field for the accelerating particle.

4.1 General procedure

It was shown in [20, 30] that, up to a constant scale factor which we have chosen on
dimensional grounds, the Kerr-Schild operator k̂ of the self-dual double copy takes the form

k̂ = − Q

2πε0
(dv ∂ζ + dζ̄ ∂u) , (4.1)

where Q is the total electric charge, and ε0 is the vacuum permittivity. The form of (4.1)
can be naturally understood in terms of the spinorial formalism, the details of which are
given in appendix B.

It is now a simple matter to show that A := k̂Φ is self-dual, and therefore solves the
vacuum Maxwell equations. Indeed, from (4.1) we have

A = − Q

2πε0

(
Φ,ζdv + Φ,udζ̄

)
, (4.2)

from which we can compute the field strength two-form F = dA:

F = − Q

2πε0

(
Φ,uζdu ∧ dv − Φ,ζζdv ∧ dζ + Φ,uudu ∧ dζ̄ + Φ,uζdζ ∧ dζ̄

)
, (4.3)

where we used Φ,uv−Φ,ζζ̄ = 1
2�0Φ = 0. The field strength in (4.3) is self-dual with respect

to ?0, the Hodge star operator associated with the background metric g0 — that is, F
satisfies

F = i ?0 F , (4.4)

which, together with the fact that F is exact, implies the vacuum flat-space Maxwell
equation

d ?0F = 0 . (4.5)

The above considerations demonstrate that given any flat-space harmonic function Φ, one
can define a self-dual solution of the vacuum flat-space Maxwell equations by A = k̂Φ.
On the other hand, in the previous section we showed that every Kerr-Schild spacetime
with an expanding SNGC has associated with it a flat-space harmonic function Φ. It is
then clear that every Kerr-Schild spacetime with an expanding SNGC can be mapped to a
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self-dual solution of the vacuum flat-space Maxwell equations. We call this correspondence
the Newman-Penrose map, which we summarize as follows:

1. Consider a Kerr-Schild spacetime whose Kerr-Schild vector lµ is tangent to an ex-
panding SNGC.

2. By Kerr’s Theorem, a harmonic function Φ will arise in the construction of a preferred
null tetrad aligned with lµ.

3. We can then construct a gauge field A = k̂Φ, which is automatically a self-dual
solution of the vacuum Maxwell equations when k̂ is given by (4.1).

We now proceed to study some concrete examples of the Newman-Penrose map which
illustrate its close relationship to the Kerr-Schild and self-dual double copies summarized
in section 2.

4.2 Examples

The Newman-Penrose map defined in the previous subsection is, a priori, independent of
the usual Kerr-Schild double copy which we reviewed in section 2.1, and one would not
necessarily expect there to be any clear relationship between the real gauge fields associated
with each prescription. We do not presently have a proof of a general relationship between
the Kerr-Schild double copy and Newman-Penrose map; nevertheless, we are encouraged to
believe that there may be a deep connection between the two. Below we study the Newman-
Penrose map applied to examples of vacuum black hole and pure radiation solutions, where
we find that the gauge field associated to the spacetime by the Newman-Penrose map and
the gauge field associated to the same spacetime by the Kerr-Schild double copy agree
exactly in the case of vacuum solutions, and agree up to some subtleties discussed below
in the case of a pure radiation solution.

4.2.1 The Schwarzschild black hole

The tetrad (3.3) associated with the Schwarzschild metric is presented in [43]. The complex
scalar Φ is given by

Φ = 1
2ζ̄

(
v − u−

√
2r
)
, (4.6)

where r =
√
x2 + y2 + z2 = 1√

2

√
(v − u)2 + 4ζζ̄ is the usual radial coordinate written in

light-cone coordinates (3.1). In appendix C, we will show in detail that this form for Φ
generates the correct metric.

For any vacuum Kerr-Schild spacetime, the real function V is given by (see for in-
stance [40])

V = M(ρ+ ρ̄)
2P 3 , (4.7)

where ρ is the complex expansion defined in section 3.2, and P = a + bΦ + b̄ Φ̄ + cΦΦ̄,
with a, c real constants and b a complex constant. For the Schwarzschild metric, we have

P = 1√
2

(1 + ΦΦ̄), ρ = 1 + ΦΦ̄
2Φζ̄ − (v − u)

. (4.8)

– 13 –



J
H
E
P
1
2
(
2
0
2
0
)
1
2
1

Equations (4.6), (4.7) and (4.8) determine the null tetrad (3.3), which in turn determines
the metric (3.5). The invariant line element in Cartesian coordinates is given by

ds2 = dt2 − dx2 − dy2 − dz2 − 2GM
r

(dt+ dr)2, (4.9)

which is the Kerr-Schild form of the Schwarzschild metric (see appendix C for details).
Transforming the time coordinate t = T +2GM ln( r

2GM −1), and using the usual spherical
coordinates, one recovers the more familiar form of the metric in Schwarzschild coordinates

ds2 =
(

1− 2GM
r

)
dT 2 −

(
1− 2GM

r

)−1
dr2 − r2dΩ2. (4.10)

From (4.9) we can read off the Kerr-Schild single copy gauge field

AKS = 2GM
r

(dt+ dr) , (4.11)

which is gauge equivalent to the standard Coulomb field

ACoulomb = Q

4πε0r
dt , (4.12)

where we have made the replacements 8πG→ 1/ε0, and M → Q.
Using equation (4.6), we can now compute the Newman-Penrose single copy gauge

field via ANP = k̂Φ:
ANP = Q

2
√

2πε0r

(
dv − Φdζ̄

)
. (4.13)

Transforming to spherical coordinates via

θ = tan−1
(√

x2 + y2

z

)
, φ = tan−1

(
y

x

)
, (4.14)

one finds

ANP = Q

4πε0

(
dt

r
− i(1− cos θ)dφ+ dr

r
− sin θ

(1 + cos θ)dθ
)
. (4.15)

Equation (4.15) is our final expression for the gauge field ANP associated to the Schwarzschild
black hole by the Newman-Penrose map. In order to make contact with the Kerr-Schild
double copy, it will be convenient to decompose ANP into its real and imaginary parts. The
last two terms in ANP are exact, so the real part of ANP can be written

Re(ANP) = Q

4πε0r
dt+Agauge , (4.16)

with a pure gauge contribution of the form

Agauge = Q

4πε0
d ln

(
r(1 + cos θ)

)
, (4.17)

in perfect agreement with (4.12). On the other hand, the imaginary part of ANP is

Im(ANP) = − Q

4πε0
(1− cos θ) dφ , (4.18)
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which is the vector potential for a magnetic monopole, defined away from the negative
z-axis. The magnetic monopole defined away from the positive z-axis i.e. Im(A) ∝ (1 +
cos θ)dφ, arises by repeating this procedure with a parity transformation ~x → −~x in the
usual way [54]. Note that Im(A) has a singularity at θ = π, which is not surprising since
that is the location of the Dirac string. However, it is surprising that the pure gauge part
appearing in (4.17) for Re(A) is singular at θ = π, since in principle one can have different
covers for Re(A) and Im(A) while still preserving the self-dual condition for F . So it is
not a priori obvious that the singularities of Re(A) and Im(A) should be related in any
way. We will return to this observation in future work.

