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1 Introduction

The study of five and six dimensional supersymmetric gauge theories provides an interesting
window to the study of the strong coupling behavior of quantum field theory. This comes
about as these theories are perturbatively non-renormalizable, yet appear to exist at low
energies when interacting fixed points in these dimensions are mass-deformed. As a result,
the underlying microscopic theories in these cases are intrinsically strongly coupled confor-
mal quantum field theories, and it is hoped that a better understanding of this relation can
teach us much about the strong coupling behavior of quantum field theory. Additionally,
by compactifying these fixed point theories on various manifolds, many interesting theories
in lower dimensions can be generated, and much of their surprising behavior elucidated,
as was originally advocated in [1]. Thus, the study of higher dimensional theories also has
the potential to teach us much about the behavior of lower dimensional ones.

While what was said so far may also be relevant for non-supersymmetric gauge the-
ories, most of the study on higher dimensional gauge theories has been devoted to the
supersymmetric cases, as the added supersymmetry provides us with tools that greatly
facilitates this study from either the field theory or string theory directions.1 In the case
of supersymmetric five dimensional gauge theories, these were initially studied in the past
from field theory [6–8], using brane systems [9–11], and from geometry using compactifi-
cations of M-theory on Calabi-Yau three folds [12]. Recently the interest in this field of
study has been rekindled, and much work has been done to further the study on all fronts
notably from field theory [13–22], using brane systems [23–41], and even more recently
from geometry [42–65].

These recent series of works addressed many questions of interest in the study of higher
dimensional theories. One notable such question is the classification of five dimensional
gauge theories and five dimensional SCFTs. The latter refers to the task of enumerating all
5d SCFTs, while the former refers to the question of which 5d gauge theories can be gener-
ated by a mass deformation of a 5d SCFT,2 that is what are all the 5d gauge theories that

1For a recent attempt to study a non-supersymmetric 5d fixed point see [2], and [3–5] for some less
recent ones.

2Some clarifications appropriate for the five dimensional case are in order. For 5d supersymmetric gauge
theories the relation is generically that there is an underlying 5d SCFT that can be made to flow to the
gauge theory via a mass deformation. The mass deformations used are then manifested in the low-energy
gauge theory as the gauge coupling constants. The interesting aspect of this relation is that it appears that
many of the states in the 5d SCFT that were made massive by the deformation can still be recovered in the
gauge theory where they appear as instantonic states. This is most notable in the study of supersymmetric
partition function of these theories, notably the superconformal index, which generically forms characters
of the global symmetry of the 5d SCFT rather than just the global symmetry of the 5d gauge theory, see
for instance [13, 15, 16]. It is not clear at this moment whether or not this extends also to the non-BPS
spectrum. Regardless, in this paper, when talking about the relation between 5d gauge theories and SCFTs,
we shall mean it in this context.
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exist as microscopic 5d theories. It is convenient in this context to extend the definition
slightly and also allow 5d gauge theories that can arise via a mass-deformation of a 6d SCFT
compactified on a circle,3 that is to consider the full space of 5d gauge theories that have a
UV completion as a quantum field theory. It should be noted that these two classification
programs are, while related, distinct. This comes about as, first, a single 5d SCFT can be
deformed in multiple ways so as to lead to different 5d gauge theories, a phenomena referred
to as continuation past infinite coupling, fiber-base duality or simply as duality, see for in-
stance [9, 15, 16, 23]. Alternatively, there are 5d SCFTs that cannot be mass deformed to a
5d gauge theory, the first known example of which is probably the so called E0 SCFT discov-
ered in [7]. Therefore, given a classification of 5d SCFTs, one would also need to understand
their possible mass deformations in order to also get a classification of 5d gauge theories.
Similarly, given a classification of 5d gauge theories, one would need to supplement this
with the list of all 5d SCFTs without a gauge theory deformation, as well as understanding
the various dualities between then in order to also get a classification of 5d SCFTs.

The purpose of this article is to begin an exploration of the classification of 5d super-
symmetric gauge theories using the geometric approach. In any classification attempt some
sort of strategy, or a set of simplifying assumptions is required. Unlike the case in 4d or 6d
for gauge theories with the same amount of supersymmetries [66, 67], there is no obvious
field theoretic criteria for when a 5d supersymmetric gauge theory possesses an SCFT UV
completion. So far, the most promising criteria appear to be the ones proposed in [21],
which are a set of constraints on the prepotential of the gauge theory. For the most part
we will not have need of the explicit conditions in this article, and so would not review
them here, rather reverting to mentioning several points of note.

Depending on how a given gauge theory meets the criteria, the theory is deemed as
either ruled in, ruled out or marginal. A ruled in gauge theory should have a 5d SCFT
UV completion, a marginal theory should have a 6d SCFT UV completion and a ruled
out should have no SCFT UV completion. It should be noted though that these criterea
are thought to be necessary, but are known to be insufficient, that is a 5d supersymmetric
gauge theory obeying these criteria may still not have an SCFT UV completion.4 Here,
we shall assume that these criteria are indeed necessary and try to verify which of the
gauge theories obeying these criteria indeed exist. The latter is to be accomplished using
geometrical methods. As there are many possible gauge theories, we shall here concentrate
on the simpler cases of gauge theories containing only a single simple gauge group. We
leave open the analysis of quiver theories to future works.

As the list of all such gauge theories obeying the criteria of [21] were already determined
in that work, all that remains for us here is to go over the list of theories and check whether
these indeed have an SCFT UV completion. To do this, we analyze a local geometric
setup in M-theory constructing each marginal theory appearing in [21]. The rules for

3Here, similar clarifications as mentioned in the purely 5d case, also apply.
4More accurately, it is expected that the behavior of the theory be no better than that expected from

the criteria in the following order: 5d SCFT UV completion, 6d SCFT UV completion, no UV completion.
In other words, a theory not obeying the conditions has no UV completion, marginal theories should have
either a 6d SCFT UV completion or none, and ruled in theories may behave in either one of the three ways.
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translating 5d gauge theories into local portions of Calabi-Yau threefolds, and vice-versa,
are discussed in section 2 of [61] and in section 3.2 of the present paper. Performing flops
and isomorphisms on this local geometric setup, it is often possible to represent the local
geometry for the marginal theory in a form from which it is manifest that it describes a 6d
SCFT compactified on a circle with a twist.5 The information about the corresponding 6d
SCFT and the twist can be read from the details of the geometry when it is represented
in this form. See sections 3.3 and 3.4 for more details. Once we find that a shrinkable
geometry exists for a marginal theory, we are guaranteed that the geometries for theories
obtained by integrating out matter from the marginal theory will be shrinkable as well.
Not only that, these geometries are guaranteed to satisfy conditions proposed in [47] which
should guarantee that the corresponding geometries give rise to 5d SCFTs. Our results also
include some 5d gauge theories which UV complete into 5d SCFTs but cannot be obtained
by integrating out matter from a 5d KK theory. The geometries corresponding to these
theories were shown to satisfy the shrinkability criteria of [47] in the recent work [63]. As
discussed in [63], these 5d SCFTs can still be obtain from 5d KK theories if one allows
more complicated processes as compared to simple integration out of matter. Integrating
out matter can be thought as integrating out BPS particles from the extended Coulomb
branch of the 5d KK theory. A more general process involves integrating out both BPS
strings and BPS particles from the extended Coulomb branch of the 5d KK theory. See [63]
for more details.

In this paper, we also uncover all the dualities between 5d gauge theories with a simple
gauge group, having UV completions as 5d SCFTs and 5d KK theories.6 To identify these,
we use the results discussed in last paragraph and collect all the 5d gauge theories having
UV completion into the same 5d KK theory. These gauge theories must be dual to each
other. Identifying dualities between 5d gauge theories UV completing into 5d SCFTs
requires some more work but these dualities can be obtained from dualities of 5d gauge
theories having UV completion as KK theories.7 A duality between two gauge theories
means that geometries corresponding to the two 5d gauge theories should be the same
upto flops and isomorphisms. Since we already know all dualities between 5d gauge theories
having a 6d UV completion, we find a sequence of geometric manipulations (i.e. flops and
isomorphisms) taking the geometry associated to gauge theory on one side of each such
duality to the geometry associated to the gauge theory on the other side of the duality. Then
we integrate out matter from both sides of the duality which corresponds to blowing down
the two geometries. If the sequence of geometric manipulations implementing duality is

5As discussed in sections 3.3 and 3.4, this form of the geometry satisfies conditions proposed in [47]
which should guarantee that this local geometric piece can be shrunk and the physics associated to it be
decoupled from the rest of M-theory.

6We use the term “5d KK theory” to mean a 6d SCFT compactified on a circle possibly with some twist.
7This exhausts the list of all possible dualities between 5d gauge theories whose UV completion is a 5d

SCFT that can be obtained by integrating out matter from a 5d KK theory. This is because as pointed
out in [61], once a duality between two 5d gauge theories is found, one can add matter to both sides of
the duality and the resulting gauge theories remain dual, until we reach gauge theories having a 6d SCFT
UV completion. For 5d gauge theories whose UV completion is a 5d SCFT that cannot be obtained by
integrating out matter from a 5d KK theory, we find the corresponding dualities by performing operations
discussed in [61].
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left undisturbed after the blowdown, the resulting 5d gauge theories are dual to each other.
If the sequence of geometric manipulations is obstructed by the blowdowns, the resulting
5d gauge theories are not dual to each other. In this way, we find all the possible dualities
between the 5d gauge theories having 5d SCFT UV completion that we consider here.

The structure of this article is as follows. In section 2, we collect all the results obtained
in this paper in one place for the ease and convenience of the reader. Section 2.1 collects all
the 5d gauge theories having a UV completion as a 5d KK theory, organized according to
the gauge algebras. Section 2.2 collects all the 5d gauge theories having a UV completion as
a 5d SCFT, organized according to the gauge algebras. Section 2.3 collects all the 5d gauge
theories which are allowed by the criteria of [21] but which we can rule out based using
our geometric analysis. Section 2.4 collects all the 5d gauge theories allowed by the criteria
of [21] but which we cannot rule out or rule in using our geometric analysis. Section 2.5
collects all the dualities between 5d gauge theories having UV completion either as a 5d KK
theory or a 5d SCFT. Section 2.6 discusses the connection of our work with the classification
program for 5d SCFTs. Section 3 describes the general features of our geometric methods
in detail. Section 3.1 discusses general consistency conditions that all local geometries need
to satisfy. Section 3.2 discusses the structure of a geometry corresponding to a 5d gauge
theory. Section 3.3 discusses the structure of a geometry corresponding to a twisted circle
compactification of a 6d gauge theory. Section 3.4 discusses the structure of a geometry
corresponding to a 5d KK theory and how to read the data of the 6d SCFT and twist
from the geometry. Section 4 provides detailed arguments for the results presented in this
paper, organized according to rank.

2 Summary of results

In this section we shall summarize our results for the theories, where there is evidence from
geometry that they have a 5d or 6d UV completion. The generic structure is that these
cases can be grouped into families, where at the top we have a gauge theory with a 6d
SCFT UV completion, and the rest of the gauge theories in the family can be generated by
integrating out matter, and have a 5d SCFT UV completion. It should be noted though
that there are a few exceptions to this behavior [63]. We shall next write down our results
for the cases with a 6d SCFT UV completion, which we refer to as 5d KK theories. Cases
with a 5d SCFT UV completion are then obtained by integrating out matter from these
cases, in addition to the handful of cases that don’t descend from integrating matter out of
a KK gauge theory. These cases will be discussed afterward. Finally, there are a handful of
cases where we were not able to determine whether the theory has an SCFT UV completion
or not, and these cases will be reported at the end. We also collect theories satisfying the
criteria of [21] but which are ruled to be inconsistent by our methods.

Many of the theories we find from geometry were previously found using other methods,
notably brane systems. The latter usually fall to one of two types. One is the type I′

string theory configuration involving a system of D4-branes and D8-branes probing an
O8− background. This type of systems was originally used in [6] to realize 5d SCFTs,
and can be generalized by the addition of an orbifold singularity [68]. The second type is
brane webs [9–11], which involve a type IIB configuration of D5-branes, NS5-branes and
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D7-branes. These can be generalized by the addition of orientifold planes [28, 32, 33, 69].
One other method to study 5d SCFTs is using holography through a gravity dual. This
method, however, is related to the previous one as all known holographic duals of 5d SCFTs
are thought to be near horizon limits of one of the two types of brane systems. Notably,
there is the older gravity dual of [70], and its orbifold generalization [68], that are based
on the type I′ brane system. More recently, gravity duals believed to describe the near
horizon limit of 5-brane web systems were found [71–73]. These have since been extended
to also cover brane web systems involving mutually local 7-branes [74] and orientifold 7-
planes [75]. Thus, in many cases having a brane realization also implies the existence of a
holographic dual, though there are still types of brane systems with no known holographic
dual, like ones involving mutually non-local 7-branes or orientifold 5-planes, at least at
this point in time. We shall try here to give reference to known brane constructions when
they exist, though there are also many cases with no known brane construction, or other
previous realizations, and so are new.

To enumerate the gauge theories, we shall mostly adopt the notation of [61]. The gauge
theories contain a single gauge group of type G and a collection of ni hypermultiplets in
the representation Ri, where ni can be half-integers in representations where half-hypers
are possible. To denote representations, we shall use the shorthand notations: F for the
fundamental representation, Λk for the rank k antisymmetric representation, Sk for the rank
k symmetric representation, and A for the adjoint representation. For Spin groups, we shall
also use S for the spinor representation and also C for the other spinor representation if
it exists.

For KK theories, we also write down the 6d SCFT lift expected from the geometry. To
write these we use the F-theory notation of [76, 77]. Additionally, some of the reductions
are done with a twist in a discrete symmetry and we use the notation introduced in [60] to
denote that. We turn now to a short review of this notation. The twists are denoted by how
they act on the basic matter multiplets: tensors, vectors and hypers. The twist may act on
the vectors as the outer automorphism of the associated gauge symmetry. To denote that,
we shall use a superscript above the gauge algebra, where (1) signifies a compactification
without such a twist and (2) or (3) signify that the compactification is done with a Z2 or
Z3 outer automorphism twist. The superscript (3) is only used for so(8) to denote its Z3
outer automorphism, while (2) denotes its Z2 outer automorphism. Additionally, the twist
may act by permuting the tensor multiplets. This permutation is captured by folding the
graph associated to the 6d SCFT according to this permutation.

For instance:

2
su(m)(1)

2
su(m)(1)

stands for the twisted compactification of the 6d SCFT with tensor branch description as
a linear quiver of four SU(m) groups, with m flavor hypermultiplet for both edge groups,
where the twist acts on the quiver via a reflection. In other words, the quiver is shaped
like an A4 Dynkin diagram and the discrete symmetry act on it in the same way charge
conjugation acts on the A4 Dynkin diagram.
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As another example, consider:

2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

m− 1

2

which denotes the twisted compactification ofDm+1 (2, 0) theory by its outer automorphism
discrete symmetry, while

2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

m− 1

2

denotes the twisted compactification of A2m−1 (2, 0) by its outer automorphism discrete
symmetry. Additionally, there are cases where the twist acts as a combination of quiver
reflections and outer automorphism transformations on some of the gauge groups.

2.1 KK theories

Here we shall enumerate the cases of 5d gauge theories with a simple gauge group that
have a 6d SCFT UV completion. It is convenient to break this to two cases. One are cases
that exist for arbitrary rank, while the other are special cases that occur only for low rank.
We shall first deal with the general cases and then move on to discuss the special cases.

2.1.1 General rank

We begin with the cases that exist for generic rank. These cases include the maximally
supersymmetric classical groups, as well as several N = 1 only cases. The 6d lifts for the
maximally supersymmetric Yang-Mills cases are well known, see for instance [78], and the
results from geometry are consistent with that. For the N = 1 only cases, the 6d lifts
for most cases is well known, see [21] and references within, and our geometric results are
consistent with these. There are, however, a few cases that were undetermined, and the
geometric methods allow us to determine them as well. We shall next list our findings for
these cases based on the gauge group.

su(m):

= 2
su(1)(1)

2
su(1)(1)

· · ·

m− 1

su(m)0 + A (2.1)

sp(m− 2)(1)

1su(m)0 + (2m+ 4)F = (2.2)

su(m)0 + Λ2 + (m+ 6)F = 1
su(m− 1)(1) (2.3)
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2
su(1)(1)

su(m)m
2

+ Λ2 + 8F = 2
su(1)(1)

· · ·1
sp(0)(1)

m− 2

(2.4)

su(2m)0 + 2Λ2 + 8F = 2
su(2)(1)

2
su(2)(1)

· · ·1
sp(0)(1)

m− 1

(2.5)

su(2m+ 1)0 + 2Λ2 + 8F = 2
su(2)(1)

2
su(2)(1)

· · ·1
sp(1)(1)

m− 1

(2.6)

su(2m+ 1) 3
2

+ 2Λ2 + 7F = 2
su(2)(1)

2
su(2)(1)

· · ·1
sp(0)(1)

m− 1

2
su(1)(1)

(2.7)

su(2m) 3
2

+ 2Λ2 + 7F = 2
su(2)(1)

2
su(2)(1)

· · ·1
sp(1)(1)

m− 2

2
su(1)(1)

(2.8)

su(m)0 + S2 + (m− 2)F = 2
su(m− 1)(1)

(2.9)

su(2m)m + S2
2

su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

2m− 2

2
= (2.10)

su(2m+ 1)m+ 1
2

+ S2
2

su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

2m− 1

= (2.11)

su(2m)0 + S2 + Λ2 = 2
su(2)(1)

· · ·
su(2)(1)

22
su(2)(1)

m− 1

2
su(1)(1)

2 (2.12)

su(2m+ 1)0 + S2 + Λ2 = 2
su(2)(1)

2
su(2)(1)

· · ·2
su(2)(1)

m− 1

(2.13)
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Our results from geometry are consistent with many of the existing proposals in the
literature. Specifically, case (2.1) is just the well known relation between the 6d (2, 0)
theory and 5d maximally supersymmetric Yang-Mills theory [79, 80]. Case (2.2) matches
the original proposal of [19, 26]. Likewise, case (2.3) matches the original proposal of [29,
30]. In cases (2.4) and (2.13), our results are consistent with the conjectures in [21].
Cases (2.5), (2.6), (2.7) and (2.8) match the 6d lifts proposed for these theories in [29].
Finally, our results for case (2.9) matches the lift proposed for this case in [33].

There are a few cases where the geometrical results improve upon the results already
known in the literature. Notably, the 6d lift of (2.12) was to our knowledge not previously
discussed. Our results for cases (2.10) and (2.11) are consistent with the results found
in [21] for the case of su(3). However, it was conjectured there, based on this case, that
the 6d lift for higher m is also a twisted compactification of an A type (2, 0) theory, while
the geometric methods reveal that this is only true for odd m, and the even m cases lift to
a twisted compactification of a D type (2, 0) theory instead. See section 2.5.1.

sp(m):

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

m− 1

2
sp(m)0 + A (2.14)

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

m− 1

sp(m)π + A (2.15)

sp(m) + (2m+ 6)F = 1
sp(m− 1)(1) (2.16)

2
su(1)(1)

sp(m) + Λ2 + 8F = 2
su(1)(1)

· · ·1
sp(0)(1)

m− 1

(2.17)

For sp groups the 6d lifts were all previously known in the literature, and our results
are consistent with this. Specifically, cases (2.14) and (2.15) are the 5d maximally super-
symmetric sp Yang-Mills theories [78]. Case (2.16) matches the known lift in [30]. Finally,
that case (2.17) lifts to the rank m E-string theory is well known from the work of [81].
We also note that all the cases here are dual to cases in the su part.

so(m):

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

m− 1

2
so(2m+ 1) + A (2.18)
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= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

m− 2

so(2m) + A

2
su(1)(1)

(2.19)

so(m) + (m− 2)F = 2
su(m− 2)(2) (2.20)

The lifts for generic so cases were, also, all previously known in the literature, and our
results are consistent with this. Specifically, cases (2.18) and (2.19) are the 5d maximally
supersymmetric so Yang-Mills theories [78], and case (2.20) matches the 6d lift proposed
for this case in [33].

