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Abstract: One interesting proposal to solve the black hole information loss paradox
without modifying either general relativity or quantum field theory, is the soft hair, a
diffeomorphism charge that records the anisotropic radiation in the asymptotic region.
This proposal, however, has been challenged, given that away from the source the soft
hair behaves as a coordinate transformation that forms an Abelian group, thus unable
to store any information. To maintain the spirit of the soft hair but circumvent these
obstacles, we consider Hawking radiation as a probe sensitive to the entire history of the
black hole evaporation, where the soft hairs on the horizon are induced by the absorption
of a null anisotropic flow, generalizing the shock wave considered in [1, 2]. To do so we
introduce two different time-dependent extensions of the diffeomorphism associated with
the soft hair, where one is the backreaction of the anisotropic null flow, and the other is
a coordinate transformation that produces the Unruh effect and a Doppler shift to the
Hawking spectrum. Together, they form an exact BMS charge generator on the entire
manifold that allows the nonperturbative analysis of the black hole horizon, whose surface
gravity, i.e. the Hawking temperature, is found to be modified. The modification depends
on an exponential average of the anisotropy of the null flow with a decay rate of 4M,
suggesting the emergence of a new 2-D degree of freedom on the horizon, which could be
a way out of the information loss paradox.
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1 Introduction

The idea of the black hole thermodynamics, first proposed by Bekenstein [3], Bardeen,
Carter and Hawking [4], has been the keystone in the black hole physics. It paints a picture
that black holes evaporate due to their own thermal radiations [5]. Such a radiation plays
an essential role in the scrutiny of the quantum theory of gravity due to its quantum origin,
i.e. particle creations near the horizon first realized by Hawking [6]. From the equivalence
principle, this Hawking radiation could be imitated by a properly accelerating observer
described by the Rindler coordinate [7–9], subtly hinting that the associated temperature,
i.e. the Hawking temperature could be related to the surface gravity on the horizon.

Another central property of the black hole is that a stationary black hole has no hair,
i.e. no parameter other than the mass, the angular momentum and the charges [10]. For
non-stationary black holes it has been shown [11, 12] that the hairs are quickly lost even
if successfully implanted. This so-named no-hair theorem (stemming from the Einstein
field equation), when combined with the Hawking radiation (depending only on the quan-
tum field theory in the curved spacetime), severely challenges our understanding of both
theories. Despite the classical black hole carrying no entropy, by the thermality of the
Hawking radiation some entropy is bound to be generated, and nowhere can that entropy
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be mitigated unless the horizon is bypassed. This is the information loss paradox [13, 14],
a direct violation of the unitarity, i.e. the foundation of the quantum mechanics used to
derive the Hawking radiation in the first place. Thus an inevitable conclusion is reached
that one of the three tenets: the no-hair theorem, the locality, the quantum mechanics,
has to be forfeited [15].

Several candidates of the resolution to the paradox have been proposed [15–18]. One
particular proposal, the black hole soft hair by Strominger has attracted attentions re-
cently [19–21], where the soft hair, i.e. the conserved charge of the BMS symmetry [22–24],
a residue of the diffeomorphism associated with the asymptotic Killing vector in asymptot-
ically flat spacetimes, would serve as the entropy storage. It would require the asymptotic
region near the event horizon to exhibit a copy of BMS symmetry, and a channel through
which the entropy on the horizon could be released, such that after the complete evapora-
tion of the black hole the unitarity could be preserved. Such a symmetry was discovered
in [1, 19], where the soft hair is successfully implanted at the linear order on the horizon of
a Schwarzschild black hole by an incoming anisotropic shock wave focused on the central
singularity, leaving only the covert channel to be found.

While the soft hair proposal may sound pretty convincing, there are several obstacles
ahead, mostly related to how soft hairs interact and release the stored entropy. One issue is
the inability to measure the soft hair within the BMS symmetry group itself as it is abelian,
indicating that we may not be able to measure the soft hair of a black hole directly from
afar. People have since been trying to enhance the symmetry [25, 26]. Meanwhile, it
became apparent that it is exceedingly hard to discern the soft hair from zero-frequency
gravitational waves (soft gravitons) [27, 28]. At the infrared limit, the off-shell graviton
generating the BMS symmetry is indistinguishable from the on-shell graviton, and should
not be considered as a standalone observable. By the factorization procedure one may
decouple the soft particles from the hard (non-zero-frequency) particles constituting the
BMS charges, and thus entirely negate the purpose of the soft hair.

To overcome the difficulties one should consider a nonlocal measurement that depends
on the near-black-hole geometry explicitly. One candidate would be the Hawking radiation,
the origin of all the hassle. Unfortunately in [1], the Hawking temperature was shown to
be insensitive to the shock-wave-induced soft hair on a Schwarzschild black hole, at least at
the linear order when away from the shock wave. Furthermore in [29, 30] by utilizing the
dressed state, the decoupled hard particle in the factorization procedure, the modification
to the Hawking radiation spectrum by the soft hair was derived and found to be merely
a phase shift. These negative results are not surprising given the lack of dynamics to
distinguish soft hairs from soft gravitons. To introduce more dynamics, in [2] a Vaidya
black hole was considered and a small perturbation to the surface gravity and the Hawking
temperature was found. However as we will explain in section 4.1, it is just an incarnation
of the diffeomorphism that BMS symmetry belongs to.

Still, this is expected given that the necessity of dynamics refers to the soft hair, rather
than the background in the case of the Vaidya spacetime. Therefore in this work, we will
generalize the generators of the BMS symmetry to incorporate the dynamics necessary to
distinguish between the “not-so-soft” hair induced by an incoming continuous anisotropic
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null flow, the diffeomorphism for the dressing procedure, and the “not-so-soft” gravitons.
As exhibited later, the “not-so-soft” hairs cause a temporal but nontrivial effect on the
surface gravity. Notice that these setups contain only the incoming flow, thus excluding
the back-reaction of the Hawking radiation necessary for a self-consistent picture. Never-
theless given the tie between the Hawking radiation and its negative-energy partner falling
into the black hole, the modification could still shed some light on the black hole informa-
tion problem.

The organization of the paper is as follows. In section 2, we briefly review the Bondi-
Sachs formalism that is essential for our analysis, and introduce two different transforma-
tions related to the dynamical soft hair. In section 3, we review the dressing in [27, 29]
and generalize it to a dynamical scenario. In section 4, we relate the Hawking temperature
to the surface gravity in a generic spacetime and demonstrate that the surface gravity
could be non-covariantly modified by the null flow. In section 5, we discuss the physical
implication and possible extension of our works.

2 Soft hairs on dynamical black holes

In this section, we will first introduce the BMS metric in the advanced Bondi coordinate,
where the vanilla soft hair is found as the conserved charge of the residue diffeomorphism
on the past null infinity I−, i.e. the BMS symmetry. For simplicity, we will not venture into
the issue of the other BMS symmetry on the future null infinity I+. Instead, we will focus
on the matter falling into the future horizon H that may model the gravitational collapse
and mimic the Hawking radiation partners. We will then discuss the shock-wave-induced
soft hair [1, 2], and generalize it to be time-dependent. In the process, we realize the
existence of another type of the covariant transformation, previously mistaken as merely
the transformation within the BMS group. These two together form the foundation for
further discussions in this work.

