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1 Introduction

With the discovery that neutrinos oscillate came a new understanding of the standard

model (SM) of particle physics — neutrinos have mass and leptons mix. Many experiments

have since been performed, with more planned, to deepen our understanding of the nature

and origin of neutrino masses and their mixing. A coherent picture is forming regarding

leptonic mixing and the three-massive-neutrinos paradigm through the experimental data

gathered to date. However, open questions regarding the dynamics of the neutrino sector

remain, with substantial room for new physics to provide answers.

Unitarity, the requirement that the matrix governing the transformation between two

eigenbases satisfies U †U = UU † = I, forms the basis of our understanding of SM fermion

mixing [1–4]. This theoretical paradigm has been thoroughly tested to great acclaim in

the quark sector [5–12]. However, our understanding of the corresponding leptonic mixing

matrix (LMM) remains limited [13–15]. The phenomenon of neutrino mixing predicates

nonzero neutrino masses, and yet the SM does not provide a mechanism for such masses

to exist. As a result, a plethora of models has been postulated to explain the origin of

neutrino masses, and hence oscillations, involving new physics beyond the standard model

(BSM) [16–23]. A key feature of many such models is that they predict the existence of

new neutrino eigenstates, leading to non-unitarity of the active neutrino LMM used to

characterize neutrino oscillations [16, 17, 24–31].

Many studies have been undertaken to study the effect of LMM non-unitarity and to

determine existing and projected constraints on non-unitarity [32–46]. Such constraints

can be derived from analyzing a multitude of processes, such as decays involving leptons,

and, crucially, neutrino oscillations. The latter are among the most theoretically clean

probes of LMM unitarity. With this in mind, and given that future neutrino oscillation

experiments will be capable of precise measurements, we revisit current constraints and

project future constraints on the unitarity of the LMM from oscillation experiments. A

previous exploration of oscillation constraints on LMM unitarity was performed in 2015

in ref. [14], utilizing contemporary data. Experimental precision has since improved, with

better precision expected in near-future experiments, motivating our in-depth study.
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In this work, expanding on the set up in ref. [14], we offer a more comprehensive

perspective on leptonic unitarity. We explore a set of reasonable assumptions regarding

the possible origin of unitarity violation and discuss how they can affect tests of unitarity.

We also break down how different subsets of experiments contribute to the constraints

on specific rows and columns of the LMM, highlighting the importance of sterile neutrino

searches and the uniqueness of τ -appearance searches. While we are interested specifically

in oscillation-based constraints on unitarity, we discuss other probes, and their model-

dependence as well. We include all existing oscillation measurements that make major

contributions to unitarity constraints, as well as projections for oscillation-based constraints

through the next decade. These include the planned IceCube Upgrade, Jiangmen Under-

ground Neutrino Observatory (JUNO), Deep Underground Neutrino Experiment (DUNE),

and Tokai to Hyper-Kamiokande (T2HK) experiments. In our companion paper [15], we

explored this combination of current and future data to address the unitarity constraints

and CP violation present in the LMM through unitarity triangles, an approach familiarized

by studies of the quark mixing matrix.

This manuscript is organized as follows. Section 2 introduces the formalisms we adopt

when computing neutrino oscillations, including the theoretical assumptions one can adopt

when performing an analysis of non-unitarity, and how these assumptions impact results.

In sections 3 and 4, we explain the current and future datasets included in our analyses,

respectively. In section 5, we present the primary results of our analyses in a number of

ways, resulting in our constraints on the unitarity conditions UU † = U †U = I in section 5.4.

We consider some alternate assumptions that impact the results, and present the results in

light of these alternate assumptions, in section 6. Finally, in section 7 we provide discussion

on our results and conclude.

We also wish to highlight the results that are included in our appendices. In ap-

pendix A, we discuss how non-oscillation probes, such as rare charged-lepton decays, can

be used in certain scenarios to constrain the unitarity of the LMM. Appendix B derives

neutrino oscillation probabilities (both for appearance and disappearance/survival) in vac-

uum when unitarity is not assumed. In appendix C, we discuss the Bayesian approach

used in many of our analyses, and the priors that enter this type of analysis. Appendix D

includes the measurement of the phases present in the LMM, a parameterization-dependent

measurement. Lastly, appendix E offers some discussion regarding the LSND and Mini-

BooNE anomalies, whether they can be resolved in this framework, and how they may be

tested in next-generation experiments.

2 Neutrino oscillations and the leptonic mixing matrix

In this section, we summarize the phenomenon of neutrino oscillations, and how the struc-

ture of the LMM enters the calculations for oscillation probabilities. We introduce the

formalism we use throughout our analyses, which allows for the possibility that the LMM

is not unitary. Given that we allow this possibility, we discuss the possible origins of the

unitarity violation and different theoretical assumptions that map on to these different ori-

gins. These different theoretical assumptions will affect our analyses, and so we will spend

considerable time discussing their effects.

– 2 –
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2.1 Unitarity of the leptonic mixing matrix

Neutrino oscillation studies are generally carried out assuming a unitary 3×3 mixing matrix

for rotating between eigenstates of flavor and mass. However, this assumption only strictly

holds in a rather limited number of models for neutrino masses, some of which suffer from

fine-tuning issues.

In many models for neutrino masses, while there is non-unitarity of the lepton mixing

matrix, it is expected to be small. For example, in a generic type-I see-saw scenario, the

non-unitarity of the light-neutrino mixing comes from the mixing (angle squared) between

the light-heavy states, which is proportional to the mass ratio between the light and heavy

states (see appendix A for details). We expect the deviation from unitarity to be at most

O(10−13) even for an O(TeV) seesaw scale.

There are nevertheless abundant examples of neutrino mass models that can lead to

large non-unitarity. It has been shown by various groups that for non-trivial neutrino

Yukawa textures, the see-saw mechanism can lead to substantial deviations from unitarity

(see e.g. [47–51]). In addition, mass models invoking symmetry arguments may also produce

large unitarity violation [25–29]. It is therefore important to test the unitarity of the 3× 3

lepton mixing matrix with experimental data.

To test unitarity with oscillation data, one could adopt mathematical assumptions on

the 3 × 3 matrix corresponding to different theoretical assumptions on the origin of the

unitarity violation. To clearly describe our choices, let us first look at how a neutrino state

is defined. A flavor eigenstate neutrino field να(x) can be written as a linear combination

of mass eigenstate fields νk(x):

να(x) =
∑

k

Uαkνk(x) . (2.1)

The flavor index α ∈ e, µ, τ, . . . m includes the usual SM flavor fields, along with m− 3

possible additional right-handed (sterile) fields, while the mass index k ∈ 1, 2, 3, . . . n,

allowing for n − 3 additional mass eigenstate fields. Uαk is thus an m × n matrix. In an

oscillation experiment, neutrinos are produced and detected via weak interactions. The

produced state, neglecting the effect of neutrino masses, can be defined as [36, 52]1

|να〉 =
1√

(UU†)αα

∑

k

U∗αk |νk〉 , (2.2)

where the sum over k in the normalization factor is implicit. Only active flavors participate

in weak interactions, so the flavor index α ∈ e, µ, τ . However, it is important to note

that the mass eigenstate index k does not run to n, the total number of mass eigenstates.

Instead, the sum over k is only performed over the total number of kinematically accessible

mass eigenstates [38, 41, 43]. For pion-decay sources which are used for most experiments,

1Reference [53] provides a thorough explanation for why U∗
αk is the object appearing in eq. (2.2), contrary

to the definition of the flavor eigenstate field above. The assumption of zero neutrino masses is reasonable,

as the neutrinos are produced ultra-relativistically. See ref. [54] for a discussion of how this assumption can

break down.
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a conservative cutoff is to include all mass states below 140 MeV.2 For models where addi-

tional sterile neutrinos are heavier than the electroweak scale, this sum truncates at k = 3.

The normalization factor in eq. (2.2) guarantees that the flavor states are always properly

normalized: 〈να|να〉 = 1. Note that if U is not unitary, the flavor states are not necessarily

orthogonal: 〈να|νβ〉 6= δαβ .

In this work, we focus on understanding the structure of the 3× 3 (sub-)matrix of the

full m×n mixing matrix U . We will refer to the 3×3 mixing matrix as the LMM or ULMM,

or simply Uαk, where now α = e, µ, τ and k = 1, 2, 3. We will parameterize and derive

oscillation formulae using only U . An implicit assumption we adopt at this step is that

there exist no additional sterile states with masses below 140 MeV. In this case, oscillation

measurements provide a direct test of unitarity (see appendix A for discussions on the

model-dependence of charged lepton decay searches). For sterile neutrinos with masses

between 0.1–10 eV, dedicated searches for spectral distortions in oscillation experiments

are very sensitive [55–57]. For heavier steriles that are still kinematically accessible, see

refs. [44, 45] for detailed discussions on their oscillation signatures. Sterile neutrinos in

other mass ranges can be probed e.g. via beta decay, meson decay and neutrino-less double

beta decay. See refs. [58, 59] for comprehensive discussions of these experimental searches.

We organize our discussion of oscillations around the following three cases:

1. The “standard” case, where m = n = 3, U = U .

2. The “sub-matrix” case, where m = n > 3. U is unitary, and U is not.

3. The “agnostic” case, m > 3 and/or n > 3. Uαk is not assumed to be unitary, and U

is not.

The standard case is the most commonly adopted in oscillation studies. It is worth point-

ing out that even when this is phenomenological applicable, it nevertheless involves fields

beyond the SM, highlighting the need for BSM physics to fully understand the neutrino

sector. The sub-matrix scenario is the most commonly adopted in unitarity-violation stud-

ies. It applies to all cases when the unitarity violation is induced by the existence of new

particles. The agnostic case is a peculiar one, where the full m × n mixing matrix is not

assumed to be unitary. This is of course a difficult case to realize, as unitarity is one of

the fundamental principles upon which theories are typically built. However, it is useful to

consider this possibility so as to verify whether experimental data support the theoretical

bias that Uαk should be unitary. Additionally, refs. [43, 60] explored scenarios in which

non-standard neutrino interactions during neutrino propagation through matter may be

mapped on to the effects of a non-unitary mixing matrix. While this is a specific scenario,

it is one in which the agnostic case applies, and provides motivation for adopting this case

to allow for generality in the form of Uαk.
For the rest of this paper, we adopt the agnostic assumption as our default scenario,

aimed to be the most conservative with our bounds on non-unitarity. We distinguish

2Heavier sterile neutrinos may be produced in such sources either off-shell or from heavier meson decays.

However, subtle non-standard oscillation effects from these neutrinos are not observable because of their

reduced fluxes. We therefore ignore their contribution.
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the sub-matrix and agnostic cases because the sub-matrix assumption imposes additional

criteria on the structure of U and hence leads to more stringent bounds. We discuss what

these criteria are and how they improve certain bounds throughout our analysis.

2.2 Mixing matrix parameterizations

In the standard scenario, ULMM is a 3× 3 unitary matrix. It is well-known that in order to

parameterize such a matrix, three angles and three complex phases are required. Two of the

(Majorana) phases are irrelevant for neutrino oscillations, and are unphysical if neutrinos

are Dirac particles. The standard parameterization employs three mixing angles, θ12, θ13,

and θ23, and one complex phase δCP. Often referred to as the PMNS [1, 3] or PDG [9]

parameterization, this form of the LMM is

ULMM = UPMNS ≡




c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s13s23e
iδCP c12c23 − s12s13s23e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c13c23


 ,

(2.3)

where sij ≡ sin θij and cij ≡ cos θij . The mixing angles are often referred to by the regime

of neutrino oscillations in which they have been studied in the most detail: solar (θ12),

reactor (θ13), and atmospheric (θ23). A number of global fit efforts in the three-flavor

hypothesis have been performed, leading to relatively precise understanding of the mixing

angles under this hypothesis [61–64].

More generally, a complex 3×3 matrix U can be described by eighteen real parameters.

There are 9 conditions for relating a generic complex matrix for leptonic mixing to a unitary

one. These conditions can be obtained from the requirement that a unitary matrix satisfies

U †U = I. This is equivalent to requiring that all columns of the matrix are normalized

to one:

Nk ≡ |Uek|2 + |Uµk|2 + |Uτk|2 = 1 (k = 1, 2, 3), (2.4)

as well as requiring that the column unitarity triangles close:

tkl ≡ U∗ekUel + U∗µkUµl + U∗τkUτl = 0 (k 6= l; k, l = 1, 2, 3). (2.5)

Note that these are nine real constraints as tkl can be complex. Because U †U is Hermitian,

the unitarity condition can equivalently be written as UU † = I, which can be translated to

row normalization conditions:

Nα ≡ |Uα1|2 + |Uα2|2 + |Uα3|2 = 1 (α = e, µ, τ), (2.6)

and the closure of row unitarity triangles:

tαβ ≡ U∗α1Uβ1 + U∗α2Uβ2 + U∗α3Uβ3 = 0 (α 6= β; α, β = e, µ, τ). (2.7)

For the general case where U is a non-unitary 3 × 3 matrix, the number of real pa-

rameters needed to describe the matrix for neutrino oscillation is 18− 3− 2 = 13, where 3

phases can be absorbed by charged lepton fields and 2 Majorana phases do not participate

– 5 –
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in oscillations. Equivalently, one can see that 13 parameters are required, as a unitary

LMM would have 4 parameters, and the extension to include potential non-unitarity in-

volves relaxing 9 unitarity conditions. The magnitudes of the elements of the mixing matrix

are parameterization-independent, therefore we choose to adopt the following parameter-

ization:

ULMM ≡



|Ue1| |Ue2| eiφe2 |Ue3| eiφe3
|Uµ1| |Uµ2| |Uµ3|
|Uτ1| |Uτ2| eiφτ2 |Uτ3| eiφτ3


 . (2.8)

Here, we have nine magnitudes and four CP-violating phases.3 Going forward, we refer to

the parameterization given in eq. (2.8) as the Magnitudes & Phases (MP) parameterization.

Note that in this case, the row and column normalizations can be larger than 1, and the

13 parameters are completely independent of each other. This parameterization applies

straightforwardly to the agnostic case described above.

When ULMM is unitary, we can relate the MP parameterization in eq. (2.8) to the PMNS

parameterization, with a straightforwardly obtainable correspondence between parameters.

The phases can be related to the PMNS parameterization by using Jarlskog factors Jαi,

which are defined as

εαβγεijkJαi ≡ Im
(
UβjUγkU

∗
βkU

∗
γj

)
, (2.9)

where the ε are Levi-Civita tensors. It is straightforward to see that

sinφe2 = − Je2
|Ue1| |Ue2| |Uµ1| |Uµ2|

, sinφe3 =
Je3

|Ue1| |Ue3| |Uµ1| |Uµ3|
, (2.10)

sinφτ2 =
Jτ2

|Uτ1| |Uτ2| |Uµ1| |Uµ2|
, sinφτ3 = − Jτ3

|Uτ1| |Uτ3| |Uµ1| |Uµ3|
. (2.11)

If ULMM is unitary, all constructible Jarlskog factors must be equal to each other and equal

to the PMNS matrix Jarlskog invariant [65]:4

JPMNS = c12s12c23s23c
2
13s13 sin δCP. (2.12)

Enforcing Jτ2 = Jτ3 = Je2 = Je3 = JPMNS in eq. (2.11) allows for the simple derivation

of a relation between the phases φe2, φe3, φτ2, and φτ3 and PMNS parameters when

ULMM = UPMNS.

Finally, we briefly discuss the sub-matrix case, where U is a 3 × 3 sub-matrix of a

larger unitary matrix U . This introduces two additional constraints on the structure of U :

the row and column normalizations of LMM must not exceed unity:

Nα 6 1, Nk 6 1. (2.13)

3The four phases can be assigned to any 2 × 2 sub-matrix.
4This can be used to test the unitarity of the LMM. For details, see ref. [15].