Finally, it is worth commenting that our result for ANP bears a strong similarity to a
dyon, which is the Kerr-Schild single copy for the Taub-NUT spacetime [32]. One might
therefore wonder if our result is inconsistent with the Kerr-Schild double copy. However,
there are some important differences. Since ANP is self-dual, its magnetic charge is purely
imaginary and equal in magnitude to the electric charge. This is in contrast to the case of
a real dyon, where the electric and magnetic charges are both real and independent of each
other. This point is crucial for identifying the dyon as the single copy of the Taub-NUT
spacetime, where the mass is mapped to the electric charge of the dyon and the NUT
charge is mapped to the magnetic charge of the dyon.

4.2.2 The Kerr black hole

We now turn to the more general case of the Kerr spacetime. The adapted null tetrad for
Kerr is given in [43]. In particular, the complex harmonic scalar for Kerr is obtained from
the corresponding function in the null tetrad for Schwarzschild by applying the Newman-
Janis trick [43, 55]. Namely, one performs a complex coordinate transformation of the form

z → z + ia , (4.19)

or equivalently in terms of light-cone coordinates

v − u→ v − u+
√

2ia , (4.20)

where a = J/M is the angular momentum per unit mass of the Kerr black hole. After
performing the Newman-Janis trick (4.20) on the Schwarzschild complex scalar (4.6), we
obtain the complex scalar of the null tetrad for the Kerr spacetime

Φ(Kerr) = 1
2ζ̄

(
(v − u+

√
2ia)−

√
(v − u+

√
2ia)2 + 4ζζ̄

)
= r − ia

2ζ̄r

(
v − u−

√
2r
)
, (4.21)

which by a direct computation can be seen to satisfy (3.20). See appendix C for a detailed
verification that the form of Φ(Kerr) in (4.21) generates the correct metric. Here r is defined
implicitly by

x2 + y2

r2 + a2 + z2

r2 = 1 , (4.22)
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so that in light-cone coordinates, making use of z = r cos θ = (v − u)/
√

2, this becomes
√

2r + ia

r
(v − u) =

√
(v − u+

√
2ia)2 + 4ζζ̄ . (4.23)

We have the same equations as the Schwarzschild case for the functions V (4.7), P and
ρ (4.8), with Φ replaced with Φ(Kerr) and v − u replaced with v − u +

√
2ia after the

Newman-Janis trick.
The Kerr metric in Kerr-Schild form is given by (2.1) with

ϕ = 2GMr3

r4 + a2z2 , kµdx
µ = dt+ rx+ ay

r2 + a2 dx+ ry − ax
r2 + a2 dy + z

r
dz , (4.24)

written in Cartesian coordinates. The usual Kerr-Schild single copy is

A(Kerr)
KS = Qr

4πε0(r2 + a2 cos2 θ)

(
dt+ rx+ ay

r2 + a2 dx+ ry − ax
r2 + a2 dy + z

r
dz

)
, (4.25)

again with the replacement 8πG→ 1/ε0 andM → Q. This solution to Maxwell’s equations,
referred to as

√
Kerr by [56], can be written in spherical coordinates as

A√Kerr = Qr

4πε0(r2 + a2 cos2 θ)
(
dt+ dr − a sin2 θdφ

)
, (4.26)

with the coordinate transformations

x+ iy = (r + ia)eiφ sin θ and z = r cos θ . (4.27)

This has been shown [20, 56] to describe the field produced by an axisymmetric charge
distribution rotating at a uniform rate about the z-axis.

For the Newman-Penrose map, we can now apply the operator k̂ of (4.1) to Φ(Kerr) (4.21)
to obtain the self-dual gauge field

A(Kerr)
NP = Q

2
√

2πε0(r + ia cos θ)

(
dv − Φ(Kerr)dζ̄

)
. (4.28)

Equivalently, this gauge field could have been obtained directly from (4.13) after applying
the Newman-Janis trick. Transforming to spherical coordinates via (4.27) gives

A(Kerr)
NP = Q

4πε0

[
r

r2 + a2 cos2 θ

(
dt+ dr − a sin2 θdφ

)
− sin θdθ

1 + cos θ

− ia cos θ
(r2 + a2 cos2 θ)(dt+ dr)− i(1− cos θ) r

2 − a2 cos θ
r2 + a2 cos2 θ

dφ

]
. (4.29)

Taking the real part of (4.29) leads to

Re(A(Kerr)
NP ) = A(Kerr)

gauge + Qr

4πε0(r2 + a2 cos2 θ)
(
dt+ dr − a sin2 θdφ

)
, (4.30)

where
A(Kerr)

gauge = Q

4πε0
d ln (1 + cos θ) . (4.31)

This solution agrees exactly with
√
Kerr in (4.25).
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In accordance with electromagnetic duality [57], we expect that the imaginary part of
the field,

Im(A(Kerr)
NP ) =− Q

4πε0

[
a cos θ

r2 + a2 cos2 θ
(dt+ dr) + (1− cos θ) r

2 − a2 cos θ
r2 + a2 cos2 θ

dφ

]
, (4.32)

is sourced by an axisymmetric distribution of magnetic charge rotating at a uniform rate
about the z-axis. As in the static case, we expect the imaginary part of the field to have
support on a subset of spacetime with non-trivial topology, but we will not digress into a
detailed analysis of these features here.

We conclude this example with a naïve discrepancy and a puzzle. The Kerr-Schild
form for the Kerr metric obtained directly using Φ is

ds2 = ds2
0 −

2Mr

(r2 + a2 cos2 θ)

(
dt− z

r
dz − rx+ ay

(r2 + a2)dx−
ry − ax
(r2 + a2)dy

)2
, (4.33)

which we demonstrate in appendix C.1. This expression differs from the double copy form
for the Kerr metric (4.24). In appendix C.2 we show however, that these two expressions
for the metric are equivalent, being related by a coordinate transformation, so there is no
contradiction. Briefly, starting from standard textbook expressions for the Kerr metric,
such as the Boyer-Lindquist form, one arrives at these two different Kerr-Schild metrics
by following either the ingoing or outgoing principal null direction ray. What is surprising
is that depending on the single copy prescription — either the usual one or Newman-
Penrose one presented here — the same gauge equvialent potential A√Kerr (at least for the
real part) arises from two different Kerr-Schild metrics that are related by a coordinate
change. The same feature also occurs in the Schwarzschild case. This result suggests that
the Newman-Penrose map may provide further insights into the relationship between the
gauge symmetries on both sides of the correspondence.