Next we are going to consider the cases that only exist for small rank.

2.1.2 Rank 2

su(3):

1
su(3)(2)

su(3)4 + 6F = (2.21)

= 2
su(1)(1)

su(3) 15
2

+ F
2

su(1)(1)

3

(2.22)

su(3)9 = 3
su(3)(2) (2.23)

All these cases have already appeared in the literature. Specifically, cases (2.21)
and (2.23) were originally discovered from geometry in [47], with brane realizations fol-
lowing in [38]. Case (2.22) was found more recently in [59], also from geometry.

sp(2):

sp(2) + 2Λ2 + 4F 1
su(3)(2)

= (2.24)

sp(2)0 + 3Λ2 = 2
su(3)(2) (2.25)

Here as well all cases have already appeared in the literature. Specifically, case (2.24)
is dual to (2.21), a result originally found in [47]. Since sp(2) = so(5), case (2.25) is in fact
just the m = 5 case of (2.20). However, we have here separated it as for this case there is
also the possibility to turn on a theta angle for the sp(2). The m = 5 case of (2.20) is then
the one with θ = 0, while the θ = π case appears to have no SCFT UV completion. This
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was first noted in the geometrical work of [47], and our results further support this as they
suggest that its associated geometry is dual to g2 + A + 2F which is not a UV complete
theory as it has more matter than the KK theory g2 + A.

g2:

g2 + A = 2
su(1)(1)

2
su(1)(1)

3

(2.26)

= 1
su(3)(2)

g2 + 6F (2.27)

Case (2.26) is again one of the 5d maximally supersymmetric Yang-Mills theories,
whose 6d lift was worked out previously [78]. Case (2.27) is also dual to (2.21) and (2.24),
a result originally found in [47].

2.1.3 Rank 3

su(4):

= 3
su(3)(2)

su(4)4 + 6F 1
sp(0)(1)

2

(2.28)

su(4)8 = 4
so(8)(3) (2.29)

2
so(8)(3)

su(4)6 + 2Λ2 = (2.30)

= 1
su(4)(2)

su(4)0 + 3Λ2 + 4F (2.31)

= 1
g

(1)
2

su(4)1 + 3Λ2 + 4F
(2.32)

su(4)2 + 3Λ2 + 4F = 1
sp(0)(1)

2
su(3)(2) (2.33)

su(4)5 + 3Λ2 = 1
so(8)(3) (2.34)

su(4)0 + 4Λ2 = 2
su(4)(2) (2.35)

su(4)2 + 4Λ2 = 2
g

(1)
2 (2.36)

su(4)4 + 4Λ2 = 1
sp(0)(1)

3
su(3)(2) (2.37)
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Most of the cases here are, to our knowledge, new. The notable exceptions are
cases (2.29) and (2.35). Case (2.35) is just the m = 6 case of (2.20), though we have
singled it out here since for this case there is also the possibility of a Chern-Simons level,
and the case fitting in (2.20) is the one with Chern-Simons level zero. The lift for case (2.29)
was conjectured in [82], and our results are consistent with the conjecture there. Note also
that while all the reductions in this section were discussed in [59], they were not given a
gauge theory interpretation there.

sp(3):

sp(3)0 + 2Λ2 = 2
so(8)(3) (2.38)

= 1
sp(1)(1)

2
su(1)(1)

sp(3) + 1
2Λ3 + 19

2 F (2.39)

= 1
so(8)(3)

sp(3) + 1
2Λ3 + Λ2 + 5

2F (2.40)

sp(3) + Λ3 + 5F = 3
su(3)(2)

1
sp(0)(1)

2

(2.41)

Here, cases (2.38) and (2.40) are new. In cases (2.39) and (2.41), a brane web was
found in [40] from which it was suggested that these cases lift to 6d, though the exact
6d SCFTs they lift to were not determined. We also note that all cases here are dual to
various su(4) cases. See section 2.5.1.

so(7):

so(7) + 6S + F = 1
su(4)(2) (2.42)

so(7) + 5S + 2F 1
g

(1)
2= (2.43)

= 1
sp(0)(1)

2
su(3)(2)

so(7) + 4S + 3F (2.44)

so(7) + 2S + 4F = 1
su(5)(2) (2.45)

= 1
g

(1)
2

so(7) + 7S (2.46)

The 6d lifts for some of the cases here were already considered in the literature, but
there are new cases as well. Notably, the 6d lifts for cases (2.42) and (2.44) were conjectured
by [83], and our findings from geometry support these conjectures. Cases (2.43), (2.45)
and (2.46) are, to our knowledge, new. We also note that the cases (2.43) and (2.46) are
dual to each-other. See section 2.5.1 for other dualities.
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2.1.4 Rank 4

su(5):

su(5)0 + 3Λ2 + 3F 1
so(8)(2)

= (2.47)

2
su(1)(1)

su(5) 3
2

+ 3Λ2 + 2F = 1
sp(0)(1)

3
su(3)(2) (2.48)

Both cases are, to our knowledge, new.

sp(4):

sp(4) + 1
2Λ3 + 4F = 4

so(8)(3)

1
sp(0)(1)

3

(2.49)

This case is, to our knowledge, new.

so(8):

so(8) + 4S + 4F = 1
sp(0)(1)

3
su(3)(2)

1
sp(0)(1) (2.50)

= 1
su(6̃)(2)

so(8) + 2S + 5F (2.51)

so(8) + 3S + C + 4F = 2
g

(1)
2

1
sp(0)(1) (2.52)

= 1
su(6)(2)

so(8) + S + C + 5F (2.53)

= 1
so(7)(1)

so(8) + 3S + 2C + 3F (2.54)

so(8) + 2S + 2C + 4F = 2
su(4)(2)

1
sp(0)(1) (2.55)

The 6d lifts for some of the cases here were already considered in the literature. Specif-
ically, the 6d lift for case (2.55) was conjectured by [83] and for case (2.50) by [84]. In both
cases our findings from geometry support these conjectures. The rest of the cases are, to
our knowledge, new. The case (2.51) lifts to the outer-automorphism twisted compactifica-
tion of 6d SCFT whose tensor branch is described by the 6d gauge theory su(6)+ 1

2Λ3 +15F.
The tilde on top of su(6) differentiates this 6d SCFT from the cousin 6d SCFT whose tensor
branch is described by the 6d gauge theory su(6) + Λ2 + 14F.
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so(9):

= 1
su(7)(2)

so(9) + S + 6F (2.56)

so(9) + 2S + 5F = 1
sp(0)(1)

2
su(5)(2) (2.57)

= 1
so(8)(2)

so(9) + 3S + 3F (2.58)

so(9) + 4S + F = 2
su(1)(1)

1
sp(0)(1)

3
su(3)(2) (2.59)

The 6d lifts for some of the cases here were already considered in the literature, but
there are new cases as well. Notably, the 6d lift for case (2.57) was conjectured by [83], and
for case (2.59) by [84]. In both cases our findings from geometry support these conjectures.
The remaining cases are, to our knowledge, new.

f4:

f4 + A = 2
su(1)(1)

2
su(1)(1)

22
su(1)(1)

2
su(1)(1) (2.60)

Here the only 6d lifting case is the maximally supersymmetric one, whose lift was
worked out previously [78]. There appears to be no 6d lifting case for f4 with fundamental
matter, see [63]. There are, however, 5d f4 gauge theories with fundamental matter with a
5d SCFT UV completion. These will be covered in the next subsection.

2.1.5 Rank 5

su(6):

= 1
su(5)(1)

su(6)0 + 1
2Λ3 + 13F (2.61)

su(6)3 + 1
2Λ3 + 9F = 1

sp(0)(1)

2
su(1)(1)

2
su(1)(1)

2
su(1)(1)

2
su(1)(1) (2.62)

= 1
su(3)(1)

su(6)0 + 1
2Λ3 + Λ2 + 9F 2

su(2)(1) (2.63)

= 1
sp(1)(1)

2
su(2)(1)

2
su(1)(1)

su(6) 3
2

+ 1
2Λ3 + Λ2 + 8F (2.64)

= 1
f
(1)
4su(6) 1

2
+ 1

2Λ3 + 2Λ2 + 2F (2.65)

= 1
sp(0)(1)

su(6) 3
2

+ 1
2Λ3 + 2Λ2 + 2F 3

so(8)(3)

2
su(1)(1) (2.66)
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= 2
f
(1)
4

su(6)1 + 3Λ2 (2.67)

= 1
sp(0)(1)

su(6)3 + 3Λ2
4

so(8)(3)

2
su(1)(1) (2.68)

= 1
sp(2)(1)

su(6)0 + Λ3 + 10F 2
su(2)(1) (2.69)

2
su(1)(1)

1
sp(0)(1)

2
su(2)(1)

2
su(1)(1)

su(6) 3
2

+ Λ3 + 9F = (2.70)

= 3
so(8)(2)

su(6)0 + Λ3 + Λ2 + 4F 1
sp(0)(1)

2

(2.71)

3
su(3)(2)

1
sp(0)(1)

2
su(3)(2)

su(6) 3
2

+ Λ3 + Λ2 + 3F = (2.72)

su(6)0 + 3
2Λ3 + 5F = 1

so(10)(2) (2.73)

su(6)3 + 3
2Λ3 + F = 1

e
(2)
6 (2.74)

1
e
(2)
6su(6) 7

2
+ 1

2Λ3 + 2Λ2 = (2.75)

= 3
e
(2)
6su(6) 9

2
+ 3

2Λ3 (2.76)

su(6)0 + 2Λ3 = 3
su(3)(2)

1
sp(0)(1)

3
su(3)(2) (2.77)

= 2
su(2)(1)

su(6)0 + S2 + 1
2Λ3 + F 2

su(3)(1)

(2.78)

= 2
su(2)(1)

su(6) 3
2

+ S2 + 1
2Λ3

2
su(2)(1)

2
su(1)(1)

(2.79)

Some of the cases appearing here have been previously studied in the literature, while
some are new. Specifically, the 6d lifts for cases (2.61), (2.69) and (2.78) were conjectured
in [40], and our results from geometry are consistent with these conjectures. Addition-
ally, [40] also presented brane constructions for cases (2.62), (2.63), (2.64), (2.70), (2.71),
(2.77), and (2.79), from which it was inferred that these are 6d lifting though the explicit
6d lift was not determined. The remaining cases are new, to our knowledge.
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Finally, we note several dualities for theories in this list. Case (2.61) is dual to the
m = 6 case of (2.3), case (2.62) is dual to the m = 6 case of (2.4) and to the m = 5 case
of (2.17), case (2.64) is dual to the m = 3 case of (2.8), and cases (2.75) and (2.74) are
dual to each other.

so(10):

= 1
sp(0)(1)

so(10) + 4S + 2F 2
su(2)(1)

3
su(3)(2) (2.80)

= 1
so(9)(1)

so(10) + 3S + 4F (2.81)

= 1
sp(0)(1)

so(10) + 2S + 6F 2
su(6)(2) (2.82)

= 1
su(8)(2)

so(10) + S + 7F (2.83)

The 6d lifts for some of the cases here were already considered in the literature. Specif-
ically, the 6d lift for case (2.82) was conjectured by [83] and for case (2.80) by [84]. In both
cases our findings from geometry support these conjectures. The rest of the cases are, to
our knowledge, new.

so(11):

so(11) + 2S + 3F = 3
su(3)(2)

1
sp(0)(1)

2
su(3)(2) (2.84)

= 1
so(10)(2)

so(11) + 3
2S + 5F (2.85)

= 1
e
(2)
6

so(11) + 5
2S (2.86)

= 1
sp(0)(1)

so(11) + S + 7F 2
su(7)(2) (2.87)

= 1
su(9)(2)

so(11) + 1
2S + 8F (2.88)

The 6d lifts for some of the cases here were already considered in the literature, but
there are new cases as well. Notably, the 6d lift for case (2.87) was conjectured by [83], and
for case (2.84) by [84]. In both cases our findings from geometry support these conjectures.
The remaining cases are, to our knowledge, new. See section 2.5.1 for dualities.

– 15 –



J
H
E
P
1
2
(
2
0
2
0
)
0
9
9

2.1.6 Rank 6

su(7):

= 3
so(8)(2)

su(7)0 + Λ3 + 6F 1
sp(1)(1)

2

(2.89)

su(7) 3
2

+ Λ3 + 5F = 3
su(3)(2)

1
sp(0)(1)

2
su(5)(2) (2.90)

Both of these cases are new to our knowledge. The 6d SCFT corresponding to the
case (2.89) is denoted as

1
sp(1)

3
so(8)

1
sp(1)

in [60] since (upto triality) one of the sp(1) gauges a hyper in F of so(8) and the other
sp(1) gauges a hyper in S of so(8), where the former gauging is denoted by a solid edge
and the latter gauging is denoted by a dashed edge. While compactifying on a circle, the
6d SCFT is twisted by the Z2 outer automorphism of so(8) which exchanges F and S thus
folding the dashed edge onto the solid edge. Consequently, we denote the KK theory with
a partially solid and partially dashed edge.

so(12):

1
sp(0)(1)

3
su(3)(2)

3
su(3)(2)

1
sp(0)(1)

so(12) + 2S + 4F = (2.91)

= 3
e
(2)
6

so(12) + 3
2S + C + F 1

sp(0)(1)

2

(2.92)

= 1
sp(0)(1)

so(12) + 3
2S + 1

2C + 4F 2
g

(1)
2

3
su(3)(2) (2.93)

so(12) + S + 1
2C + 6F = 1

so(11)(1) (2.94)

1
so(11)(1)

so(12) + 3
2S + 6F = (2.95)

= 1
sp(0)(1)

so(12) + S + C + 4F 2
su(4)(2)

3
su(3)(2) (2.96)

= 1
sp(0)(1)

0
so(12) + S + 8F 2

su(8)(2) (2.97)

= 1
sp(0)(1)

π
so(12) + 1

2S + 1
2C + 8F 2

su(8)(2) (2.98)

= 1
su(10)(2)

so(12) + 1
2S + 9F (2.99)
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The 6d lifts for some of these cases were already considered in the literature. Specif-
ically, the 6d lift for cases (2.98) and (2.97) were conjectured by [83]. As explained there,
these two cases differ by the embedding of the su(8) gauge symmetry on the −2 curve in
the e8 global symmetry associated with the empty −1 curve. As this difference becomes the
theta angle of the sp(n) gauge group if it is turned on the −1 curve [85], we differentiate the
two cases by denoting this angle even though n = 0 here. Additionally, cases (2.91), (2.93)
and (2.96) were conjectured by [84]. Our results from geometry support these conjectures
in all cases.

The remaining cases are all new to our knowledge. We also note that the two
cases (2.94) and (2.95) are dual to each other.

so(13):

so(13) + S + 5F = 3
su(3)(2)

1
sp(0)(1)

2
su(5)(2) (2.100)

= 1
sp(0)(1)

so(13) + 1
2S + 9F 2

su(9)(2) (2.101)

The 6d lifts for both of these cases were already considered in the literature. Specifi-
cally, the 6d lift for case (2.101) was conjectured by [83], and for case (2.100) by [84]. In
both cases our findings from geometry support these conjectures.

e6:

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

3

e6 + A

2
su(1)(1)

2
su(1)(1)

(2.102)

Here the only 6d lifting case is the maximally supersymmetric one, whose lift was
worked out previously [78]. There appears to be no 6d lifting case for e6 with fundamental
matter, see [63]. There are, however, 5d e6 gauge theories with fundamental matter with a
5d SCFT UV completion. These will be covered in the next subsection.

2.1.7 Rank 7

so(14):

= 1
sp(0)(1)

so(14) + S + 6F 2
su(6)(2)

3
su(3)(2) (2.103)

The 6d lift for this case was conjectured by [84], and our results from geometry match
this conjecture.
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e7:

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

4

e7 + A

2
su(1)(1)

2
su(1)(1)

(2.104)

Here the only 6d lifting case is the maximally supersymmetric one, whose lift was
worked out previously [78]. There appears to be no 6d lifting case for e7 with fundamental
matter, see [63]. There are, however, 5d e7 gauge theories with fundamental matter with a
5d SCFT UV completion. These will be covered in the next subsection.

2.1.8 Rank 8

e8:

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

5

e8 + A

2
su(1)(1)

2
su(1)(1)

(2.105)

Here the only 6d lifting case is the maximally supersymmetric one, whose lift was
worked out previously [78].

2.2 SCFTs

We next turn to summarizing the cases having a 5d SCFT UV completion. Most of these
cases can be generated by integrating out matter from the 6d lifting cases in the previous
list, but there are a handful of cases that can not be generated by integrating out matter
from a 6d lifting gauge theory. They still can be obtained from a 5d KK theory but the
transition process requires a (generalized) ungauging along with integrating out matter
(see [63] for more details).

2.2.1 General rank

As previously, we first start with the cases existing for generic rank, and later innumerate
the finite number of special cases for low rank.
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su(m):

su(m)n−p
2

+ (2m+ 4− n− p)F, (2.106)

su(m)n−p
2

+ Λ2 + (m+ 6− n− p)F, (2.107)

su(m)m+n
2

+ Λ2 + (8− n)F, (2.108)

su(m)n−p
2

+ 2Λ2 + (8− n− p)F, (2.109)

su(m) 3+n
2

+ 2Λ2 + (7− n)F, (2.110)

su(m)n−p
2

+ S2 + (m− 2− n− p)F. (2.111)

All cases here are generated by integrating matter from the cases in 2.1.1. Specifically,
case (2.106) is generated by integrating n fundamentals with a positive mass and p fun-
damentals with a negative mass out of the 6d lifting case (2.2). Likewise, case (2.107) is
generated by integrating n fundamentals with a positive mass and p fundamentals with a
negative mass out of the 6d lifting case (2.3). Case (2.108) contains the cases generated by
integrating matter out of case (2.4), where we have restricted only to cases not covered by
the previous entry.

In the same vein, case (2.109) covers cases generated by integrating fundamental matter
from cases (2.5) and (2.6), and case (2.110) covers cases generated by integrating fundamen-
tal matter from cases (2.7) and (2.8) that where not covered by the previous entry. Finally,
case (2.111) covers cases generated by integrating fundamental matter from case (2.9). We
can not get any additional cases by integrating non-fundamental matter or by integrating
matter out of the other cases in 2.1.1.

All cases here were known to exist before, and have brane web realizations [9, 10, 21,
24, 26, 28].

sp(m):

sp(m)0/π + (2m+ 6− n)F, (2.112)
sp(m)0/π + Λ2 + (8− n)F. (2.113)

Here also all cases can be generated by integrating out fundamental matter from the 6d
lifting cases. Specifically, case (2.112) can be generated from case (2.16), and case (2.113)
from case (2.17). Here the theta angle for the sp group is only physically relevant for the
pure case or the case with just a single antisymmetric hyper [7]. All the cases here are known
to exist. Case (2.112) can be realized using brane webs [28, 69]. For case (2.113) there is a
type I′ brane construction [6], from which one can also get a brane web representation [68].

Many of these cases are dual to some of the su cases discussed previously. Specifically,
case (2.112) is dual to case (2.106) with p = 0 andmsu = msp+1, and case (2.113) is dual to
case (2.108) with msu = msp + 1. Both of these dualities were known previously from other
works. Specifically, the duality involving case (2.112) was found in [27] (see also [30] for a
brane realization), while the one involving (2.113) was found in [21]. For both cases, when
there is no fundamental flavor, we have two different SCFTs associated with the different

– 19 –



J
H
E
P
1
2
(
2
0
2
0
)
0
9
9

theta angles, but only one of each case has an su dual description. Specifically, for cases
where the rank is even, the theta angle with the dual is π, while for cases where the rank
is odd, the theta angle with the dual is 0.

so(m):
so(m) + (m− 2− n)F. (2.114)

The case here can be conveniently generated by integrating matter out of the 6d lifting
case (2.20). This class of theories were known to exist before, notably due to a brane web
realization [28, 69].