– 6 –



J
H
E
P
1
2
(
2
0
2
0
)
0
6
8

Further, by applying the Cauchy-Schwarz inequality on the vectors
{
Uαk

}
, where α or k

runs from 4, 5 . . . n, we obtain the following inequalities [14]:5

|tαβ |2 6 (1−Nα) (1−Nβ)

|tkl|2 6 (1−Nk) (1−Nl) . (2.15)

In this work, the bulk of our results will be presented under the minimal set of theoretical

assumptions, corresponding to the agnostic case. Where we discuss sub-matrix case results,

the conditions of eqs. (2.13) and (2.15) are imposed on ULMM, and the comparison with

the agnostic case will be analyzed. Such comparisons will appear throughout our analysis,

as well as in section 6.

The most commonly adopted parameterization in the sub-matrix case [43, 66–68] is

the following:

ULMM ≡ NUPMNS =



α11 0 0

α21 α22 0

α31 α32 α33


UPMNS. (2.16)

When there are three active neutrinos and any number of sterile neutrinos, one can express

αkl in terms of mixing angles and phases between active and sterile neutrino mixing. For

the full expressions, see ref. [67]. Here, unitarity is achieved in the limit that αkl → δkl.

The off-diagonal αkl may be complex, so there are nine free parameters corresponding to

the nine constraints discussed above. We note here that this parameterization is useful in

that unitarity is obtained in a relatively simple limit, i.e., αkk → 1 and αk 6=l → 0, compared

to the MP parameterization. However, it is not straightforward to map between the “α”

parameterization and the individual, specific constraints of unitarity — the normalizations

and closures of columns and rows of ULMM. As constructed, the map between the αkl and

the normalization of rows and closures between two different rows is relatively simple:

Ne = α2
11, (2.17)

Nµ = α2
22 + |α21|2 , (2.18)

Nτ = α2
33 + |α32|2 + |α31|2 , (2.19)

teµ = α11α21 , (2.20)

teτ = α11α32 , (2.21)

tµτ = α∗21α31 + α22α32 . (2.22)

On the other hand, for the normalizations of the columns Nk and the closures of the

triangles between different columns tkl, such a mapping depends on both the αkl as well as

the mixing angles and δCP from the PMNS parameterization.

5One can directly apply Cauchy-Schwarz inequality on the matrix U , which leads to the weaker conditions

|tαβ |2 6 NαNβ , |tkl|2 6 NkNj . (2.14)

These inequalities hold for both the sterile and agnostic cases. However, we know that LMM is at least

very close to unitary, so these conditions are met for all viable parameter space.
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Since our goal in this work is to determine the current and future constraints on

Nα, Nk, tαβ , and tkl, we use the MP parameterization which has a straightforward map

between the input parameters and these quantities. Using the MP paramaterization has

a second advantage, in that the majority of the underlying inputs are parameterization-

independent. Specifically, all of the magnitudes-squared |Uαk|2 are independent of the

adopted parameterization, which makes translation between different experimental results

in this context simpler.

2.3 Oscillation probabilities

We now review the oscillation formulae for different parameterizations. See refs. [36, 41]

for further discussions. In vacuum, the mass states |νk〉 are eigenstates of the Hamiltonian,

such that they form an orthogonal basis, 〈νk|νl〉 = δkl, and evolve in time as

|νk(t)〉 = e−iEkt|νk〉. (2.23)

A flavor state is created as eq. (2.2). After traveling for time t, the flavor state is evolved to

|να(t)〉 =
1√
Nα

3∑

k=1

U∗αke
−iEkt|νk〉. (2.24)

The oscillation probability for a neutrino of energy E produced as να and detected as νβ
after propagating L = ct is therefore

P (να → νβ) = |〈νβ |να(t)〉|2 =
1

NαNβ

∣∣∣∣∣
3∑

k=1

U∗αkUβke
−iEkt

∣∣∣∣∣

2

. (2.25)

Here, Ek = m2
k/2Eν . In order to better understand the behavior of the oscillation prob-

ability, we separate the discussion here into two cases, α = β (disappearance/survival

probability) and α 6= β (appearance probability). Defining ∆ij ≡ ∆m2
ijL/2Eν , the disap-

pearance/survival probability may be written as

P (να → να) = 1−
4 |Uα2|2

(
|Uα1|2 + |Uα3|2

)

N2
α

sin2

(
∆21

2

)
−

4 |Uα3|2
(
|Uα1|2 + |Uα2|2

)

N2
α

× sin2

(
∆31

2

)
+

8 |Uα2|2 |Uα3|2
N2
α

sin

(
∆21

2

)
sin

(
∆31

2

)
cos

(
∆32

2

)
. (2.26)

For the appearance probability, we define ϕαβk ≡ arg (U∗αkUβk) and ϕαβ ≡ arg (tαβ). The

appearance probability may be written as

P (να → νβ) =
|tαβ |2
NαNβ

+
4 |Uα2|2 |Uβ2|2

NαNβ
sin2

(
∆21

2

)
+

4 |Uα3|2 |Uβ3|2
NαNβ

sin2

(
∆31

2

)

+
8 |Uα2| |Uβ2| |Uα3| |Uβ3|

NαNβ
sin

(
∆21

2

)
sin

(
∆31

2

)
cos

(
∆32

2
+ ϕαβ2 − ϕαβ3

)

+
4 |tαβ |
NαNβ

[
|Uα2| |Uβ2| sin

(
∆21

2

)
sin

(
∆21

2
+ ϕαβ − ϕαβ2

)

+ |Uα3| |Uβ3| sin
(

∆31

2

)
sin

(
∆31

2
+ ϕαβ − ϕαβ3

)]
. (2.27)
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When U is unitary, eqs. (2.26) and (2.27) reduce to the standard oscillation formulae.

In most neutrino experiments, one or two mass terms dominate the oscillation behavior

due to the large hierarchy between ∆m2
21 and ∆m2

32, such that eqs. (2.26) and (2.27)

can be simplified. These oscillation formulae are derived in appendix B. We also provide

the simplified expressions when either ∆m2
21 or ∆m2

31 is the dominant term of interest in

appendix B and comment on which experiments belong in each of these regimes.

Equation (2.27) reveals an interesting consequence of a non-unitary mixing matrix,

namely the zero-distance effect [26, 36]. When L→ 0 (or in an experiment where ∆21 and

∆31 � 1), the disappearance probability P (να → να)→ 1, but the appearance probability

becomes

P (να → νβ , L ∼ 0) ' 1

NαNβ

∣∣∣∣∣
3∑

k=1

U∗αkUβk

∣∣∣∣∣

2

=
|tαβ |2
NαNβ

(2.28)

This implies that searches for short-baseline anomalous appearance from one flavor eigen-

state α to another β provides a direct constraint on the closure between the α and β rows.

We discuss how these searches, typically interpreted in the context of searches for light,

coherently-oscillating sterile neutrinos, may be applied to our scenario in section 3.7.

Matter effects in the context of non-unitarity. Even though it is a good approx-

imation to use the vacuum oscillation probabilities in eqs. (2.26) and (2.27) for many

oscillation experiments of interest (as well as providing useful analytic interpretation of

results), matter effects are important for several existing experiments, and crucial for the

future DUNE experiment. Interactions of neutrinos with matter as they traverse can be

included by adding a potential to the Hamiltonian that governs the time-evolution of the

neutrino states, which is diagonal in the flavor basis:

Vαβ =
√

2GF



ne − nn/2 0 0

0 −nn/2 0

0 0 −nn/2


 , (2.29)

where ne and nn are the electron and neutron density in the medium, respectively. This

potential is rotated by ULMM into the mass basis, and combined with the (mass-basis-

diagonal) energy values ∆k1/(2Eν). Typically, the neutron density is removed as its con-

tribution to the total Hamiltonian is proportional to the identity matrix, and represents

a phase common to the propagation of all three neutrino states. However, since U †U = I
is not assumed in our analysis, nn must be included in our calculation, as the phase is no

longer common to all three propagating states. We note here that the inclusion of matter

effects in light of non-unitary mixing depends strongly on the assumptions regarding any

new neutrino states (for instance, whether they interact with matter via the standard weak

interactions or any other new interactions, and what their masses are). The form of Vαβ
above is that obtained in the minimal-unitarity-violation context, in which the new physics

scale is assumed to be much higher than the electroweak scale [36], and we adopt it for the

remainder of our work.
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2.4 Normalization effects

In this subsection we discuss further non-trivial consequences of a non-unitary LMM. Much

of this discussion is adapted from ref. [36]. Without the assumption of the LMM being

unitary, the expected flux of a given neutrino flavor (e.g. produced by pion decay-in-flight)

will be modified from the unitary expectation. The same will be true of charged-current

(CC) scattering cross sections, where non-unitarity of the LMM leads to deviations in the

rate of charged leptons produced from interactions involving neutrinos of the corresponding

flavor. The flux of neutrinos of flavor α, and the corresponding CC cross section, may be

expressed (relative to their unitary, SM expectations) as

Φα(E) = NαΦSM
α (E), σβ(E) = Nβσ

SM
β (E). (2.30)

The neutral-current cross section is also modified,

σNC
k (E) = σNC

SM(E)
∑

l

∣∣∣(U †U)kl

∣∣∣
2
. (2.31)

Neutrino oscillation experiments infer oscillation probabilities by measuring event rates

and spectra, which are a convolution of fluxes, cross sections, and efficiencies of detection.

The number of detected neutrinos of flavor β, nβ , is given by

nβ ∝ ΦαP (να → νβ)σβ = NαΦSM
α P (να → νβ)Nβσ

SM
β = ΦSM

α P̂ (να → νβ)σSM
β . (2.32)

Thus, if an experimental analysis is performed assuming SM predictions of fluxes and

cross-sections as truth, the measurement of nβ corresponds to an inferred measurement of

P̂ (να → νβ). Recalling the vacuum oscillation formula of eq. (2.27), this leads to the con-

clusion that experiments making such assumptions are inferring the oscillation probability

given by

P̂ (να → νβ) =

∣∣∣∣∣
3∑

k=1

U∗αkUβke
−iEkt

∣∣∣∣∣

2

, (2.33)

such that these measurements are not sensitive to the normalization factors Nα and Nβ .

Experiments often use a near detector to measure the neutrino flux. This is the case

in, e.g., DUNE. Normalization effects will therefore manifest themselves differently for

appearance and disappearance probabilities, as well as for near-detector-only measurements

compared with near-to-far ratio measurements. These effects are both taken into account

in our analysis.

Let us first consider disappearance measurements at near detectors, i.e., sterile neutrino

searches. These experiments measure an energy spectrum of events nND
α (E), where α is

the flavor label:

nND
α (E) ∝ Φα(E)σα(E)Pαα(E;L = 0) , (2.34)

At L = 0, the oscillation probability is Pαα(E;L = 0) = 1. Experiments that measure

disappearance spectra at near detectors to constrain an oscillation probability rely on

understanding of the (SM) predictions of Φα and σα, so the measured spectrum can be

expressed as

nND
α (E) ∝ ΦSM

α (E)σSM
α (E)N2

α. (2.35)
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Therefore, with a sufficiently precise measurement of the spectrum, as well as understanding

of the SM-expected flux and cross section, a constraint on N2
α can be placed. These

results are usually reported in the context of a limit on disappearance probabilities, i.e.

Pαα(E;L = 0) is close to 1 with some degree of confidence. In section 3.7 we discuss

how these reported limits map onto constraints on Nα. When considering searches for

anomalous short-baseline appearance of a flavor α to a flavor β, eq. (2.35) must be modified

accordingly, and we find that these searches are sensitive to

nND
β (E) ∝ |tαβ |2 , (2.36)

thereby providing constraints on the closure of row unitarity triangles.

Let us now consider near-to-far-ratio measurements. These experiments infer a far-

detector oscillation probability Pαβ ≡ P (να → νβ ;E,L) by measuring a near detector

spectrum nND
α as above, as well as a far detector spectrum nFD

β ,

nFD
β (E) ∝ Φα(E)σβ(E)Pαβ . (2.37)

We may express the measured ratio of oscillation probabilities as

Pαβ =
nFD
β (E)

nND
α (E)

σα(E)

σβ(E)
=
nFD
β (E)

nND
α (E)

σSM
α (E)

σSM
β (E)

Nα

Nβ
= P̂αβ

Nα

Nβ
. (2.38)

For disappearance measurements where α = β, the measured probabilities are the true

probabilities, e.g., eq. (2.27) for the vacuum case. For appearance measurements where

α 6= β, the measured probabilities P̂αβ are the true probabilities Pαβ multiplied by a factor

Nβ/Nα.

3 Current experiments and statistical treatment

Before turning to upcoming experiments, we first consider the most powerful set of ex-

isting experimental results that are sensitive to quantities of interest in the LMM. Our

analysis is performed only over the experimental data which, when combined, provides the

dominant sensitivity to the corresponding parameters in the mixing matrix. As such, it

does not constitute a complete set of experimental results, but nevertheless captures our

current knowledge of neutrino oscillation parameters. This section serves to describe the

inputs to our fit, as well as the translation from experimental measurements in the PMNS

parameterization to the MP parameterization we use for our analysis.

For most experiments, we take the reported event spectra and fit for LMM elements,

i.e., mixing angles in the PMNS parameterization. Because our focus is on the LMM

matrix elements and not the mass-squared splittings, we include the best measurement of

the latter for each experiment as a Gaussian prior. We will specify throughout the values

we take from each experiment. Included in this, we marginalize over the mass ordering

(i.e., the sign of ∆m2
31). While there is a long-standing tension between solar and reactor

experiment measurements of ∆m2
21, we find that allowing the mass-squared splittings to

vary does not impact the results of measuring the elements of the mixing matrix.
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Experiment PMNS Quantity LMM Quantity

Solar Neutral Current 1 (|Ue1|2 + |Ue2|2)N2
2 + |Ue3|2 N2

3

Solar Charged Current sin2 θ12 cos4 θ13 + sin4 θ13 |Ue2|2 (|Ue1|2 + |Ue2|2) + |Ue3|4

KamLAND cos4 θ13 sin2 (2θ12) 4 |Ue1|2 |Ue2|2

Daya Bay sin2 (2θ13) 4 |Ue3|2 (|Ue1|2 + |Ue2|2)/N2
e

Sterile Neutrino Pαβ (α 6= β) 0 |tαβ |2

OPERA cos4 θ13 sin2 (2θ23) 4 |Uµ3|2 |Uτ3|2 /N2
µ

Long-baseline Pµe
sin2 θ23 sin2 (2θ13) 4 |Ue3|2 |Uµ3|2 /N2

µ
(T2K, NOvA, DUNE, T2HK)

Long-baseline Pµµ
4 cos2 θ13 sin2 θ23

(
1−cos2 θ13 sin2 θ23

)
4 |Uµ3|2 (|Uµ1|2 + |Uµ2|2)/N2

µ
(T2K, NOvA, DUNE, T2HK)

Table 1. Quantities to which each experiment is sensitive: using the PMNS parameterization when

unitarity is assumed (center column), using the MP parametrization when unitarity is not assumed

(right column).

Due to the complexity of its simulation (both the computational expense of simulat-

ing the oscillation probabilities and the many relevant systematic uncertainty parameters),

we do not include the atmospheric neutrino results from Super-Kamiokande in our analy-

sis [69, 70]. While χ2 tables are provided by the collaboration for the results presented in

ref. [69], these assume three-neutrino mixing and a unitary leptonic mixing matrix. Since

our goal is to keep the data analyzed consistent whether we are assuming unitarity or not,

we do not include this in any of the following fits.

Table 1 summarizes the experiments that enter our analysis. We show the dominant

quantity to which each experiment is sensitive both when unitarity is assumed (the middle

column, labeled “PMNS Quantity”), and when unitarity is not assumed (the right column,

labeled “LMM Quantity”).

