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1 Introduction and results

The Batalin-Vilkovisky (BV) formalism [1, 2] gives a formulation of any classical field
theory as a differential QBV = {SBV,−} on the graded commutative algebra generated by
fields, antifields, ghosts, antifields of ghosts etc. and all of their derivatives. Here, QBV is
called the BV differential, SBV is the BV action and the Poisson bracket is induced by the
canonical symplectic form on BV field space. This differential graded commutative algebra
is precisely the dual of a strong homotopy Lie algebra or L∞-algebra, for short, cf. [3] and
references therein.

Recall that an L∞-algebra L consists of a graded vector space L = ⊕n∈ZLn together
with a set of higher products µn : L∧n → L for all n ∈ N+. The lowest product µ1 is a
differential. For an L∞-algebra arising from a field theory, it encodes the free, linearized
aspects of the theory, such as gauge symmetries and equations of motion. All higher
products µn≥2 describe interactions, covariantizations of linearized gauge symmetries, etc.

This perspective is useful for a number of applications, in particular for discussing
perturbative quantum field theories, see e.g. [4–9]. Any L∞-algebra comes with a family
of quasi-isomorphic (read: equivalent) L∞-algebras known as minimal models. For an L∞-
algebra corresponding to a field theory, the graded vector space underlying the minimal
models contains the asymptotically free fields while the higher products are precisely the
tree level scattering amplitudes [3, 4, 6, 10]. Explicitly, the minimal model is computed
via the homological perturbation lemma [11–13], see also [14–16], and this lemma produces
the tree level perturbation expansion usually employed in quantum field theory.

As pointed out in [16, 17], the BV formalism gives a clear indication of how to extend
the homological perturbation lemma to capture also the full quantum case. This leads
to a construction of minimal models of quantum or loop homotopy algebras as introduced
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in [18, 19]. While the focus in [16, 17] was mostly on computing the effective action via
the homological perturbation lemma in the BV picture, the dual, coalgebra picture was
explored in [8], where very general recursion relations for quantum scattering amplitudes
were derived. Both perspectives generate the familiar expansion in Feynman diagrams,
merely in two opposite and dual directions.

An evident question in this context is if and how precisely the homological perturbation
lemma reproduces the exact symmetry factors of the individual Feynman diagrams. It is
the main goal of this paper to provide an elementary and direct answer to this question.

We start with a review of scattering amplitudes, homotopy algebras and the homo-
logical perturbation lemma. We explain in detail how the homology algebraic approach
leads to what we call HPL-diagrams, which are closely related to Feynman diagrams. To
be explicit and expose the crucial aspects of the approach, we limit ourselves to real scalar
field theories with polynomial potentials. This also allows us to use A∞-algebras over
L∞-algebras, which makes our discussion even simpler and more direct.

Next, we give a concise formula for general symmetry factors of Feynman diagrams for
general scalar field theories, using the usual generating functional approach and extending
the result of [20]. We then begin the comparison with HPL-diagrams with a few examples,
proving a number of lemmata about their shapes and symmetry factors. Altogether, these
lemmata show that in the computation of quantum scattering amplitudes via the homo-
logical perturbation lemma, all Feynman diagrams are indeed taken into account with the
correct symmetry factors.

While our result is certainly not surprising, we hope that our direct and explicit discus-
sion, which is complemented by many examples, is helpful for readers trying to understand
the relation between the homological algebraic approach to scattering amplitudes and the
traditional Feynman diagrammatic one.

2 Scattering amplitudes from the homological perturbation lemma

In this section, we briefly review how the homological perturbation lemma produces the
scattering amplitudes of a quantum field theory, cf. [3, 4, 6, 8, 16] as well as [21] for
a pedagogical review. We highlight the effect of the antisymmetry in the contracting
homotopy, which leads to the cancellation of many diagrams.

2.1 Scattering amplitudes and homotopy algebras

For simplicity, we focus on a general scalar field theory on d-dimensional Minkowski R1,d−1

space with action

S =
∫

ddx (L0 + Lint) =
∫

ddx

1
2φ(x)(�−m2)φ(x) +

∑
k≥3

1
k!ckφ

k(x)

 . (2.1)

As explained e.g. in [3, 6], this scalar field theory can be encoded in a cyclic L∞-algebra
LS , which is simultaneously a cyclic A∞-algebra AS .