2.2.2 Rank 2

su(3):

su(3)4+n
2

+ (6− n)F, (2.115)

su(3)6, (2.116)
su(3)8. (2.117)

Cases (2.115) and (2.116) can be generated by integrating out fundamental matter
from case (2.21), while (2.117) can be generated by integrating out fundamental matter
with a positive mass from case (2.22). All three classes of theories were known before,
where case (2.115) was first found from geometry in [47], case (2.116) being first noted
in [29], and case (2.117) was first found, also from geometry, in [59].

sp(2):
sp(2)0/π + 2Λ2 + (4− n)F. (2.118)

The case here can be generated by integrating out fundamental matter from the 6d
lifting case in (2.24). Here the theta angle for the sp group is only physically relevant for
the case with only the two antisymmetric hypermultiplets and no fundamentals (that is
n = 4). This case is dual to (2.115), where for n = 4 the dual sp case is the one with
theta angle π. Both this class of models and the duality were first found in [47], with the
exception of the n = 4 case, which is just sp(2)+2Λ2 = so(5)+2F and so can also be build
from the methods of [28, 32, 33, 69].8

g2:
g2 + (6− n)F. (2.119)

The case here can be generated by integrating out fundamental matter from the 6d
lifting case in (2.27). This case is dual to (2.115) and (2.118). Both this class of models
and the duality were first found in [47]. Both were also given brane realizations in [37, 38].

8This seems to only give the θ = 0 case.
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2.2.3 Rank 3

su(4):

su(4)4+n
2

+ (6− n)F, (2.120)

su(4)k + 3Λ2 + (4− n)F ; 0 ≤ k ≤ 2 + n

2 . (2.121)

Case (2.120) can be generated by integrating fundamental matter with a positive mass
from case (2.28), while (2.121) can be generated by integrating fundamental matter from
cases (2.31), (2.32) and (2.33). Both cases appear new. Case (2.121) can also be regarded
as so(6)k + 3F + (4 − n)S, and so one should be able to build brane webs for these cases,
at least for small k, using the results of [32, 36].

sp(3):

sp(3) + Λ3 + (5− n)F, (2.122)

sp(3) + 1
2Λ3 + 19− 2n

2 F, (2.123)

sp(3) + 1
2Λ3 + Λ2 + 5− 2n

2 F. (2.124)

Case (2.122) can be generated by integrating fundamental matter from case (2.41),
while (2.123) and (2.124) can be generated in the same way from cases (2.39) and (2.40),
respectively. Note that as the three index antisymmetric representation of sp(3) contributes
to the anomaly of [86], the theta angle in their presence should be physically irrelevant.
For the cases (2.123) and (2.124), the geometry indicates that the theta angle is physically
irrelevant.

Cases (2.122) and (2.123) have been found previously from brane constructions in [40],
while (2.124) appears new. We also note that case (2.122) is dual to case (2.120), and
case (2.123) is dual to the m = 4 case of (2.110). See section 2.5.2 for a list of dualities
occurring in gauge theories having a 5d SCFT UV completion.

so(7):

so(7) + (6− n)S + F, (2.125)
so(7) + (5− n)S + 2F, (2.126)
so(7) + (4− n)S + 3F, (2.127)
so(7) + (2− n)S + 4F, (2.128)
so(7) + (7− n)S. (2.129)

Case (2.125) can be generated by integrating fundamental matter from case (2.42).
Similarly cases (2.126), (2.127), (2.128) and (2.129) can be generated in the same way from
cases (2.43), (2.44), (2.45) and (2.46), respectively. A brane construction for this class of
theories was given in [32], which is valid when the number of spinors is four or smaller.
It should be possible to use the result of [34], and lift the class S construction for the 4d
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N = 2 so(7)+5S SCFT given in [87] to 5d to get a brane web description also for the cases
with five spinors.

The cases here are related to the previous cases and to one another by various dualities.
See section 2.5.2 for a full account of these dualities.

2.2.4 Rank 4

su(5):

su(5) 1
2

+ 3Λ2 + 2F, (2.130)

su(5)k + 3Λ2 + F ; k = 0, 1, 2 (2.131)
su(5) 2l+1

2
+ 3Λ2 ; l = 0, 1, 2, 3 (2.132)

Most of these cases can be generated by integrating fundamental flavors from
cases (2.47) and (2.48), with the exception of case (2.132) for l = 3. This case is one
of the few cases of 5d gauge theories that have a 5d SCFT UV completion, but can not be
generated by integrating flavor out of 5d gauge theories that lift to 6d SCFTs. However,
see the end of this subsubsection for a lift of this 5d gauge theory to a 5d KK theory.

sp(4):
sp(4) + 1

2Λ3 + (4− n)F. (2.133)

This case can be generated by integrating out flavors from the 6d lifting case (2.49). We
also note that from gometry it appears that the theta angle for the sp group is physically
irrelevant for the n = 4 case.

so(8):

so(8) + 3S + nF ; 3 ≤ n ≤ 4 (2.134)
so(8) + 2S + nF ; 2 ≤ n ≤ 4 (2.135)
so(8) + S + nF ; 1 ≤ n ≤ 5 (2.136)
so(8) + C + 3S + 3F (2.137)
so(8) + C + 2S + nF ; 2 ≤ n ≤ 4 (2.138)
so(8) + C + S + nF ; 1 ≤ n ≤ 4 (2.139)
so(8) + 2C + 2S + nF ; 2 ≤ n ≤ 3 (2.140)

All cases here can be generated by integrating out flavors from the 6d lifting cases.
To avoid over-counting, we have used the triality outer automorphism of so(8) to set
nC ≤ nS ≤ nF , and hence the lower limitations on n. A brane construction for this class
of theories was given in [32], which can be used to build brane webs for these theories with
the exception of cases (2.134), (2.135) and (2.137). The results in [36] allows the extension
of this method also to the case of (2.135). It should be possible to use the result of [34],
and lift the class S construction for the 4d N = 2 so(8) SCFTs with spinor matter given
in [87] to 5d to get brane web descriptions also for cases (2.134) and (2.137).
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so(9):

so(9) + 3S + (3− n)F, (2.141)
so(9) + 4S, (2.142)
so(9) + 2S + (5− n), (2.143)
so(9) + S + (6− n)F. (2.144)

Case (2.141) can be generated by integrating fundamental matter from case (2.58).
Similarly cases (2.142), (2.143), and (2.144) can be generated in the same way from
cases (2.59), (2.57), and (2.56), respectively. A brane construction for this class of theories
was given in [32], which is valid when the number of spinors is two or smaller. It should
be possible to use the result of [34], and lift the class S construction for the 4d N = 2
so(9) + 3S + F SCFT given in [88] to 5d to get a brane web description also for the cases
with three spinors.

The cases here are related to the previous cases and to one another by various dualities.
See section 2.5.2 for a list of these dualities.

f4:
f4 + (3− n)F ; 0 ≤ n ≤ 3 (2.145)

This case is one of the few cases of 5d gauge theories that have a 5d SCFT UV
completion, but can not be generated by integrating flavor out of 5d gauge theories that lift
to 6d SCFTs, with the exception of the n = 3 case which can be generated by integrating
out the adjoint hyper from the maximally supersymmetric case. We also note that the
n = 0 case is dual to the l = 3 case of (2.132), see [61].

Let us remark here that the n < 3 cases can be obtained from 5d KK theories by
performing a generalized ungauging (along with integrating out matter). It can be seen
from the geometry for f4 + 3F that the u(1) instanton flavor symmetry of the theory
enhances at the conformal point to an su(2) subgroup of the flavor symmetry of the 5d
SCFT.9 Gauging this su(2) symmetry produces the 5d KK theory obtained by untwisted
compactification of 6d SCFT whose tensor branch description is provide by 6d f4 + 3F
gauge theory. Thus, the 5d f4 + 3F gauge theory can be obtained from this 5d KK theory
by ungauging the above-mentioned su(2) symmetry. The theories ff4 + (3−n)F for n > 0
can then simply be obtained by integrating out matter from the f4 + 3F theory. See [63]
for more details.

2.2.5 Rank 5

su(6):

su(6)n−p
2

+ 1
2Λ3 + (13− n− p)F, (2.146)

su(6)3+n
2

+ 1
2Λ3 + (9− n)F, (2.147)

9This can also be seen directly from the gauge theory from instanton counting [18].
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su(6)n−p
2

+ 1
2Λ3 + Λ2 + (9− n− p)F, (2.148)

su(6) 3+n
2

+ 1
2Λ3 + Λ2 + (8− n)F, (2.149)

su(6) 2l+n−p−1
2

+ 1
2Λ3 + 2Λ2 + (2− n− p)F, l = 1, 2 (2.150)

su(6)n−p
2

+ Λ3 + (10− n− p)F, (2.151)

su(6) 3+n
2

+ Λ3 + (9− n)F, (2.152)

su(6)n−p
2

+ Λ3 + Λ2 + (4− n− p)F, (2.153)

su(6) 3+n
2

+ Λ3 + Λ2 + (3− n)F, (2.154)

su(6)n−p
2

+ 3
2Λ3 + (5− n− p)F, (2.155)

su(6) 7
2

+ 3
2Λ3 (2.156)

su(6) 1
2

+ S2 + 1
2Λ3 (2.157)

All cases here can be generated by integrating out fundamental flavors from 6d lifting
cases. Specifically, case (2.146) can be generated by integrating out n fundamentals with
a positive mass and p fundamentals with a negative mass from case (2.61). Case (2.147)
can be generated by integrating out n fundamentals with a positive mass from case (2.62).
Case (2.148) can be generated by integrating out n fundamentals with a positive mass and
p fundamentals with a negative mass from case (2.63). Case (2.149) can be generated by
integrating out n fundamentals with a positive mass from case (2.64). Case (2.150) can
be generated by integrating out n fundamentals with a positive mass and p fundamentals
with a negative mass from cases (2.65) and (2.66). Case (2.151) can be generated by inte-
grating out n fundamentals with a positive mass and p fundamentals with a negative mass
from case (2.69). Case (2.152) can be generated by integrating out n fundamentals with a
positive mass from case (2.70). Case (2.153) can be generated by integrating out n funda-
mentals with a positive mass and p fundamentals with a negative mass from case (2.71).
Case (2.154) can be generated by integrating out n fundamentals with a positive mass
from case (2.72). Case (2.155) can be generated by integrating out n fundamentals with
a positive mass and p fundamentals with a negative mass from case (2.73). Cases (2.156)
and (2.157) can be generated by integrating out the fundamental flavor from cases (2.74)
and (2.78), respectively.

Many of the cases here were found previously using brane constructions. Specifi-
cally, [40] presented brane web constructions for cases (2.146), (2.147), (2.148), (2.149),
(2.151), (2.152), (2.153), (2.155), and (2.157). The remaining cases are new, to our
knowledge.

We also note that case (2.146) with p = 0 is dual to the m = 6, p = 0 case of (2.107),
and that case (2.147) is dual to both the m = 6 case of (2.108) and the m = 5 case
of (2.113), where for n = 8 the sp theta angle of the dual theory is 0. Case (2.149) is dual
to the m = 6 case of (2.110).
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so(11):

so(11) + 2S + (3− n)F, (2.158)

so(11) + 3
2S + (5− n)F, (2.159)

so(11) + S + (7− n)F, (2.160)

so(11) + 1
2S + (8− n)F. (2.161)

All cases here can be generated by integrating fundamental matter from the 6d lifting
cases. A brane construction for this class of theories was given in [32], which can be used
to build brane webs for cases (2.161) and (2.160). It should be possible to use the result
of [34], and lift the class S construction for the 4d N = 2 so(11) SCFTs with spinor matter
given in [88] to 5d to get brane web descriptions also for cases (2.159) and (2.158).

We also note that case (2.158) is dual to case (2.154), while case (2.159) is dual to the
p = 0 case of (2.155).

so(10):

so(10) + 4S + (2− n)F, (2.162)
so(10) + 3S + (4− n)F, (2.163)
so(10) + 2S + (6− n)F, (2.164)
so(10) + S + (7− n)F. (2.165)

All cases here can be generated by integrating fundamental matter from the 6d lifting
cases. A brane construction for this class of theories was given in [32], which can be used
to build brane webs for cases with two or less spinors. It should be possible to use the
result of [34], and lift the class S construction for the 4d N = 2 so(12) SCFTs with spinor
matter given in [88] to 5d to get brane web descriptions also for the other cases.

2.2.6 Rank 6

su(7):

su(7)n−p
2

+ Λ3 + (6− n− p)F, (2.166)

su(7) 3+n
2

+ Λ3 + (5− n)F (2.167)

Case (2.166) can be generated by integrating out n fundamentals with a positive mass
and p fundamentals with a negative mass from the 6d lifting case (2.89). Case (2.167) can
be generated by integrating out n fundamentals with a positive mass from the 6d lifting
case (2.90).

so(13):

so(13) + S + (5− n)F, (2.168)

so(13) + 1
2S + (9− n)F. (2.169)

These cases can be generated by integrating out fundamental flavors from the 6d lifting
cases of so(13) with spinor matter. Case (2.168) is dual to case (2.167).
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so(12):

so(12) + 2S + (4− n)F, (2.170)

so(12) + 3
2S + (6− n)F, (2.171)

so(12) + S + (8− n)F, (2.172)

so(12) + 1
2S + (9− n)F, (2.173)

so(12) + 3
2S + C (2.174)

so(12) + 3
2S + 1

2C + (4− n)F, (2.175)

so(12) + S + C + (4− n)F, (2.176)

so(12) + S + 1
2C + (6− n)F, (2.177)

so(12) + 1
2S + 1

2C + (8− n)F. (2.178)

All cases here can be generated by integrating fundamental matter from the 6d lifting
cases. A brane construction for this class of theories was given in [32], which can be used
to build brane webs for cases (2.173) and (2.172). The results in [36] allows the extension
of this method also to the case of (2.178). It should be possible to use the result of [34],
and lift the class S construction for the 4d N = 2 so(12) SCFTs with spinor matter given
in [88] to 5d to get brane web descriptions also for cases (2.171), (2.170), (2.177), (2.175)
and (2.176).

e6:
e6 + nF ; 0 ≤ n ≤ 4. (2.179)

This case is one of the few cases of 5d gauge theories that have a 5d SCFT UV
completion, but can not be generated by integrating flavor out of 5d gauge theories that
lift to 6d SCFTs, with the exception of the n = 0 case which can be generated by integrating
out the adjoint hyper from the maximally supersymmetric case.

The n > 0 cases can be obtained from 5d KK theories in the same fashion as discussed
towards the end of subsubsection 2.2.4. The 5d gauge theory e6 + 4F admits an instantonic
su(2) flavor symmetry which can be gauged to produce the 5d KK theory obtained from
an untwisted compactification of the 6d SCFT with tensor branch described by 6d gauge
theory e6 + 4F. See [63] for more details.

2.2.7 Rank 7

so(14):
so(14) + S + (6− n)F. (2.180)

This case can be generated by integrating out flavors from the 6d lifting case.
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e7:
e7 + n

2 F ; 0 ≤ n ≤ 6. (2.181)

This case is one of the few cases of 5d gauge theories that have a 5d SCFT UV
completion, but can not be generated by integrating flavor out of 5d gauge theories that
lift to 6d SCFTs, with the exception of the n = 0 case which can be generated by integrating
out the adjoint hyper from the maximally supersymmetric case. We also note that as one
cannot integrate out an odd number of half-hyper multiplets, the cases with even and odd
n sit in distinct flow families.

The n = 6 and n = 5 cases can be obtained from 5d KK theories by a generalized
ungauging. To construct the n = 6 case, we start with the 5d KK theory produced by
untwisted comapctification of the 6d SCFT whose tensor branch is described by the 6d
gauge theory e7 + 3F. This 5d KK theory can be obtained by gauging an su(2) instantonic
flavor symmetry of 5d e7 +3F, the ungauging of which leading to the above n = 6 case. The
n = 5 case is obtained by applying a generalized ungauging on the 5d KK theory obtained
by untwisted comapctification of 6d SCFT with tensor branch 6d gauge theory e7 + 5

2F.
In this case, the generalized ungauging process cannot be interpreted as ungauging of an
instantonic symmetry. See [63] for more details.

2.2.8 Rank 8

e8:
e8 (2.182)

This case can be generated by integrating the adjoint hyper out of the maximally
supersymmetric case.

2.3 Inconsistent theories

In this section, we collect the 5d gauge theories allowed by [21], but disallowed by our
analysis. These theories are as follows:

su(3) 13
2

+ 3F& := sp(2)π + 3Λ2 (2.183)

su(3)7 + 2F (2.184)
su(4)3 + 8F (2.185)
su(4) 7

2
+ 7F (2.186)

su(4)1 + 4Λ2 (2.187)
su(4)3 + 4Λ2 (2.188)
sp(3)π + 2Λ2 (2.189)
su(5) 11+n

2
+ (5− n)F ; 0 ≤ n ≤ 4 (2.190)

su(5)3 + 3Λ2 + F (2.191)
su(6)0 + 3Λ2 (2.192)
su(6)2 + 3Λ2 (2.193)
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su(6)2 + 3
2Λ3 + 3F (2.194)

su(6) 5
2

+ 3
2Λ3 + 2F (2.195)

so(12) + 2S + 1
2C (2.196)

We have taken the help of two kinds of arguments to rule these theories out:

1. In the first argument, a 5d gauge theory satisfying the conditions of [21] is shown to
be dual to a 5d gauge theory which does not satisfy the conditions of [21]. Since the
latter theory is not supposed to admit an SCFT UV completion, the former theory
should not admit an SCFT UV completion either.

2. In the second argument, by deforming a 5d gauge theory we land onto another 5d
gauge theory which is known to admit no SCFT UV completion, either by the con-
ditions of [21] or by the first argument. Since deforming a theory with pure field-
theoretic UV completion should lead to a theory with purely field-theoretic UV com-
pletion, we are lead to the conclusion that the gauge theory before the deformation
should not admit an SCFT UV completion.

The detailed arguments for each of the above cases can be found in the appropriate sub-
sections of section 4.

2.4 Undetermined theories

Finally, we collect all the theories which satisfy the criteria of [21], but we are neither able
to confirm the existence of these theories nor rule them out. That is, we are neither able to
put the geometry corresponding to these gauge theories in a form manifesting the structure
of a 5d KK theory (which is discussed in section 3.4), nor are we able to apply either of
the two kinds of arguments discussed at the end of section 2.3.

These theories are as follows:

su(4)7 + Λ2 (2.197)
su(5)8 (2.198)
su(6)9 (2.199)
su(6)4 + Λ3 + Λ2 (2.200)
su(7)5 + Λ3 (2.201)

so(12) + 5
2S (2.202)

According to the criteria proposed in [21], all of the above cases except for the case
of (2.198) may either have a UV completion as a 6d SCFT or may have no UV completion
at all. The case (2.198), on the other hand, may either have UV completion as a 5d SCFT,
or as a 6d SCFT, or no UV completion at all. The case (2.198) descends from the marginal
case su(5) 11

2
+ 5F of [21]. We show later in this paper the following duality

su(5) 11+n
2

+ (5− n)F = sp(4) + (4− n)F + Λ4
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according to which the above marginal theory and its descendants are dual to sp(4) theories
containing Λ4, but such sp(4) theories are ruled out by the criteria of [21]. This duality is
not applicable to the n = 5 case, and thus this argument is insufficient to decide the fate
of (2.198).

2.5 Dualities

In this subsection, we collect the dualities between different 5d gauge theories.