3.1 Solar neutrino measurements

The Sudbury Neutrino Experiment (SNO) [71] measures solar neutrinos via neutral-current

interactions. The oscillation probabilities for solar neutrinos can, to very good approxi-

mation, be calculated by considering an incoherent sum over neutrino mass eigenstates of

their production in the sun and their scattering cross sections in a detector. Critically,

this includes their journey from production to exiting the sun. The effective probabil-

ity that a neutrino begins as an electron flavor eigenstate and exits as a mass eigenstate

|νk〉 is related to the effective matrix-element-squared in propagation in matter, which

we call |Ũek|2. Since all of the results we consider are in the regime where matter ef-

fects dominate, we focus on this region, where we can express these mixing angles as

|Ũek|2 =
{

0, (|Ue1|2 + |Ue2|2)/Ne, |Ue3|2/Ne

}
.
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Following discussion similar to that of section 2.4, we can write the detected number

of neutral current events as

nN ∝
∑

k

Φexiting sun
k σNC

k =
∑

k

(
ΦSMNe|Ũek|2

)(
σNC

SM

(∑

l

∣∣∣(U †U)kl

∣∣∣
2
))

, (3.1)

= ΦSMσ
NC
SM

∑

k

Ne|Ũek|2
(∑

l

∣∣∣(U †U)kl

∣∣∣
2
)
, (3.2)

= ΦSMσ
NC
SM

[ (
|Ue1|2 + |Ue2|2

) (
N2

2 + |t12|2 + |t23|2
)

+ |Ue3|2
(
N2

3 + |t13|2 + |t23|2
) ]
, (3.3)

= Φ0σ
NC
SMP̂NC, (3.4)

where we define

P̂NC ≡
(
|Ue1|2 + |Ue2|2

) (
N2

2 + |t12|2 + |t23|2
)

+ |Ue3|2
(
N2

3 + |t13|2 + |t23|2
)
, (3.5)

=
(
|Ue1|2 + |Ue2|2

)
N2

2 + |Ue3|2N2
3

+
(
|Ue1|2 + |Ue2|2

) (
|t12|2 + |t23|2

)
+ |Ue3|2

(
|t13|2 + |t13|2

)
. (3.6)

The terms of the last line in eq. (3.6) are small relative to those in the line above it, so

we can express the measured oscillation probability at leading order as P̂NC ' (|Ue1|2 +

|Ue2|2)N2
2 + |Ue3|2N2

3 . This measurement is limited by uncertainties associated with the
8B neutrino flux prediction from the standard solar model [72]. We conservatively assume

that this probability is measured at the 25% level, P̂NC = 1± 0.25.

In addition, SNO, and Super-Kamiokande (Super-K) [73] measure solar neutrinos

via CC interactions. The oscillation probability is entirely dominated by matter effects.

When assuming unitarity, the measured survival probability can be expressed as Pee =

sin2 θ12 cos4 θ13 + sin4 θ13. We take the results from a preliminary joint SNO and Super-

K analysis [74], which reports sin2 θ12 = 0.306 ± 0.014 when using a prior of sin2 θ13 =

0.0219± 0.0014 in their analysis, and interpret it as a measurement of the survival proba-

bility Pee = 0.2932± 0.0134.6 If unitarity is not assumed, the survival probability is

Pee = |Ue2|2 (|Ue1|2 + |Ue2|2) + |Ue3|4 . (3.7)

We also include the measured value of ∆m2
21 = (6.11± 1.21) × 10−5 eV2 from the joint

analysis [74].

3.2 KamLAND

The Kamioka Liquid Scintillator Antineutrino Detector (KamLAND) was an experiment

that observed the oscillation of reactor electron antineutrinos νe (with energies between

'2–10 MeV) at distances of roughly 180 km. This allows KamLAND to be sensitive to the

6The results in ref. [74] result in slightly stronger constraints on Pee than those in the previously reported

ref. [73]. More interestingly, the results from ref. [74] prefer a larger value of ∆m2
21 (6.11× 10−5 eV2) than

those of ref. [73] (4.8× 10−5 eV2), more consistent with other observations from KamLAND.
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solar mass-squared splitting, measuring ∆m2
21 = (7.50± 0.20)×10−5 eV2. We use a slightly

older measurement from ref. [75] to be consistent with the corresponding measurement of

the oscillation probability. A more recent analysis measures this mass-squared splitting

slightly more precisely [76], but this does not affect our results.7

Appendix B of ref. [75] gives weighted measurements and uncertainties on the oscilla-

tion probability P (νe → νe) for different values of x ≡ 〈sin2 (∆21/2)〉, where the averaging

is performed over effective mixing angles in matter to incorporate matter effects in their cal-

culations. If unitarity is assumed, this oscillation probability (since oscillations associated

with ∆m2
31 have averaged out in KamLAND) is written as [75]

Pee = (cos4 θ13 + sin4 θ13)− cos4 θ13 sin2 (2θ12)x. (3.8)

When not assuming unitarity, this becomes

Pee = 1− 2 |Ue3|2 (|Ue1|2 + |Ue2|2)

N2
e

− 4 |Ue1|2 |Ue2|2
N2
e

x. (3.9)

KamLAND does not use a near detector in its analysis, so we need to re-scale this oscillation

probability by N2
e . The probability measured by KamLAND is therefore

P̂ee = |Ue3|4 +
(
|Ue1|2 + |Ue2|2

)2
− 4 |Ue1|2 |Ue2|2 x . (3.10)

The averaging over x performed in ref. [75] depends on the neutrino matter effects during

propagation, which we discussed in section 2.3. For long-baseline νe oscillations such as

those being measured at KamLAND, the deviations from the (small) unitarity-assumed

matter effects are, to leading order, dependent on quantities such as N2−N1 (the differences

between two different column normalizations). Where our global fit is concerned, these

differences are constrained to be greatly sub-dominant relative to other contributions to

the matter-induced mixing angle and mass-squared splitting. Given this sub-dominance,

and the fact that other experiments (solar neutrino experiments and Daya Bay, specifically)

provide more powerful measurements of the electron row elements of the LMM, we find this

method to be the most complete way of including KamLAND’s results in such an analysis.

3.3 Daya Bay

The Daya Bay experiment observes the disappearance of electron antineutrinos P (νe →
νe). Daya Bay operates in the regime of ∆21 � 1 and the coefficient of the dominant

oscillation term is given by sin2 (2θ13) in the PMNS parameterization. Given the derivations

in appendix B, we apply eq. (B.8), which shows that the disappearance probability (without

assuming unitarity, and including near detector normalization effects) is

Pee ' 1− 4 |Ue3|2 (|Ue1|2 + |Ue2|2)

N2
e

sin2

(
∆31

2

)
. (3.11)

7The more recent ref. [76] reports a slightly smaller preferred value of tan2 θ12 = 0.436 than ref. [75]’s

tan2 θ12 = 0.452. While this shift is at the ∼0.5σ level, the more powerful solar neutrino measurements are

more important for the resulting fits than KamLAND.
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The most recent measurement from Daya Bay is sin2(2θ13) = 0.0856±0.0029 [77], which we

map on to a measurement of the coefficient in eq. (3.11) in our fit. Daya Bay’s measurement

of the mass-squared-splitting
∣∣∆m2

31

∣∣ = (2.471± 0.070) × 10−3 eV2 is also included in our

analysis [77].

3.4 OPERA

The Oscillation Project with Emulsion-tRacking Apparatus (OPERA) collaboration has

completed data collection and has provided results of searches for νµ → ντ oscillations,

where the neutrinos have a mean energy of 17 GeV and a baseline of 730 km [78]. Across

four channels, the experiment observed 10 ντ signal events with an expectation of 2.0±0.4

background events, and 6.8 ± 1.4 signal events (assuming sin2 (2θ23) = 1 and ∆m2
32 =

2.5 × 10−3 eV2). This measurement predominantly constrains the quantity |tµτ |2 and the

product |Uµ3|2|Uτ3|2. For our analysis, we assumed that OPERA measures the oscillation

probability P (νµ → ντ ) for a fixed energy of 17 GeV and baseline of 730 km. We compute

the oscillation probability numerically (including matter effects) and multiply it by NµNτ

to account for the normalization effects discussed in section 2.4. We find that this approxi-

mation reproduces the results reasonably well. Finally, we include OPERA’s measurement

of the mass-squared-splitting
∣∣∆m2

32

∣∣ = (2.7± 0.7)× 10−3 eV2 [78].

3.5 T2K

The Tokai to Kamioka (T2K) experiment has performed searches for both electron

(anti-)neutrino appearance and muon (anti-)neutrino disappearance in a mostly muon

(anti-)neutrino beam. We include all searches possible, making some simplifications. We

use the preliminary results reported in ref. [79], using the figures therein to extract the

expected signal and background rates for νe and νe events as a function of oscillation pa-

rameters.8 In ref. [79], expected signal plus background rates are shown for the νµ → νe
and νµ → νe channels for values of δCP of −π/2, 0, π/2, and π. These are given for both

the normal and inverted mass orderings, assuming the other oscillation parameters are

fixed. We make the simple assumption that T2K measures these event rates for a fixed

energy ET2K = 600 MeV at a fixed baseline length LT2K = 295 km, with a constant matter

density of ρT2K = 2.6 g/cm3 [80]. Using the figures provided in ref. [79], we arrive at the

following expected event rates:

NT2K
νe = 21.90 + 1282.84× P (νµ → νe, LT2K, ET2K), (3.12)

NT2K
νe = 10.66 + 179.59× P (ν̄µ → ν̄e, LT2K, ET2K). (3.13)

Here, the values 21.90 and 10.66 are our extracted background rates for each of the two

channels. In order to extract these predictions, we make the assumption that the back-

ground rates are independent of the other oscillation parameters. The pre-factors 1282.84,

8In ref. [15], we had used the detailed results of ref. [80] to perform our simulations. We find that

our updated simulation with the preliminary results of ref. [79] are mostly consistent with the previous

published result, up to the fact that newer data are now included. Reference [81] also includes newer data

than ref. [80], and its results are more-or-less consistent with ours.
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ET2K = 600 MeV, LT2K = 295 km

ρT2K = 2.6 g/cm3

sin2 θ12 = 0.304
sin2 θ13 = 0.0219
sin2 θ23 = 0.55
∆m2

21 = 7.53× 10−5 eV2

∆m2
31 = 2.565× 10−3 eV2 (Green, NO)

∆m2
31 = −2.46× 10−3 eV2 (Purple, IO)
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T
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ν̄ e
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Figure 1. Validation of our T2K analysis: each panel displays the number of expected and observed

events for a different data sample at T2K: neutrino mode νe events (left) and antineutrino mode

νe events (right). All oscillation parameters except δCP and ∆m2
31 are fixed to the values listed

in the left panel. The green (purple) lines and stars assume the normal (inverted) mass ordering,

with ∆m2
31 = 2.565(−2.46) × 10−3 eV2. Stars correspond to the values given for expected signal

and background rates extracted from ref. [79], and the lines correspond to our estimates from

eqs. (3.12)–(3.13). Grey regions indicate the observed number of events in each channel with a ±1σ

range from Poissonian statistics.

179.59, can be interpreted as a weighted flux times cross-section for this particular energy,

translating an oscillation probability into an expected number of signal events. Figure 1

presents the expected number of signal plus background events for these two different chan-

nels, given by the formulae in eqs. (3.12)–(3.13), along with stars that indicate the values

given by the figure in ref. [79]. Note that, despite assuming a mono-energetic measure-

ment, our curves intersect the stars nearly perfectly. Also shown in each panel of figure 1

is the observed number of events in each channel (again, from ref. [79]), and its ±1σ sta-

tistical range. Since the statistical uncertainties are large, we only include them (and no

other systematic uncertainties) in this T2K electron-neutrino appearance measurement.

We compute the oscillation probabilities including matter effects numerically and multiply

it by Ne/Nµ to account for the use of a near detector for T2K.

For T2K’s measurement of muon-neutrino and muon-antineutrino disappearance, we

find that instead of assuming a mono-energetic measurement, that we obtain results more

compatible with those of the collaboration if we assume a fixed measurement of the relevant

coefficient of the disappearance probability. The disappearance probability is

Pµµ ' 1− 4 |Uµ3|2 (|Uµ1|2 + |Uµ2|2)

N2
µ

sin2

(
∆31

2

)
, (3.14)
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such that the relevant coefficient is

CDis.
µµ =

4 |Uµ3|2
(
|Uµ1|2 + |Uµ2|2

)

N2
µ

. (3.15)

We include T2K’s combined νµ and νµ disappearance searches by assuming a measurement

of Cµµ = 1.0 ± 0.03, and find that it gives us results consistent with refs. [79–81]. Finally,

when analyzing results from T2K (when studying its appearance channels, disappearance

channels, or both), we include a Gaussian prior on the mass squared splitting
∣∣∆m2

32

∣∣ =

(2.49± 0.082)× 10−3 eV2 [79].

3.6 NOvA

The last long-baseline experiment we include is the NuMI Off-Axis νe Appearance (NOvA)

experiment. It operates at similar values of L/Eν as T2K, but at longer distance/higher

energy. Like our T2K analysis, we assume that NOvA measures event rates at a fixed

energy and baseline — we assume this to be ENOvA = 1.9 GeV, LNOvA = 810 km, with a

constant matter density along the path of propagation of ρNOvA = 2.84 g/cm3 [82]. Using

the preliminary results of ref. [83], we extract expected signal and background rates for

different sets of oscillation parameters, using our mono-energetic assumption and assuming

that the backgrounds are independent of neutrino oscillations.9

Reference [83] reports observed event rates for both neutrino and antineutrino appear-

ance, as well as expected background and signal rates for a set of oscillation parameters.

We take these expected rates and our mono-energetic assumption to infer our expected

event rates,

NNOvA
ν, CCQE = 29.09 + 1202.65× P (νµ → νe, LNOvA, ENOvA) , (3.16)

NNOvA
ν, CCQE = 16.59 + 438.426× P (νµ → νe, LNOvA, ENOvA) . (3.17)

Instead of presenting the expected event rates for NOvA as a function of δCP in sep-

arate panels, we choose to show a “bi-event” plot, which shows the two expected rates

simultaneously, in figure 2. We have fixed ∆m2
21, sin2 θ12, and sin2 θ13 as given by the

values in the top-right of the panel. Each ellipse is generated by fixing (sin2 θ23,∆m
2
31)

(given by the legend), and varying δCP, while using eqs. (3.16) and (3.17). The values of

sin2 θ23 and ∆m2
31 for the combination correspond to the upper octant of θ23 > 1/2, and the

normal mass ordering ∆m2
31 > 0 corresponds to the best-fit according to ref. [83]. Since

corresponding values for NOvA’s preferred values in the inverted mass ordering and/or

lower octant of θ23 are not provided, we simply choose values such that sin2 (2θ23) and

|∆m32|2 are constant for these choices. For the normal ordering, upper octant (green solid

line) choice, we display as markers the four expected event rates corresponding to the figure

shown in ref. [83], displaying how well our results agree with the official collaboration ones.

Finally, the black cross indicates the observed event rate of NNOvA
νe = 82, NNOvA

νe
= 33 with

statistical uncertainties. As with T2K, we do not include any systematic uncertainties in

this portion of the analysis.

9As with T2K, we have also used the more detailed ref. [84] to perform a similar analysis with less overall

data as a cross-check. We find that our simulations match both ref. [84] and ref. [83] well.
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sin2 θ12 = 0.307
sin2 θ13 = 0.0210

∆m2
21 = 7.53× 10−5 eV2

sin2 θ23 = 0.57, ∆m2
31 = 2.485× 10−3 eV2

sin2 θ23 = 0.57, ∆m2
31 = −2.334× 10−3 eV2

sin2 θ23 = 0.43, ∆m2
31 = 2.485× 10−3 eV2

sin2 θ23 = 0.43, ∆m2
31 = −2.334× 10−3 eV2

Figure 2. Validation of our NOvA analysis: we present the number of expected signal events

in neutrino mode (x-axis) and antineutrino mode (y-axis), for ∆m2
21, sin2 θ13, and sin2 θ12 values

given in the upper-right corner of the figure. The four different ellipses correspond to different

combinations of (sin2 θ23, ∆m2
31) given in the legend where we vary δCP between −π and π. The

black cross indicates the number of observed signal neutrino and antineutrino events with statistical

uncertainties only. Colored markers on the solid green ellipse correspond to the expected values of

event rates presented in ref. [83] for δCP = ±π (star), −π/2 (square), 0 (circle), and π/2 (triangle).