4.2.3 Kinnersley’s photon rocket

For our final example, we study an exact solution of Einstein’s equations sourced by a pure
radiation stress energy tensor of the form

Tµν = fkµkν , (4.34)

known as Kinnersley’s photon rocket [35], which describes the gravitational field produced
by a particle moving along an arbitrary timelike worldline.

To describe the particle’s motion, we define yµ(τ) as the coordinates of the particle
moving along a worldline parameterized by proper time τ . The worldline of the particle
will intersect the past light-cone of a point xµ at exactly one point yµ(τR), which implicitly
defines the retarded proper time τR (see figure 2).

The retarded distance r is defined by

r = σ · λ(τR) (4.35)

where σµ = xµ−yµ(τR), and λµ(τ) = dyµ(τ)
dτ is the proper velocity of the particle normalized

such that λ · λ = 1. Here indices are raised and lowered with respect to the background
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Figure 2. An arbitrary timelike worldline yµ(τ), parameterized with respect to proper time τ ,
intersects the past light-cone of an arbitrary point xµ in Minkowski space at exactly one point
yµ(τR). This picture serves to define of τR(x).

metric g0. From a geometric standpoint, the proper distance r may be regarded as an affine
parameter along the future-pointing null geodesics originating on the worldline yµ(τ). For
more details on the geometric setup see [58–60].

In Kerr-Schild form, the metric for the photon rocket can be written as in (2.1) with

ϕ = 2GM(τR)
r

and kµ = σµ
r
. (4.36)

In [36], this solution (with M(τR) = M = constant) was analyzed in the context of the
Kerr-Schild double copy, where it was shown to correspond to a gauge field of the form

A(PR)
KS = Q

4πε0r2σµdx
µ, (4.37)

which is the potential of a boosted point charge, but does not contain the radiation field
necessarily produced by an accelerating charged particle [58]. This solution does not satisfy
the vacuum Maxwell equations, but instead has a source of the form

∂µF
µν = jν with jν = Q

2πε0r2 (λ̇(τR) · k)kν , (4.38)

where overdots denote differentiation with respect to τR. Comparing (4.34) and (4.38), we
see that in this case, the Kerr-Schild double copy ansatz leads to an explicit double copy
between the sources of the electromagnetic and gravitational fields. The authors of [36]
combine (4.37) with the necessary radiation field, as well as its source −jν in (4.38), in
order to obtain the Liénard-Wiechert potential describing an accelerating, radiating point
charge. The source term (4.38) and the stress-energy tensor (4.34) were then shown in [36]
to lead to the expected momentum space amplitudes for electromagnetic and gravitational
Bremsstrahlung radiation.

The Kerr-Schild vector of the photon rocket spacetime is expanding and shear-free,
so we can apply the Newman-Penrose map to the scalar Φ(PR), which satisfies (3.20) and
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generates a self-dual gauge field. Using the fact that σµ lies on the lightcone, we can rewrite
in lightcone coordinates

(x− y(τR)) · (x− y(τR)) = 0
⇒ (ζ − ζ0)(ζ̄ − ζ̄0) = (u− u0)(v − v0), (4.39)

with yµ(τR) ≡ (u0, v0, ζ0, ζ̄0) and u0 ≡ u0(τR) etc. . This equation implicitly defines τR
in terms of the coordinates xµ, and extends σ to a function of xµ. Taking the exterior
derivative and solving for dτR, we find

dτR = 1
r

[
(v − v0)du+ (u− u0)dv − (ζ − ζ0)dζ̄ − (ζ̄ − ζ̄0)dζ

]
= 1
r
σµdx

µ, (4.40)

which is exactly the Kerr-Schild vector. Comparing with (3.3), we see that in this case the
complex harmonic scalar for the photon rocket takes the form

Φ(PR) = − (ζ − ζ0)
(v − v0) . (4.41)

Applying the operator k̂ and taking the real part yields

Re
(
A(PR)

NP

)
= Re

(
A(PR)

gauge

)
+ Q

4πε0r
(
u̇0dv + v̇0du− ζ̇0dζ̄ − ˙̄ζ0dζ

)
, (4.42)

where

Re
(
A(PR)

gauge

)
= Q

4πε0
d ln (v − v0) . (4.43)

Without the pure gauge term, this can be rewritten in the form

Re
(
A(PR)

NP

)
= Q

4πε0r
λµ(τR)dxµ, (4.44)

which is a Liénard-Wiechert potential, i.e., the field produced by a point charge with
arbitrary acceleration [61]. As with the fields, there is no explicit double copy structure for
the source terms for the Newman-Penrose map. However, our prescription leads directly to
the Liénard-Wiechert gauge field, as opposed to the naïve one produced by the Kerr-Schild
double copy which needs to be supplemented with a radiation field to obtain this form.
The source term in [36] was shown to lead to the correct momentum space Bremsstrahlung
amplitude for a specific piece-wise linear path. One can also obtain this amplitude directly
from the delta function which sources the Liénard-Wiechert potential, restricted to the
same path, as shown in chapter 6 of [62].

The imaginary part of A(PR)
NP is

Im(A(PR)
NP ) = Im(A(PR)

gauge)−
iQ

4πε0r

[
ζ − ζ0
v − v0

(v̇0dζ̄ − ˙̄ζ0dv) + ζ̄ − ζ̄0
u− u0

(u̇0dζ − ζ̇0du)
]

(4.45)

with the pure gauge term

Im(A(PR)
gauge) = iQ

4πε0
d ln(ζ − ζ0) (4.46)

The singularities appearing in the real and imaginary pure gauge terms include the expected
singularity at r = 0, the position of the worldline of the particle.
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4.3 The many-to-one nature of the map

General relativity is far richer than electromagnetism, and as such it is remarkable that a
classical double copy prescription yields a map between the two, even for a restricted class
of solutions. However, because of the fundamental differences between the theories, not
all components of each theory should be expected to have well-defined analogs on either
side of the map. Indeed, such ambiguities have hindered progress in understanding the
double copy in the context of charged black holes and certain classes of radiating solutions.
A novel aspect of the Newman-Penrose map is its treatment of such ambiguities, and in
particular we comment in this subsection on the way in which components that have no
obvious gauge theory analog are “projected out”.

