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1 Introduction

Rare semileptonic B decays of the type B̄ → K̄(∗)`+`− have received significant interest
in the last few years because of the hints of Lepton Flavour Universality (LFU) violations
reported by the LHCb experiment [1–3] and [4] for a review, which could be due to physics
beyond the Standard Model (SM). In view of higher statistics results on these modes, a
detailed study of this phenomenon requires an accurate estimate of all possible sources of
LFU violation present within the SM.

Besides trivial kinematic mass effects, the only potential large source of LFU violation
present in the SM are hard-collinear singularities in QED. These can induce non-universal
corrections of order O(α) ln(m`/mB) to the physical decay rates (depending on the defini-
tion of the observables), which can be large for light leptons. These effects are well known
and, to a large extent, corrected for in the experimental analyses through Monte Carlo
simulations (e.g. PHOTOS [5]). In order to cross-check the reliability of the approxima-
tions which are behind this treatment, a detailed analytic analysis of QED corrections is
desirable. A first step in this direction was undertaken in [6], where semi-analytic results
for the LFU ratios RK and RK∗ have been presented. Here we go one step further: we
focus our attention on the process B̄ → K̄`1 ¯̀2 (which is a good prototype for a wide class of
interesting semi-leptonic decays, including charged-current transitions such as B̄ → π`ν),
and analyse QED corrections at a fully differential level in terms of the “visible” kinemat-
ics (i.e. in terms of the two variables that fully specify the kinematics of the non-radiative
mode). Moreover, we present a complete analysis of the problem of evaluating both real
and virtual corrections within an effective meson approach which is an improvement over
scalar QED. As we demonstrate, this approach is sufficient to trace back the origin of all
“dangerous” collinear singularities.
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While soft QED singularities cancel out at the differential level in any infrared-safe
observable, the cancellation of the collinear singularities, which are actually physical effects
regulated by the lepton mass, is more subtle. As we show, the choice of kinematic variables
plays a key role in obtaining a differential distribution that is not only infrared-safe, but
also free from the sizeable LFU violating terms of order O(α) ln(m`). In particular, as
far as the invariant mass of the two lepton system is concerned, the following two options
can be considered: q2

` = (`1 + `2)2 and q2
0 = (pB − pK)2. The first case (q2

` ), which is
the natural choice for experiments where the B momentum is not known (such as those
performed at hadron colliders), corresponds to defining the invariant mass of the charged
lepton system from the measured lepton momenta (`1,2), i.e. after radiation has occurred.
Whereas in the second case (q2

0), the hadronic momenta (pB,K) are used to define the
momentum transfer to the lepton system before radiation. These two choices coincide in
the non-radiative case, but are different in the presence of radiation. We show that it is
only by using q2

0, as the relevant kinematic variable, that the differential distribution is free
from O(α) ln(m`)-terms. This does not imply that one cannot perform clean tests of LFU
at hadron colliders, but rather that in such cases, the collinear singularities are unavoidable
and should be properly corrected for.

The paper is organised as follows. In section 2 the computation of real and virtual
amplitudes is presented, as well as the phase space measure including the physical cut-off
on the photon energy. Treatment and cancellation of infrared divergences is discussed at
length in section 3. Numerical results, in form of plots, showing the size of the radiative
corrections, are presented in section 4. An outlook on open issues and future directions
is presented in section 5. The paper is concluded in section 6. The appendices contain
additional plots, comparison with older work, comments on RK A, amplitudes B, the
parametrisation of kinematic variables C, the soft integrals D and the explicit Passarino-
Veltman functions E.

2 Computation

The two sets of variables we introduce to describe the differential distribution of the
B̄(pB)→ K̄(pK)`1(`1)¯̀2(`2) + γ(k) process, assuming that radiation is not detected, are

{q2
a, ca} =


q2
` = (`1 + `2)2, c` = −

(
~̀1·~pK
| ~̀1||~pK |

)
q−RF

[“Hadron collider” variables] ,

q2
0 = (pB − pK)2 , c0 = −

(
~̀1·~pK
| ~̀1||~pK |

)
q0−RF

[“B-factory” variables] ,

(2.1)
where q − RF and q0 − RF denotes the rest frames of

q ≡ `1 + `2 , q0 ≡ pB − pK = q + k , (2.2)

as illustrated in figure 1 (to conform to standard notations, throughout the paper q` ≡ q).
As indicated, the set a = ` is the natural choice for a hadron-collider experiment, while the
set a = 0 can be implemented only in an experiment where the B momentum is known.
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Figure 1. Decay kinematics for the different RFs of interest. The dashed line corresponds to what
is deferred to as the decay axis. For brevity we drop the frame-label on the lepton angles, θ` ≡ θ(3)

`

and θ0 ≡ θ(4)
0 , and if no frame-label is indicated on the photon angle, θγ = θ

(2)
γ is usually understood.

However, as we shall discuss later on, both sets can be applied to describe appropriate
integrated distributions in any kind of experiment.

A further variable that plays a key role in defining infrared-safe observables is

p̄B ≡ pB − k = `1 + `2 + pK , (2.3)

which equals the sum of all visible final-state momenta. The kinematic invariant p̄2
B is

the reconstructed B-meson mass in the hadronic set-up, where pB is not known, and
the variable

δex > 1− p̄2
B

m2
B

, (2.4)

provides the most natural choice for the physical cut-off regulating soft divergences. The
complete decomposition of all momenta in the pB, p̄B, q and q0 RFs is presented in ap-
pendix C, and frames are denoted as (1), (2), (3) and (4), respectively.

Schematically, we decompose the double differential rate as

d2ΓB̄→K̄`1 ¯̀2
(δex) = 1

mB

(
ρa(m2

B)|AV |2 +
∫
δex
dΦγ ρa(p̄2

B) |AR|2
)
dq2
adca , (2.5)

where ρa(m2
B) and ρa(p̄2

B) denote the 3-body and “effective-3-body” phase space factors,
and dΦγ indicates the integration over the undetected photon variables over a phase space
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region specified by the physical cut-off δex. In the following, we first introduce the effective
Lagrangians used in our analysis, and then present the calculation of the real emission
amplitude (AR) and the one-loop virtual corrections to the tree-level 3-body amplitude
(AV ), and finally discuss the corresponding phase space factors. Soft divergences and
ultraviolet (UV) divergences are regulated in dimensional regularisation (DR).1

2.1 Mesonic effective Lagrangian

Generically, we consider non-radiative processes of the type MH → ML`1 ¯̀2, where MH,L

are generic scalar mesons (of either parity). In what follows we take MH = B̄ andML = K̄

and the mediation is described by the following effective partonic Lagrangian

Lpartonint = geffLµV
µ+h.c. , Lµ ≡ ¯̀1Γµ`2 , Vµ ≡ q̄γµ(1−γ5)b , geff ≡ −

GF√
2
λCKM , (2.6)

where Γµ ≡ γµ(CV + CAγ5). The quark field q, the values of CV and CA, and λCKM can
be adapted to describe different processes. Processes mediated by the b→ u(c)`ν charged-
current interaction correspond to q = u(c), with (CV , CA) = (1,−1) and λCKM = Vub(Vcb).
Processes mediated by the flavour changing neutral transition b→ (d, s)µ+µ− are obtained
by setting CV (A) = αC9(10)/(4π) and λCKM = V ∗t(d,s)Vtb.

The corresponding effective mesonic weak Lagrangian describing the B̄ → K̄`1 ¯̀2 pro-
cess reads

LEFTint = geff L
µV EFT

µ + h.c. , V EFT
µ =

∑
n≥0

f
(n)
± (0)
n! (−D2)n[(DµB

†)K ∓B†(DµK)] , (2.7)

where Dµ = (∂+ ieQA)µ is the covariant derivative and f (n)
± (q2) denotes the nth derivative

of the form factor f±(q2). This Lagrangian maps the q2-dependence of the non-radiative
B → K form factor into a tower of derivative operators, such that the hadronic matrix
element of Vµ is reproduced to LO in the electromagnetic coupling,

Hµ
0 (q2

0) ≡ 〈K̄|Vµ|B̄〉 = f+(q2
0)(pB+pK)µ + f−(q2

0)(pB−pK)µ = 〈K̄|V EFT
µ |B̄〉+O(e), (2.8)

where 〈0|B†|B̄(pB)〉 = e−ipB ·x and 〈K̄(p)|K(x)|0〉 = eip·x, and f0 = f+ + q2

m2
B−m

2
K
f− is

the scalar part of the form factor. The radiative amplitude at O(e) is computed at the
tree level by combining the gauge-invariant Lagrangian in (2.7) with the ordinary QED
Lagrangian for fermions and mesons,

LQED ≡ Lξ(A) +
∑

ψ=`1,`2
ψ̄(iD/−m`)ψ +

∑
M=B,K

(DµM)†DµM −m2
MM

†M , (2.9)

where Lξ(A) denotes the Maxwell Lagrangian with the covariant gauge-fixing term, result-
ing in the photon propagator given in section 2.3. Matters related to going beyond this
approximation, at the form factor level, are discussed in sections 3.4 and 5.1.

1Often in QED calculations soft divergences are regulated via an explicit photon mass. For this reason,
whenever possible, we will indicate how results change when using this regulator. However, we found that
DR is more convenient in performing the soft integrals, this is why we adopt it as default approach.
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The non-radiative amplitude is decomposed as

AB̄→K̄`1 ¯̀2
≡ 〈K̄`1 ¯̀2|(−Lint)|B̄〉 = A(0) +A(2) +O(e4) , (2.10)

where the superscript indicates the order in the electromagnetic coupling and the phase
follows the Particle Data Group (PDG) convention [7]. The lowest-order (LO) ampli-
tude reads

A(0)
B̄→K̄`1 ¯̀2

= −geff L0 ·H0 , (2.11)

with
Lµ0 ≡ 〈`1 ¯̀2|Lµ|0〉 = ū(`1)Γµv(`2) . (2.12)

For flavour changing neutral currents (FCNCs), such as B̄ → K̄`+`−, there are ad-
ditional contributions originating from four-quark operators, dipole and chromomagnetic
penguin operators which are apparently not described by the mesonic Lagrangian in (2.7).
Some of these effects, in particular the long-distance contribution associated to the char-
monium resonances introduce sizeable distortions of the kinematical distribution in specific
regions of q2. However, in the case of a scalar meson final state, such effects can partially
be absorbed for moderate q2 � m2

J/Ψ into a reparametrisation of the f± form factors.2

Approaches of this type can be found in the literature in the framework of e.g. QCD
factorisation [8] and/or light-cone sum rules [9–11].

At this point we wish to comment on the QED corrections performed in K →
π`+`− [12]. Formally the main difference is that we perform a form factor expansion (2.7)
whereas they work with constant form factor which is a good approximation for Kaon
physics. In terms of the kinematics they directly work with q2

0-variable (denoted by s

in [12]) since this variable is accessible in Kaon experiments. Moreover, the photon energy
cut-off is implemented in the q0-RF.

2.2 Real radiation

The five diagrams relevant to compute real emission amplitude at O(e) are shown in fig-
ure 2. The result can be expressed as follows3

A(1) = −egeff

{
ū(`1)

[
Q̂`1

2ε∗ ·`1+/ε∗/k
2k ·`1

Γ·H0(q2
0) + Q̂¯̀2

Γ·H0(q2
0)2ε∗ ·`2+/k/ε∗

2k ·`2

]
v(`2)

+ Q̂B̄ L0 ·H̄(B)
0 (q2)ε

∗ ·(pB + p̄B)
2k ·pB

+ Q̂K̄ L0 ·H̄(K)
0 (q2)ε

∗ ·(pK+p̄K)
2k ·pK

+ (Q̂B̄−Q̂K̄)L0 ·ε∗ f+(q2) + (Q̂B̄+Q̂K̄)L0 ·ε∗ f−(q2)

+ (Q̂B̄+Q̂K̄)L0 ·(pB ± pK)(ε∗ ·(q + q0))
∑
n≥1

f
(n)
± (0)
n! Pn−1

}
, (2.13)

2Of course there are additional long-distance effect, such as the photon exchange between a charm-loop
and the B-meson which cannot be captured in this way. We expect the simplified procedure outlined above
to absorb the main effect at moderate q2.

3Note that, in order to recover the photon mass regularisation, the following substitutions in the denom-
inators are sufficient: 2k ·p→ 2k ·p±m2

γ with plus sign for outgoing and minus sign for ingoing momenta.
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L1

K̄

ℓ̄2

γ
ℓ1

B̄

L2 P Kγ Bγ

Figure 2. O(e)-graphs with nomenclature referring to photon-emission and the P stands for
point-like and can also be interpreted as a contact term.

B̄ → K̄`1 ¯̀2 Q̂B̄ Q̂K̄ Q̂`1 Q̂¯̀2

B̄− → K̄−µ−µ+ +1 −1 −1 +1
B̄s → K̄−νµ+ 0 −1 0 +1

Table 1. Example of charge assignment for FCNC and semileptonic decay which obey (2.14). Note
that generally QP = −QP̄ , rules for the hatted charges are given in the text and by convention B̄
and K̄ correspond to mesons with a bq̄ and sq̄ valence quarks.

where Pn =
∑n
m=0(q2)(n−m)(q2

0)m (with P0 = 1), H̄(X)
0 = H0|pX→p̄X for X = B,K and

p̄K ≡ pK + k.
The rules for the hatted charges are: Q̂in = −Qin and Q̂out = Qout. Furthermore we

use Q¯̀2
= −Q`2 such that Q¯̀2

+Q`1 = 0 in the case where the lepton pair is charge neutral,
cf. table 1 for an illustration. Charge conservation then implies∑

i=B̄,K̄,`1,¯̀2

Q̂i = 0 . (2.14)

Hereafter the
∑
i is defined by the left-hand side (l.h.s.) of the equation above. Keeping the

leading terms in the k → 0 limit, i.e. at O(1/Eγ), A(1) assumes the Low or eikonal form,

A(1)
Low = eA(0)∑

i

Q̂i
ε∗ ·pi
k ·pi

, (2.15)

which is manifestly gauge invariant as a result of eq. (2.14). The subleading terms of O(E0
γ)

are also universal and are proportional to the angular momentum operator (e.g. σµνkµε∗ν

terms in the first line of (2.13)).
It is instructive to discuss gauge invariance of the amplitude beyond the k → 0 limitas

it comes in rather disguised form. Here we summarise the essence and defer some detail to
appendix B.3. A gauge transformation (ε→ k) of the first line in (2.13), omitting common
prefactors, leads to

A(1)
1st line

∣∣∣
ε→k
∝ (Q̂¯̀2

+ Q̂`1)L0 ·H0(q2
0) , (2.16)

whilst the second and third line combine to (Q̂B̄+Q̂K̄)L0·H0(q2). This is would signify gauge
invariance if q2 = q2

0 and that’s where the contact term (P -graph) comes into play. The
latter, fourth line, leads to (Q̂B̄+Q̂K̄)L0·[H0(q2

0)−H0(q2)], such thatA(1)|ε→k is proportional
to the sum of charges in (2.14), assuring gauge invariance of the whole amplitude.
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2.3 Virtual corrections

The diagrams for the virtual corrections are depicted in figure 3 and decompose into

A(2) = A(2)
1PI + 1

2
α

π

[
(Q2

`1 +Q2
¯̀2

)δZ(1)
2 + (Q2

B̄
+Q2

K̄
)δZ(1)

S

]
A(0) , (2.17)

where 1PI stands for one particle irreducible and δZ correspond to the self-energy correc-
tions. The amplitudes for the 1PI graphs are given in appendix B.2. We have explicitly
computed corrections up to the second derivative but in the actual plots we restrict our-
selves to the first derivative as they already are numerically time-consuming.