For NOvA’s measurement of νµ and νµ disappearance, we find, similar to our analysis

of T2K, that the reported results are more realistically matched if we simply assume a fixed

measurement of the disappearance coefficient given in eq. (3.15). Since NOvA measures

this to be slightly away from maximal, we include this as a measurement CDis.
µµ = 0.99 ±

0.02, which replicates the results from refs. [83, 84] fairly well. When we analyze NOvA

results, either appearance data alone, disappearance data alone, or combined, we include

its measurement
∣∣∆m2

32

∣∣ = (2.41± 0.07)× 10−3 eV2 [83].

3.7 Sterile neutrino searches

When unitarity is not assumed, there could be additional zero-distance effects. Given

our current knowledge of the mass-squared-splittings ∆m2
21 and ∆m2

31 and assuming that

there are no additional neutrinos, any experiment, including near detectors, that operates

at L/Eν such that
∆m2

21L

4Eν
� 1, and

∆m2
31L

4Eν
� 1, (3.18)

should see no neutrino oscillations, and therefore is sensitive to these zero-distance effects.

In this regime of L/Eν , oscillation probabilities without assuming unitarity are

P (να → να) = 1, (Disappearance), (3.19)

P (να → νβ) =
|tαβ |2
NαNβ

, (α 6= β Appearance). (3.20)
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Due to the nature of such experiments, none of the sterile neutrino searches employ a

supplementary “near” detector. Based on our discussions in section 2.4, the measured

oscillation probabilities must be rescaled due to Monte Carlo predictions as

P̂ (να → να) = N2
α, (Disappearance), (3.21)

P̂ (να → νβ) = |tαβ |2 , (α 6= β Appearance). (3.22)

Sterile neutrino searches are typically carried out in the following way. If a fourth

neutrino exists with a mass-squared splitting ∆m2
41 �

∣∣∆m2
31

∣∣, and an experiment operates

in the L/Eν regime given by eq. (3.18), then it can search for oscillations given by the

probabilities

P (να → να) = 1− sin2 (2θαα) sin2

(
∆m2

41L

4Eν

)

= 1− 4 |Uµ4|2
(

1− |Uµ4|2
)

sin2

(
∆m2

41L

4Eν

)
, (Disappearance) (3.23)

P (να → νβ) = sin2 (2θαβ) sin2

(
∆m2

41L

4Eν

)

= 4 |Uα4|2 |Uβ4|2 sin2

(
∆m2

41L

4Eν

)
, (α 6= β Appearance). (3.24)

Limits or potential observations from these searches are presented in terms of sin2 (2θαβ)

and ∆m2
41 (see, for example, refs. [55–57]) For any particular experiment situated at a

baseline L and measuring oscillations for a specific energy range, the oscillations associated

with ∆m2
41 become very rapid (as a function of Eν) as ∆m2

41 becomes larger and larger.

Eventually, these oscillations average out, and the term sin2
(
∆m2

41L/4Eν
)
→ 1/2. In this

averaged-out regime, the oscillation probabilities become

P (να → να)→ 1− 1

2
sin2 (2θαα) = 1−2 |Uµ4|2

(
1−|Uµ4|2

)
, (Disappearance), (3.25)

P (να → νβ)→ 1

2
sin2 (2θαβ) = 2 |Uα4|2 |Uβ4|2 , (α 6= β Appearance). (3.26)

These have the same lack of energy-dependence as searches for unitarity violation. Equat-

ing eq. (3.25) with eq. (3.21) therefore allows us to map constraints on sin2 (2θαα) from

sterile neutrino searches in the averaged-out regime onto constraints of N2
α, while comparing

eq. (3.26) with eq. (3.22) allows us to map sin2 (2θαβ) onto |tαβ |2 for α 6= β. Table 2 sum-

marizes the null sterile neutrino searches included in our analysis: KARMEN, NOMAD,

CHORUS, and MINOS/MINOS+.

We do not consider any sterile neutrino searches for P (νe → νe) from reactor antineu-

trino experiments. The averaged-out regime of these searches, which is required to perform

this mapping, depends on flux and cross section uncertainties to be well understood in a

disappearance search. The overall flux of these searches is notoriously difficult to con-

strain [90–93], so these experiments do not place robust, strong limits in the high-∆m2
41

regime.
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Search 90% CL Limit Angle Constrained Unitarity Constraint

KARMEN νµ → νe [85] 1.8× 10−3 sin2 (2θµe) |tµe|2

NOMAD νµ → νe [86] 1.4× 10−3 sin2 (2θµe) |tµe|2

NOMAD νe → ντ [87] 1.5× 10−2 sin2 (2θeτ ) |teτ |2

NOMAD νµ → ντ [87] 3.3× 10−4 sin2 (2θµτ ) |tµτ |2

CHORUS νµ → ντ [88] 4.4× 10−4 sin2 (2θµτ ) |tµτ |2

MINOS/MINOS+ [89] νµ → νµ 2.5× 10−2 sin2 (2θµµ) N2
µ

Table 2. Sterile neutrino searches included in our analysis, and the associated 90% CL limit on

the effective mixing angle from the given experimental search.

Both the Liquid Scintillator Neutrino Detector (LSND) [94, 95] and MiniBooNE [96]

experiments have observed an excess of electron-like events in the presence of a beam that

is mostly νµ (or νµ), which can be interpreted as a short-baseline oscillation with P (νµ →
νe) ≈ 2.6 × 10−3. A combined study of these two experiments favors P (νµ → νe) 6= 0

at roughly 6σ. When analyzed in the context of a light sterile neutrino, the preferred

parameter space is compatible with the averaged-out regime, however that is not where

their best-fit point lies. We inspect the effect of including the favored |tµe|2 6= 0 preference

from LSND/MiniBooNE in appendix E.

4 Future experiments and simulations

In this section, we describe the future experiments that we consider in our analysis. Specif-

ically, we focus on the IceCube Upgrade [97], JUNO [98, 99], DUNE [100, 101], and

T2HK [102] experiments.

When simulating future data, we assume that the LMM is unitary, and consistent

with the best-fit-point of an analysis of current data with unitarity assumed. When we

analyze all current data assuming unitarity (using the PMNS parameterization), we obtain

the following best-fit point: sin2 θ12 = 0.308, sin2 θ13 = 0.02190, sin2 θ23 = 0.551, δCP =

−2.78 = 200.4◦, ∆m2
21 = 7.50 × 10−5 eV2, and ∆m2

31 = 2.53 × 10−3 eV2.10 We translate

these values in to the values of |Uαk|2 and φαk and obtain

|ULMM|2 =




0.677 0.302 0.022

0.083 0.378 0.534

0.240 0.320 0.439


 ; φe2 = 3.00, φe3 = −0.47, φτ2 = −0.24, φτ3 = 2.97.

(4.1)

4.1 IceCube upgrade

The IceCube experiment is capable of detecting atmospheric neutrinos over a broad range

of energies, 1 GeV . Eν . 100 GeV. By measuring track-like (νµ) and cascade-like

10With the recent update of oscillation data from T2K [79] and NOvA [83], the preference for the normal

mass ordering (∆m2
31 > 0) over the inverted mass ordering (∆m2

31 < 0) has diminished [64, 103]. We

choose the best-fit point according to the normal ordering, given data not included in our fit, specifically

Super-Kamiokande’s atmospheric neutrino sample.
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(νe and ντ ) events, IceCube is sensitive to effects of the mass-squared splitting ∆m2
31

and oscillations associated with that splitting. Of importance for constraining leptonic

unitarity is IceCube’s ability to constrain the normalization of νµ → ντ appearance in its

data sample. Currently, this measurement has a precision of ∼40% [104]. However, in

the coming years, O(10%) precision will be attainable by considering either eight years of

IceCube DeepCore data or one year of IceCube Upgrade data [105]. Given the regime of

oscillations that IceCube measures, for νµ → ντ appearance it is dominantly sensitive to

4|Uµ3|2|Uτ3|2/N2
µ. We do not include any information from IceCube on this quantity in our

current fits, but include a 10% measurement of that quantity in our future projections.

4.2 JUNO

JUNO is an upcoming reactor-based neutrino experiment (scheduled to start operation

in 2022 [106]), where neutrinos from 10 different nuclear reactors travel for baselines of

'53 km before reaching a 20 kiloton detector (with 2 additional reactors at a baseline of

'200 km), comprised of liquid scintillator. JUNO is primarily sensitive to the atmospheric

mass-squared splitting ∆m2
31, as well as being sensitive to the solar mass-squared splitting

∆m2
21. Its design goal is to measure ∆m2

31 precisely enough to determine the mass ordering

of the neutrinos, i.e. whether m1 < m2 < m3 or m3 < m1 < m2. Because it operates in

neither the regime ∆21 � 1 nor ∆31 � 1, when considering JUNO we must use the full

oscillation probability in eq. (B.6). The effects of the matter potential on the oscillation

probability P (νe → νe) are negligible for sensitivity studies on the solar sector mixing [98],

which is the main contribution from JUNO dataset to the global unitarity constraints, so

we employ the form for said probability given in eq. (B.6).

We simulate the expected event rate assuming six years of data collection, correspond-

ing to a total of 1.2× 105 signal events from νe inverse beta-decay scattering in the JUNO

detector [98, 107]. Following ref. [98], we include the following sources of systematic un-

certainties in our simulation: correlated (among different reactors) flux uncertainty of 2%,

uncorrelated flux uncertainty of 0.8% for each reactor, spectrum shape uncertainty of 1%.

We do not include backgrounds in our simulation. Our projected sensitivity to sin2 θ12 in

the standard three-flavor oscillation scenario is 0.42%, compared to the official collaboration

sensitivity of 0.54%.

JUNO plans on using the Taishan Antineutrino Observatory (TAO) [99] to constrain

the reactor antineutrino spectrum to sub-percent energy resolution. TAO will be situated

30 meters from the core of the Taishan Nuclear Power Plant and will be able to observe

roughly 2000 reactor νe interactions per day. Using TAO and the 20 kt JUNO detector, the

collaboration can perform a near-to-far detector ratio measurement similar to Daya Bay

(see section 3.3). We also make the conservative assumption that with a comparison of TAO

measurements to reactor antineutrino flux predictions, the collaboration can constrain the

normalization of its near detector measurement to allow for a 10% measurement of Ne.
11

11Without such a near detector measurement, the near-to-far detector ratio measurement by JUNO-TAO

would be subject to an overall rescaling degeneracy of the electron row elements |Uek|2. Including a 10%

measurement from TAO does not impact our final joint analysis results because Ne is already constrained

(by KamLAND, solar neutrino measurements, and Daya Bay) at the few-percent level.
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JUNO will in principle be sensitive to each element of the electron row of the LMM,

|Ue1|2, |Ue2|2, and |Ue3|2. As we will show in section 5, JUNO will allow for more precise

measurements on |Ue1|2 and |Ue2|2 than current experiments (specifically measuring the

combination |Ue2|2 / |Ue1|2 very precisely), but will not improve on the precision of |Ue3|2
achieved by Daya Bay.

4.3 DUNE

DUNE is a future beam-based neutrino experiment, scheduled to begin data collection in

the late 2020s. It consists of an O(GeV) neutrino beam, consisting primarily of νµ when

operating in neutrino mode and νµ when operating in anti-neutrino mode [108], and a

40-kton liquid argon far detector. The baseline length is 1300 km, meaning that DUNE

operates near the regime ∆21 � 1. Nevertheless, it will be sensitive to the effects of ∆m2
21,

allowing for a precise measurement of the CP-violating phase δCP in the PMNS matrix,

among other goals.

We consider three different beam-related channels when simulating DUNE, each effec-

tively measuring a different neutrino oscillation probability: the electron-neutrino appear-

ance channel, sensitive to P (νµ → νe) (and its CP-conjugate); muon-neutrino disappear-

ance/survival P (νµ → νµ) (and its CP-conjugate); and tau-neutrino appearance, sensitive

to P (νµ → ντ ) (and its CP-conjugate). To simulate the expected event rates for these

different channels, we employ simulation code developed with refs. [109–113] for νe appear-

ance and νµ disappearance and ref. [114] for ντ appearance. For all of our simulations,

we assume seven years of data collection with DUNE, divided evenly between operation in

neutrino mode and antineutrino mode. We include signal and background normalization

uncertainties (5% for the νe appearance and νµ disappearance channels, and 25% for ντ
appearance). As we will show in section 5, DUNE will allow improve on the precision of

the measurements made by NOvA and T2K for both νµ disappearance and νe appearance,

as well as OPERA for ντ appearance.

Finally, DUNE is capable of improving on existing measurements of the 8B solar neu-

trino flux using νe CC and elastic electron scattering [115]. We simplify the analysis by

assuming that DUNE will be able to measure Pee ≡ |Ue2|2
(
|Ue1|2 + |Ue2|2

)
+ |Ue3|4 at the

3% level, consistent with the more complete analysis of ref. [115].

4.4 T2HK

In the next decade, T2K will be upgraded with a larger water Čerenkov detector and begin

operating as T2HK. It will operate in a similar region of L/Eν as DUNE, albeit at a lower

length and energy. This, along with the different detection mechanism, allows for tests

between the results of the two experiments, and further power in validating (or discovering

new physics beyond) the three-massive-neutrinos paradigm. T2HK will also collect a very

large sample of atmospheric neutrinos, which we do not include in our analysis. Its beam-

based program plans to collect data in a 1:3 ratio between neutrino and antineutrino modes.

While T2HK intends to operate for ten years or longer, we rescale all of our expected signal

and background rates to a data collection period of seven years to be consistent with our

DUNE projections.
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We perform simulations of the T2HK expected yields for νµ → νe appearance and νµ →
νµ disappearance, consistent with refs. [102, 116], developed from refs. [113, 117]. As with

our DUNE simulation, this has been modified to allow for a non-unitary LMM. We include

expected signal and background yields in our simulations, along with energy resolutions

discussed in refs. [113, 117], and signal and background normalization uncertainties of 5%.

5 Primary results

Throughout this section, we present the results of analyzing the datasets described in sec-

tions 3 and 4. We begin in section 5.1 with consistency checks where unitarity is assumed,

and determine whether different datasets agree on their measurements of different param-

eters. These consistency checks can serve as a simple test of unitarity. Subsequently, we

abandon the unitary assumption and consider the agnostic case, adopting the MP parame-

terization, and present results for our full analysis in sections 5.2, 5.3, and 5.4. Section 5.2

shows how subsets of data contribute to the sensitivity in the electron and muon rows. Sec-

tion 5.3 presents how well we can currently constrain the LMM matrix element magnitudes

|Uαk|2 and how much we can improve with future data. Section 5.4 demonstrates how well

we can determine the normalization of the rows/columns, and closure of the row/column

triangles of the LMM.

Before presenting our results, we clarify the statistical approaches taken in our analy-

ses. In sections 5.1 and 5.2, the analyses only rely on a handful of parameters. We perform

frequentist analyses, scanning a given likelihood function over the parameters of interest,

and determining the confidence levels (CL) in these parameter spaces. In sections 5.3

and 5.4, the analyses depend on 15 parameters, and we use the Bayesian inference tool py-

MultiNest [118–121] to construct credible regions (CR) based on the posterior likelihood

density. For further details, see appendix C.

5.1 Simple unitarity constraints & consistency checks

One straightforward way to test whether the LMM is unitary is by analyzing different

experimental measurements separately and checking for consistency. This is demonstrated

conceptually in figure 3 for two pairs of mixing angles, sin2 θ13 vs. sin2 θ12 and sin2 θ13 vs.

sin2 θ23.12 We assume the LMM is unitary, and interpret experimental measurements as

combinations of PMNS mixing angles (see table 1). If the LMM is indeed unitary, all of

these measurements should meet at a single point in the sin2 θjk-sin
2 θnl planes, while if it

not unitary, an intersection is not guaranteed.