2.5.1 KK theories

sp(m+ 1) + (2m+ 8)Fsu(m+ 2)0 + (2m+ 8)F = (2.203)

sp(m+ 1) + Λ2 + 8Fsu(m+ 2)m
2 +1 + Λ2 + 8F = (2.204)

su(2m)m + S2 = sp(2m− 1)0 + A (2.205)

su(2m+ 1)m+ 1
2

+ S2 = sp(2m)π + A (2.206)

sp(2) + 2Λ2 + 4Fsu(3)4 + 6F = = g2 + 6F (2.207)

g2 + Asu(3) 15
2

+ F = (2.208)

sp(3) + Λ3 + 5Fsu(4)4 + 6F = (2.209)

su(4) 3
2

+ 2Λ2 + 7F = sp(3) + 1
2Λ3 + 19

2 F (2.210)

sp(3)0 + 2Λ2su(4)6 + 2Λ2 = (2.211)

so(7) + 6S + Fsu(4)0 + 3Λ2 + 4F = (2.212)

so(7) + 5S + 2Fsu(4)1 + 3Λ2 + 4F = = so(7) + 7S (2.213)

su(4)2 + 3Λ2 + 4F = so(7) + 4S + 3F (2.214)

su(4)5 + 3Λ2 = sp(3) + 1
2Λ3 + Λ2 + 5

2F (2.215)

su(5)0 + 3Λ2 + 3F = so(9) + 3S + 3F (2.216)

so(9) + 4S + Fsu(5) 3
2

+ 3Λ2 + 2F = (2.217)

su(6)0 + Λ2 + 12F su(6)0 + 1
2Λ3 + 13F= (2.218)

sp(5) + Λ2 + 8Fsu(6)3 + 1
2Λ3 + 9F ==su(6)3 + Λ2 + 8F (2.219)

su(6) 3
2

+ 2Λ2 + 7F su(6) 3
2

+ 1
2Λ3 + Λ2 + 8F= (2.220)

so(11) + 2S + 3Fsu(6) 3
2

+ Λ3 + Λ2 + 3F = (2.221)

su(6)0 + 3
2Λ3 + 5F = so(11) + 3

2S + 5F (2.222)
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su(6)3 + 3
2Λ3 + F = so(11) + 5

2Ssu(6) 7
2

+ 1
2Λ3 + 2Λ2 = (2.223)

so(13) + S + 5Fsu(7) 3
2

+ Λ3 + 5F = (2.224)

so(12) + S + 1
2C + 6Fso(12) + 3

2S + 6F = (2.225)

2.5.2 SCFTs

su(m+2)n
2

+(2m+8−n)F = sp(m+1)+(2m+8−n)F; n≤ 2m+7 (2.226)

su(m+2)m+4 = sp(m+1)mπ (2.227)
su(m+2)m+n

2 +1+Λ2+(8−n)F = sp(m+1)+Λ2+(8−n)F; n≤ 7 (2.228)

su(m+2)m
2 +5+Λ2 = sp(m+1)mπ+Λ2 (2.229)

su(3)4+n
2

+(6−n)F = sp(2)+2Λ2+(4−n)F = g2+(6−n)F; n≤ 3 (2.230)

su(3)6+2F = sp(2)π+2Λ2 = g2+2F (2.231)
su(3)6+n

2
+(2−n)F = g2+(2−n)F (2.232)

su(4)4+n
2

+(6−n)F = sp(3)+Λ3+(5−n)F (2.233)

su(4) 3+n
2

+2Λ2+(7−n)F = sp(3)+ 1
2Λ3+ 19−2n

2 F; n≤ 7 (2.234)

su(4) 1
2
+3Λ2+3F = so(7)+5S+F = so(7)+6S (2.235)

su(4)n−1
2

+3Λ2+(3−n)F = so(7)+(6−n)S; n≤ 3 (2.236)

su(4)n+1
2

+3Λ2+(3−n)F = so(7)+(5−n)S+F; n≤ 2 (2.237)

su(4)1+n
2

+3Λ2+(4−n)F = so(7)+(5−n)S+2F; n≤ 2 (2.238)

su(4) 5
2
+3Λ2+3F = so(7)+3S+3F (2.239)

su(5)n
2

+3Λ2+(3−n)F = so(9)+3S+(3−n)F (2.240)

su(5)2+3Λ2+F = so(9)+4S (2.241)
su(5) 7

2
+3Λ2 = f4+3F (2.242)

su(6)n
2

+Λ2+(12−n)F = su(6)n
2

+ 1
2Λ3+(13−n)F; n≤ 12 (2.243)

su(6)3+n
2

+Λ2+(8−n)F = su(6)3+n
2

+ 1
2Λ3+(9−n)F = sp(5)+Λ2+(8−n)F; n≤ 7 (2.244)

su(6)7+Λ2 = su(6)7+ 1
2Λ3+F = sp(5)0+Λ2 (2.245)

su(6) 3+n
2

+2Λ2+(7−n)F = su(6) 3+n
2

+ 1
2Λ3+Λ2+(8−n)F; n≤ 7 (2.246)

su(6) 3+n
2

+Λ3+Λ2+(3−n)F = so(11)+2S+(3−n)F (2.247)

su(6)n
2

+ 3
2Λ3+(5−n)F = so(11)+ 3

2S+(5−n)F (2.248)

su(7) 3+n
2

+Λ3+(5−n)F = so(13)+S+(5−n)F (2.249)
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2.6 Relationship of our work to the classification of 5d SCFTs

As we have seen, in this work, we are able to divide the theories appearing in [21] into the
following four sets:

1. The theories appearing in section 2.1 which UV complete into 5d KK theories.

2. The theories appearing in section 2.2 which UV complete into 5d SCFTs. Combining
the results of this paper with the results of [63], we conclude that all these 5d SCFTs
descend from 5d KK theories. However, the descent is not as simple as integrating out
some BPS particles. In some cases that were discussed in [63], the descent requires
integrating out BPS strings as well.

3. The theories appearing in section 2.3 which do not UV complete into 5d KK theories
or 5d SCFTs.

4. The theories appearing in section 2.4 for which it is not clear whether or not they
admit an SCFT UV completion.

Thus, our results provide evidence for the conjectures made in [63] regarding the classifi-
cation of 5d SCFTs. We have found that all the theories appearing in [21] which can be
shown to admit UV completions into 5d SCFTs indeed descend from 5d KK theories. We
have also identified a set of theories in section 2.4 for which it is not clear whether or not
they admit an SCFT UV completion. Further analysis of these theories should provide
another opportunity to test and challenge the conjectures of [63].

3 Geometric description of 5d theories

Throughout this paper, we will use a graphical notation to represent a local neighborhood
of a collection of Hirzebruch surfaces intersecting each other inside a Calabi-Yau threefold.
This notation and relevant background on Hirzebruch surfaces can be found in section
2 of [61], and section 5.2.1 and appendix A of [60]. A special role will be played by
the automorphism S exchanging e and f curves inside the Hirzebruch surface F0, which
is described in section 2.6 of [61]. Also relevant are isomorphisms In and I−1

n between
Hirzebruch sufaces of different degrees which are described in section 2.1 of [61].

3.1 General features

Each Calabi-Yau threefold X appearing in this paper is described as a local neighborhood
of a collection of intersecting compact Kahler surfaces Si. An intersection between the
surfaces Si and Sj is described as a “gluing” between the two surfaces, with the intersection
locus being described as the identification of two curves

C
(α)
ij ∼ C

(α)
ji (3.1)

where C(α)
ij is a curve in Si and C(α)

ji is a curve in Sj . α parametrizes different intersections
between Si and Sj with the corresponding gluing curves being C(α)

ij and C(α)
ji . The curves

Cij :=
∑
α

C
(α)
ij (3.2)
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in Si and
Cji :=

∑
α

C
(α)
ji (3.3)

in Sj are referred to as total gluing curves for the intersections between Si and Sj .
Consistency of (3.1) requires

C
(α)
ij · Sk = C

(α)
ji · Sk (3.4)

for all Sk. We can compute the intersection number of a compact curve C in X with a
surface Si as follows. If C lives in a surface Sj 6= Si, then

C · Si = C · Cji (3.5)

where the right hand side is computed inside Sj . If C lives in Si, then

C · Si = K ′i · C (3.6)

where
K ′i = Ki +

∑
α

(
C

(α)
i +D

(α)
i

)
(3.7)

where
C

(α)
i ∼ D(α)

i (3.8)

describe different self-gluings of Si, and Ki is the canonical divisor of Si. The genus g of a
curve C in Si is computed by using

2g − 2 = (Ki + C) · C + 2
∑
α

n(α) (3.9)

where
n(α) := min(n(α)

1 , n
(α)
2 ) (3.10)

where
n

(α)
1 := C · C(α)

i (3.11)

and
n

(α)
2 := C ·D(α)

i (3.12)

are the intersections of C with the curves involved in the self-gluings of Si.
Moreover, for the gluing (3.1) to be consistent with Calabi-Yau structure of X, we

must have (
C

(α)
ij

)2
+
(
C

(α)
ji

)2
= 2g − 2 (3.13)

where g is the genus of C(α)
ij which must be equal to the genus of C(α)

ji for consistency.

Let us emphasize that the self-intersection
(
C

(α)
ij

)2
of C(α)

ij is computed inside surface Si
since the curve C(α)

ij lives in Si by definition. The condition (3.13) is referred to as the
Calabi-Yau condition.
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Another consistency condition on the gluing curves C(α)
ij comes from equating the

various ways of computing the triple intersection number Si · Sj · Sk for three distinct
surfaces. This triple intersection number can be computed in three different ways

Si · Sj · Sk = Cij · Cik = Cji · Cjk = Cki · Ckj (3.14)

There are two different ways of computing intersection numbers of the form S2
i · Sj for

Si 6= Sj as well
S2
i · Sj = C2

ji = K ′i · Cij (3.15)

which provide another consistency condition on the gluings.
The (normalizable part of the) Kahler class is defined as

J :=
∑
i

φiSi (3.16)

where φi are the normalizable Kahler parameters which are identified as the Coulomb
branch moduli of the 5d theory. We are ignoring the contribution from non-normalizable
Kahler parameters which are identified as the (supersymmetry preserving) mass parameters
of the 5d theory. The contribution of the Coulomb branch moduli to the mass of a BPS
particle coming from an M2 brane wrapping a compact curve C in X can be computed by

vol(C) := −J · C (3.17)

The contribution of the Coulomb branch moduli to the tension of a BPS string coming
from an M5 brane wrapping Si can be computed by

vol(Si) := 1
2J

2 · Si (3.18)

The contribution of the Coulomb branch moduli to the prepotential of the 5d theory can
be computed by

F = 1
6J

3 (3.19)

3.2 Structure of 5d gauge theory

For a geometry X to describe a 5d N = 1 gauge theory, a necessary condition is that all
of the surfaces have to be presented as Hirzebruch surfaces

Si = Fbini (3.20)

where ni is the degree of the Hirzebruch surface and bi are the number of blowups on the
Hirzebruch surface. Once such a description is chosen,10 we can associate an intersection
matrix to the geometry, which is defined as

Iij := −fi · Sj (3.21)

where fi is the P1 fiber of the Hirzebruch surface Si.
10We note that it might not always be possible to choose a description in terms of Hirzebruch surfaces.

For example, one of the Si might be equal to P2 which is not isomorphic to any Hirzebruch surface.
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One of the requirements for the geometry to describe a 5d gauge theory with gauge
algebra g is that the intersection matrix Iij associated to the geometry equals the Cartan
matrix of g [61]. Another requirement is that if a gluing curve C(α)

ij can be written as

C
(α)
ij = αifi +

bi∑
a=1

βi,axi,a (3.22)

with xi,a being the blowups on Si and αi, βi,a being integers,11 then the gluing curve C(α)
ji

must take a similar form

C
(α)
ji = αjfj +

bj∑
a=1

βj,axj,a (3.23)

This is because an M2 brane wrapping a curve of the form shown on the right hand side
of (3.22) describes a perturbative BPS particle in the 5d gauge theory, while M2 brane
wrapping a curve of the more general form

C
(α)
ji = γjej + αjfj +

bj∑
a=1

βj,axj,a (3.24)

with γj > 0 describes an instantonic BPS particle in the 5d gauge theory. So, the identifi-
cation

C
(α)
ij ∼ C

(α)
ji (3.25)

is compatible with the structure of a 5d gauge theory only if γj is zero and C(α)
ji takes the

form shown on right hand side of (3.23).
The matter content for the 5d gauge theory is encoded in the blowups xi,a and their

gluings. Our task now is to describe how one can read the matter content associated to
a geometry X giving rise to a 5d gauge theory with gauge algebra g. First of all, notice
that the intersection matrix of a geometry remains unchanged if we flop a −1 curve of the
form12 xi,a or fi − xi,a. That is, the geometry X ′ obtained after performing such a flop
on X describes a 5d gauge theory with the same gauge algebra g. In fact, X ′ describes
the same 5d gauge theory, and the flop transition corresponds to a phase transition on the
mass-deformed Coulomb branch13 of the 5d gauge theory.

Thus, by performing such flops we can simplify X into a geometry from which it is
straightforward to read the associated matter content. So, we associate a simple geome-
try Xg,R to every 5d gauge theory with a gauge algebra g and matter transforming in a
representation R of g. If performing perturbative flops on X converts X to Xg,R, then X
describes a 5d gauge theory with gauge algebra g and matter transforming in representation
R of g.

As long as R contains no half-hypermultiplets, the geometry Xg,R can be described
easily in terms of the geometry Xg associated to the pure 5d gauge theory with gauge

11αi must be non-negative integer for the curve to be holomorphic.
12We refer to such flops as perturbative flops in what follows.
13In this paper, “mass-deformed Coulomb branch” refers to the space obtained by adjoining the space

of mass parameters with Coulomb branch moduli space for each value of mass parameters. All phase
transitions occur on this combined space.
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algebra g described in detail in section 2.4 of [61]. Notice that, unlike the gauge theories
carrying non-trivial amount of matter, there is a unique geometry describing a pure 5d
gauge theory. This is because there is a single perturbative phase for a pure 5d gauge
theory. Consequently, the Hirzebruch surfaces Si inside Xg carry no blowups.

Now, let us describe the construction of Xg,R when R contains no half-hypermultiplets.
Let

R =
m∑
µ=1

Rµ (3.26)

where each14 Rµ is an irreducible representation of g. We build Xg,R inductively starting
from Xg at step zero. At each step µ for 1 ≤ µ ≤ m, we construct a geometry Xµ

g out of
the geometry Xµ−1

g obtained at step (µ− 1). To do this, let ni be the Dynkin coefficients
of the highest weight of Rµ. For each i ∈ [1, r] where r is the rank of g, perform ni blowups
on the surface Si. That is, we have performed a total of nµ :=

∑r
i=1 ni blowups. Now,

glue each pair of blowups in this set of nµ blowups. Let Cij,µ and Cji,µ be the total gluing
curves describing the gluing between Si and Sj in Xµ

g . Then, we have

Cij,µ = Cij,(µ−1) + nj

ni∑
a=1

xi,a (3.27)

where xi,a are the ni blowups performed on Si at step µ. Similarly, let K ′i,µ be the K ′ for
Si in Xµ

g . Then, we have

K ′i,µ = K ′i,(µ−1) + ni

ni∑
a=1

xi,a (3.28)

Finally
Xg,R := Xm

g (3.29)

That is, Xg,R is defined to be the geometry obtained after completing step m.
The story applies to a general semi-simple g so far. However, to discuss the inclusion of

CS levels and theta angles, it is easier to restrict to the case of a simple g. This is justified
since we only need to consider the case of simple g in this paper. The more general semi-
simple case was discussed in [61]. For g = su(n), let km be the CS level associated to Xg,R

and k0 be the CS level associated to Xg. Then

km = k0 + 1
2

m∑
µ=1

Aµ (3.30)

where Aµ is the cubic Dynkin index (also known as the anomaly coefficient) associated to
the representation Rµ of g = su(n). For g = sp(n), the theta angle is relevant if none of
the irreps Rµ are pseudo-real with an odd quadratic Dynkin index, in which case the theta
angle associated to Xg,R equals the theta angle associated to Xg. If some Rµ contributes
to the 4dWitten’s anomaly, the choice of theta angle for Xg is not relevant in the following
sense. Let X0

g,R be obtained by applying the above procedure to Xg with theta angle zero

14We allow the possibility of Rµ = Rµ′ for µ 6= µ′.
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and let Xπ
g,R be obtained by applying the above procedure to Xg with theta angle π. Then,

X0
g,R is related by perturbative flops to Xπ

g,R.
If R contains half-hypermultiplets, then we write it as

R = 1
2R̃+

m∑
µ=1

Rµ (3.31)

where R̃ denotes the representation of all half-hypermultiplets and Rµ denote different
irreps for full hypermultiplets. The same inductive construction for Xg,R as above applies
for this case as well, but the geometry at step zero is taken instead to be Xg, 1

2 R̃
which is a

geometry describing the 5d gauge theory with gauge algebra g and half-hypers transforming
in representation R̃ of g. In this paper, we do not tackle the problem of describing Xg, 1

2 R̃

for arbitrary R̃ and g, but only for the cases that will be relevant for 5d gauge theories
describing 5d SCFTs and 5d KK theories. These cases are15

sp(3) + 1
2Λ3 + 1

2F, (3.32)

sp(4) + 1
2Λ3, (3.33)

su(6)k + 1
2Λ3, (3.34)

so(11) + 1
2S, (3.35)

so(12) + 1
2S, (3.36)

so(12) + 1
2S + 1

2C, (3.37)

so(13) + 1
2S, (3.38)

e7 + 1
2F. (3.39)

Below, we will assign a Xg, 1
2 R̃

to each of these cases. It should be noted that, unlike the case
of pure gauge theories, these theories admit multiple perturbative phases. Correspondingly,
there is no unique or canonical choice for Xg, 1

2 R̃
. We only present one of the possible choices

for each of the above cases. The other choices can be obtained by performing perturbative
flops on our presented choices. For more details on understanding why the geometries
displayed below describe the matter content we claim they describe, we refer the reader to
the general discussion on matter content presented in [61]. We assign:

sp(3) + 1
2Λ3 + 1

2F :

111 25 31+1
0

e h+2f e 2e+f -x

2

f, f x-y, f -x-y (3.40)

15We will later see (geometrically) that the sp(3) and sp(4) cases do not admit a physically relevant
theta angle.
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sp(4) + 1
2Λ3 :

212 34 42+2
0114

2e+f -
∑

xih+3f ee

f, f, f f -x1-y1, x1-y1, x2-y2

3

e h

3

f, f, f

f -x1-x2, x1-x2, y1-y2

(3.41)

su(6)k + 1
2Λ3, k = 1

2 − l, 1 ≤ l ≤ 7 :

3l 4l−414+l 21
2+l

e h+fhe e h

51+1
l−6

e

h

f -x f

x-y

f

f -x-y
y

(3.42)

su(6)k + 1
2Λ3, k = −13

2 − 2m, m ≥ 1 :

37+2m 43+2m111+2m 21
9+2m

e h+fhe e h

51+1
1

e

h+mf

f -x f

x-y

f

f -x-y
y

(3.43)

su(6)k + 1
2Λ3, k = −11

2 − 2m, m ≥ 1 :

36+2m 42+2m110+2m 21
8+2m

e h+fhe e h

51+1
0

e

e+mf

f -x f

x-y

f

f -x-y
y

(3.44)

so(11) + 1
2S :

32 4016 21
4

e

2e+f

he e h

51+1
6

e

e

f -x f

x-y

f

f -x-y
y

(3.45)
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so(12) + 1
2S :

32 2452 41
0

e

h+f

ee e h

11+1
8

e

e

f -x f

x-y

f

f -x-y
y

61

e-x

e

(3.46)

so(12) + 1
2S + 1

2C :

32 2451 42
0

e ee-x2e e h

12+2
10

h+2f

e

2
2

f -xi f

f -xi-yi

x1-y1

yi

f

61

e-x1

e

x2-y2f

(3.47)

so(13) + 1
2S :

33 2551 41
e e2he e h

12+2+2+2
11

h+2f

e

2 2

f f

f -xi-yi
x1-y1,

yi-zi

2

f, f

66
e h

z2-w1

4

x2-x1, y1-y2, z1-z2, w1-w2

f, f, f, f

(3.48)

e7 + 1
2F :

63 51 41

18

e 32
2 24h e-x1 he e

h

eh

73

h+f

e
e

f

x1-x2

f

f -x1-x2

(3.49)
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Let us now use the presented geometries (3.40) and (3.41) to argue that the theta angle
is irrelevant for (3.32) and (3.33). If the theta was physically relevant for these cases, the
geometries corresponding to the other theta angle would be

111 25 31+1
1

e h+2f e 2h-x

2

f, f x-y, f -x-y (3.50)

and

212 34 42+2
1114

2h-
∑

xih+3f ee

f, f, f f -x1-y1, x1-y1, x2-y2

3

e h

3

f, f, f

f -x1-x2, x1-x2, y1-y2

(3.51)
respectively. However, these geometries are isomorphic to (3.40) and (3.41) respectively.
Applying I0 on S3 of (3.40) using the blowup x living in S3 converts (3.40) into (3.50).
Similarly, applying I0 on S4 of (3.41) using the blowup x1 living in S4 converts (3.41)
into (3.51).