Recall that an L∞-algebra L comes with higher products µn : L∧n → L of degree |µn| =
2−n, where L is a graded vector space L = ⊕n∈ZLn. Similarly, an A∞-algebra A = ⊕n∈ZAn
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comes with higher products mn : A⊗n → A of degree |mn| = 2 − n. The two types of
higher products then satisfy a higher or homotopy version of the Jacobi identity and the
associativity relation, respectively. The precise details of these relations are irrelevant for
our discussion.

In a generalization of the relation between matrix algebras and matrix Lie algebras,
antisymmetrizing the higher products mn of an A∞-algebra A leads to higher products for
an L∞-algebra on the same graded vector space:

µn(a1, . . . , an) =
∑
σ∈Sn

χ(σ; a1, . . . , an)mn(aσ(1), . . . , aσ(n)) , ai ∈ A , (2.2)

where the sum is taken over all permutations of the ai and the Koszul sign χ(σ; `1, . . . , `n) is
the sign arising from permuting the graded arguments aσ(1), . . . , aσ(n) into canonical order.

In the homotopy algebras LS and AS encoding the field theory (2.1), the subspaces
LS1 = AS1 and LS2 = AS2 are the field and antifield spaces, respectively. The non-trivial
differentials µ1 = m1 are given by the kinematical operator,

µ1(φ) = m1(φ) = (�−m2)φ ∈ LS2 , φ ∈ LS1 . (2.3)

Furthermore, the non-trivial higher products µ2, µ3, . . . of LS encode the various interac-
tions:

µn(φ1, . . . , φn) = n! mn(φ1, . . . , φn) = −cn+1φ1 . . . φn ∈ LS2 , φi ∈ LS1 . (2.4)

Both LS and AS come with non-degenerate bilinear pairings 〈−,−〉 of degree −3,
which pair fields, i.e. elements of LS1 = AS1 , with antifields, i.e. elements of LS2 = AS2 , in
the canonical way, producing a number. These pairings are compatible with the higher
products in that they are cyclic:

〈φn+1, µn(φ1, . . . , φn)〉 = 〈φj , µn(φj+1, . . . , φn+1, φ1, . . . , φj−1)〉 . (2.5)

In general, each homotopy algebra comes with quasi-isomorphic (i.e. equivalent) min-
imal models with vanishing differential. These minimal models are all isomorphic to each
other in an ordinary sense, and we will therefore often speak of the minimal model. The
equivalence between the minimal model LS◦ of LS and LS itself translates into a classical
equivalence of the corresponding field theories and the only theory equivalent to (2.1) with-
out kinematical term is one in which the interaction vertices are the tree level scattering
amplitudes. Computing the tree level scattering amplitudes is therefore tantamount to
computing the minimal model of the L∞-algebra LS .

Explicitly, the formula for tree level amplitudes is

A(φ1, . . . φn+1) = 〈φn+1, µ
◦
n(φ1, . . . , φn)〉◦ =

∑
σ∈Sn
〈φn+1,m◦n(`σ(1), . . . , `σ(n))〉◦ , (2.6)

where a ◦ indicates the higher products and the cyclic structure in LS◦ and AS◦. Note that
cyclicity of the bilinear pairing corresponds to the usual cyclic permutation symmetry of
scattering amplitudes.
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2.2 The homological perturbation lemma at tree level

The homological perturbation lemma reproduces precisely the usual perturbative expansion
of quantum field theory at tree level and, with a deformed perturbation, also at loop level.
In the following, we outline this construction, starting with tree level.

The field space F = LS1 decomposes into a direct sum of asymptotic, on-shell fields Ffree
given by the kernel of the kinematic operator µ1 as well as the interacting fields Fint which
propagate in the interior of a Feynman diagram, cf. [6]. The chain complex underlying LS

(and AS) is then

. . . −−→ ∗ −−→ Ffree ⊕ Fint︸ ︷︷ ︸
LS1 /fields

µ1−−−→ Ffree ⊕ Fint︸ ︷︷ ︸
LS2 /antifields

−−→ ∗ −−→ . . . . (2.7)

We note that there is an inverse to µ1 on Fint ⊂ LS2 , the propagator h, which we trivially
continue to a map of degree −1 on all of LS2 and LS by setting it to zero everywhere else.
In particular, Fint is the image of h for scalar field theory.