The Einstein equations admit black hole solutions, both static (Reissner-Nördstrom)
and spinning (Kerr-Newman), which carry electromagnetic charge i.e. Tµν is the Maxwell
stress energy tensor. When electric charge is included in the gravitational theory, there is
an ambiguity in how charge on the gravitational side would map to a gauge theory quantity
under the double copy; indeed, there is very little literature dealing with such solutions.13

These charged black holes are algebraically special spacetimes of Petrov type D admitting
an SNGC, and may be put into Kerr-Schild form (see [40] for a review). Therefore, the
Newman-Penrose map may be applied to charged black hole solutions, and the preferred
null tetrad is given by (3.3) with

V ∝ M

r
− Q2

em
r2 , (4.47)

where Qem is the electromagnetic charge of the black hole, in contrast with V ∝ M
r for

uncharged black holes. Critically, the electric charge is encoded in V , not in the complex
scalar Φ, and Φ will be of exactly the same form as for the uncharged Schwarzschild and
Kerr black holes: (4.21) and (4.6), respectfully (as must be the case so that the limit
Qem → 0 reproduces these solutions). Therefore, the Newman-Penrose map is insensitive
to the electromagnetic charge associated with the black hole; the information of the electric
charge on the gravitational side of the duality, which has no clear gauge theory counterpart,
has been “projected out”. The result of the Newman-Penrose map applied to charged black
holes will be identical to the result obtained from applying the map to the corresponding
uncharged solution with Qem set to zero. It remains unclear if there exists a generalization
of the Newman-Penrose map which may be made consistent with the scattering amplitude
interpretation of charged black holes [63] — we leave such an exploration to future work.

A similar situation arises when one considers certain pure radiation spacetimes with
a Bondi mass aspect specified as a function of a retarded or advanced time. The physical
intuition for such spacetimes is clear: they describe the gravitational fields produced by
compact massive objects that are absorbing or emitting radiation, say in the form of a null
dust. In accordance with mass-energy equivalence, the mass of such an object will vary as it
absorbs or emits radiation. However, no such analogous process exists in electrodynamics;

13Under the prescription introduced in [37], the stress energy tensor itself may be put into a form of an
electromagnetic current.
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a charged object can absorb or emit radiation, but such a process cannot lead to a change
in the total charge of the system. A straightforward example is provided by the Newman-
Penrose map for the photon rocket of section 4.2.3, where the Bondi mass aspect M(τR)
appears only in the function V but not in the complex harmonic scalar Φ. In the simple
case where the worldline is chosen to be a straight, time-like line with vanishing spatial
acceleration, e.g., the line determined by x = y = z = 0 in Cartesian coordinates, the
photon rocket reduces to the Vaidya metric. In this case, it may be observed that the
complex harmonic scalar Φ for the photon rocket reduces to that of the Schwarzschild
spacetime (4.6), while the function V reduces to the function V of the Schwarzschild
spacetime with the constant mass M replaced by the Bondi mass aspect M(τR). Whether
in the case of the general worldline, or in the zero acceleration limit, the conclusion is the
same: the Newman-Penrose map is insensitive to the functional form of the Bondi mass
aspect, producing the same self-dual gauge field for any choice of M(τR). As for the case
of charged black holes, the Newman-Penrose map “projects out” the information on the
gravitational side that has no sensible analog on the gauge theory side, and maps many
physically distinct solutions on the gravity side to the same self-dual gauge field.

In this way the many-to-one nature of the Newman-Penrose map provides a novel
way to treat degrees of freedom that have no well-defined analog on the gauge side of
the correspondence: an advantage over the traditional classical double copy in which a
prescription for dealing with such ambiguities is not fully understood.

5 Discussion

In this work, we have introduced a novel correspondence between Kerr-Schild space-
times with an expanding SNGC and self-dual solutions of the vacuum Maxwell equations.
Since this correspondence makes use of the null tetrad formalism, we have christened it
the Newman-Penrose map. We have applied this map to three concrete examples: the
Schwarzschild spacetime, the Kerr spacetime, and Kinnersley’s photon rocket. In each
case, we have shown that the real part of the self-dual gauge field defined by this map con-
nects with the standard results of the classical double copy up to gauge transformations.
Additionally, the imaginary part of the self-dual gauge field is sourced by the electromag-
netic dual of the real part. We showed this explicitly in the Schwarzschild example for
which the imaginary part of the gauge field reproduces a magnetic monopole. In the case
of the photon rocket, the Newman-Penrose map seems to provide a genuine advantage: we
obtain a field that is gauge-equivalent to the Liénard-Wiechert potential without the need
to introduce any ad-hoc arguments involving radiation fields as in [36].

Our approach has some limitations as well as some notable advantages. Since we use
the null tetrad formalism, it is not clear whether or not our results can be readily extended
beyond four spacetime dimensions, whereas for the usual Kerr-Schild double copy, such an
extension is trivial [20, 28]. Since our results are limited to Kerr-Schild spacetimes with
an expanding SNGC, they cannot be applied to vacuum Kerr-Schild spacetimes of Petrov
type N, which have vanishing expansion; in particular, we cannot reproduce results relating
PP wave spacetimes to electromagnetic plane wave solutions as in e.g. [34]. However, as
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we have seen in the example of the photon rocket, our results can be applied directly to
Kerr-Schild spacetimes that are neither stationary, nor vacuum — a significant advantage
compared with the usual Kerr-Schild double copy. Furthermore, the Newman-Penrose map
projects out information that has no sensible analog on the gauge side of the duality.

In this work, we have restricted our considerations to the case of real, single Kerr-
Schild metrics, but it would be interesting to investigate whether, as in the case of the
Kerr-Schild double copy, our construction can be generalized to include complex or dou-
ble Kerr-Schild metrics as well. Given the prominent role of self-dual gauge fields and
electromagnetic duality in our construction, it would be particularly nice to make contact
with [32, 64, 65] by relating the Taub-NUT metric to a (self-dual) dyon via a suitably
generalized Newman-Penrose map. We also hope to extend this formalism to include com-
plex spacetimes, in particular Eguchi-Hanson space studied in the context of the classical
double copy previously in [30].

Another potential generalization of the Newman-Penrose map would be to non-trivial
spacetimes that are asymptotically flat. The remarkable fact that, for any arbitrary asymp-
totically flat-spacetime, there is a generalization of Kerr’s theorem which generates null
geodesic congruences that are asymptotically shear-free [66], hints at such a possibility.
An interesting topic for further exploration would be whether such asymptotically shear-
free null geodesic congruences, and the three-dimensional Cauchy-Riemann manifolds they
define (see [53] and references therein), map to asymptotic solutions to the flat-space source-
free Maxwell’s equations.