2.1 Asymptotic symmetry on an asymptotically Minkowski spacetime

In the seminal work by Bondi, Van der Burg, Metzner and Sachs (BMS) [22–24], the
authors found that an asymptotically Minkowskian region can be represented by a family
of metrics with appropriate fall-off conditions. In this region, one can impose different fall-
off conditions depending on the physical situations under consideration. The constraints
should be loose enough to contain the non-trivial solutions such as gravitational waves but
strict enough to rule out unphysical ones.

Considering an asymptotically Minkowski region I− along the past null direction on
a (3+1)−D manifold, one can introduce the advanced coordinates

(
v, r,ΘA

)
in the Bondi

gauge, where v is the advanced time, r the areal radius, and ΘA the coordinates of a
unit 2-sphere S2. Following the notation in [1], the gauge condition and the metric up to
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next-next-leading order in 1/r are

grA = grr = 0 , det
(
gAB

)
= det

(
r2γAB

)
, (2.1)

ds2 = −dv2 + 2dvdr + r2γABdΘAdΘB

+ 2m
r
dv2 + rCABdΘAdΘB −DBCABdvdΘA − 1

16r2CABC
ABdvdr

− 4
3r

(
NA − v∂Am−

3
32∂A

(
CBDC

BD
))

dvdΘA + 1
4γABCDEC

DEdΘAdΘB

+ . . . , (2.2)

where γAB is the metric of S2,m the Bondi mass aspect, NA the angular momentum aspect,
and CAB a traceless tensor (shear). The Latin indices A, B, C are lowered and raised by γ.
The asymptotically flat condition and the constraint equations for the dynamical variables
(m,NA, CAB) are

∂rm = ∂rCAB = ∂rNA = 0 , (2.3)

∂vm = 1
4D

ADBNAB + 1
8NABN

AB + 4πr2Tvv
∣∣∣
I−
, (2.4)

∂vNA = 1
4εABε

DE
(
DBDEDFCFD −DE

(
CBFNFD

) )
+ 1

2CABDDN
BD + v∂A∂vm− 8πr2TvA

∣∣∣
I−
, (2.5)

where Tµν is the matter stress tensor, NAB ≡ ∂vCAB the Bondi news and D the covariant
derivative projected onto S2. Despite the choice of the Bondi gauge, these dynamical
variables are not unique and are related by a local time translation on the 2-sphere, i.e.
supertranslation,

δv = f , δr = −1
2D

2f +O
(
r−1

)
, δΘA = 1

r
DAf +O

(
r−2

)
, (2.6)

where f is an arbitrary function on S2. Together with the Lorentz transformation they
form the BMS transformation. The associated generating vector field is

ζf = f∂v −
1
2D

2f∂r + 1
r
DAf∂A . (2.7)

Following the same procedure there would be another copy of BMS transformation
on another asymptotically Minkowski region I+ along the future null direction. However
as first shown by Christodoulou and Klainerman [31] and later reinterpreted by Stro-
minger [20], two transformations should be related by the antipodal matching condition
at the spatial infinity i0 to preserve the strong asymptotically flat condition that guaran-
tees their co-existence. This relation halves the amount of symmetries in the gravitational
scattering process.

2.2 Supertranslated Vaidya metric

First shown in [19] that the U(1) version of the BMS transformation can be applied to a
charged static black hole and naively extended to its horizon without any issue, Hawking,
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Perry and Strominger further demonstrated [1] that the supertranslation of a Schwarzschild
black hole can be actively generated by an incoming light-like shock wave. Unfortunately
in [29] the authors proved that the effect of the supertranslation on the Hawking radiation
or any other physical observable is insensible in the case of the Schwarzschild spacetime.
Therefore we have to consider more general setups, e.g. the Vaidya spacetime consisting of
an isotropically accreting black hole, which will serve as the basis of all the derivatives in
this work.

In the advanced Bondi coordinates the Vaidya spacetime can be written as

ds2 = gVaidya
µν dxµdxν = −V dv2 + 2dvdr + r2γABdΘAdΘB , V ≡ 1− 2M

r
, (2.8)

where the mass aspect M only depends on v. The associated energy momentum tensor is

TVaidya
vv = M ′

4πr2 ≡
∂vM

4πr2 . (2.9)

From now on we denote ∂v by the prime, and drop the superscript “Vaidya” as the Vaidya
spacetime will be the basis of all transformations. After the supertranslation the metric
becomes

ds2 = −
(
V − 2M ′f

r
− MD2f

r2

)
dv2 + 2dvdr −DA

(
D2f + 2V f

)
dvdΘA

+
(
r2γAB + 2rDADBf − rγABD2f

)
dΘAdΘB . (2.10)

The energy momentum tensor is transformed accordingly as

Tµν → Tµν + LfTµν , (2.11)

where LF is the Lie derivative with respect to the vector field defined in eq. (2.7), with the
function f being replaced by another function F . The transformation-induced anisotropies
are

LfTvv = M ′′f

4πr2 + M ′D2f

4πr3 , LfTvA = M ′DAf
4πr2 . (2.12)

However notice that a supertranslation is still within the reach of [29]. We need a more
dynamical system. In [2] the authors consider a setup with a light-like shock wave falling
into the black hole, similar to that of [1], except replacing the background Schwarzschild
spacetime with the Vaidya spacetime. The resulting shock-wave-induced supertranslation
(SST) can be written as

gµν → gµν + θ (v − v0)Lfgµν , (2.13)

where θ (v − v0) is the Heaviside theta function. This transformed metric describes two
Vaidya spacetimes, one vanilla and another supertranslated by f , cut and glued together
at v = v0.
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To find out the content of the shock wave, we extract terms with the Dirac delta
function δ (v − v0) from the energy momentum tensor as the following:

Tµν → Tµν
[
gµν + θ (v − v0)Lfgµν

]
, (2.14)

T δvv =
(
−1

4D
2
(
D2 + 2

)
f +M ′f + 3M

2r D
2f

)
δ (v − v0)

4πr2 , (2.15)

T δvA = 3M
2 DAf

δ (v − v0)
4πr2 , (2.16)

where Tµν
[
qµν
]
is the energy momentum tensor derived from a metric qµν and T δµν is the

perceived shock wave. From the response theory point of view, the “shock wave” from
the junction condition eqs. (2.15) and (2.16) activates the supertranslation when passing
through at v = v0.

We may compare these with the anisotropic part of the energy momentum tensor given
in [2]1

T SST
vv = 1

4πr2

(
µ̂+ Tδ (v − v0)

)
+ 1

4πr3

(
T (1)δ (v − v0) + t(1)θ (v − v0)

)
,

T SST
vA = 1

4πr2

(
TAδ (v − v0) + tAθ (v − v0)

)
, (2.17)

where

T = −1
4D

2
(
D2 + 2

)
f , T (1) = 3M

2 D2f , t(1) = M ′D2f ,

µ̂ = ∂v
(
θ (v − v0)M ′f

)
, TA = 3M

2 DAf , tA = M ′DAf . (2.18)

Apparently the energy momentum tensor found in [2] includes Heaviside theta terms in-
duced by the supertranslation as shown in eqs. (2.12). After subtracting those terms, we
are left with terms equivalent to eqs. (2.15) and (2.16)

T δvv = 1
4πr2

(
µ̄+Tδ (v−v0)

)
+ 1

4πr3T
(1)δ (v−v0) , T δvA = 1

4πr2TAδ (v−v0) , (2.19)

where

µ̄ = δ (v − v0)M ′f . (2.20)

The form of the energy momentum tensor above is the same as that the Schwarzschild
black hole, which shouldn’t be too surprising given eqs. (2.4) and (2.5)’s validity near the
event horizon of the Schwarzschild black hole as shown in [1].

