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1 Introduction

The quantization of strings in non-critical dimensions and in particular in four spacetime
dimensions is an utmost important question for the description of nature in terms of a
string theory. An important step toward this goal has been achieved in [1], where by using
the Polchinski-Strominger (PS) effective action [2], the rotating open strings at any D

dimensions and closed strings in D ≥ 5 were quantized. The former case was shown to
admit an intercept a = 1 like the one in critical dimensions, this being the leading order
result for large angular momentum. However, the interesting case of rotating closed strings
in four dimensions was not resolved in that paper. In the latter case there is a singularity in
the PS action that could not be handled using the tools of that paper. The reason for that
is that the classical rotating closed string develops two folding points, and the PS action
diverges at those points. Folds occur also for bosonic strings in the critical dimension and,
as we will show, form obstacles to the semiclassical quantization of the system. Thus the
goal of this note is to provide a procedure of quantizing fluctuations around rotating strings
in general, and in particular to tackle the quantization of closed strings in four dimensions.

In fact folded strings are quite generic configurations in string theory, so that proper
quantization of them is a crucial task. Folded strings have been analyzed in various different
circumstances, including: the 2D string theory dual of YM2 [3], 2D strings duals of certain
lattice models [4], strings associated with QCD [5] and strong coupling [6], strings in curved
spacetime [7], strings falling into a black hole [8], the structure inside the horizon of a black
hole [9, 10], folded non-critical strings [11], rotating folded strings in AdS5 × S5 (see [12]
and many references therein), glueballs as rotating folded strings [13], rotating open strings
in magnetic fields [14], and more [15].

Folded maps from a worldsheet to a target space are characterized by the fact that
the scalar curvature associated with the induced metric diverges on the folding points.
For rotating strings the folding points move at the speed of light and these properties are
related. It turns out, as was observed in [14], that a folding point is a severe obstacle to
quantizing the string. Because of the divergence at the folding points the eigenmodes of
fluctuations of the string around the classical solution are not normalizable. Thus, the
canonical quantization of the fluctuations around a folded string is ill defined.
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There is no apparent problem in canonically quantizing in the standard way a closed
string that carries angular momentum. The problem arises only when one uses the semi-
classical procedure of quantizing the fluctuations around a classical folded rotating string
solution. There are string systems where the latter procedure is the most natural one,
especially in the effective string theory description of long strings [2, 16–19]. Some spe-
cific examples include the stringy models of hadrons [20] as well as certain other cases for
instance [9, 11, 21].

A semiclassical description of fluctuations around rotating strings in particular is im-
portant due to the fact that rotating strings have asymptotically linear Regge trajectories,

J = α′M2 + . . . (1.1)

or in the language of Regge theory α(t) = α′t + . . .. In [22] it was shown by imposing
various consistency conditions on 2→ 2 scattering amplitudes that any theory with weakly
interacting massive higher spin particles is constrained to have linear trajectories at large
t, and the scattering amplitude A(s, t) in the limit of large positive s and t must coincide
with the Veneziano amplitude. String theory at weak coupling and large N YM are the
most prominent examples of theories to which this applies, but there is a large space of
QFTs which have an effective string limit, and then the expansion around rotating strings
is the most natural way to describe them. In [23], a followup work to [22], it was found
using the same methods that corrections corresponding to massive particles on the string

J = α′M2 + cmα
′m3/2M1/2 + . . . (1.2)

are also universal for the same space of theories, in the sense that it is the only possible term
that still increases with the energy. Here cm is an O(1) dimensionless coefficient, and m is
some new mass parameter in the effective theory. In [23] it was shown that the corrections
found, including those for the scattering amplitude in the large s, t limit, correspond to
massive endpoint particles on open strings. On the other hand, since the result also applies
to theories with only closed strings, such as large N YM, it was conjectured that the m3/2

correction for closed strings can be associated with the folding points in rotating closed
string solutions. There it was argued that the mass terms may arise from higher derivative
terms on the worldsheet.

The main idea of this work is to add a massive particle at the location of a fold, both
for the rotating closed string and the open string with charged endpoints, or any other
folded string configuration. With the massive particles the curvature at the folds becomes
finite and the eigenmodes are normalizable. We use the mass of the particle as a regulator
which we can take to zero at the end of the process in a well defined manner. In [24] we have
quantized the open string with massive endpoints for m

TL � 1 where m is the mass of the
endpoint particle, T the tension, and L the length of the open string. The corresponding
PS term diverges in the massless limit. We introduced a regularization and renormalization
method which is similar to the one used for the ordinary Casimir effect and derived the
corresponding intercept. In the limit of zero mass it is equal to the result derived in [1].
It should be emphasized that while the most visible divergence is that of the PS term in

– 2 –



J
H
E
P
1
2
(
2
0
2
0
)
1
2
0

the non-critical effective string theory, the problem of normalizing the fluctuation modes
around the rotating solution is there whenever we expand around a folded rotating solution,
including strings in the critical dimension.

The masses are added by coupling to the string action the worldline action for massive
point particles

Spp = −
∑
i

mi

∫
dτ

√
−Ẋ2|σ=σi (1.3)

at various points σi on the string. For the ordinary open string we place these terms at the
endpoints of the string, which is well motivated by both theory and phenomenology. In
previous works we have explored endpoint masses from the point of view of strings stretched
between flavor branes in holographic backgrounds [25], and showed that corrections of
the form (1.2) are well supported by looking at the Regge trajectories of experimentally
observed hadrons [26]. The matching with experiment actually goes beyond just the leading
term of eq. (1.2), it also works for large masses where the deviation from linear trajectories
is great.

In this paper we argue the role of masses as regulators to the divergences in the
semiclassical quantization of fluctuations around rotating string solutions. We argue that
to resolve the divergences on folded strings we should place such terms on the folding
points of the string, rather than just the boundaries. The reason it works is that the
divergences are associated with the fact that the folding points move at the speed of light,
and the masses act to slow them down. We add the extra terms by hand, adding the
action (1.3) at the points where regularization is required. This might be an unusual
way to renormalize, by adding localized counterterms, but the inclusion of mass terms is
physically well motivated and in this paper we show it is mathematically consistent.

If we use the massive particle at every folding point as a regulator and take it to zero,
we show that the intercept, including the contribution from the PS term, for rotating open
strings takes the form

aopen = D − 2
24 + 26−D

24 = 1 (1.4)

for any D, while for closed strings

aclosed = D − 2
12 + 26−D

12 = 2 (1.5)

For both open and closed strings, the result in the massless limit is that the intercept is
independent of the dimension, a result which generalizes what was found in [1] to the closed
string. This means that for open rotating strings the leading Regge trajectory is

J = α′M2 + 1 (1.6)

for any D, and for closed strings
J = 1

2α
′M2 + 2 (1.7)

also independently of dimension. Here α′ = (2πT )−1 for both types of strings, where T
is the string tension. In this paper we also continue the work begun in [14], and analyze
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the rotating open string with opposite endpoint charges rotating in a magnetic field. As
long as the two charges are +q and −q, such that the total charge of the string is zero, the
Regge trajectory is still J = α′M2 + 1, independently of either the dimension or the value
of the magnetic field.

In this paper we compute the spectrum of fluctuations and the intercept for rotating
folded strings with finite masses on their folding points, correcting eqs. (1.4) and (1.5).
The leading correction will be of the form of (1.2), which we get from the classical solution
in the presence of masses. The intercept will include more corrections starting at order(
m
TL

)1/2, and these will depend on the mass, as well as the spacetime dimension D, and
the external magnetic field for the case of the rotating open string with endpoint charges.

The quantization of the folded rotating closed string and of folded open strings with
electric charges on their ends is important for describing hadrons in terms of strings. Glue-
balls with non-trivial angular momentum are expected to be described by folded closed
strings [13] and mesons and baryons are supposed to relate to open string with massive
particles and electric charges on their endpoints.

En route toward the renormalization of the folded strings and determination of the
intercept we see multiple computations that we can carry out using both the Zeta function
renormalization as well as the technique of the Casimir energy contour integral [27]. The
results match in all the cases discussed. By this comparison we arrive at various identities
between infinite sums involving Zeta functions and closed integral expressions which give
the same function. These are listed in appendix B.

This work is organized as follows. In section 2 we write down the definition and some
general properties of folded strings. In section 3 we present several classical folded solutions
of the string equations of motion. These are mainly rotating solutions, for both closed and
open strings, and including both flat spacetimes and a few examples of strings rotating
in curved backgrounds. We also include an example of a folded non-rotating solution to
compare to the rotating solutions.

In section 4 we discuss in general the semiclassical description of strings, in particular
we analyze the fluctuations on rotating strings. Next we perform the semiclassical quan-
tization of the folded closed string (section 5) and the folded open string in a magnetic
field (section 6). We describe the quantization in the presence of massive particles on the
folding points, and compute the spectrum and the intercept of the theory, in the presence
of the folding point masses.

The computation of the intercept also needs a contribution from the Polchinski-
Strominger term for non-critical strings. This is addressed is section 7. A summary and
open questions are in section 8.

2 Folded strings: generalities

The basic definition and properties of a fold of a bosonic string configuration were written
down in [4]. In this section we review the basics of folds and further elaborate on folds on
rotating strings.
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A string configuration Xµ(σa) is a map from a world-sheet Σg of genus g described
by a pair of coordinates (σ0, σ1), with −` ≤ σ1 ≤ ` to a d dimensional target spacetime
manifoldM with coordinates Xµ, where µ = 0, . . . d− 1.

The framework in which we study these maps is the Nambu-Goto (NG) action for
which the partition function for closed strings is given by

ZM =
∑
g

λ2g−2
st

∫
DXeT

∫
d2σ
√

det(hab) (2.1)

where λst is the string coupling, T is the string tension and the induced metric hab is
given by

hab = Gµν(X)∂aXµ∂bX
ν (2.2)

given a target spacetime with metric Gµν(X). For now we work in Euclidean signature
as in [4].

For the case where the target space is two dimensional the NG action can be written as

SNG = T

∫
d2σ

√
det(Gµν)| det (Jµa ) | (2.3)

where Jµa is the Jacobian matrix defined by

Jµa ≡
∂Xµ

∂σa
(2.4)

and for the special case of flat target spacetime

SNG = T

∫
d2σ| det (Jµa ) | (2.5)

The folded string solutions that we will study in this paper reside on target spaces
which are not necessarily two dimensional, however the maps themselves can be described
as maps into a two dimensional subspace of the full target spacetime.

The maps Xµ(σa) to a two dimensional target space can now be classified in the
following way

• Unfolded maps for which
| det (Jµa ) | 6= 0 (2.6)

everywhere.

• Folds which are curves on the target space for which

| det (Jµa ) | = 0 (2.7)

at some point (or points) σ1 = σf in the bulk of the worldsheet −` < σf < `.

In addition to the criterion above that is restricted to two dimensional target space,
there are other signatures of folded maps. For a two dimensional target space it is
easy to realize that the condition (2.7) implies also that the determinant of the induced
metric vanishes

dethab = 0 (2.8)
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The induced metric is a 2×2 matrix for any target space dimension so for the more general
case one can define a fold using the condition (2.8). To rewrite the condition in terms of a
diffeomorphism invariant quantity we can perform world sheet coordinates transformations
so that the world sheet metric is brought to the following form

ds2 = 2h+−dσ
+dσ− (2.9)

The world sheet scalar curvature that corresponds to this metric has the form

R2 = ∂−∂+ ln(h+−)
h+−

(2.10)

Thus, on a fold that obeys (2.8) we expect the scalar curvature to diverge,

|R2| → ∞ (2.11)

at the folding points. The determinant dethab might vanish due to a coordinate singu-
larity, so in general one must verify the singularity associated with the folding point by
computing the scalar curvature directly. We will do that for explicit folded solutions in the
following section.

For rotating folded strings that will be the focus of this paper there is another physical
property that characterizes the fold, and that is that the folding point moves at the speed
of light.

Let us assume now the static gauge σ0 = τ = X0, and use the remaining repametriza-
tion of σ1 = σ to fix h01 = 0, such that the induced metric in this gauge is given by

hab =
(
−1 + β2(τ, σ) 0

0 X ′2(τ, σ)

)
(2.12)

Note that for this analysis we have gone to Lorentzian signature, which we will use for the
rest of the paper. Now

β2 = ∂X i

∂τ

∂X i

∂τ
(2.13)

is the velocity in target space of any given point. The determinant of the metric is

dethab = −(1− β2)(X ′)2 (2.14)

so it vanishes at points moving at the speed of light, β2 → 1 or at points satisfying
(X ′)2 = ∂Xi

∂σ
∂Xi

∂σ = 0.
We defined above a fold at −` < σf < `. There are maps where the condition (2.7)

is obeyed at the boundary of the worldsheet coordinates, σ = ` or −`. A particular
case that will be described in the next section is that of rotating open strings. Then the
two conditions

det(hab) = 0|σ=±` β2 = 1|σ=±` (2.15)

are met, but the maps are not folded, since this happens at the boundary.
In the next section we write various particular solutions of the string equations of

motion and analyze the induce metric, velocity, and worldsheet curvature on those solutions
to demonstrate the ideas in this section.
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3 Classical folded solutions of the string equations of motion

In certain circumstances the classical string equations of motion admit folded string solu-
tions. We focus mainly on rotating solutions. These include rotations in flat spacetime of
closed strings and open strings in an external magnetic field, which are solutions that must
include folds. We briefly describe rotating folded strings in AdS target space, as well as
closed folded strings in generic holographic confining backgrounds. In the last part of the
section we describe an example of a non-rotating folded solution.

3.1 Rotating folded string solutions in flat spacetime

The action of the bosonic string is the Nambu-Goto action given by

S = − 1
2πα′

∫
dτdσ

√
− dethab , (3.1)

where
hab = Gµν(X)∂aXµ∂bX

ν (3.2)

is the induced metric on the world sheet and

α′ = 1
2πT , (3.3)

where T is the tension of the string. We assume for now that the background is flat
Gµν(X) = ηµν .

The equations of motion derived from the NG action read

∂α(
√
−hhαβ∂βXµ) = 0 (3.4)

The rotating configuration given by

X0 = τ X1 = R(σ) cos(ωτ) X2 = R(σ) sin(ωτ) (3.5)

is always a solution of the equations of motion. We pick the form

R(σ) = 1
ω

cos(ωσ + φ) (3.6)

such that the solution also obeys the orthogonal gauge conditions (or Virasoro constraints):

Ẋ2 +X ′2 = Ẋ ·X ′ = 0 (3.7)

Or in other words the worldsheet metric is conformally flat, hab = eϕηab.
Imposing different boundary conditions on the string will fix the allowed values of the

parameters ω and φ that appear in the solution.
The induced metric on the rotating solution is

hab =
(
−1 + ω2R2 0

0 R′2

)
(3.8)
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When R(σ) = 1
ω cos(ωσ + φ), it is

hab = sin2(ωσ + φ)ηab (3.9)

The velocity of a given point on the string is given by

β2(σ) = ω2R2 = cos2(ωσ + φ) γ(σ) = 1√
1− β2 = 1

| sin(ωσ + φ)| (3.10)

and the worldsheet curvature is

R2(σ) = 2ω2

sin4(ωσ + φ)
= 2ω2γ4(σ) (3.11)

The curvature diverges at points that move at the speed of light, β2 = 1.

3.1.1 Rotating closed strings in flat spacetime

In the case of the closed string, the worldsheet coordinates are τ ∈ (−∞,∞) and σ ∈ (−`, `)
The boundary conditions for a closed string are the periodic identification σ ∼ σ + 2`, in
particular −` ∼ `. The rotating string solution is

X0 = τ X1 = 1
ω

cos(ωσ) cos(ωτ) X2 = 1
ω

cos(ωσ) sin(ωτ) , (3.12)

where ω takes the values
ω = nπ/` (3.13)

for any integer n.
The energy of this configuration is

E = T

∫ `

−`
dσ∂τX

0 = 2T` (3.14)

The angular momentum, going to polar coordinates in the 12 plane,

J = T

∫ `

−`
dσρ2∂τθ = T

ω

∫ `

−`
dσ sin2(ωσ) = nT`2

π
(3.15)

From the last two equations we can easily see that for the classical rotating folded string

J = 1
4πTnE

2 = 1
2nα

′E2 (3.16)

The slope of the trajectory is 1
2nα

′
o, where α′o = 1

2πT is the Regge slope of an ordinary open
string trajectory of the same string tension. We can say that the tension of the string is
effectively 2nT , which is a property derived from the fact that the rotating closed string is
a folded string. In particular, n = 1 gives the leading trajectory, maximizing J for a given
energy E, and based on that we say that the closed string slope is double that of the open
string, α′c = 1

2α
′
o.