For the Z-factors, decomposed as Zi = 1 + Q2
i
α
π δZ

(1)
i + O(α2), we find, adapting the

on-shell scheme,

δZ
(1)
S = 1

4

(
(3− ξ)

( 1
ε̂UV
− rsoft

)
+ (1− ξ)

)
,

δZ
(1)
2 = 1

4

(
−ξ 1

ε̂UV
− (3− ξ)rsoft + 3 ln

(
m2

µ2

)
− (3 + ξ)

)
, (2.18)

with
1
ε̂

= 1
ε
− γE + ln 4π . (2.19)

The gauge parameter ξ enters the photon propagator as in ∆µν(k) = −1
k2−m2

γ

(
gµν−(1−ξ)kµkν

k2

)
.

The factor rsoft reads

rsoft =

 ln
(
m2
γ

µ2

)
mγ 6= 0

1
ε̂IR

mγ = 0
, (2.20)

in the case of a photon mass and DR respectively.
As far as A(2)

1PI is concerned, soft singularities can be isolated as follows

A(2)
1PI = 1

2
α

π
A(0)∑

i 6=j
Q̂iQ̂j(p̂i · p̂j)C0(m2

i ,m
2
j , (p̂i + p̂j)2,m2

i ,m
2
γ ,m

2
j ) + non-soft , (2.21)

where the explicit expression of the C0 function can be found in appendix E. Here p̂in =
−pin, p̂out = pout in analogy with the hatted charges (and p`1,2 ≡ `1,2). Note that (2.21)
is consistent with the crossing rule of reversing momenta and charge when passing from
in(out)- to out(in)-state. We explicitly checked that the gauge dependent part of the
amplitude vanishes as a consequence of charge conservation:

A(2)|ξ = ξ

2
α

4πA
(0)
(
rsoft −

1
ε̂UV
− 1

)
(
∑
i

Q̂i)2 = 0 . (2.22)

Let us turn to the UV divergences. There are no UV divergences in the neutral meson
case since the leptonic currents do not renormalise (at our level of approximation). This
does not change when the tower of operators LEFTint (2.7) is added as the derivatives acts
on the mesons only. As previously mentioned, we restrict ourselves to the first form fac-
tor derivative approximation or to dimension-eight operators (the explicit form factors are
given in section 4). In the case of charged mesons, there are UV divergences associated
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L1L1 PL1 L2L2 PL2

L1L2KγKγPKγKγL2KγL1

PBγBγBγBγKγBγL2BγL1

ℓ1 ℓ̄2

K̄B̄

Figure 3. O(e2)-graphs with nomenclature adapted for tracking the cancellation of IR-divergences.

with operators of dimension six and eight in (2.7) and there is an additional one propor-
tional to pB · `1 f (1)

± (0) which can be interpreted as a t-channel operator.4 Since f± are
to be counted separately this means that there are six counterterms to be fixed at our
level of approximation. The appropriate counterterms can be determined by matching to
QCD which we hope to address in a forthcoming publication. In this work, we treat the
divergences with minimal subtraction. We comment in section 4 on the numerical impact
of the undetermined finite counterterms.

2.4 Phase space

Below we give the 3- and 4-particle phase space measures. For the photon phase space
measure we need a regularised version in order to properly account for finite terms. Here,
we find it more instructive to discuss explicitly results obtained using a non-vanishing
photon mass. We refer the reader to appendix D.1 for the adaptation to DR.

2.4.1 Phase space for the radiative and non-radiative decay

The radiative rate B̄ → K̄`1 ¯̀2γ, without energy cut-off on the photon, is given by

d2ΓB̄→K̄`1 ¯̀2γ
= 1
mB

(∫
ρa
[
|A(1)|2 +O(e4)

]
dΦγ

)
dq2
adca , (2.23)

4The set of operators (2.7) does not close under renormalisation and needs to be completed by the
t-channel operator at dimension eight.

– 8 –



J
H
E
P
1
2
(
2
0
2
0
)
1
0
4

where

ρ` = 1
26(2π)3

λ1/2(p̄2
B, q

2,m2
K)

p̄2
Bq

2 λ1/2(q2,m2
`1 ,m

2
`2) ,

ρ0 = 1
26(2π)3

λ1/2(m2
B, q

2
0,m

2
K)

m2
Bq

2
0

1
ω2λ(q2

0,m
2
`1 , (k + `2)2) , (2.24)

with λ the Källén function (C.3), and ω2 is given in (C.14). Thus, ρ0
ρ`

= det ∂(q2,c`)
∂(q2

0 ,c0) is
the Jacobian which can be computed from the defining equation (2.1) and the kinematic
parameterisations given in the appendix. Moreover, the Lorentz-invariant photon phase
space integral reads∫ Emax

γ

mγ
dΦγ ≡

1
(2π)3

∫ Emax
γ

mγ

d3k

2Eγ

= 1
2(2π)3

∫ (E(i)
γ )max

mγ
dE(i)

γ |~k (i)|
∫
dΩ(i)

γ Θ
[
f (i)(E(i)

γ , θ(i)
γ , φ(i)

γ )
]
, (2.25)

with

(E(1)
γ )max =

m2
B +m2

γ − (q +mK)2

2mB
, (E(4)

γ )max =
q2

0 +m2
γ − (m`1 +m`2)2

2q0
, (2.26)

where the former and the latter correspond to the {q2, θ`}a=` and {q2
0, θ0}a=0 variables

respectively, and qa ≡
√
q2
a is understood in this context. The restriction on the angles is

Θ
[
f (i)(E(i)

γ , θ(i)
γ , φ(i)

γ )
]

=
{

1 i = 1
Θ[D(E(4)

γ , θ
(4)
γ , φ

(4)
γ , q2

0, c0)] i = 4
, (2.27)

with the function D defined in (C.13). The reason why the restriction in the (4)-RF, ap-
propriate for the {q2

0, c0}-variables, is non-trivial is that for certain given values of {q2
0, c0},

the true maximum photon energy is a function of the photon angles and is in general below
(E(4)

γ )max. We find it most convenient to implement the kinematic restrictions via the
step-function Θ(x).5

In the {q2, θ`}a=` case, one can conveniently work with the Lorentz invariant variable
p̄2
B, related to E(1)

γ as 2mBE
(1)
γ = m2

B + m2
γ − p̄2

B. Moreover, since the passage from E
(1)
γ

to E(2)
γ is independent of the photon angles the replacement dΩ(1)

γ → dΩ(2)
γ is allowed. The

photon phase space then assumes the form∫ Emax
γ

mγ
dΦγ →

1
23(2π)3

∫ (mB−mγ)2

(q+mK)2
dp̄2

B

λ1/2(m2
B, p̄

2
B,m

2
γ)

m2
B

∫
dΩ(1,2)

γ . (2.28)

The non-radiative B̄ → K̄`1 ¯̀2 rate is given by

d2ΓB̄→K̄`1 ¯̀2
=
ρ`|p̄2

B→m
2
B

mB

{
|A(0)|2 + 2Re[A(0)(A(2))∗] +O(e4)

}
dq2dc` . (2.29)

Since there is no photon-emission, in this case there is no difference between the {q2, c`}-
and {q2

0, c0}-variables.
5In the limit of m`1,`2 → 0, the step-function Θ(x) becomes redundant, since the function D is then

positive for all kinematic configurations, as can be seen from (C.13).
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2.4.2 Introduction of a physical photon energy cut-off

As anticipated, to match experimental observations, we introduce a cut-off on the maximal
value of p̄2

B via the parameter δex, defined in (2.4), satisfying

0 < δex < δincex = 1−
(
q +mK

mB

)2
. (2.30)

The value δincex corresponds to the minimal value of p̄2
B in a fully photon-inclusive decay.

This definition translates to the following photon-energy cut-off6

Emax
γ

(1) = δex
mB

2 , (2.31)

A typical choice for δex in realistic experiments is δex = O(0.1). With the inclusion of δex,
the integral (2.25) assumes the form∫

δex
dΦγ = 1

23(2π)3

∫ (mB−mγ)2

m2
B(1−δex)

dp̄2
B

λ1/2(m2
B, p̄

2
B,m

2
γ)

m2
B

∫
dΩ(2)

γ . (2.32)

3 Cancellation of infrared divergences

In order to track the divergences it is convenient to split the differential rate as follows

d2ΓB̄→K̄`1 ¯̀2
(δex) = d2Γ LO + α

π

∑
i,j

Q̂iQ̂j
(
Hij + F (a)

ij (δex)
)
dq2
adca +O(e4) ,

= d2Γ LO
[
1 + ∆(a)(q2

a, ca; δex)
]
dq2
adca +O(e4) , (3.1)

where d2Γ LO corresponds to the zeroth order term in (2.29), the sums on the charges
is understood as in (2.14), and H and F stand for the virtual and real contributions
respectively. More precisely, Hij and Fij are related to the amplitudes as follows

α

π

∑
i,j

Q̂iQ̂jHij = 1
mB

ρ`|p̄2
B→m

2
B

2Re[A(2)∗A(0)] ,

α

π

∑
i,j

Q̂iQ̂jF (a)
ij = 1

mB

∫
dΦγ ρa |A(1)|2 , (3.2)

where dΦγ and ρa are defined in (2.24) and (2.25) respectively.
In standard fashion, the integrals are split into divergent parts which can be done

analytically and a necessarily regular part which is dealt with numerically. We parameterise
this decomposition as follows

Hij = d2Γ LO

dq2dc`

(
H̃(s)
ij + H̃(hc)

ij

)
+ ∆Hij ,

F (a)
ij (δex) = d2Γ LO

dq2dc`
F̃ (s)
ij (ωs) + F̃ (hc)(a)

ij (δ) + ∆F (a)
ij (δ) , (3.3)

6When evaluating the photon phase space variable in the (4)-RF, appropriate for the {dq2
0 , dc0}-variables,

the cut-off can be converted by using E(1)
γ = γq0E

(4)
γ (1−βq0 cos θ(4)

γ ) cf. (C.11) for the Lorentz boost factors.
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with H̃(s)
ij (H̃(hc)

ij ) and F̃ (s)
ij (F̃ (hc)(a)

ij ), to be defined further below, containing all soft (hard-
collinear) singularities, whereas ∆H and ∆F are regular (even in the limit m`1,2 → 0).
In order to split the real emission part, besides the previously introduced physical cut-off
δex, we adopt the phase space slicing method [13], which requires the introduction of two
auxiliary (unphysical) cut-offs ωs,c,

δ ≡ {δex, ωs, ωc} , ωs � 1 , ωc
ωs
� 1 . (3.4)

We remind the reader that δex has been introduced for meaningful comparison with exper-
imental data and mention for clarity that F̃ (hc)(a)

ij is singular in the m`1,2 → 0 limit but
finite for m`1,2 6= 0.

As already implicit in the decomposition (3.3), soft divergences cancel at the differential
level independently from the choice of variables. This is not the case for hard-collinear
singularities, given that the hard-collinear integral (F̃ (hc)(a)

ij ) is not proportional to the non-
radiative kinematics. Without the physical cut-off δex, the cancellation of both types of
divergences proceeds as in standard in textbooks discussions (see e.g. [14–16]). However, the
choice of a photon energy cut-off, associated with a preferred frame, makes it significantly
more involved compared to the semileptonic case [17]. A detailed discussion of the soft
singularities and collinear logs follows below, along with the definitions of the F̃ and H̃.
Particular emphasis is given to single out which observables are IR-safe and not.

3.1 Cancellation of soft divergences at differential level

The soft singularities in the virtual corrections are encoded in the triangle functions C0
in (2.21) and the self energy contributions in (2.18). Combining them, we define

H̃(s)
ij

def= (1− δij)(p̂i · p̂j)Re[C0(m2
i ,m

2
j , (p̂i+p̂j)2,m2

i ,m
2
γ ,m

2
j )] + δij × δZ(1)

i

= −rsoft

{
(1− δij)

p̂i · p̂j
mimj

xij
(1− x2

ij)
ln |xij |+ δij

1
2

}
+O(fR) , (3.5)

where fR stands for IR finite terms, including regularisation-dependent ones. The xij-
variables are given by

xij ≡
√
yij − 1
√
yij + 1 , yij ≡

(p̂i+p̂j)2−(mi+mj)2+i0
(p̂i+p̂j)2−(mi−mj)2+i0 . (3.6)

Considering the soft part of the real emission amplitude, namely the Low part of the
amplitude in (2.15), we define

F̃ (s)
ij (ωs)

def= (2π)2
∫
ωs

−pi ·pj
(k ·pi)(k ·pj)

dΦγ = (2π)2
∫
ωs

−p̂i ·p̂j
(k ·p̂i)(k ·p̂j)

dΦγ

= −KR(ωs)I(0)
ij +O(fR)

= [rsoft − 2 ln(ωs)]
{

(1− δij)
p̂i ·p̂j
mimj

xij
(1− x2

ij)
ln |xij |+ δij

1
2

}
+O(fR) , (3.7)

where the O(fR) terms can be found in appendix D.2. As can be checked, the sum
H̃(s)
ij + F̃ (s)

ij (ωs) is free from soft divergences and this ensures their cancellation at the
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differential level.7 This includes ln2m`1,2-terms which cancel when the real and virtual
terms are summed up: these are genuine soft-collinear terms, which cancels as a result of
the cancellation of the soft divergences.8 We note that as a result of these cancellations
scheme dependent terms due to IR regularisation disappear as well.

The crucial step in evaluating (3.7) is that, neglecting finite terms, the integral over the
photon energy and the photon angles factorises: the angular integral I(0)

ij alone becomes
separately Lorentz invariant (i.e. frame independent) and can be performed in the RF of
the radiating pair, where it is particularly simple (see appendix D for more details). The
energy and angular integral evaluate to

KR(ωs) = −1
2rsoft + ln

(
mB

µ

)
+ ln(ωs) +O(ωs) , (3.8)

and

I
(0)
ij =

 1 i = j ,

2 p̂i·p̂j
mimj

xij
1−x2

ij
ln |xij | i 6= j .

(3.9)

We wish to emphasise that there are single collinear logs, lnm`1,2 , in H̃
(s)
ij + F̃ (s)

ij (ωs)
which match up with corresponding terms in H̃(hc)

ij + F̃ (hc)
ij (δ). The procedure is therefore

well set-up for tracking analytically after what phase space integration IR sensitive terms
cancel against each other.

However, since there remain lnωs-terms in the analytic expression one might wonder
whether this leads to a numerically stable integral. We have found that the phase space
integral is stable when using a Monte Carlo integration on the photon variables. Alterna-
tively, one might use the dipole subtraction method [18] as applied to QED [19–21].

3.2 Hard-collinear virtual contribution H̃(hc)

The hard-collinear virtual contribution, after summing over charges, is given by

H̃(hc) def=
∑
i,j

Q̂iQ̂jH̃(hc)
ij = 2Q̂`1

(
Q̂¯̀2

+Q̂B̄+Q̂K̄
)

ln
(
m`1

µ

)
+ {1↔ 2}

=− 2Q̂2
`1 ln

(
m`1

µ

)
+ {1↔ 2}, (3.10)

where
(
µ2

4π2

)εUV
B0(m2, 0,m2) = 1

ε̂UV
− 2 ln(m/µ) + 2 +O(ε) was used and charge conser-

vation was used in going from the first to the second line.

7Note that xij < 0 as the momenta pi are assumed to be timelike with positive energy. Moreover, the
individual Fij are gauge dependent (the result is presented for ξ = 1), whereas in the sum over all charges
gauge dependence disappears.