In addition to discovering new solutions that admit a classical interpretation under
the Newman-Penrose map, it would be interesting to explore the ways in which this novel
map may offer insights into various outstanding questions. For instance, while the double
copy for scattering amplitudes relates gravity to Yang-Mills amplitudes, it is appreciated
by the community that most prescriptions for the classical double copy relate classical
gravitational solutions to electromagnetic ones. A classical double copy prescription for
mapping gravity to non-abelian gauge theory remains elusive. Progress in understanding
this discrepancy has been made in [67], which pointed out how abelian and non-abelian
gauge theory objects may be associated with the same object on the gravity side. Fur-
thermore, by studying gravity as the convolution of left and right Yang-Mills theories [68],
one may obtain a “convolutional double copy” which maps gauge and gravity solutions in
the manifest Lorenz and de-Donder gauges [69]. The scenarios studied in the present work
considered gravity solutions that, under the Newman-Penrose map, correspond to electro-
magnetic field configurations. Moving forward, it would be interesting to understand how
the Newman-Penrose map may be used to relate gravitational solutions to non-abelian
gauge field configurations. The many-to-one nature of the Newman-Penrose map hints
that this could be a natural language to address such questions.

With a few exceptions [34, 69], all classical double copy prescriptions, including the one
presented here, rely on certain coordinate and gauge choices. Yet the relationship between
diffeomorphism invariance and gauge redundancy under the double copy remains somewhat
obscure. In particular, the number of gauge redundancies is different from the number
of redundancies associated with diffeomorphism invariance. Once again the novel way
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in which the Newman-Penrose map projects out ambiguous degrees of freedom, suggests
that this might be a promising framework in which to study such questions. Another
possible strategy would be to study the behavior of manifestly gauge and diffeomorphism
invariant objects under the double copy. On the gauge theory side, Wilson loops, or more
generally, spin networks, are natural, gauge invariant quantities with clear gravitational
analogues. Recently, progress along this direction was made by using gravitational Wilson
line operators, defined in terms of the linearized graviton field, to match certain topological
information on both sides of the double copy in a way that is gauge invariant [70]. It would
be interesting to study such properties using the Newman-Penrose map where it may be
natural to construct coordinate invariant gravitational Wilson lines (constructed out of the
connection) and study their behavior under the map.

By introducing a novel map between gauge and gravity solutions, this work has opened
up new avenues for exploration of the classical correspondence between the two types of
theories.
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A Spinors, Kerr’s theorem, and Kerr-Schild backgrounds

Tensors can be more fundamentally described using spinors. We briefly review this for-
malism here, closely following [71] and [52]. We then give an outline of the derivation
of Kerr’s Theorem for a Kerr-Schild background, which was critical to the set-up of the
Newman-Penrose map. A proof of Kerr’s theorem using the Newman-Penrose formalism
can be found in [51] and [72]. A proof using spinors can be found in [52], which we follow
in this appendix. Here, as in the main text, we restrict to four real spacetime dimensions
(for a generalization to higher dimensions see [73]).

A.1 Spinors

With Cartesian coordinates (t, x, y, z) in flat four-dimensional Minkowski space, we form
the light-cone coordinates (u, v, ζ, ζ̄) given by (3.1), with the flat-space metric

ds2
0 = 2(dudv − dζdζ̄) . (A.1)
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Any vector V can be written in the familiar matrix form as V µ = V AȦσµ
AȦ

, where
σµ = (1, ~σ) and ~σ are the Pauli matrices, giving an invertible map between vectors and
2× 2 matrices,

V = V µ ∂

∂Xµ
= V AȦ∂AȦ ∴ V µ ←→ V AȦ. (A.2)

SL(2,C) transformations on the spinors induce the usual 2:1 map onto the group of proper
orthochronous Lorentz transformations acting on the associated vector. Spinor indices are
raised and lowered using the SL(2,C) invariants εAB and εȦḂ, such that

αA = αBεBA , αA = εABαB ,

where εABεCB = δAC , and ε01 = 1 = −ε01. The SL(2,C) invariant inner product between
two spinors α and β is given by εABαAβB.

Using this map, any vector V AȦ (null or non-null) can be expanded in terms of a basis of
commuting spinors (oA, ιA) called a dyad. The dyad is normalized as oBιB = oAεABι

B = 1
(which also means that oAoA = 0 = ιAιA), and similarly for spinors with dotted indices.
The normalized dyad satisfies

oAιB − ιAoB = εAB . (A.3)

This form, and the analogous one for ε̄ȦḂ, is preserved by SL(2,C) transformations on
(oA, ιB) (and for complex spacetimes, by independent SL(2,C) transformations on (oA, ιB)
and (ōȦ, ῑḂ)).

Then the matrix component (A.2) may be written as

V AȦ = c1o
AōȦ + c2o

AῑȦ + c3ι
AōȦ + c4ι

AῑȦ , (A.4)

where the ci’s can uniquely be obtained from V AȦ by contracting with any two members
of the dyad and using the dyad normalization condition, yielding

XAȦ = voAōȦ + ζoAῑȦ + ζ̄ιAōȦ + uιAῑȦ , (A.5)
∇AȦ = oAōȦ∆− oAῑȦδ̄ − ιAōȦδ + ιAῑȦD , (A.6)

where the directional derivatives D,∆, δ and δ̄ are defined in (3.8). We consider a (fixed)
canonical basis (denoted hereafter by a superscript ‘(0)’)

o(0)A =
(

1
0

)
, ι(0)A =

(
0
1

)
, (A.7)

so that (A.6) may be written as

XAȦ =
(
v ζ

ζ̄ u

)
, ∂AȦ =

(
∂v ∂ζ
∂ζ̄ ∂u

)
. (A.8)

Expanding, we find that

∂AȦ = o
(0)
A ō

(0)
Ȧ
∂u − o(0)

A ῑ
(0)
Ȧ
∂ζ̄ − ι

(0)
A ō

(0)
Ȧ
∂ζ + ι

(0)
A ῑ

(0)
Ȧ
∂v . (A.9)
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The rank of a null vector is one, so that it can be written in terms of the outer product of
two spinors α and β if complex, and a single spinor if real. That is,

kAȦ = αAᾱȦ for k real, (A.10)

mAȦ = αAβ̄Ȧ for m complex. (A.11)

In terms of the fixed canonical dyad (o(0)
A , ι

(0)
A ), a tetrad of null vectors (l, n,m, m̄) is then

given by

l = lAȦ∂AȦ = ∂v , m̄ = mAȦ∂AȦ = ∂ζ̄ ,

n = nAȦ∂AȦ = ∂u , m = mAȦ∂AȦ = ∂ζ . (A.12)

Here we have used (A.6) and identified

lAȦ = o(0)Aō(0)Ȧ , nAȦ = ι(0)Aῑ(0)Ȧ , mAȦ = o(0)Aῑ(0)Ȧ , m̄AȦ = ι(0)Aō(0)Ȧ ,

(A.13)
i.e. such that (3.9) is maintained, and that l is future null pointing.