The minimal models LS◦ of LS (and AS◦ of AS) have underlying chain complex

. . . −−→ ∗ −−→ Ffree︸︷︷︸
LS◦1 /fields

0−−→ Ffree︸︷︷︸
LS2 /antifields

−−→ ∗ −−→ . . . , (2.8)

and we have the trivial projection and embedding

p : LS → LS◦ and e : LS◦ ↪→ LS with p ◦ e = id . (2.9a)

We can use the propagator to make the quasi-isomorphism between both chain complexes
explicit. That is, h is a contracting homotopy between the identity on LS and the concate-
nation e ◦ p:

id− e ◦ p = m1 ◦ h + h ◦m1 . (2.9b)

Furthermore, h can always be chosen such that

p ◦ h = h ◦ e = h ◦ h = 0 , p ◦m1 = m1 ◦ e = 0 . (2.9c)

The homological perturbation lemma (HPL) [11–13] can now be used to lift this quasi-
isomorphism of chain complexes (LS , µ1) ∼= (LS◦, 0) to a quasi-isomorphism of L∞-algebras
(LS , µ•) ∼= (LS◦, µ◦•) by regarding µ2, µ3, . . . as perturbations. Since these describe precisely
the interaction terms in (2.1), and thus the perturbations of the free theory, it is not
surprising that we recover the usual perturbative expansion.

The treatment of perturbations is technically somewhat simpler1 for A∞-algebras, and
we restrict ourselves to these in the following. Moreover, for the link to Feynman diagrams,
it is helpful to discuss the HPL using the coalgebra description of A∞-algebras. Here, we
consider the tensor algebra of the grade-shifted vector space V = ⊕n∈ZVn with Vn := LSn+1,

⊗• V =
∞⊕
k=0

V⊗k = R⊕ V ⊕ (V ⊗ V)⊕ . . . . (2.10)

1Note that this is a pedagogical choice. Conceptually, the discussion for L∞-algebra is also straightfor-
ward: one merely has to insert symmetrizers in all compositions of maps. These, however, would awkwardly
distort and lengthen all formulas.
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Note that in the case of scalar field theory, only V0 and V1 are non-trivial, describing fields
and antifields, respectively. Taking into account the degree shift, the higher products mn

are now all of degree 1 and can be extended to coderivations,

Mk(φ1, . . . , φn) =
n−k∑
j=0

φ1 ⊗ . . .⊗ φj ⊗mk(φj+1, . . . , φj+k)⊗ φj+i+1 ⊗ . . .⊗ φn , (2.11)

which combine into the codifferential

D = D0 + Dint , D0 = M1 and Dint = M2 + M3 + . . . . (2.12)

This codifferential satisfies D2 = 0, which is equivalent to the homotopy associativity
conditions.

The maps p, e and h are readily lifted to the coalgebra picture as follows:2

P0|⊗k V := p⊗k , E0|⊗k V◦ := e⊗k , H0|⊗k V :=
∑

i+j=k−1
id⊗i ⊗ h⊗ (e ◦ p)⊗j , (2.13)

and we have the relations

id− E0 ◦ P0 = D0 ◦ H0 + H0 ◦ D0 ,

P0 ◦ E0 = id ,
P0 ◦ H0 = H0 ◦ E0 = H0 ◦ H0 = 0 ,
P0 ◦ D0 = D0 ◦ E0 = 0 .

(2.14)

The homological perturbation lemma then states that we also have a contracting ho-
motopy H after perturbing D0 to D = D0 + Dint with the following maps:

P = P0 ◦ (id + Dint ◦ H0)−1, H = H0 ◦ (id + Dint ◦ H0)−1 ,

E = (id + H0 ◦ Dint)−1 ◦ E0 , D◦ = P ◦ Dint ◦ E0 ,
(2.15)

where
D◦ = D◦2 + D◦3 + . . . , (2.16)

is the full codifferential on the minimal model. The inverse of the map id + Dint ◦ H0 exist
because Dint is a small perturbation, and this inverse is to be regarded as the evident
geometric series.

Recall that D◦ encodes the higher products m◦n of the minimal model and thus the tree
level scattering amplitudes (2.6). Because of (2.15), we can compute D◦ from the recursion

D◦ = P0 ◦ Dint ◦ E , E = E0− ttt◦E with ttt:= H0 ◦ Dint . (2.17)

2This is known as the “tensor trick”.
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2.3 Example: the four-point amplitude

To illustrate the above constructions, let us discuss an example. For computing the four-
point amplitude A(φ1, . . . , φ4), we need to determine m◦3, cf. the general formula (2.6).
This higher product can be extracted from D◦, if we know the latter’s action on three
input fields. The relevant terms in the recursion for D◦ are

P0 ◦ Dint ◦ (E0 − H0 ◦ Dint ◦ E0) = P0 ◦ Dint ◦ (E0− ttt ◦E0) , (2.18)

which is a truncation of (2.17) after one iteration. We represent an element of V◦0⊗V◦0⊗V◦0
diagrammatically in what we call an HPL diagram by three parallel lines (HPL diagrams
are always read from bottom to top),