For the general n-folded solution

β2(σ) = cos2(nπ
`
σ) R2 = 2ω2

sin4(nπ` σ)
(3.17)
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Figure 1. The rotating folded string has 2n folding points and effective tension 2nTo, where To is
the bare tension, or the tension of a non-folded open string. The solutions are drawn with finite
width, but the classical solutions we write have zero width, such that the different segments and
the folding points coincide.

For n = 1 there are two folding points at σ = 0 and ±` which move at the speed of
light, and the worldsheet curvature is divergent on them. In general there are 2n points,
σk = `

n(k − n) with k = 0, . . . , 2n− 1 which are folding points along the string. All the σk
with even k coincide in target space with σ = 0, while all the odd k coincide with σ = ±`,
so in effect we have n copies of the original folded solution sitting on top of each other. See
figure 1. From a target space point of view, one can say there are two folding points, and
the string passes through each of them n times. Classically this distinction is unimportant
but quantum fluctuations around the multiply folded solution will need to have defined
“boundary” conditions at each of the 2n folding points.

Most of this paper will be focused on the leading solution with n = 1. The ordinary
quantization of the closed bosonic string in critical dimensions leads to the leading Regge
trajectory J = 1

2α
′+a, with the intercept a = 2, and in we extend this result to non-critical

dimensions by the semiclassical quantization around the folded rotating solution.

3.1.2 Rotating closed strings in two planes of rotation

For D ≥ 5, the rotation group SO(D− 1) contains SO(4) ∼ SU(2)× SU(2), so the solution
written in the previous subsection is not the most general rotating solution, since we can
write a more general one with two independent angular momentum numbers. A generic
rotating string solution with angular momenta in two different planes can be written as

X0 = τ X1 = cos ξ
ω

sin(ωσ) cos(ωτ) X2 = cos ξ
ω

sin(ωσ) sin(ωτ)

X3 = sin ξ
ω̃

sin(ω̃σ − φ) cos(ω̃τ) X4 = sin ξ
ω̃

sin(ω̃σ − φ) sin(ω̃τ) . (3.18)

The equations of motion and Virasoro constraints are obeyed for any choice of the param-
eters.

For the closed string ω and ω̃ are integer multiples of π/`. As before, we are interested
in the leading solution which maximizes angular momentum for a given energy. Therefore
we take ω = ω̃ = π

` . This solution does not have folds. In addition, it does not develop folds
when looking at solutions where the angular velocities are given by higher multiples of π

` .
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The mass and angular momentum are

M = π

2TL J1 ≡ J12 = π

16TL
2 cos2 ξ J2 ≡ J34 = π

16TL
2 sin2 ξ (3.19)

where L is the length of the string, and the closed string Regge trajectory is now given by

J1 + J2 = 1
4πT M

2 = 1
2α
′M2 (3.20)

plus an intercept from quantum corrections.
The parameters ξ and φ are not fully independent for ω = ω̃, since we can change them

by performing rotations in the 13 and 24 planes. If the rotation is done simultaneously
and with the same angle in both planes we get another solution of the same form as in
eq. (3.18) (up to a shift in σ). If we start from any solution with φ 6= 0 and ξ 6= 0, we can
rotate by an appropriate angle to a solution with φ = π/2. On the other hand, a solution
with φ = 0 can be rotated to give back the solution with ξ = 0, which is the folded solution
rotating in a single plane that we examined above.

Therefore, we now look at the solution with φ = π
2 and ω = ω̃ = π/`:

X0 = τ X1 = cos ξ
ω

sin(ωσ) cos(ωτ) X2 = cos ξ
ω

sin(ωσ) sin(ωτ)

X3 = sin ξ
ω

cos(ωσ) cos(ωτ) X4 = sin ξ
ω

cos(ωσ) sin(ωτ) . (3.21)

We can show now that as long as J1 and J2 are both non-zero, then there is no fold, no
point moving at the speed of light, and everything is finite.

The induced metric on the worldsheet of this solution is

hab = 1
2[1− cos(2ξ) cos(2ωσ)]ηab (3.22)

We can define J± = J1 ± J2, in terms of which

hab = 1
2J+

[J+ − J− cos(2ωσ)]ηab (3.23)

The velocity of a given point along the string is

β2(σ) = 1
2J+

(J+ + J− cos(2ωσ)) (3.24)

The worldsheet curvature,

R2 = 8ω2J+J−
J− − J+ cos(2ωσ)

(J+ − J− cos(2ωσ))3 (3.25)

is finite everywhere as long as |J+| 6= |J−|, which is the case as long as both J1 and J2 are
non-zero. If one of them is zero, we are back to the case of the folded string, with the folding
points σ = 0 and ` moving at the speed of light and having divergent worldsheet curvature.

If one of the angular momenta is much larger than the other, w.l.o.g. J1 � J2, we can
get arbitrarily close to having a folding point by increasing the ratio J1/J2. The velocity
of the extremal points in that case will be

β(0) = β(`) = 1− J2
J1

+ . . . (3.26)
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Figure 2. The ordinary rotating string has no folds, but for ω = nπ` with n > 1 there will be
n − 1 folding points and effective tension nTo. For even n the endpoints of the string coincide in
target space.

while the worldsheet curvature at these points is

R2 = −2ω2
(
J1
J2

)2
+ . . . (3.27)

We see that for a finite ratio of J1/J2 the curvature is large and negative at the extremal
points. On the other hand, the curvature at the folding points in the J2 = 0 limit is
positive infinity.

We will not quantize the fluctuations around this solution in this paper, but we discuss
some aspects of its quantization, which was carried out in [1, 28], in section 7.1.1.

3.2 Rotating open string solutions

For the open string we take σ ∈ (0, `). For open strings with Neumann boundary conditions,
there exist rotating solutions of the same form as the closed string solution of eq. and with
ω = nπ

` . These solutions have the Regge trajectories

J = 1
2nπT M

2 = 1
n
α′M2 (3.28)

The leading trajectory with n = 1 is not folded. The endpoints σ = 0 and ` move at
the speed of light, and the problem of the semiclassical quantization of this system in
non-critical dimensions, with appropriate treatment of divergences at the boundaries, was
addressed in [1, 24]. For general n > 1, there are n − 1 folding points, σk = `

nk with
k = 1, . . . , n− 1. For even n the string folds back on itself such that the endpoints 0 and `
coincide in target space and there is a folding point at the other end of the rotating string.
For odd n they sit at the opposite ends. See figure 2.

3.2.1 Rotating open strings in magnetic fields

Instead of discussing the folded n > 1 solutions of the Neumann open string, we turn to
another system where folds must develop even for the leading solution with n = 1. This is
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Figure 3. The rotating solution of a neutral string with endpoint charges in a magnetic field. The
charges rotate around the central point between them. The magnetic field is in the z direction,
coming out of the plane, and the rotation is counterclockwise.

the open string coupled to an electromagnetic field whose action is the Nambu-Goto action
plus the boundary terms

Sq = q

∫
dτAµẊ

µ|σ=0 − q
∫
dτAµẊ

µ|σ=` (3.29)

such that the boundary conditions of the string are

TX ′µ + qFµνẊ
ν = 0 (3.30)

When we take a purely magnetic field, that is F12 = −F12 = B we find that the rotating
solution now has a fold even for n = 1. Note that while here we discuss the specific case
that the charges on the endpoints are +q and −q, more generally it holds that if there
is positive charge on one endpoint and a negative charge on the other, then any rotating
solution must have a fold, as in figure 3. This is because the Lorentz force acting on the
endpoint charges will be in the same direction for both charges, and the string tension that
balances it will have to act in the same direction on both endpoints. This is impossible
without a fold. See figure 4.

We assume w.l.o.g. that B > 0. The solution we discuss is again of the form

X0 = τ X1 = 1
ω

cos(ωσ + φ) cos(ωτ) X2 = 1
ω

cos(ωσ + φ) sin(ωτ) (3.31)

where the boundary conditions dictate that

ω = π

`
φ = arctan

(
qB

T

)
(3.32)

We took the leading solution (n = 1) with no additional folding points.
For this solution the charged endpoints of the string move at a finite velocity given

by β2
q = cos2 φ, while the folding point located at σf = `(1 − φ

π ) moves at the speed of
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light. Because of this, the worldsheet curvature is no longer divergent at the endpoints,
the boundary of the worldsheet, but only at the folding point which is now in the bulk.

The coupling to the magnetic field does not change the Regge trajectory, as the energy
and angular momentum are the same as for the Neumann string

E = T` J = T`2

2π (3.33)

with the Regge trajectory
J = α′E2 (3.34)

In the critical dimension, the system can be quantized exactly, with the result J = α′M2 +
1 [29]. We will compute the intercept in the semiclassical quantization around the rotating
string with the fold, and show that a = 1 is the result for any dimension D, which is the
same as the result for the rotating open string with no external field.

3.2.2 Rotating open string with massive endpoints
We will make use in later sections of a rotating sting with massive endpoints. This solution
is not folded and does not exhibit any divergences. It will be the basis for the regularization
of the divergences associated with the folds. The action of the system of an open string
with massive endpoints is given by adding to the string action

S = Sst + Spp|σ=0 + Spp|σ=` (3.35)

the mass terms
Spp = −m

∫
dτ

√
−Ẋ2 (3.36)

For now we assume equal endpoint masses. The bulk equations of motion are the same as
those of the ordinary open string but the boundary conditions now are

T
√
−h∂σXµ ±m∂τ

(
Ẋµ√
−Ẋ2

)
= 0 σ = 0, ` (3.37)

with the plus sign at 0 and minus at `. For the rotating solution, the requirement now is
that

T

√
(1− ω2R2)R′2

R′
∓m ω2R√

1− ω2R2
= 0 σ = 0, ` (3.38)

When expressed in terms of the endpoint velocity β and length of the string L the boundary
conditions read

T

γ
= 2γmβ2

L
⇒ TL

2m = γ2β2 (3.39)

This equation has the simple interpretation of the balancing between the tension and
centrifugal force acting on the endpoint particle.

The classical energy and angular momentum are expressible as functions of T , m, L
and β:

E = 2m√
1− β2 + TL

arcsin β
β

(3.40)

J = mLβ√
1− β2 + 1

4TL
2 arcsin β − β

√
1− β2

β2 (3.41)

– 13 –



J
H
E
P
1
2
(
2
0
2
0
)
1
2
0

And we find the mass corrected Regge trajectories

J = α′E2
(

1− 8
√
π

3

(
m

E

)3/2
+ 2π3/2

5

(
m

E

)5/2
+ . . .

)
(3.42)

It is easy to see that the massive endpoints now rotate at a finite velocity, which can be
expressed as

β2 =
(

1 + 2m
TL

)−1
= TL

2m+ TL
(3.43)

The worldsheet curvature has a finite maximum now at the endpoints which can be writ-
ten as

R2 = 2γ4ω2 = 8γ4β2

L2 = 8
L2

TL

2m

(
1 + TL

2m

)
(3.44)

At small masses or high energies, i.e. when m� E, we can write

R2 = 2T 2

m2

(
1 + πm

E
+ . . .

)
(3.45)

so the curvature remains finite even as we take the energy of the string to infinity, as long
as we started with a finite mass.

3.2.3 Rotating strings in magnetic field with massive endpoints

As discussed in [14], the inclusion of mass terms in addition EM charges can prevent the
creation of the fold in the rotating solution.

For the ansatz of a rotating solution as in eq. (3.2), the boundary conditions, where
we have massive endpoints of mass m with charges +q at σ = 0 and −q at σ = `, are

−T sinφ+ mω cosφ
| sinφ| + qB cosφ = 0 σ = 0

T sin(ω`+ φ) + mω cos(ω`+ φ)
| sin(ω`+ φ)| − qB cos(ω`+ φ) = 0 σ = ` (3.46)

When m = 0 we find the folded solution with ω` = nπ and φ = arctan(qB/T ). In general
we can assume that qB > 0 and ω > 0. In that case for finite masses we can find a solution
with 0 ≤ φ ≤ π

2 .
With masses, there are two possible types of solutions. The Lorentz force on the charges

is in the same direction for both points. In the absence of masses, the fold is necessary
since we need the tension to balance the Lorentz force. With masses, the centrifugal force
can balance the two other forces with no fold required. This is depicted in figure 4.

We can write everything in terms of dimensionless quantities. Define η = m
T` , b = qB

T ,
and δ = ω`, so

− sinφ+ η
δ cosφ
| sinφ| + b cosφ = 0 σ = 0

sin(δ + φ) + η
δ cos(δ + φ)
| sin(δ + φ)| − b cos(δ + φ) = 0 σ = ` (3.47)

The solution will have a folding point if δ + φ ≥ π.

– 14 –



J
H
E
P
1
2
(
2
0
2
0
)
1
2
0

Figure 4. The forces acting on the endpoint particles when the fold develops. The forces are drawn
to scale for a solution with qB/T = 1/8 and equal endpoint masses. In (a) we take m/T` = 0.003
(T` being equal to the energy carried by the string) and we find a solution without a fold. When
the masses are taken to be even smaller, m/T` = 0.001 then we have only the solution with the fold.

For zero masses and any finite b the solution must have a fold as stated in section 3.2.1,
but when we start to increase the mass at the endpoints, we reach a point where a solution
without a fold exists. The two possibilities are depicted in figure 4.

3.3 Rotating folded closed strings in holography

Immediately after the pioneering papers of the AdS/CFT correspondence solutions of clas-
sical equations of motion of folded closed strings in both the AdS5 part of the target space as
well as the S5 part have been written [21] and analyzed later using a semiclassical quantiza-
tion procedure [30]. The solutions were then generalized to other holographic backgrounds
and in particular to confining holographic backgrounds [25]. In the next subsection we
write the rotating solutions for a closed string in AdS and then in the next subsection we
present a solution for a generic holographic background.

3.3.1 Rotating folded strings in AdS

In [21] a solution of a folded closed string in AdS was written down. The solution is given
in terms of the global coordinates1

ds2 = − cosh2ρ dt2 + dρ2 + sinh2ρ (dφ2 + sin2 φdΩd−3) (3.48)

The solution for a closed string, σ ∈ [0, 2π], in a single plane of rotation is

t = κτ θ = ωτ ρ = ρ(σ) = ρ(σ + 2π) (3.49)

where ρ(σ) has to solve the equation of motion (in conformal gauge)

(ρ′)2 = κ2 cosh2 ρ− ω2 sinh2 ρ (3.50)

The solution of the equation of motion can be written as follows

sinh ρ(σ) = k√
1− k2

cn(ωσ +K|k2) ρ′(σ) = κsn(ωσ +K|k2) (3.51)

1Here we follow the analysis of [30].
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where cn and sn are the Jacobi elliptic functions, and K ≡ K(k2) is the complete elliptic
integral of the first kind with elliptic modulus given by k = κ

ω . The radial coordinate ρ
varies from ρ(0) = 0 to its maximal value ρ0 which is given by

coth2(ρ0) = 1
k2 (3.52)

The periodicity condition implies that K = πω
2 .

The induced metric on this solution is given by

hab = ρ′(σ)ηab (3.53)

and the scalar curvature is
R2 = −2 + 2κ2ω2

(ρ′(σ))4 (3.54)

The difference from the rotating string in flat spacetime being the constant part of −2.
Considering the two dimensional sub manifold of the target space spanned by the

coordinates (t, ρ), the matrix Jµα reads

Jµα =
(
∂τ t ∂τρ

∂σt ∂σρ

)
=
(

1 0
0 ρ′(σ)

)
(3.55)

Thus at the zeros of ρ′(σ) = sn(ωσ +K|k2), which are σ = π
2 and σ = 3π

2 the determinant
of Jµα vanishes. The solution is folded at the two points and the worldsheet curvature
diverges there.