However, even though the subtracted terms appear to be related to the supertransla-
tion, they do not stem from any proper coordinate transformation. An actual coordinate
transformation, without/with a supertranslation before/after the shock wave has passed,
should be generated by a piecewise vector field θ (v − v0) ζf which would spawn an addi-
tional term −δ (v − v0)M ′f/

(
2πr2) for Tvv. Eqs. (2.15) and (2.20) should be corrected

accordingly and only then the resulting energy momentum tensor TSvv can be regarded as
the shock wave.

1We only consider µ = 0 case in [2].
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2.3 Two different extensions to the time-independent supertranslation

In this subsection we will extend respectively the shock-wave-induced supertranslation and
the associated time-dependent coordinate transformation introduced in the last paragraph
to describe the anisotropic continuous null flow.

The first kind of the transformation is called “time-dependent supertranslation” (tST)
which is a generalization to the generating vector field defined in eq. (2.7) by adding time
dependency to the parameter f . TST as a coordinate transformation on I preserves all
physical observable up to a non-trivial Bogoliubov transformation (cf. section 3.3), and may
be regarded as a generalization to the supertranslation in the same way as the isothermal
coordinate of flat spacetime is to the Minkowski metric (cf. [32]), with the usual constraint
of invertability on I, i.e. the monogamy of the time and spherical coordinates f ′(v) < 1 and(
D2 + 2

)
f ′(v) < 1. Furthermore, in the same way as the piecewise generating vector field

introduced in the previous subsection being essential for the understanding of SST, tST
is also necessary for the second kind of the transformation about to be introduced below.
For more details about the applicability of this new coordinate transformation please refer
to section 5.

The second kind is called “flow-induced supertranslation” (FST) which generalizes
eq. (2.13) by substituting the piecewise supertranslation generated by an incoming shock
wave, with a time-dependent one generated by an incoming null flow. It transforms the
metric in exactly the same way as the time-independent supertranslation, except with
a time-dependent parameter f(v,ΘA). Since after its application the spacetime is not
diffeomorphic to the original, this transformation allows us to construct various black hole
systems with rich dynamics and modified surface gravities, which will be discussed in
section 4. Furthermore, as shown in [31] FST is the only form for the sub-leading part of
the initial condition at I− that leads to a stable asymptote, and thus is the most natural
extension one would consider after SST in [1].

We will demonstrate that these two are highly correlated, and together they form a
linear response function between the anisotropic incoming null flow and the transformation
parameter f .

According to the definition above, tST is obtained by substituting the time-independent
function f(Θ) in the generating vector field ζf by a time-dependent one f(v,Θ) (denoted
as f(v) for simplicity). The resulting coordinate transformation can be written as

gµν → gµν + Lf(v)gµν . (2.21)

The tST transformed (tSTed) metric of the Vaidya spacetime becomes

ds2 = −
(
V − 2M ′f

r
− MD2f

r2 +
(
D2 + 2V

)
f ′
)
dv2 + 2

(
1 + f ′

)
dvdr (2.22)

−DA
(
D2f + 2V f + 2rf ′

)
dvdΘA +

(
r2γAB + 2rDADBf − rγABD2f

)
dΘAdΘB .

When compared with eq. (2.10), the additional terms are clearly due to the time dependence
of tST, as they are all proportional to f ′ and vanish as we recovers the original time-
independent supertranslation. Notice that tST is a coordinate transformation, and its effect
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on the energy momentum tensor can be obtained simply by the covariant transformation

Tµν → Tµν + Lf(v)Tµν . (2.23)

The induced anisotropies of the energy momentum tensor are

T tST
vv = M ′f ′

2πr2 + M ′′f

4πr2 + M ′D2f

4πr3 , T tST
vA = M ′DAf

2πr2 . (2.24)

Parallelly as the generalization to eq. (2.13), the flow-induced supertranslation (FST)
describes the process of an anisotropic continuous flow falling into the black hole while in-
ducing varying amounts of supertranslation. It is defined as a non-covariant transformation
on the metric

gµν → gµν + Lfgµν
∣∣∣
f→f(v)

. (2.25)

The corresponding energy momentum tensor becomes

Tµν → Tµν + TFST
µν = Tµν

[
gµν + Lζf gµν

∣∣∣
f→f(v)

]
, (2.26)

where f → f(v) denotes the replacement of the time-independent f by a time-dependent
f(v) after applying the Lie derivative, and TFST is the anisotropic part of the energy
momentum tensor.

The resulting metric appears exactly the same as that of eq. (2.10) except with a
time-dependent f , and is quite different from that of eq. (2.22). The difference leads to
an additional anisotropic null flow, which can be written as an time integration over the
shock wave at v0

TFST
µν − T tST

µν =
∫ v0=v

v0=−∞
TSµν (v0) dv0 ,

TSµν (v0) ≡
(
TFST
µν − T tST

µν

)∣∣∣
f(v)→f ′(v0)θ(v−v0)

, (2.27)

where TSµν(v0) is the energy content of a shock wave passing through at v = v0 introduced
at the end of section 2.2, and v is the coordinate time.

While one can treat TS as the part of the anisotropy actually responsible for the defor-
mation of the manifold, and T tST as a compensation to the backreaction on the background
flow M ′ by the metric response in the past, given that the backreaction can be cast into a
coordinate transformation it is more natural to consider the above equation as the evidence
of a special gauge reachable from the Bondi gauge by a tST transformation at the linear
order, where the response relation between the energy momentum tensor anisotropy and
the metric deformation becomes linear. The combined transformation clearly has nice and
clean properties that we will discuss in section 5, and will be utilized for the computation
of the surface gravity in section 4.
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3 Dressing as a passive supertranslation

In this section we will introduce the dressing process as a mechanism to affect the Hawking
radiation, where the basis properly factorizing the Hilbert space of a scalar field in I+

described by the retarded version of eq. (2.2), i.e. the dressed states, are constructed and
shown to be different from usual Fourier modes. However in the case of supertranslation
the dressing process reduces to a phase shift, i.e. an active covariant transformation [29],
leaving the Hawking radiation unmodified.

Likewise in [27] it is shown that the zero-frequency gauge particles (corresponding to
the covariant transformation) are decoupled from the non-zero-frequency particles by the
dressing factorization, rendering the BMS transformation and the associated f(Θ) irrele-
vant to the black hole information paradox, invalidating the attempts in [1, 19]. We will
discuss the issue in section 5, and mainly focus on generalizing and applying the dressing
process to tST considered in section 2.3, and deducing the corresponding modification to
the Hawking radiation spectrum in this section.

3.1 Dressed scalar fields near the horizon

First noticed in [29] the dressing of a massless scalar field φ in I+ and the asymptotically
Rindler region near H of a supertranslated Vaidya metric can be approximated by a time
translation

φ̂ (v) = φ (v − f (Θ)) , φ̂ (u) = φ (u− f (Θ)) , (3.1)

where v and u are the advanced and retarded time, φ (v) and φ (u) are the incoming and
outgoing modes, and φ̂ is the dressed scalar field. Such a translation can be considered as
a covariant transformation of the scalar field by an supertranslation −f that cancels out
the passive supertranslation on the metric. The dressed field φ̂ would appear as if living
on the vanilla Vaidya metric (cf. [33]).