φ1 φ2 φ3

(2.19)

For interactions to take place, we have to use E0 to embed V◦0 ⊗V◦0 ⊗V◦0 in V⊗V⊗V, but
we usually do not label this embedding separately in diagrams:

e e e

φ1 φ2 φ3

=
φ1 φ2 φ3

(2.20)

Similarly, we do not depict the projection p from V1 down to V◦1 in any diagram.
On V ⊗ V ⊗ V, the action of Dint agrees with M2 + M3 and on this subspace of the

tensor algebra, we can depict these operators in HPL diagrams as follows:

M2 = + , M3 = . (2.21)

Here, a zigzag line denotes an antifield, i.e. an element in V1. While the antifield resulting
from M3 will be paired off with a field in the final amplitude, the antifields produced by
M2 are turned back into fields by a propagator h produced by

H0|V⊗V = h⊗ (e ◦ p) + id⊗ h . (2.22)

In the composition H0 ◦ M2, we produce two different types of fields: the straight line
stands for an element in e(V0) ⊂ V, and on this subspace id = e ◦ p because of e ◦ p ◦ e = e
which is a consequence of (2.9c). The straight line is thus simply an on-shell field, i.e. an
element of Ffree. Because of h ◦ e = 0, however, the output of a propagator is always an
interacting field, i.e. an element of Fint. It will be important to distinguish these, and in
HPL diagrams, we depict fields in Fint by a dotted line:

H0 ◦M2 = h + h = + (2.23)

– 6 –
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Together with the facts that Dint vanishes on V (single fields cannot interact) and that
antifields are paired off with fields in V◦ by the cyclic pairing, the formula (2.18) produces
HPL diagrams corresponding to three of the usual four Feynman diagrams for four-point
amplitudes:

φ4

φ1 φ2 φ3

+

φ4

φ1 φ2 φ3

+
φ4

φ1 φ2 φ3

(2.24)

The remaining diagram (as well as copies of the above diagrams to obtain the correct total
factors) are produced by the permutations of the fields φ1,2,3 in formula (2.6).

An important point to notice is that the asymmetry in the definition of H0 in (2.13)
between left and right sides of the propagator h implies cancellations. Any interaction
vertex to the left of a dotted line leads to an operator e ◦ p acting on an element of
Fint = im(h), which vanishes. That is, any summand in the recursion (2.17) that is depicted
by an HPL diagram containing rows of the form

id id h e ◦ p
· · ·

= · · · → 0 (2.25)

necessarily vanishes. Here, the dashed lines represent an arbitrary element in Ffree ⊕ Fint.

2.4 Loop level scattering amplitudes

After the above discussion, the transition to loop or full quantum level is rather straight-
forward. Note that we will completely ignore any issues related to regularization; we are
merely interested in combinatorial aspects and the relation of our construction to Feynman
diagrams.

Recall that in the BV formalism, switching from the classical to the quantum master
equation essentially amounts to replacing the BV differential by the sum of the BV differ-
ential and the BV Laplacian. We are in the dual, coalgebra picture, and we thus introduce
the operator i~∆∗ which inserts a full pair of fields and antifields:

i~∆∗(φ1⊗ . . .⊗φn) :=
n∑
i=0

n∑
j=i

φ1⊗ . . .⊗φi⊗φA⊗φi+1 . . . φj⊗φA⊗φj+1⊗ . . .⊗φn . (2.26)

Here, A is a DeWitt indices which, for scalar field theory, can be taken to be a momentum
mode label combined with a label distinguishing fields from antifields. Just as for Dint, a
subsequent operator H0 then maps the antifield back to fields. Due to the asymmetry in
H, the contribution of i~∆∗ is only non-vanishing, if φA is a field and φA is an antifield
in (2.26). For simplicity, we define

U := H0 ◦ (i~∆∗) (2.27)
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and in terms of HPL diagrams, we have e.g.

U


φ1

 =
id h e ◦ p

φ1

+
id id h

φ1

+
id id h

φ1

=

φ1

+

φ1

+

φ1

(2.28)

Note that the DeWitt index A in (2.26) can be chosen such that it splits into a field/antifield
label and two labels ~pfree and pint, where ~pfree ∈ Rd−1 labels a free on-shell field with corre-
sponding (d−1)-momentum while pint ∈ R1,d−1 labels an interacting field with correspond-
ing four-momentum. The presence of the propagator h in U, however, annihilates the free
on-shell fields and therefore the fields produced by U are always in Fint.