A.2 Kerr’s theorem

A cogent discussion of Kerr’s theorem may be found in [52], which we summarize here.
In what follows, we consider general spacetime dependent dyads for Minkowski space and
solve the geodetic and shear-free conditions that directly lead to Kerr’s theorem.

Requiring that l be tangent to a null geodetic congruence implies

oADoA = oAoB ōḂ∇BḂoA = 0 . (A.14)

The shear σ of l is given by

σ = mµmν∇µlν = oAoB ῑḂ∇BḂoA . (A.15)

Taken together, requiring that l be geodetic and shear-free implies the single equation [52]

oAoB∇BḂoA = 0 . (A.16)

Since a re-scaling of oA by an arbitrary function still gives a null and shear-free l, we
can, without loss of generality fix the normalization of oA, which for a normalized dyad then
fixes that of ι. Then starting with the dyad (o(0)

A , ι
(0)
A ) describing the light-cone coordinate

null tetrad of appendix A.1, the only possible solution for oA preserving (A.3) is a local null
Lorentz transformation for oA or ιA. Since the latter does not change the repeated principal
null direction l = ∂v, we consider the former. The most general expression for the dyad
describing Minkwoski space and an associated null and shear-free ray is then given by [48]

oA = o
(0)
A − Φ̄(x)ι(0)

A , ιA = ι
(0)
A , (A.17)
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where Φ̄ is thus far an undetermined function. The null tetrad (A.13) for this dyad can
then be obtained either by the rules for null Lorentz transformations [49] or by direct
substitution. Either way one finds

l = ∂v − Φ∂ζ − Φ̄∂ζ̄ + ΦΦ̄∂u ,

n = ∂u ,

m = ∂ζ − Φ̄∂u ,
m̄ = ∂ζ̄ − Φ∂u , (A.18)

and associated dual 1-forms

ω1
0 = ιAῑȦdx

AȦ = dv ,

ω2
0 = oAōȦdx

AȦ = du+ Φ̄dζ + Φdζ̄ + ΦΦ̄dv ,

ω3
0 = −ιAōȦdx

AȦ = Φdv + dζ ,

ω4
0 = −oAῑȦdx

AȦ = Φ̄dv + dζ̄ , (A.19)

with the metric
g0 = 2(ω1

0ω2
0 − ω3

0ω4
0) . (A.20)

The function Φ cannot be arbitrary, since l is constrained to be null and shear-free.
Upon direct substitution of this form for the dyad into the geodetic and shear-free equa-
tion (A.16), and using the derivative for flat-space, one obtains (3.20), namely [52]

0 = oAoB∇BḂoA
=
(
o(0)A − Φ̄(x)ι(0)A

) (
o(0)B − Φ̄(x)ι(0)B

)
∂BḂ

(
o

(0)
A − Φ̄(x)ι(0)

A

)
=
(
o(0)B − Φ̄(x)ι(0)B

)
∂BḂΦ̄(x)

=
(
∂ζΦ̄− Φ̄∂uΦ̄

)
ōḂ +

(
−∂vΦ̄ + Φ̄∂ζ̄Φ̄

)
ῑḂ (A.21)

or equivalently
Φ,v = ΦΦ,ζ , Φ,ζ̄ = ΦΦ,u . (A.22)

The general solution to this equation is given by an arbitrary analytic function F , with Φ
defined implicitly by the solution to

F (Φ, u+ Φζ̄, ζ + Φv) = 0 . (A.23)

A key step in proving this theorem is in first showing that

X1 := u+ Φζ̄ , X2 := ζ + Φv , (A.24)

are two independent solutions to the two linear partial differential equations

(∂v − Φ∂ζ)X = 0 , (∂ζ̄ − Φ∂u)X = 0 , (A.25)

whence F (Φ, X1, X2) = 0 is a general solution. This integrability condition is equivalent
to requiring that these two linear differential operators be closed under commutation,
which then implies that Φ is a solution to (A.22) [51]. This relation between arbitrary
analytic functions of three arguments and general null shear-free congruences in flat four-
dimensional Minkowski space is known as Kerr’s Theorem [50, 51] (see also [52]).
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A.3 From flat-space to Kerr-Schild backgrounds: the Kerr-Wilson trick

So far the discussion has been restricted to Minkowski space. Surprisingly, from Kerr’s
Theorem the SNGC of flat space can be extended to an SNGC of a Kerr-Schild metric.
To see this, one presupposes a Kerr-Schild metric with a given null vector lµ. For vacuum
and certain Einstein-Maxwell spacetimes, [74] showed that the Kerr-Schild spacetime is
algebraically special with l as a principal null direction, so by the Goldberg-Sachs theorem
l is tangent to an SNGC. It then follows that l is also tangent to a null, SNGC with respect
to the Minkowski metric. Therefore the assumptions of Kerr’s theorem hold, so there exists
some analytic function F whose zero set generates l.

Next, one may use the following Kerr-Wilson trick to express the Kerr-Schild metric
in terms of Φ [48, 72]. It is a simple matter of first writing the Minkowksi metric in terms
of the 1-forms (A.19) generated by the dyad (A.17) given by Φ, yielding (A.20). Then a
null tetrad for the Kerr-Schild background can be obtained by shifting the dual ω1

0, namely

ωi = ωi
0 , i = 2, 3, 4 ,

ω1 = ω1
0 + 1

2V ω2 = dv + 1
2V ω2 , (A.26)

and a corresponding shift in n

n = n0 −
1
2V l , (A.27)

while the other vectors are held fixed. This shift “completes the square” of the Kerr-Schild
metric in this basis [48]. Note that the construction described here, in terms of a null rota-
tion on the (o(0)

A , ι
(0)
A ) dyad, explains the origin of the initially odd-looking expressions (3.7)

for the null tetrad (l, n,m, m̄) in terms of Φ.
For certain Einstein-Maxwell spacetimes, the above argument carries through due to a

generalization of the Goldberg-Sachs theorem. If the electromagnetic field strength tensor
is null then the generalization states that the spacetime is algebraically special. For more
details on generalizations of the Goldberg-Sachs theorem, see chapter 7 of [40]. Kerr-Schild
spacetimes more general than the classes of solutions to Einstein’s equations discussed
above can still be related in the same manner to Kerr’s theorem, provided that l is tangent
to an SNGC.