3.3.2 Rotating folded strings in confining backgrounds
The analysis of the quantum rotating folded closed string in confining background was per-
formed in [25]. Here we briefly summarize the classical solution. Assume a five dimensional
confining background of the form

ds2 = G(r)−1/2ηµνdx
µdxν +G(r)1/2dr2 (3.56)

where r is the holographic direction and µ, ν = 0, 1, 2, 3. Following [31] a sufficient condition
for this background to be a confining one, namely that a rectangular Wilson loop admits
area law behavior, is that there exists some r0 such that

∂rG(r) = 0|r=r0 and G(r0) > 0 (3.57)

The equations of motion for a string in this background are

∂a(G(r)−1/2ηab∂bX
µ) = 0 (3.58)

∂a(G(r)1/2ηab∂br) = 1
2∂rG(r)−1/2ηab∂µX∂bX

νηµν (3.59)

We search now for a rotation solution. As before, we look at a closed string with
σ ∈ [−`, `]. We take for it the following ansatz

X0 = τ X1 = 1
ω
g(σ) cos(ωτ) X2 = 1

ω
g(σ) sin(ωt)

X3 = 0 r = r(σ) (3.60)
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with ω = π
` . For this configuration the radial equation of motion and the Virasoro con-

straint read

∂σ(G(r)1/2r′)− 1
2∂r(G(r)−1/2)(1− ω2g2 − (g′)2) = 0 (3.61)

G(r)1/2(r′)2 −G(r)−1/2(1− ω2g2 − (g′)2) = 0 (3.62)

Invoking now the condition of confining background (3.57) we find that for r(σ) = r0 the
first equation is solved and that the rotating solution (3.60) solves the second equation as
well. Substituting the solution into the expression of the energy and angular momentum
we find

J = 1
2α
′G(r0)1/2E2 (3.63)

namely that the tension of the rotating string located at r = r0 is Teff = G(r0)−1/2

2πα′ .
Since this solution is located at constant r0, it is almost identical (at least classically)

to a rotating string in flat spacetime, with expressions differing by appropriate factors
of G1/2(r0). The induced metric on the worldsheet is now, picking the parametrization
g(σ) = cos(ωσ),

hab = G−1/2(r0) sin2(ωσ)ηab (3.64)

and the worldsheet curvature

R2 = 2G1/2(r0)ω2

sin4(ωσ)
(3.65)

The velocity in the four dimensional space is defined by

1− β2 = −ηµν
dXµ

dX0
dXν

dX0 (3.66)

and is still
β2 = cos2(ωσ) (3.67)

3.4 Folded non-rotating string solutions

To extend the scope of the treatment of folded string configurations, let us look at another
example of a folded solution found in [11] for a linear dilaton system in two dimensional
spacetime. A related solution was analyzed recently in [9].

In terms of the worldsheet coordinates τ and σ the folded solution reads

X0 = τ , X1 = x0 −Q log
[
cosh

(
σ

Q

)
+ cosh

(
τ

Q

)]
(3.68)

Here one considers infinitely long strings, σ ∈ (−∞,∞). In terms of worldsheet light cone
coordinates the solution is

X0 = σ+ + σ− , X1 = x̃0 −Q
[
log cosh

(
σ+

Q

)
+ log cosh

(
σ−

Q

)]
(3.69)
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It is clear from (3.68) that there is a fold at σ = 0. Using the definition of a fold given
in (2.7) we examine the matrix Jµα given by

Jµα =

1 −
sinh
(
τ
Q

)[
cosh

(
σ
Q

)
+cosh

(
τ
Q

)]
0 −

sinh
(
σ
Q

)[
cosh

(
σ
Q

)
+cosh

(
τ
Q

)]
 (3.70)

and we see that its determinant vanishes at σ = 0, and there is a fold in the string solution.
The induced metric associated with this fold solution is given by

hττ = 1−
sinh2 τ

Q

(cosh τ
Q +cosh σ

Q)2 hτσ =−
sinh σ

Q sinh τ
Q

(cosh τ
Q +cosh σ

Q)2 hσσ =−
sinh2 σ

Q

(cosh τ
Q +cosh σ

Q)2

(3.71)
or in light-cone worldsheet coordinates

h++ = 1
cosh2 σ+

Q

h−− = 1
cosh2 σ−

Q

h+− = 1− tanh σ
+

Q
tanh σ

−

Q
(3.72)

It is easy to realize that at the folding point σ = 0, the determinant vanishes det(hαβ) = 0.
The worldsheet curvature turns out to be R2 = 0 at all other points. On the fold σ = 0
there is a localized singularity where det(hαβ) = 0. We do not find a singularity of R2
there, but upon quantization one should be careful around the folding point.

As for the velocity of the fold, it is

β(τ) = ∂X1

∂X0 |σ=0 = −
sinh

(
τ
Q

)
1 + cosh

(
τ
Q

) (3.73)

The velocity of the fold is finite, except in the limit in the limit of τ → ∞ where it
accelerates to speed of light |β| → 1. We have in this solution an example of a fold that is
moving at a finite velocity, and while the worldsheet is flat everywhere else, it is singular
at the folding point.

4 Quantum fluctuations on strings with folds

In this section we will see how the divergences we encounter in the classical folded string
solutions affect quantum fluctuations when attempting the semiclassical quantization of
the string. We write the general quadratic action for the fluctuations, then move to the
particular case of a rotating string.

4.1 Expanding around classical solutions

Starting from the Nambu-Goto action

SNG = −T
∫
d2σ

√
− dethab (4.1)
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we expand around some “background” by writing Xµ = X̄µ+Y µ with X̄µ some solution to
the classical equations of motion. We can denote the classical part of the induced metric as

gab = Gµν(X̄)∂aX̄µ∂bX̄
ν (4.2)

where Gµν is the spacetime background metric. We define the fluctuations of the metric as

yab = hab − gab (4.3)

We use the expansion

dethab = det(gab + yab) = g exp
∞∑
n=1

(−1)n+1

n
tr
(
(g−1y)n

)
(4.4)

the square root of which is the action. Therefore the expansion of the NG action will
include various powers of tr

(
(g−1y)n

)
. We have to assume for this that g is invertible,

which is not true at some points (in our case the folding points). Nevertheless, we proceed
in writing such an expansion to see where it breaks down.

Expanding to quadratic order in yab, we have

SNG = −T
∫
d2σ
√
−g

(
1 + 1

2 tr(g−1y)− 1
4 tr(g−1yg−1y) + 1

8(tr(g−1y))2
)

+ . . . (4.5)

Note that yab includes both terms linear and quadratic in the fluctuations Y µ, so the
last equation contains some terms up to quartic order in Y , but not all terms of that
order. We keep only the quadratic terms in Y in the last equation to be consistent
with the expansion. Terms linear in Y vanish because we assume the equation of mo-
tion ∂a(

√
−ggab∂bX̄µ) = 0 holds.

The quadratic action for Y µ, assuming now for simplicity a flat background, is

S =− T
∫
d2σ
√
−g

(
1− 1

2g
ab∂aY · ∂bY + 1

2(V a · ∂aY )2
)

=− T
∫
d2σ
√
−g

(
1− 1

2(gabηµν − V a
µ V

b
ν )∂aY µ∂bY

ν
)

(4.6)

where we have defined
V a,µ = gab∂bX̄

µ (4.7)

Fluctuations in directions transverse to the classical solution in the sense that they do not
appear in the scalar product V a∂aY are free.

Without loss of generality we can make a choice of τ and σ such that the classical
solution obeys the conformal gauge constraint of gab = eϕηab. Then the action is

S = −T
∫
d2σ

(
eϕ − 1

2(ηabηµν − e−ϕηµληνρηacηbd∂cX̄λ∂dX̄
ρ)∂aY µ∂bY

ν
)

(4.8)

Now we see explicitly the factor of e−ϕ, which is proportional to the worldsheet curvature.
When the curvature diverges, then some of the coefficients of the fluctuations in the semi-
classical expansion will diverge as well. Then we will have divergences in the equations
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of motion which will have to be taken care of, and since the divergences are associated
with the diff invariant curvature, they will be present in any gauge. On the other hand,
fluctuations that are orthogonal to the classical solution do not know that they live on a
worldsheet with a singular geometry.

In general the next step is to redefine the fluctuations by taking some linear trans-
formation Ỹ µ = fµν(τ, σ)Y ν such that the Ỹ have a canonical kinetic term. We do that
next for the rotating string solution, and we show that the divergence remains for the
redefined fluctuations.

4.2 Expanding around rotating strings

The general form of the solution rotating in the 12 plane which we will expand around is

X̄0 = τ , X̄1 = 1
ω

cos(ωσ + φ) cos(ωτ) , X̄2 = 1
ω

cos(ωσ + φ) sin(ωτ) (4.9)

and with X̄i = 0 for i ≥ 3. In the polar coordinates where X1 = ρ cos θ, X2 = ρ sin θ, the
solution is

ρ = R(σ) = 1
ω

cos(ωσ + φ) , θ = ωτ (4.10)

We now add fluctuations to the solution, taking Xµ = X̄µ + δXµ. Of the D− 2 modes
transverse to the string, one is in the plane of rotation and needs special treatment. This
is the mode of fluctuations in the θ direction which, once properly normalized, will be
referred to as the planar mode. The modes transverse to the plane of rotation we call the
transverse modes for short. The fluctuations in the time direction can be set to zero by the
static gauge choice τ = X0, or δX0 = 0. There is also the longitudinal mode δρ. Due to
the reparametrization invariance in σ, the bulk action for δρ vanishes, and it only appears
in boundary terms.

We expand the Nambu-Goto action to quadratic order in the fluctuations, as done in
the last subsection.

The full bulk action for each of the transverse fluctuations (i.e. for ft = δX i with any
i = 3, . . . , D − 1) is simply

St = T

∫
d2σ

(1
2 ḟ

2
t −

1
2f
′2
t

)
(4.11)

These modes are free and are not affected by the rotation of the string. The two modes in
the plane of rotation have the action

Sp = T

∫
d2σ

[1
2 ḟ

2
p−

1
2f
′2
p −

ω2

sin2(ωσ + φ)
f2
p− (4.12)

− ∂

∂σ

(
ω

sin[2(ωσ + φ)]f
2
p −

ω cot(ωσ + φ)
2 f2

r − cos(ωσ + φ)frḟp
)]

We have defined
fr = δρ , fp = cot(ωσ + φ)

ω
δθ (4.13)
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In the bulk the planar mode has a position dependent mass

1
2M

2
p (σ) = ω2

sin2(ωσ + φ)
= γ(σ)2ω2 (4.14)

which diverges at any point that moves at the speed of light, or equivalently for this
solution, where the worldsheet curvature is infinite.

The action in eq. (4.12) also includes boundary terms. The coefficients of the first two
boundary terms also diverge if the boundaries move at the speed of light, as in the case of
an ordinary open string with Neumann boundary conditions.

In the following we will combine the action above with that for massive point particles,
whose action is simply

Sm = −
∑
i

mi

∫
dτ

√
−Ẋ2|σ=σi (4.15)

at some set of given points σi. These can be either the endpoints of the string, or in our
case the folding points. If we expand this action in the fluctuations, we have

Sm =
∑
i

γimi

∫
dτ

(1
2 ḟ

2
t + 1

2 ḟ
2
p + 1

2 ḟ
2
r + 1

2ω
2γ2
i f

2
r +

(
γi + 1

γ i

)
ωfrḟp

)
(4.16)

where γi = | sin(ωσi + φ)|−1 now corresponds to a finite velocity of the points. The other
boundary terms coming from the expansion of the NG action will also be made finite if the
velocity is finite at the boundaries.

Regardless of the boundary terms, the bulk equation of motion for the planar mode is

f ′′p − f̈p −
2ω2

sin2(ωσ + φ)
fp = 0 (4.17)

For the Fourier modes defined by

fp(τ, σ) = α0f0(σ) + i

√
α′

2
∑
n 6=0

αn
ωn
e−iωωnτfn(σ) (4.18)

We have to satisfy, in terms of x = ωσ

f ′′n(x) +
(
ω2
n −

2
sin2(x+ φ)

)
fn(x) = 0 (4.19)

One way to solve the equation is to switch variables to y = cos(x + φ) and define fn =
(1− y2)1/4gn(y). Then the equation for gn is the Legendre equation,

(1− y2)g′′n(y)− 2yg′n +
(
ω2
n −

1
4 −

9
4(1− y2)

)
gn(y) = 0 (4.20)

for which the general solution is given by the associated Legendre functions Pµν (y) and
Qµν (y), with µ = 3/2 and where νn = ωn − 1

2 .
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In terms of x the two linearly independent solutions to (4.19) are in fact given by

s1(x+ φ) = 1
| sin(x+ φ)| [(1− ωn) cos(x+ φ) sin (ωn(x+ φ))− ωn sin ((1− ωn)(x+ φ))]

(4.21)

s2(x+ φ) = 1
| sin(x+ φ)| [(1− ωn) cos(x+ φ) cos (ωn(x+ φ)) + ωn cos ((1− ωn)(x+ φ))]

(4.22)

For generic values of ωn, the functions s1 and s2 both diverge at points where x+ φ is
a multiple of π. In the special case of ωn = n, only s2 diverges at those points.

Because of the divergence at the folding points, the eigenmodes are not normaliz-
able. To illustrate this, we can start with an ordinary Sturm-Liouville equation, of which
eqs. (4.19) and (4.20) are particular cases,

d

dx

(
p(x)f ′n

)
+
(
q(x) + ω2

nr(x)
)
fn = 0 (4.23)

In writing the equation, we already assume we can find a discrete spectrum of positive
eigenvalues λn = ω2

n. If we multiply the equation of motion by another solution, fm(x)
with ωn 6= ωm, integrate over x in the interval [a, b] where we wish to solve the equation,
and then subtract the same equation with m↔ n, we obtain the relation

(ω2
n − ω2

m)
∫ b

a
dxr(x)fmfn =

∫ b

a

[
fn

d

dx

(
p(x)f ′m

)
− fm

d

dx

(
p(x)f ′n

)]
(4.24)

If there are no divergences in the interval [a, b] (including the boundary points), we can
integrate the r.h.s. by parts and get that

(ω2
n − ω2

m)
∫ b

a
dxr(x)fmfn =

(
fnp(x)f ′m − fmp(x)f ′n

)
|ba (4.25)

At the boundary points a and b there is typically a condition relating f to f ′ so the above
equation defines the appropriate inner product for two eigenfunctions on the interval [a, b].
In our examples we can show that the r.h.s. is also proportional to ω2

n − ω2
m, so one can

divide by it and get an equation that will also be good for m = n, fully defining the inner
product of two eigenfunctions.

For the equation of motion of the fluctuations around the rotating string solution,
p(x) = r(x) = 1, but the eigenmodes themselves will be divergent at some points. The
divergence will be either at the boundaries (Neumann open string) or at the folding points
in rotating solutions that have them. We need to introduce some regulator in order to make
all terms in the last equation finite, both the integral in the bulk and the boundary terms.

When we add a massive particle on the folding point, then we introduce a new boundary
which contributes to the r.h.s. In general we can have some points xi where the fn are
continuous but the derivatives f ′n are not. We denote the discontinuity by ∆f ′(x) ≡
limε→0(f ′(x+ ε)− f ′(x− ε)), and then we need to add to the last equation extra terms

(ω2
n−ω2

m)
∫ b

a
dxr(x)fmfn =

(
fnp(x)f ′m−fmp(x)f ′n

)
|ba−

∑
i

(
fnp(x)∆f ′m−fmp(x)∆f ′n

)
|x=xi

(4.26)
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With the mass terms both sides of the equation will be finite, with the boundary terms on
the folding point offering a way to cancel the divergences of the integral when the mass is
taken to zero. In this way, we have a well defined orthonormal set of eigenfunctions for any
finite mass, and we have a controllable limit when the mass is zero which we use to define
the solutions on the ordinary folded string with no masses.