8In order to track the ln(m`) terms, note that xij → −mimj/(p̂i+p̂j)2 for (p̂i+p̂j)2 � m2
i,j . Moreover it

is worth pointing out that one can write, I(0)
ij = 1

2βij
ln
(

1+βij

1−βij

)
, in terms of physically transparent variables

with βij = βi+βj

1+βiβj
is the relativistic addition of the velocities of the two particles βi ≡ |~pi|/Ei in the ij-RF.
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3.3 The hard-collinear integral F̃(hc,a)

We evaluate the hard-collinear integral using the phase space slicing method [13] following
the specific recipe in ref. [22]. The integral is given by

α

π
F̃ (hc,a)(δ) = α

π

∑
i,j

Q̂iQ̂jF̃ (hc,a)
ij (δ)

= 1
mB

∫ δex

ωs
ρ`1||γa (ωc) |A(1)

`1||γ |
2dΦγ + {1↔ 2} , (3.11)

where |A(1)
`1||γ |

2 is the part of |A(1)|2 proportional to 1/(k · `1) when m`1 → 0 which includes
contributions beyond the Low term. Note that the photon-energy integral runs from ωs
till δex, consistent with (3.3) where the soft modes are absorbed into F̃ (s)

ij (ωs). The phase
space factor ρ`1||γa (ωc) is defined as

ρ`1||γa (ωc) = ρaΘ(ωcm2
B − k · `1) , (3.12)

where ρa is defined in (2.24), the meaning of the integration boundaries can be inferred
from (2.32), and the step-function encodes the phase space slicing. The quantity ωc � 1
then implies that k and `1 are nearly collinear.

3.3.1 Phase space slicing of the hard-collinear integral

In the phase space slicing method, the photon and the light particle it is emitted from,
are effectively treated as a single particle. This follows up on the intuitive picture that
a particle and its collinear photon are hard to disentangle. Below, we give the explicit
expressions for `1||γ, and the `2||γ case is obtained in a completely analogous fashion.
Formally, one decomposes the phase space as follows

dΦB̄→K̄`1 ¯̀2γ
= dΦB̄→K̄`1γ ¯̀2

dΦγ
E`1γ
E`1

. (3.13)

The collinear region is parameterised by `1 = z`1γ , where `1γ ≡ `1 + k, assuming that
the transverse part can be neglected in order to extract the collinear logs. The two parts
in (3.13) then assume the form

dΦγ
E`1γ
E`1

→ 1
16π2dz d`

2
1γ ,

dΦB̄→K̄`1γ ¯̀2
→ 1

25(2π)3
λ1/2(m2

B, q
2
0,m

2
K)

m2
B

dq2
0dc0 . (3.14)

In those variables, the amplitude squared assumes the form (in the ξ = 1 gauge)

|A(1)
`1||γ |

2 = e2

(k·`1)Q̂`1

[
Q̂`1 (1−z)− 2z

1−z
(
Q̂¯̀2

+Q̂B̄+Q̂K̄
)
−Q̂`1

m2
`1

k ·`1

]
|A(0)

`1‖γ |
2 +O(m2

`1)

= e2

(k·`1)Q̂
2
`1

(
P̃f→fγ(z)−

m2
`1

k ·`1

)
|A(0)

`1‖γ(q2
0, c0)|2

∣∣∣
B̄→K̄`1γ ¯̀2

+O(m2
`1) , (3.15)
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where |A(0)
`1‖γ |

2 = |A(0)
B̄→K̄`1γ ¯̀2

|2 and P̃f→fγ(z) is the collinear emission part of the splitting
function for a fermion to a photon9

P̃f→fγ(z) ≡
(

1 + z2

1− z

)
, (3.16)

and them2
`1
/(k·̀ 1) term is immaterial for the hard-collinear logs per se but of importance for

the numerics as it captures lnωs terms. The LO order matrix element squared in (3.15), is
given in appendix B.1. The first line in (3.15) is gauge dependent whereas the second is not
since charge conservation has been applied. This is further manifested by the appearance
of the splitting function which is a universal object.

3.3.2 F̃(hc,0), structure of collinear singularities in dq2
0dc0

Taking (3.11) and using the integration measure dΦγ in (3.14) one arrives at

F̃ (hc,0)(δ) = 1
210π3m3

B

(
Q̂2
`1

∫ max(z(ωs),0)

max(z(δex),0)
f̃ (hc)(c0,m`1 , ωc)dz

+ Q̂2
¯̀2

∫ max(z′(ωs),0)

max(z′(δex),0)
f̃ (hc)(−c0,m`2 , ωc)dz

)
, (3.17)

where the boundaries on z are determined by the phase space slicing cut-off ωs and the
real photon energy cut off δex (2.4),

z(δ) = z(δ, q2
0, c0) = 1− δ

1− ŝK`2(q2
0, c0)

, (3.18)

with ŝK`2 ≡ (p̂K + ˆ̀2)2 = 1
2

(
1− q̂2

0 + m̂2
K − c0 λ

1/2 (1, q̂2
0, m̂

2
K

))
and z′ = z|c0→−c0 .10 The

integrand in (3.17) reads

f̃ (hc)(c0,m`, ωc) = λ1/2(m2
B, q

2
0,m

2
K)|A(0)

m`→0(q2
0, c0)|2

(
P̃q→qγ(z) jhc − jhc(m`1 )

)
, (3.19)

with the LO amplitude squared given in appendix B.1 (in terms of q2, c` though) and the
jhc’s are functions of z, m`1 and the collinear scale ωc,

jhc(z, ωc,m`1) =
∫ ωcm2

B

1−z
2z m

2
`1

d(k ·`1)
k ·`1

= ln 2ωcz
m̂2
`1

(1−z)
,

jhc(m`1 )(z, ωc,m`1) =
∫ ωcm2

B

1−z
2z m

2
`1

m2
`1
d(k ·`1)

(k ·`1)2 = 2z
1− z −

m̂2
`1

ωc
, (3.20)

and the integration boundaries on d`21γ correspond to (3.12). Here and below, hatted
quantities are normalised w.r.t. the mB mass, i.e. m̂K = mK/mB.

9No prescription is required when z → 1, in our case, as this soft region has been treated in another
section and is cut off by ωs. Cf. appendix A.1.1 for a discussion involving the full splitting function.

10Note that in the (4)-frame, the collinear limit forces the pair of particles (either `1γ and `2, or `2γ and
`1) to move in opposite directions. Since c0 is defined w.r.t. `1, this explains the c0 → −c0 procedure to
obtain the corresponding formulae for `2||γ.
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In the case of the {q2
0, c0}-variables, as adapted in this section, (3.17) can be simplified

considerably

F̃ (hc,0)(δ) = λ1/2(m2
B, q

2
0,m

2
K)

210π3m3
B

(
|A(0)(q2

0, c0)|2 Q̂2
`1J

(hc,0)(δ) + {1, c0 ↔ 2,−c0}
)
, (3.21)

and the remaining hard-collinear integral J (hc,0) is easily evaluated11

J (hc,0)(δ)=
∫ z(ωs)

z(δex)
dz
(
P̃q→qγ(z) jhc − jhc(m`1 )

)
=A(δex, ωs) ln

m2
`1

2ωcm2
B

+B(δex, ωs,m`1) , (3.22)

where

A(δex, ωs) = 1
2(z(ωs)− z(δex))(2 + z(ωs) + z(δex)) + 2 ln z̄(ωs)

z̄(δex)
z(ωs)→1→ 1

2 z̄(δex)(3 + z(δex)) + 2 ln z̄(ωs)
z̄(δex)

z(δex)→0→ 3
2 + 2 ln z̄(ωs) ,

B(δex, ωs,m`) = 1
2
[ (
z(δex)2 + 2z(δex)

)
ln z(δex)
z̄(δex) − ln z̄(δex)− 4 Li2 z̄(δex)

− 2 ln2 z̄(δex)−
(

3 + 2m̂
2
`

ωc

)
z(δex)− {δex ↔ ωs}

]
(3.23)

z(ωs)→1→ 1
2
[ (
z(δex)2 + 2z(δex)

)
ln z(δex)
z̄(δex) − ln z̄(δex)− 4 Li2 z̄(δex)

+
(

3 + 2m̂
2
`

ωc

)
z̄(δex)− 2 ln2 z̄(δex) + 2 ln2 z̄(ωs) + 4 ln z̄(ωs)

]
,

(3.24)

with z̄ ≡ 1 − z and the z(ωs) → 1 limit has been used since ωs � 1. Moreover, A is the
coefficient of the collinear log, for which we have also indicated the result for the photon-
inclusive limit (i.e. z(δex) → 0). The hard-collinear logs from F̃ (hc,0) integrated over the
full rate, starting from the soft cut-off ωs, becomes

d2Γ(0)
∣∣∣(hc)
`1||γ, lnm`1

= d2Γ LO
B̄→K̄`1γ ¯̀2

(
α

π

)
Q̂2
`1

[3
2 + 2 ln z̄(ωs)

]
lnm`1 + reg. terms , (3.25)

where “reg. terms” stands for terms which are finite in the m`1 → 0 limit.
We are now ready to show the cancellations of the lnm`1-terms by assembling all

pieces. Defining
d2Γ
dq2

0dc0

∣∣∣∣∣
lnm`1

= d2Γ LO

dq2
0dc0

(
α

π

)
Q̂2
`1 lnm`1 × C

(0)
`1
, (3.26)

11Note that the z-integration strictly speaking involves max conditions, cf. (3.17), and this is how we have
performed the integral. However for ωs, δex � 1 the z’s are always larger than zero, hence the simplification.
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we find

C
(0)
`1

=
[3

2 + 2 ln z̄(ωs)
]
F̃(hc)

+
[
−1− 2 ln z̄(ωs)

]
F̃(s)

+
[3

2 − 2
]
H̃

= 0 , (3.27)

complete cancellation. As explicitly indicated, the first term in square brackets comes from
the hard-collinear integral, (3.25), the second term from the soft integral in eq. (D.19) of
appendix D.2, and the last term from the virtual corrections (here the 3

2 originates from
the Z-factors and the −2 from the B0-functions in (3.10)). Note that the passage from
B̄ → K̄`1γ ¯̀2 in (3.25) to B̄ → K̄`1 ¯̀2 in (3.27) is justified since the lepton and the photon
are collinear and can thus be treated as a single particle. The cancellation for the lepton
¯̀2 is of course completely analogous. It is worthwhile to point out that the hard-collinear
logs, as well as the soft divergences, do cancel charge by charge as explicitly shown in
appendix B.4. Note, that in general the cancellation at the differential level is spoiled by
non photon-inclusiveness (δex < δincex ) and/or going over to the {q2, c`}-variables.

3.3.3 F̃(hc,`), structure of collinear singularities in dq2dc`

We now proceed to analyse the analogous question for the {q2, c`}-variables. SettingmK →
0, for simplicity, we have (for lepton `2, c` → −c`)

q2
0 = q2

z
, c0|mK→0 = c`(1 + z) + 1− z

c`(1− z) + 1 + z
, (3.28)

and using
dq2

0dc0 = 4(c`(1− z) + 1 + z)−2dq2dc` , (3.29)

the analogue of (3.17) becomes

F̃ (hc,`)(δ) =
Q̂2
`1

28π3m3
B

∫ max(zinc(c`),zωs (c`))

max(zinc(c`),zδex (c`))
dz

[
|A(0)(q2

0, c0)|2λ1/2(q2
0,m

2
B, 0)

(c`(1− z) + 1 + z)2

×
(
P̃q→qγ(z) jhc − jhc(m`1 )

) ]
+ {1, c` ↔ 2,−c`} , (3.30)

where c0 = c0(c`) with regard to the symmetrisation over c`, zδex(c`) implements the photon
energy cut (2.4) and the arguments have to be substituted by (3.28). The boundaries for
the z-integral are given by12

zinc(c`)|mK→0 = q̂2 , zδ(c`)|mK→0 = 1 + q̂2 − δ + c`(1− q̂2 − δ)
1 + q̂2 + δ + c`(1− q̂2 − δ) , (3.31)

and obtained by solving (3.18) for δ = δincex , ωs, δex as appropriate, with (3.28) in place. The
phase space slicing condition is implemented via zωs(c`) < 1.

12Note that the photon-inclusive case, δinc
ex , corresponds to the minimum value of z, for a given q2. In

the limit of mK → 0, one can deduce, from (3.28), that this corresponds to q2
0 = m2

B , which then leads to
zinc(c`)|mK→0 in (3.31).
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The new aspect is that the |A(0)(q2
0, c0)|2 cannot be factored out since it depends on

z implicitly through q2
0 and c0. However, in the limit of mK → 0 and m`1,2 → 0, the

amplitude squared (2.11) is simple enough,

|A(0)(q2
0, c0)|2 = g2

eff(|CV |2 + |CA|2) 2(1− c2
0)(1− q̂2

0)2 f2
+(q2

0) , (3.32)

and the integral can be done analytically. Note that above {q2
0, c0} are to be substituted

as in (3.28).
Adding all the contributions, real and virtual, that contribute to the hard-collinear

logs, one finds

d2Γ
dq2dc`

∣∣∣
lnm`1,2

= α

π
(Q̂2

`1Khc(q2, c`) lnm`1 + Q̂2
`2Khc(q2,−c`) lnm`2) , (3.33)

where Khc(q2, c`) is a non-vanishing function (cf. appendix A.1.1 for a non-trivial cross-
check). Plots of this quantity are shown in figure 7 for (`1, ¯̀2 = `−, `+), with ` = e, µ.

At last, we would like to mention that for q2 → (m`1 + m`2)2 and c` → −1 the
assumption that k · `1 is small compared to other scalar products breaks down and this
leads to artificial enhancements. For example, the Jacobian factor in (3.30) becomes too
large when q2 is small and c` → −1. However, for a binned rate this effect is negligible and
moreover for the {q2

0, c0}-variables there are no such issues at all.
At times we have made the mK → 0 approximation for simplicity in presentation. The

full expressions of c0 in terms of {q2, c`} (eq. (3.28)), the Jacobian from {q2
0, c0} to {q2, c`}

(eq. (3.29)), sK`2 in terms of {q2, c`}, the integrand for F̃ (hc,`)(δ) (eq. (3.30)) and the limits
of the z-integral (eq. (3.31)) can all be found in a Mathematica notebook appended to the
arXiv version.

3.3.4 Cancellation of hard-collinear logs for the total differential rate

It is well-known that all IR divergences and IR sensitive terms ought to cancel at the level
of the total, photon-inclusive, rate [23]. It is the aim of this section to verify this for the
case at hand. The hard-collinear part of the total rate given by

Γ̃(hc,`)(ωs)
∣∣∣
lnm`1

≡ α

π

∫ 1

0
dq̂2

∫ 1

−1
dc` F̃ (hc,`) ,

Γ̃(hc,0)(ωs)
∣∣∣
lnm`1

≡ α

π

∫ 1

0
dq̂2

0

∫ 1

−1
dc0 F̃ (hc,0) , (3.34)

where we have assumed the mK → 0 limit.
In accordance with the general expectation, we find

Γ̃(hc)
∣∣∣
lnm`1

≡ Γ̃(hc,0)
∣∣∣
lnm`1

= Γ̃(hc,`)
∣∣∣
lnm`1

, (3.35)

equality at the level of the hard-collinear logs originating from the real radiation

Γ̃(hc)(ωs)
∣∣∣
lnm`1

=
mBQ̂

2
`1

29 (9π3)f
2
+g

2
eff(|CV |2 + |CA|2) [8 + 6 lnωs +O(ωs)] lnm`1 . (3.36)
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Since we have explicitly shown the cancellation for d2Γ
dq2

0dc0
, this implies that the hard-

collinear logs cancel for the integrated
∫ d2Γ
dq2dc`

dq2dc`. The O(ωs)-terms can be safely
neglected, since ωs � 1, and in any case the same approximation has been used when
evaluating the soft integrals, cf. appendix D.2.