We conclude this section with an observation. The single geodesic and shear-free
equation (A.16) for oA, expressed in terms of the general dyad (A.17) is equivalent to the
operator

δ̃Ȧ := oA∇AȦ (A.28)

annihilating Φ, namely

δ̃ȦΦ̄ = 0 . (A.29)

As we shall see in the following section, this and related operators play a fundamental role
in mapping Φ to a solution to the source-free self-dual Maxwell equations in flat-space.
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B Spinorial realization of the Newman-Penrose map

In [71], Tod presents an algorithm for associating null Maxwell fields in flat-space with self-
dual Kerr-Schild solutions of general relativity using spinorial methods. Here, we adapt his
methods to the Newman-Penrose map, and discuss the spinorial origin of the k̂ operator,
originally discussed as a method for generating self-dual solutions in [75, 76]. The notation
in this section follows [77].

Let (l, n,m, m̄) = (∂v, ∂u, ∂ζ , ∂ζ̄) be a null tetrad for the flat metric g0 = 2(dudv−dζdζ̄),
and let (o, ι) be a normalized dyad14 satisfying oAιA = 1, and

lAȦ = oAōȦ, nAȦ = ιAῑȦ, mAȦ = oAῑȦ, m̄AȦ = ιAōȦ. (B.1)

Let us also define the “spinor directional derivative”,

δA = ῑȦ∂AȦ = oA∂u − ιA∂ζ . (B.2)

Given a harmonic complex scalar, Φ, which we may later take to be associated with a
Kerr-Schild spacetime (3.3) as described in appendix A.2, one can construct a self-dual
Maxwell spinor given by

ΦAB := δAδBΦ
= oAoBΦ,uu − (oAιB + ιAoB)Φ,uζ + ιAιBΦ,ζζ . (B.3)

The field strength tensor FAȦBḂ, can be recovered from the Maxwell spinor ΦȦḂ via
the relation

FAȦBḂ = εȦḂΦ
AB

. (B.4)

Applying the definition εȦḂ = ōȦῑḂ − ῑȦōḂ, and making use of (B.1), one finds

FAȦBḂ = (lAȦmBḂ −mAȦlBḂ)Φ,uu

+ (nAȦlBḂ − lAȦnBḂ +mAȦm̄BḂ − m̄AȦmBḂ)Φ,uζ

+ (m̄AȦnBḂ − nAȦm̄BḂ)Φ,ζζ (B.5)

which we can rewrite as a two-form F = 1
2FAȦBḂdx

AȦ ∧ dxBḂ which gives

F = −Φ,uudu ∧ dζ̄ − Φ,uζ(du ∧ dv + dζ ∧ dζ̄) + Φ,ζζdv ∧ dζ , (B.6)

which agrees with (4.3) up to an overall constant factor.
Note that we have not yet used the fact that Φ is harmonic, however we have obtained

the same result as we found from the tensorial realization of the Newman-Penrose map.
To understand this apparent mismatch, recall that for the tensorial Newman-Penrose map,
the field strength two-form is computed as F = dk̂Φ, and so is manifestly closed, but one
needs to impose the harmonic condition �0Φ = 0 in order to put it into the form (B.6),
from which it follows that F is self-dual. On the other hand, in the spinorial formalism

14In this appendix we will only consider flat-space, so for notational convenience, we suppress the subscript
‘(0)’ on the tetrad and dyad elements.
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presented here, we obtain (B.6) without imposing the harmonic condition, and so the field
strength obtained in this way is manifestly self-dual, but is not, in general, closed. Taking
the exterior derivative of (B.6), one finds

dF = (Φ,uuv − Φ,uζζ̄)du ∧ dv ∧ dζ̄ + (Φ,ζζζ̄ − Φ,uvζ)dv ∧ dζ ∧ dζ̄ , (B.7)

which clearly vanishes when Φ is harmonic. Thus, the spinorial description of the Newman-
Penrose map is complementary to the tensorial description, and when the harmonic condi-
tion is imposed, we can make use of the Poincaré lemma to locally integrate F = dA back
to a gauge field A ∝ k̂Φ, where k̂ is given by (4.1) in tensorial form, and can be written in
spinorial form as

k̂ = Q

2πε0
dxAȦῑȦδA . (B.8)

While the tensorial description has the advantage of being more familiar to many
readers, we see that the spinorial description has its own advantages — the operator k̂
appears somewhat mysterious in the tensorial formulation, however it can be understood
in the spinorial approach as an artifact of the “spinor directional derivative” δA, which
has a relatively natural interpretation. And the set of non-linear partial differential equa-
tions (A.22) of which Φ is a solution to, has a relatively simple expression in terms of a
spinorial directional derivative, namely (A.29). Note that the choice of spinorial directional
derivative (B.2) is not unique. Indeed, one may consider a spinorial directional derivative
along a general direction in spin space i.e.

δA =
(
c1ō

Ȧ + c2ῑ
Ȧ
)
∂AȦ , (B.9)

(and its conjugate δ̄Ȧ), which may a priori act on Φ or Φ̄. However, restricting to a
direction in spin space that leads to an interesting map, namely a non-trivial gauge field
that satisfies the self-dual condition (4.4), leads to the choice (B.2) (and analogously the
choice of differential operator in (4.1)) when acting on Φ and it’s conjugate when acting on
Φ̄. While it would be interesting to discover a deeper understanding of how the particular
direction in spin space (B.2) is related to the Newman-Penrose map, it is beyond the scope
of the current work.

C Details of the Kerr metric

In this appendix we present some details of the Kerr metric that are relevant to section 4.2.2.
First we verify that the metric for Kerr (and in the a → 0 limit, Schwarzschild) can be
obtained from the complex scalar Φ of (4.21). This demonstrates the potential for the
Newman-Penrose map to be inverted: starting with a self-dual gauge field generated by the
operator k̂ acting on a complex scalar Φ, we may obtain solutions to the vacuum Einstein
equations with only the mass parameter as external input. More general non-vacuum
solutions may also be generated, and we hope to explore this in detail in future work. We
conclude by deriving the relation of the Kerr metric in Boyer-Lindquist coordinates to the
two Kerr-Schild forms (4.24) and (4.33).
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C.1 Generating the Kerr-Schild form of the metric from Φ

After making use of the definition of r (4.22) and z = r cos θ, Φ for the Kerr metric (4.21)
can be written

Φ = 1
2ζ̄

(
(v − u+

√
2ia)−

√
2(r + ia cos θ)

)
= r − ia√

2ζ̄
(cos θ − 1) . (C.1)