4.3 The intercept

Our goal in the next few sections is to calculate the spectrum of fluctuations around
the rotating solutions as well as the quantum correction, which is intercept of the Regge
trajectories associated with the rotating string solutions.

The classical energy and angular momentum of the string define the trajectory as

J = Jcl(E) (4.27)

The function Jcl(E) can be simply α′E2 as for the ordinary rotating open string, or the
function defined parametrically by eqs. (3.40)–(3.41) for the string with massive endpoints.
In all cases we can define the intercept as the correction to this classical relation, namely
as the expectation value

a ≡ 〈J − Jcl(E)〉 (4.28)

In terms of the fluctuations of the string, at quadratic order in the fluctuations, it is

a = 〈δJ − ∂Jcl
∂E

δE〉 = 〈δJ − 1
ω
δE〉 = − 1

ω
〈Hws〉 (4.29)

where δE and δJ are the contributions to the energy and angular momentum of the quan-
tum fluctuations, and the equality ∂Jcl

∂E = 1
ω can be shown using the full expressions for E

and J (including in the case of a string coupled to massive particles). In the last step, this
combination of δJ and δE when computed can be shown to be proportional to the world-
sheet Hamiltonian of the fluctuations, Hws. Therefore, the intercept is given simply by the
expectation value of the Hamiltonian, which in turn will be a normal ordering constant as
in the Neumann open string.

For non-critical strings part of the correction will be another contribution from the
Polchinski-Strominger term that is added to the effective string action in for D 6= 26. In
sections 5 and 6 we quantize the fluctuations around closed and open rotating strings with
folds, respectively. The analysis in those sections applies to both critical and non-critical
strings. In section 7 we calculate the PS term contribution to the intercept for both systems
when the strings are in non-critical dimensions.

Throughout the paper we use only the quadratic approximation as detailed above,
neglecting higher order terms. The reason is that formally we expand in `s/L where
`s =

√
α′ is the characteristic string length, and L the length of the string in the classical

solution. The divergence associated with the fold is a property of the zeroth order classical
solution, so we expect to see its effects at any (finite) order of this expansion. As a result,
many terms in the action will come with coefficients which are divergent at the folding
points. The assumption that we make when we truncate the expansion at quadratic order
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is that when we calculate the physical quantities such as the spectrum of fluctuations or the
intercept, then the corrections from higher order terms in the fluctuations, once properly
renormalized to eliminate the infinities from the folding points, will be of the expected
order in terms of the 1/L expansion and therefore negligible. This is because the infinities
are associated with a point on the string and therefore independent of the length.

5 Quantizing the folded closed string

5.1 Expanding around rotating closed string

In this section we quantize the fluctuations around the rotating folded closed string solution
which we wrote in section 3,

X0 = τ X1 = 1
ω

cos(ωσ) cos(ωτ) X2 = 1
ω

cos(ωσ) sin(ωτ) (5.1)

where σ ∈ [−`, `] and ω = π/`.
The fluctuations transverse to the plane of rotation are free, and behave as in ordinary

non-rotating strings. For the planar mode the solutions to the equation of motion (eq. (4.19)
with φ = 0) are

s1(x) = 1
| sin x| [(1− ωn) cosx sin (ωnx)− ωn sin ((1− ωn)x)] (5.2)

s2(x) = 1
| sin x| [(1− ωn) cosx cos (ωnx) + ωn cos ((1− ωn)x)] (5.3)

where x = π
` σ. Since the only boundary condition is periodicity, fp(τ,−`) = fp(τ, `), then

the allowed eigenfrequencies are integers, ωn = n.
We have two independent modes at each n, the equivalent of left and right moving

modes in the non-rotating case. The modes s1 are odd under x → −x while s2 are even.
Since the folded string solution consists of two segments of the string sitting on top of each
other, the even modes are those where the two segments move together, while the odd
modes are those where they move away from each other. The even modes are identical to
the fluctuations found on an open string with Neumann boundary conditions, and they are
the modes that diverge at the folding point. The odd modes vanish at the folding point
and can be likened to the modes on open strings with Dirichlet boundary conditions. We
plot an example in figure 5

As explained in section 4.2 the divergent modes are not normalizable before the addi-
tion of a regulating mass term.

5.2 Closed string with massive folds

We place two masses, m0 and m` on the two folding points of the rotating closed string
solution, σ = 0 and ` (equivalently −`). Eventually we will take the massless limit to
return to the ordinary closed string, but we solve the system for any value of the masses.
The massless limit will not depend on the ratio of m0/m`.

Note that for given values of the masses, we should expand around a solution with
miL� 1 and TL/mi � 1, where L is the total length of the string, otherwise we need to
include higher order terms in the fluctuations [24].
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Figure 5. Eigenmodes of the planar fluctuations on the closed rotating string, with n = 3. The
even mode diverges at the folding points 0 and π, the odd modes vanish there.

5.2.1 Classical rotating solution with massive folding points

We define the classical solution piecewise as

X0 = τ ρ =


1
ω cos(ωσ − φ) − ` < σ < 0
1
ω cos(ωσ + φ) 0 < σ < `

θ = ωτ (5.4)

where ρ and θ are the polar coordinates in the 12 plane. The solution is such that it and
its time derivatives are continuous everywhere, and in particular X(τ,−`) = X(τ, `).

However, there is a discontinuity in the derivative X ′ at the folding points σ = 0 and
`, and the jump in the derivative is determined by the equations of motion of the massive
particles on those points:

T (X ′µ|σ=0− −X ′µ|σ=0+) +m0∂τ

(
Ẋµ√
−Ẋ2

)
= 0 (5.5)

T (X ′µ|σ=−`+ −X ′µ|σ=`−)−m`∂τ

(
Ẋµ√
−Ẋ2

)
= 0 (5.6)

From here we have two conditions determining φ and ω. We define the useful parameter
δ ≡ ω`, then

sinφ
cotφ = m0ω

2T ,
m`ω

2T = − sin(δ + φ)
cot(δ + φ) (5.7)

are the two boundary conditions. These are the same equations as for a rotating open string
solution with massive endpoints (eq. (3.39)), written in terms of different parameters.

We pick the solutions in the range where 0 < φ < π/2, π/2 < δ+φ < π. The velocities
at which the folding points move are now

β0 = cosφ β` = − cos(δ + φ) (5.8)

γ0 = 1
sinφ γ` = 1

sin(δ + φ) (5.9)
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Going the other way, φ = arccos β0 while δ = arcsin β0 + arcsin β`. In the massless limit
we return to φ = 0 and δ = π where the folds move at the speed of light. The special case
of equal masses has δ = π − 2φ.

The total length of the string is given by

L = 2
ω

(β0 + β`) (5.10)

while its energy and angular momentum are

E = γ0m0 + γ`m` + TL
arcsin β0 + arcsin β`

β0 + β`
(5.11)

J = 1
2
γ0m0β

2
0 + γ`m`β

2
`

β0 + β`
L+ 1

4
γ0γ`(arcsin β0 + arcsin β`)− γ0β` − γ`β0

γ0γ`(β0 + β`)2 TL2 (5.12)

The corresponding Regge trajectory is

J = α′

2 E
2
(

1− 4
√
π

3 (m3/2
0 +m

3/2
` )E−3/2 + . . .

)
(5.13)

Classically this string is completely equivalent to an open string with massive endpoints
written in section 3.2.2, with the string tension effectively doubled for the folded string. In
the remainder of the section we analyze the quantum fluctuations.

5.2.2 Transverse fluctuations

The transverse modes do not require special treatment in the presence of the folds, but
since we add Lorentz invariant mass terms to the action the masses will affect all the
modes. In this section we show the procedure of adding the mass terms and taking the
massless limit to recover the expected result for the contribution to the intercept of each
transverse mode, which are two contributions of 1

24 , one each from the would be left and
right moving modes.

The action for each of the transverse fluctuation modes to quadratic order is

St = T

∫
d2σ(1

2 ḟ
2
t −

1
2f
′2
t ) + γ0m0

∫
dτ

1
2 ḟ

2
t |σ=0 + γ`m`

∫
dτ

1
2 ḟ

2
t |σ=` (5.14)

There are D − 3 such modes in the directions Xi with i = 3, . . . , D − 1, but we omit the
spatial index for the rest of this section, since the modes are identical and independent.

The “boundary” conditions are continuity at σ = 0, periodicity in the sense of conti-
nuity at ±`, fn(−`) = fn(`), and the jump conditions at the folds,

T (f ′n|0+ − f ′n|0−) + ω2
nγ0m0ωfn = 0, x = 0 (5.15)

T (f ′n|−`+ − f ′n|`−) + ω2
nγ`m`ωfn = 0, x = ω` = δ (5.16)

One can start from the most general ansatz for the solution to the bulk equation,

fn(x) =

c1 cos(ωnx) + c2 sin(ωnx) −δ ≤ x ≤ 0
c3 cos(ωnx) + c4 sin(ωnx) 0 ≤ x ≤ δ

(5.17)
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and find that we have two independent types of solutions, which are the even and odd
modes. Each of them will have a different set of eigenfrequencies, so the general mode
expansion we write is

ft(τ, σ) = i

√
α′

2
∑
n 6=0

(
αn
ωn
e−iωωnτf+

n (ωσ) + α̃n
ω̃n
e−iωω̃nτf−n (ωσ)

)
(5.18)

The even modes satisfying all the conditions take the form (up to an overall normal-
ization constant)

f+
n (x) =

cosφ cos(ωnx) + ωn sinφ sin(ωnx) −δ ≤ x ≤ 0
cosφ cos(ωnx)− ωn sinφ sin(ωnx) 0 ≤ x ≤ δ

(5.19)

where the eigenfrequencies are the solutions of

[tanφ− tan(δ + φ)]ωn cos(ωnδ) + [1 + tan φ tan(δ + φ)ω2
n] sin(ωnδ) = 0 (5.20)

Or, in terms of the velocities of the folding points,( 1
γ0γ`

ω2
n − β0β`

)
sin(ωnδ)− ωn

(
β0
γ`

+ β`
γ0

)
cos(ωnδ) = 0 (5.21)

This is exactly the same equation as for the string with massive endpoints found in [24]
(eq. 8.2 there). At small masses (large γ) we can write an approximate solution to the
equation,

ωn = n+ n3 − n
3π

(
1
γ3

0
+ 1
γ3
`

)
+O(γ−5) (5.22)

Note that the coefficients in the expansion grow with n, such that the expansion parameter
is effectively n/γ.

On the closed string we also have the odd modes, which are not present in the rotating
open string. Here they are simply given by

f−n (x) = sin(ω̃nx) (5.23)

and the eigenfrequencies are

sin(ω̃nδ) = 0 ⇒ ω̃n = π

δ
n (5.24)

The odd modes vanish at the folding points, their derivatives are continuous there and in
general are unaffected by the mass except for the overall factor of δ in the eigenfrequencies.

Per equation (4.26), all the eigenmodes should satisfy

(ω2
n − ω2

m)
∫ δ

−δ
dxfmfn = −

(
fn∆f ′m − fm∆f ′n

)
|x=0 −

(
fn∆f ′m − fm∆f ′n

)
|x=δ (5.25)

We can use the boundary conditions to simplify this. For the even modes∫ δ

−δ
dxf+

mf
+
n + γ0m0ω

T
f+
mf

+
n |x=0 + γ`m`ω

T
f+
mf

+
n |x=δ = 2π(δm−n + δm+n) (5.26)
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For the odd modes the boundary terms are trivial, so∫ δ

−δ
dxf−mf

−
n = 2π(δm−n + δm+n) (5.27)

Between them, even and odd modes are obviously orthogonal.
The canonical quantization is done by imposing

[αm, αn] = ωmδm+n [α̃m, α̃n] = ω̃mδm+n [αm, α̃n] = 0 (5.28)

which guaranties that
[ft(τ, σ), πt(τ, σ′)] = iδ(σ − σ′) (5.29)

where πt is the canonical momentum conjugate to ft.
The worldsheet Hamiltonian is

Ht = T

∫ `

−`
dσ(1

2 ḟ
2
t + 1

2f
′2
t ) + 1

2γ0m0ḟ
2
t |σ=0 + 1

2γ`m`ḟ
2
t |σ=` (5.30)

Upon inserting the mode expansion and using eqs. (5.26) and (5.27), it becomes

Ht = ω

2
∑
n 6=0

(α−nαn + α̃−nα̃n) (5.31)

After normal ordering,

1
ω
Ht =

∞∑
n=1

(α−nαn + α̃−nα̃n)− (A+ Ã) (5.32)

The normal ordering constant is the intercept,

at = − 1
ω
〈Ht〉 = A+ Ã = −1

2

∞∑
n=1

ωn −
1
2

∞∑
n=1

ω̃n (5.33)

The task now is to compute and renormalize the divergent sum over the eigenfrequen-
cies. There are two methods that we can use. First is the Zeta function regularization, and
the in the second method we first convert the sum into a contour integral, as first proposed
in [27]. The calculation and renormalization done are almost identical to the one performed
for the open string with massive endpoints in [24]. We repeat the key points below.

The equations from which the eigenfrequencies are determined (eqs. (5.21) and (5.24))
are of the form g(ωn) = 0 for some function g. If the function g(ω) when defined in the
complex plane has only simple zeroes at ω = ωn and no poles, then the integral

1
2πi

∮
C
dzz

d

dz
log g(z) =

∑
ωn∈C

ωn (5.34)

gives the sum over all zeroes inside the contour C.
In order to do the renormalization procedure, we compute the (regularized) Casimir

energy. The dimensionful eigenfrequencies are Ωn = ωωn, and we sum up all the energies
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Figure 6. Semicircular contour over which we carry out the integral that will sum over the
eigenfrequencies on the positive real axis.

to some cutoff scale Λ, which we also write as Λ = ωN . Then we convert the sum into a
contour integral

EC(Λ) ≡ ω

2

N∑
n=1

ωn = ω

4πi

∮
C(N)

dzz
d

dz
log g(z) (5.35)

The contour is the closed semicircle with radius N as depicted in figure 6.
We compute the contour integral explicitly at large Λ (N), to see the form of the

divergences in the Λ→∞ limit for which we then offer a prescription for renormalization.
Starting with the odd modes, for which g(z) = sin(δz), we can show by explicit calcu-

lation of the contour integral that the Casimir energy associated with these modes is

E−C (Λ) ≡ ω

2

N∑
n=1

ω̃n =
(
−Λ2δ

4πω −
πω

24δ

)
+
(

Λ2δ

2πω

)
(5.36)

with the first two terms on the r.h.s. coming from the integral on the imaginary axis, and
the third term from the integral on the semicircle (see appendix A for a more detailed
calculation). In total

E−C (Λ) = Λ2

4π `−
π

24` (5.37)

The quadratic divergence is proportional to `, which appears in the expression for the
classical energy of the rotating string, eq. (5.11), which states that Ecl = γ0m0 +γ`m`+T`.
Therefore the divergence can be subtracted by an appropriate redefinition of the string
tension. One can also think of it as subtracting the contribution from an infinitely long
string from the Casimir force FC = −∂EC/∂`. After the subtraction of the quadratically
divergent part, the term that goes like 1/` gives precisely the intercept, and the result
matches that of the Zeta function regularization.

Ã = −1
2

∞∑
n=1

π

δ
n = π

δ
× 1

24 (5.38)

– 29 –



J
H
E
P
1
2
(
2
0
2
0
)
1
2
0

For the even modes, the calculation and the result are the same as for the string
with massive endpoints. One can do the contour integral with a function f(z) matching
eq. (5.21). In [24] we have shown that the divergent parts are given by2

E+
C (Λ) = Λ2

2π `+ 1
π

( 2T
γ0m0

+ 2T
γ`m`

) log
(
γ0m0Λ

2T

)
γ0β0 − log

(
γ`m`Λ

2T

)
γ`β`

γ0β0 − γ`β`
+ (finite) (5.39)

Now in addition to the quadratic divergence which we absorb into the tension, there are
logarithmic divergences which we renormalize by redefinition of the masses. Note that the
masses always appear as γm, as they do in the action.