3.4 On hard-collinear logs and structure-dependent terms

We turn to the important question as to whether further hard-collinear logs could be
missing due to omitted structure-dependent corrections. Using gauge invariance, we are
able to show that this is not the case. In doing so, we will further establish why the hard-
collinear logs can be written as a sum of terms proportional to Q̂2

`1,¯̀2
. At the end of the

section, we give a physical argument of the previously established result that hard-collinear
logs cancel at differential rate d2

dq2
0dc0

Γ, that is when expressed in {q2
0, c0}-variables.

The starting point is to realise that hard-collinear logs lnm`1,2 are generated by inter-
ference of

1
k ·`1,2

(3.37)

denominators (k approaching `1,2) with other terms. Without loss of generality, we may
focus our attention to lepton `1. The real amplitude can be decomposed,

A(1) = Q̂`1a
(1)
`1

+ δA(1) , (3.38)

into a term Q̂`1a
(1)
`1

with all terms proportional to Q̂`1 , and the remainder δA(1). Note,
that at this point we have not yet made use of charge conservation. From (2.13),

a
(1)
`1

= −egeffū(`1)
[

2ε∗ ·`1+/ε∗/k
2k ·`1

Γ·H0(q2
0)
]
v(`2) , (3.39)

which contains all 1/(k ·`1)-terms. It is seen that the structure-dependence of this term is
encoded in the form factor H0 (defined in (2.8)) only. For our purposes it is convenient to
write the amplitude square, using (3.38), in terms of three terms∑

pol
|A(1)|2 =

∑
pol
|δA(1)|2 − Q̂2

`1

∑
pol
|a(1)
`1
|2 + 2Q̂`1Re[

∑
pol
A(1)a

(1)∗
`1

] , (3.40)

where it will be important that A(1) is gauge invariant. By construction, the first term
is manifestly free from hard-collinear logs lnm`1 . To simplify the discussion, we may
use gauge invariance and set ξ = 1 in this section under which the polarisation sum,∑

pol ε
∗
µεν = (−gµν + (1 − ξ)kµkν/k2) → −gµν , collapses to the metric term only. In this

case, the second term evaluates to∫
dΦγ Q̂

2
`1

∑
pol
|a(1)
`1
|2 =

∫
dΦγ Q̂

2
`1

O(m2
`1

) +O(k ·`1)
(k · `1)2 = O(1) Q̂2

`1 lnm`1 , (3.41)

where we used k − `1 = O(m2
`1

), valid in the collinear region. Note that the form factor
part H0(q2

0) does not participate in the photon phase space integration, and factorises when
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working with dq2
0. We now turn to the third term. The crucial step in use is that gauge

invariance k ·A(1) = 0 implies `1 ·A(1) = O(m2
`1

) in the collinear region and thus the third
term assumes the form

Q̂`1
∑
pol
A(1)a

(1)∗
`1

= c1 Q̂
2
`1

O(m2
`1

) +O(k ·`1)
(k · `1)2 + c2 Q̂`1Q̂X

O(m`1)
(k · `1) + . . . , (3.42)

where X ∈ {B̄, K̄, ¯̀2} and the ellipses stand for less singular contributions. The c1-term
has the same origin as the one in (3.41). The c2-term comes from interfering the spin
dependent term in (3.39) with the Q̂`1-independent part of A(1) and it is by the use of the
equation of motion, that one arrives at the O(m`1)-suppression13∫

dΦγ
O(m`1)
(k · `1) = O(m`1) lnm`1 , (3.43)

as compared to (3.41). Hence we have established that all hard-collinear terms lnm`1 can
be written as a sum of terms proportional to Q̂2

`1
. It should be added that in making

this statement, charge conservation was used since gauge invariance was assumed. All
statements hold irrespective of any photon phase space restrictions such as an energy
cut-off δex or a photon angle cut (cf. section 4.2). Thus, any gauge invariant addition
to the amplitude, due to structure-dependent terms, will not give rise to any additional
lnm`1-terms.

So far, our analysis has been concerned with the real amplitude only. Assuming that
hard-collinear logs cancel charge by charge combination at the differential level in the
{q2

0, c0}-variables, irrespective of the microscopic approach, the same conclusion applies to
each virtual diagram.14 For virtual diagrams, there is no distinction between {q2

0, c0}- and
{q2, c`}-variables and thus the conclusion holds irrespective of the differential variables. As
the reader might suspect, the same conclusions holds for lepton `2 by symmetry. Let us
summarise these findings:

• Additional structure-dependent corrections, which are of course gauge invariant, will
not give rise to any additional hard-collinear logs lnm`1,2 .15

• At the double-differential level, hard-collinear logs lnm`1,2 , real and virtual, can be
written as a sum of terms proportional to Q̂2

`1,2
consistent with our explicit evaluation

using the phase space slicing method in eq. (3.25).
13In fact, this result is true more generally since the spin dependent part is proportional to the Lorentz-

generator which, by contraction, is a boost into the direction of the photon. Let us assume that m`1 = 0.
Since in the collinear limit, the photon and the lepton are parallel, the massless lepton is boosted in direction
of movement. Since the helicity of a massless particle cannot be changed, the generator has to vanish. If
the lepton mass is reinstalled, then there are terms of the form m`1 lnm`1 which are however safe.

14A physical argument of the correctness of this assumption is given in the last of paragraph of this
section. In particular, we have verified this explicitly up to the second derivative of the form factor in our
approach and produced a formal derivation that holds to all orders.

15This applies to either, approaches resolving the mesons by partons or an evaluation of the B(K)γL1,2-
diagrams, cf. figure 3, including higher terms in the expansion (2.7).
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To this end, let us give a physical explanation as to why hard-collinear logs lnm`1,2 are
to cancel at the differential level in {q2

0, θ0}. In those variables, the decay corresponds to
the disintegration of a scalar particle of mass q2

0 which is an infrared-safe observable. Now,
the angle θ0 has no meaning when the decay axis, cf. figure 1, is decoupled and the B̄ and
the K̄ are interpreted as a single particle of mass q2

0. This observation is backed up by our
explicit formal verification in eq. (3.26). In essence q2

0 is an IR-safe kinematic variable and
the entirety of the particles in q2

0 can be viewed as the moral cousin of a jet.

4 Results for B̄ → K̄e+e− and B̄ → K̄µ+µ−

The total radiative corrections are presented in section 4.1, followed by a discussion of
the distortion of the spectrum due to γ-radiation in section 4.2. The size of the hard
collinear logs and some comparison with older work is deferred to appendices A.1 and A.2
respectively. Before proceeding thereto, we summarise the input to the numerics below.

For the particles participating in the decay, the following masses are assumed: me =
0.511MeV, mµ = 0.10565GeV, mB = 5.28GeV and mK = 0.495GeV. Other parameters
are the Wilson coefficients, C9 = 4.035 and C10 = −4.25 at µUV = 4.7GeV (the b-quark
pole mass) and the fine structure constant, 1/α = 137.036. For the B → K form fac-
tors (2.8), the light-cone sum rules computation [24], including radiative correction up to
twist-3, was used with updated Kaon distribution amplitude parameters16

{f+, f−}B→K(0) = {0.271,−0.206} , d

dq2 {f+, f−}B→K(0) = {0.0151,−0.0109} , (4.1)

where the uncertainty is roughly 15% if one additionally takes into account the error on the
Kaon distribution amplitude. For the auxiliary cut-offs of the phase space slicing method,
ωs(e) = 2.5 ·10−3, ωs(µ) = 4 ·10−3, ωc(e) = 1 ·10−2ωs(e) and ωc(µ) = 2 ·10−2ωs(µ) lead
to stable results. The hierarchy ωc/ωs � 1 is important since terms of this order are
neglected.17 Here, we refrain from a complete uncertainty analysis. Let us nevertheless
mention the sources. There are the form factor uncertainties which can be largely reduced
by considering correlations amongst the four numbers (4.1) entering the computations.
Besides a more complete structure-dependent approach, cf. section 5.1, there are missing
finite counterterms in the charged meson case, which we set to zero and refer the reader
to the discussion in section 2.3. Concerning the latter, one might get a naive dimensional
analysis estimate by varying the constant c, associated with 1/εUV + c, by a factor of 2.
Adding these effects in quadrature results in an O(1%)-variation.

16For the Kaon distribution amplitude, the values aK1 (1GeV) = 0.115(34) and aK2 (1GeV) = 0.090(20)
taken from the Nf = 2 + 1 lattice computation [25] (uncertainties were added in quadrature) were used.
These values are consistent with earlier QCD sum rule computations [26–29].

17We refer the reader to [22] for an uncertainty analysis involving the auxiliary cut-offs.
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4.1 Radiative corrections as a function of q2
0, c0 and q2, c`

We consider it most instructive to discuss the relative QED corrections, implicitly defined
in (3.1),

∆(a)(q2
a, ca; δex) =

(
d2Γ LO

dq2
adca

)−1
d2Γ(δex)
dq2
adca

∣∣∣
α
. (4.2)

Above |α stands for the inclusion of the O(α)-corrections only. The LO rate is given
eq. (B.1). We further consider the relative single differential in d

dq2
a

∆(a)(q2
a; δex) =

(
dΓ LO

dq2
a

)−1
dΓ(δex)
dq2
a

∣∣∣
α
, (4.3)

where the numerator and denominator are integrated separately over
∫ 1
−1 dca respectively.

In addition, we define the single differential in d
dca

∆(a)(ca, [q2
1, q

2
2]; δex) =

(∫ q2
2

q2
1

d2Γ LO

dq2
adca

dq2
a

)−1 ∫ q2
2

q2
1

d2Γ(δex)
dq2
adca

dq2
a

∣∣∣
α
, (4.4)

where the non-angular variable is binned. We would like to stress that it is important to
integrate the QED correction and the LO separately as this corresponds to the experimen-
tal situation.

Results for ∆(a)(q2
a; δex) and ∆(a)(ca, [q2

1, q
2
2]; δex) are shown in figures 4 and 5 respec-

tively. Let us first focus on figure 4 where in the photon-inclusive case (δex = δincex , dashed
line), one observes two important features: Approximate lepton-universality and the can-
cellation of the hard-collinear logs. In the q2

0-variable, this happens at the differential
level whereas for the q2-variable, integration over the entire range is needed (the tendency
thereto is visible in the plot of the r.h.s.). To be clear, the cancellation in the later case
only occurs upon integration over the full q2-range. We further remind the reader that in
all cases the soft divergences cancel locally as explicitly shown in section 3.1. It is notice-
able that for the charged case, there are O(2%)-effects in the q2

0-variable due to “collinear
logs”, ln m̂K ≈ −2.36. These logs, of course, cancel upon integration over all differential
variables. The impact of the photon energy cuts are large, cf. appendix A.1, and care
needs to be taken when considering quantities like RK for example. An important physical
effect, visible in the plots on the right in figures 4, is the distortion of the q2 distribution
w.r.t. the non-radiative case. This is particularly prominent in the photon-inclusive limit
as discussed in the next section.

The angular differential ∆(a)(ca, [q2
1, q

2
2]; δex) in figure 5 shows similar patterns in the

photon-inclusive case (δex = δincex , dashed lines), e.g. lepton universality and small effects
in the c0-variable due to the cancellation of hard-collinear logs. In the electron case,
there is a significant enhancement towards the endpoints {−1, 1} which is due to the
peculiar behaviour of the LO rate dΓ LO ∝ (1 − c2

` ) + O(m2
` ) (B.2). This is the same

effect as the helicity suppression in a π− → `−ν̄ decay and further explains why the effect
is less prominent in the muon case. A more detailed analysis of the angles will follow in
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Figure 4. Total relative QED-corrections, cf. (4.3) for the definition, including finite terms. The
upper and lower figures correspond to the charged and neutral modes in the q2

0- and q2-variables
on the left and right respectively. In the photon-inclusive case (δex = δinc

ex , dashed lines), all IR
sensitive terms cancel in the q2

0 variable locally and in the q2-variable when integrated which is
nicely visible in both cases. In the charged case, however, we see finite effects of the O(2%) due
to ln m̂K “collinear logs” which do not cancel. An important aspect is the (approximate) lepton
universality on the plots on the left. As is well-known, effects due to the photon energy cuts are
sizeable since hard-collinear logs do not cancel in that case. This is in particular for electrons.

a forthcoming paper cf. comments in section 5.2. Cuts on the photon energy are again
sizeable and the same remarks as before apply.

Plots of the hard-collinear logs lnm` are deferred to appendix A.1. Moreover in ap-
pendix A.2 our results are compared to the earlier work [6] where virtual corrections were
indirectly inferred and radiative corrections have been evaluated in terms of a radiator
function depending on q2 and q2

0 only, and not on the photon-emission angle.

4.2 Distortion of the B̄ → K̄`+`− spectrum due to γ-radiation

As discussed in section 3 the {q2
0, θ0}-variables are safer than the {q2, θ`}-variables because

of the cancellation of the hard-collinear divergences. In this section, we wish to emphasise
yet another reason why it is preferable to use the {q2

0, θ0}-variables. This is sometimes
called the migration of radiation or the distortion of the spectrum: at fixed q2, effectively
the radiative process is probed at a different q2

0 = (q + k)2 as a result of the photon
carrying away momentum. If the spectrum has significant variations in q2

0, this implies a
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Figure 5. Total relative QED-corrections (4.4) in terms of c0 = cos(θ0) c` = cos(θ`) respectively
for the electrically neutral hadron case. In the c0-variable effects are small for δex = δinc

ex cf.
comments in text and previous figures. The enhanced effect towards the endpoints {−1, 1} in the
electron case is, partly, due to the special behaviour of the LO expression (B.2) which behaves like
∝ (1− c2`) +O(m2

`) and explains why the effect is less pronounced for muons.

significant distortion in the kinematical distribution. This effect is indeed well-known from
the determination of the J/Ψ-pole in e+e− → hadrons [30]. Generically, the more inclusive
one gets in the photon energy and angle, the more pronounced it is, as in this case the
radiative topologies (4-body) can be very different from the virtual ones (3-body).

Let us illustrate the effect by considering the hard-collinear radiation, F̃ (hc,`)(δ) given
in eq. (3.30). Assuming the mK = 0 limit, for simplicity, the dz-intgegrand contains
|A(0)(q2

0, c0)|2 ∝ f+(q2
0)2 = f+(q2/z)2 (cf. eq. (B.2) with m` = 0) and q2

0 = q2/z from
eq. (3.28). Since z < 1 in general, it is clear that momentum transfers of a higher range
are probed. For c` = −1, maximising the effect, one gets

zδex(q2)
∣∣∣
c`=−1

= q2

q2 + δexm2
B

, (q2
0)max = q2 + δexm

2
B , (4.5)

upon using (3.31). Thus for δex = 0.15 and q2 = 6GeV2 one finds (q2
0)max = 10.18GeV2

which is of course problematic when one wants to probe RK in the q2 ∈ [1, 6]GeV2

range, given that the charmonia start to impact more severely well below 10GeV2. In the
photon-inclusive case, the lower boundary becomes zinc(c`)|mK→0 = q̂2 by eq. (3.31) and
(q2

0)max = m2
B. Hence, in that case the entire spectrum is probed for any fixed value of q2

which confirms the earlier statement. As it can easily be understood, this would be rather
problematic in B̄ → K̄`+`− decays due to the large charmonia contributions (cf. com-
ments below (2.12)), that would “contaminate” all the q2 region below their masses. This
is why in experimental analyses, stringent cuts on the photon energy (or the reconstructed
B-meson mass) and its emission angle are implemented.

The effects described above are visible in both plots in figure 6. We stress that they
are underestimated since a) we kept only one power in the derivative expansion and b) one
would need to incorporate long-distance effects in addition. Note that for the virtual
contributions, it is only when both hadrons are neutral that the derivative expansion can
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Figure 6. Plots of total relative QED corrections (4.2) for B− → K−`+`− comparing the constant
form factor case versus taking one derivative correction into account with values given in (4.1)
(cf. below (2.12) for further comments). Effects are more prominent in the photon-inclusive case
(δex = δinc

ex ) since there is more phase space for the q2- and q2
0-variables to differ. In the neutral

case, we found that the effects are similar albeit slightly smaller.

be avoided. If this is not the case, it is important to take into account higher derivative
corrections and perform the matching of the finite counterterms from QCD.