Before continuing, we note that the analytical expressions in table 1 are good approx-

imations of measurements near the best-fit regions of mixing parameters. If one deviates

too far from best-fit regions, these approximations break down. For example, current data

indicates small |Ue3|2, or sin2 θ13 if unitarity is assumed. In what follows, when analyzing

different oscillation coefficients, we will generically allow sin2 θ13 to be large. This very

12For the third combination, sin2 θ12 vs. sin2 θ23, no existing or future measurement is sensitive to this

combination of angles in an interesting and non-trivial way.
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Figure 3. Hypothetical perfect measurements of different oscillation coefficients as described in

the test — the true values of the mixing angles are assumed to be sin2 θ12 = 0.316, sin2 θ13 = 0.022,

and sin2 θ23 = 0.565. We dash lines above sin2 θ13 where our analytical approximations are likely

no longer valid.

likely produces results at large sin2 θ13 that are inconsistent with real experimental obser-

vations. Nevertheless, it is instructive to see how the results of these analytic estimates

change over the full, potential range of the mixing angles. We indicate the region where

these expressions likely break down, sin2 θ13 & 0.2, with dashed lines.

In the left panel of figure 3, we compare how three types of measurements can pin

down sin2 θ13 vs. sin2 θ12 given infinite experimental precision, under the assumption that

the full oscillation probabilities are dominated by the coefficients listed in table 1. The

three measurements we incorporate are:

• P SBL
ee : short-baseline measurement of P (νe → νe) from a reactor neutrino experiment,

e.g., Daya Bay.

• P Solar
ee : solar neutrinos measured via CC interactions.

• PLBL
ee : long-baseline measurement of P (νe → νe) from a reactor neutrino experiment,

e.g., KamLAND.

Whether all three measurements intersect is a test of the e-row normalization, i.e., whether

Ne = 1.

In the right panel of figure 3, we show similar hypothetical infinite-precision measure-

ments of oscillation probabilities that are sensitive to a combination of sin2 θ13 and sin2 θ23.

They are the following:

• P SBL
ee as above.

• PLBL
µµ : long-baseline measurement of P (νµ → νµ) as performed by the current T2K

and NOvA, or future DUNE and T2HK experiments.
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• PLBL
µe : long-baseline measurement of P (νµ → νe) as performed by the current

T2K/NOvA or future DUNE/T2HK experiments.

• PLBL
µτ : long-baseline measurement of P (νµ → ντ ) as performed by the current

OPERA experiment, upcoming IceCube results, or future DUNE experiment.

From the right panel of figure 3, we see that long-baseline experiments alone do not suf-

fice to resolve the octant degeneracy, i.e., whether sin2 θ23 is larger or smaller than 1/2,

as the green, red, and orange curves meet in two locations. Reactor data providing a

precise measurement of sin2 θ13 is needed to break the degeneracy. Also, we see that an

infinitely precise measurement of the ντ appearance probability is useful, but not necessary,

to precisely determine the oscillation parameters.

Figure 3 (right) allows for a test of the normalization of the third column of the LMM,

i.e., whether N3 = 1 when one relaxes the unitarity assumption. Referring to the right

column of table 1, given measurements from KamLAND, solar CC experiments, and Daya

Bay, we see that |Ue3|2 can be determined fairly robustly. Next, long-baseline νµ → νe
appearance allows us to measure 4|Ue3|2|Uµ3|2/N2

µ. Meanwhile, long-baseline νµ → νµ
disappearance measures 4|Uµ3|2(|Uµ1|2+|Uµ2|2)/N2

µ. If additional information (for instance

from MINOS/MINOS+) on N2
µ is obtained, this combination allows us to determine |Uµ3|2

precisely. Finally, long-baseline νµ → ντ appearance is sensitive to 4|Uµ3|2|Uτ3|2/N2
µ, from

which we can extract |Uτ3|2. In tandem then, we can measure each of the elements |Uα3|2,

which allows the placing of a constraint on N3. Note that the measurement capability of

N3 will be mostly limited by one’s measurement of long-baseline νµ → ντ appearance, as

it is the least well-constrained of these measurements currently. See the discussion around

figure 6 for an illustration of this.

We now analyze how well the combination sin2 θ13 vs. sin2 θ12 is measured by current

experiments, as well as prospects for near-future experiments. This result is presented in

figure 4, where the left (right) panel demonstrates our current (expected future) knowledge

of the two parameters. For easy comparison, the right panel also includes a joint fit of

current data in black.

The shapes of the measurement regions in figure 4 match those in the left panel of

figure 3, as expected. We see that JUNO will significantly improve the precision on mea-

suring sin2 θ12. However, it will not measure sin2 θ13 as precisely as Daya Bay. If we

allow sin2 θ12 > 1/2, JUNO has an allowed region (analogous to KamLAND) that cannot

be resolved by JUNO alone. In addition, DUNE will modestly improve on existing solar

neutrino measurements.

Similarly, figure 5 demonstrates our knowledge of the combination sin2 θ13 vs. sin2 θ23.

In the left panel, because the T2K and NOvA experiments both measure νµ → νµ disap-

pearance and νµ → νe appearance, and their measurements are qualitatively similar, we

combine the two in each analysis, but separate by the two channels (all unseen parameters,

including δCP, are marginalized over in these analyses). Like with the current set of mea-

surements shown in the left panel of figure 4, these measurements all agree at the 1σ level.

NOvA and T2K both see modestly higher event rates than expected in νe appearance,

driving the orange contours up and to the right relative to where the blue and red contours
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Figure 4. Current (left) and projected (right) measurements of the mixing angles sin2 θ13 and

sin2 θ12 at 95% and 99% CL. The black contours in both panels show the joint-fit region with

current data.
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Figure 5. Current (left) and projected (right) measurements of the mixing angles sin2 θ23 and

sin2 θ13 at 95% and 99% CL. The black contours in both panels show the joint-fit region with

current data.

overlap, however, any tension is modest at best. DUNE and T2HK (like with NOvA and

T2K, we combine these two experiments because of their similar sensitivity) will improve

on the NOvA, T2K, and OPERA measurements in the right panel of figure 5, leading to

the tighter contours of the right panel. If non-unitarity is present, then these regions may

not overlap at high CL, as they do today.
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Figure 6. Projected measurements of sin2 θ13 vs. sin2 θ23 when unitarity is violated (N3 ≈ 2).

For DUNE’s long-baseline measurement of Pµτ (green), we simulate data assuming the underlying

mixing matrix is non-unitary, and extract the measurement of these parameters assuming the matrix

is unitary.

Finally, we revisit the point raised when discussing the right panel of figure 3, regarding

how one might use such a set of measurements to determine whether the LMM is unitary

through their sensitivity to N3 6= 1. Here, we inject unitarity violation by making |Uτ3|2
significantly larger than it should be, making N3 ≈ 2, beyond the edge of the currently al-

lowed 3σ range. We then fit the simulated data using DUNE’s ντ appearance measurement

while still assuming the mixing matrix is unitary. The resulting fit is shown in green in

figure 6 — note the lack of overlap between the green (DUNE Pµτ ), orange (DUNE/T2HK

Pµe), and red (DUNE/T2HK Pµµ) measurements — indicating the need for a more thor-

ough test of unitarity violation. If such a discrepancy arises, IceCube’s measurement of

4|Uµ3|2|Uτ3|2/N2
µ could allow for verification of this arising from unitarity violation.

We caution the reader that the approach taken in figure 6 was to illustrate how channel

combinations test unitarity. However, this is not the most robust way of testing unitarity, as

the sensitivities of different measurements to unitarity violation are not easily disentangled.

Furthermore, this framework does not accommodate sterile neutrino searches. An alternate

example of how to test unitarity when analyzing data in the PMNS paradigm can be found

in ref. [15], where it was demonstrated how unitarity triangles ρxy + iηxy can be used.

In ref. [15], we showed that, like here, separating analysis results by different oscillation

channels can lead to inconsistent fits. In the following subsections, we carry out a global

fit to the LMM that can directly test unitarity.

5.2 Measurements of the electron and muon rows

Before looking at the global fit results of the LMM elements, we show the results for the

absolute-value-squared of matrix elements in the electron and muon rows from a fit to

certain subsets of the experiments we consider. Showing these subsets of experiments illus-
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Figure 7. Left: current measurements coming from experiments that are only sensitive to electron-

row parameters |Ue1|2, |Ue2|2, and |Ue3|2. Here we compare measurements from KamLAND, Solar

CC, and Daya Bay, and a joint fit region (black). Note that the measurements are combined prior

to marginalizing over any of the three parameters, hence the joint measurement appears stronger

than expected. Right: future projections of these parameter measurements by JUNO and DUNE’s

solar neutrino capabilities, compared against the joint fit of current data (black).

trates how combinations of different measurements affect our understanding of the various

|Uαk|2. This is performed for the electron and muon rows, where individual experimental

measurements are only sensitive to those elements. We do not do this for the tau row,

because there is not nearly as much experimental information for it, and the oscillation

probability Pττ has never been measured.

Electron row only. Figure 7 (left) displays the current knowledge of the electron row

|Uek|2 for a subset of the existing experiments we discussed in section 3. Each panel displays

two-dimensional projections of the test statistic ∆χ2 for these CL, after marginalizing over

the third, unseen parameter.

We show results individually from KamLAND, SNO and Super-K measurements of

solar neutrinos from CC interactions, and Daya Bay, in addition to a joint fit to these

three sets of results. Note that due to not marginalizing over any parameters before

performing the joint fit, the resulting two-dimensional ∆χ2 contours do not follow the

näıve expectation as a result of degeneracies in the parameter space. For example, Daya

Bay measures the combination 4 |Ue3|2 (|Ue1|2 + |Ue2|2)/N2
e , which is degenerate under

|Ue1|2 ↔ |Ue2|2, such that it appears that Daya Bay places no constraint in the upper-left

panel of figure 7 (left), showing constraints in the |Ue1|2 − |Ue2|2 plane. However, Daya

Bay constraints on |Ue3|2 as a function of |Ue1|2 , |Ue2|2 combine with solar measurements

in the |Ue2|2 − |Ue3|2 plane to bound |Ue2|2 and |Ue1|2, such that the best-fit regions are

the small black elliptical contours shown in the figure. Note that in this procedure the

only constraint we impose is that we require each of the parameters satisfy 0 6 |Uek|2 6 1.
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If one were to impose the constraint that the sum not exceed one, as would apply in the

sub-matrix case we discussed in section 2.1, the upper-right triangular half of the |Ue1|2 vs.

|Ue2|2 panel would be forbidden, somewhat limiting the KamLAND, solar CC, and joint

fit contours. Compared to figure 1 in ref. [36], the Ue1-Ue2 panel is similar, but with some

differences due to how data sets are combined. The Ue3 panel is qualitatively different due

to the addition of the Daya Bay measurement. The stars in figure 7 represent the best-

fit point in this parameter space given by this combination of datasets: |Ue1|2 = 0.670,

|Ue2|2 = 0.306, and |Ue3|2 = 0.022.

The upcoming JUNO experiment will measure a combination of these parameters

as well, with the oscillation probability given by eq. (B.6). JUNO will operate in the

regime of L/Eν in which the effects of both mass-squared splittings are relevant, and

therefore, with enough statistical power, can be independently sensitive to each mixing

element |Uek|2. JUNO’s capacity to measure each of these three parameters is depicted in

figure 7, alongside the combined current measurement from figure 7 (left) in black. JUNO

will precisely measure the combination |Ue2|2 / |Ue1|2 leading to the very sharp regions in

the |Ue1|2 vs. |Ue2|2 panel. When combined with the current fit region, this will lead to

impressive measurements of both |Ue1|2 and |Ue2|2.

On its own, JUNO suffers the same degeneracy discussed above for Daya Bay under

the interchange |Ue1|2 ↔ |Ue2|2, and requires solar neutrino experiments to break the

degeneracy. However, this interchange |Ue1|2 ↔ |Ue2|2 also requires changing the neutrino

mass ordering (or the sign of ∆m2
31). If the mass ordering can be determined independently

of JUNO at high enough significance (for instance, by DUNE, T2HK) then the solution

where |Ue2|2 > |Ue1|2 may be eliminated. The availability of redundant but independent

data to select the right (|Ue1|2 , |Ue2|2) is a powerful tool to test new physics scenarios such

as possible non-standard interactions of neutrinos.

In figure 7 (right), we do not perform a joint analysis of current and future data,

and simply note that once future data from JUNO are included, the measurements of

|Ue1|2 and |Ue2|2 will be dominated by JUNO, whereas the measurements of |Ue3|2 will

be dominated by current experiments, specifically Daya Bay. JUNO will measure |Ue3|2
at slightly worse precision than Daya Bay. This measurement, since it is performed at a

significantly different baseline from Daya Bay, serves as an important cross-check.

Muon row only. We perform a similar procedure focusing on the elements |Uµk|2 in

figure 8. In the left panel of figure 8, we include the MINOS/MINOS+ sterile neutrino

search, NOvA νµ and νµ disappearance, and T2K νµ and νµ disappearance. The combined

fit of these data sets is shown in black. Instead of presenting these measurements in terms

of the elements |Uµ1|2, |Uµ2|2, and |Uµ3|2, we present the measurements in terms of the

combinations |Uµ1|2± |Uµ2|2 and |Uµ3|2. This is because the combination |Uµ1|2 + |Uµ2|2 is

more precisely measured by MINOS/MINOS+, NOvA, and T2K, where their difference is

not well-constrained by current data. Again, if we compare against the analogous parameter

space in ref. [36], we find overall consistency, with the stronger constraints from T2K,

NOvA, and MINOS+ contributing to stronger measurements in the |Uµ1|2 + |Uµ2|2 vs.

|Uµ3|2 space than those in ref. [36].
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Figure 8. Left: current measurements coming from experiments only sensitive to the muon-row

parameters |Uµ3|2 and the combinations |Uµ1|2 ± |Uµ2|2. Here we compare measurements from

T2K νµ and νµ disappearance, NOvA νµ and νµ disappearance, and the MINOS/MINOS+ sterile

neutrino search, as well as a combined fit of these (black). Right: comparison between the current,

joint fit (black) and the future DUNE and T2HK νµ and νµ measurements of these parameters.

Again, parameter degeneracies cause the combined fit to appear stronger than näıve

expectations. We see that |Uµ3|2 is measured the most precisely of these three parameters,

and the combination |Uµ1|2 + |Uµ2|2 is well measured by the combination of datasets in the

bottom-left panel. The difference |Uµ1|2−|Uµ2|2 is not well-measured, and is predominantly

constrained by the requirement that both |Uµ1|2 and |Uµ2|2 are both between 0 and 1. This

forces the difference |Uµ1|2 − |Uµ2|2 to be less in magnitude than the sum |Uµ1|2 + |Uµ2|2.

The stars in figure 8 (left) correspond to the best-fit points of these elements from the full

analysis discussed in the main text: |Uµ1|2 = 0.096, |Uµ2|2 = 0.352, |Uµ3|2 = 0.552.

Figure 8 (right) displays our future projections on the muon row element measure-

ments, where we compare the current joint fit (black) to projections of DUNE (green) and

T2HK (red) νµ and νµ disappearance.13 DUNE and T2HK measure oscillations over a

wider range of L/Eν than their predecessors, thus they are sensitive to more than just the

“dominant” term in the disappearance channel oscillation probability, namely the prefac-

tor of sin2 (∆31/2) in eq. (B.6). Indeed, these experiments have some sensitivity to the

interference term, namely the final term of eq. (B.6). This allows DUNE and T2HK to be

sensitive to |Uµ1|2−|Uµ2|2 unlike the current data considered in figure 8 (left). We see that

these experiments can both demonstrate |Uµ2|2 > |Uµ1|2 at high significance.

13In order to study how DUNE and T2HK muon-neutrino disappearance are sensitive to the muon row

elements, and only the muon row elements, we perform this simulation assuming oscillations of νµ occur in

vacuum. This allows us to use the expression in eq. (B.6) for our calculations. We find this to be a good

approximation for the muon neutrino/antineutrino channels.
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Figure 9. Measurements (and projections) of the matrix-elements-squared |Uαk|2 of the LMM.

These are one-dimensional ∆χ2 measurements of each parameter after marginalizing a 15 parameter

fit down to each individual one. Results are generated using pyMultiNest [118–121]. All results

here are obtained under the agnostic assumption.