3.3 Structure of 6d gauge theory compactified on a circle

For a geometry X to describe a twisted circle compactification of a 6d N = (1, 0) gauge
theory, all the Si must be Hirzebruch surfaces with their intersection matrix Iij being
a direct sum of Cartan matrices associated to simple (twisted and untwisted) affine Lie
algebras. As for a 5d gauge theory, perturbative BPS particles must only be identified
with other perturbative BPS particles.

Let us parametrize simple affine algebras as g(qα)
α , where gα are the 6d gauge algebras

and qα capture the order of the outer-automorphism used for twisting gα along the cir-
cle [60]. Let us correspondingly parametrize the surfaces as Sa,α with the index a (for a
fixed α) parametrizing different surfaces whose intersection matrix

− fa,α · Sb,α (3.52)

gives rise to the Cartan matrix Iab,α of g(qα)
α . We let S0,α be the surface corresponding

to the affine co-root of g(qα)
α . We let da,α and d∨a,α be respectively the Coxeter and dual

Coxter labels16 associated to g
(qα)
α . These are minimum positive integers satisfying∑

a

da,αIab,α = 0 (3.53)

and ∑
b

Iab,αd∨b,α = 0 (3.54)

Also let ea,α and ha,α be the e and h curves of the Hirzebruch surface Sa,α.
16These can be found in tables 14 and 15 of [60].
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The gluing curves between Sa,α and Sb,β for α 6= β cannot involve ea,α or eb,β since
otherwise the intersection matrix would be modified. Thus

fa,α · Sb,β = 0 (3.55)

for all a, b and α 6= β. Moreover, the curve

fα :=
∑
a

da,αfa,α (3.56)

satisfies
fα · Sa,α = 0 (3.57)

for all a. Combining this result with (3.55) we find that

fα · Sb,β = 0 (3.58)

for all b, β. Thus the volume of fα defines a mass parameter of the 5d theory associated
to X. Since fα does not involve any blowups, and the matter content is encoded in the
blowups, this mass parameter does not arise from holonomies of flavor symmetry groups
around the circle. The only other possible mass parameter is given by the radius of the
compactification circle, and thus fα can be identified as the KK mode. Since there is only
a single KK mode, the following curves must be equal as classes in X

[nα,βfα] = [nβ,αfβ ] (3.59)

for some positive integers nα,β and nβ,α for all α, β. This means that if there is any gluing
curve between a surface Sa,α and a surface Sb,β for α 6= β then the other gluing curves
between the family of surfaces ∪aSa,α and the family of surfaces of ∪bSb,β must be such
that a particular linear combination of the gluing curves leads to the following gluing

nα,βfα ∼ nβ,αfβ (3.60)

This requirement was used in [51, 60] as consistency conditions on the gluing rules between
∪aSa,α and ∪bSb,β .

The tensor branch of the 6d N = (1, 0) theory descends to the Coulomb branch of the
circle compactified theory with all mass parameters turned off, which in particular implies
that the radius of compactification is set to infinity. Along this Coulomb branch, the masses
and tensions of all BPS particles and strings must be non-negative. This Coulomb branch
is captured by the Kahler cone K(X) of X (with all non-normalizable Kahler parameters
turned off) along which all the holomorphic curves and surfaces in X have non-negative
volume. According to (3.58), fα must have zero volume along any direction in K(X). The
non-negativity of volumes then implies that each fa,α must have zero volume along any
direction K(X). This fixes K(X) to be a sub-cone of the cone T (X) formed by

Sα :=
∑
a

d∨a,αSa,α (3.61)

for different values of α.
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Now let us assume that there is a non-trivial K(X) inside T (X). Physically, we are
assuming that the 6d gauge theory describes either a 6d SCFT or a little string theory
(LST). Let us focus our attention on a fixed α. We now decompactify all Sb,β for β 6= α by
decompactifying the curves e0,β which forces the decompactification of other eb,β . During
this process, it is possible to keep all the fibers and blowups compact [63]. The compact
surfaces in the resulting Calabi-Yau threefold Xα are only Sa,α, while the compact curves
in Xα comprise of the compact curves living inside ∪aSa,α along with the curves comprising
solely of blowups and fibers in Sb,β (which are now non-compact surfaces inside Xα) for
β 6= α. Physically, this decmpactification process corresponds to ungauging all 6d gauge
algebras gβ for β 6= α since the volumes of e0,β capture the masses of BPS particles arising
by wrapping 6d instanton BPS strings on the compactification circle, and these masses are
proportional to inverse gauge couplings in the 6d gauge theory. If our starting point was a
6d SCFT or a LST, we must land on a 6d SCFT at the end of this process. Thus Xα must
have a non-trivial Kahler cone K(Xα) inside T (Xα). The latter cone is spanned entirely
by Sα, and hence K(Xα) is spanned by Sα. Since

vol(x) = −vol (fb,β − x) (3.62)

inside K(Xα) for a blowup x living in Sb,β (which is compact for β = α and non-compact
for β 6= α), we learn that

x · Sα = 0 (3.63)

for all blowups x in Xα. But since none of the blowups were decompactified, we learn
that (3.63) applies to all blowups x in X and to all α. Thus, all the perturbative BPS
particles have zero mass inside T (X). This justifies the “shifted prepotential” proposal
of [60].

Now, let us define a matrix
Mαβ = −Sα · e0,β (3.64)

which captures vol(e0,β) inside T (X). Since the gluing curves between S0,α and Sb,β for
β 6= α must correspond to perturbative BPS particles, any off-diagonal entry Mαβ must be
non-positive. If ∪aSa,α does not intersect ∪bSb,β , thenMαβ = Mβα = 0. If ∪aSa,α intersects
∪bSb,β , then according to (3.60), f0,α must participate in some gluing curve between S0,α
and ∪bSb,β , thus implying that Mβα < 0. If that’s the case, exchanging the role of β and
α, we must also have Mαβ < 0. We conclude that the matrix [Mαβ ] is a generalized Cartan
matrix.

According to an important property of generalized Cartan matrices, if [Mαβ ] is positive
definite, then there is a non-trivial sub-cone inside T (X) along which all e0,α have positive
volume. This sub-cone can be identified with K(X) as we now show. Any compact curve
C inside X lives in some surface Sa,α and can be written as

C = mea,α + nfa,α +
∑
i

pixi (3.65)

where xi are the blowups in Sa,α and m,n, pi are integers with m,n ≥ 0. Thus

vol(C) = m vol(ea,α) (3.66)
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inside T (X). Using the intersections between Sa,α for different a, one can further rewrite
the above as

vol(C) = mba,αvol(e0,α) (3.67)

for some strictly positive integer ba,α. The quantity on the right hand side of (3.67) is
manifestly non-negative inside the sub-cone under discussion. Since, inside this sub-cone,
the only curve in each surface Sa,α that has non-zero volume is ea,α while the fiber fa,α
and blowups have zero volume, each surface Sa,α has zero volume. Thus all the compact
curves and surfaces have non-negative volume in this sub-cone and it can be identified with
K(X). In this case, X corresponds to a twisted circle compactification of a 6d N = (1, 0)
gauge theory which describes the tensor branch of a 6d SCFT.

If [Mαβ ] is positive semi-definite, then there is a unique ray inside T (X) along which
all e0,α have non-negative volume. In fact, the volume of each e0,α along this ray is exactly
zero. Hence, every compact curve and surface inside X has zero volume along this ray.
In this case, X corresponds to a twisted circle compactification of a 6d N = (1, 0) gauge
theory which describes the tensor branch of a 6d LST. The ray in the Coulomb branch
descends from the non-dynamical tensor multiplet associated to the LST. The fact that
the BPS particles e0,α originating from 6d strings wrapped on the circle have zero mass
means that the strings themselves have zero tension. This is due to the fact that we are
working with all mass parameters turned off, so we have the little string mass scale Ms

turned off. The size of the tensor branch of a 6d LST where the strings have positive
tension is dictated by the Ms, and when Ms = 0, there is no such tensor branch, which
explains our finding.

If [Mαβ ] is indefinite, then there is no non-trivial sub-cone inside T (X) where all e0,α
have non-negative volume. In this case, X corresponds to a twisted circle compactification
of a 6d N = (1, 0) gauge theory which describes the tensor branch of neither a 6d SCFT
nor a 6d LST.

3.4 Structure of a 5d KK theory

We define a 5d KK theory to be a twisted circle (of finite, non-zero radius) compactification
of a 6d SCFT. 6d SCFTs are built by gluing 6d N = (1, 0) gauge theories with certain
non-gauge-theoretic pieces. In this subsection, we let X be the Calabi-Yau threefold cor-
responding to a 5d KK theory. From the previous subsection, we already understand the
parts of X descending from the gauge-theoretic sector of the corresponding 6d SCFT. So
we only need to understand the geometries corresponding to non-gauge-theoretic sectors.

A non-gauge-theoretic sector of a 6d SCFT can be thought of as a sector with trivial
gauge algebra. Thus, the corresponding piece α in the geometry X contains a single surface
S0,α which can be thought of as the affine node for trivial gauge algebra. There are three
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possibilities for a non-gauge-theoretic sector, corresponding to following S0,α

F8
1

(3.68)

F1+1
0

x

y

(3.69)

F1+1
1

x

y

(3.70)

For the first case, we define e0,α to be one of the eight blowups instead of the e curve. For
the second and third cases, we define e0,α to be the corresponding e curve. If one of the
blowups x in (3.68) is not generic and creates the curve e − x in the Mori cone, we can
apply I1 using this blowup to write (3.68) in the following isomorphic form

F8
2

(3.71)

We will use this isomorphic geometry for this non-gauge-theoretic sector often in this paper.
In this isomorphic form, we let e0,α to still be one of the eight blowups.

The surface Sα is defined to be equal to S0,α for non-gauge-theoretic sectors. The
curve fα for each of the three cases are defined to be 2h + f −

∑
xi, e + f − x − y and

2h+ f − 2x− 2y respectively. In the isomorphism frame (3.71), the fα for the first case is
written as 2h−

∑
xi as the reader can check by applying the isomorphism between (3.68)

and (3.71). The reader can also see that

fα · S0,α = 0 (3.72)

is satisfied in each of the three cases. The curve fα for non-gauge-theoretic sectors is
required to satisfy same conditions as fα for gauge-theoretic sectors. That is, (3.58) is now
viewed as a constraint on the possible ways of gluing non-gauge-theoretic sectors with the
rest of the theory. Similarly, these gluings must satisfy (3.60) as well.

For a geometry X describing a general 5d KK theory including both gauge-theoretic
and non-gauge-theoretic sectors, we define a matrix [Mαβ ] using (3.64) and the above
definitions for Sα and e0,β . This is again a generalized Cartan matrix, which must be
positive definite for X to describe a 5d KK theory.

We now proceed to show how one can represent 5d KK theories using the data of Mαβ

and gα for all α, β. We convert this data into a graphical form introduced in [60] to char-
acterize 5d KK theories. We will use this graphical notation throughout this paper to rep-
resent 5d KK theories. Let us first convert the matrix [Mαβ ] into another matrix [Ωαβ ] via

Ωαβ = 1
uβ
Mαβ (3.73)

Here, for trivial gβ , we let uβ = 1. For non-trivial gβ , we first unfold the Dynkin diagram for
g

(qβ)
β until we reach the Dynkin diagram for an untwisted affine Lie algebra hβ . The inverse
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process hβ → g
(qβ)
β involves iterated foldings by identifying nodes exchanged under permu-

tation operations. Then uβ is defined to be the product of the orders of the permutation
operations corresponding to these foldings. Thus, if qβ = 1, then uβ = 1. For the algebras

su(2n)(2), so(2n)(2), e
(2)
6 (3.74)

we have uβ = 2. For the algebra
so(8)(3) (3.75)

we have uβ = 3. For the algebras
su(2n+ 1)(2) (3.76)

we have uβ = 4. Notice that if [Mαβ ] is positive definite, then so is [Ωαβ ], and vice-versa.
Now we convert the data of [Ωαβ ] into a graph. If α is gauge-theoretic, then we assign

a node to it according to following rules:

• If Ωαα > 1, then we assign the node

Ωαα

g
(qα)
α (3.77)

to it.

• If Ωαα = 1 and g
(qα)
α 6= su(n)(1), then we assign the node

1
g

(qα)
α (3.78)

to it.

• If Ωαα = 1 and g
(qα)
α = su(n)(1), we consider intersections of all the compact curves

composed out of fibers and blowups with surfaces Sa,α for a 6= 0. These intersections
imply that perturbative BPS particles associated to these curves are associated to a
direct sum ⊕µRµ of irreps Rµ of su(n). If none of the Rµ equals 2-index symmetric
irrep of su(n) and n ≥ 3, then we associate the node

1
su(n)(1) (3.79)

to it. If none of the Rµ equals 2-index symmetric irrep of su(n) and n = 2, then we
associate the node

1
sp(1)(1) (3.80)

to it. If one of Rµ equals 2-index symmetric irrep of su(n), then we associate the
node

2
su(n)(1)

(3.81)

to it.
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If α is non-gauge-theoretic, then we assign a node to it according to following rules:

• If S0,α is isomorphic to (3.68), then we assign the node

1
sp(0)(1) (3.82)

to it.

• If S0,α is isomorphic to (3.69), then we assign the node

2
su(1)(1) (3.83)

to it.

• If S0,α is isomorphic to (3.70), then we assign the node

2
su(1)(1)

(3.84)

to it.

Now we move onto the description of edges:

• If Ωαβ = Ωβα = −1 for α 6= β, then the nodes corresponding to α and β are joined
by an edge as shown below

Ωαα

g
(qα)
α

Ωββ

g
(qβ)
β (3.85)

Here the node corresponding to α or β could carry a loop as in (3.80) and (3.83).
However, we omit the loop throughout our discussion of edges, as it does not influence
the discussion.

• If Ωαβ = Ωβα = −k < −1 for α 6= β, then the nodes corresponding to α and β are
joined by an edge of the following form

Ωαα

g
(qα)
α

Ωββ

g
(qβ)
β

k

(3.86)

• Now let us consider the case Ωαβ 6= Ωβα for β 6= α. From the analysis of the structure
of 6d SCFTs one can deduce that for this to happen [60], either Ωαβ = −1 or Ωβα =
−1. Let us assume without loss of generality that Ωβα = −1 and Ωαβ = −k < −1.
We denote this situation by placing the following edge

Ωαα

g
(qα)
α

Ωββ

g
(qβ)
β

k

(3.87)
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Sometimes different KK theories have the same associated graph. In this case, the vertices
and edges are decorated to distinguish between different cases. See more details about such
decorations in [60]. Finally, unfolding the graph associated to a 5d KK theory and removing
the subscripts qα give rise to the graph associated to the 6d SCFT (see [60]) whose circle
compactification gives rise to the 5d KK theory. The qα capture the outer-automorphism
twist performed on gα while going around the circle, and folding captures the permutation
of tensor multiplets occurring while going around the circle.

4 Detailed analysis

4.1 General rank

Consider the following geometry describing untwisted compactification of 6d SCFT carrying
sp(m) on −1 curve

12m+8
0 22m+2 · · · (m− 1)8 (m + 1)0m6

eh 2e+fehh2e+f -
∑

xi e

(4.1)
Applying S to S1, we obtain the geometry

12m+8
0 22m+2 · · · (m− 1)8 (m + 1)0m6

eh 2e+fehhe+2f -
∑

xi e

(4.2)
which can be rewritten as

12m+8
2m+4 22m+2 · · · (m− 1)8 (m + 1)0m6

eh 2e+fehhe e

(4.3)
which clearly describes the 5d gauge theory sp(m + 1) + (2m + 8)F. Now, applying S on
Sm+1, we obtain the geometry

12m+8
2m+4 22m+2 · · · (m− 1)8 (m + 1)0m6

eh e+2fehhe e

(4.4)
which describes the 5d gauge theory su(m+ 2)0 + (2m+ 8)F. Thus, we obtain

sp(m+ 1) + (2m+ 8)F = 1
sp(m)(1)

su(m+ 2)0 + (2m+ 8)F = (4.5)

for m ≥ 1 and

sp(1) + 8F = 1
sp(0)(1)

(4.6)

for m = 0. Removing the blowups sitting on S1 of (4.3) and (4.4), the two geometries
remain isomorphic, thus implying that the duality between su(m+ 2) and sp(m+ 1) gauge
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theories holds true as we integrate out fundamental matter from both sides of the duality.
When all blowups are removed, we obtain that the geometry

12m+4 22m+2 · · · (m− 1)8 (m + 1)0m6
eh e+2fehhe e

(4.7)
describing pure su(m+ 2)m+4 gauge theory is isomorphic to the geometry

12m+4 22m+2 · · · (m− 1)8 (m + 1)0m6
eh 2e+fehhe e

(4.8)
describing pure sp(m+ 1) gauge theory with theta angle θ = mπ (mod 2π) (See appendix
B.3 of [60] for an explanation).

Consider the following geometry describing the untwisted compactification of 6d SCFT
carrying su(2n) on −1 curve

11+1
0

2n(2n+6)+1
0 (2n− 1)1

2n+4

21
3 31

4

· · ·

· · ·

(n + 2)1
n+7

n1
n+1

(n + 1)n+3

e-y

e+f -x

e-y

e+f -
∑

xi-y h-x e h-x

e

h+f

e

h

eh-xh-x
e

e

x

x

f -x

f -x
x

xy

f -x

f -x

f -x

(4.9)
Applying S on S1 and S2n, we obtain the geometry

11+1
0

2n(2n+6)+1
0 (2n− 1)1

2n+4

21
3 31

4

· · ·

· · ·

(n + 2)1
n+7

n1
n+1

(n + 1)n+3

f -y

e+f -x

f -y

e+f -
∑

xi-y h-x e h-x

e

h+f

e

h

eh-xh-x
e

e

x

x

f -x

f -x
x

xy

f -x

f -x

f -x

(4.10)
which describes the 5d gauge theory su(2n + 1)0 + Λ2 + (2n + 7)F. Similarly, applying S
on S1 and S2n+1 in

11+1
0

(2n + 1)(2n+7)+1
0 2n1

2n+5

21
3 31

4

· · ·

· · ·

(n + 3)1
n+8

n1
n+1

(n + 2)1
n+5

e-y

e+f -x

e-y

e+f -
∑

xi-y h-x e h-x e

h+f

e-x

h-xeh-xh-x
e

e

x

x

f -x

f -x
x

x
x

f -x

f -x

f -x

(n + 1)n+2

h+f -x

x

x

e

(4.11)
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we transition from untwisted compactification of 6d SCFT carrying su(2n+1) on −1 curve
to 5d gauge theory su(2n+ 2)0 + Λ2 + (2n+ 8)F. Thus, we obtain

su(m+ 1)0 + Λ2 + (m+ 7)F = 1
su(m)(1)

(4.12)

The KK theory

2
su(1)(1)

2
su(1)(1)

· · ·1
sp(0)(1)

m

(4.13)

is described by the geometry

m1+1
0 (m− 1)1+1

0 · · · 21+1
0 11+1

0
f -x, x

f

f -y, yf -y, y

2h+f -
∑

xi

f -x, x

(m + 1)8
1

f -x, x
2

f -y, y

e-x e-y e-x e-y

2

e-x e-y e-x e-y

(4.14)
which can be rewritten as

m1+1
0 (m− 1)1+1

0 · · · 21+1
0 11+1

0
e-y, f -x

e+f -x-y

e-x, f -ye-x, f -y

2h+f -
∑

xi

e-y, f -x

(m + 1)8
1

e-y, f -x
2

e-x, f -y

x y x y

2

x y x y

(4.15)
which describes the 5d gauge theory sp(m+ 1) + Λ2 + 8F. Another flop frame to describe
the same 5d gauge theory is

18
2m+4 21

2m+2 · · · (m− 1)8 (m + 1)0m6
eh 2e+fehhe e

(4.16)
Applying S on Sm+1 of the above geometry implies that the above 5d gauge theory is dual
to su(m+ 2)m

2 +1 + Λ2 + 8F. Thus we obtain

sp(m+ 1) + Λ2 + 8F = 2
su(1)(1)

su(m+ 2)m
2 +1 + Λ2 + 8F = 2

su(1)(1)

· · ·1
sp(0)(1)

m

(4.17)
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It is clear from (4.16) that the above duality between sp(m + 1) and su(m + 2) gauge
theories continues to hold as we integrate out F from both sides of the duality.