As alluded above, besides the cut on the reconstructed B-meson mass, in order to
reduce the migration of radiation (or better the distortion of the q2 spectrum) one can
further restrict the photon’s phase space in the photon’s emission angle. From q = q0 − k,
taking into account (C.7), one gets q2 = q2

0 − 2E(1)
γ (E(1)

q0 + |~q (1)
0 | cos θ(1)

γ ). Then using the
expression of the maximum photon energy in (2.31), one arrives at

(q2
0)max = q2 + δexmB(E(1)

q0 + |~q (1)
0 | cos θ(1)

γ ) . (4.6)

Assuming again for simplicity the mK = 0 limit where E(1)
q0 = (m2

B + q2
0)/(2mB) and

|~q (1)
0 | = (m2

B − q2
0)/(2mB), one finds

(q2
0)max =

{
q2 + δexq

2
0 cos θ(1)

γ = −1 tight-angle cut
q2 + δexm

2
B cos θ(1)

γ = +1 max-angle
. (4.7)

This means that for fixed q2, and a cut of δex = 0.15, the radiative process probes values
of (q2

0)max = q2/(1 − δex) ≈ 1.18 q2 (tight-angle cut) and (q2
0)max ≈ q2 + 4.18GeV2 (max-

angle) respectively. Note that the maximum angle cut in the photon-emission gives the
same result as the maximum lepton angle. This is because in the collinear limit (~̀1 ∝ ~k),
the maximum lepton angle aligns ~̀1 and ~k with the decay axis (x-axis, see figure 1), and
this coincides with the maximum angle cut.

4.3 Remarks on the Lepton Flavour Universality ratio RK

LFU ratios, such as RK , are good observables to search for specific types of physics beyond
the SM, namely new interactions that are not universal among the different lepton species.
Owing to the cancellation of many hadronic uncertainties, these ratios can be predicted
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well up to LFU violating interactions. In the SM, LFU is broken by the fermion masses
and, as such, sizeable effect could result from the logarithms of QED

RK |q2
0∈[q2

1 ,q
2
2 ]GeV2 = Γ[B̄ → K̄µ+µ−]

Γ[B̄ → K̄e+e−]
∣∣
q2

0∈[q2
1 ,q

2
2 ]GeV2 ≈ 1 + ∆QEDRK , (4.8)

as first quantified in [6]. Whereas for a meaningful comparison to experiment a purpose
build Monte Carlo with complete differential treatment is desirable (cf. section 5.3), one
may already raise the point that the precise treatment has a relevant impact.

For example, considering only the cuts on reconstructed B-meson mass in [1], the net
QED correction that should be applied to RK according to our analysis amounts to

∆QEDRK ≈
∆ΓKµµ
ΓKµµ

∣∣∣∣∣
mrec
B =5.175GeV

q2
0∈[1,6]GeV2

− ∆ΓKee
ΓKee

∣∣∣∣mrec
B =4.88GeV

q2
0∈[1,6]GeV2

≈ +1.7% , (4.9)

whereas the correction has to be compared with the ∆QEDRK ≈ +3% quoted in [6] that, as
explained in appendix A.2, takes into account an additional implicit tight cut on the photon-
emission angle. Note that the different photon energy cuts for muons (mrec

B = 5.175GeV↔
δex = 0.0394) and electrons (mrec

B = 4.88GeV ↔ δex = 0.1458) reduce the effect of QED
corrections to RK . In addition, |∆QEDR

BIP
K | > |∆QEDR

INZ
K | has to be expected since the

BIP computation [6] is more exclusive, in view of the tight photon-angle cut, than the
explicit computation presented here. However, in both cases the overall impact of QED
corrections in the LFU ratios (currently estimated by the experiment using PHOTOS) is
not exceedingly large and below the current experimental error RK = 0.846+0.060+0.016

−0.054−0.014 [3].

5 Outlook

In this section, we briefly address various topics which go beyond the scope of this paper
and are worthwhile to be pursued in future investigations.

5.1 Structure-dependent terms

In this work, we have treated the mesons as fundamental fields. The effective Lagrangian
employed is able to perfectly describe their internal structure up to O(e0). However, the
electromagnetic probe sees the mesons as a structureless particle. Hence our effective
Lagrangian corresponds to approximating a multipole expansion by the monopole term.

In the language of meson fields, one would need to build a systematic effective field the-
ory with gauge invariant operators out of covariant derivatives and meson fields. This would
include, amongst others, terms beyond minimal coupling of the form (DµB)†Fµν DνK. It
is beyond doubt that in full QCD, the meson’s partons give rise to such higher multipole
emissions, which we referred to as structure-dependent terms.18 The question is whether
they are sizeable. For light-light systems, such as K → π decays, these terms are known
to be small e.g. [31, 32] (unless the leading amplitude is accidentally suppressed). For

18The full theory, including QCD and QED, is needed to compute the corresponding Wilson coefficients.
and counterterms when involving loops.
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heavy-light systems, this might change since the masses of the valence quarks introduce a
sizeable asymmetry that will eventually be resolved.

A result established in this paper provides some protection. It was shown in sec-
tion 3.4 that structure-dependent corrections do not lead to any additional hard-collinear
logs. Since soft divergences cancel at the differential level, this means that the employed
approximation captures all IR sensitive terms. However, it cannot be precluded that new
and interesting hadronic effects, not directly related to infrared effects, could come into
play. An example of which is provided by Bs → µ+µ−, where it was found that the chiral-
ity suppression of the non radiative decay mµ/mb is lifted to mµ/ΛQCD (“enhanced power
corrections”) when QED corrections are taken into account [33]. These authors develop
QED corrections to B decays within the soft collinear effective theory (SCET) framework,
recently extended to B → Kπ [34]. It allows for the resummation of different types of
logarithms [35] but does not capture all 1/mb effects. To what extent 1/mb-corrections
are important in QED corrections to B-mesons decays is an interesting and open question.
Another approach is lattice QCD, where the precision in Kaon physics per se demands
the inclusion of QED corrections [36, 37] with first results in leptonic decays [38–40]. For
B decays, in the region of fast recoiling particles, more work is needed because of too
many exponentially growing modes that have to be captured by a fit or dealt with in some
other way.

5.2 Moments of the differential distribution

A special feature of QED corrections is that they have genuine infrared effects when com-
pared to the weak interaction with natural scale mW � mB. As pointed out in [41], this
changes the angular distribution in that there is not a specific hierarchy of moments in the
angles (cf. section 5 in this reference). Without QED corrections, it is the dimension of the
effective Hamiltonian that limits the partial waves to its lowest numbers. Higher moments
(in the partial wave expansion) are therefore absent or suppressed by further powers of
mb/mW . Hence, measuring higher moments allows to measure QED effects. It is therefore
interesting to scrutinise the size of these corrections from the theory side in order to identify
the most sensitive moments and give further motivation to an experimental investigation.
We will turn to this task in a forthcoming publication.

5.3 The B̄ → K̄`+`− differential distribution through Monte Carlo

Our results can be used to estimate the radiative corrections to the B̄ → K̄`+`−(γ) differ-
ential distribution semi-analytically.19 As demonstrated, the choice of differential variables
(which might be dictated by their accessibility in a given experiment) that we have in-

19The integration over the photon variables is done numerically and this is why we refer to them as
semi-analytic.

– 26 –



J
H
E
P
1
2
(
2
0
2
0
)
1
0
4

troduced (2.1) directly impacts in what way hard-collinear logs cancel. An alternative
approach, more in line with current analysis techniques, is to build a Monte Carlo program
for the numerical simulation of the radiative and the non-radiative processes, and evalu-
ate the impact of the radiative corrections entirely numerically. This happens at an even
more differential level by taking into account the photon kinematics on an event-by-event
basis. Given the sizeable contributions from hard-collinear logs, it will be an important
task to crosscheck the purpose-built Monte Carlo against standard tools used in exper-
imental analysis. In this case, our virtual corrections are essential in that they provide
the normalisation of the Monte Carlo code.20 Within this approach, we are free to adopt
the {q2

0, c0} or the {q2, c`}-variables, since these are used to describe the simulated events
and the experiment can produce a distribution in either of the variables by using local
corrections factors. The final comparison with experiment is performed in a subsequent
step after taking into account experimental efficiencies, resolutions, and cuts to reduce the
background. Given our results in section 3, it is clear that the choice of {q2

0, c0} is more
convenient, since for each value of q2

0 and c0 the corresponding photon-inclusive rate is
free from hard-collinear singularities. A detailed Monte Carlo code for B̄ → K̄(∗)`+`−(γ),
taking into account the finite O(α) terms evaluated in this work, will be presented in a
forthcoming publication.

It is worth stressing that most of the considerations presented in this work, and par-
ticularly the strategy outlined above to build a Monte Carlo code, apply if the final-state
hadron is a narrow vector resonance (such as the K̄∗), rather than a stable scalar meson. In
the narrow-width approximation, we can neglect the interference of the radiation emitted
by the final-state mesons, produced by the vector-meson decay, with the radiation from
the B decay products (i.e. the radiation described in this work). In this limit (which is a
rather good approximation in the K̄∗ case, given that ΓK̄∗/mK̄∗ ≈ 5%) the formalism is
essentially identical, up to a richer form factor structure.

5.4 Remarks on charged-current semileptonic decays

In the main section, charges and masses were kept completely general, so that any semilep-
tonic decay can be covered, including charged-current processes such as B̄ → D`ν. A
significant difference to B̄ → K̄`+`− is that the variable p̄2

B, defined as in (2.3), is not
observable (because of the unidentified neutrino). Whereas this does not pose a problem
for the Monte Carlo simulation discussed above, this is an issue for the semi-analytical
determination of an O(α) infrared-safe distribution of B̄ → D`ν.

One possibility to overcome this problem is to consider p̂2
B ≡ (pB−pν)2 as the effective

photon energy variable. A photon energy cut-off, similar to (2.4), can be introduced as
follows δexSL = (1−p2

D`/p̂
2
B) which translates to E∗γ < δexSL(pD`/2) (E∗γ is the photon energy in

20The Monte Carlo code requires the introduction of an (unphysical) soft cut-off Λs, below which the
mode is treated as a three-body decay. The rate (3.1) is then split into, d2Γ(δex) = [d2Γ(Λs)]MC3 +[
α
π

∑
i,j
Q̂iQ̂j(F (a)

ij (δex)−F (a)
ij (Λs))

]
MC4

dq2
adca, a first term which is done semi-analytically with our com-

putation and simulated with three-body kinematics, and a second term which is obtained through the
simulation of the full four-body kinematics. Note that both terms are free from soft divergences and Λs is
analogous to phase space slicing cut-off ωs introduced in section 3.
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the D-lepton RF). The new aspect with regards to the FCNC case is that the lower cut-off
on the energy variable, (p̂2

B)min = p2
D`/(1− δexSL), is dependent on a differential variable.21

Another strategy is to impose the minimal kinematic limits on p̄2
vis ≡ (pB−k−pν)2 and

accept all events with ED and Eν which lie within the non-radiative Dalitz-plot. This is the
“traditional” approach adopted in refs. [17, 42, 43]. This can work in a clean environment,
in K-factories, but would not be a feasible approach for the LHC collider environment.
Incidentally, we note that the variables (ED, Eν) are an alternative choice to our {q2, c`}-
variables. We finally stress that the approach followed in [44], where an effective cut on
the photon energy is implemented irrespective of the photon-emission angle, might lead to
a miss-estimate of the hard collinear logs (see the discussion in appendix A.2).

6 Conclusions

In this paper we have analysed the O(α) corrections to a generic MH → ML`1 ¯̀2 decay,
whereMH,L are scalar mesons (of either parity). We have performed a complete calculation
of these corrections within improved scalar QED, employing a mesonic effective Lagrangian
(with a tower of effective operators) which provides an accurate description of the non-
radiative hadronic form factors. We have shown by means of explicit computation that
all soft divergences cancel at the double differential level (section 3.1), irrespective of the
choice of the variables used to describe the “visible” kinematics. On the other hand, we
have demonstrated that the hard-collinear logs can survive, even in the photon-inclusive
limit, depending on the variables employed to describe the photon-inclusive distribution.
More precisely, they cancel in the case of the {q2

0, c0}- but not the {q2, c`}-variables defined
in eq. (2.1).

Our analysis goes well beyond, in terms of accuracy and generality, w.r.t. previous
analytical treatments of radiative effects in MH → ML`1 ¯̀2 decays. Still, some open is-
sues remain, as discussed in section 5.1. In particular the matching of the residual UV
ambiguities with QCD (which would allow the inclusion of QED effects to the Wilson co-
efficients [45, 46]) and resolving the photon interaction with the quarks themselves. As we
have shown, gauge invariance ensures that such ambiguities cannot induce lnm`-enhanced
corrections (section 3.4). This implies, in particular, that these corrections have a negligible
impact on the experimental determination of the LFU ratios.

Our analysis indicates that great care must be taken when comparing theoretical with
experimental data, given that radiative corrections for the electron modes can easily exceed
the 10%-level (as already indicated by previous analyses). As discussed in appendix A.2,
the overall impact of QED corrections on integrated LFU ratios, such as RK , is not too
large, especially given the current cuts applied on the reconstructed invariant mass for
electron and muon modes [3]. On the other hand, differential observables are subject

21Alternatively, one could trade p̄B with p̄vis ≡ pB − k − pν . The upper cut-off on p̄2
B is then to be

replaced by a lower cut-off on p̄2
vis and the adaption of our formalism requires to work with a finite neutrino

mass. It is understood that this approach might be challenging on the numerical side.
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to potentially larger effects.22 In particular, as we have shown in section 4.2, a sizeable
lepton-non-universal distortion of the dilepton invariant mass spectrum occurs if the latter
is expressed in term of the {q2, c`}-variables. To overcome this problem the best way
to report data is in terms of the of the {q2

0, c0} distribution (as currently done by most
experiments), where the “dangerous” hard-collinear logs (lnm`) cancel at the differential
level. In the case of the LHCb experiment, where q2

0 is not directly measurable, this is done
after comparing the results with a Monte Carlo code and correcting for the effect of the QED
radiation. In this context, we note that our analysis provides the theoretical groundwork to
build a Monte Carlo program with a complete differential treatment of radiative corrections
and an accurate parameterisation of the hadronic form-factors (possibly including also long-
distance contributions), which represents a key ingredient for a precise comparison between
data and theoretical predictions in the future.
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A Additional plots and further numerical results

A.1 The size of hard-collinear logarithms as a function of δex and q2

It is of interest to investigate the size of the collinear logs. We do this by normalising
against the non-radiative differential rate, as done previously in section 4.1,

∆(a)
hc (q2

a, ca; δex) = ∆(a)(q2
a, ca; δex)

∣∣∣
ln m̂`1,2

=
(
d2Γ LO

dq2
adca

)−1
d2Γ(δex)
dq2
adca

∣∣∣
ln m̂`1,2

, (A.1)

where the terms on the r.h.s. can be found in eqs. (B.1) and (3.33) respectively. Charged and
neutral meson modes are not distinguished as they contain the same collinear divergences
as the latter are strictly proportional to the lepton charges, i.e. independent of the hadron
charges. Thus, there is only one basic mode of interest for the hard-collinear logs per lepton
pair final state. The integrated quantities ∆(a)

hc (q2; δex) and ∆(a)
hc (c`, [q2

1, q
2
2]; δex) are defined

in complete analogy to eqs. (4.3) and (4.4) respectively.
22Even for total decay rates (non-LFU type) there can be relevant effects such as the lnmK-logs discussed

in section 4.1.
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Figure 7. Hard-collinear logs ∆(a)
hc (q2

a; δex) as a function of q2
a for the electron and muon (top)

and (bottom) respectively. The quantity is shown for various photon energy cut-offs δex (2.4). It
is noted that for δex = δinc

ex , the cancellation of the logs can be seen, though not completely, as we
only show a restricted interval of q2. Bottom and top figures are similar by a scaling factor cf. (A.2)
and the explanation above it.