The scattering amplitudes are then extracted from formula (2.6), but the higher prod-
ucts µn and mn are now those combining into an operator3 D◦ computed by the recursion

D◦ = P0 ◦ Dint ◦ E , E = E0− ttt◦E− U ◦ E . (2.29)

Each U operator produces a loop, and the number of loops is therefore counted by the
powers of ~.

3The perturbation by the second order differential operator ∆∗ implies that D◦ no longer defines an
ordinary homotopy algebra, but a quantum or loop homotopy algebra. Also, the other maps P and E
appearing in the homological perturbation lemma are no longer ordinary coalgebra morphisms.
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As a reasonably simple example, let us consider how the HPL produces the two-
loop contribution to the 2-point amplitude. (In the quantum case, the 2-point amplitude
encoded by m◦1 only vanishes to zeroth order in ~.) Specifically, let us consider the diagram

φ2

φ1

(2.30)

The recursion gives us

D◦ = P0 ◦ Dint ◦ (ttt ◦ ttt ◦ ttt ◦U ◦ U + ttt ◦ ttt ◦U◦ ttt ◦U ) + . . . , (2.31)

where . . . stands for terms not contributing to this Feynman diagram. We end up with
eight non-vanishing HPL diagrams:

φ2

φ1

φ2

φ1

φ2

φ1

φ2

φ1

(2.32a)

φ2

φ1

φ2

φ1

φ2

φ1

φ2

φ1

(2.32b)
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where we did not connect lines to clearly indicate the action of the operators ttt and U. All
other HPL diagrams are either of different topology to (2.30) or vanish, mostly due to an
operator e ◦ p hitting a dotted line.

3 Symmetry factors of Feynman diagrams

3.1 Generating functional

Recall the generating functional for connected n-point correlation functions in real scalar
field theory,

W [J ] := ei
∫

ddwLint
[

1
i

δ
δJ(w)

]
e

i
2

∫
ddyddzJ(y)G2(y−z)J(z) , (3.1)

from which we extract the correlation functions

〈φ(x1) . . . φ(xn)〉 = δ

δJ(x1) . . .
δ

δJ(xn) W [J ]
∣∣∣∣
J=0

(3.2)

after Taylor expanding the exponentials in W [J ]. We normalize the coupling constants ck
in the interaction Lagrangian as

Lint[φ(x)] =
∑
k≥3

1
k!ckφ

k(x) , (3.3)

cf. (2.1), which will allow us to extract the symmetry factor ΣΓ of a Feynman diagram Γ
in the straightforward, usual manner presented in quantum field theory textbooks.

We note that even though the Feynman diagrams contributing to scattering amplitudes
have amputated external legs, we will always consider un-amputated diagrams to compute
the symmetry factors from the generating functional for the corresponding amputated ones.

For a Feynman diagram Γ with vi i-ary vertices and p propagators (no amputations of
external legs), the Taylor expansion leads to the following denominator DΓ of the symmetry
factor:

1
DΓ

= 1
p!

(1
2

)p∏
i

1
vi!

( 1
i!

)vi
. (3.4)

The numerator NΓ now counts the number of distinct actions of the functional derivatives
on the Taylor-expanded exponentials to produce the Feynman diagram under consideration.
As is well known, the total symmetry factor is therefore the quotient by the automorphism
group Aut(Γ) of the Feynman diagram:

ΣΓ = NΓ
DΓ

= 1
|Aut(Γ)| . (3.5)

A general and convenient formula for ΣΓ for general field theories with cubic and
quartic potentials has been given in [20]. We now extend it to the general real scalar field
theory with arbitrary polynomial potential. Non-trivial symmetry factors arise as follows:

1. A factor of 1
πv
, where πv is the number of permutations of internal vertices so that

all propagators remain connected to the same propagators. For example, the two
vertices in the middle of the diagram (2.30) can be permuted and thus πv = 2! .
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2. A factor of 1
`i!2`i

for any `i propagators connecting to the same vertex, i.e. subdiagrams
of the form

...

. . .
(3.6)

This is easily seen: the numerator from the Taylor expansion for k external legs is

NΓ = 1
(k + `i)!

1
2k+`i

1
(k + 2`i)!

. (3.7)

We have (k+`i)!
`i! 2k ways of connecting the external vertices to propagators. There

are then
(k+2`i

k

)
k! ways of connecting the vertex to these propagators. It remains to

connect the 2`i derivatives left over from the vertex with the 2`i fields of the remaining
`i propagators, which can be done in 2`i! ways. Putting everything together, we are
left with the given symmetry factor.