We can write the divergent parts of the full contour integral as another contour integral
over an asymptotic form of f(z), and subtract them in that form, such that the finite
intercept is given by the difference. The exact answer for the regularized sum of the
eigenfrequencies is given then in integral form as

A = − 1
2π

∫ ∞
0

dy log
(

1− e−2δy (y − γ0β
2
0)(y − γ`β2

` )
(y + γ0β2

0)(y + γ`β
2
` )

)
(5.40)

When the masses go to zero this reduces to

A→ − 1
2π

∫ ∞
0

dy log(1− e−2πy) = 1
24 (5.41)

As shown in appendix B, when we expand the integral in γ−1 when we go to small masses,
we find that the corrections match exactly what we can get from expanding ωn as in
eq. (5.22) and performing Zeta function regularization at each order. The results are

A = 1
24 −

11
720π (ε31 + ε32) + . . . (5.42)

Ã = 1
24

(
1 + 1

π
(ε1 + ε2) + 1

π2 (ε1 + ε2)2 + 1
π3 (ε1 + ε2)3 + 1

6π (ε31 + ε32)
)

(5.43)

where ε1 ≡ 1/γ0 and ε2 ≡ 1/γ`. Adding the two contributions,

at = A+ Ã = 1
12

(
1 + 1

2π (ε1 + ε2) + 1
2π2 (ε1 + ε2)3 + 1

2π3 (ε1 + ε2)3 − 1
10π (ε31 + ε32)

)
(5.44)

If the endpoint masses are equal ε1 = ε2 = 1
γ , then

at = 1
12

(
1 + 1

π

1
γ

+ 2
π2

1
γ2 + 20− π2

5π3
1
γ3

)
(5.45)

At the massless limit, we always recover the result at = 1
12 . It is noteworthy that for small

masses, the leading order correction has a positive sign, increasing the intercept. This
comes from the odd modes, not present on the open string, whose intercept increases as
one reduces the endpoint velocity. At small masses this correction is the dominant one,
starting at order γ−1 while the even, open string modes only receive corrections at order
γ−3.

2In fact here we give the generalization to two different masses of eq. 4.100 in [24].
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5.2.3 Planar fluctuations

The planar fluctuations around the rotating solution with masses are defined as

fp =

−
cot(ωσ−φ)

ω δθ −` ≤ σ ≤ 0
cot(ωσ+φ)

ω δθ 0 ≤ σ ≤ `
(5.46)

With the relative minus sign this definition is continuous at both 0 and ±`. The bulk
equations of motion for the fluctuations will be

f ′′p − f̈p −
2ω2

sin2(ωσ − φ)
fp = 0 , −` < σ < 0 (5.47)

f ′′p − f̈p −
2ω2

sin2(ωσ + φ)
fp = 0 , 0 < σ < ` (5.48)

We write a mode expansion as in eq. (5.18), and in general the eigenmodes will be given by

fn(σ) =

c1s1(x− φ) + c2s2(x− φ) −δ ≤ x ≤ 0
c3s1(x+ φ) + c4s2(x+ φ) 0 < x ≤ δ

(5.49)

where x = ωσ and s1, s2 are the solutions to the bulk equation given in eqs. (4.21)
and (4.22).

At σ = 0 and ` the action reads

Smi = γimi

∫
dτ

(1
2 ḟ

2
p + 1

2µ
2
p,if

2
p + 1

2 ḟ
2
r + 1

2f
2
r + cifrḟp

)
(5.50)

with
µ2
p,i = γ2

i ω
2 µ2

r,i = (2γ2
i − 1)ω2 ci = 2γiω (5.51)

The variation of the action w.r.t. fp yields the bulk equations of motion written above
as well as the boundary conditions

T∆f ′p + γimi(−f̈p + µ2
p,ifp − ciḟr) = 0, σ = 0, ` (5.52)

At the folding points there must be a discontinuity in f ′p, while fp itself is continuous there.
The variation of the action on the folds w.r.t. fr results in

− f̈r + µ2
r,ifr + ciḟp = 0 , σ = 0, ` (5.53)

The mode expansion for fp is exactly of the same form as in eq. (5.18), and again we
will have even modes and odd modes. The mode expansion for fr, which lives only at
the two folding points, will have the same set of eigenfrequencies, and we write the mode
expansion as

fr = i

√
α′

2
∑
n

αn
ωn
f (n)
r e−iωωnτ (5.54)

where the coefficients f (n)
r are just constants (defined separately at each boundary point).

The αn in the expansion are the oscillators corresponding to the even modes of fp. The
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radial mode adds no independent oscillators, and the odd modes of fp vanish at the folding
points and do not contribute to fr by the equation of motion above.

We solve the equations for fr at each of the boundary points to get a boundary con-
dition only involving the modes of fp. Then we can substitute

f (n)
r = iωωnci

ω2ω2
n + µ2

r,i

f+
n (σi) (5.55)

where f+
n (σ) are the even eigenmodes of the planar mode fp.

The boundary conditions for the planar mode at the folding points are then

f ′n|0+ − f ′n|0− + γ0m0
Tω

(
ω2ω2

n + µ2
p0 −

c2
0ω

2ω2
n

ω2ω2
n + µ2

r0

)
fn = 0 , x = 0 (5.56)

f ′n|−`+ − f ′n|`− + γ`m`

Tω

(
ω2ω2

n + µ2
p` −

c2
`ω

2ω2
n

ω2ω2
n + µ2

r`

)
fn = 0 , x = ω` = δ (5.57)

We require also continuity of fn at the points x = 0 and x = δ, in the sense that fn(−`) =
fn(`).

The odd modes have c1 = c3, c2 = −c4 (in the notation of eq. (5.49)). Then, the
eigenfrequencies are the solution of the equation

[ω̃2
n sin(δ + φ) sinφ+ cos(δ + φ) cos(φ)] sin(ω̃nδ)
+ ω̃n[cos(δ + φ) sinφ− cosφ sin(δ + φ)] cos(ω̃nδ) = 0 (5.58)

In terms of the velocities of the folding points the odd modes equation is( 1
γ0γ`

ω̃2
n − β0β`

)
sin(ω̃nδ)− ω̃n

(
β0
γ`

+ β`
γ0

)
cos(ω̃nδ) = 0 (5.59)

and δ = arcsin β0 + arcsin β`. Surprisingly, we find that this is the exact same equation as
for the even transverse modes (eq. (5.21)).

For the even modes c2 = c4, c1 = −c3, and the eigenfrequencies are the solutions of[
4ω2

n sin(2φ)sin(2(δ+φ))+
(
−ω2

n+
(
ω2
n+1

)
cos(2φ)+3

)((
ω2
n+1

)
cos(2(δ+φ))−ω2

n+3
)]

×sin(ωnδ)+
[
−4sin(δ)ωn

(
4cos(φ)cos(δ+φ)+2

(
ω2
n−1

)
sin(φ)sin(δ+φ)

)]
cos(ωnδ) = 0

(5.60)

which can be written as[
1

γ2
0γ

2
`

ω4
n − 2

(
1− β2

0β
2
` + 2β0β`

γ0γ`

)
ω2
n + (1 + β2

0)(1 + β2
` )
]

sin(ωnδ)

+ 2ωn
(
β0
γ`

+ β`
γ0

)(1− ω2
n

γ0γ`
+ 2β0β`

)
cos(ωnδ) = 0 (5.61)

This is also the equation found for the planar mode on an open string with endpoint
masses.3

3In fact this is a generalization of the result of [24] (eq. 5.22 there) to the case of two different masses.
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The calculation now proceeds in the same way as for the transverse modes. The
eigenmodes satisfy the equations∫ δ

−δ
dxf smf

s′
n + γ0m0ω

T

(
1− c2

0µ
2
r0

(ω2ω2
m + µ2

r0)(ω2ω2
n + µ2

r0)

)
f smf

s′
n |x=0

+ γ`m`ω

T

(
1− c2

`µ
2
r`

(ω2ω2
m + µ2

r`)(ω2ω2
n + µ2

r`)

)
f smf

s′
n |x=δ = 2π(δm−n + δm+n)]δss′ (5.62)

where the indices s, s′ = (+,−), now signify the even and odd modes. The odd modes do
not require special treatment as their boundary terms vanish, but the even eigenmodes,
which diverge on the folding points at the massless limit, are now normalizable in the way
defined by this equation. The extra boundary terms are exactly what is needed to cancel
out the divergent parts, as we can see by evaluating the integral and the boundary terms
for small masses,4 ∫ `

−`
dσf2

n = 2 (γ0 + γ`) +
(
n2 − 1

)
π +O

(1
γ

)
(5.63)

γ0m0ω

T

(
1− c2

0µ
2
r0(

ω2ω2
n + µ2

r0
)2
)
f2
n|σ=0 = −2γ0 +O

( 1
γ0

)
(5.64)

γ`m`ω

T

(
1− c2

`µ
2
r`(

ω2ω2
n + µ2

r`

)2
)
f2
n|σ=` = −2γ` +O

( 1
γ`

)
(5.65)

So the sum of integral plus boundary terms is finite when we take either or both of the
γi → ∞. This is the way in which the mass terms accomplish the goal of giving us
normalizable modes in the massless limit.

Now the canonical quantization is done by imposing the same commutation relations
between the planar oscillators as we did in eq. (5.28) for the transverse ones. The Hamil-
tonian in terms of the oscillators is again, after normal ordering of the oscillators,

1
ω
Hp =

∞∑
n=1

(α−nαn + α̃−nα̃n)− (A+ Ã) (5.66)

The intercept is given by

ap = − 1
ω
〈Hp〉 = A+ Ã = −1

2

∞∑
n=1

ωn −
1
2

∞∑
n=1

ω̃n (5.67)

The sum is calculated in the same method, by the contour integral, using the functions
defined by eqs. (5.59) and (5.61) to sum over the eigenfrequencies. The form of the di-
vergences in this sum is the same as for the transverse modes, and the renormalization
procedure is the same. The result for both modes is as in [24], which is

Ã=− 1
2π

∫ ∞
0

dy log
(

1−e−2δy (y−γ0β0)(y−γ`β`)
(y+γ0β0)(y+γ`β`)

)
(5.68)

A=− 1
2π

∫ ∞
0

dy log
[
1−e−2δy

(
y2−2γ0β0y+γ2

0(1+β2
0)

y2 +2γ0β0y+γ2
0(1+β2

0)

)(
y2−2γ`β`y+γ2

` (1+β2
` )

y2 +2γ`β`y+γ2
` (1+β2

` )

)]
(5.69)

4We write the functions up to an overall mass independent normalization constant.
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One can get the leading order corrections by performing Zeta function regularization
of the approximate solutions to eqs. (5.59) and (5.61), which are

ω̃n = n+ 1
3π
(
n3 − n

)( 1
γ3

0
+ 1
γ3
`

)
+O

(
γ−5

)
(5.70)

ωn = n− 1
6π
(
n3 − n

)( 1
γ3

0
+ 1
γ3
`

)
+O

(
γ−5

)
(5.71)

and find the result for the intercept using the Zeta function matches the expansion of the
two integrals (see appendix B for the expressions). The result is that

ap = A+ Ã = 1
12

(
1− 11

120π

(
1
γ3

0
+ 1
γ3
`

))
(5.72)

6 Quantizing the folded open string

In this section we discuss the fluctuations around the rotating solution for the string with
endpoint charges in a constant background magnetic field, introduced in section 3.2.1. In
this case there is a single fold at some point along the string. We place a mass there,
analyze the spectrum of fluctuations, and compute the intercept as a function of the mass
and the magnetic field. Finally, we can use the massless limit to obtain the result for the
ordinary massless string.

6.1 Classical solution with folding point mass

We can write a rotating solution that has a mass at the point where the string is folded,
in the following way. If the fold is at the point σ = σf and we insert the usual mass term
into the action at that point, then in addition to the boundary conditions at the endpoints
of the string,

TX ′µ + qFµνẊ
ν = 0 σ = 0, ` (6.1)

we have the condition at the folding point

T

(
X ′µ|σ=σ−

f
−X ′µ|σ=σ+

f

)
+m∂τ

(
Ẋµ√
−Ẋ2

)
= 0 (6.2)

There is a discontinuity in X ′ but not in X or Ẋ. We write the usual rotating solution

X0 = τ X1 = R(σ) cos(ωτ) X2 = R(σ) sin(ωτ) (6.3)

with R(σ) now defined piecewise as

R(σ) =


1
ω cos(ωσ + φ) σ ≤ σf
1
ω cos(ωσ + φ̃) σ ≥ σf

(6.4)

We construct the solution such that it has a finite velocity at σ = σf < ` and reduces to
the normal classical solution of section 3.2.1 when the mass at the fold is taken to zero.
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The boundary condition at σ = 0 determines φ = arctan( qBT ) as for the solution
without the massive particle. The boundary condition at σ = ` is that

tan(φ̃+ ω`) = qB = tan(φ) (6.5)

and the solution we take in order to get the correct result in the massless limit is

ω` = π + φ− φ̃ (6.6)

The endpoint charges still move at the same finite velocity βq = | cos(φ)| = | cos(ω`+ φ̃)|.
The first condition on the solution at the folding point is that R(σ) is continuous there,

namely that
cos(ωσf + φ) = cos(ωσf + φ̃) (6.7)

We cannot pick φ = φ̃ so we take the second possible solution

φ̃ = 2π − φ− 2ωσf (6.8)

with the 2π added so that in the massless case the solution reduces to φ = φ̃ exactly (to
be consistent with eq. (6.6) when ω` = π).

With the mass there is a finite velocity of the folding point

βf = − cos(ωσf + φ) γf = 1
sin(ωσf + φ) (6.9)

which is determined by the condition at σ = σf ,

2T
γf

= mωγfβf (6.10)

This is the same equation as (3.39), which is the force equation on the massive particle. It
is useful to define the parameter

δ ≡ 1
2ω` = ωσf + φ− π

2 (6.11)

in terms of which βf = sin δ, and which goes to π/2 in the massless limit when βf = 1.
One condition that we should impose on the solution with the mass is that σf < `,

otherwise the mass is outside the domain where σ is defined. This condition is equivalent to
δ+ φ > π

2 , which also means βf > βq — the folding point moves faster than the endpoints
of the string. For a given value of the magnetic field, there is a value of the folding point
mass above which we cannot find a solution that will obey the above condition.

The energy, angular momentum, and length of the open string with the massive par-
ticle are

E = γfm+ arcsin βf
βf

TL (6.12)

J = 1
2γfmβfL+ 1

4TL
2 γf arcsin βf − βf

γfβ
2
f

(6.13)

L = 2βf
ω

(6.14)
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The expressions are the same as we find for the string with massive endpoints, except that
now there is only one massive particle contributing to the energy and angular momentum.
When the mass is small we can write the classical mass corrected Regge trajectory as

Jcl(E) = α′E2
[
1− 8

√
π

3

(
m

2E

)3/2
+ . . .

]
(6.15)

Again the goal is to compute the quantum correction to the above relation, which is
the intercept

a = 〈J − Jcl(E)〉 = − 1
ω
〈Hws〉 (6.16)

where Hws is the worldsheet Hamiltonian for the fluctuations.

6.2 Fluctuations

6.2.1 Transverse modes

The D − 3 modes transverse to the plane of rotation are not affected directly by the
rotation, nor the magnetic field, as those do not enter the equations of motion for the
transverse fluctuations. They are only affected by the mass term we place to regularize
the system. What we see is that when a finite mass is present at the fold, the spectrum of
the transverse fluctuations becomes dependent also on the magnetic field, because of the
modified boundary conditions. In the massless limit this dependence is removed.