The 5d KK theory

2
su(2)(1)

2
su(2)(1)

· · ·1
sp(0)(1)

m

(4.18)

can be described by the geometry

(m + 1)4+4
0

m1+1
0 (m− 1)1+1

0

(m + 2)1+1
0 (m + 3)1+1

0

· · ·

· · ·

21+1
0

2m1+1
0

11+1
0

e+f -
∑

xi

e+f -
∑

yi

f

f -x f -y f -x f -y f -x

f -xf -yf -x

f y
x

y
x

f -y

x

y

e,

f -x f -y

y

(2m + 1)1+1
0

f -y

x

y

2

e-x-y
x

e-x-y,
e

e-x-y,
e

e,
e-x-y

2

e,
e-x-y

e-x-y,
e

2 2

x

y

e,
e-x-y

e-x-y,
e

· · ·

(4.19)
Applying S on all the surfaces in this geometry, we learn that

su(2m+ 2)0 + 2Λ2 + 8F = 2
su(2)(1)

2
su(2)(1)

· · ·1
sp(0)(1)

m

(4.20)

Similarly, the KK theory

2
su(2)(1)

2
su(2)(1)

· · ·1
sp(1)(1)

m

(4.21)

can be described by the geometry

(m + 1)1+4
0 m1+1

0

(m + 2)1+4
0 (m + 3)1+1

0

· · ·

· · ·

21+1
0

(2m + 1)1+1
0

11+1
0

2e+f -x-
∑

yi

2e+f -x-
∑

yi

f -x f -y f -x f -y f -x

f -xf -yf -x

y
x

y
x

f -y

x

y

f -x f -y

y

(2m + 2)1+1
0

f -y

x

y

x

e-x-y,
e

e,
e-x-y

2

e,
e-x-y

e-x-y,
e

2 2

x

y

e,
e-x-y

e-x-y,
e

· · ·

(4.22)
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Applying S on all surfaces of the above geometry, we learn that

su(2m+ 3)0 + 2Λ2 + 8F = 2
su(2)(1)

2
su(2)(1)

· · ·1
sp(1)(1)

m

(4.23)

The 5d KK theory

2
su(2)(1)

2
su(2)(1)

· · ·1
sp(0)(1)

m

2
su(1)(1)

(4.24)

can be described by the geometry obtained by applying S on all surfaces except S2m+2 of
the following geometry

(m + 1)4+4
0

m1+1
0 (m− 1)1+1

0

(m + 2)1+1
0 (m + 3)1+1

0

· · ·

· · ·

11+1
0

(2m + 1)1+1
0

(2m + 2)1+1
2

e+f -
∑

xi

e+f -
∑

yi

e

e-x e-y e-x e-y

e-ye-x

e y
x

y
x

e-y

x

y

f,

e-x

y

2

f -x-y
x

f -x-y,
f

f -x-y,
f

f,
f -x-y

2

f,
f -x-y

f -x-y,
f

2· · ·

2

e-x, x

f -x, f -y

e

e

x

y

(4.25)
The above geometry can be seen to be flop equivalent to

(m + 1)3+4
0

m1+1
1 (m− 1)1+1

1

(m + 2)1+1
0 (m + 3)1+1

0

· · ·

· · ·

13+2
1

(2m + 1)1
0

(2m + 2)2

e+f -
∑

xi

e+f -
∑

yi

e

h-x e-y h-x e-y1

e-xe-x

e y
x

y
x

e-y

x

y1

f,

e-x

x

2

f -x-y
x

f -x-y,
f

f -x-y,
f

f,
f -x-y

2

f -y2,
f -x1-y1

f -x,
f

2· · ·

2

h-x1-x2-x3, x1-x2

f, f

e

e

(4.26)
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which is isomorphic to

(m + 1)3+4
0

m1+1
1 (m− 1)1+1

1

(m + 2)1+1
0 (m + 3)1+1

0

· · ·

· · ·

13+2
0

(2m + 1)1
0

(2m + 2)2

e+f -
∑

xi

e+f -
∑

yi

e

h-x e-y h-x e+f -x1-x2-
∑

yi

e-xe-x

e y
x

y
x

e-y

x

y1

f,

e-x

x

2

f -x-y
x

f -x-y,
f

f -x-y,
f

f,
f -x-y

2

y2,
x1-y1

f -x,
f

2· · ·

2

f -y2-x3, x2-x1

f, f

e

e

(4.27)
implying that

su(2m+ 3) 3
2

+ 2Λ2 + 7F = 2
su(2)(1)

2
su(2)(1)

· · ·1
sp(0)(1)

m

2
su(1)(1)

(4.28)

In a similar way, we can obtain

su(2m+ 4) 3
2

+ 2Λ2 + 7F = 2
su(2)(1)

2
su(2)(1)

· · ·1
sp(1)(1)

m

2
su(1)(1)

(4.29)

Applying S on S1 and S2n of

11+1
0

2n1+(2n−2)
2n−4 (2n− 1)1

2n−4

21
3 31

4

· · ·

· · ·

(n + 2)1
n−1

n1
n+1

(n + 1)1+1
n−1

e-y

e+f -x

e-x

e+f -x-
∑

yi h-x e h-x

e

e+(n-2)f

e+f -x-2y,

h-x,x
eh-xh-x

e

e

x

x f -x

f -x

x

x
x

f -x

f -x

f -x 2
f -x

x

y

(4.30)
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and applying S on S1 and S2n+1 of

11+1
0

(2n + 1)1+(2n−1)
0 2n1

2n−3

21
3 31

4

· · ·

· · ·

(n + 3)1
n

n1
n+1

e-y

e+f -x

e-x

e+f -x-
∑

yi h-x e h-x

eh-xh-x
e

e

x

x f -x

f -x

x

x
x

f -x

f -x

f -x

(n + 2)1+1+1
n

(n + 1)1
n+2e

f -z
e+f -x-2y-z,

h,f

2

x

h-x

e+(n-1)fe

z-x

x y

(4.31)
we find that

su(m+ 1)0 + S2 + (m− 1)F = 2
su(m)(1)

(4.32)

The KK theory

2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

2m− 2

2 (4.33)

can be described by the geometry

(2m− 1)1+1
0 (2m− 2)1+1

0 · · · 21+1
0 11+1

0
f -x, x f -y, yf -y, y f -x, x2f -x, x

2
f -y, y

e-x e-y e-x e-y

2

e-x e-y e-x e-y

(4.34)
which is isomorphic to

(2m− 1)1+1
0 (2m− 2)1+1

0 · · · 21+1
0 11+1

0
e-y, f -x e-x, f -ye-x, f -y e-y, f -x2e+f -x-2y, f -x

2
e-x, f -y

x y x y

2

x y x y

(4.35)
thus describing sp(2m− 1)0 + A. Similarly, the geometry

2m1+1
1 (2m− 1)1+1

0 · · · 21+1
0 11+1

0
f -x, x f -y, yf -y, y f -x, x2h-x-2y, f -x

2
f -y, y

x y e-x e-y

2

e-x e-y e-x e-y

(4.36)
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describing the KK theory

2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

2m− 1

(4.37)

is isomorphic to the geometry

2m1+1
0 (2m− 1)1+1

0 · · · 21+1
0 11+1

0
e-y, f -x e-x, f -ye-x, f -y e-y, f -x2h-x-2y, f -x

2
e-x, f -y

x y x y

2

x y x y

(4.38)
describing sp(2m)π + A. Moreover, applying S on Sm+1 in the following geometry

11+1
2m+4 22m+2 · · · (m− 1)8 (m + 1)0m6

eh 2e+fehhe e

x y

(4.39)
we learn that

sp(m+ 1)mπ + A = su(m+ 2)1+m
2

+ S2 (4.40)

Combining all these results, we obtain

su(2m)m + S2 = 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

2m− 2

2
= sp(2m− 1)0 + A

(4.41)
and

su(2m+ 1)m+ 1
2

+ S2 = 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

2m− 1

= sp(2m)π + A

(4.42)
Similarly, we also obtain

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

2m

sp(2m+ 1)π + A (4.43)
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and

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

2m− 1

2
sp(2m)0 + A (4.44)

Applying S on all surfaces of

(m + 2)1+1
0 m1+2

0

(m + 1)1+1
0 (m + 3)1

0

· · ·

· · ·

21+1
0

(2m + 1)1+1
0

11+1
0

e+f -x, e-y

e+f -x-2y, e-x

x, y y1, y2 f -x f -y f -x

f -xf -y

f
f

f -y1-y2
x

x

y

f -x f -y

y

(2m + 2)1+1
0

f -y

x

y

f -x-y

e-x,
e

e-y2,
e-x-y1

2

e,
e-x-y

e-x-y,
e

2 2

x

y

e,
e-x-y

e-x-y,
e

· · ·2

2

x y

(4.45)
leads to

su(2m+ 3)0 + S2 + Λ2 = 2
su(2)(1)

2
su(2)(1)

· · ·2
su(2)(1)

m

(4.46)

Applying S on all surfaces except Sm+1 of

(m + 1)1+1
2

m1+1
0 (m− 1)1+1

0

(m + 2)1+1
0 (m + 3)1+1

0

· · ·

· · ·

21+1
0

2m1+1
0

11+1
0

h+f -x-2y,

e

f -y, y

f -x f -y f -x f -y f -x

f -xf -yf -x

f y
x

y
x

f -y

x

y

e,

f -x f -y

y

(2m + 1)1+1
0

f -y

x

y

2

e-x-y
x

e-x-y,
e

e-x-y,
e

e,
e-x-y

2

e,
e-x-y

e-x-y,
e

2 2

x

y

e,
e-x-y

e-x-y,
e

· · ·

2

x

y

f -x

(4.47)
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leads to a geometry describing su(2m+4)0+S2+Λ2. The above geometry is also isomorphic
to

(m + 1)1+1
0

m1+1
0 (m− 1)1+1

0

(m + 2)1+1
0 (m + 3)1+1

0

· · ·

· · ·

21+1
0

2m1+1
0

11+1
0

f+y, x

f -x-y

f -y, y

f -x f -y f -x f -y f -x

f -xf -yf -x

f y
x

y
x

f -y

x

y

e,

f -x f -y

y

(2m + 1)1+1
0

f -y

x

y

2

e-x-y
x

e-x-y,
e

e-x-y,
e

e,
e-x-y

2

e,
e-x-y

e-x-y,
e

2 2

x

y

e,
e-x-y

e-x-y,
e

· · ·

2

e-x

e-y

(4.48)
Thus we obtain

su(2m+ 2)0 + S2 + Λ2 = 2
su(2)(1)

· · ·
su(2)(1)

22
su(2)(1)

m

2
su(1)(1)

2 (4.49)

The fact that the geometry

m1+1
0 (m− 1)1+1

0 · · · 21+1
0 11+1

0
f -x, x f -y, yf -y, y f -x, xf -x, x

2
f -y, y

e-x e-y e-x e-y

2

e-x e-y e-x e-y

(4.50)
is isomorphic to the geometry

m1+1
0 (m− 1)1+1

0 · · · 21+1
0 11+1

0
e-y, f -x e-x, f -ye-x, f -y e-y, f -xe-y, f -x

2
e-x, f -y

x y x y

2

x y x y

(4.51)
implies that

= 2
su(1)(1)

2
su(1)(1)

· · ·

m

su(m+ 1)0 + A (4.52)
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Applying S on Sm of

m0 (m− 1)6 · · · 32m−2

1(2m−2)+(2m−2)
2m

f

f -xi-yi

2e+f e h

h

e

e

2m− 2

22m

h

e

(4.53)
and applying S on Sm of

m0 (m− 1)6 · · · 22m 1(2m−1)+(2m−1)
6

yi

xi

2e+f e h 2h e-
∑

xi-
∑

yie
2m-1

(4.54)
we see that

so(m+ 2) +mF = 2
su(m)(2)

(4.55)

The geometry

(m + 1)1+1
0 m1+1

0 · · · 21+1
0 11+1

0
f -x, x f -y, yf -y, y f -x, xf -x, x

2
2f -y, y

e-x e-y e-x e-y

2

e-x e-y e-x e-y

(4.56)
is isomorphic to

(m + 1)1+1
0 m1+1

0 · · · 21+1
0 11+1

0
e-y, f -x e-x, f -ye-x, f -y e-y, f -xe-y, f -x

2
2e+f -2x-y, f -y

x y x y

2

x y x y

(4.57)
implying that

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

m

2
so(2m+ 3) + A (4.58)
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And since the geometry

(m + 1)1+1
0 m1+1

0 · · · 21+1
0 11+1

0
f -x, x f -y, yf -y, y f -x, xf -x, x

2
f -y, y

e-x e-y e-x e-y

2

e-x e-y e-x e-y

(m + 2)1+1
0
f -x, x

e-x e-y

2

f -y, y

(4.59)
is isomorphic to the geometry

(m + 1)1+1
0 m1+1

0 · · · 21+1
0 11+1

0
e-y, f -x e-x, f -ye-x, f -y e-y, f -xe-y, f -x

2
e-x, f -y

x y x y

2

x y x y

(m + 2)1+1
0

e-y, f -x

x y

2

e-x, f -y

(4.60)
we obtain

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

m

so(2m+ 4) + A

2
su(1)(1)

(4.61)

4.2 Rank 2

Consider the following geometry corresponding to the KK theory obtained by compactifying
6d SCFT carrying su(3) on −1 curve with a charge conjugation twist

26
0 12

4e+3f -2
∑

xi e (4.62)
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Applying S on S2, we obtain the geometry

26
0 12

3e+4f -2
∑

xi e (4.63)

which describes the 5d gauge theory g2 + 6F. The above geometry is also isomorphic to
the geometry

22+4
0 12

3e+2f -2
∑

xi-
∑

yi e (4.64)

Applying S on S2 of the above geometry, we obtain the geometry

22+4
0 12

2e+3f -2
∑

xi-
∑

yi e (4.65)

which describes the 5d gauge theory sp(2)+2Λ2+4F. The above geometry is also isomorphic
to the geometry

24+2
0 12

2e+f -
∑

xi e (4.66)

Applying S on S2 of the above geometry, we obtain the geometry

24+2
0 12

e+2f -
∑

xi e (4.67)

which describes the 5d gauge theory su(3)4 + 6F. Thus, we find that

sp(2) + 2Λ2 + 4F = 1
su(3)(2)

su(3)4 + 6F = = g2 + 6F (4.68)

(4.64) and (4.65) are flop equivalent to

22
0 14

6
3e+2f -2

∑
xi e (4.69)

and

22
0 14

6
2e+3f -2

∑
xi e (4.70)

respectively. The above two geometries remain related by S if we remove blowups from
S1. In other words, the duality between sp(2) and g2 continues to hold as we integrate
out F from both sides of the duality (until a total of four F have been integrated out).
Similarly, (4.66) and (4.67) imply that the duality between sp(2) and su(3) remains as we
integrate out (upto four) F from both sides of the duality in such a way that the CS level
for su(3) increases (in absolute value). Finally, the geometry (4.64) is also isomorphic to
the geometry

26
0 12

3e+f -
∑

xi e (4.71)

Applying S on S2 of the above geometry we find the following geometry describing
su(3)4 + 6F

26
0 12
e+3f -

∑
xi e (4.72)
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These geometries imply that the duality between su(3) and g2 remains preserved if F are
integrated out from both sides of the duality in such a way that the CS level for su(3)
increases. Notice that we can integrate out all the six F while preserving the duality
between su(3) and g2.

A geometry describing the marginal theory su(3) 13
2

+ 3F is

23
0 16

e+2f e (4.73)

Applying S on S2 leads to the geometry

23
0 16

2e+f e (4.74)

thus implying that the above marginal theory is dual to sp(2)π + 3Λ2 which is also a
marginal theory. The geometry (4.73) is also isomorphic to the geometry

22+1
0 16

e+3f -
∑

xi e (4.75)

Applying S on S2 of the above geometry leads to the geometry

22+1
0 16

3e+f -
∑

xi e (4.76)

which implies that the above marginal theories are dual to g2 +A+2F. But g2 +A describes
the circle compactification of 6d N = (2, 0) SCFT of type D4 twisted along the circle by
the order three outer automorphism of D4. Thus, the theory

su(3) 13
2

+ 3F = sp(2)π + 3Λ2 = g2 + A + 2F (4.77)

is obtained by adding matter to a 6d SCFT (compactified on a circle), implying that it
cannot be a UV complete QFT. Said another way, the geometry corresponding to (4.77)
is such that it is not possible to completely shrink all the compact curves and surfaces in
the geometry simultaneously to a point. Thus, it is not possible to decouple (4.77) from
the rest of M-theory.

The isomorphism between (4.75) and (4.76) implies that

g2 + A = 2
su(1)(1)

su(3) 15
2

+ F = 2
su(1)(1)

3
(4.78)

Applying S on S2 of

20 110
4e+f e (4.79)

we find

su(3)9 = 3
su(3)(2)

(4.80)
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Applying S on S2 of

23
0 16

4e+2f -2
∑

xi e (4.81)

we find

sp(2)0 + 3Λ2 = 2
su(3)(2)

(4.82)

4.3 Rank 3

A geometry describing the marginal theory su(4)3 + 8F is

37+1
0 21 11

e+2f -
∑

xi h e e (4.83)

Applying S on S3 identifies a dual description of this theory as sp(3) + Λ3 + 7F. However,

sp(3) + Λ3 + 5F = su(4)4 + 6F (4.84)

is already a 5d KK theory as can be seen by applying S on S2 of the following geometry

35+1+1+1
1 20 110

2h-
∑

xi-y f 4e+f e

4

y-w, y-w, f -y-z, f -y-z f, f, f, f
(4.85)

Thus,

sp(3) + Λ3 + 5F = 3
su(3)(2)

su(4)4 + 6F = 1
sp(0)(1)

2
(4.86)

(4.83) implies that the duality between sp(3) and su(4) remains preserved if we integrate
out F from both sides of the duality such that the CS level for su(4) increases.