3. A factor of 1
nj ! for any nj propagators between the same two distinct vertices, i.e.

subdiagrams of the form
. . .

. . .

. . .

(3.8)

Let us assume that there are k external legs and two vertices of degree d1 and d2 =
k+ 2`− d1. We further assume that d1 6= d2 so that the vertices are distinguishable.
Otherwise, there is an additional factor of 1

2 in the numerator which is compensated
by a factor of 2 coming from permuting the two vertices. The numerator is then

NΓ = 1
(k + nj)!

1
2k+nj

1
d1!

1
d2! . (3.9)

There are again (k+nj)!
nj ! 2k ways of connecting the external vertices to propagators.

Note that k1 = d1 − nj and k2 = d2 − nj of the external legs are connected to
vertex 1 and 2, respectively. There are

(d1
k1

)
k1!
(d2
k2

)
k2! ways of doing this. Finally, we

can connect the first vertex with the remaining nj propagators, which can be done in
nj !2nj possible ways, and the second vertex to them which is done in nj ! ways. We
are left with a total symmetry factor of 1

nj ! .

Altogether, we have the following formula:

ΣΓ = 1
πv

(∏
i

1
`i!2`i

)∏
j

1
nj !

 . (3.10)

– 11 –



J
H
E
P
1
2
(
2
0
2
0
)
0
8
8

As a corollary, we have the familiar textbook statement:

Corollary 3.1. All diagrams Γ contributing to tree level amplitudes have a symmetry factor
of ΣΓ = 1.

Proof. All vertices and propagators are distinguished by their position relative to the la-
beled output legs. Therefore, there are no two different permutations of vertices and
propagators leading to the same diagram. This means πv = 1 and all the factors in the
Taylor expansion of the generating function (3.1) are absorbed. More abstractly, the au-
tomorphism group of the Feynman diagram is trivial.

It will be useful to have a concrete algorithm for evaluating the contributions of the
correlators (3.2) to a concrete Feynman diagram.

Algorithm 3.2. To evaluate a given Feynman diagram contributing to the correlators (3.2),
we proceed as follows:

1. We start from the functional derivative with respect to J(xn+1), connect it to a prop-
agator and to a suitable vertex. We call the external leg corresponding to φ(xn+1) the
origin of our graph.

2. We pair off any legs leading to external legs in the vertices connected so far to the
origin.

3. We close off all loops between vertices connected so far to the origin.

4. If there are no vertices left, we are done. Otherwise, we take the vertex with remaining
unpaired functional derivatives which we added last. We then pair this vertex with a
propagator and a remaining vertex. (Note that all legs leading to loops and exernal
legs have already been paired off.) We then continue with 2.

Because any (un-amputated) Feynman diagram contributes to a correlator, it is clear
that the above algorithm will be suitable for any Feynman diagram.

3.2 Homological perturbation lemma: examples

We want to show that the homological perturbation lemma reproduces the combinatorics
of scattering amplitudes. That is, each Feynman diagram Γ is produced by the homological
perturbation lemma with the appropriate symmetry factor ΣΓ. Before stating the general
proof, let us discuss a few illustrative examples.

As a first, non-trivial example, consider again the diagram (2.30), which has a sym-
metry factor of ΣΓ = 1

2 . The HPL reproduces this diagram in eight possible ways, cf. the
HPL-diagrams (2.32). Each of the four vertices comes with a factor of4 1

2 , and the total
factor we obtain is thus 8 1

24 , as expected.
4We shall always drop the coupling constants ck when talking about the factors; they are evidently

reproduced in the correct way.
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As a second example, we consider the diagram

4

1 2 3

=

4

3 2 1

(3.11)

which comes with a symmetry factor of ΣΓ = 1. Since it has again four vertices contributing
a factor of

(
1
2

)4
, the HPL needs to produce this diagram in 16 distinct ways. Consider

some of the realizations of this diagram by the homological perturbation lemma:

4

1 2 3

4

3 2 1

4

1 2 3

4

3 1 2
(3.12)

We note that each realization comes with a factor of 2, because we can invert the order
of the input legs (cf. first and second diagram). They come with a further factor of 2
because the lowest cubic vertex can always be flipped (cf. first and third diagram). In fact,
all the vertices except for the very first one can be flipped, one merely has to select the
appropriate different (and unique) permutation of the input labels (cf. fourth diagram).
The first vertex cannot be flipped as this would bring a loop line to the right of a vertex
which vanishes due to the form of H, cf. (2.25). Altogether, we have 23 ways of flipping
vertices and 2 ways of choosing the order of input labels, compensating the factor of

(
1
2

)4

and giving an overall symmetry factor of ΣΓ = 1.