One may expand (un)dressed incoming/outgoing fields into Fourier modes ap, âp, bp,
b̂p as

φ (v) =
∫ ∞

0

dp√
2πp

(
ape
−ipv + a†pe

ipv
)
, φ̂ (v) =

∫ ∞
0

dp√
2πp

(
âpe
−ipv + â†pe

ipv
)
,

φ (u) =
∫ ∞

0

dp√
2πp

(
bpe

ipu + b†pe
−ipu

)
, φ̂ (u) =

∫ ∞
0

dp√
2πp

(
b̂pe

ipu + b̂†pe
−ipu

)
. (3.2)

Then the relation between the incoming and outgoing modes, i.e. the Bogoliubov transfor-
mation is

bp =
∫ ∞

0
dq
(
αpqaq + βpqa

†
q

)
, b̂p =

∫ ∞
0

dq
(
α̂pqâq + β̂pqâ

†
q

)
,

b†p =
∫ ∞

0
dq
(
α∗pqa

†
q + β∗pqaq

)
, b̂†p =

∫ ∞
0

dq
(
α̂∗pqâ

†
q + β̂∗pqâq

)
. (3.3)

Notice that the notation for the (un)dressed Bogoliubov coefficients is opposite of what is
employed in [29]. Given the simple relation between φ and φ̂, Bogoliubov coefficients could
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be related by

α̂pq ≡
∫∫

dkdl α̃upkαkl α̃
v
ql = ei(p+q)fαpq , β̂pq ≡

∫∫
dkdl α̃upk βkl α̃

v ∗
ql = ei(p−q)fβpq , (3.4)

where α̃u and α̃v are the Bogoliubov coefficients of the dressing procedure at I+ and H
respectively. We omit β̃ as we only consider coordinate transformations that preserves the
covering of the coordinates. The bi-spectrum of outgoing modes Spq could be expressed as

Spq ≡
〈
b†pbq

〉
= e−i(p−q)f

〈
b̂†pb̂q

〉
. (3.5)

Clearly the dressing only induces a phase shift factor, which is rendered 1 in the case of
the Hawking radiation as the bi-spectrum of the Vaidya metric contains a delta function
δ (p− q). Actually by the same argument it wouldn’t appear in any n-spectrum, leav-
ing the Hawking radiation completely unmodified. Obviously we need a time-dependent
transformation to generate a time-dependent phase shift for a non-trivial Bogoliubov trans-
formation.

3.2 A generic dressing procedure

Following the procedure in [29], we formalize the dressing due to a generic coordinate trans-
formation as a Bogoliubov transformation between the transformed proper basis (dressed)
and the not-yet-transformed improper basis (undressed), and study its effect on the Noether
currents.

Let us consider a Lagrangian L for a field χ, and its Noether currents (such as Tµν)

jµM = 1√
−g

λµM −
δL

δ∇µχ
δMχ , (3.6)

where g ≡ det gµν , δM is the variation against M -th generator, and ∂µλµM = δM (
√
−gL) is

the boundary term (will be neglected for brevity). Under a generic coordinate transforma-
tion X̂µ (Xν) and assuming the generators transform as a type (p, q) tensor, jµM transforms
contravariantly as

ĵµM = ∂X̂µ

∂Xν

((
p
⊗
i=1

∂X̂

∂X

)(
q
⊗
k=1

∂X

∂X̂

)) N

M

jνN ≡ J µνS N
M jνN , (3.7)

where J is the Jacobian from X to X̂, ⊗ is the tensor product, S N
M is the structure

function of the generators, and the indices for the (contra-)co-variant transformation of
the generators are omitted for brevity. Also from now on operators with or without hats
are operators in X̂ or X coordinates respectively. Assuming the existence of orthonormal
basis âp covering the Hilbert space, with the parameters p forming the generators of X̂µ as
∇̂µâp ≡ F̂µ

[
p
]
âp, the coordinate transformation could be recast in the orthonormal form

ĵµM
[
âp
]
≡ − δL

δâp

δM âp

F̂µ
= J µνS N

M jνN
[
âp
]

= −J µνS N
M

δL

δâp

δN âp

F̂ν
, J µν ∼̂

ap

F̂ν
[
p
]

F̂µ
[
p
] , (3.8)
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where F̂µ
[
p
]
âp ≡ ∇̂µâp. However if carelessly re-purposing âp for the X coordinates

without modifying the generating structure (denoted as ap, i.e. undressed modes), one
would find

δL

δâp

δM âp

F̂µ
= J µνS N

M

δL

δâp

δN âp

F̂ν
= J µνS N

M

δL

δap

δNap

F̂ν
, jµM

[
âp
]

= J µνS N
M jνN

[
ap
]
, (3.9)

âp = exp
(
F̂ν
[
p
] ( ∂

∂F̂ν
− ∂

∂F̂ν

)[
∂

∂p

])
ap , (3.10)

where ∂/∂Fν and ∂/∂F̂ν are the annihilator of Fν and F̂ν respectively, i.e. Xν and X̂ν .
Clearly the dressing procedure has two impacts on the observables. First, the dressing

induces a coordinate transformation, ensuring the general covariance at the macroscopic
scale. Second, the same coordinate transformation would alter the orthonormal basis in a
general covariant way, leading to a potentially non-trivial relation between the dressed and
undressed states.

Such a relation could be expressed using the Bogoliubov transformation

âp =
∫
dq
(∫

dX eip · F
−1
[
X̂
]
−iq · F−1

[
X
]
aq +

∫
dX eip · F

−1
[
X̂
]
+iq · F−1

[
X
]
a†q

)
, (3.11)

where F−1 is the inverse function of F and A ·B = AµB
µ is the inner product. Comparing

with the Bogoliubov coefficient in eq. (3.4), we can express α̃ as

α̃pq =
∫
dX eip · F

−1
(

X̂
)
−iq · F−1

(
X
)
. (3.12)

3.3 Time-dependent supertranslation case

In this subsection we will derive the modification to the particle states and the associated
Hawking radiation spectrum, due to tST introduced in section 2.3. For simplicity we only
consider almost radially outgoing modes in the Eikonal limit with q = ωdu+YAdΘA+O(f2)
where YA = O (DAf) is irrelevant to the derivation. Eq. (3.10) then reduces to up to O(f)

: eiωf : b̂ω ≈ bω , (3.13)

where : : is the normal ordering operator, bω ≡ bq with qu = ω, and f ≡ f(∂ω) is the
abuse of notation. Furthermore we utilize the Heisenberg picture to rewrite the relation as
: eiωf : b̂ω = eiωτ : eiωfτ : e−iωτ b̂ω, where fτ is f after time translation by τ . Now we may
impose the adiabatic condition f ′′(u)� 2πkT ≡ κ where kT is the Hawking temperature,
and approximate fτ by

fτ (x) ≈ f (0)
τ + f (1)

τ x+ 1
2!f

(2)
τ x2 − 2

3!f
(2)
τ κx3 + · · · ≈ f (0)

τ + f (1)
τ x+ f (2)

τ

1− (1 + κx) e−κx

κ2

≈ f (0)
τ + f (1)

τ x+ e

(
−κ+f (2)

τ

)
x
− 1

−κ+ f
(2)
τ

− e−κx − 1
−κ

, (3.14)

where f (n)
τ are the coefficients of this specific form of f at u = τ , that will be made clear

in section 5. Apparently the first and second terms correspond to a phase shift and a
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momentum rescaling respectively, while the rest leads to an Unruh effect that modifies the
Hawking temperature. Plugging back into the relation we have

bω ≈ e
iω

(
f

(0)
τ −f

(1)
τ τ

)
b̂−f

(2)
τ(

1+f (1)
τ

)
ω
≡ eiω(f−f ′u)b̂−f

′′

(1+f ′)ω , (3.15)

where the superscript above b is the modification to κH . The last equality is yet another
abuse of notation as τ is set to be u, and f , f ′ and f ′′ are now f