Plots of ∆(a)
hc (q2

a; δex) are shown in figure 7 for different photon energy cuts δex (2.4)
for electrons and muons with larger effects for the former because of the size of ln m̂e

versus ln m̂µ logs. In the photon-inclusive case, the cancellation of the hard-collinear logs
is visible at the differential level in the q2

0-variable. For the q2-variable, the hard-collinear
logs cancel when integrated over the entire q2-interval, the tendency of which can be inferred
from the plots on the reduced interval q2

max < 10GeV2. The reader is reminded that hatted
quantities are normalised w.r.t. to the B-mass, m̂`1,2 = m`1,2/mB. Hence one expects

Rhc = ∆(a)
hc (q2

a; δex)|B̄→K̄e+e−

∆(a)
hc (q2

a; δex)|B̄→K̄µ+µ−

≈ ln(m̂e)
ln(m̂µ) ≈ 2.363 , (A.2)

with corrections of the order of O(m2
e ln(m̂e)−m2

µ ln(m̂µ)). Inspection of the plots shows
that this is indeed the case. We would like to stress that extracting the hard-collinear logs
on their own is slightly ambiguous as one needs to normalise them (hatted notation). The
unambiguous way to show them is through the full plots in the main text. Nevertheless,
they illustrate nicely the effect of the photon energy cut.
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A.1.1 Comparison of B̄ → K̄`+`− to the inclusive case b→ s`+`−

It is interesting to compare our results to the inclusive rate in [46] with regard to the
hard-collinear logs. Let us define

∆(`)
hc (q̂2) =

2α Q̂2
`1

π

(
1

Γ LO
dΓ LO(q̂2)

dq̂2

)−1

∆̃(`)
hc (q̂2) , (A.3)

where Q̂2
`1

= Q̂2
¯̀2

and m`1 = m`2 ≡ m` have been assumed. Then, it is known that the
collinear logs of the electron can be extracted from (e.g. chapter 17 [47])23

∆̃(`)
hc (q̂2) = 1

Γ LO

(∫ 1

q̂2

dz

z
Pf→fγ(z)dΓ LO(q̂2/z)

dq̂2/z

)
ln Λb
m`

, (A.4)

where Λb = O(mb) is some reference scale, Pf→fγ(z) is the full leading order splitting
function

Pf→fγ(z) = 1 + z2

(1− z)+
+ 3

2δ(1− z) , (A.5)

and 1/(1 − z)+ is the plus distribution
∫ 1

0 dzf(z)/(1 − z)+ =
∫ 1

0 dz(f(z) − f(1))/(1 − z).
Note that by construction, the hard-collinear logs cancel in the total rate. This can be
seen by reversing the order of integration and adopting the change of variable q̂2/z = q̂2

0
to arrive at

∫ 1
0 dq̂

2∆̃(`)
hc (q̂2) ∝

∫ 1
0 dzPf→fγ(z) = 0. Now, the zeroth moment of the split-

ting function vanishes since it corresponds to the anomalous dimension of the (conserved)
electromagnetic current. Conversely, (A.4) can be deduced from eq. (3.15) by integrating
over dc0, substituting q2

0 = q2/z and then integrating over z. From (3.16), the full splitting
function is then easily deduced by adding a delta function ansatz Aδ(1−z) and regularising
the 1/(1− z) such that the soft divergences cancel (which leads to the plus distribution).

The leading order differential rates are given by

1
Γ LO

dΓ LO(q̂2)
dq̂2 =

{
2(1− q̂2)2(2q̂2 + 1) b→ s`+`−

4(1− q̂2)3 B̄ → K̄`+`−
, (A.6)

where the ms → 0 limit is implied in [46] and for simplicity we have assumed the mK → 0
limit and a constant form factor. Note that the factor λ̂1/2

B = λ1/2(1, m̂2
K , q̂

2)|mK→0 = 1−q̂2

is the square root of the Källén-function and as such related to the three velocity of the
strange particle in the B-meson’s RF. Its power in the rate is determined by the interaction
and the spin of the particle (e.g. if it were B̄ → K̄∗`+`− then dΓ LO ∝ (1− q̂2) [48]). The

23From section 5 in [46], one can extract a similar formula for the collinear logs

∆̃(`)
hc (q̂2) = 1

Γ LO

(∫ 1

q̂2

dz

z
P̃f→fγ(z)dΓ LO(q̂2/z)

dq̂2/z
−
∫ 1

0
dzP̃f→fγ(z)dΓ LO(q̂2)

dq̂2

)
ln Λb
m`

,

where P̃f→fγ(z) (3.16) is the collinear emission part of the splitting function. Soft divergences at z → 1
cancel between the two integrals. Translating into our notation from [46] demands x = 1 − z, ŝ = q̂2

and P̃f→fγ(z) is the part collinear in f
(m)
γ up to factors of proportionality properly accounted for. Our

formula (A.4) can be recovered upon using that
∫
dzPf→fγ(z) = 0.
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Figure 8. Comparison of hard-collinear logs in b→ se+e− (solid blue line) versus B̄ → K̄e+e−(γ)
with no photon energy cut, constant form factors and mK → 0 (solid red line) corresponding to
eqs. (A.7). This illustrates the spin-dependance of the hard-collinear which can be traced back to
the LO differential rates in the case at hand cf. (A.6). For further comparison, we have added the
full result in the dotted red line for this paper with no photon energy cut either. The agreement at
low q2 of the latter with the b→ se+e− is somewhat accidental.

factor 2q̂2 + 1 originates from the s-quark’s spin summation. One finds

∆̃b→s`+`−
hc (s) = 2

((
6s2−4s3−1

)
lns+2(1−s)2 (2s+1)ln(1−s)+12s2−8s3−3s−1

3

)
,

[5pt] ∆̃B̄→K̄`+`−
hc (s) = 4

((
2s3−6s2+3s−1

)
lns+2(1−s)3 ln(1−s)+4s3−6s2+6s−6

3

)
. (A.7)

The basic form is similar in both cases and we observe the ln q2-term leading to enhanced
collinear emission at low q2 which can be interpreted as a migration of the photon radiation
cf. section 4.2. We wish to stress again that ∆̃B̄→K̄`+`−

hc receives corrections due to finite
mK and non-constant form factor and that δex = δincex was assumed. Both of these features
are included in the comparison plot figure 8. We have checked that integrating (3.33) over∫ 1
−1 dc` reproduces the ∆̃B̄→K̄`+`−

hc -expression in (A.7). This comparison provides another
non-trivial cross-check of our analysis.

A.2 Comparison with earlier work on B̄ → K̄`+`−

We compare our results to those presented in [6]. The analysis of [6], which first investigated
the impact of LFU breaking in B̄ → K̄`+`− induced by QED corrections, is a simplified
analysis based on the following three principles/assumptions:

i. indirect determination of virtual corrections by imposing the absence of log-enhanced
terms in the photon-inclusive dΓ/dq2

0 spectrum (for any value of q2
0);

ii. constructing a radiator function depending on q2 and q2
0 only, which describs the

probability of a dilepton pair (of invariant mass q2) to originate from momentum
transfer q2

0, after photon-emission;

– 32 –



J
H
E
P
1
2
(
2
0
2
0
)
1
0
4

iii. neglecting lepton-flavour universal radiative corrections, such as those induced by the
emissions from meson legs only.

As proved in general terms in this paper, assumption i. is correct and provides an efficient
way to determine the radiator function. Our analysis shows that the non-log enhanced
terms are small in the neutral-meson case (as shown in figure 4). They do exceed the 1%
level in the charged-meson case, but this is a lepton-flavour universal effect.

On the other hand, while assumption ii. is a legitimate choice, it is incompatible with
the goal of estimating radiative corrections implementing only a cut on the reconstructed
B-meson mass:24 the radiator in [6] is obtained by integrating over all photon angles;
however, as already discussed in 4.2, in the B-RF the relation connecting q2

0 and q2 does
not only depend onmrec

B but also on the photon’s emission angle. To overcome this problem,
in [6] the maximal q2

0 value affecting the spectrum at a given q2 value has been determined
imposing the tight cut defined in (4.7). This choice corresponds to the minimal value of
(q2

0)max obtainable with an experimental cut on photons not emitted forward with respect
to ~q (in the B-RF). Incidentally, we note that a cut of this type is implemented in the
experimental analysis to avoid a large migration effect (e.g. charmonium resonances at low
q2, cf. section 4.2). This is the most important difference among the two approaches. As
illustrated in figure 9, the net effect is quite sizeable, especially for the electrons at low
values of q2.

In practice, the implicit cut applied in [6] on the photon-emission angle removes some
hard-collinear logs. We may track the difference on the collinear logs analytically. We
demonstrate this for the q2

0-spectrum since the expression (3.21) is much simpler than the
corresponding one for q2 in (3.30). Let us consider

dΓ
dq2

0
= α

π

[
dΓ
dq2

0

]LO (
A0 ln δex + C0

)
lnm` + non-collinear . (A.8)

The coefficients A0 and C0 are obtained by integrating eq. (9) — using the boundary
conditions implied by eq. (10) of [6] — w.r.t. to x (which is our z and moreover 1−δ2 = δex),
and the expression in (3.21) with z(ωs)→ 1 but finite δex. Not surprisingly, we find

A0 = AINZ
0 = ABIP

0 = −4 . (A.9)

This is the universal coefficient of the soft-collinear singularity (double log), which is in-
dependent of the boundary conditions. Incidentally, we note that this coefficient is also
the same for the dΓ

dq2 -distribution. Low’s theorem guarantees that the single ln δex-term is
identical. For the C0 term, however, there are differences

CINZ
0 = −25

3 + 2 ln q̂2
0 + 2(1− m̂2

K + q̂2
0)2

λ̂
−R ln

[
1− m̂2

K + q̂2
0 − λ̂1/2

1− m̂2
K + q̂2

0 + λ̂1/2

]
+O(δex)

CBIP
0 =

(
−3− 4 ln

[
1 + m̂2

K

1− q̂2
0

])
+O(δex) , (A.10)

24We note that a radiator function depending on q2 and q2
0 only is sufficient to estimate the distortion of

the q2 spectrum in the absence of a photon-energy cut, as for instance done in Higgs-collider physics [49].
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Figure 9. Relative effects of relative corrections as a function of q2, in the neutral case, with the
cuts on mrec

B used in [6] computed in this work (top left) vs. those presented in [6] (top right). The
bottom left and bottom right plots compare our results with those in [6] for the q2 and q2

0-spectrum
respectively. The translation between the notation of this reference and ours is δex = 1−(mrec

B /mB)2

with (p̄B = mrec
B ) and {0.1458, 0.1, 0.0394} ↔ mrec

B = {4.88, 5.009, 5.175}GeV.

where λ̂ ≡ λ(1, m̂2
K , q̂

2
0) and

R = 2(1 + q̂2
0 − m̂2

K)
(

1
λ̂1/2

− 2q̂2
0

λ̂3/2

)
. (A.11)

Note that in [6], only the leading term in m2
K was kept in (q2

0)max and thus, for meaningful
comparison, one has to assume the mK → 0 limit

CINZ
0 = −19

3 + 8 q̂2
0

(1− q̂2
0)2 + 4 (3− q̂2

0)
(1− q̂2

0)3 q̂
4
0 ln q̂2

0 +O(δex)
q̂2

0→1
−→ −3 +O(δex) +O(q̂2

0 − 1)

CBIP
0 = −3 +O(δex) . (A.12)

Agreement is found at the kinematic endpoint q̂2
0 → 1 (including O(δex)-terms). This is to

be expected since the cut on (q2
0)max is independent of the photon-emission angle, whereas

differences are maximal at low q2
0 values, consistent with the numerical findings in figure 9

(bottom-right).
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To better understand the agreement at large q̂2
0 illustrated in (A.12), consider (3.18),

with δ = δex, which corresponds to the case where the photon becomes collinear with
`1. With a non-zero Kaon mass, (q̂2

0)max = (1 − m̂K)2, and thus the lower limit for the
z-integration becomes

zINZ(δex, (q̂2
0)max, c0) = 1− δex

1− m̂K
, (A.13)

where the c0-dependence drops (and thus the same z limit applies for `2). Now, consider
q2

0 = q2 +mBδex(E(1)
q0 + |~q (1)

0 | cos θ (1)
γ ), which is the defining principle behind eq. (10) of [6],

where E(1)
q0 and |~q (1)

0 | are given in (C.8). Substituting q2 = zq2
0, one gets

zBIP = 1− mB δex
q2

0
(E(1)

q0 + |~q (1)
0 | cos θ (1)

γ )
q̂2

0→(q̂2
0)max−→ 1− δex

1− m̂K
, (A.14)

which matches (A.13). This explains the agreement at large q̂2
0 in (A.12) and in figure 9.

Note that the θ (1)
γ dependence drops in the limit of q̂2

0 → (q̂2
0)max, analogous to the c0

dependence in (A.13). The c0-independence (or equivalently θ
(1)
γ ) at (q̂2

0)max happens
since the Kaon’s three-momentum vanishes and the (1)- and (4)-RF become equivalent
and thus, there cannot be any non-trivial angular dependance.

On the other hand, the same argument does not apply to the differential rate in q2. As
q2 → q2

max, the range of allowed photon energies becomes more and more restricted. The
cut p̄2

B > m2
B(1 − δex) on its own is independent of q2, and it is for this reason that one

needs the maximum condition imposed on the lower limit of the z-integration in (3.30).
For larger q2, the kinematic restriction on z, denoted by zinc, becomes more important
than the restriction on z due to the photon energy cut δex. This is why the two INZ-curves
in the bottom left plot in figure 9 approach each other for large q2.

In summary, from the comparison of our work with [6] we may deduce the following
two lessons or insights.

a) The indirect determination of virtual logs in the photon-inclusive dΓ/dq2
0-spectrum,

which is the key assumption behind both the approach of ref. [6] and PHOTOS [5],
is correct.

b) A meaningful comparison between theory and experiment (in a collider environment)
cannot be done by only considering the two non-radiative variables ({q2

a, ca}) and the
cut on the reconstructed B-meson mass, but it requires a detailed information on the
(inevitable) photon-emission angle cut as their impact is sizeable.

Whereas point a) is reassuring in view of the current treatment of RK , point b) indi-
cates the necessity to build a Monte Carlo program with a complete differential treatment
of radiative corrections and an accurate parameterisation of the hadronic form factors
(with the effective inclusion of long-distance effects, which we recall are not included in
PHOTOS), in order to check the impact of the QED corrections on the kinematical distri-
butions at the %-level, with the explicit cuts applied in experiments. This task, for which
this paper lays the groundwork, is devoted to a future publication.
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B Explicit results of the computation

B.1 Leading order differential rate

The leading order amplitude rate is easily computed from (2.29) and the amplitude
A(0)
B̄→K̄`1 ¯̀2

(2.11) and is rather simple

d2

dq2dc`
Γ LO(q2, c`) =

ρ`|p̄2
B→m

2
B

mB
|A(0)|2 = 2|geff|2

ρ`|p̄2
B→m

2
B

mB
×

[
|CV |2

(
λBf+(q2)2(1− (∆m̄`)2 − λ`

q4 c
2
` ) + (∆m2

BK)2(∆m̄`)2f0(q2)2(1− m̄2
`1`2)

− 2∆m̄2
BK m̄`1`2 ∆m̄` f0(q2)f+(q2)λB1/2λ

1/2
` c`

)
+ |CA|2

(
m̄`1`2 ↔ ∆m̄`

)]
, (B.1)

where λ` = λ(q2,m2
`1
,m2

`2
), ∆m̄` = m̄`1 − m̄`2 , m̄`1`2 = m̄`1 + m̄`2 , ∆m2

BK = m2
B −m2

K ,
with ρ` as in (2.24), and all barred quantities are dimensionless by division with q. In the
limit of equal lepton masses (m`1 = m`2 ≡ m`), the above equation reduces to

d2

dq2dc`
ΓLO(q2, c`) = 2|geff|2

ρ`|p̄2
B→m

2
B

mB

(
|CV |2(λBf+(q2)2(1−β2

` c
2
` ))+ (B.2)

|CA|2(λBf+(q2)2(1−c2
` )β2

` +4f0(q2)2m̄2
` (∆m2

BK)2)
)
,

with β` =
√

1− 4m2
`/q

2 and λB = λ(m2
B, q

2,m2
K).