Applying S on S1 of

10 28 310
3e+f he e (4.87)

implies

su(4)8 = 4
so(8)(3)

(4.88)

Consider the following geometry describing sp(3) + 1
2Λ3 + 19

2 F

17
9 23 32+2

0
e h+2f e 2e+f -x2-

∑
yi

2

f, f x2-x1, f -x1-x2
(4.89)
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This geometry is isomorphic to the following geometry

17
9 23 32+2

0
e h+2f e e+f -x1

2

f, f x1-x2, f -y1-y2
(4.90)

which describes su(4) 3
2

+2Λ2 +7F. The latter 5d KK theory is known to be a 5d KK theory
from the results of section 4.1. We thus have

su(4) 3
2

+ 2Λ2 + 7F = 1
sp(1)(1)

2
su(1)(1)

= sp(3) + 1
2Λ3 + 19

2 F (4.91)

Applying S on S3 of

18 22
6 30

e h e 2e+f (4.92)

yields
sp(3)0 + 2Λ2 = su(4)6 + 2Λ2 (4.93)

And applying S on S3 of

110 24 32+2
0

e h+2f e 3e+2f -2
∑

xi-
∑

yi

2

f xi-yi
(4.94)

implies

sp(3)0 + 2Λ2 = 2
so(8)(3)

su(4)6 + 2Λ2 = (4.95)

Applying S on S2 of

33
3 23

0 11
1

e 2e+f -
∑

xi e+f -
∑

xi e (4.96)

implies that
so(7) + 6S + F = su(4)0 + 3Λ2 + 4F (4.97)

Applying S on S2 of

30 23+3+1
0 10

e 2e+2f -
∑

xi-
∑

yi-2z 2e+f -
∑

xi-
∑

yi e (4.98)

implies that

so(7) + 6S + F = 1
su(4)(2)

su(4)0 + 3Λ2 + 4F = (4.99)

– 61 –



J
H
E
P
1
2
(
2
0
2
0
)
0
9
9

Applying S on S2 of

34
3 23

0 11
e 2e+f -

∑
xi e+f -

∑
xi e (4.100)

implies that
so(7) + 7S = su(4)1 + 3Λ2 + 4F (4.101)

Similarly, applying S on S2 of

32
3 23

0 12
1

e 2e+f -
∑

xi e+f -
∑

xi e (4.102)

implies that
so(7) + 5S + 2F = su(4)1 + 3Λ2 + 4F (4.103)

Now, applying S on S2 of

31 27
0 11

h e+2f -
∑

xi 3e+f -
∑

xi e (4.104)

implies that

so(7) + 5S + 2F = 1
g

(1)
2

su(4)1 + 3Λ2 + 4F = = so(7) + 7S (4.105)

Similarly, applying S on S2 of the following two geometries

31
3 23

0 13
1

e 2e+f -
∑

xi e+f -
∑

xi e (4.106)

14+4
2 23

0 36
e f 4e+2f -2

∑
xi e

f -xi-yi f

4

(4.107)

we find that

su(4)2 + 3Λ2 + 4F = 1
sp(0)(1)

2
su(3)(2)

= so(7) + 4S + 3F (4.108)

A geometry describing su(4)5 + 3Λ2 is

33+3
1 22 110

h+f -
∑

xi e h+3f e

xi-yi f

3

(4.109)

which can be rewritten as

33+3
0 22 110

2e+f -x1-x3-y1-y2 e h+3f e

f -x2-y2, y2-x2, x3-y3 f, f, f

3

(4.110)
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which implies that there is a dual description as sp(3) + 1
2Λ3 + Λ2 + 5

2F. We can further
rewrite the above geometry as

33+3
0 22 110

3e+2f -x1-2x2-2x3-
∑

yi e h+3f e

f -x1-y1, x2-y2, x3-y3 f, f, f

3

(4.111)

which implies that

su(4)5 + 3Λ2 = 1
so(8)(3)

= sp(3) + 1
2Λ3 + Λ2 + 5

2F (4.112)

Applying S on S2 of

12 24
0 32

e 2e+f -
∑

xi 2e+f -
∑

xi e (4.113)

leads to

su(4)0 + 4Λ2 = 2
su(4)(2)

(4.114)

Applying S on S2 of

11 23+1
0 33

e e+f -
∑

xi 2e+f -
∑

xi e (4.115)

implies that
su(4)1 + 4Λ2 = so(7) + A + 3S (4.116)

But, since so(7) + A is already a 5d KK theory, the marginal theory su(4)1 + 4Λ2 cannot
describe either a 5d SCFT or a 5d KK theory. Removing matter from the marginal theory
leads us to the theory su(4)1 + 3Λ2 which is a 5d SCFT as it can be obtained by removing
matter from 5d KK theories discussed above.

Applying S on S2 of

10 24
0 34

e e+f -
∑

xi 3e+f -
∑

xi e (4.117)

leads to

su(4)2 + 4Λ2 = 2
g

(1)
2 (4.118)

A geometry describing su(4)3 + 4Λ2 is obtained by applying S on S2 in the following
geometry

33+3
2 21

0 18
e f 3e+f e

f -xi-yi f

3

(4.119)
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The above geometry can be rewritten as

33+3
0 21

0 18
x1-x2 f 3e+f e

f -x1-y1, y1-x1, x2-y2 f, f, f

3

(4.120)

which implies that this theory has a dual description as a g2⊕su(2) gauge theory with a half-
hyper in bifundamental, a hyper in A of g2 and two full hypers in F of su(2). Now, turning
off the gauge coupling for su(2) leads to an RG flow producing g2 + A + F which has more
matter than a KK theory. Geometrically this RG flow is implemented by decompactifying
the curve e in S3. Thus su(4)3 + 4Λ2 can neither be a 5d SCFT nor a 5d KK theory, since
otherwise g2 + A + F would have to describe a 5d SCFT or a 5d KK theory, which cannot
be the case as g2 + A is already a 5d KK theory.

Applying S on S2 of

14+4
2 20 310

e f 4e+f e

f -xi-yi f

4

(4.121)

we find that

su(4)4 + 4Λ2 = 1
sp(0)(1)

3
su(3)(2)

(4.122)

A geometry describing sp(3)π + 2Λ2 is

32+2
1 24 110

2h-
∑

xi e h+2f e

xi-yi f

2

(4.123)

which can be rewritten as

32+2
0 24 110

2e+f -
∑

yi e h+2f e

y1-x1, f -x1-y1 f, f

2

(4.124)

implying the duality
sp(3)π + 2Λ2 = sp(3) + 3

2Λ3 + 3
2F (4.125)

but the latter theory exceeds the bounds placed on marginal theories in [21]. Hence,
sp(3)π + 2Λ2 describes neither a 5d SCFT nor a 5d KK theory.

A geometry describing su(4)0 + S2 + Λ2 is obtained by applying S on S1 and S3 of

12+2
0 21+1

2 30
f -x1, x1 h+f -x-2y, f -x e f

x y

2

e-
∑

xi, e-
∑

yi e, e

2 (4.126)
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The above geometry can be rewritten as

12+2
0 21+1

0 30
f -x1, x1 f+y, x f -x-y f

e-x e-y

2

e-
∑

xi, e-
∑

yi e, e

2 (4.127)

which implies that

su(4)0 + S2 + Λ2 = 2
su(2)(1)

2
su(1)(1)

2
(4.128)

The geometry

12+2+4
1 21 36

h-
∑

zi h 2h e

f -xi-yi f

2

(4.129)

describing so(7) + 2S + 4F can be rewritten as

32+2+4
0 21 16

2e+f -x2-
∑

yi-
∑

zi h 2h e

y1-x1, f -x1-y1 f, f

2

(4.130)

which implies that

so(7) + 2S + 4F = 1
su(5)(2)

(4.131)

4.4 Rank 4

Consider the geometry

23+3+3
0 30 4610

e+f -
∑

yi-
∑

zi e+f 2e+f e

yi-xi f

3

e 2e+f -
∑

xi-
∑

yi

(4.132)

Performing S on S3 leads us to an so(9) description, and performing S on S3, S2 leads us
to an su(5) description. Working out the matter content, we find that

su(5)0 + 3Λ2 + 3F = 1
so(8)(2)

= so(9) + 3S + 3F (4.133)

Applying S on S2 of the following geometry

23
0 33 41

511
2e+f -

∑
xi e h ee e+f -

∑
xi (4.134)
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leads to
su(5)3 + 3Λ2 + F = f4 + 4F (4.135)

Since f4 + 4F violates the bound for marginal theories, we conclude that su(5)3 + 3Λ2 + F
is not a KK theory or an SCFT.

Applying S to S1 of

22 34 4614+1
0

h e h e2e+f -
∑

xi e (4.136)

leads to
su(5) 11

2
+ 5F = sp(4) + 4F + Λ4 (4.137)

Since the latter theory violates the bound for marginal theories, we conclude that the
former theory is not a KK theory or an SCFT.

Applying S to S2 of

23
0 31 41

311
3

e+f -
∑

xi e h ee 2e+f -
∑

xi (4.138)

implies the duality
su(5) 3

2
+ 3Λ2 + 2F = so(9) + 4S + F (4.139)

And applying S to S2 of the following geometry

110 20 34+4
2

e 4e+f f e

f -xi-yif

4

41+1
0

e+f -x-y2h-
∑

xi-
∑

yi

x

y

(4.140)

leads to the identification of the so(9) theory as a KK theory. In full detail, we have

so(9) + 4S + F = 2
su(1)(1)

su(5) 3
2

+ 3Λ2 + 2F = 1
sp(0)(1)

3
su(3)(2)

(4.141)
Applying S on S3 of

28 30 42+2+4
0110

2e+f -
∑

xi-
∑

zi3e+f fe

f, f, f f -x1-y1, x1-y1, x2-y2

3

e h

3

f, f, f

f -x1-x2, x1-x2, y1-y2

(4.142)
leads to

sp(4) + 1
2Λ3 + 4F = 4

so(8)(3)

1
sp(0)(1)

3
(4.143)
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Performing S on S2 of

20 35
1 4612+2+2+2

2
ee-

∑
xi 2h2e+f

f -xi-yi f

2

e f

4

xi-zi, yi-wi f, f (4.144)

we obtain

so(9) + 2S + 5F = 1
sp(0)(1)

2
su(5)(2)

(4.145)

Consider the geometry

21 31 4616+2+1+1
0

ee 2he

y2-w f

2e+f -
∑

xi-
∑

yi-z h+f

2

f -y1-y2, y1-y2 f, f (4.146)

which can be rewritten by performing an isomorphism on S1 as

21 31 4616+2+1+1
0

ee 2he

w-y2 f

e+f -
∑

xi-w h+f

2

f -z-w, y2-y1 f, f (4.147)

Equating the theories corresponding to these two isomorphic geometries, we obtain

= 1
su(7)(2)

so(9) + S + 6F (4.148)

Now, consider the geometry

25
2 30

44

12+2
0

e e

h

e

2e+f -x1-y1-y2 h-
∑

xi

2

f -x2-y2, y2-x1

f, f

(4.149)

which is isomorphic to

25
2 30

44

12+2
1

e e

h

e

h+f -
∑

xi h-
∑

xi

2

xi-yi

f

(4.150)
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implying

= 1
su(6̃)(2)

so(8) + 2S + 5F (4.151)

Similarly, the geometry

25
0

32

42

12+2
1

e

e

e

e

h e+f -
∑

xi

f -
∑

xi

f

f -
∑

yi

f

(4.152)

is isomorphic to

25
0

32

42

12+2
0

e

e

e

e

2e+f -
∑

xi-y2 e+f -
∑

xi

f -
∑

yi

f

y2-y1

f

(4.153)

leading us to the conclusion that

= 1
su(6)(2)

so(8) + S + C + 5F (4.154)

Applying S on S2 in

20 34+4
2

410

14+4
2

f e

4e+f

e

e f

4

f -xi-yi

f

4

f -xi-yi

f

(4.155)

leads us to conclude

so(8) + 4S + 4F = 1
sp(0)(1)

3
su(3)(2)

1
sp(0)(1)

(4.156)
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Similarly, applying S on S2 of

24
0 34

43+3+1+1
2

10
3e+f -

∑
xi e

f

e

e e+f -
∑

xi

f

f -z-w

3
f

f -xi-yi

(4.157)

leads us to

so(8) + 3S + C + 4F = 2
g

(1)
2

1
sp(0)(1)

(4.158)

Applying S on S2 of the geometry

24
0 32

42+2+2+2
2

12
2e+f -

∑
xi e

f

e

e 2e+f -
∑

xi

2
f

f -xi-yi

2
f

f -zi-wi

(4.159)

implies

so(8) + 2S + 2C + 4F = 2
su(4)(2)

1
sp(0)(1)

(4.160)

Finally, applying S on S2 of

23+2+3
0 30

41

11
2e+f -

∑
xi-
∑

zi e

e+f -
∑

yi-
∑

zi

h

h e+f -
∑

xi-
∑

yi

(4.161)

leads to

= 1
so(7)(1)

so(8) + 3S + 2C + 3F (4.162)

4.5 Rank 5

Applying S on S2 and S4 of

34+4
2 40

110

20
h-
∑

xi f

4e+f

e

f e

510

4e+f

e
4 4

f

f, f, f, f

f -xi-yi
x1-y2, x2-y1,

x3-y4, x4-y3
(4.163)
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converts the right hand side of the following equality to the left hand side

su(6)0 + 2Λ3 = 3
su(3)(2)

1
sp(0)(1)

3
su(3)(2)

(4.164)

Now, consider the geometry

34 4013 23+5
0

e e+f2e+f -
∑

xie e+f -
∑

xi-
∑

yi h

53+3
6

2e+f

e

3
3

xi f

f -xi-yi

x1-y2, x2-y1, x3-y3

yi

3

f, f, f

(4.165)

Applying S to S2, we obtain an so(11) description, while applying S to S2 and S4, we
obtain an su(6) description

su(6)0 + 3
2Λ3 + 5F = 1

so(10)(2)
= so(11) + 3

2S + 5F (4.166)

Applying S on S4 of

34 4012
8 23

6
e e+fhe e h

53+3+1
6

2e+f

e

3
3

f -xi f

f -xi-yi

x1-y2, x2-y1, x3-y3

yi

3

f, f, f

(4.167)

implies that
su(6)2 + 3

2Λ3 + 3F = so(11) + 5
2S + 2F (4.168)

Since the theory on the right hand side of the above equation exceeds the bound for
marginal theories, we find that the theory on the left hand side is neither a 5d KK theory
nor a 5d SCFT. Integrating out matter from (4.167), we find that

su(6)3 + 3
2Λ3 + F = so(11) + 5

2S (4.169)

where the right hand side lifts to a KK theory. See (4.196).
Applying S on S4 of

36 40110 23
8

e 2e+fhe e h

53+3
4

e+f

e

3
3

f -xi f

f -xi-yi

x1-y2, x2-y1, x3-y3

yi

3

f, f, f

(4.170)
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leads to

= 3
e
(2)
6su(6) 9

2
+ 3

2Λ3 (4.171)

Applying S on S2 and S4 of

32+2+4
2

4014 21+1
0

ee-x2e+f -x-ye

f

e-x 56

h+f -
∑

xi-
∑

zi e
2 2

f, f f

f -xi-yix1-y2, x2-y1

f

2e+f

x-y f

(4.172)
implies

= 3
so(8)(2)

su(6)0 + Λ3 + Λ2 + 4F 1
sp(0)(1)

2
(4.173)

Applying S on S4 of

31
3 4013

7 22
5

e-x e+fhe e h

52+2+1
5

2e+f

e-z

2
3

f -xi f, x

f -xi-yi,

x1-y2, x2-y1

yi

2

f, f

z

(4.174)

implies
su(6) 3

2
+ Λ3 + Λ2 + 3F = so(11) + 2S + 3F (4.175)

Furthermore, applying S to S2 and S4 of

34+4
2 43

0

110

20
h-
∑

xi f

4e+f

e

f e

56

4e+2f -2
∑

xi

e
4 4

f

f, f, f, f

f -xi-yi
x1-y2, x2-y1,

x3-y4, x4-y3
(4.176)

leads to

so(11) + 2S + 3F = 3
su(3)(2)

1
sp(0)(1)

2
su(3)(2)

su(6) 3
2

+ Λ3 + Λ2 + 3F =

(4.177)
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Performing S on S1, S2, S4 and S5 in

36 4010 210+2
0

e 2e+ff -
∑

yif 2e+f -
∑

xi-
∑

yi h

52+2
0

f

f -
∑

xi

2
2

yi f

xi-yi

e-x1-y2, e-x2-y1

yi

2

e, e

(4.178)

leads to

= 1
sp(2)(1)

su(6)0 + Λ3 + 10F 2
su(2)(1)

(4.179)

Let us consider the following geometry describing su(6) 3
2

+ Λ3 + 9F

32 48+1
012 22

0
h e+2f -

∑
xiee e e

52+2
0

e-y

e-x1

2
2

f -xi f, f

f -x2-y2,

f -x1-y2, x2-y1

yi

2

f, f

x1-y1

(4.180)

After the flop of e− x1 in S5, the geometry can be written as

31+1
0 48

112 22
0

f 2h+f -
∑

xife f f -x-y

52+1
0

e-ye-x

2
2

e-xi x, y

f -x1, x1

f -x1-y, x1-y

e-xi
2

f, f
(4.181)

Flopping y in S5 leads to the geometry

31+1
0 48

111+1
0 22

0
f 2h+f -

∑
xiff -x-y f f -x-y

52
0

e-ye-x

2
2

e-xi x, y

f -x1, x1

f -x1, x1

e-xi
2

x, y

e-ye-x

(4.182)

– 72 –



J
H
E
P
1
2
(
2
0
2
0
)
0
9
9

So, we find that

2
su(1)(1)

1
sp(0)(1)

2
su(2)(1)

2
su(1)(1)

su(6) 3
2

+ Λ3 + 9F = (4.183)

The geometry

36 4211+1+1
10 21

7
e h+fh+f -xe e-x h

51+1
0

e

e

x f

f -x-y

x-y

y

f

yx

(4.184)

for su(6)0 + S2 + 1
2Λ3 + F can be flopped to

33 41+1
011+1

0 21+1+1+1
0

e e+f -ye-we-y e+f -x-2y-z-w, z-x h, f

51+1
0

e-x

e-x

x f

x-y

f, f -x-y

y

f -x-y, f

yx

2

f -z f -x
x

y

2 (4.185)

Applying S to S1, S2, S4 and S5 we find that

= 2
su(2)(1)

su(6)0 + S2 + 1
2Λ3 + F 2

su(3)(1)

(4.186)

Similarly, we find that

= 2
su(2)(1)

su(6) 3
2

+ S2 + 1
2Λ3

2
su(2)(1)

2
su(1)(1)

(4.187)
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su(6) 3
2

+ 1
2Λ3 + 2Λ2 + 2F can be described by the geometry

32+2+2+2
0

4017 21
eh+2fe

h 53
e+f -

∑
xi -z2 -

∑
w
i

e+f -
∑

xi-
∑

yi3

f, f
e

f -z1-z2z2-z1, xi-yi

f

e+f

(4.188)
Performing isomorphisms on S3, we can write the above geometry as

33+3+2
0

4017 21
eh+2fe

h 53

f -
∑
xi

3e+f -
∑

xi-
∑

yi-
∑

zi

3

f
e

f -z1-z2xi-yi

f

e+f

(4.189)
Performing some flops associated to xi and yi, we obtain

= 1
sp(0)(1)

su(6) 3
2

+ 1
2Λ3 + 2Λ2 + 2F 3

so(8)(3)

2
su(1)(1)

(4.190)

Now consider the geometry

32+2+2+2
0

4116 20
ee+2fe

e 55
e+f -x1 -z2 -

∑
yi
e+f -y2-

∑
zi-
∑

wi2
f, f

h

f -x1-x2, y2-y1z2-z1, x1-x2

f, f

h+f

2

(4.191)
which is isomorphic to

32+2+2+2
0

4116 20
ee+2fe

e 552e+f -x2 -z2 -
∑
yi -
∑
w
i

e+f -y2-
∑

zi-
∑

xi2
f, f

h

f -w1-w2, y2-y1z2-z1, x2-x1

f, f

h+f

2

(4.192)
resulting in

= 1
f
(1)
4su(6) 1

2
+ 1

2Λ3 + 2Λ2 + 2F (4.193)
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Applying S on S4 of

32
2 4016 21

4
e-
∑

xi e+fhe e h

51+1+2
4

2e+f

e-
∑

zi

3

f -x f, xi

f -x-y, zi

x-y

y

f

(4.194)

reveals that
su(6) 7

2
+ 1

2Λ3 + 2Λ2 = so(11) + 5
2S (4.195)

And applying S to S4 of

32 42+2+2
0110 21

8
e 2e+f -

∑
xi-y1-z2he e h+2f

51+1
0

e+2f -
∑

xi-
∑

yi-
∑

zi

e

f -x f

f -x-y

x-y

y

f

f, f y1-z1, z2-y2

2

2

x1-y1, x2-z2
f, f

(4.196)
and recalling (4.169), we find

su(6) 7
2

+ 1
2Λ3 + 2Λ2 = 1

e
(2)
6= so(11) + 5

2S=su(6)3 + 3
2Λ3 + F

(4.197)
(4.195) is an irreducible duality, that is, it isn’t possible to integrate out any matter while
preserving the duality.