5.3 Joint measurement of all matrix-elements-squared

In this subsection, we present the current constraints on the parameterization-independent

|Uαk|2, and project how well these will be constrained once future data from DUNE/T2HK,

JUNO, and IceCube Upgrade are included. In appendix D, we show how well the

parameterization-dependent phases {φe2, φe3, φτ2, φτ3} are and will be constrained.

Figure 9 displays the individual measurements of |Uαk|2 including current data (blue)

and current data with future data (red).14 Each panel displays the one-dimensional ∆χ2

14Note that we present the top-right axis in terms of 10 × |Ue3|2 rather than |Ue3|2 for presentation

purposes so that it can share axes with the |Uµ3|2 and |Uτ3|2 panels.
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measurement of the element after marginalizing the 15-parameter fit down to the individ-

ual element. Here, we define ∆χ2 = −2∆L, where L is the posterior likelihood obtained

in our analysis. The improvement in |Ue1|2 and |Ue2|2 is driven predominantly by JUNO,

while the improvement in the muon row is driven by DUNE and T2HK νµ → νµ mea-

surements.The tau row improvements are driven by νµ → ντ measurements in IceCube

and DUNE. The IceCube measurement will reach a higher precision than DUNE because

of the large systematic uncertainties on neutrino-nucleus cross sections at DUNE’s beam

energies.

Using these results, we can determine the allowed 3σ CR for each of the nine mixing-

matrix-elements squared according to the current data, as well as projections to including

future data. The allowed ranges for these are

∣∣UCurrent
LMM

∣∣2
3σ

=




[0.606, 0.742] [0.265, 0.337] [0.020, 0.024]

[0.051, 0.270] [0.198, 0.484] [0.392, 0.620]

[0.028, 0.469] [0.098, 0.685] [0.140, 0.929]


 , (5.1)

∣∣UFuture
LMM

∣∣2
3σ

=




[0.653, 0.699] [0.291, 0.311] [0.020, 0.024]

[0.074, 0.108] [0.355, 0.454] [0.447, 0.561]

[0.129, 0.359] [0.212, 0.423] [0.349, 0.595]


 . (5.2)

We can interpret the amount by which each of these measurements will improve, at

the 3σ level, by computing the reduction in size of the allowed 3σ range of each |Uαk|2,

∆|UCurrent
αk |2/∆|UFuture

αk |2:

Improvement Factor :




3.0 3.6 1.0

6.4 2.9 2.0

1.9 2.8 3.2


 . (5.3)

As is evident in figure 9, the improvement is noticeable especially for the elements |Ue1|2,

|Ue2|2, |Uµ1|2, and the τ row elements. This analysis is performed under the agnostic case

— we compare these results with those obtained under the sub-matrix case in section 6.2.

5.4 Constraining the normalization and closure conditions with current and

future data

In this subsection, we check the consistency of data with the requisite conditions to deter-

mine whether the LMM is unitary. Specifically, we measure the row/column normalizations

Nα and Nk and triangle closures tαβ (between two rows) and tkl (between two columns),

using the same analyses as in the previous subsection.

The left panel of figure 10 displays the results of this analysis, projecting down to

two-dimensional CR measuring the row normalizations Ne, Nµ, and Nτ at 95% and 99%

credibility. We see that the analysis of all current data is consistent with unitarity for

these values. Future data will lead to a modest improvement in the constraint on Nµ, some

improvement in Ne, and significant improvement in Nτ .

Similarly, the right panel of figure 10 presents the current constraints, as well as pro-

jected future ones, on the column normalizations N1, N2, and N2, at 95% and 99% credi-

bility. The correlation between measurements of each pair of column normalizations is due
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Figure 10. Left: constraints (and projected constraints) on the row normalizations Ne, Nµ, and Nτ
at 95% (dark) and 99% (faint colors) credibility. Right: constraints on the column normalizations

N1, N2, and N3 at 95% (dark) and 99% (faint colors) credibility. All results here are obtained

under the agnostic assumption.

Best-fit (current) 3σ (current) 3σ (future)

Ne 1.00 [0.94, 1.05] [0.97, 1.03]

Nµ 0.99 [0.96, 1.04] [0.96, 1.03]

Nτ 1.12. [0.32, 1.82] [0.79, 1.23]

N1 1.01 [0.84, 1.22] [0.89, 1.12]

N2 1.05 [0.75, 1.27] [0.92, 1.10]

N3 1.05 [0.67, 1.40] [0.90, 1.10]

Table 3. Summary of current and expected future constraints on the row (Nα) and column (Nk)

normalizations, under the agnostic assumption.

to the fact that these constraints are limited by the measurement of the tau-row elements,

|Uτk|2. Future data will improve the constraint on each column normalization by a factor

of roughly 3.

Table 3 summarizes the current and expected future measurements of the row and col-

umn normalizations of the LMM. Here, we give the current best-fit (maximum likelihood

point) value of each normalization, as well as the extents of its current 3σ CR. We also

show the projected future 3σ CR, assuming a true value of NX = 1, demonstrating the im-

provement attributable to future data. Our projected constraint on Ne is 1.1%, consistent

with the official JUNO analysis, which reports a 1.2% constraint on Ne.

Figure 11 presents the results on the closures of different triangles tαβ and tkl. Each

panel in this figure presents constraints on the real and imaginary part of tαβ (top row)
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Figure 11. Constraints (and projected constraints) on the real (x-axes) and imaginary (y-axes)

parts of the closures of the six unitarity triangles. Dashed circles indicate contours corresponding

to fixed |txy|2, with the outer one in each panel as labeled. The inner dashed circles are an order of

magnitude smaller |txy|2 than the outer ones. Here we analyze data under the agnostic assumption.

or tkl (bottom row) at 95% credibility (dark) and 99% credibility (faint). We draw circles

corresponding to constant values of the magnitude of |tαβ |2 and |tkl|2 as labeled, where each

successive inward circle is an order of magnitude smaller. When constraining teτ and tµτ ,

the expected future constraints are nearly degenerate with the current ones — constraints

here are dominated by the sterile neutrino searches discussed in section 3, specifically the

NOMAD and CHORUS results discussed in table 2. Constraints on tµe will improve mod-

estly once information from DUNE and JUNO are incorporated. In contrast, measurements

of the closures of the different pairs of columns will improve significantly with future data.

Currently, each of these can be constrained |tkl|2 . 10−1 at 95% credibility. With future

data, this will improve to roughly |tkl| . 10−2 for each of the three triangles. We summarize

the current and future 3σ credibility upper limits on the triangle closures in table 4.

The analysis yielding figures 10 and 11 was conducted assuming the agnostic case of

section 2.2, whereby the matrix of which the LMM is a sub-matrix need not be unitary.

The sub-matrix approach was taken in ref. [14], where it was pointed out that assuming

unitarity of the larger matrix leads to strong constraints from Cauchy-Schwarz inequalities.

By remaining agnostic about the larger matrix, the improved measurement capability of

future data is more apparent. An analysis assuming the larger matrix is unitary is contained

in section 6.2.

– 34 –



J
H
E
P
1
2
(
2
0
2
0
)
0
6
8

Current 3σ Upper Limit Future 3σ Upper Limit

|teµ| 3.2× 10−2 2.5× 10−2

|teτ | 1.3× 10−1 No Improvement

|tµτ | 1.6× 10−2 No Improvement

|t12| 2.5× 10−1 1.0× 10−1

|t13| 3.2× 10−1 1.2× 10−1

|t23| 3.3× 10−1 1.1× 10−1

Table 4. Summary of current and expected future constraints on the row closures |tαβ | and column

closures |tkl|, under the agnostic assumption.

6 Secondary results with alternate assumptions

As discussed throughout this work, different assumptions regarding the origin of unitarity

violation, as well as which datasets are included in the analysis, can have significant impact

on the resulting constraints on the unitarity of the LMM. The primary results of our work,

where we analyzed all possible data under the agnostic case, were shown in section 5. In

this section, we explore two alternate assumptions. In section 6.1, we repeat our analysis

without including any short-baseline sterile neutrino searches (discussed in section 3.7 and

table 2). In section 6.2, we conduct an analysis in the sub-matrix case of section 2.2,

comparing the results with those obtained in the agnostic case presented above.

6.1 Impact of short-baseline sterile neutrino searches

In the bulk of the analyses performed in our work, we have included results of short-

baseline sterile neutrino searches, with results adapted from these sterile neutrino searches

reinterpreted as limits on unitarity violation (see table 2 for a summary of these results).

To better understand how unitarity constraints rely on sterile neutrino searches, we repeat

the analyses of the main text surrounding figure 11 without short-baseline results.

Figure 12 shows the results. Here we note that the ranges on each of the panels in

figure 12 measuring tαβ and tkl are much larger than the corresponding ranges in figure 11.

However, it is apparent that in the absence of sterile searches, future data from IceCube,

DUNE, JUNO, and T2HK would nevertheless allow us to understand the closure of all

triangles of the LMM considerably better than current data allow. As in figure 11, we

draw lines of constant |tαβ |2 and |tkl|2 = 10−1 and 10−2 in each panel, where the outer

(inner) dashed line corresponds to a constant 10−1 (10−2) in these planes.

Table 5 summarizes the numerical results. Comparing tables 4 and 5, the improvement

in the absence of sterile searches is much more dramatic, highlighting the importance of

such experiments. We have not included any additional short-baseline searches in our

future projections, as we do not expect any upcoming experiments to provide stronger

sensitivity in the “averaged-out” regime [109, 117, 122, 123] (as discussed in section 3.7)

than those summarized in table 2.

Comparing the measurements of the individual matrix-elements-squared |Uαk|2, as well

as the row and column normalization conditions Nα and Nk, is difficult in this scenario.
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Figure 12. Constraints (and projected constraints) on the closures of the six unitarity triangles

excluding data from short-baseline sterile neutrino searches. In each panel, the outer (inner) dashed

circle corresponds to constant |tαβ |2 = 10−1 (10−2) for the row/column closures.

Current 3σ Upper Limit Future 3σ Upper Limit

|teµ| 8.2× 10−1 3.0× 10−2

|teτ | 1.0× 100 8.1× 10−1

|tµτ | 6.8× 10−1 3.2× 10−1

|t12| 8.2× 10−1 5.5× 10−1

|t13| 1.1× 100 5.2× 10−1

|t23| 8.7× 10−1 2.7× 10−1

Table 5. Summary of current and expected future constraints on the row closures |tαβ | and column

closures |tkl|, under the agnostic case regarding the LMM, when short-baseline sterile neutrino

search results are not included.

Short-baseline sterile neutrino searches, particularly the information from ντ appearance

that |teτ |2 and |tµτ |2 are small, provide significant information on the elements |Uτk|2.

Additionally, the constraint from MINOS/MINOS+ that Nµ ≈ 1 is very important for de-

termining the muon elements |Uµk|2. If this information is discarded, every other probe of

|Uµk|2 we consider is subject to a rescaling degeneracy. This is a direct result of the discus-

sion of normalization effects throughout section 2.1. Again, this highlights the importance

of short-baseline sterile neutrino searches, such as MINOS/MINOS+ νµ disappearance,

for precise tests of leptonic unitarity. This analysis without short-baseline measurements

results in a lower limit on Nµ comparable to the one given in table 3, however, Nµ can be

as large as ≈ 2.
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Figure 13. Measurements (and projections) of |Uαk|2 with current experimental data under the

agnostic assumption (blue) and the sub-matrix case (green). Similar to figure 9, these are one-

dimensional ∆χ2 measurements of each parameter after marginalizing a 15 parameter fit down to

each individual one.

6.2 Impact of the sub-matrix case assumption

As discussed in section 2.2, the sub-matrix case places certain Cauchy-Schwarz restrictions

on the elements of ULMM, specifically requiring

Nα 6 1, Nk 6 1, (6.1)

|tαβ |2 6 (1−Nα) (1−Nβ) , (6.2)

|tkl|2 6 (1−Nk) (1−Nl) . (6.3)

For our main analyses in sections 5.3 and 5.4, we assumed the agnostic case. In this

subsection, we compare the results analyzed under the agnostic and sub-matrix hypotheses.

First, we repeat the process that generates figure 9 for the current data analyzed, under

the two different case assumptions. The results of this procedure are shown in figure 13.

We note several effects of the sub-matrix case in figure 13. First, the measurement

of the electron row elements is largely unchanged — this is because the combination of

KamLAND, solar neutrino measurements, and Daya Bay measure these elements very

precisely regardless of the sub-matrix or agnostic assumptions, as discussed in section 5.2.
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We note that the measurement |Ue1|2 results in a slightly lower preferred value under the

sub-matrix hypothesis than the agnostic one — this arises from the Bayesian approach

where we place a prior forbidding Ne > 1 in the sub-matrix analysis. In looking at the

muon row elements, we see marginal improvement in the measurement capability in the

sub-matrix case than the agnostic one. This is again unsurprising, as restricting Nµ 6 1

allows for improved measurements of these parameters. Finally, the largest difference

between the two cases is in the tau row elements. Under the agnostic assumption, due

to the mild excess over expectation of OPERA ντ appearance events, the current data

prefer Nτ > 1 (at very low significance). When we analyze the data under the sub-matrix

assumption, this solution is forbidden, and the |Uτk|2 elements are both preferred to be

lower in magnitude, and we end up with smaller measurement regions.

In section 5.4, we analyzed how current and future data can constrain the normaliza-

tions of the LMM rows and columns to be close to 1, asking how well we measure Nα and

Nk. If we were to repeat this analysis under the sub-matrix assumption, the resulting figure

analogous to figure 10 would look very similar, modulo the regions Nα > 1 and Nk > 1

being forbidden.

For completeness, figure 14 presents the projected future measurements of |Uαk|2 under

the agnostic (red) and sub-matrix (purple) assumptions. The red lines are identical to

those in figure 9. We see that the sub-matrix hypothesis improves constraints on |Uµk|2
somewhat, and |Uτk|2 significantly.

Finally, we repeat the procedure that generated figure 11, which determined how well

we can constrain the closure of the six different pairs of rows/columns focusing on current

data only, we compare the results of this process when data are analyzed under the agnostic

or sub-matrix case, in figure 15.

Again, we note several features of this result. First, when looking at the closure between

two rows |tαβ |2 (the top three panels of figure 15), we see that the resulting constraint on

|tαβ |2 is largely unchanged. This is because both analyses include the searches for short-

baseline neutrino appearance discussed in section 3.7 which directly constrain the closures

|teµ|2 (from νµ → νe appearance), |teτ |2 (from νe → ντ appearance), and |tµτ |2 (from

νµ → ντ appearance). The mild improvement seen in each of these panels comes from the

Cauchy-Schwarz constraint |tαβ |2 6 (1−Nα)(1−Nβ), where the normalization constraints

assist in these planes. For the bottom panels, the closure of triangles formed between

two columns |tkl|2, the difference between the agnostic and sub-matrix analyses is more

drastic. Here, the Cauchy-Schwarz constraints are of the form |tkl|2 6 (1−Nk)(1−Nl), and

because there are no direct experimental constraints on the closure, these Cauchy-Schwarz

inequalities play a much more significant role. This feature was observed in ref. [14], where

they analyzed data under the sub-matrix case and noted that these inequalities place the

strongest constraints on the closures between two columns.

Likewise, figure 16 presents projected future constraints on |tαβ |2 and |tkl|2 under these

two hypotheses, similar to figure 15. Moderate improvement on each parameter going from

the agnostic to the sub-matrix cases is present in each panel here.

Table 6 summarizes the results of these analyses — current and projected constraints

on |tαβ | and |tkl| when operating under the sub-matrix hypothesis. Comparing tables 4
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Figure 14. Projections of future measurements of |Uαk|2 under the agnostic case assumption

(red) and the sub-matrix case (purple). Similar to figures 9 and 13, these are one-dimensional ∆χ2

measurements of each parameter after marginalizing a 15 parameter fit down to each individual one.