B.2 Virtual amplitude A(2)
B̄→K̄`1 ¯̀2

As the computation of the QED corrections including the tower of operators (2.7) is anew,
to the best of our knowledge, we present the explicit amplitudes prior to integration. The
B,KL1,2 and PL12 and PB,K graphs are non-trivially amended. This is true in particular
for the P -graphs.

The BL12-graphs read

A(2)
BL1,2

= igeffQ̂B̄e
2
∫
k
(2pB+k)ν∆νρ(k)∆B(l)H̃µ(B)

0 (q2
0)ū(Q̂`1γρS1(r)Γµ−Q̂¯̀2

ΓµS2(r)γρ)v ,

with shorthands ū ≡ ū(`1), v ≡ v(`2), (2π)4 ∫
k =

∫
d4k, momentum assignments (r, l) =

(±[`1(`2)+k], pB+k), with notation borrowed from the real emission case (cf. below (2.13)),

f±(q2
0) =

∑
n≥0

f
(n)
± (0)
n! (q2

0)n , Pn ≡ Pn(q2, q2
0) =

n∑
m=0

(q2)(n−m)(q2
0)m , (B.3)

with q0 = q + k and k being the loop integration momentum k. Moreover H̃(B)
0 (q2

0) =
H0(q2

0)|pB→pB+k, and the q2
0 in the argument indicates that the form factor is to be ex-

panded as above and propagators are given by

∆M (k) = 1
k2 −m2

M

, Si(k) =
/k +m`i

k2 −m2
`i

, ∆µν(k) = −gµν
k2 + (1− ξ)kµkν

k4 . (B.4)
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The KL1,2-graphs are analogous

A(2)
KL1,2

= −igeffQ̂K̄e
2
∫
k
(2pK−k)ν∆νρ(k)∆K(l)H̃µ(K)

0 (q2
0)ū(Q̂`1γρS1(r)Γµ−Q̂¯̀2

ΓµS2(r)γρ)v ,

where (r, l) = (±[`1(`2) + k], pK − k) and H̃
(K)
0 (q2

0) = H0(q2
0)|pK→pK−k. The PL1,2 and

PB,K graphs read

A(2)
PL1,2

= −igeffe2
∫
k
F
L1,2
µρ ū(Q̂`1γρS1(r)Γµ − Q̂¯̀2

ΓµS2(r)γρ)v , (B.5)

A(2)
PB,K

= igeffe
2Lµ0

∫
k
Q̂B̄F

B
µρ ∆B(pB + k)(2pB + k)ρ − Q̂K̄ F

K
µρ ∆K(pK − k)(2pK − k)ρ ,

with r = ±(`1(`2)+k), L0 defined in (2.12) and the loop momentum k enters the expressions

F
L1,2
µρ = Fµρ(pB, pK , q2

0) , FBµρ = Fµρ(pB + k, pK , q
2) , FKµρ = Fµρ(pB, pK − k, q2) ,

where the common functional form Fµρ is given by

Fµρ(pB, pK , q2) = (Q̂B̄∓Q̂K̄)∆µρ(k)f±(q2)

+ (Q̂B̄+Q̂K̄)(pB±pK)µ(q + q0)ν∆νρ(k)
∑
n≥1

f
(n)
± (0)
n! Pn−1 . (B.6)

The BK-vertex correction is given by

A(2)
BK = igeffQ̂B̄Q̂K̄e

2
∫
k
(2pB − k)β∆βκ(k)(2pK − k)κL0 ·H̃(BK)

0 ∆B(l)∆K(r) ,

where l = (pB − k) and r = (pK − k) and H̃(BK)
0 = H0(q2)|(pB ,pK)→(pB−k,pK−k). The lepton

vertex correction, which can be found in many textbooks, reads

A(2)
L1L2

= igeffQ̂`1Q̂¯̀2
e2Hµ

0 (q2)
∫
k

∆αβ(k) ūγαS1(l)ΓµS2(r)γβv , (B.7)

with l = k + `1− and r = k − `2.

B.3 Gauge invariance of the real amplitude A(1)
B̄→K̄`1 ¯̀2γ

The real amplitude is given in eq. (2.13). Explicit verification of gauge invariance of
this amplitude is instructive. In essence, we will flesh out the steps described at the
end of section 2.2. Gauge invariance follows from the charge conservation (2.14) and
inspecting the four terms in (2.13), it is far from obvious how this will work out since the
individual terms depend on the hadronic form factor in a non-uniform way e.g. Q̂¯̀2,`1

H0(q2
0),

Q̂B,KH̄
(B,K)(q2), . . . . A special rôle is played by the contact terms arising from diagram P

in figure 2. From the viewpoint of the effective Lagrangian, these terms arise from replacing
ordinary derivatives with covariant ones and from the viewpoint of the Ward identity, they
are induced by the derivatives acting on the U(1) gauge transformation.
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At first, we consider lines two and three of the amplitude

A(1)
23 ∝ Q̂B̄ L0 ·H̄(B)

0 (q2)ε
∗ ·pB
k ·pB

+ Q̂K̄ L0 ·H̄(K)
0 (q2)ε

∗ ·pK
k ·pK

+ (Q̂B̄ − Q̂K̄)L0 ·ε∗ f+(q2) + (Q̂B̄+Q̂K̄)L0 ·ε∗ f−(q2)
ε→k→ (Q̂B̄ + Q̂K̄)L0 ·H0(q2) , (B.8)

and notice that a gauge transformation combines these two parts into an expression which
will combine with the first line

A(1)
1 ∝ ū(`2)

[
Q̂`1

2ε∗ ·`1+/ε∗/k
2k ·`1

Γ·H0(q2
0) + Q̂¯̀2

Γ·H0(q2
0)2ε∗ ·`2+/k/ε∗

2k ·`2

]
v(`1)

ε→k→ (Q̂¯̀2
+ Q̂`1)L0 ·H0(q2

0) , (B.9)

except that the argument of the form factors is q2
0 in one case and q2 in the other case.

This is remedied, of course, by the fourth line

A(1)
4 ∝ (Q̂B̄ + Q̂K̄)L0 ·(pB ± pK)(2ε∗ ·q)

∑
n≥1

f
(n)
± (0)
n! Pn−1

ε→k→ (Q̂B̄+Q̂K̄)L0 ·(pB ± pK)
∑
n≥1

f
(n)
± (0)
n! ∆2n

q

= (Q̂B̄+Q̂K̄)L0 ·(H0(q2
0)−H0(q2)) , (B.10)

which follows from ∆2
q = 2q ·k and ∆2

qPn−1 = ∆2n
q and ∆2n

q ≡ (q2
0)n − (q2)n as before.

Adding them all together, one obtains

A(1)|ε→k ∝ L0 ·H0(q2
0)
∑
i

Q̂i = 0 , (B.11)

the explicit gauge invariance of the real amplitude.

B.4 Cancellation of hard-collinear logs charge by charge

Whereas for the cancellation of soft divergences charge conservation was not assumed, this
is not true for the hard-collinear logs lnm` cf. section 3.3.2. The aim of this appendix is
to show that this assumption is unnecessary, i.e. that hard-collinear logs cancel charge by
charge combination. Charge conservation is though necessary for gauge invariance or con-
versely imposing gauge invariance implies charge conservation. Using charge conservation
can still be convenient such as for the photon-inclusive hard-collinear log formula (A.4).

First, we focus on the soft contribution F (s)(ωs)|lnm`1 ≡
∑
i,j Q̂iQ̂jF

(s)
ij (ωs)|lnm`1 to

the hard-collinear log. In the limit of m`1 → 0, using eqs. (D.8), (D.9), (D.10), (D.17)
and (D.19), one gets

F (s)(ωs)|lnm`1 = lnm`1

[
−Q̂2

`1 + 2Q̂`1
(
Q̂¯̀2

+Q̂B̄+Q̂K̄
)

ln z̄(ωs)
]
, (B.12)
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where we have used z̄(ωs) = ωsmB
2E`1

, as explained below eq. (D.19). Next, the virtual

contribution, H̃|lnm`1 ≡
∑
i,j Q̂iQ̂j

(
H̃(s)
ij + H̃(hc)

ij

) ∣∣∣
lnm`1

, using eqs. (2.18), (3.5) and (3.10),

is given by

H̃|lnm`1 = lnm`1

[3
2Q̂

2
`1 + 2Q̂`1

(
Q̂¯̀2

+Q̂B̄+Q̂K̄
)]
. (B.13)

Moreover, F (hc)(δ)|lnm`1 ≡
∑
i,j Q̂iQ̂jF

(hc)
ij (δ)|lnm`1 is given by

F (hc)(δ)|lnm`1 = lnm`1

[
−1

2Q̂
2
`1 − 2Q̂`1

(
Q̂¯̀2

+Q̂B̄+Q̂K̄
)

(1 + ln z̄(ωs))
]
. (B.14)

In obtaining (B.14), we followed the procedure in section 3.3.2 without using charge con-
servation in eq. (3.15).

Finally, adding the three contributions, one finds (with ordering as above)[
F (s)(ωs) + H̃+ F (hc)(δ)

] ∣∣∣
lnm`1

= [2 ln z̄(ωs) + 2− 2(1 + ln z̄(ωs))] · Q̂`1(Q̂¯̀2
+Q̂B̄+Q̂K̄)

+
[
−1 + 3

2 −
1
2

]
· Q̂2

`1 = 0 , (B.15)

that the hard-collinear cancel charge by charge (without the need for charge conservation).

C Kinematics and other conventions

In this section, we collect a few conventions used throughout the paper to improve readabil-
ity. We make use of the abbreviation ca = cos θa and sa = sin θa where the label a stands
either for ` or 0 and its meaning on the main kinematic variables is depicted in (2.1). The
matrix elements 〈0|B†(x)|B̄(pB)〉 = e−ipB ·x, 〈K(pK)|K†(x)|0〉 = eipK ·x provide the link to
the mesonic states B̄ and K̄ of valence quarks b and s. Whenever there is no ambiguity, we
use p =

√
p2 and hatted quantities are understood to be divided by mB in order to render

them dimensionless e.g. q̂2 ≡ q2/m2
B. We use dimensional regularisation with d = 4− 2ε.

C.1 Kinematics in terms of the {q2, θ`}-variables

The main frame is the p̄B-RF, which will serve to define the photon energy cut-off. In this
frame, the momenta are parametrised as follows25

k(2) = (E(2)
γ ,− cos θγ |~k(2)

γ |,− sin θγ cosφγ |~k(2)
γ |,− sin θγ sinφγ |~k(2)

γ |) ,

p̄
(2)
B = (p̄B, 0, 0, 0) , q(2) = (p̄B − pK)(2) = (p̄B − E(2)

K , |~pK |, 0, 0) = (E(2)
q , |~pK |, 0, 0) ,

p
(2)
K = (E(2)

K ,−|~pK |, 0, 0) , (C.1)

25All four-momenta are understood with lower Lorentz indices e.g. (k(2))µ. It is understood that θγ ≡
θ

(2)
γ , φγ ≡ φ(2)

γ for brevity. If the angles do not refer to the (2)-frame, then they will be indicated.
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where

E
(2)
K =

√
|~p (2)
K |2 +m2

K = 1
2p̄B

(p̄2
B − q2 +m2

K) , |~p (2)
K | =

λ1/2(p̄2
B, q

2,m2
K)

2p̄B
,

E(2)
γ =

√
|~k(2)
γ |2 +m2

γ = 1
2p̄B

(
m2
B − p̄2

B −m2
γ

)
, |~k(2)

γ | =
λ1/2(p̄2

B,m
2
B,m

2
γ)

2p̄B
,

E(2)
q =

√
|~p (2)
K |2 + q2 = 1

2p̄B
(p̄2
B + q2 −m2

K) , (C.2)

consistent with p̄B − E(2)
K = E

(2)
q . The Källén function,

λ(s,m2
1,m

2
2) = (s− (m1 −m2)2)(s− (m1 +m2)2) , (C.3)

is related to the spatial momentum in 1 → 2 decay [7]. The momenta `1,2 depend on the
angle of the lepton `1 w.r.t. to the decay axis in the q-RF

`
(2)
1 = (γ(E(3)

`1
+ β cos θ`|~̀

(3)
1 |), γ(βE(3)

`1
+ cos θ`|~̀

(3)
1 |),−|~̀

(3)
1 | sin θ`, 0) ,

`
(2)
2 = (γ(E(3)

`2
− β cos θ`|~̀

(3)
1 |), γ(βE(3)

`2
− cos θ`|~̀

(3)
1 |),+|~̀

(3)
1 | sin θ`, 0) , (C.4)

where the energy and momenta are defined in the q-RF and are given by

E
(3)
`1,2

=
√
|~̀ (3)

1 |2 +m2
`1,2

= 1
2q (q2 +m2

`1,2 −m
2
`2,1) , |~̀ (3)

1 |=
λ1/2(q2,m2

`1
,m2

`2
)

2q , (C.5)

and q ≡
√
q2, whenever it is clear that q is not a vector, such as in E(3)

q = E
(3)
`1

+E
(3)
`2

= q.
The boost velocity β and γ-factor are given by

β = |~p
(2)
K |
E

(2)
q

, γ = E
(2)
q

q
, (C.6)

where |~q| = | ~pK | was used.