Lemma 3.3. The HPL produces the correct symmetry factor ΣΓ for the 1-loop diagrams
of the form

n + 1

1 2 . . . n

(3.13)

which is ΣΓ = 1
2 for n = 1 and ΣΓ = 1 else.
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Proof. The case n > 1 is evident from the argument above for diagram (3.11) which readily
generalize to the (n+ 1)-point case. For n = 1, there is just a single way of permuting the
single input label, i.e. half as many ways as for n > 1, which leads to ΣΓ = 1

2 .

3.3 Homological perturbation lemma: main theorem

We now come to our main result.

Theorem 3.4. The HPL reproduces each Feynman diagram Γ with the correct symmetry
factor ΣΓ.

The proof is based on the fact that each step in the algorithm 3.2 has a clear corre-
spondence in the construction of HPL diagrams, in inverse operational order: step one is
just the final combination of operators P ◦ Dint. Step two does not require any operator
insertion, while steps three and four correspond to actions of operators U and ttt, respec-
tively. The sensitive issues are around the order of the incoming legs of vertices, which is
asymmetric due to (2.25).

We begin the proof with the fact that any Feynman diagram is indeed produced by
the homological perturbation lemma.

Lemma 3.5. The HPL reproduces each Feynman diagram at least once in a non-vanish-
ing way.

Proof. This is evident from algorithm 3.2 with the additional prescription5 in steps 2, 3 and
4 that open incoming legs always have to be filled from right to left. This guarantees that
no propagator is produced to the left of an existing line which would cause the diagram to
vanish by (2.25).

Next, we present a sequence of lemmata in which each lemma shows that symmetry
factors of more complicated Feynman diagrams are reproduced by the HPL, if this is true for
simpler diagrams. To streamline the argument, we allow for diagrams with binary vertices
as well as tadpole diagrams in our considerations. We end up with tadpole diagrams with
no loops involving a single vertex, and a final lemma shows that all their symmetry factors
are obtained from the HPL.

We start with tree diagrams:

Lemma 3.6. The HPL creates each tree diagram Γ in the tree level scattering amplitude
with a symmetry factor of ΣΓ = 1.

Proof. It is clear that each (n + 1)-point tree diagram can be turned into a valid HPL
diagram by selecting the first n external legs as inputs and the last leg as an output.
Note that for the HPL diagram not to be vanishing by identity (2.25), it is enough that
the operator ttt always acts as far to the left as possible to produce the desired diagram.

5Only temporarily imposed for this proof.
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For example, the first two diagrams below contribute, while the last one is vanishing due
to (2.25):

φ1 φ2 φ3 φ4 φ5 φ4 φ5 φ1 φ2 φ3 φ1 φ2 φ3 φ4 φ5

(3.14)
Thus, once the shape of the tree level HPL diagram and its input legs are fixed, it is
produced in precisely one way from the recursion formula (2.17) of the homological per-
turbation lemma.

Each (n+1)-ary vertex produced by ttt comes with a symmetry factor of 1
n! : ttt contains

Dint, which is the sum of the extended, grade-shifted mn and the latter come with this
factor, cf. (2.5). This factor is compensated by the fact that the input legs of any vertex
can be permuted in an arbitrary way. This may require upwards and downwards shifts of
subtrees in order to avoid the cancellation by (2.25) as exemplified in the first two diagrams
of (3.14). Also, it may lead to a permutation of the input legs of the diagram; but any
permutation of the input legs of the diagram contributes equally with a factor of 1, cf.
equation (2.6).

Having trees under control, we can regard general Feynman diagrams as trees involving
one particle irreducible Feynman diagrams6 as nodes.

Lemma 3.7. If the HPL reproduces all one particle irreducible (1PI) Feynman diagrams
correctly, it reproduces all Feynman diagrams correctly.

Proof. The proof is evident from the proof of lemma 3.6: any permutation of input legs of
vertices connected to subtrees leads to a diagram which is produced in a unique way from
the recursion relation (2.29) up to arbitrariness stemming from the 1PI diagrams.

Next, we can remove all incoming external legs without affecting the combinatorics:

Lemma 3.8. If the HPL reproduces all 1PI tadpole diagrams7 correctly, then it produces
all 1PI diagrams correctly.