Current 3σ Upper Limit Future 3σ Upper Limit

|teµ| 2.7× 10−2 2.1× 10−2

|teτ | 1.0× 10−1 6.5× 10−2

|tµτ | 1.6× 10−2 No Improvement

|t12| 2.2× 10−1 8.0× 10−2

|t13| 2.5× 10−1 1.0× 10−1

|t23| 3.3× 10−1 1.0× 10−1

Table 6. Summary of current and expected future constraints on the row closures |tαβ | and column

closures |tkl|, under the sub-matrix assumption.

and 6, we see the improved constraints that are obtained under the sub-matrix hypothesis

compared to the agnostic case, coming from the Cauchy-Schwarz constraints and forbidding

Nα, Nk > 1 in the fits. We do not reproduce an analogous version of table 3 here — the

same 3σ lower limits on Nα and Nk apply here, where the upper limits are now simply 1

from the theoretical constraints of the sub-matrix case.
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Figure 15. Constraints (and projected constraints) on the closures of the six unitarity triangles

with data analyzed under the agnostic (blue) and sub-matrix (green) assumptions. Dashed circles

indicate contours corresponding to fixed |txy|2, with the outer one in each panel as labeled. The

inner dashed circles are an order of magnitude smaller |txy|2 than the outer ones.
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Figure 16. Projected future constraints on the closures of the six different unitarity triangles

with data analyzed under the agnostic (red) and sub-matrix (purple) assumptions. Dashed circles

indicate contours corresponding to fixed |txy|2, with the outer one in each panel as labeled. The

inner dashed circles are an order of magnitude smaller |txy|2 than the outer ones.
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7 Discussion & conclusions

We have comprehensively analyzed how current and future neutrino oscillation data can be

used to constrain non-unitarity of the LMM. Neutrino oscillation probabilities are functions

of the LMM elements, the mass-squared differences of the neutrino mass eigenstates, and

the interaction potential of the neutrinos in matter. Measurements of the oscillation prob-

abilities are therefore particularly useful for probing the structure of the LMM, as they

are generally less sensitive to other new physics than non-oscillation probes (e.g. lepton

universality, lepton-flavor violation, etc.).

In our analysis we have characterized our ignorance of the LMM structure by separating

our analysis according to three hypotheses:

1. The “standard” case, with only 3 neutrino flavors, and the LMM is the PMNS matrix,

and therefore unitary.

2. The “sub-matrix” case, where there are n > 3 neutrino flavors, and the 3 × 3 LMM

is non-unitary, but the greater n× n matrix is unitary.

3. The “agnostic” case where we assume nothing regarding the unitarity of a possibly

m× n neutrino mixing matrix.

In the bulk of our analysis, we choose not to impose any a priori theoretical biases, and

therefore compute constraints on non-unitarity in the agnostic case. However, we provide

comparisons and sanity checks with the other two cases as necessary as validation of this

approach.

When performing fits to current data, we include a representative sample of exper-

iments that, when combined, provide the strongest set of constraints on the unitarity

of the LMM possible. This set of data is as follows: solar neutrino experiments (SNO

and Super-K), reactor antineutrino experiments (KamLAND and Daya Bay), long-baseline

muon-neutrino disappearance (T2K and NOvA), long-baseline electron-neutrino appear-

ance (T2K and NOvA), and long-baseline tau-neutrino appearance (OPERA). Where pos-

sible, up to being able to adapt experimental results to account for non-unitary mixing,

we include the most recent results from each experiment. We also include results from

short-baseline searches for anomalous neutrino disappearance/appearance from KARMEN,

NOMAD, CHORUS, and MINOS/MINOS+.

Projecting to the next decade or so, we include the upcoming experiments that will

qualitatively improve our understanding of leptonic unitarity. First is JUNO, where we

simulate its reactor antineutrino capabilities. Second, we include T2HK’s long-baseline

beam-based searches for muon-neutrino disappearance and electron-neutrino appearance.

Next, we include near-future projections for IceCube’s DeepCore and/or Upgrade mea-

surements of tau-neutrino appearance. Finally, we consider all DUNE searches currently

under study — its long-baseline beam-based searches for muon-neutrino disappearance,

electron-neutrino appearance, and tau-neutrino appearance; as well as its solar neutrino

capabilities.
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Our main results are visually represented in figures 9, 10 and 11 for matrix elements-

squared, column/row normalizations (eqs. (2.4) and (2.6)) and column/row closures

(eqs. (2.5) and (2.7)) respectively, all in the agnostic case. The 3σ constraints on |Uµ1|2
will improve by almost an order of magnitude, and further significant improvements are

expected for |Ue1|2, |Ue2|2 and |Uµ2|2. These are driven primarily by the improved precision

of JUNO and DUNE over current experiments. The τ -row elements will be measured better

by a factor of 2, owing to the expected sensitivity of DUNE and IceCube’s τ -appearance

search. Of note is that while the constraints on most substructures of the LMM will

improve with future experiments, some do not. In particular, |Ue3|2 has been extremely

well-measured by the Daya Bay experiment, and the NOMAD constraints on |teτ |2 and

|tµτ |2 will not be improved on in the near future.

Our results highlight the improvements achievable by long-baseline oscillation experi-

ments. However, they also emphasize that many constraints on the LMM are dominated

by sterile neutrino searches capable of measuring triangle closure and row/column normal-

izations, in some cases extremely precisely. Indeed, the results of figure 10 demonstrate

that much of the power in constraining Nµ arises from the MINOS/MINOS+ search for

νµ disappearance. This is suggestive that dedicated sterile searches measuring νe and ντ
disappearance precisely could be important for future improvements in our understanding

of the LMM. A dedicated τ beam in particular would be extremely useful in understand-

ing many of the poorly-constrained components of the LMM. An electron disappearance

sterile search (specifically one free of large systematics that allows for stronger constraints

in the “averaged-out” regime), meanwhile, would provide an alternative handle on the im-

provements expected from long-baseline experiments, and would therefore provide greater

understanding of possible systematic effects in the two types of measurements.

Obtaining a detailed understanding of the LMM is critical to developing a theory of

neutrino masses, as LMM unitarity or non-unitarity can be the result of non-intersecting

subsets of neutrino mass mechanisms. Our results highlight the power of neutrino oscilla-

tion measurements to provide theoretically clean constraints on non-unitarity of the LMM,

and therefore act as probes of these mechanisms. The neutrino puzzle is rapidly being

untangled, as evidenced by the significant improvements expected between the current and

future generation of neutrino oscillation experiments. Continuing improvement of both our

theoretical and experimental understanding of neutrino oscillations, and therefore of the

LMM, is critical to solving fundamental questions left unanswered by the Standard Model.
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A Rare charged lepton decays as probes of lepton unitarity

Elements of the LMM are relevant in physical processes beyond neutrino oscillations, es-

pecially in decay processes involving leptons. Take, for example, the decay µ→ eνν. The

final state neutrino and antineutrino are typically considered to be flavor eigenstates |νµ〉
and |νe〉, respectively. If the LMM is not unitary, however, the partial width for the de-

cay must be expressed in terms of mass eigenstates: µ → eνiνj , and the partial width is

summed over these unmeasurable indices:

Γµ→eνν ∝ G2
F → G2

FNµNe. (A.1)

When Nµ and Ne are not 1, the value of GF inferred from muon decay would be different

from other processes in which it is measured. Measurements such as leptonic universality,

the weak mixing angle, Z decays, and rare charged lepton decays place constraints on this

type of scenario. We direct the reader to refs. [36, 40, 42, 58] for a thorough discussion of

these types of constraints, as well as the model-dependent cases in which they apply.

We will discuss the model-dependence of such probes through the example of rare

charged lepton decays. These processes would be forbidden in the SM if neutrinos were

massless. The most constrained of these rare decays are loop-mediated processes such as

µ → eγ, µ → e conversion and µ → 3e.15 Unlike in cases where the neutrinos are in

the final state, in these loop-mediated processes, neutrinos only appear within the loop.

These processes are therefore in principle able to probe contributions from all contributing

neutrino states, including weakly-coupled sterile states, as well as the structure of the

full lepton mixing matrix Uαk. However, as we explain below, the interpretation of such

processes as constraints on unitarity are somewhat subtle and model-dependent.

The measurement of loop-mediated lepton flavor-violating decays is often expressed as

a branching ratio between `α → `βγ and `α → `ανν. The branching ratio for this decay

is [124–127]

B(`α → `βγ) =
Γ(`α → `βγ)

Γ(`α → `βνν̄)
=

3α

32π

∣∣∣
∑

k

UαkU∗βkF (xk)
∣∣∣
2
, (A.2)

where F (xk) is a loop function of the ratio xk ≡ (mνk/mW )2, whose relevant limits are

F (xk) ∼





10

3
− xk + 2x2

k +O(x3
k), xk � 1 ,

17

6
− 3(xk − 1)

10
+

(x− 1)2

10
+O((xk − 1)3), xk ' 1 ,

4

3
+

6 log xk − 11

xk
+

2(12 log xk − 13)

x2
k

+O(x−3
k ), xk � 1 .

(A.3)

Note that the matrix in eq. (A.2) is not the 3 × 3 sub-matrix Uαk, but the full matrix

including all sterile states Uαk, where k runs through 1, 2, . . . n. From here we may proceed

15Radiative τ decays violating lepton flavor are also searched for, but these constraints are significantly

weaker than those involving µ decays.
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to interpret constraints from rare leptonic decays according to the three cases we discussed

in section 2.1.

In the standard case with three neutrinos and U ≡ UPMNS, by construction, any

observation of charged lepton flavor violation (CLFV) should be interpreted as arising due

to new physics that does not affect the unitarity of the LMM.

In the sub-matrix case, let us first examine the expected level of unitarity violation

in a canonical type-I seesaw scenario, where there are three sterile neutrinos with masses

much larger than the weak scale. Equation (A.2) can consquently be written as [128]:

B(`α → `βγ) ' 3α

32π

∣∣∣∣UαkU∗βk
(
F (xk) cos θ2

k + F (Xk) sin θ2
k

)∣∣∣∣ , (A.4)

where Xk = (mνH,k/mW )2 and Uαk is the unitary PMNS matrix. The newly introduced

mixing angle is defined as tan 2θk ∼ mD
k /m

M in terms of the Dirac masses mD
k and Ma-

jorana mass scale mM of the canonical type-I seesaw mechanism. This manner of writing

the branching ratio is dependent on the assumption that the Majorana mass matrix is

diagonal with identical entries in the diagonal. A more complex ultraviolet structure will

undoubtedly lead to variations on the estimates we present here, but should not affect the

conclusion as long as the assumptions we make hold to a good approximation (e.g. small

off-diagonal terms in the Majorana mass matrix).

Since by construction, Uαk is unitary, the leading non-zero terms arising due to the

inclusion of heavy neutrinos are O(θ4
k) and O(xkθ

2
k). Because θ2

k ∼ mνL/mνH , and we

assumed mνH � mW , both these terms lead to unobservably small CLFV.

One could interpret CLFV in the sub-matrix case without model-dependence, and

therefore allow CLFV to impose a constraint on the LMM unitarity. This is often referred

to as the Minimal Unitarity Violating approach, see e.g., ref. [40]. Remaining agnostic

about the scale of neutrino masses, but imposing that all the sterile states are in the same

limit compared to the weak scale, the leading contribution to eq. (A.2) can be written as

B(`α → `βγ) ∼ 3α

32π

∣∣∣10

3

3∑

k=1

UαkU∗βk + c1

n∑

k=4

UαkU∗βk
∣∣∣
2

=
3α

32π

∣∣∣10

3

n∑

k=1

UαkU∗βk + c2

n∑

k=4

UαkU∗βk
∣∣∣
2

=
3α

32π

((
10

3

)2 ∣∣∣
n∑

k=1

UαkU∗βk
∣∣∣
2

+ c2
2

∣∣∣
n∑

k=4

UαkU∗βk
∣∣∣
2

+
10c2

3
Re

(
n∑

k=1

UαkU∗βk

)(
n∑

k=4

U∗αkUβk
))

, (A.5)

where c1 = 4/3, 17/6, 10/3 depending on the mass scale of the sterile neutrinos, and

c2 = c1 − 10/3.16 In going from the first line to the second above, we make use of the fact

that by virtue of studying the sterile case, the overall mixing matrix U must be unitary.

16Note that if the steriles are light, it would suggest c2 = 0. One must then include the next term in the

expansion in xk to find a non-zero contribution to CLFV from leptonic non-unitarity.
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This also results in the first and third terms in eq. (A.5) being zero due to row closure of

the full U matrix. Then,

B(`α → `βγ) ∼ 3αc2
2

32π

∣∣∣
n∑

k=4

UαkU∗βk
∣∣∣
2

=
3αc2

2

32π

∣∣∣
n∑

k=1

UαkU∗βk −
3∑

k=1

UαkU∗βk
∣∣∣
2

=
3αc2

2

32π

∣∣∣−
3∑

k=1

UαkU∗βk
∣∣∣
2

=
3αc2

2

32π
|tαβ |2 . (A.6)

In this case, we can see that the non-observation of CLFV can indeed be viewed as a

constraint on the closure of the α-β triangle, and therefore a test of unitarity. Note that

our analysis of this scenario assumes that all steriles have masses in the same limit with

respect to the weak scale. This would therefore not apply to e.g., models with one light

and two heavy steriles.

Finally, in the agnostic case, we can see that owing to the fact that the leading terms

of F (xk) are all constants, CLFV is a clear test of unitarity of the full Uαk matrix. Below

we quote the constraints on closure of the α − β rows in terms of the full matrix in the

agnostic case. It is then straightforward to map this onto a constraint on tαβ when assuming

Minimal Unitarity Violation for the sub-matrix case as above.

For the µ − e row, the strongest such constraint comes from the MEG collaboration,

and leads to the requirement that |∑k UµkU∗ek| . 10−5 [129]. Future measurements of

µ→ eγ will improve this limit by roughly one order of magnitude [130]. Planned searches

for the related process µ→ 3e, which are expected to have a similar sensitivity [131], while

searches for µ→ e conversion in nuclei can improve on this future constraint by a further

order of magnitude [132].

For the τ − e and τ − µ rows, the strongest current constraints come from the BaBar

collaboration and require that |∑k UτkU∗(e,µ)k| . 10−3 [133]. These measurements will be

improved at B-factories, leading to a factor of ∼ 3 improvement in the τ − e row, and an

order of magnitude improvement in the τ − µ row [134].

B Derivation of vacuum oscillation probabilities without assuming uni-

tarity

In this appendix, we provide derivations for three-neutrino oscillations in vacuum where

unitarity is not assumed. We analyze these oscillation probabilities in different distance

and neutrino energy regimes that are appropriate for a variety of experiments. Experiments

operating in particular length/energy limits are most sensitive to only certain matrix ele-

ments, as we will explain below.

In section 2.3 we introduced the formalism for time-evolving a neutrino flavor eigenstate

|να〉 when its mixing is not unitary, beginning with eq. (2.24). We can then project this

onto a flavor eigenstate |νβ〉 to determine the transition amplitude for να → νβ , which we

express as

Aαβ ≡ 〈νβ |να(L)〉 =
e−im

2
1L/2Eν

√
NαNβ

(
U∗α1Uβ1 + U∗α2Uβ2e

−i∆21 + U∗α3Uβ3e
−i∆31

)
, (B.1)
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where ∆kl ≡ ∆m2
klL/2Eν , ∆m2

kl ≡ m2
k −m2

l , Eν is the neutrino energy, and Nα is defined

in eq. (2.6). The overall phase, exp(−im2
1L/2Eν), does not enter oscillation probabilities

so we will drop it henceforth. We separate our discussion into oscillation probabilities for

disappearance/survival channels (α = β) and appearance channels (α 6= β).

For antineutrino oscillations, U∗αk → Uαk and Uβl → U∗βl everywhere, and the matter

potential Vαk → −Vαk.