(0)
τ , f (1)

τ and f (2)
τ respectively

where the meaning of “f” will be clear in section 5. The effect on incoming modes ap can
be carried out similarly by inversing the relation. We then obtain the modification to the
Hawking spectrum

〈
g (q) b†qbq

〉
≈
(
1 + f ′

)2 〈
g (q) b̂†

−f ′′

(1+f ′)q b̂
−f ′′
(1+f ′)q

〉
=
(
1 + f ′

)2 〈
g (q) β̂∗κ→κ−f

′′

(1+f ′)qp β̂κ→κ−f
′′

(1+f ′)qp âpâ
†
p

〉
=
〈
g (q) b̂†q b̂q

〉∣∣∣
q→(1+f ′)q , κ→κ−f ′′

≈
〈
g (q) b̂†q b̂q

〉∣∣∣
κ→κ−κf ′−f ′′

, (3.16)

where g(q) is the density of states at energy q. The effect thus is equivalent to the Doppler
shift and the Unruh effect due to the motion of the future null asymptotic observer. The
physicality of such a motion is verified by the proper acceleration felt by a incoming par-
ticle along dv direction, which happens to be ∂u∂uf , i.e. the amount needed to explain the
Unruh effect.

Let us now clarify the assumptions made (Eikonal limit, adiabatic condition f ′′(u)� κ,
and the specific form of f as described by eq. (3.14)) and thus the setup chosen in this
subsection. First, the Eikonal limit we take guarantees the “quasi-locality” of the modes,
which in conjunction with the other assumptions leads to a nearly Rindler patch at I
that leads to eq. (3.16) [34]. The global properties of I, however, can be very different
from that of Rindler (e.g. tSTed or FSTed Vaidya considered in section 4). Secondly, it is
now clear that eq. (3.14) ensures the thermality of the spectrum, without which the two
point correlation function could be non-thermal and non-local [32, 35], and would be too
complicated for us to analyze. On the other hand given the adiabatic condition f ′′(u)� κ,
in principle an analytic formula for the two point correlation function can be derived by
the stochastic field approximation [36]. However, we will leave it as a future work given its
irrelevance within the context of this work.

Finally, notice that the dressing of the incoming modes, i.e. ∂vf is irrelevant to the
Hawking radiation. Therefore the associated Tvv couldn’t be memorized by the Hawking
radiation through the dressing. This part of the information thus requires another channel
to register, which we will discuss in the next section.

4 Hawking radiation of dynamical black hole

Another important aspect of the Hawking radiation is the horizon and its associated surface
gravity. In this section we first adopt the ray-tracing method presented in [34] and derive
the relation between the Hawking temperature and the in-affine surface gravity for a generic
spacetime. Then we demonstrate that from the null foliation point of view, FST and the
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associated tST are completely indistinguishable after applying the 1st order approximation
in f . To wit, FST (including SST case in [2]) merely induces a spurious effect on the surface
gravity, a byproduct of the covariant transformation.

However we realized that unlike the original Vaidya black hole, for the FSTed one
the infinite redshift surface does not coincide with the apparent horizon. The discovery
indicates that the singular structure of the null foliation is not simple and would be smeared
by a näive 1st order approximation in f . To eradicate this issue we construct an exact
null foliation, carefully apply the approximation, and obtain the correct location of the
apparent horizon and its associated surface gravity up to 1st order in f . The physical
meaning of the exact foliation, the corrected apparent horizon and its surface gravity will
be discussed in section 5.

4.1 Ray-tracing, surface gravity, and the covariance of the Hawking
temperature

As shown in [34], given a double null foliation with the advanced and retarded time
(v, u) [37], we can construct a ray-tracing function v = p(u) to mark the center of the
foliation where incoming rays from I− labelled v “reflect” toward I+ labelled u, and the
Hawking temperature κH under the adiabatic condition |κ̇H | � κ2

H (Ḟ ≡ dF/du) in natural
units h = G = 1 becomes

2πkT ≡ κH = − (ln ṗ)ṗ . (4.1)

We have to emphasize that the ray-tracing function is actually an abuse of notion by
virtue of ignoring the ray direction. With isotropy, it is fine to focus only on the quotient
space of S2, but without isotropy, it is exceedingly dangerous as v in the ray-tracing function
refers to (v, Θ̃A) rather than to the advance time (v,ΘA) associated with u, where ΘA and
Θ̃A are respectively the outgoing and the incoming directions. To circumstance this issue
we choose guA = 0 and transport du from ΘA to Θ̃A, allowing us to properly construct
the level set v − p (u) and its tangent vector ∂

∂t ∝
∂
∂u + ṗ ∂

∂v embodying the ray-tracing
function, as shown in figure 1. Notice that the other choice, i.e. transporting dv, could lead
to outgoing rays trapped by the black hole, thus unfavorable.

For the sake of simplicity we will introduce the null geodesic congruence n, l as

lµ ≡ ∇µv , nµ ≡ ∇µu , nµl
µ ≡ −2Ω−1 , ṗ = tµ∇µv

tµ∇µu
→ tµ ≡ Υ (lµ + ṗ nµ) , (4.2)

where Ω is the redshift, Υ is the time dilation factor, and the Greek indices are raised or
lowered by gµν . The Hawking temperature thus is related to a trajectory (assumed to be
geodesic) describing the event horizon of a classical black hole, falling materials in the no-
horizon proposal, etc. . From the geodesic equation ∇ttµ = 0 where ∇X ≡ Xµ∇µ, we have

0 = Υ−1∇t (Υlµ + Υṗ nµ) = (∇t ln Υ) lµ +∇t ln (Υṗ) ṗ nµ + Υṗ (∇nlµ +∇lnµ)
= ∇t ln Υ lµ +∇t ln (Υṗ) ṗ nµ −Υṗ (∇n ln Ω lµ +∇l ln Ωnµ) + S2 terms ,
∇t ln Υ = Υṗ∇n ln Ω , ∇t ln (Υṗ) = Υ∇l ln Ω , (4.3)
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𝑣, ෩Θ𝐴

𝑢, Θ𝐴

𝛻𝑙𝑙 = 0

𝑑𝑣 = 𝑙𝜇𝑑𝑥
𝜇

𝛻𝑛𝑛 = 0

𝑑𝑢 = 𝑛𝜇𝑑𝑥
𝜇

𝜕𝑡

𝑑𝑢

𝑑𝑣 = ሶ𝑝𝑑𝑢

Figure 1. Penrose-like diagram for the double null foliation (u, v), with left and right parts
representing hypersurfaces along incoming and outgoing directions respectively. The blue and
yellow arrows represent the congruence of u and v, while the green arrow being the gradient along
the tangent vector ∂t underlying the ray tracing function v = p(u). Notice that du is already living
on the same slice as dv.

where dΘA terms are neglected for simplicity. Then the Hawking temperature is trans-
lated as

κH = −∇t ln ṗ
∇tu

= −Υ (∇l ln Ω− ṗ∇n ln Ω)
−2Ω−1Υ = κL − ṗ κN , (4.4)

∇(Ωl) (Ωlµ) ≡ 2κLΩlµ , ∇(Ωn) (Ωnµ) ≡ 2κNΩnµ , (4.5)

where κL is the familiar in-affine surface gravity of the in-affine null geodesic 1-form

κL = −1
4n

µ∇LLµ , L ≡ Ωl , Lµn
µ = −2 . (4.6)

Interestingly we arrive at a form compatible with the first law of black hole thermo-
dynamics [38].