The action for each of the D − 3 transverse fluctuation modes is

St = T

∫
d2σ

(1
2 ḟ

2
t −

1
2f
′2
t

)
+ γfm

∫
dτ

1
2 ḟ

2
t |σ=σf (6.17)

The bulk equation of motion is the wave equation. We write the mode expansion

ft(τ, σ) = α0 + i

√
α′

2
∑
n 6=0

αn
ωn
e−iωωnτfn(σ) (6.18)

For the eigenfunctions fn, which are just a combination of sine and cosine in this case,
there are the two boundary conditions at the endpoints

f ′n = 0 x = 0, ω` (6.19)

as well as the conditions on the fold, which are continuity of fn(σ) at σf , as well as the
discontinuity of the derivative given by

T

(
f ′n|σ+

f
− f ′n|σ−

f

)
+ ω2

nγfmωfn = 0, x = ωσf (6.20)

From the boundary conditions at the endpoints and the continuity requirement at the fold
we get that the solutions must have the form

fn(x) =

c1 cos(ωnx) x ≤ ωσf
c1

cos((π2 +δ−φ)ωn)
cos((π2−δ−φ)ωn) cos(ωn(x− 2δ)) x ≥ ωσf

(6.21)

where φ = arctan( qBT ) and δ = arcsin βf .
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Then the last boundary condition at the fold (6.20) holds provided that ωn satisfies

sin δ sin (2ωnδ) + ωn cos δ
[
cos (2ωnδ) + cos

(
2(π2 − φ)ωn

)]
= 0 (6.22)

which we write also as

βf sin (2ωnδ) + 1
γf
ωn

[
cos (2ωnδ) + cos

(
2
(
π

2 − φ
)
ωn

)]
= 0 (6.23)

This is in fact a function of the two relevant velocities in the problem: βf of the fold, and
βq of the endpoint charges, since δ = arcsin βf and π

2 − φ = arcsin βq.
At the massless limit of δ = π

2 the equation reduces to

sin(πωn) = 0 (6.24)

or ωn = n with no dependence on φ, as expected. With masses, there is not only the
dependence on the mass, but we have also introduced a dependence on the magnetic field.

In agreement with equation (4.26), the eigenmodes satisfy

ω2(ω2
n − ω2

m)
∫ `

0
dσfmfn =

(
fnf

′
m − fmf ′n

)
|`0 −

(
fn∆f ′m − fm∆f ′n

)
|x=ωσf (6.25)

Explicitly, after using the boundary conditions we are left with∫ `

0
dσfmfn + γfm

T
fmfn|σ=σf = 2π

ω
(δm−n + δm+n) (6.26)

The worldsheet Hamiltonian derived for the transverse fluctuations is

Ht = T

∫ `

0
dσ

(1
2 ḟ

2
t + 1

2f
′2
t

)
+ 1

2γfmḟ
2
t |σ=σf (6.27)

By inserting the mode expansion into the Hamiltonian and using eq. (6.26) we find that

Ht = ω

2
∑
n 6=0

α−nαn (6.28)

The quantization is done by imposing the commutator

[αm, αn] = ωnδm+n (6.29)

And then, the intercept is the normal ordering constant

at = − 1
ω
〈H〉 = −1

2
∑
n>0

ωn (6.30)

As for the closed string in the last section, we have two ways of regularizing this divergent
sum. The first method is by use of the Zeta function. For this we need to write an
approximate solution of the eigenfrequency equation (6.23) for small masses. Then we
have an expansion in γ−1

f , and the coefficient at each order can be calculated by Zeta
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function regularization. The details are in appendix B.2, where we also compare the result
with the second method, which is converting the sum into a contour integral.

We use the contour integral over the same semicircular contour depicted in figure 6.
The appropriate function to integrate over is the one defined by the equation for the
eigenfrequencies we have in this case, eq. (6.23), so we define

g(z) = sin δ sin(2δz) + z cos δ [cos(2δz) + cos((π − 2φ)z)] (6.31)

We compute the Casimir energy, regularized by introducing a cutoff Λ = ωN ,

EC(Λ) = ω

2

N∑
n=1

ωn = ω

4πi

∮
dzz

d

dz
log g(z) (6.32)

Evaluating the integral on the semicircle at large N

Isc(Λ) = ωN2

4π

∫ π
2

−π2
dθe2iθ g

′(Neiθ)
g(Neiθ) →

ωδ

π
N2 + ω

2πN = 1
2πΛ2`+ 1

2πΛ (6.33)

We find no contributions that remain finite at infinite Λ. The integral on the imaginary
axis we integrate by parts, and it is

Iim(Λ) = − ω

4π

∫ N

−N
dyy

d log g(iy)
dy

= − ω

4πN (log g(iN) + log g(−iN))+ ω

4π

∫ N

−N
dy log g(iy)

(6.34)
We first look at only the divergent terms when N is large. To find them we can take the
asymptotic forms of g(iy) when |y| � 1,

g+(y) = i

2e
2δy(y cos δ + sin δ) , g−(y) = i

2e
−2δy(y cos δ − sin δ) (6.35)

where g+ is the asymptotic form at y large and positive, and g− likewise at negative y. We
have used the condition that there is a fold in the classical solution, δ > π

2 − φ, and as a
result there is no dependence on the magnetic field in the divergent terms.

If we evaluate the integral on this function,

Idivim (Λ) = − ω

4πN
(
log g+(N) + log g−(N)

)
+ ω

4π

∫ N

0
dy log g+(y) + ω

4π

∫ 0

−N
dy log g−(y)

(6.36)
then we get that the divergent part is

Idivim (Λ) = − 1
4πΛ2`− 1

2πΛ + ω tan δ
2π log

( Λ
ω tan δ

)
+O

( 1
Λ

)
(6.37)

Combining the results for Isc and Iim, we find that

EC(Λ) = 1
4πΛ2`+ T

πγfm
log

(
γfmΛ
T

)
+ . . . (6.38)

where the ellipses signify terms that do not depend on the cutoff as we take it to infinity.
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The form of the divergences is the same as for the case of a rotating string with massive
endpoints, as well as the closed string analyzed section 5. Again the subtraction of the
divergences can be done by redefining the string tension and the mass, or by subtracting
the infinite string’s contribution for the Casimir force.

This can be achieved before integration by subtracting the divergent parts written in
their integral form. The semicircle integral contains only divergent terms and is subtracted,
such that the intercept can be written as

at = − 1
ω
ErenC = − 1

2π

∫ ∞
0

dy log
(
g(y)
g+(iy)

)
(6.39)

where g+ is the asymptotic form of the function at large, positive y.5 This formula is
actually quite general and can be used for any of the cases analyzed in this paper.

At this point we see that if one takes the form of g+(y) written in eq. (6.35) and inserts
it in the integral then the answer one would get for at has a divergence as the magnetic
field is taken to be small. We can see this by looking at the leading order correction at
large γf ,

at = 1
24

1 +
1− 3

sin2 φ

π

1
γf

+ . . .

 (6.40)

which is clearly problematic at small φ. The phase is φ = arctan(qB/T ) ≈ qB/T at
small fields, so the divergence is proportional to T/qB. The divergence probably reflects
a subtlety in the subtraction due to the fact that we renormalize T . It turns out that the
subtraction should be done using a form that keeps a subleading term that depends on
φ, which is exponentially smaller than the leading term, and does not contribute to the
divergent terms at finite φ. The form we use is

g+ = i

2
(
e2δy(y cos δ + sin δ) + e2(π2−φ)yy cos δ

)
(6.41)

Only then one gets the correct result, which has no problems at small φ and matches
exactly with the Zeta function answer. The final result for the transverse intercept with
finite masses is then

at = − 1
2π

∫ ∞
0

dy log
(

1− e−2(δ−φ+π
2 )y−y − e−2(δ+φ−π2 )y(y − γfβf )

y + γfβf + e−2(δ+φ−π2 )yy

)
(6.42)

At small mass,

at = 1
24

1 +
1 + 3

φ2 − 3
sin2 φ

π

1
γf

+ . . .

 (6.43)

The leading order term now vanishes at the φ = 0 limit, which is the expected result. Higher
order terms and their derivation from the integral and Zeta function are in appendix B.2.

5The contribution from negative y is the same as the positive, so the intercept is here written as twice
the integral over positive y.
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6.2.2 Planar mode

We now derive the action and equations of motion for the planar fluctuations around the
solution with the massive fold. We define

fp =


cot(ωσ+φ)

ω δθ 0 ≤ σ ≤ σf
− cot(ωσ+φ̃)

ω δθ σf ≤ σ ≤ `
(6.44)

The relative minus sign in the definitions is needed if we want the definition of fp to be
continuous at the folding point σ = σf .

The full action for the system, including the massive particle on the folding point, is

S = SNG + q

∫
dτAµẊ

µ|σ=0 − q
∫
dτAµẊ

µ|σ=` −m
∫
dτ

√
−Ẋ2|σ=σf (6.45)

The bulk part of the action is obtained from expanding the Nambu-Goto action and
is given in eq. (4.12). On the boundary points we have

Sb(0) =
∫
dτ

[
T

(
ω

sin(2φ)f
2
p + 1

2ω cotφf2
r + cosφfrḟp

)
+ qB

(1
2ωf

2
r + sinφfrḟp

)]
(6.46)

The first set of terms come from the NG action in the bulk, the second set proportional
to qB from the boundary interaction with the magnetic field. Using the condition qB =
T tanφ, we can reduce the boundary action to the form

Sb(0) = TqB

2

∫
dτ
(
γ2
qω(f2

p + f2
r ) + γq(frḟp − fpḟr)

)
(6.47)

At the other endpoint of the string there is a charge −q, and the action is different only
by overall sign

Sb(`) = −TqB2

∫
dτ
(
γ2
qω(f2

p + f2
r ) + γq(frḟp − fpḟr)

)
(6.48)

The endpoints move at a finite velocity given by

γq = 1
sinφ = − 1

sin(ω`+ φ̃)
(6.49)

Lastly, there are the terms at the folding point

Sb(σf ) = γfm

∫
dτ

(1
2 ḟ

2
p + 1

2 ḟ
2
r + 1

2µ
2
pf

2
p + 1

2µ
2
rf

2
r + cfrḟp

)
(6.50)

with
γf = 1

sin(ωσf + φ) = − 1
sin(ωσf + φ̃)

(6.51)

and the parameters

µ2
p = γ2

fω
2 , µ2

r = (2γ2
f − 1)ω2 , c = 2γfω (6.52)
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The variation of the action on the boundaries w.r.t. fr results in the following equations

γ2
qωfr + γqḟp = 0, σ = 0, ` (6.53)

−f̈r + µ2
rfr + cḟp = 0 , σ = σf (6.54)

The variation of fp yields the bulk equation of motion as well as the boundary equations

Tf ′p + TqB(γ2
qωfp − γqḟr) = 0, σ = 0, ` (6.55)

and at the fold

T (f ′p|σ+
f
− f ′p|σ−

f
) + γfm(−f̈p + µ2

pfp − cḟr) = 0, σ = σf (6.56)

We write the Fourier expansion for fp of the same form as in eq. (6.18). The mode fr,
which lives only at the boundary points and the fold, can be expanded with the same set
of eigenfrequencies

fr = i

√
α′

2
∑
n

αn
ωn
f (n)
r e−iωωnτ (6.57)

where the coefficients f (n)
r are just constants (defined separately at each boundary point),

and the αn are the same that appear in the expansion for fp.
We can solve the equations for fr at each of the boundary points to get a boundary

condition only on fp. The solutions at σ = 0 and σ = ` are obtained immediately from
equation (6.53). At σ = σf we have

f (n)
r = iωωnc

ω2ω2
n + µ2

r

fn(σf ) (6.58)

where fn(σ) are the eigenmodes of the planar mode fp.
We can write then the boundary conditions in terms of fn only, which now we write

as a function of x = ωσ:

f ′n + qB(γ2
q − ω2

n)fn = 0 , x = 0, ω` (6.59)

f ′n|σ+
f
− f ′n|σ−

f
+ γfm

Tω

(
ω2ω2

n + µ2
p −

c2ω2ω2
n

ω2ω2
n + µ2

r

)
fn = 0 , x = ωσf (6.60)

In addition to the last condition we demand that fn itself is continuous at x = σf .
The general solution of the bulk equations of motion is

fn (x) =

c1s1(x+ φ) + c2s2(x+ φ) 0 ≤ x ≤ ωσf
c3s1(x+ φ̃) + c4s2(x+ φ̃) ωσf ≤ x ≤ ω`

(6.61)

where s1 and s2 are the independent solutions of the bulk equation of motion, given in
eqs. (4.21)–(4.22). The explicit form of the solution that satisfies the boundary conditions
at σ = 0, ` is

fn(x) =

c̃1 (cos(ωnx) cot(x+ φ) + ωn sin(ωnx)) 0 ≤ x ≤ ωσf
c̃3
(
cos[ωn(x− 2δ)] cot(x+ φ̃) + ωn sin[ωn(x− 2δ)]

)
ωσf ≤ x ≤ ω`

(6.62)
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Then c̃3 can be related immediately to c̃1 by the continuity requirement at x = ωσf . The
remaining equation is satisfied provided that ωn is

0 = 2ωn
(
1− ω2

n

)
cos3 δ cos(ωn(π − 2φ))

+ ωn cos δ
(
3 cos(2δ) + 2ω2

n cos2 δ − 5
)

cos(2ωnδ)

+ sin δ
(
cos(2δ) + 6ω2

n cos2 δ − 3
)

sin(2ωnδ) (6.63)

In terms of βf = sin δ and γf = sec δ,

1
γ3
f

(
ω3
n +

(
3− 4γ2

f

)
ωn
)

cos (2ωnδ) +
(

3βf
γ2
f

ω2
n − βf

(
1 + β2

f

))
sin (2ωnδ)

− 1
γ3
f

(
ω3
n − ωn

)
cos

(
2
(
π

2 − φ
)
ωn

)
= 0 (6.64)

When the mass at the fold is small we write can write an approximate solution when
1
γf
� 1,

ωn = n+ 1− 3 cos (2nφ)
6π

(
n3 − n

) 1
γ3
f

+O
(

1
γ5
f

)
(6.65)

Using eq. (4.26) with the appropriate boundary terms for the present case, we can
define the inner product of two eigenfunctions as∫ ω`

0
dxfmfn + tanφ (fmfn|x=0 − fmfn|x=ω`)

+ γfmω

T

(
1− c2µ2

r

(ω2ω2
m + µ2

r)(ω2ω2
n + µ2

r)

)
fmfn|x=ωσf = π

ω
(δm−n + δm+n) (6.66)

As with the planar mode on the folded closed string, the extra term at the folding point
lets us take the massless limit smoothly, even as the eigenfunctions diverge at the point.
We see the same canceling out of divergences between the bulk integral and the added
terms at the folding point.

The computation of the intercept follows the one outlined in the previous subsection
for the transverse modes. Following the contour integral method, the result is

ap =− 1
2π

∫ ∞
0

dy log
(

1−e
−2
(
δ−φ+

π

2

)
y
(
y3+y

)
−e−2(δ+φ−π

2 )y [y3−3γfβfy2+
(
4γ2
f−3

)
y−γ3

fβf
(
1+β2

f

)]
y3+3γfβfy2+

(
4γ2
f−3

)
y+γ3

fβf
(
1+β2

f

)
−e−2(δ+φ−π

2 )y(y3+y)

)
(6.67)

Where again we need to subtract a φ-dependent term to get the correct result.
The Zeta function regularization of the sum over ωn, using the approximate solution

of eq. (6.65), we can get the result

ap = 1
24 −

1
24π

( 9
4φ4 + 3

2φ2 −
9

4 sin4 φ
+ 11

60

) 1
γ3
f

+ . . . (6.68)

The derivation of this and the matching integral form are in appendix B.2.
Interestingly, the φ→ 0 limit now reproduces the result from the string with massive

endpoints, ap = 1
24 + 11

720πγ
−3
f , even though this limit takes us out of the assumed range of

the parameters.
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7 The intercept of non-critical rotating strings

In dimensions other than the critical dimension of D = 26 there is another contribution to
the intercept of the string from the Polchinski-Strominger (PS) term in the effective string
action [2]. In the orthogonal gauge, and in terms of the coordinates σ± = τ ±σ, this added
term is

SPS =
∫
dτLPS = 26−D

24π

∫
d2σ

(∂2
+X · ∂−X)(∂2

−X · ∂+X)
(∂+X · ∂−X)2 (7.1)

This is understood as the leading correction to the Nambu-Goto action in the effective
string theory [16–19], when expanding around a classical solution with a length parameter
L. The action is expanded then in powers of `s/L, where `s =

√
α′ is the intrinsic length

scale of the string theory. The coefficient of the PS term is fixed such that the conformal
symmetry in dimensions other than 26 is preserved, up to higher order terms in the long
string expansion.