From this we can define the null one-form

ω2 = du+ Φ̄dζ + Φdζ̄ + ΦΦ̄dv , (C.2)

as well as the function V so that the full metric can then be written in Kerr-Schild form as

g = g0 + V ω2 ⊗ ω2, (C.3)

where g0 is the flat-space metric. In the case of vacuum spacetimes, the real scalar V is
also determined by Φ:

V = M(ρ+ ρ̄)
P 3 , (C.4)

with

ρ = 1 + ΦΦ̄
2ζ̄Φ− (v − u+

√
2ia)

and P = 1√
2

(1 + ΦΦ̄). (C.5)

Plugging in (C.1) for the Kerr metric into these equations gives

ρ = −
√

2
(1 + cos θ)(r + ia cos θ) and P =

√
2

1 + cos θ , (C.6)

where we made use of the fact that 2ζζ̄ = (r2 +a2)(1−cos2 θ). This means the real function
V for the Kerr metric is

V = −Mr(1 + cos θ)2

(r2 + a2 cos2 θ) . (C.7)

For the null one-form ω2, we can plug (C.1) into (C.2) to get

ω2 = du+ r − ia
2ζ̄

(cos θ − 1) dζ̄ + r + ia

2ζ (cos θ − 1) dζ + 1− cos θ
1 + cos θdv . (C.8)

Transforming to Cartesian coordinates via (3.1), this becomes:

ω2 =
√

2
1 + cos θ

[
dt− z

r
dz − rx+ ay

(r2 + a2)dx−
ry − ax
(r2 + a2)dy

]
(C.9)

such that (C.2) becomes

ds2 = ds2
0 −

2Mr

(r2 + a2 cos2 θ)

(
dt− z

r
dz − rx+ ay

(r2 + a2)dx−
ry − ax
(r2 + a2)dy

)2
. (C.10)
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Note that this form for the Kerr metric naïvely disagrees with that given in (4.24),
which for ease of direct comparison we reproduce here:

ds2 = ds2
0 −

2Mr

(r2 + a2 cos2 θ)

(
dt+ z

r
dz + rx+ ay

(r2 + a2)dx+ ry − ax
(r2 + a2)dy

)2
. (C.11)

However, these two metrics are equivalent, at least in the region exterior to the outer horizon
r+ [78]. For the two pairs of x and y coordinates appearing in each of these expressions
are not the same quantities, as they are each related to more standard coordinates for the
Kerr metric by a different coordinate change.

C.2 Other coordinate systems

A standard textbook expression for the Kerr metric, in Boyer-Lindquist coordinates (see
for instance Chandrasekhar [49]), is given by

ds2 = ∆
ρ2 (dT − a sin2 θdϕ)2 − sin2 θ

ρ2

(
adT − (r2 + a2)dϕ

)2
− ρ2

∆ dr2 − ρ2dθ2 , (C.12)

where
ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2. (C.13)

The metric is invariant under a combination of time reversal and a flip of the direction of
rotation, but not either transformation individually. In (C.12), we can freely choose either
sign for a by doing a coordinate transformation T → −T or ϕ→ −ϕ. Assume we’ve done
that, then we proceed with a fixed sign for a in what follows, except where noted at the
end of this discussion. Following [49], we consider the ingoing and ‘(+)’ and outgoing ‘(−)’
null rays15

dw = dT ± r2 + a2

∆ dr , dφ = ±dϕ+ a

∆dr . (C.14)

Only the lower choice ‘(−)’ was considered in [49], but as we shall see, the other choice
is important as well. These two choices will lead to the two different expressions of the
Kerr-Schild form for the Kerr metric. Looking ahead to (C.16) giving an intermediate form
of the metric in this new coordinate system, one indeed sees that on dw = dφ = dθ = 0
the metric is null. Continuing, then in the new coordinate system

ds2 = ∆
ρ2

(
dw∓asin2 θdφ

)2
∓2drdw+2asin2 θdφdr− sin2 θ

ρ2

(
±(r2+a2)dφ−adw

)2
−ρ2dθ2 .

(C.15)
Since the only dependence on the metric on M is in ∆ which is linear, in these coordinates
the dependence of the metric on M is linear, so the metric is now in the Kerr-Schild form.
All the other terms have to give the Minkowski metric. Substituting for ρ and ∆ one has

ds2 = (dw ∓ dr)2 − dr2 − ρ2dθ2 − (r2 + a2) sin2 θdφ2 + 2a sin2 θdφdr

− 2Mr

r2 + a2 cos2 θ
(dw ∓ a sin2 θdφ)2 . (C.16)

15These are usually defined either as dv or du for the + or − sign respectively, but we use the letter w
here for full generality.

– 31 –



J
H
E
P
1
2
(
2
0
2
0
)
1
2
1

The first line is Minkowski space in “oblate spheroid” coordinates. The second line is
the Kerr-Schild vector part. To see that, define Cartesian coordinates (4.27)

x+ iy = (r + ia)eiφ sin θ , z = r cos θ . (C.17)

Then

x2 + y2 = (r2 + a2) sin2 θ ,
x2 + y2

r2 + a2 + z2

r2 = 1 , (C.18)

and

dx2 + dy2 + dz2 = dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ2 − 2a sin2 θdrdφ . (C.19)

Finally we let
dt = dw ∓ dr , (C.20)

then
ds2 = ds2

0 −
2Mr

r2 + a2 cos2 θ
(dt± dr ∓ a sin2 θdφ)2 , (C.21)

which is in the Kerr-Schild form for either ±. In summary, starting with a standard
textbook form for the Kerr metric (C.12), then by transforming to coordinates associated
to either of the special principal null directions, the Kerr metric can be written in the
Kerr-Schild form in two different ways.

Now let’s proceed to write the 1-form in the above metric in terms of the x, y, z

coordinates. Using

xdy − ydx = −a sin2 θdr + (r2 + a2) sin2 θdφ , (C.22)

one finds after some algebra the outgoing ray (upper sign choice) and ingoing ray (lower
sign choice)

dt± dr ∓ a sin2 θdφ = dt±
(
z

r
dz + rx+ ay

r2 + a2 dx+ ry − ax
r2 + a2 dy

)
. (C.23)

We now see that the lower/‘−’ choice for the outgoing ray is the same as the above expres-
sion (C.10) for the Kerr-Schild metric obtained using Φ, and is equivalent to the expression
in [49] after using slightly different coordinate transformations.16 The upper/‘+’ choice for
the incoming ray gives the usual Kerr-Schild form of Kerr metric found in the double copy
literature and given above in (C.11).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

16To see that, first note that for dφ in [49] has an opposite sign choice to the one used here, so define
dφ = dϕ− a

∆dr and also x+ iy = (r− ia)e−iφ sin θ, whose only effect is to change the sign of a in the above
expression.
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