B.1 Disappearance/survival probabilities

If α = β, eq. (B.1) becomes

Aαα =
1

Nα

(
|Uα1|2 + |Uα2|2 e−i∆21 + |Uα3|2 e−i∆31

)
. (B.2)

This can be rewritten as

Aαα =
1

Nα

(
Nα + |Uα2|2

(
e−i∆21 − 1

)
+ |Uα3|2

(
e−i∆31 − 1

))
(B.3)

= 1− 2i
|Uα2|2
Nα

e−
i∆21

2 sin

(
∆21

2

)
− 2i
|Uα3|2
Nα

e−
i∆31

2 sin

(
∆31

2

)
. (B.4)

To obtain the oscillation probability Pαα ≡ P (να → να) ≡ |Aαα|2, we square the transition

amplitude. After rearranging terms, we obtain

Pαα = 1− 4 |Uα2|2
(
Nα − |Uα2|2

)

N2
α

sin2

(
∆21

2

)
− 4 |Uα3|2

(
Nα − |Uα3|2

)

N2
α

sin2

(
∆31

2

)

+
8 |Uα2|2 |Uα3|2

N2
α

sin

(
∆21

2

)
sin

(
∆31

2

)
cos

(
∆32

2

)
. (B.5)

After minor rearrangements, this becomes

Pαα = 1−
4 |Uα2|2

(
|Uα1|2 + |Uα3|2

)

N2
α

sin2

(
∆21

2

)
−

4 |Uα3|2
(
|Uα1|2 + |Uα2|2

)

N2
α

sin2

(
∆31

2

)

+
8 |Uα2|2 |Uα3|2

N2
α

sin

(
∆21

2

)
sin

(
∆31

2

)
cos

(
∆32

2

)
. (B.6)

The majority of oscillation experiments operate in one of two regimes, where ∆21 � 1

or ∆31 � 1. We explore these two regimes separately.

∆21 � 1 regime. For experiments where

L

Eν
� 5× 103 km

GeV
, (B.7)

oscillations associated with ∆m2
21 ≈ 7.5 × 10−5 eV2 have yet to develop. Taking the limit

∆21 � 1 in eq. (B.6), we obtain the oscillation probability

Pαα = 1− 4|Uα3|2
(
|Uα1|2 + |Uα2|2

)

N2
α

sin2

(
∆31

2

)
. (B.8)
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In the limit of unitarity, this has a familiar form 1−4|Uα3|2(1−|Uα3|2) sin2(∆31/2).17 This

regime is appropriate for reactor neutrino experiments with relatively short baselines, such

as Daya Bay, and long-baseline accelerator neutrino experiments (MINOS, NOvA, T2K).

This expression of disappearance oscillation probabilities in vacuum approximates all of the

appropriate experiments well, except for JUNO, where matter effects can shift the central

values of sin2 θ12 by O(1%) [98].

∆31 � 1 regime. Meanwhile, when

L

Eν
� 2× 102 km

GeV
, (B.9)

oscillations associated with ∆m2
31 ≈ 2.5× 10−3 eV2 will have averaged out over the energy

resolution of an experiment. In this regime, the terms proportional to sin2(∆31/2) will

average out to 1/2. The term with sin(∆31/2) cos(∆32/2) will not, as one might naively

expect, average out to 0, but

8|Uα2|2|Uα3|2 sin

(
∆21

2

)
sin

(
∆31

2

)
cos

(
∆32

2

)
(B.10)

= 8|Uα2|2|Uα3|2
[

1

4
sin(∆21) sin(∆31) + sin2

(
∆21

2

)
sin2

(
∆31

2

)]
(B.11)

→ 4|Uα2|2|Uα3|2 sin2

(
∆21

2

)
. (B.12)

Putting this into the complete oscillation probability in eq. (B.6), we arrive at

Pαα = 1− 2|Uα3|2
(
|Uα1|2 + |Uα2|2

)

N2
α

− 4|Uα1|2|Uα2|2
N2
α

sin2

(
∆21

2

)
. (B.13)

The ∆31 � 1 approximation is valid for the KamLAND experiment’s measurement of

Pee. The proposed JUNO experiment, which aims to measure the mass-ordering of neutri-

nos, will not operate in this regime. Instead, JUNO will operate in a regime between the

two limiting cases discussed here, and as such we must adopt the full oscillation probability.

B.2 Appearance probabilities

Now we discuss the appearance oscillation probabilities, where α 6= β. We define the

phases associated with each quantity as ϕαβ , ϕαβ2 , and ϕαβ3 with tαβ ≡ |tαβ |eiϕ
αβ

and

U∗αkUβk ≡ |Uαk||Uβk|eiϕ
αβ
k . In analogy to eqs. (B.3) and (B.4), we write the transition

amplitude as

Aαβ =
1√
NαNβ

(
tαβ + U∗α2Uβ2

(
e−i∆21 − 1

)
+ U∗α3Uβ3

(
e−i∆31 − 1

))
(B.14)

=
1√
NαNβ

(
|tαβ |eiϕ

αβ − 2i|Uα2||Uβ2|ei
(
ϕαβ2 −

∆21
2

)
sin

(
∆21

2

)

− 2i|Uα3||Uβ3|ei
(
ϕαβ3 −

∆31
2

)
sin

(
∆31

2

))
. (B.15)

17Even more familiar, if α = e and this is the electron-(anti)neutrino disappearance probability Pee, we

obtain the limit Pee → 1− sin2 (2θ13) sin2 (∆31/2) as measured by Daya Bay.
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Squaring this, we arrive at the oscillation probability,

P (να → νβ) =
|tαβ |2
NαNβ

+
4 |Uα2|2 |Uβ2|2

NαNβ
sin2

(
∆21

2

)
+

4 |Uα3|2 |Uβ3|2
NαNβ

sin2

(
∆31

2

)

+
8 |Uα2| |Uβ2| |Uα3| |Uβ3|

NαNβ
sin

(
∆21

2

)
sin

(
∆31

2

)
cos

(
∆32

2
+ ϕαβ2 − ϕαβ3

)

+
4 |tαβ |
NαNβ

[
|Uα2| |Uβ2| sin

(
∆21

2

)
sin

(
∆21

2
+ ϕαβ − ϕαβ2

)

+ |Uα3| |Uβ3| sin
(

∆31

2

)
sin

(
∆31

2
+ ϕαβ − ϕαβ3

)]
(B.16)

In the limit of unitarity, |tαβ |2 → 0 and only the first two lines of eq. (B.16) (sans the first

term) remain.

∆21 � 1 regime. Here the second term in eq. (B.16) goes to zero, as do the second and

third lines:

Pαβ =
|tαβ |2
NαNβ

+
4|Uα3|2|Uβ3|2

NαNβ
sin2

(
∆31

2

)

− 4|tαβ ||Uα3||Uβ3|
NαNβ

sin

(
∆31

2

)
sin

(
∆31

2
+ ϕαβ − ϕαβ3

)
. (B.17)

This regime serves as a decent approximation for long-baseline electron-neutrino and tau-

neutrino appearance oscillation probabilities (T2K, NOvA, DUNE, and OPERA). Note

that unlike for the case of disappearance/survival probabilities, matter effects make a

significant impact on these expressions, and we account for that in our simulations.

∆31 � 1 regime. If the ∆m2
31-driven oscillations are averaged out, the oscillation

probability becomes

Pαβ =
4|Uα2|2|Uβ2|2

NαNβ
sin2

(
∆21

2

)
− 4|Uα2||Uβ2||Uα3||Uβ3|

NαNβ
sin

(
∆21

2

)
sin

(
∆21

2
− ϕαβ2 + ϕαβ3

)

− 4|tαβ ||Uα2||Uβ2|
NαNβ

sin

(
∆21

2

)
sin

(
∆21

2
+ ϕαβ − ϕαβ2

)

+
2|Uα3|2|Uβ3|2

NαNβ
+

2|tαβ ||Uα3||Uβ3|
NαNβ

cos
(
ϕαβ − ϕαβ3

)
+
|tαβ |2
NαNβ

. (B.18)

The appearance channel oscillation probability in the ∆31 � 1 regime has various terms

capable of probing the second column of the LMM, and interference between terms from the

third and second columns, as well as row triangle closure. Unfortunately, no experiments

probing neutrino appearance in this distance/neutrino energy regime exist, or are planned.

C Bayesian priors for fifteen parameter fits

In many of our results, we use the Bayesian inference tool pyMultiNest [118–121] in order

to analyze current and future measurements of the parameters of interest. We include all
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fifteen parameters in the following — nine matrix-elements-squared, four phases, and two

mass-squared splittings. In this appendix, we explain the assumptions made in our Bayesian

analysis and how they impact the applicable results.

We allow the mass-squared splittings to vary within the ranges

∆m2
21 ∈ [2, 10]× 10−5 eV2, (C.1)

∆m2
31 ∈ ([−3,−2] ∪ [2, 3])× 10−3 eV2, (C.2)

with flat priors in those ranges on the two splittings. The current measurements pull the

posterior likelihood of the fit to the current best-fit values of ∆m2
21 ≈ 7.5 × 10−5 eV2 and∣∣∆m2

32

∣∣ ≈ 2.45× 10−3 eV2.

For the matrix-elements-squared |Uαk|2, we require that they lie in the range [0, 1]. We

include flat priors on each of these elements-squared between 0 and 1. For the electron-

and muon-row elements |Uek|2 and |Uµk|2, we find that the current data are powerful

enough that the posterior likelihood is largely independent of the choice of prior (unless

anything atypical is adopted), whereas the tau-row elements |Uτk|2 still do not have strong

information from the OPERA experiment and are mildly sensitive to the choice of prior.

Once future data are included, this point becomes unimportant.

Lastly, the phases {φe2, φe3, φτ2, φτ3} are defined to span [0, 2π] and the prior included

is flat in terms of the phase. The relative sizes of some of the matrix element magnitude

combinations require the phases to take on certain values. For instance, the phase φe2
is quite constrained by the closure of the e-µ triangle, so it is insensitive to the choice

of the prior. On the other hand, since any current constraint on φe3 is relatively weak,

its posterior likelihood can be sensitive to the choice of prior. As with the case of the

matrix-elements-squared above, this issue is unimportant once future data are included in

the analysis.

D Measurement of LMM phases

In the main text (section 5.3), we presented the results of our analysis for the current

and future measurements of the elements-squared |Uαk|2, which are parameterization-

independent quantities. Here, we discuss the current and future measurements of the

phases {φe2, φe3, φτ2, φτ3}, the four phases we consider in our analyses. These mea-

surements are parameterization-dependent and only apply in the MP parameterization we

employ.

Figure 17 presents each set of two-dimensional measurements at 95% and 99% credibil-

ity of these four phases. We show this for four sets of data/assumptions — all current data

are analyzed in blue and green, where the blue (green) contours correspond to data ana-

lyzed under the agnostic (sub-matrix) case. Future data are analyzed under the agnostic

(sub-matrix) case in red (purple).

We see in figure 17 that, even with current data, φe2 and φτ2 are constrained to be close

to π, and φτ3 must be close to π. These requirements come from the current constraints

on the closures between different rows |tαβ |2 and the relative sizes of different products of
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π
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π

3π/2
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τ
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π/2
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φ
e3

95% and 99% CR
φαk = arg(Uαk)

Current, Agnostic Case
Current, Sub−matrix Case
Future, Agnostic Case
Future, Sub−matrix Case

0 π/2 π 3π/2 2π

φe3

0 π/2 π 3π/2 2π

φτ2

Figure 17. Current and future measurements of the four phases φe2, φe3, φτ2, and φτ3 in the

MP parameterization. We show the measurements given current data under the agnostic case

assumption (blue) and the sub-matrix case assumption (green), compared with future data analyzed

under the agnostic case (red) and the sub-matrix case (purple). All contours shown are 95% (dark

colors) and 99% (fainter colors) credibility.

magnitudes of elements. For instance, the relative size of the legs of the e-µ triangle are

|Ue1||Uµ1| ≈ 0.25, |Ue2||Uµ2| ≈ 0.33, and |Ue3||Uµ3| ≈ 0.11. This requires φe2 to be near π

if the triangle is to close. Because the product |Ue3||Uµ3| is relatively small, the constraints

on φe3 from the closure of this triangle are relatively weak. As precision experiments that

are sensitive to CP-violation begin collecting data, all of the phases will be measured more

precisely — with DUNE and JUNO data included, φe3 will be measured to much higher

precision. We also see that the assumptions of sub-matrix or agnostic do not impact the

measurement precisions of the phases, with current or future data.

E The LSND/MiniBooNE anomalies

In section 3.7 we discussed how various short-baseline searches for anomalous neutrino

disappearance/appearance are used to constrain the unitarity of the 3×3 LMM. We briefly

commented on the LSND and MiniBooNE anomalies before ultimately not including them

in our more complete analysis, due to tensions between their anomalous νµ → νe appearance

results with searches for νµ and νe disappearance.
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If we assume that the anomalous appearance of νµ → νe in LSND and MiniBooNE is

instead due to non-unitarity, we must use the “averaged-out” region of their sterile neutrino

parameter space to draw connections. Their combined result points to a preference for

nonzero |teµ|2 ≈ 2.6 × 10−3, excluding |teµ|2 = 0 at roughly 6σ confidence. Under the

sub-matrix assumption, this closure is constrained using

|teµ|2 6 (1−Nµ) (1−Ne) , (E.1)

This is in tension with the current constraints of |1 − Ne| 6 0.022 and |1 − Nµ| 6 0.016

from other oscillation measurements. However, if we abandon the sub-matrix case and

instead focus on the agnostic case, the constraint in eq. (E.1) no longer holds. This implies

that, despite tight constraints on Ne and Nµ, we can still have large |teµ|2, allowing for

short-baseline νµ → νe appearance at LSND and MiniBooNE.

In this appendix, we explore the ramifications, under the agnostic assumption, of

including the 6σ preference for |teµ|2 6= 0 in our analysis. When repeating the analysis of

all current data, we find no meaningful change to the measurements of |Uαk|2 of figure 9,

the row/column normalizations of figure 10, and, with the exception of the triangle teµ,

no significant change to the results shown in figure 11. Unsurprisingly, including the 6σ

preference for |teµ|2 results in a ring-shaped region forming in the Re(teµ) vs. Im(teµ) plane.

In order to determine what future data, i.e., DUNE, T2HK, and JUNO, can say regard-

ing LSND and MiniBooNE, we perform an alternative analysis of our future data compared

to the one in the main text. So as not to bias ourselves regarding the short-baseline appear-

ance and disappearance results, we perform this fit without any short-baseline information

whatsoever, in contrast to section 5.4 in the main text. This allows us to determine how

well teµ can be constrained using measurements of “oscillated” neutrinos only, driven pri-

marily by measurements in DUNE/T2HK (νµ disappearance and νe appearance, as well as

the corresponding antineutrino channels) and JUNO (νe disappearance).

We compare the results of these two analyses — current data plus the

LSND/MiniBooNE preference for |teµ|2 6= 0 in pink vs. current and future data with

no short-baseline information in light blue — in figure 18.

We see here that, even without the direct constraints on |teµ|2 from short-baseline

searches, JUNO, DUNE, and T2HK will be able to constrain |teµ|2 fairly well. Because of

the relative strengths of these two measurements, we choose to display 1 and 2σ CR. As-

suming |teµ|2 = 0 (the future data are simulated under this assumption), the combination

of DUNE, T2HK, and JUNO will be able to exclude the LSND/MiniBooNE preference

for |teµ|2 at somewhere between 1 and 2σ credibility. While this is by no means a defini-

tive test of the LSND and MiniBooNE anomalous appearance results, we find this worth

highlighting. Note that, in order for this result to be realized, we had to work under the

agnostic case, and whether one can construct a model in which we have large |teµ|2 with

Ne and Nµ close to 1 (i.e., ULMM is not a subset of a larger, unitary matrix) is unclear.
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Re(teµ)
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0

0.03
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eµ

)
1 and 2σ CR

Current+LSND/MiniBooNE

Future, no short−baseline results

Figure 18. Measurement capability of future results (without any short-baseline information at

all) to the closure of the e-µ triangle teµ at 1 and 2σ credibility (light blue), compared to the

preferred region by the current experimental data with the LSND and MiniBooNE preference for

|teµ|2 6= 0 included (pink). Here, data are analyzed under the agnostic assumption.
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