The effect of the PS term is to add a correction to the Hamiltonian whose effect at
leading order we can compute simply by evaluating the PS Lagrangian on the classical so-
lution,

EPS = −
∫
dσLPS(X̄) (7.2)

Depending on the classical solution, we may find that this diverges and needs renormaliza-
tion, and this is indeed the case for rotating string solutions.

In the original paper of Polchinski and Strominger [2], the PS term was derived by
starting from the Liouville action

SL = D − 26
24π

∫
d2σ∂+ϕ∂−ϕ (7.3)

This term originates from the Weyl anomaly in the Polyakov formulation of the bosonic
string theory, where we have an independent worldsheet metric γab and the classical Weyl
symmetry γab → eΩ(τ,σ)γab. In [32] the Liouville action appears as a change of the path
integral measure Dγ under Weyl transformations, when fixing the conformal gauge γab =
eϕηab. In [2] it was proposed to start from the Nambu-Goto action and identify hab = eϕηab,
where hab is now the induced metric on the worldsheet (assumed to be in the orthogonal
gauge). Substituting log h+− for ϕ in the Liouville action gives precisely the PS term. The
idea of [2] is to write an action only using the fluctuations of the string, but there is a more
geometric interpretation of this term, from which we see that we could encounter problems
at points where the determinant of hab vanishes, or where the worldsheet curvature diverges.

For a rotating string we find that the PS term adds a contribution to the intercept
which is

aPS = − 1
ω
EPS = D − 26

24π ω

∫
dσ cot2(ωσ + φ) (7.4)

with the appropriate angular velocity ω, phase φ, and integration boundaries depending on
the solution. The integrand diverges whenever the argument of the cotangent is a multiple
of π, which are the points in the solution moving at the speed of light, and the points at
which the worldsheet curvature diverges.
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In [1] the intercept of the rotating Neumann open string was computed with appro-
priate boundary terms used to cancel out the divergence. In [24] we quantized the open
string with massive endpoints and used the mass terms to regularize the system. Adding
masses to the folding points, the renormalization procedure for rotating folded strings will
be identical as for the open string.

7.1 Closed folded string

For the folded rotating solution of the closed string with masses at the folding points,
presented in section 5.2, the PS correction is given by

EPS = 26−D
24π ω

(∫ 0

−δ
dx cot2(x− φ) +

∫ δ

0
dx cot2(x+ φ)

)
(7.5)

which is

EPS = 26−D
12π ω (cotφ− cot(δ + φ)− δ) = 26−D

12π

(
2T
γ0m0

+ 2T
γ`m`

− δ2

`

)
(7.6)

The result is essentially the same as for a string with massive endpoints analyzed in [24],
with the tension effectively doubled, T → 2T .

In [24] it was argued that the terms which diverge in the massless limit (γm → 0)
must be subtracted from the final result. As with the contribution from the fluctuations,
the second term that goes like 1/` gives the PS intercept. The subtraction can be done
by renormalization of the masses on the folds. The result is then that for any finite
endpoint mass,

aPS = − 1
ω
E

(ren)
PS = 26−D

12π δ = 26−D
12π (arcsin β0 + arcsin β`) (7.7)

In the massless limit, aPS = (26−D)/12, so adding all the contributions from the fluctua-
tions and the PS term, the full intercept of the closed string at any D becomes

a = D − 2
12 + 26−D

12 = 2 (7.8)

as it is in the critical dimension. This is an extension of the result a = 1, independently of
the dimension, that was found in [1, 24] for the open string.

However, if finite mass terms are generated at the folds then the intercept is a function
of those masses. In that case, the PS contribution can be the dominant correction coming
from the masses, especially far from the critical dimension.

The full intercept of the closed string, including aPS and the contribution of all the
fluctuation modes, given in eqs. (5.44) and (5.72), is, in the small masses expansion

a = (D − 3)at + ap + aPS (7.9)

= 2 + 3D − 55
24π (ε1 + ε2) + D − 3

24π2 (ε1 + ε2)2 + D − 3
24π3 (ε1 + ε2)3 + 8D − 495

1440π (ε31 + ε32) + . . .

where ε1 = 1
γ0

and ε2 = 1
γ`
.
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It is interesting that the leading order correction is negative for any D ≤ 18, but it is
positive when D > 18, including in the critical dimension. For ordinary bosonic strings,
there is a condition that requires a ≤ 2, otherwise there are negative norm states in the
spectrum. With the inclusion of masses, one should verify that we do not violate any
consistency condition on the theory when D > 18 and we get an intercept greater than 2.
As a semiclassical description of long strings there is no apparent problem with a positive
sign correction, but one should check that there is no violation of some no ghost theorem
on the worldsheet when we added the mass terms.

7.1.1 Closed string in two planes of rotation

The calculation of the PS term on the rotating closed string in two planes of rotation
(presented here in section 3.1.2) was already done in [1]. We repeat it here.

Inserting the solution of eq. (3.21) into the PS term, the intercept will be given by

aPS = 1
ω

∫ `

−`
dσLPS = D − 26

24π

∫ π

−π
dx

( cos(2ξ) sin(2x)
1− cos(2ξ) cos(2x)

)2
(7.10)

For any finite ratio of J1/J2 the string has no folds, no points moving at the speed of light,
the denominator of LPS is always finite, and so is the result for the intercept

aPS = D − 26
12

( 1
| sin(2ξ)| − 1

)
= D − 26

24

(√
J1
J2

+
√
J2
J1
− 2

)
(7.11)

which is what was found in [1].
This is finite for any finite J1 and J2 but is very large when one of the angular momenta

is much smaller than the other, which is a worrying result. Taking one of the angular
momenta, say J2, to zero gives a divergent result, but below that divergence we do have
the constant part of (26−D)/12 which we found for the folded string, starting from J2 = 0
and renormalizing the divergence with masses.

It is interesting to consider this solution in the case where J1/J2 � 1. By increasing
this ratio we can get arbitrarily close to having a folding point that moves at the speed of
light. One conjecture of what happens then is that effective mass terms are again generated
near that extremal point, in such a way that will allow us to renormalize the divergent part
and get a result that has a finite limit in the J2 → 0. Specifically we could expect a result
that goes to aPS = (26−D)/12 when J2 → 0, and then the form of eq. (7.10) suggests the
leading order correction being of order

√
J2/J1. On the other hand, as shown in eq. (3.27),

the worldsheet curvature evaluated on the classical solution, does not have a smooth limit
at the extremal points, being large and negative for finite J1/J2 but positive infinity in the
limit J2 → 0. This behavior might be modified by adding mass terms.

7.2 Open string

For the open string, we evaluate the PS Lagrangian on the solution of a rotating open
string in a magnetic field with a mass on the folding point, defined in eqs. (6.3)–(6.4). The
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correction to the energy is

EPS = 26−D
24π ω2

(∫ σf

0
dσ cot2(ωσ + φ) +

∫ `

σf

dσ cot2(ωσ + φ̃)
)

(7.12)

After integration, this is the same form as for the folded closed string, with the difference
that now there is only one folding point and one mass term instead of two.

EPS = 26−D
12π ω(tan δ − δ) = 26−D

12π

(
4T
γm
− 2(arcsin βf )2

`

)
(7.13)

The term that diverges as γm → 0 has to be subtracted as before, with the renormalized
result for the PS intercept being

aPS = − 1
ω
E

(ren)
PS = 26−D

12π δ = 26−D
12π arcsin βf (7.14)

The result depends only on the velocity of the folding point, so there is no dependence on
the magnetic field. In the massless limit aPS = 26−D

24 , such that, for the open string with
no masses rotating in a magnetic field, the full intercept is given by

a = D − 2
24 + 26−D

24 = 1 (7.15)

for any D and any value of the magnetic field B.
In the critical dimension, as long as the two charges on the endpoints of the string sum

up to zero, the intercept remains a = 1 independent of the external field [29]. The result a
rotating string with no endpoint charges in D dimensions is also a = 1 as shown in [1, 24].
Our result shows that combining the two by having the non-critical string in a magnetic
field does not change the intercept.

Since a finite mass may develop at the folding point, we can write the full result for finite
masses, adding the results of eqs. (6.42), (6.67), and (7.14). The first order correction is

a = (D − 3)at + ap + aPS = 1 +
3D − 55 + 3(D − 3)

(
1
φ2 − 1

sin2 φ

)
24π

1
γf

+ . . . (7.16)

Now the modification of the masses also adds a dependence on the magnetic field in the
intercept, even when the total charge of the string is zero. It is not immediately apparent
from the expression, but for any D ≤ 26 and any φ the leading order correction is negative.

We compute the corrections up to order γ−3
f , but since the coefficients are quite com-

plicated functions of φ we write them separately in appendix B.2.

8 Summary and open questions

In this paper we analyzed folded bosonic rotating string configurations, focusing on the
rotating solutions corresponding to states on the leading Regge trajectories of closed strings,
as well as open string in a magnetic field, both of which exhibit folds.
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We determined the spectrum of fluctuations around these strings, and calculated the
quantum correction to the Regge trajectory, which is the intercept. To address the diver-
gences that arise in this semiclassical quantization of strings with folds, we insert mass
terms at the folding points. Starting from the action of a folded string with folding point
masses, we write the modified classical solution in the presence of the masses, and perform
the canonical quantization of the fluctuations around this new configuration. The prob-
lem of divergences at the folds, elaborated in section 4, is solved as the masses slow down
the folding point from the speed of light, making everything finite at the folding points.
The system also has a well defined limit when the masses go to zero where the would be
divergences are canceled out by the contribution from the masses.

The problem of divergences in the quadratic action for the fluctuations is quite subtle,
leading to a problem in defining the normalization of the eigenmodes. In non-critical
theories there is a more obvious divergence in the Polchinski-Strominger term that is added
to effective string action.

In section 5 we quantized the fluctuations around a rotating folded closed string in
D dimensions. In order to do that, we modified the solution by starting from a system
with massive particles placed at the two folding points of the string, and quantized the
fluctuations in the presence of these masses. In this way we regularize the divergences
associated with the folding point, and then there is a smooth massless limit which gives us
the result for an folded closed string with no masses.

In generic theories, one could expect that such mass terms will emerge in the effective
long string description, and it that case the masses would lead to finite corrections to the
asymptotic Regge trajectory and the intercept which we calculated in this work. The result
for the intercept closed string in D dimensions, including the correction from the PS term
in the non-critical theory is in eq. (7.9).

In section 6 we performed a similar analysis for an open string with endpoint charges
+q and −q rotating in a magnetic field. This solution has a fold, unless there are endpoint
masses of the string in addition to charges. In this paper we analyzed the solution with a
mass only at the folding point, and found the corrections related to the mass. The mass
also introduces a novel dependence on the magnetic field through the modified boundary
conditions, even though the total charge of the string is zero. The result for the intercept
is in eq. (7.16).

For both open and closed strings, the result in the massless limit is that the intercept
is independent of the dimension, a result which generalizes what was found in [1] to the
closed string, and to an open string with opposite charges rotating in a magnetic field.

In addition to the divergences associated with the folding point, there are also the more
ordinary UV divergences of the worldsheet theory, that in this paper appear in computing
the intercept as the normal ordering constant in the Hamiltonian, the sum of eigenfrequen-
cies. We show in sections 5 and 6 how the method used in [24, 27], of converting the sum
into a contour integral and renormalizing it works for the cases analyzed in this paper.
The result are equivalent to using order by order Zeta function regularization, as detailed
in appendix B. The renormalization can be thought of as either subtracting the Casimir
force of an infinitely long string, or as a redefinition of the tension and masses.
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While we discuss the massless limit of our result often, we cannot rule out the ap-
pearance of finite corrections associated with the masses in generic theories that have an
effective string description. We think not only of quantizing the strings of string theory in
a semiclassical way, but of a larger class of theories that have strings in some limit. This in-
cludes Yang-Mills theory and QCD. The description of effective long strings is constrained
and the folding point masses are then generic objects that might appear in that description.

While endpoint masses of the string seem very natural to include in QCD, being
associated with masses of quarks, one can think now also of folding point masses that
will affect the closed string states, the glueballs. In a generic effective string theory, these
masses will be a function of the underlying theory. It will be interesting to see if there is
evidence of mass corrections in YM by comparing with results from the lattice.

The topic of folded strings has not received much attention in the space of questions
associated with string theories. Nevertheless, it is quite plausible that folded strings are
important objects in various domains of physics from hadrons and cosmic strings and all
the way to black holes. Thus, there is a large unexplored region of questions associated
with folded strings. Some arise from this current work, while others are more general. Let
us give a partial list of open questions.

• In holography, endpoint masses of the string arise from “vertical” segments of the
strings, which are along the holographic radial dimension [25]. The folded rotating
closed string solutions in confining backgrounds, as we saw in section 3.3.2, are located
at the holographic wall, at some constant r = r0. It will be interesting to see if the
folding point masses on the closed string can correspond to some deformation of the
holographic solution, i.e. by taking non-trivial solutions of eqs. (3.61)–(3.62).

• As mentioned in section 3, there exist rotating solutions with angular velocity ω = nπ`
for any integer n, and by taking n > 1 we add more folds to the string. In this
paper we did not analyze the semiclassical quantization of these multiply folded
strings, choosing to focus on n = 1 which describes the states on the leading Regge
trajectories. On the other hand, if one wants to consider all states in the string
spectrum, one has to consider also the multiply folded solutions.

• In appendix B we see some interesting formulas relating sums of Zeta functions to
integrals. One question that arises from that is whether one can construct strings
with special boundary conditions and in this way generate more identities of that sort.
For instance, in B.2 we deform the boundary conditions of the string in a magnetic
field by adding a small mass, so we can write an expansion for the spectrum of
eigenfrequencies the form

ωn = n+ c1(n;φ)ε+ c2(n;φ)ε2 + . . .

In that case φ is related to the magnetic field and ε to the small mass at the folding
point, and the coefficients are fixed by the boundary condition. One can try and en-
gineer boundary conditions for the string that will result in coefficient functions that
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will lead to interesting identities when computing the intercept as the renormalized
sum over ωn in both methods.

• It would be interesting to estimate the weight of folded strings in the total space of
string configurations. String theories are characterized by exponential growth of the
density of states. Does this apply also for folded strings? How does the weight of
folded strings depend on the parameters of a particular theory, such as the string
coupling, the topology and geometry of the target space, etc.? Is that dependence
the same for open strings and closed strings?

• In this paper we discuss bosonic strings. One may wonder if one can also supersym-
metrize the notion of a fold, namely write the superstring equivalent of the condition
|det(Jµa )| = 0.

• In this paper we have concentrated on the classical and quantum rotating folded
strings in flat spacetimes. Folded closed strings have been analyzed intensively in
Ads5 × S5 both in the classical as well as one loop level [12]. It will be interesting
to apply the method developed here to regulate the induced metric scalar curvature
also for case of rotating stringy configurations in curved backgrounds like Ads5 × S5

and the large variety of other holographic backgrounds, in particular confining ones.

• In section 3.4 we have presented an example of non-critical folded strings which are
non-rotating. In [9] it was argued that these type of strings introduced in [11] may
play an important role in the description of the interior of black holes. In these
papers only the classical solutions were considered. It will be very interesting to
address the quantization of those strings and in particular whether the method of
renormalizing the theory using massive particles on the folds can be applied also to
these non-rotating folds.

• In [33] the decay processes of open and closed hadronic strings have been analyzed and
the corresponding total and partial decay widths have been computed. The analysis
in that paper was done for unfolded strings, although closed strings are addressed.
The basic idea of that paper is that there is an equal probability for a string at any
point along its spatial direction. For folded strings, the folding points are special
points and it is not unreasonable to think that they play an important role in the
process of the breakup.