Proof. The proof here is simply the realization that in step 2 of algorithm 3.2, the k external
legs connected to a vertex with r incoming legs can be attached in any of

(r
k

)
ways without

6I.e. Feynman diagrams which do not become disconnected when removing a single arbitrary edge.
7I.e. diagrams with a single external leg.

– 15 –



J
H
E
P
1
2
(
2
0
2
0
)
0
8
8

the diagram becoming vanishing. Thus, attaching k external legs reduces the combinatorial
factor of 1

r! of the vertex to 1
k!

1
(r−k)! . The first factor is compensated by the fact that any

permutation of the external legs of the diagram contributes with a factor of 1 by (2.6).
The remaining second factor would have been the factor of the vertex if the external legs
had not been there to begin with.

The first advantage of considering exclusively tadpole diagrams is that we do not
have to consider permutations of input legs. The second advantage is that we no longer
distinguish between lines corresponding to interacting and free fields: all lines encode
interacting fields, and any right outgoing leg produced by U and any outgoing leg produced
by ttt to the left of an existing line makes the diagram vanish by (2.25). Both the horizontal
(i.e. contracting the input legs of which vertices) and vertical (i.e. order in the recursion
relation (2.29)) position of the action of U is then unique for 1PI tadpole diagrams.

Lemma 3.9. Given a non-vanishing HPL diagram, corresponding to a 1PI tadpole diagram,
with all loop closures removed, any permutation of the order in which the loops are closed
and any change in the sequence of the order in which loops and vertices are created leads to
a vanishing HPL diagram by (2.25).

Proof. Pictorially, this is immediately clear:

→ = 0 and → = 0 . (3.15)

Next, we consider loops more closely, in particular loops involving a single vertex of
type (3.6).

Lemma 3.10. If the HPL reproduces all 1PI tadpole diagrams without loops involving a
single vertex, it reproduces all 1PI tadpole diagrams.

Proof. These loops are produced in step 3 of the algorithm, and we may have a partially
drawn HPL diagrams before and after closing the loops:

φn+1

. . .
→

φn+1

. . .
(3.16)

Say that the vertex involving the loops has r open input legs and we have ` loops to close
off. Then we have

(r
2
)
choices for the first loop,

(r−2
2
)
choices for the second loop, etc. Also,
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pairing off the loops with the operator U only leads to a non-vanishing HPL diagram, if the
right leg generated by U is to the right of all previously generated right legs. That is, there
is a unique order in which the loops can be closed, and we have to divide our counting by
an additional factor of 1

`! . Altogether, we have

1
r!

(
r

2

)(
r − 2

2

)
. . .

(
r + 2− 2`

2

)
1
`! = 1

`!2` ×
1

(r − 2`)! . (3.17)

The first factor is precisely the expected factor in (3.10) and the second factor would have
been the factor of the vertex if the loops we closed had not been there to begin with.

Finally, we can conclude with the following lemma:

Lemma 3.11. All 1PI tadpole diagrams without loops involving a single vertex are repro-
duced with the right symmetry factor.

Proof. This is now readily seen from a comparison of the HPL diagrams with algorithm 3.2
for constructing diagrams from the generating functional. We note that in the generating
functional approach in steps 3 and 4 we can use arbitrary input legs for closing loops or
attaching vertices, while in the HPL diagrams, there is an order: all legs connected to
input legs of vertices further below in the diagram have to be to the left of the legs leading
to output legs of other vertices or to input legs of vertices further up in the diagram, for
example:

(3.18)

For a vertex with n input legs, k of which link to outgoing legs of vertices below, the
total combinatorial factor for the allowed permutations is thus n!

k!(n−k)! =
(n
k

)
, and it is this

non-trivial factor that is responsible for producing the remaining symmetry factors.
The ordering of the types of input legs for each vertex by the HPL now simply ensures

that identical contractions in the computation of correlators by the generating functional
approach (3.2) are not counted twice. For example, the following two HPL-diagrams de-
scribe the same contraction of functional derivatives and propagators in (3.2):

φ1

and

φ1

(3.19)
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but should be counted only once; the HPL does this by letting the right HPL-diagram
vanish by (2.25). In this manner, uniqueness of the closure of loops (corresponding to the
same contraction) is guaranteed by the asymmetry of H0, which enforces the closure of all
loops to the bottom left of all involved vertices in the HPL diagrams.

Altogether, the HPL reproduces all Feynman diagrams corresponding to one particular
pairing of functional derivatives with sources in (2.25) precisely once.
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