Performing S on S1, S2, S4 and S5 of

33 41+1+1
011+1

0 21+8
0

e-x

e-x

h+fe+f -x-
∑

yi e e+f -z

51+1
0

e-xe-y

x f

x-y

f, f -x-y

y

f -x-y, f

2

f f -x-y
x

y

(4.198)
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we obtain

= 1
su(3)(1)

su(6)0 + 1
2Λ3 + Λ2 + 9F 2

su(2)(1)
(4.199)

The geometry

36 4217
10 21

8
e h+fhe e h

53+1
0

e

e+f -x1-y

f f

f -x1-x2

f

x1-x2x2-x3

(4.200)
describing su(6) 3

2
+ 1

2Λ3 + Λ2 + 8F is isomorphic to

36 4217
10 21

8
e h+fhe e h

53+1
0

e

e+f -x2-x3

f f

f -x3-y

f

x2-x1x3-x2

(4.201)
which describes su(6) 3

2
+ 2Λ2 + 7F. The latter theory is known to be KK from section 4.1,

and we obtain

su(6) 3
2

+ 2Λ2 + 7F = 1
sp(1)(1)

2
su(2)(1)

2
su(1)(1)

su(6) 3
2

+ 1
2Λ3 + Λ2 + 8F =

(4.202)
Applying S on S1 and S5 of

37 43113
0 21

9
e h+fhe+f -

∑
xi e h

51+1
0

e

e+f -x

f -x f

x-y

e-x-y

y

e

(4.203)

we learn that

= 1
su(5)(1)

su(6)0 + 1
2Λ3 + 13F (4.204)
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The geometry

37 4318
11 29

e h+fhe e h

53+1
0

e

e+f -y

f f

f -x1-x2

x1-x2

x2-x3

f

(4.205)

is isomorphic to

37 4318
11 29

e h+fhe e h

53+1
0

e

2e+f -
∑

xi

f f

f -x3-y

x2-x1

x3-x2

f

(4.206)
implying

sp(5) + Λ2 + 8Fsu(6)3 + 1
2Λ3 + 9F = (4.207)

We already know from section 4.1 that the right hand side is obtained by untwisted com-
pactification of rank-5 E-string theory.

Applying S to S2 and S3 of the geometry

30 48 51022+3+3+1
0

ee h3e+f

e-w-y3, x1-y1, x2-y2 f

3

f -
∑

xi f

3

yi-zi f

10
e+f 2e+f -

∑
xi-
∑

yi-
∑

zi

(4.208)
we see that it gives rise to the 5d gauge theory su(6)3 + 3Λ2. Flopping f − w in S2, we
obtain

30 48 51022+3+3
1

ee h3e+f

e-y3, x1-y1, x2-y2 f

3

f -
∑

xi f

3

yi-zi f

10
e+f -x-y 2h+f -

∑
xi-
∑

yi-
∑

zi

x

y

(4.209)
implying that

= 1
sp(0)(1)

su(6)3 + 3Λ2
4

so(8)(3)

2
su(1)(1)

(4.210)
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Applying S on S3 of

33
0 4115 23

e+f -
∑

xi ehe e e+2f -
∑

xi

53+3+3
0

h+3f

e-
∑

xi-
∑

yi-
∑

zi

3 3

f xi

zi-yi

3

f

xiyi-xi

(4.211)
implies

= 2
f
(1)
4

su(6)1 + 3Λ2 (4.212)

The theories su(6)k + 3Λ2 for k = 0, 2 can be reduced to sp(3)π + 2Λ2 by Higgsing. As
the latter theory is neither 5d SCFT nor 5d KK theory, the former theories cannot be 5d
SCFTs or 5d KK theories either.

Applying S on S4 of

36 4016 27
1

e 2e+f2he e-
∑

xi h

52+2+2+2
2

f

e

2
2

f f

f -xi-yi

x1-y2, x2-y1, zi-wi

yi-zi
4

f, f, f

(4.213)

we find that

= 1
sp(0)(1)

so(11) + S + 7F 2
su(7)(2)

(4.214)

The geometry

31 4316 21
e e2he e h

58+3+1
0

h+f

2e+f -
∑

xi-
∑

yi

f f

y3-z

f -y1-y2, y1-y2

y2-y3
2

f, f

(4.215)
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is isomorphic to the geometry

31 4316 21
e e2he e h

58+3+1
0

h+f

e+f -
∑

xi-z

f f

z-y3

f -y3-z, y2-y1

y3-y2
2

f, f

(4.216)
Thus,

= 1
su(9)(2)

so(11) + 1
2S + 8F (4.217)

Applying S on S2, S4 and S5 of

34+4
2 42+2

0

110

20
h-
∑

xi f

4e+f

e

f e

50

e-
∑

xi, e-
∑

yi

e, e

4
f

f

f -xi-yi
h-
∑

yi

2
(4.218)

we find that

= 1
sp(0)(1)

so(10) + 4S + 2F 2
su(2)(1)

3
su(3)(2)

(4.219)

Applying S on S2 of

33
0 41

16

24
0

e-
∑

xi h

2e+f

e

e+f -
∑

xi e

53
2f -xixi

3

f -xi
e

f -xi
e

3

(4.220)

we discover that

= 1
so(9)(1)

so(10) + 3S + 4F (4.221)

Applying S on S2 of

36
0 42

12+2+2+2
2

20
e e

f

e

2e+f e-
∑

xi

52fxi-zi

2
f -xi-yi

e

f e

2

2

yi-wi

f

(4.222)
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leads to

= 1
sp(0)(1)

so(10) + 2S + 6F 2
su(6)(2)

(4.223)

The geometry

30 42

17+2+1+1
0

22
e e

h+f

2e+f -
∑

xi-
∑

yi-w

e e

52ff -y1-y2

y2-z
e

f e

y1-y2

f

(4.224)

is isomorphic to the geometry

30 42

17+2+1+1
0

22
e e

h+f

e+f -
∑

xi-z

e e

52ff -z-w

z-y2
e

f e

y2-y1

f

(4.225)

implying that

= 1
su(8)(2)

so(10) + S + 7F (4.226)

4.6 Rank 6

Applying S on S2, S3, S4 and S5 of

310
0 4016 21

0
e+2f -

∑
xi e+2fe+2fe e e-x2-x3

51+1
0

e

e-x-y

2

f -x x3, x4

x, y

x-y

f -x

f

64

e+2f -x-y

e

x2-x1, x3-x4f, f

2 x2-x3, x1-x4

f, f

2

(4.227)
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we find

= 3
so(8)(2)

su(7)0 + Λ3 + 6F 1
sp(1)(1)

2
(4.228)

Applying S on S5 of

35 4115
9 27

e h+fhe e h

54
0

e

e+f -x2-x3-x4

f -x x3, x4

x2-x1

x4-x3

x3-x2

f

62

2e+f -
∑

xi

e

(4.229)
leads to

su(7) 3
2

+ Λ3 + 5F = so(13) + S + 5F (4.230)

Now, consider the geometry

32+2+2+2
2 40

110

20
h-
∑

xi-
∑

zi f

4e+f

e

f e

55
1

2e+f

e-
∑

xi

4 2
f, f f, f

f -xi-yi, f -zi-wi x1-y2, x2-y1

zi-xi, yi-wi

66

2h

e

4

f, f

(4.231)

Applying S on S2 and S4 of the above geometry, we find that

so(13) + S + 5F = 3
su(3)(2)

1
sp(0)(1)

2
su(5)(2)

su(7) 3
2

+ Λ3 + 5F =

(4.232)
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Applying S on S5 of

46 5029
1 38

e 2e+f2he e-
∑

xi h

62+2+2+2
2

f

e

2 2

f f

f -xi-yi
x1-y1,

yi-zi

2

f, f

16
eh

z2-w1

4

x2-x1, y1-y2, z1-z2, w1-w2

f, f, f, f

(4.233)
we obtain

= 1
sp(0)(1)

so(13) + 1
2S + 9F 2

su(9)(2)
(4.234)

Applying S on S2 and S4 of

34+4
2 40

110

20
h-
∑

xi f

4e+f

e

f e

510

4e+f

e
4 4

f

f, f, f, f

f -xi-yi
x1-y2, x2-y1,

x3-y4, x4-y3

64+4
2

f e

4

f

f -xi-yi (4.235)

we see that

1
sp(0)(1)

3
su(3)(2)

3
su(3)(2)

1
sp(0)(1)

so(12) + 2S + 4F = (4.236)

Applying S on S4 of

36 40110 23
8

e 2e+fhe e h

53+3
4

e+f

e

3 3

f -xi f

x1-y2, x2-y1, x3-y3

3

f

f -xi-yiyi

62+2+2+2
2

f

e

222

f -xi-yi

f

yi-zi

f

x1-y2, x2-y1

f, f

f

2

f -
∑

wi

(4.237)
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we obtain

= 3
e
(2)
6

so(12) + 3
2S + C + F 1

sp(0)(1)

2
(4.238)

Applying S on S2 and S4 in

33+3+1+1
2 44

0

110

20
h-
∑

xi-z f

4e+f

e

f e

54

3e+f -
∑

xi

e
3

f

xi-yi

60

e+f -
∑

xi

e

f

z-w

4
f -xi-yi,
f -z-w

f, f

(4.239)

we obtain

= 1
sp(0)(1)

so(12) + 3
2S + 1

2C + 4F 2
g

(1)
2

3
su(3)(2)

(4.240)

We claim that

so(12) + 3
2S + 6F = so(12) + S + 1

2C + 6F (4.241)

The proof is slightly involved. Let us start with the following two geometries

34 2052 46+3
0

e e+fee e-
∑

xi h

13+3
6

e+2f

e

3
3

f -yi f

f -xi-yi

x1-y2, x2-y1, x3-y3

yi

3

f, f, f

61

e-
∑

yi

h

(4.242)

34 2051 46+3
0

e e+fe-y3e e-
∑

xi h

13+3
6

e+2f

e

3
3

f -yi f

f -xi-yi

x1-y2, x2-y1
yi

2

f, f

60

e-y1-y2

e

x3-y3f

(4.243)
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describing so(12) + 3
2S + 6F and so(12) + S + 1

2C + 6F respectively. (4.242) and (4.243) can
be flopped to obtain the following geometries respectively

32 2051 46+2+2
1

e eh-
∑

zie h-
∑

xi-z1 h+f

11+1
4

e+f

e

2

f -y1-z1, f -y2 f

f -x-y

x-y

f, y

f

61

e-
∑

yi

h

z1-z2 f

(4.244)

32 2050 46+2+2
1

e eh-
∑

zi-y2e h-
∑

xi-z1 h+f

11+1
4

e+f

e

2

f -y1-z1, f -y2 f

f -x-y

x-y

f, y

f
60

e-y1

e

z1-z2 f

(4.245)

Applying S on S2 of both the above geometries, we obtain the geometries

32 2051 46+2+2
1

e fh-
∑

zie h-
∑

xi-z1 h+f

11+1
4

e+f

e

2

f -y1-z1, f -y2 f

f -x-y

x-y

f, y

f

61

e-
∑

yi

h

z1-z2 e

(4.246)

32 2050 46+2+2
1

e fh-
∑

zi-y2e h-
∑

xi-z1 h+f

11+1
4

e+f

e

2

f -y1-z1, f -y2 f

f -x-y

x-y

f, y

f
60

e-y1

e

z1-z2 e

(4.247)
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Performing a few more flops we obtain the following two geometries from (4.246) and (4.247)
respectively

31
2 22

54
1

46
1

e f

h

e-x1-x2

h-
∑

xi h+f -x

11
4

h

e

f -x

f -xx2-x3

x, f

f

63
1

e

fx1-x2

e

h-x1-x2

f

x1

x f

x2-x3

2

f -x1, x3-x4

(4.248)

31
2 22

64
0

46
1

e f

h

e-x1-x2-x4

h-
∑

xi h+f -x

11
4

h

e

f -x

f -xx1-x2

x, f

f

53
0

e

fx2-x3

e

e-x1

f

x4

x f

x2-x3

2

f -x4, x1-x2

(4.249)

Relabeling S5 and S6 in (4.249) we can see that it becomes isomorphic to (4.248).

Now, applying S on S2 in (4.242), we see that

so(12) + S + 1
2C + 6F = 1

so(11)(1)

so(12) + 3
2S + 6F = (4.250)

The duality (4.241) is an irreducible duality. That is, the duality does not hold if we
integrate out matter from both sides of (4.241).
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Applying S on S2 and S4 of the geometry

32+2+2+2
2 44

0

110

20
h-
∑

xi-
∑

zi f

4e+f

e

f e

52

2e+f -
∑

xi

e
2

f, f

x1-y2, x2-y1

62

2e+f -
∑

xi

e

f, f

z1-w2, z2-w1
2

4
f -xi-yi,
f -zi-wi

f, f

(4.251)

we learn that

= 1
sp(0)(1)

so(12) + S + C + 4F 2
su(4)(2)

3
su(3)(2)

(4.252)

Applying S on S2 of

36 2052 48
0

e 2e+fee e-
∑

xi h

12+2+2+2
2

f

e

2
2

f f

f -xi-yi

x1-y2, x2-y1
yi-zi

2

f, f

62

e

e

2
zi-wif

(4.253)

we obtain

= 1
sp(0)(1)

0
so(12) + S + 8F 2

su(8)(2)
(4.254)

where the theta angle θ = 0 for sp(0) means that the su(8) is embedded into e8 with su(2)
commutant. Similarly, applying S on S2 of

36 2052 48
0

e 2e+fee e-
∑

xi h

12+2+2+2
2

f

e

2
2

f f

f -xi-yi

x1-y1, z1-w1
yi-zi

2

f, f

62

e

e

2
x2-y2, z2-w2f, f

(4.255)

we obtain

= 1
sp(0)(1)

π
so(12) + 1

2S + 1
2C + 8F 2

su(8)(2)
(4.256)
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where the theta angle θ = π for sp(0) means that the su(8) is embedded into e8 with u(1)
commutant.

The geometry

32 2452 40
e eee e h

19+3+1
0

h+f

2e+f -
∑

xi-
∑

yi

f f

y3-z

f -y1-y2

y2-y3

f

52

e

e

f y1-y2

(4.257)
is isomorphic to the geometry

32 2452 40
e eee e h

19+3+1
0

h+f

e+f -
∑

xi-z

f f

z-y3

f -y3-z

y3-y2

f

52

e

e

f y2-y1

(4.258)
Thus,

= 1
su(10)(2)

so(12) + 1
2S + 9F (4.259)

Now consider the following geometry

36 22
850 41

4
h-x eee+f h e

11+1
12

h+f

e

f -x

f

f -xi-yi

y1-z1, y2, y3-z2, y4

y

f, f, f, f

64+4+2
5

h-x

e

f -x-y

f

4 4

f, f -x1, f, f -x2

4

x1-y2, x2-y1, x3-y4, x4-y3

x-y

f

(4.260)
describing so(12)+2S+ 1

2C. It is possible to decouple S6 [63] by decompactifying the curves
f − x1, f − y2, f − x3, f − y4, x2, y1, x4, y3 while keeping the curves x1, y2, x3, y4, f − x2, f −
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y1, f − x4, f − y3, e compact. After the decompactification, we obtain the geometry

36 22
850 41

4
h-x eee+f h e

11+1
12

h+f

e

f -x

y
f -x-y

f

x-y

f

(4.261)

which describes su(6) 9
2

+ 1
2Λ3 +2Λ2 which is neither a 5d SCFT nor a 5d KK theory. We are

thus led to the conclusion that so(12) + 2S + 1
2C is neither a 5d SCFT nor a 5d KK theory.

The isomorphism between

21+1
0 31+1

0 2 41+1
0

51+1
0

f -x, x

f -y, y

f -y, y

f -x, x

f -x, x
2

f -y, y

e-x e-y e-x e-y

2

e-x e-y

e-x e-y

61+1
0
f -x, x

e-x e-y

2

f -y, y

11+1
0

2

f -x, x

f -y, y

e-x e-y

(4.262)

and

21+1
0 31+1

0 2 41+1
0

51+1
0

e-y, f -x

e-x, f -y

e-x, f -y

e-y, f -x

e-y, f -x
2

e-x, f -y

x y x y

2

x y

x y

61+1
0
e-y, f -x

x y

2

e-x, f -y

11+1
0

2

e-y, f -x

e-x, f -y

x y

(4.263)

implies that

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

3

e6 + A

2
su(1)(1)

2
su(1)(1) (4.264)
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4.7 Rank 7

Applying S on S4 of

32+2+2+2
2 40

110

20
h-
∑

xi-
∑

zi f

4e+f

e

f e

56
0

2e+f

e-
∑

xi

4 2
f, f f, f

f -xi-yi, f -zi-wi x1-y2, x2-y1

zi-xi

62

e

e

2

f

72

e

e

yi-wi

f

2
(4.265)

leads to

= 1
sp(0)(1)

so(14) + S + 6F 2
su(6)(2)

3
su(3)(2)

(4.266)

The isomorphism between

21+1
0 31+1

0 2 41+1
0 51+1

0
f -x, x f -y, yf -y, y f -x, xf -x, x

2
f -y, y

e-x e-y e-x e-y

2

e-x e-y e-x e-y

71+1
0
f -x, x

e-x e-y

2

f -y, y

11+1
0

2

f -x, x

f -y, y

e-x e-y

61+1
0

f -y, y

f -x, x

2

e-x e-y

(4.267)
and

21+1
0 31+1

0 2 41+1
0 51+1

0
e-y, f -x e-x, f -ye-x, f -y e-y, f -xe-y, f -x

2
e-x, f -y

x y x y

2

x y x y

71+1
0
e-y, f -x

x y

2

e-x, f -y

11+1
0

2

e-y, f -x

e-x, f -y

x y

61+1
0
e-x, f -y

e-y, f -x

2

x y

(4.268)
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implies that

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

4

e7 + A

2
su(1)(1)

2
su(1)(1)

(4.269)

4.8 Rank 8

The isomorphism between

21+1
0 31+1

0 2 41+1
0 51+1

0
f -x, x f -y, yf -y, y f -x, xf -x, x

2
f -y, y

e-x e-y e-x e-y

2

e-x e-y e-x e-y

81+1
0
f -x, x

e-x e-y

2

f -y, y

11+1
0

2

f -x, x

f -y, y

e-x e-y

61+1
0

f -y, y

f -x, x

2

e-x e-y

71+1
0

f -y, y f -x, x
2

e-x e-y

(4.270)
and

21+1
0 31+1

0 2 41+1
0 51+1

0
e-y, f -x e-x, f -ye-x, f -y e-y, f -xe-y, f -x

2
e-x, f -y

x y x y

2

x y x y

81+1
0
e-y, f -x

x y

2

e-x, f -y

11+1
0

2

e-y, f -x

e-x, f -y

x y

61+1
0
e-x, f -y

e-y, f -x

2

x y

71+1
0

e-x, f -y e-y, f -x
2

x y

(4.271)

– 90 –



J
H
E
P
1
2
(
2
0
2
0
)
0
9
9

implies that

= 2
su(1)(1)

2
su(1)(1)

· · ·2
su(1)(1)

5

e8 + A

2
su(1)(1)

2
su(1)(1)

(4.272)
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