• The process of melting of stringy hadrons was analyzed in [34]. It was shown there
that at any given temperature there is a critical length and correspondingly critical
orbital angular momentum above which the string cannot exist. It is conceivable that
folding points along strings will be more vulnerable when the temperature is raised
and thus will modify the sustainability of the corresponding hadrons.
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A Contour integral, explicit calculations

We do the calculation of
∑∞
n=1 n = ζ(−1) = − 1

12 in the contour integral approach.
This is the explicit calculation whose results were presented in section 5.2.2. We start

from the function
f(z) = sin(δz) (A.1)

with 0 < δ ≤ π, and we calculate explicitly

π

δ

∞∑
n=1

n = 1
2πi

∮
dzz

f ′(z)
f(z) (A.2)

Using a cutoff N , the integral over the semicircular contour of figure 6 breaks up into two
parts, an integral over the imaginary axis Iim and an integral over a semicircle of radius
N , Isc. The integral over the imaginary axis is

Iim = − δ

2π

∫ N

−N
dy y coth(δy) = δ

2πN
2+ π

12δ−iN−
1
π
N log(e2δN−1)− 1

2πδLi2(e2δN ) (A.3)

At large N , one can use the expansion

Li2
(1
x

)
= π2

3 + iπ log x− 1
2 (log x)2 +O(x) (A.4)

then
Iim = − δ

2πN
2 − π

12δ +O(e−2πN ) (A.5)

The semicircle integral is harder to evaluate. It is

Isc = δ

2πN
2
∫ π

2

−π2
dθe2iθ cot(eiθδN) (A.6)

One can get the result at large N by breaking up Isc into its real and imaginary parts. The
imaginary part gives a symmetric integral over an odd function, so it must vanish. The
real part is an even function, and we can write

Isc = δN2

2π

∫ π
2

0
dθ

sin(2θ)
(
1− e−4δN sin θ

)
+ 2 cos(2θ)e−2δN sin θ sin(2δN cos θ)

1 + e−4δN sin θ − 2e−2δN sin θ cos(2δN cos θ) (A.7)

At the N →∞ limit, we can discard all the exponents and we are left only with

Isc = δN2

2π

∫ π
2

0
dθ sin(2θ) = π

δ
N2 (A.8)
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such that
N∑
n=1

ωn = Iim + Isc →
π

2δN
2 − π

12δ (A.9)

We get the expected quadratic divergence and the finite piece, which is exactly π
δ ζ(−1).

The divergent piece is subtracted as explained in section 5.2.2.
In several places in the paper, we wrote that the divergent part can be written in

integral form by considering the contour integral over an asymptotic form of f(z). In all
cases we analyzed in the paper Isc contributes only divergent terms as we take the cutoff to
infinity, and can be dropped from the final expression for the finite intercept. We confirm
that we do not subtract any finite piece by checking numerically that Isc

N2 − π
δ → 0, which

we can also do in the more complicated cases where Isc is a function of the folding point
masses or magnetic field.

We can isolate the divergent part of Iim by taking the asymptotic form of f(iy) at
large |y|,

fA(y) =


1
2 ie

δy y > 0
−1

2 ie
−δy y < 0

(A.10)

By performing the integral on the imaginary axis on this fA(y), we get just the quadratic
divergence,

Idivim = − 1
2πi

∫ N

−N
dy y

f ′A(y)
fA(y) = − δ

π

∫ N

0
y = − δ

2πN
2 (A.11)

The finite result is obtained by taking the difference between the full Iim and Idivim . There
is no need to evaluate Isc except to show that it is divergent. We usually integrate by parts
to write the integral in eq. (A.2) as an integral over log f(z). Then we can write the finite
renormalized sum simply as

∞∑
n=1

ωn = 1
2π

∫ ∞
−∞
dy log f(iy)

fA(y) (A.12)

In the example discussed here this formula leads to

∞∑
n=1

ωn = 1
π

∫ ∞
0
dy log(1− e−2δy) = − π

12δ = π

δ
ζ(−1) (A.13)

In appendix B we write more examples of such equations between contour integrals made
finite by the subtraction described above and the results of Zeta function regularization.

B Comparison of Zeta function regularization and contour integral sub-
traction

In sections 5 and 6 we computed the corrections to the intercept with a finite mass term
present at the folds. We can perform the regularization of the divergent sum over the
eigenfrequencies in two ways. The first method is to write an approximate solution of the
eigenfrequency equation for small masses, and then perform a Zeta function regularization
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order by order. The second method is to convert the infinite sum into a contour integral,
and subtract the divergent terms from the result. This method gives a closed expression in
integral form, which can be expanded for small masses and compared with the Zeta function
result. The two methods give the same result for all examples discussed in this paper.

To do the Zeta function we start from an expansion of the form

ωn = n+ c1(n)ε+ c2(n)ε2 + c3(n)ε3 + . . . (B.1)

where the coefficients ci are functions of n. The ci in our solutions grow with n, typically
as ni. Therefore at finite ε we cannot use the expansion for a good approximate solution
of ωn for any n. On the other hand, when we write the expansion of the intercept

a = −1
2

∞∑
n=1

ωn = a0 + a1ε+ a2ε
2 + a3ε

3 + . . . (B.2)

the coefficients will be

ai = −1
2

∞∑
n=1

ci(n) (B.3)

In this sum, the contribution from large n is regularized by use of the Zeta function, so the
intercept unlike ωn does have a good convergent expansion in ε.

If the coefficient ci is expressible as a polynomial of n, then the prescription of the
Zeta function regularization is to replace each sum

∑
nk with ζ(−k).

The results of the contour integral method are written in the text. There we have a
closed expression for the intercept as an integral. The comparison with the Zeta function
is made by expanding the integrand in the same small parameter ε and writing an integral
expression for the coefficients ai.

B.1 Closed string

For the closed strings, as described in section 5, most generally we have two expansion
parameters for two folding point masses, ε1 = 1

γ0
and ε2 = 1

γ`
, which we can vary indepen-

dently of each other.
For the odd transverse modes on the closed string, the eigenfrequencies are given

exactly by
ω̃n = π

δ
n (B.4)

The contour integral calculation of

a = −1
2

∞∑
n=1

ωn = − π

2δ ζ(−1) = π

24δ (B.5)

is what we detailed above in appendix A.
The even transverse modes and the odd planar mode both have the spectrum

ωn = n+ 1
3π (n3 − n)(ε31 + ε32) + . . . (B.6)
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Therefore we can write the expansion of the intercept

a = a0 + a3(ε31 + ε32) + . . . (B.7)

where
a0 = −1

2ζ(−1) = 1
24 (B.8)

and
a3 = −1

2

∞∑
n=1

n3 − n
3π = − 1

6π (ζ(−3)− ζ(−1)) = − 11
720π (B.9)

In the integral form, expanding equation (5.40),

a3 = 1
6π

∫ ∞
0

(y3 + y)(1− coth(πy)) (B.10)

The even planar mode is nearly identical to the previous modes, with the only difference
at order ε3 a factor of −1

2 , so

ωn = n− 1
6π (n3 − n)(ε31 + ε32) + . . . (B.11)

Similarly to the above,

a0 = −1
2ζ(−1) a3 = 1

12π (ζ(−3)− ζ(−1)) = 11
1440π (B.12)

And expanding (5.69),

a3 = − 1
12π

∫ ∞
0

(y3 + y)(1− coth(πy)) (B.13)

B.2 Open string

B.2.1 Transverse modes

The order by order solution of eq. (6.23) for ωn is

ωn = n+ c1ε+ c2ε
2 + c3ε3 + . . . (B.14)

with ε = 1
γf
, and the coefficients

c1 = 1
π
n(1− cos(2nφ)) (B.15)

c2 = 4
π2n sin3(nφ) (sin(nφ)− (π − 2φ)n cos(nφ)) (B.16)

c3 = − 1
3πn(1 + cos(2nφ)) + 4

π3n sin4(nφ)(1− cos(2nφ))− 24
π3n

2(π − 2φ) sin5(nφ) cos(nφ)

+ 2
3πn

3 + 2
π3 (π − 2φ)2 sin4(nφ)(1 + 3 cos(2nφ))− 8

π3n
3(π − φ)φ sin4(nφ)

+ 4
3πn

3 sin6(nφ) (B.17)
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We can use the Zeta function regularization to compute order by order the coefficients
in the sum

at = −1
2

∞∑
n=1

ωn = a0 + a1ε+ a2ε
2 + a3ε

3 + . . . (B.18)

The zeroth order is the usual result of

a0 = −1
2

∞∑
n=1

n = −1
2ζ(−1) = 1

24 (B.19)

To compute the other coefficients we write them as an expansion in φ such that we get
only powers of n in the sum. Then we replace each term involving a sum over n with the
appropriate Zeta function. In this way we obtain

a1 = −1
2

∞∑
n=1

c1 = − 1
2π

∞∑
n=1

n(1− cos(2nφ))

= − 1
2π

∞∑
n=1

∞∑
k=1

(−1)k+1

(2k)! (2φ)2kn2k+1

= − 1
2π

∞∑
k=1

(−1)k+1

(2k)! (2φ)2kζ(−1− 2k)

= 1
2π

∞∑
k=1

(−1)k+1

(2k)!(2k + 2)B2k+2(2φ)2k

= 1
24π

(
1 + 3

φ2 −
3

sin2 φ

)
(B.20)

Between the third and fourth line we used the identity

Bn = (−1)n+1nζ(1− n) ⇒ ζ(−1− 2k) = −B2k+2
2k + 2 (B.21)

where Bn are the Bernoulli numbers. This is not a necessary step, but the Bn are known to
appear in the expansions of the tangent, cotangent, and cosecant functions, and when the
sum is written in terms of Bernoulli numbers rather than Zeta functions it is recognizable
to Wolfram Mathematica’s algorithms.

The exact result for at = −1
2
∑
ωn in its integral form is given in eq. (6.42). We expand

the integrand in ε = 1
γf

to give an integral expression for the coefficient a1, which matches
exactly the Zeta function result, it is

a1 = − 2
π

∫ ∞
0

dy
sinh2(φy)y
e2πy − 1 (B.22)

For the next coefficient it is simpler to separate into even and odd parts, c2 = ce2 + co2,

co2 = 1
2πn

2 [sin(4nφ)− 2 sin(2nφ)] (B.23)

ce2 = 1
2π2n [cos(4nφ)− 4 cos(2nφ) + 3]− 1

π2n
2φ [sin(4nφ)− 2 sin(2nφ)] (B.24)
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So when expanding in φ co2 contains only odd powers of φ, and ce2 only even powers. Now
we compute a2 in the same way we computed a1, except that we do even and odd parts
separately for simplicity. The results are

ao2 = −1
2

∞∑
n=1

co2 = − 1
2π

∞∑
n=1

∞∑
k=1

(−1)k

(2k + 1)!(4
k − 1)n2k+3(2φ)2k+1

= − 1
2π

∞∑
k=1

(−1)k

(2k + 1)!(4
k − 1)ζ(−3− 2k)(2φ)2k+1

= 1
2π

∞∑
k=1

(−1)k

(2k + 1)!(2k + 4)(4k − 1)B2k+4(2φ)2k+1

= 1
128π

(15
φ3 −

15 cosφ
sin3 φ

− sinφ
cos3 φ

)
(B.25)

ae2 = −1
2

∞∑
n=1

ce2 = − 1
4π2

∞∑
n=1

∞∑
k=1

(−1)k

(2k)! (4k − 4)(k + 1)n2k+1(2φ)2k

= − 1
4π2

∞∑
k=1

(−1)k

(2k)! (4k − 4)(k + 1)ζ(−1− 2k)(2φ)2k

= 1
4π2

∞∑
k=1

(−1)k

(2k)!(2k + 2)(4k − 4)(k + 1)B2k+2(2φ)2k

= 1
64π2

(
4 + 15φ cosφ

sin3 φ
− 15

sin2 φ
+ φ sinφ

cos3 φ
+ 1

cos2 φ

)
(B.26)

And finally

a2 = ae2 + ao2 = 1
128π2

[
8 + 15π

φ3 −
30

sin2 φ
+ 2

cosφ − (π − 2φ)
(15 cosφ

sin3 φ
+ sinφ

cos3 φ

)]
(B.27)

which matches with the integral

a2 = 4
π

∫ ∞
0

dy
sinh3(φy)[cosh(φy)− e(2π−φ)y]y2

(e2πy − 1)2 (B.28)

At order ε3, we again split the calculation into its odd and even parts. The expressions
are longer, but the method is the same.

ao3 = −1
2

∞∑
n=1

co3 = − 1
4π2

∞∑
n=1

∞∑
k=1

(−1)k

(2k + 1)!(2
2k+3 − 32k+1 − 5)(k + 2)n2k+3(2φ)2k+1

= − 1
4π2

∞∑
k=1

(−1)k

(2k + 1)!(2
2k+3 − 32k+1 − 5)(k + 2)ζ(−3− 2k)(2φ)2k+1

= 1
8π2

∞∑
k=1

(−1)k

(2k + 1)!(2
2k+3 − 32k+1 − 5)B2k+4(2φ)2k+1

= − 1
32π2

(15 cosφ
sin3 φ

− 12 cos(2φ)
sin3(2φ)

+ 3 cos(3φ)
sin3(3φ)

+ φ

sin4 φ cos4 φ

+ φ cos(4φ)
2 cos4 φ sin4 φ

− 5φ(1 + 2 cos2 φ)
sin4 φ

− 3φ(2 + cos(6φ)
sin4(3φ)

)
(B.29)
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ae3 = ζ(−1)−ζ(−3)
3π

+ 1
24π3

∞∑
k=1

(−1)k

(2k)!

(((
15−3 22k+1+32k

)
k(2k+5)−9 22k+1+32k+1+4π2+45

)
×ζ(−2k−1)−4π2

(
3−3 22k+32k

)
ζ(−2k−3)

)
(2φ)2k

= 1
103680π3

(18305π2

φ4 + 4320π2

φ2 − 4860φ2 sin2(6φ)
sin(3φ)6 − 9720φ2

sin(3φ)4−
3240

(
5φ2+2π2)

sin(φ)4

+ 6480
(
4φ2+π2)

sin(2φ)4 − 1080
(
6
(
5φ2+2π2)cot2(φ)−90φcot(φ)+4π2+45

)
sin(φ)2

+ 6480
(
8φ2 cot2(2φ)−12φcot(2φ)+3

)
sin(2φ)2 + 3240π2 sin2(4φ)

sin(2φ)6 + 9720φsin(6φ)
sin(3φ)4

− 3240
sin(3φ)2−

2160π2

sin(3φ)4−
4320π2 cot2(3φ)

sin(3φ)2 −1584π2+10800
)

(B.30)

These expressions match with

a3 = ae3 + ao3 = 1
6π

∫ ∞
0

dy

(
y(3 cosh(2yφ) + 1)

1− e2πy

+ y3e4πy(3e−6yφ − 12e−4yφ + 18e−2yφ + 3e2yφ − 8)
(1− e2πy)3

+ y3e2πy(−3e−6yφ + 9e−4yφ − 6e−2yφ + 9e2yφ − 3e4yφ − 14)
(1− e2πy)3

+ y3e2πy(6 cosh(2yφ)− 6 cosh(4yφ) + 2 cosh(6yφ) + 2)
(1− e2πy)3

)
(B.31)

B.2.2 Planar mode

The order by order solution of eq. (6.64) for ωn is

ωn = n+ 1− 3 cos(2nφ)
6π (n3 − n)ε3 + . . . (B.32)

The coefficient of the ε3, leading order correction, is

a3 = − 1
12π

∞∑
n=1

(n3 − n)(1− 3 cos(2nφ))

= 1
12π

∞∑
n=1

(
2(n3 − n) + 3

∞∑
k=1

(−1)k

(2k)! (n2k+3 − n2k+1)(2φ)2k
)

= 1
12π

(
2(ζ(−3)− ζ(−1)) + 3

∞∑
k=1

(−1)k

(2k)! (ζ(−3− 2k)− ζ(−1− 2k))(2φ)2k
)

= 1
12π

[
2(ζ(−3)− ζ(−1)) + 3

∞∑
k=1

(−1)k

(2k)!

(
B2k+2
2k + 2 −

B2k+4
2k + 4

)
(2φ)2k

]

= − 1
24π

( 9
4φ4 −

9
4 sin4 φ

+ 3
2φ2 + 11

60

)
(B.33)
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This matches exactly with the contour integral result of eq. (6.68), which is

a3 = − 1
6π

∫ ∞
0

dy
(y3 + y)(3 cosh(2φy)− 1)

1− e2πy (B.34)
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