Surprisingly the Hawking temperature originating from the globally defined Bogoliubov
transformation could be recast into a local form without relying on any globally defined
object such as the Killing horizon or the event horizon, indicating that the emission itself
is a local event. At every point multiple ray-tracing functions exist, each relating one
outgoing ray u to its associated incoming ray v. The perceived Hawking radiation thus is
the integral effect along the line of sight, aggregating different rays “reflected” at different
locations with varying temperatures. The observed radiation temperature then should be
the average energy of observed particles.

Such an integration would be an interesting topic that deserves further investigation.
However for simplicity we would approximate it by the dominating part, i.e. a region with
the highest surface gravity. With the adiabatic condition the apparent horizon should be
a reasonable choice, and from now on would be considered as the emitting surface. More
thorough discussion about the physical implication of [34] and the choice of the emitting
surface will be presented in section 5.

The apparent horizon, a.k.a. the marginally trapped closed surface, is a closed surface
that separates the spacetime along the line of sight into a trapped region where classically
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no light can escape and another where light may escape should it never cross the horizon
again. It is defined by the congruences l, n and their associated expansion rates of the
surface area element θL, θN as

θL = (lσnσ)−1∇µlµ = ∇µLµ − 2κL = 0 , θN = (lσnσ)−1∇µnµ < 0 . (4.7)

Finally given ṗ ∝ e−
∫
κHdu a horizon would quickly approach nullity after its formation,

leading to κH ≈ κL ≡ κ. Our goal, i.e. to find out the Hawking temperature of a FSTed
or a tSTed black hole, thus reduces to the setup of the 1-form L and the identification of
the apparent horizon.

Obviously both the surface gravity and the apparent horizon depend only on the ob-
server’s line of sight, and transform covariantly under coordinate transformation. For exam-
ple, tST would act on the surface gravity at the apparent horizon of a Vaidya black hole as

κVaidya = κL
(
v, r = rH (v) ,ΘA

)
= 1

4M (v)

→ κtST = 1
4M (v + f (v,ΘA)) ≈

1
4M (v)

(
1− M ′ (v)

M (v) f
(
v,ΘA

))
, (4.8)

where rH is the radius of the apparent horizon. Interesting the surface gravity after super-
translation coincides with that of [2], suggesting that maybe we can interpret the effect of
FST on the surface gravity as an active covariant transform. If so FST would be rendered
useless for the resolution of the information loss paradox, as least in the case of the surface
gravity. We will falsify the above statement in the following subsection.

4.2 Perturbative analysis of the flow-inducedsupertranslated spacetime

In this subsection we will test whether the surface gravity on the apparent horizon of a
FSTed Vaidya black hole truly has the same form as that of a tSTed Vaidya black hole.
Since FST can be interpreted as a metric deformation procedure as depicted in eq. (2.25),
we would expect the congruences L and n that foliate the spacetime into 2-spheres to
acquire a similar deformation

Lµ → Lµ + LfLµ
∣∣∣
f→f(v)

+O(f2) , nµ → nµ + Lfnµ
∣∣∣
f→f(v)

+O(f2) . (4.9)

Indeed they are null geodesic up to O(f). Furthermore the angular components can be
extended by additional terms of O(f) constant along the geodesic at the leading order,
denoted as ∆LA and ∆nA. These two terms correspond to the choice of the line of sight,
and are necessary as the normal forms on the apparent horizon of the FSTed Vaidya black
hole, contrary to that of the Vaidya black hole, may not be completely radial. An additional
scaling n → ηn , L → L/η is also mandatory for n to be a congruence, i.e. dn = 0, but
given that η only affects the surface gravity as κL → κL/η+∇Lη−1/2 we may ignore it for
now. The resulting 1-forms up to O(f) become

nFST
v ≈−1 , nFST

r ≈ 0 , nFST
A ≈−DAf−∆nA , (4.10)

LFST
v ≈−V + 2M ′f

r
+MD2f

r2 , LFST
r ≈ 2 , LFST

A ≈−DA
(
D2f+V f

)
+∆LA . (4.11)
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The associated expansion rate, the horizon radius, and the surface gravity on the horizon are

θFST
L = 2

r

(
V − 2M ′f

r
+(2V −1)D

2f

2r +D
A∆LA
2r

)
+O(f2) , (4.12)

rFST
H ≈ 2M+ 1

2
(
4M ′f+D2f−DA∆LA

)
, κFST

H ≈ 1
4M

(
1−M

′

M
f+D

A∆LA
2M

)
, (4.13)

where rH and κH are derived after dropping terms of O(f2). As expected ∆LA is directly
related to the horizon deformation and the modification to the surface gravity. To deter-
mine ∆LA and correspondingly κH , we need the constraint that L and n are the normal
1-forms of the horizon:

∇AθL = −1
2 (LA∇n + nA∇L) θL . (4.14)

Up to O(f) the above relation can be written as a 1st order differential equation in ∆LA
without the presence of f . This f -independency suggests that the outgoing ray from the
horizon of FSTed black hole remains radial, i.e. ∆LA = 0. This is a manifestation of the
fact that the tidal Love number of a 4−d black hole is identically zero.

Now we may turn back to the factor η dropped before. By solving d
(
nFSTη

)
= 0 we

have η ≈ 1+f ′. Consequently the perturbed surface gravity κH = 1
4M

(
1− M ′

M f − f ′
)
−f ′′

where first two terms resembles that of eq. (4.8) and can be attributed to an active covariant
transformation on I−, while the other two terms have the same form as the Doppler effect
and the Unruh effect derived in section 3.3, and is related to another active covariant
transformation on I+ due to the radial velocity of the observer, which in turn comes from
the tie between the observer and the global clocks (v, u) in section 4.1. We will discuss the
choice of foliation more thoroughly in section 5.

Apparently these effects are all erasable by tST, and thus can not be considered a probe
to the matter flow. However as the result above is obtained after applying the 1st order
approximation in f , it may be invalid near the horizon. To check it we introduce the infinite
redshift surface Ω → 0. Should the infinite redshift surface deviates from the apparent
horizon, the linear approximation of the expansion rate θL fails, as it would contain at
least a node corresponding to Ω → 0 whose cancellation with a pole is not guaranteed.
Assuming a constant M for simplicity, the radius of the infinite redshift surface for the
outgoing null geodesic with ∆LA = 0 is

r
∣∣
Ω→0 = 2M + 2M ′f + 1

2D
2f + 1

2

∫ ∞
v

e−
ṽ−v
4M D2f ′ (ṽ) dṽ +O(f2) , (4.15)

where ṽ is the dummy variable. Indeed the infinite redshift surface does not coincide with
the apparent horizon, suggesting the failure of the linear approximation near the horizon.
In the following we will tackle this issue by delaying the perturbative analysis for as long
as possible.