C.2 Kinematics in terms of the {q2
0, θ0}-variables

We start by defining kinematic variables in the pB−RF, denoted by (1). Defining the x-axis
along the direction of ~q0, one has

p
(1)
B =(mB, 0, 0, 0) , q

(1)
0 = (E(1)

q0 , |~q
(1)

0 |, 0, 0) , p
(1)
K =(E(1)

K ,−|~q (1)
0 |, 0, 0) . (C.7)

The momenta `1, `2, and k, will be defined in frame (4), and

E
(1)
K = mB − E(1)

q0 = 1
2mB

(m2
B − q2

0 +m2
K) ,

E(1)
q0 =

√
|~q (1)

0 |2 + q2
0 = 1

2mB
(m2

B + q2
0 −m2

K) , |~q (1)
0 | =

λ1/2(m2
B, q

2
0,m

2
K)

2mB
. (C.8)
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Frame (1) is useful for imposing the cut-off on the photon energy, cf. eq. (2.31). For the
phase space integration, we pick the independent variables |~k(4)

γ |, θ(4)
γ , φ(4)

γ , all defined in
the q0-RF, which we denote as the (4)-frame. There, the four-momenta are given by

k(4) = (E(4)
γ ,− cos θ(4)

γ |~k(4)
γ |,− sin θ(4)

γ cosφ(4)
γ |~k(4)

γ |,− sin θ(4)
γ sinφ(4)

γ |~k(4)
γ |) ,

p
(4)
B = γq0mB (1,−βq0 , 0, 0) , q

(4)
0 = (q0, 0, 0, 0) ,

p
(4)
K = γq0

((
E

(1)
K + βq0 |~q

(1)
0 |

)
,−
(
|~q (1)

0 |+ βq0E
(1)
K

)
, 0, 0

)
, (C.9)

where E(4)
γ =

√
|~k(4)
γ |2 +m2

γ and the boost factors from the pB−RF to the q0−RF are
given by

βq0 = |~q
(1)

0 |
E

(1)
q0

, γq0 = E
(1)
q0

q0
. (C.10)

We choose the axes such that ~̀ (4)
1 lies in the xy−plane. Then

`
(4)
1 =

(
E

(4)
`1
, |~̀ (4)

1 |c0,−|~̀ (4)
1 |s0, 0

)
, (C.11)

where θ0 (recall c0 ≡ cos θ0) is the angle between ~̀ (4)
1 and the x-axis in the q0-RF

(cf. figure 1), and E
(4)
`1

= (|~̀ (4)
1 |2 + m2

`1
)1/2. `

(4)
2 is found by momentum conservation

via `(4)
2 = (q0 − `1 − k)(4). Solving for |~̀ (4)

1 | is quite complicated, and the explicit result is
given by

|~̀ (4)
1 | =

AB +
√
D

C2 −B2 , (C.12)

where

A ≡ q2
0 − 2q0E

(4)
γ +m2

`1 −m
2
`2 +m2

γ ,

B ≡ 2E(4)
γ βγ

(
cos θ(4)

γ c0 − sin θ(4)
γ cosφ(4)

γ s0
)
,

C ≡ 2q0 − 2E(4)
γ ,

D ≡ A2B2 + (C2 −B2)(A2 − C2m2
`1) , (C.13)

where βγ = ((E(4)
γ )2 − m2

γ)
1
2 /E

(4)
γ . Using the above, one can also calculate ω2 ≡

2(| ~̀1
(4)
|E(4)

q + ∂
| ~̀1

(4)|
[~k · ~̀1](4)E

(4)
`1

), needed in (2.24). It reads

ω2 = 2
(
| ~̀1

(4)
|(q0 − E(4)

γ ) + E
(4)
`1
E(4)
γ βγ(sin θ(4)

γ cosφ(4)
γ s0 − cos θ(4)

γ c0)
)
. (C.14)

D Soft integral F (s)
ij

D.1 IR sensitive part with photon mass and dimensional regularisation

The F (s)
ij integral is IR-divergent and has to be regulated. We discuss dimensional regular-

isation and photon mass regularisation in this appendix. The regularised integral, denoted
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by an R-subscript, is

[
F (s)
ij (ωs)

]
R

=
∫

[dΦγ ]R

[
−(E(n)

γ )2 pi · pj
(k · pi)(k · pj)

]
= 1

2π

∫ (E(n)
γ )max

0

dE
(n)
γ

E
(n)
γ

ρER I
(R,n)
ij (E(n)

γ ) , (D.1)

where

IRij (E(n)
γ ) ≡

∫
dΩ(n)

γ ρΩ(n)
R

[
−(E(n)

γ )2 pi · pj
(k · pi)(k · pj)

]
, (D.2)

and (E(1,2)
γ )max = ωsmB

2 corresponds to the expression in (2.31) with δex → ωs � 1 for
which the two frames become equivalent and

ρER =


Γ(1−ε)
Γ(1−2ε)

(
E

(n)
γ√
πµ

)−2ε
dim-reg

θ(E(n)
γ −mγ) mγ

, ρΩ(n)
R =

 (sin θγ sinφγ)−2ε dim-reg
|~k(n)
γ |
E

(n)
γ

mγ
, (D.3)

and in addition one needs to set mγ → 0 in dim-reg. We will argue that the angular integral
is Lorentz-invariant when the regulator is removed. We may restore Lorentz invariance
of (D.1) by removing the photon energy cut-off. In a second step, we remove the regulator,
ρER, ρ

Ω(n)
R → 1. Then, the integral, which is frame- and scheme-independent, factorises into

an energy integral K and an angular integral I(0)
ij , where the superscript (0) indicates that

the regulator has been removed. Since the energy integral is Lorentz invariant on its own,
this implies the Lorentz-invariance of the finite I(0)

ij -integral.
Focussing on the IR sensitive part, we keep ρER to regulate the divergent energy integral

and remove the angular regularisation ρΩ(n)
R → 1 which is a useful limit as the integral still

factorises into a doable energy integral and the Lorentz invariant I(0)
ij -part,[

F (s)
ij

]
R

= −KR(ωs) I(0)
ij +O(f,R) , (D.4)

where

I
(0)
ij = I

(0,n)
ij ≡

∫
dΩ(n)

γ

[
−(E(n)

γ )2 pi · pj
(k · pi)(k · pj)

]
= (3.9) , (D.5)

and we have used the Lorentz invariance of I(0,n)
ij . We note that while ρΩ(n)

R → 1 captures
all IR sensitive terms, it misses constant terms, indicated by O(f,R). These terms are
determined in DR in the next section.

In DR, the KR(ωs) integral evaluates to

Kε(ωs) =
∫ (E(n)

γ )max

0

dE
(n)
γ

E
(n)
γ

Γ(1− ε)
Γ(1− 2ε)

(
E

(n)
γ√
πµ

)−2ε

= −1
2rsoft + ln

(
ωsmB

µ

)
+O(ε), (D.6)

whereas in photon mass regularisation the result is

Kmγ (ωs) =
∫ (E(n)

γ )max

mγ

dE
(n)
γ

E
(n)
γ

= −1
2rsoft + ln

(
ωsmB

2µ

)
+O(mγ) , (D.7)

and we note the additional factor of 2 in the logarithm as compared to the DR result.
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D.2 Soft integrals in dimensional regularisation

In this section, we calculate the soft integrals fully analytically up O(ε0) to using dimen-
sional regularisation. We perform the integrals by introducing a soft cut-off ωs, and the
result is obtained up to O(ωs) corrections, which can be safely neglected since ωs � 1.

The integrals have the general form

F (s)
ij (ωs) = (πµ2)ε

2π
Γ(1−ε)
Γ(1−2ε)

∫ (E(n)
γ )max

0

dE
(n)
γ(

E
(n)
γ

)1+2ε

∫ π

0

dθγ
sin2ε−1 θγ

∫ π

0

dφγ
sin2εφγ

[
−(E(n)

γ )2 pi·pj
(k·pi)(k·pj)

]
.

We have a total of 10 soft integrals to evaluate, corresponding to the different cases of
i and j. Most of them can be evaluated using the results in the appendix of [50] and [22]
(see also [51]). For i = j, we can write them as

F (s)
ii (ωs) =

[1
2rsoft − ln

(
ωsmB

µ

)]
+ 1

2βi
ln
(1 + βi

1− βi

)
, (D.8)

where rsoft refers to the DR version in (2.20), and all βi are measured in the pB-RF, with
k = 0, since we are in the soft limit.26 We note that in the soft limit, the (1)- and (2)-frames
are the same, and thus, we will use the two interchangeably in this section. Further, we
can isolate the collinear logs in the case of small lepton masses by considering

1
2βi

ln
(1 + βi

1− βi

)
= 1

2βi
ln
(

(1 + βi)2

1− β2
i

)
mi→0−→ 1

2 ln 4E2
i

m2
i

= − lnmi + non-div . (D.9)

We now list the integrals corresponding to i 6= j. The simplest one is

F (s)
i B (ωs) =

[1
2rsoft − ln

(
ωsmB

µ

)]
I

(0)
iB + 1

2βi

[
Li2

( 2βi
1 + βi

)
+ 1

4 ln2
(1 + βi

1− βi

)]
, (D.10)

where I(0)
iB can be obtained by using j = B in eq. (3.9). The 3 other non-diagonal integrals

require more work since they are not attributed to the frame in which the integral is
evaluated. One can recast the remaining integrals as

F (s)
ij (ωs) =

[1
2rsoft − ln

(
ωsmB

µ

)]
Ωij , (D.11)

where Ωij = Ω(βi, βj , τij),

Ω(βi, βj , τij) = Pij

∫ π

0

dθγ
sin2ε−1 θγ

∫ π

0

dφγ
sin2ε φγ

×
[

1
(1− βi cos θγ)(1− βj cos θγ cosχij − βj sin θγ cosφγ sinχij)

]
, (D.12)

where cosχij = 2τij − 1, sinχij =
√

1− cos2 χij and Pij = (1− βiβj(2τij − 1))/2π.

26The reason for measuring all βi in the pB-RF is that it is the same frame in which we impose the cut-off
on the photon energy, cf. eq. (2.31).
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Before matching βi, βj and τij to the cases we have, consider Ω(βi, βj , τij). For βi 6= 1
and βj 6= 1, the result to O(ε) is not known in the literature. This is needed for isolating
the collinear logs, since they arise from the O(ε) part of the angular integrals multiplied
by the 1/ε from the rsoft.

However, through [52], we were able to get an expression for Ω(βi, βj , τij). The result is

Ωij = π Pij
2Cij

{
ln
(
vij + Cij
vij − Cij

)
+ ε

[
− ln

(1− Cii
1 + Cii

)
ln
(
Rij + Sij
Rij − Sij

)

+

 4∑
a,b=1

[−1 + 2 (δa2 + δa3)] [1− 2 (δb3 + δb4)]G(r(a)
ij , r

(b)
ij , 1)

]} . (D.13)

The functions G(a, b, 1) are generalised polylogarithms of weight 2, and for our parameters
a and b the following representation holds

G(a, b, 1) = Li2
(
b− 1
b− a

)
− Li2

(
b

b− a

)
+ ln

(
1− 1

b

)
ln
(1− a
b− a

)
,

G(a, a, 1) = 1
2 ln2

(
1− 1

a

)
, (D.14)

and

r
(1)
ij =

fij −
√
gij

hij
, r

(2)
ij =

fij +√gij
hij

,

r
(3)
ij = r

(1)
ij |βi,j→−βi,j , r

(4)
ij = r

(2)
ij |βi,j→−βi,j ,

fij = βi (βj (1− 2τij) + 1) , hij = βi (βj + 2− 4τij) + βj ,

gij = β2
i

(
4β2

j τij (τij − 1) + 1
)

+ βiβj(2− 4τij) + β2
j ,

Rij = CiivijCjj − 8viivjj + vij , Sij = (Cii + Cjj)Cij ,

Cij =
√
v2
ij − 4viivjj , Cii =

√
1− 4vii , Cjj =

√
1− 4vjj ,

vij = 1
2 (1− βiβj (2τij − 1)) , vii = 1

4
(
1− β2

i

)
, vjj = 1

4
(
1− β2

j

)
,

with no summation over indices implied. For the matching, we consider the momenta pK ,
`1 and `2 in the (2)-frame. Thus, for F (s)

K`1,2
(ωs), one has

βK = |~p
(2)
K |
E

(2)
K

, β`1,2 =
|~̀ (2)

1,2 |

E
(2)
1,2

, τK`1,2 = 1
2

1−
`
(2)
1,2,x

|~̀ (2)
1,2 |

 , (D.15)

where `(2)
1,2,x corresponds to the x-component of `(2)

1,2. Recall that the βi’s can be evaluated
either in the (1)-RF or (2)-RF as these are equivalent in the k → 0 limit assumed here.

Finally, for F (s)
`1`2

(ωs), before the matching can be performed, one needs to perform a
3D rotation to eliminate the y-component of one of the momenta, for which we choose `1.
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Thus, one has (β`1,2 is given above)

τ`1`2 = 1
2

1 +
`
(2)
2,x cosα− `(2)

2,y sinα

|~̀ (2)
2 |

 , (D.16)

where, as before, the subscript on `2 denotes the corresponding component of `2. The

angle of rotation α is defined via cosα = `
(2)
1,x

|~̀ (2)
1 |

and sinα =
√

1− cos2 α. Taking the limit
of small lepton masses, one can isolate the collinear logs and obtain

F (s)
`1`2

(ωs) =
[1

2∆ε− ln (ωsmB)
]
I

(0)
`1`2

+
(1

2 ln2m`1− lnm`1 ln
(
2E(1)

`1

)
+{1↔ 2}

)
+finite ,

F (s)
K`1

(ωs) =
[1

2∆ε− ln (ωsmB)
]
I

(0)
K`1,2

+ 1
2 ln2m`1− lnm`1 ln

(
2E(1)

`1

)
+finite . (D.17)

We now collect all single logs in F (s)(ωs) ≡
∑
i,j Q̂iQ̂jF

(s)
ij (ωs). To this end, consider the

divergent parts of the different limits of I(0)
ij .

I
(0)
ij →

{
− lnmi mi � mK ,mB

− lnmi − lnmj mi ≈ mj � mK ,mB

. (D.18)

Assembling all bits and pieces, and using charge conservation, we obtain

F (s)(ωs)|lnm`1,2 = Q̂2
`1 lnm`1(2 ln 2E(1)

`2
− (1 + 2 ln (ωsmB)) + {1↔ 2}

= Q̂2
`1 lnm`1 [−1− 2 ln (z̄(ωs))] + {1↔ 2} , (D.19)

where we have used 2Ê(1)
`1
≡ 1 − ŝK`2 to arrive at the final result, and z̄(ωs) ≡ 1 − z(ωs)

with z(ωs) given in eq. (3.18).

E Passarino-Veltman functions

The aim of this appendix is to give a minimal self-contained discussion of the Passarino-
Veltman functions appearing in our results. The integrals are defined in [53],

In ≡
(2πµ)4−d

iπ2

∫
ddl 1

(l2−m2
0+i0)((l+`1)2−m2

1+i0)((l+`1+`2)2−m2
2+i0) . . .

, (E.1)

where n = 1, 2, 3, 4 form a complete 1-loop basis and are usually referred to as A0, B0, C0, D0
respectively. For our case, n = 1, 2, 3 are sufficient. The A0 and B0 functions are given to
O(ε0), with d = 4− 2ε,

A0
(
m2
)

= m2
(

1
ε̂UV

+ 1− ln
(
m2

µ2

))
+O(ε) , (E.2)

B0(s,m2
0,m

2
1) =

(
1
ε̂UV

+ 2− ln m0m1
µ2 + m2

0 −m2
1

s
ln m1
m0
− m0m1

s

(1
r
− r

)
ln r

)
+O(ε) ,

where r = −1
2(−b+

√
b2 − 4) with b = − s−m2

0−m
2
1+i0

m0m1
, and 1

ε̂UV
is given in eq. (2.19).
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The C0 function used is C0(s, t, u,m2
0,m

2
1,m

2
2), where the cuts of the momenta {s, t, u}

start at {(m0 + m1)2, (m0 + m2)2, (m1 + m2)2} respectively. This is the same convention
used in FeynCalc [54, 55] and [53].

The C0 function can be found in the review paper [56] (eq. B.5), valid for small
photon mass (up to O(m2

γ) corrections) in mass regularisation and to O(ε0) in DR,

C0 = xij
mimj(1− x2

ij)

{(
ln
(
mimj

µ2

)
− rsoft

)
ln(xij)−

1
2 ln2(xij) + 2 ln(xij) ln(1− x2

ij)

+ 1
2 ln2

(
mi

mj

)
− π2

6 + Li2(x2
ij) + Li2

(
1− xij

mi

mj

)
+ Li2

(
1− xij

mj

mi

)}
, (E.3)

where C0 ≡ C0(m2
i ,m

2
j , (p̂i+p̂j)2,m2

i ,m
2
γ ,m

2
j ), rsoft is defined in (2.20), and

xij ≡
√
yij − 1
√
yij + 1 , yij ≡

(p̂i+p̂j)2−(mi+mj)2+i0
(p̂i+p̂j)2−(mi−mj)2+i0 . (E.4)
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