4.3 Horizon deformation on an exact supertranslated black hole

As discussed before an accurate form of the null 1-form L near the horizon is essential for
the precise location of the horizon. However L is inherently ambiguous as both tST and
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FST are carried out by the Lie derivative, precluding possible higher order terms of f from
the metric. Luckily as will be discussed in section 5, the combined transformation of FST
and tST as depicted in eq. (2.27) happens to be the unique, exact generator of the BMS
symmetry without gravitational waves or the outgoing flow. While the associated metric

ds2 = gµν + Lfgµν
∣∣∣
f→f(v)

− Lf(v)gµν = −
((

1− 2M
r

) (
1− 2f ′

)
−D2f ′

)
dv2

+ 2
(
1− f ′

)
dvdr − 4rDAf ′dvdΘA + r2γABdΘAdΘB , (4.16)

can be written in an elegant form, what matters most is the exact form of the null normal
1-form:

Lv = −
(

1− 2M
r

) (
1− 2f ′

)
+D2f ′ −DA

(
f ′ + ψ/r

)
DA

(
f ′ + ψ/r

)
,

Lr = 2
(
1− f ′

)
, LA = 2DAψ , (4.17)

where ψ
(
v, r,ΘB

)
is the lensing potential and 2DAψ substitutes ∆LA without loss of

generality. The overall scaling 1/η is dropped due to its indistinguishability from tST on
I+. The associated expansion rate θL (omitted for brevity) is a Padé series of order [4/2] in
r multiplied by r−3, with 4 zeros and 2 non-trivial poles where half of them are spurious at
2Mr = e(1∨3∨5)πi/3DAψDAψ + O(f3), while the other two zeros and the pole respectively
are at

r0,±= 2M+ 1
2
(
2MD2f ′−D2ψ±∆

)
+O(f2) , r∞= 2M+2MD2f ′+O(f2) , (4.18)

∆2≡
(
2MD2f ′+D2ψ

)2
+4DAψDB

(
ψ+2MD2f ′−4Mψ′

)
. (4.19)

By the cosmic censorship conjecture, we expect that a pole (singularity) should be hidden
behind a zero (apparent horizon), leading to a requirement of O(f) that suggests a natural
substitution

DAψDB
(
ψ + 2MD2f ′ − 4Mψ′

)
≡ DAψDBα & 0 , (4.20)

4Mψ′ ≡ ψ + 2MD2f ′ − α , ∆2 ≡
(
2MD2f ′ +D2ψ

)2
+ 4DAψDBα . (4.21)

Surprisingly eq. (4.20) is actually sharp, i.e. the cosmic censorship conjecture is fulfilled.
We will prove this statement by requiring nµ to be exact on the horizon as it is foliated by
θL and v.

From eq. (4.14) we may obtain nA on the horizon up to O(f) as

nA|H= ∇µθL∇
µθL

(∇LθL)2 LA−
2∇AθL
∇LθL

= 1
2M ′

(
DA

(
−2MD2f ′+D2ψ−2ψ∓∆

)
+ 2D2α

(
2MD2f ′+D2ψ∓∆

)
+2DBαDB (ψ+α)

±∆(2MD2f ′−D2ψ±∆) DAψ
)
.

(4.22)

Notice that all components are evaluated exactly except for ∇r∂Aψ which is integrable
along geodesic only upto O(f). Luckily the higher order terms does not affect nA at O(f).
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Now we may check the close condition dnA|H = 0 where d is the exterior derivative on
the horizon. As the exterior derivative commutes with the projection operator, the only
solution at O(f) is apparently α = 0. The lensing potential on the horizon then can be
solved by eq. (4.21) as

ψ (v) = −1
2

∫ ∞
v

e
−
∫ v1
v

1
4M(v2)dv2D2f ′ (v1) dv1 +O(f2) . (4.23)

Clearly the lensing potential depends on the exponential average of the metric function f ′

directly related to the anisotropic part of the radial energy flow, with a decay time of 4M
toward the future.

With α = 0 the radius of the zeros in eq. (4.18) reduces to

rE = 2M + 2MD2f ′ +O(f2) , rH = 2M −D2ψ +O(f2) . (4.24)

Notice that with α = 0 all three singular structures of θL are near r = 2M , and thus the
black hole remains a 2-sphere. One of the zeros at rE actually coincides with the pole at r∞
and degenerates into the ergosphere (Lv → 0), leaving the other at rH the apparent horizon.

Now we may turn to the scaling factor η. By solving the geodesic equation up to O(f2)
and the close condition dn = 0 up to O(f), we have η and the surface gravity respectively as

η = 1− χ′ +O(f2) = 1− 1
M ′

(
D2 − 1

)
ψ′ +O(f2) , dχ|H ≡ nA , (4.25)

κH = 1− 2f ′ −DA (f ′ + ψ/r)DA (f ′ + ψ/r) r/M
4Mη (1− f ′)

(
r

2M
)2 − f ′′

1− f ′ −
∇Lη
2η2

= 1 +D2ψ/M − f ′ + χ′

4M − f ′′ + χ′′ +O(f2) . (4.26)

Notice that any effort of compensating the temperature anisotropy by the dressing, thus
hiding the information about the energy flow, would be futile as D2ψ depends on the flow
differently from that of section 3.3, and thus unavoidably requires the observer to access
the information. We thus conclude that the Hawking temperature is indeed modified by
the energy flow on the horizon, and one may reconstruct the flow by recording the Hawking
temperature at I+. We will more thoroughly discuss the implication of this discovery on
the information loss paradox in section 5.

5 Discussion and future works

The response function and the conserved charge of the exact metric. In
section 2.3, tST is introduced as a coordinate transformation that in conjunction with
FST forms a linear response relation between the parameter f and the energy momentum
tensor T (linearized conserved charge of BMS symmetry) at O(f). More precisely tST
within this context is the unique gauge choice where FST as the generator of T at non-zero
frequency is integrable along advance time dv.

This statement is in fact accurate even for a large f , as the nonlinear terms of T can
be proven to be of the form T1 (f ′) + ∂tT2 (f ′), composed of only the local quantity f ′ and

– 18 –



J
H
E
P
1
2
(
2
0
2
0
)
0
8
9

a boundary term (presumably anisotropy self-energy). This would suggest the existence
of a conserved charge along the orthogonal direction of dv. Indeed ∇µ (Tµνnνr ) = 0 where
nνr ∂ν = ∂r is the null geodesic congruence of v. Since nr is the asymptotically Minkowski
direction of the BMS metric introduced in subsection 2.1 and it is indeed an asymptotic
Killing vector field, the combined transformation of FST and tST fulfils our initial intent,
i.e. to generate the BMS charge dynamically, and perhaps minimally as the incoming
gravitational wave vanishes and I+ remains vacuum.

Notice however that there are several caveats. First, we are not claiming the capa-
bility of generating large supertranslation globally for an arbitrary spacetime satisfying
eq. (2.1), but merely one possible way for the Vaidya spacetime. Second, neither FST
nor tST is an accurate depiction of the combined transformation, and either of them may
be inextensible to the horizon. In fact, we are only certain of the first order form of the
combined transformation, as it is the unique way of writing down an integrable dynamical
generator of the BMS charge. Finally, although tST should be regarded as a gauge fixing
of FST and even may be inextensible to the horizon, tST as a coordinate transformation is
well-defined on the null asymptotic region. What is presented in section 3.3 remains valid
for the asymptotic observer. Notice that while in [39] tST at the linear order is shown to
be extendable to the horizon of a Kruskal black hole and forms a non-abelian group, it
may not be the case for a generic asymptotically flat spacetime.

The choice of the emitting surface. As discussed in section 4.1, the choice of the
emitting surface is of paramount importance. We adopt the apparent horizon as it is lo-
cally the region with the greatest acceleration still capable of emitting null rays. However,
that choice is merely an approximation as the null rays have to reach I+ globally, i.e. they
must originate from the event horizon. Unfortunately to locate the event horizon one must
conduct the ray tracing which can only be solved perturbatively or numerically by inserting
template forms of f . Thus it remains an open question whether the event horizon and the
apparent horizon are close enough that we may substitute one by the other at O(f).

Choice of the foliation and its relation to the dressing. In section 4.2, we intro-
duce an additional factor η for the incoming null vector field n to ensure the close condition
dn = 0 introduced in section 4.1 where the closeness is required for the global synchroniza-
tion of the clock. However for local observers such a condition is superficial, and one may
consider whatever apparatus setup that best suits, e.g. observers synchronized according
to the asymptotic Killing vector nr (the condition we choose in section 4.2 and 4.3).

Notice that a rescaling of n by η modifies κ by κ → κ/η + ∂vη
−1. In the case of

section 4 where η = 1+f ′, the modification reduces to κ→ κ−κf ′−f ′′, and by comparing
with eq. (3.16) we claim that it can be interpreted as an active tST on I+. While this may
appear as an abuse of notion given that in section 4 f ′ refers to f ′(v) whereas in eq. (3.16) it
corresponds to f ′(u), the existence of ṗ ∝ e−κu in section 3.3 (p is the ray-tracing function
introduced in section 4.1) suggests otherwise. Indeed by redefining η = dũ

du ≡ 1 + f̃ ′ where
ũ is the observer clock and u is the global clock, and assuming the adiabaticity of f̃ ′ in v
space near u = τ , we have f̃ ′τ ≈ f̃

(1)
τ + f̃

(2)
τ (p (u)− p (τ)). Given the adiabaticity of κ, p (u)
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can be approximated as p (u) − p (τ) ≈ ṗ (τ)κ−1
(
1− e−κ(u−τ)

)
, and thus f̃τ (u) becomes

f̃ (0) + f̃
(1)
τ u+ f̃

(2)
τ ṗ (τ)κ−2

(
κ (u− τ)− 1 + e−κ(u−τ)

)
. While f̃τ (u) is not exactly the same

as fτ in eq. (3.14), the difference is minute enough (logarithmic) for us to directly identify
one as the other, thus providing a concrete ground for the form chosen in section 3.3.

Deformation of the apparent horizon. Although as shown in section 4.3 the surface
gravity on the apparent horizon is modified by the varying anisotropic incoming null flow,
this evidence alone still cannot refute the argument that the modification is induced by the
dressing due to a special tST. To arrive at a definite conclusion we consider the deviation
of the Hawking radiation intensity from that emitted by a perfect sphere.

Since the system is perfectly foliated by v, the additional lensing experienced by the
outgoing null geodesic while traveling toward I+ with weak lensing approximation can
be integrated as 1

4M
(
−
(
D2 + 1

)
f (v) +

∫∞
v dv1D2f ′ (v1) /ω

(v1−v
4M

))
+ O

(
f2,M ′

)
, where v

is the location of the emission and ω is the Wright omega function, i.e. the inverse of
F (x) = x+ log x. The two terms correspond to respectively the apparent lensing induced
by the choice of gauge, and a tail of f ′ suppressed by 1/r∗ along the light cone where r∗ is
the tortoise radius.

Obviously it is different from that of eq. (4.23), and thus only when the incoming flow
becomes isotropic can both the temperature and the intensity of the Hawking radiation
appear isotropic simultaneously. This is exactly the same as the CMB weak lensing where
the lensing anisotropy induced by the foreground can be isolated from the temperature
anisotropy, even if they both originate from the primordial perturbation. However given
that the exact location of the event horizon remains obscure, we can not rule out the
possibility that the perturbation of the event horizon radius happens to be the same form
(proportional to the one above) as that due to the dressing. Luckily such a scenario is
not very persuasive (and will be ignored in the following discussion) as the integral form
violates the causality by requiring the entire history of the incoming flow to construct.

Dressing in a time-dependent system. As shown in [27, 29], the dressing (a.k.a. the
soft factorization) as a coordinate transformation could separate the soft gravitons from
other fields, rendering the supertranslation induced by the energy momentum tensor and
the hard gravitons indistinguishable from the soft gravitons. This discovery invalidates
most attempts to explain the information loss paradox by the soft graviton. To dodge
the soft factorization we introduce FST as an induced transformation by an incoming
anisotropic continuous null flow and compare it with a mimicking coordinate transformation
(tST) in section 3.3 and 4.3. However, we have yet considered to what degree could “not
so soft” gravitons mimic FST.

Given the incapability of the gravitational wave to generate the convergence it is obvi-
ous that the Hawking radiation intensity introduced in the previous subsection should serve
as the testimony of the incoming flow. With three observables: the proper acceleration (for
fixing the gauge), the temperature and the intensity of the Hawking radiation originating
from the black hole, an observer on I+ (without loss of generality with negligible outgo-
ing matter flows and only a central black hole) in principle can distinguish incoming null
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flows trapped inside the black hole from free-streaming gravitational waves. To testify our
argument, however, requires further investigation.

Evasion of the no-hair theorem and the implication to the information loss
paradox. The no-hair theorem is the foundation of the black hole thermodynamics and
the precursor to the information loss paradox. To escape the paradox, i.e. to allow infor-
mation about the Hawking radiation to exist outside of the black hole for the observer to
receive, one must forego the no-hair theorem that forbids any measurable independent of
the mass, the angular momentum and the charges. The main contribution of this work is
to dodge the theorem by introducing varying anisotropic flow that can be measured by the
macroscopic properties of the Hawking radiation, or equivalently by hanging a rope near
the horizon and measure the perceived force.

We have to emphasize that only the classical properties of the spacetime (e.g. the
Hawking radiation intensity, the lensing potential and the surface gravity) are considered
in our work. To retrieve the information entangled with the Hawking radiation, how-
ever, is a completely different feat and requires more throughout analysis of the horizon
dynamics. One particular way of approaching this issue is to generalize the black hole
thermodynamics [38] by incorporating the spatial-temporal behavior of the Hawking radi-
ation, and reverse-engineer the interaction between the impulsing Hawking radiation and
the responding radiation from the response function.

6 Conclusions

We generalize the setup of [1, 2] where an anisotropic shock wave falls into the central
Vaidya black hole and generates BMS charges at the linear order, to a setup with an
incoming continuous anisotropic null flow generating BMS charges on the fly. In the process
we realize the existence of an asymptotic coordinate transformation other than the BMS
transformation, which serves as the dressing of the hard particles in the soft factorization
procedure. Together they form a linear response relation with the energy momentum tensor
and can be shown to be the exact BMS charge generator valid well beyond the horizon,
which is associated with a current flowing directly into the black hole. We also carry out
the effect of the dressing on the Hawking radiation, which happens to be equivalent to the
Doppler effect and the Unruh effect of a non-stationary observer at the future null infinity.

Furthermore, we find a modification to the surface gravity as shown in eq. (4.26)
up to the linear order, an effect previously gone unnoticed due to the vanishing of the
linearized tidal Love number in a 4−d black hole system. This modification depends on
the exponentially weighted average of the anisotropic energy flow, an encoding different
from that of the usual line-of-sight integration involving the tortoise coordinate, and thus
is unlikely to originate from the dressing on the horizon. This new effect can be regarded as
an access to the BMS charges on a black hole without the intervene of the no-hair theorem,
and could be the first step toward the resolution of the information loss paradox, with lots
of possible extensions for further study.
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