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1 Introduction

Understanding the emergence of spacetime is a profound question in the holographic de-
scription of quantum gravity. The seminal work of Ryu-Takayanagi (RT) [1] and Hubeny-
Rangamani-Takayanagi (HRT) [2] showed that entanglement entropy in conformal field the-
ories is dual to the area of extremal surfaces in asymptotically AdS spacetimes in Einstein
gravity. This deep connection between spacetime geometry and quantum entanglement
has motivated the idea that entanglement builds geometry [3–5], and has led to fruitful
connections between quantum information, condensed matter physics, and black holes.

The RT/HRT proposal has been firmly established [6–8] within the framework of the
AdS/CFT correspondence and it is natural to ask whether this connection between en-
tanglement and geometry is more general and can be extended beyond AdS/CFT. Efforts
toward this direction include studies on warped AdS3 [9–17], flat [18–24], Lifshitz [25, 26],
and de Sitter spacetimes [27–29], among others. In the literature, there are several ap-
proaches to study holographic entanglement entropy in these backgrounds. One approach
consists of studying properties of the RT/HRT surfaces with the assumption that the
RT/HRT proposal extends directly to non-AdS spacetimes. The main advantage of this
approach is having a concrete geometric picture in the bulk, although the minimal area
prescription is not a priori guaranteed to reproduce the entanglement entropy of the dual
field theory. Alternatively, the approach taken in [10, 12, 21] consists of deriving the bulk
dual of the boundary entanglement entropy by generalizing the Rindler method [6] to the
conjectured holographic description of non-AdS spacetimes.1 The advantage of this ap-
proach is that the bulk computation of entanglement entropy is automatically consistent
with the holographic dictionary, while its disadvantage is that the Rindler method is only
applicable for special entangling regions and special states. In this paper, we propose a
general geometric prescription for entanglement entropy in a class of non-AdS spacetimes
and show that it is consistent with the generalized gravitational entropy à la [7, 8].

Let us consider a holographic duality between a d-dimensional quantum field theory
and a gravitational theory in d + 1 dimensions that reduces to Einstein gravity in the
semiclassical limit. We assume that consistent boundary conditions exist such that the
symmetries and partition functions of the bulk and boundary theories match. In addition,
we assume that the modular Hamiltonian of the vacuum state can be geometrically realized
as the generator of a diffeomorphism. We then propose that the entanglement entropy of
a co-dimension one subregion A in the field theory at the boundary can be obtained from
the bulk theory of gravity by

SA = min ext
XA∼A

Area(XA)
4G , XA = X ∪p∈∂A γ(p), (1.1)

where XA is a surface homologous to A that consists of a spacelike surface X and a
collection of null geodesics γ(p) (see figure 1). The null geodesic γ(p) emanates from a point
p at the boundary ∂A of the entangling surface A, and its tangent vector reduces to the

1In this paper, by non-AdS spacetimes we refer to backgrounds that do not satisfy the standard asymp-
totically AdS (Dirichlet) boundary conditions.
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Figure 1. Sketch of two surfaces XA in the bulk (M) that are homologous to the interval A at
the boundary (∂M). These surfaces consist of the union of either X or γ and the collection of null
geodesics γb∂ = γ+ ∪ γ− connecting the bulk to the boundary. The X and γ surfaces lie between
γ+ and γ− but only γ is an extremal surface.

approximate modular flow generator near p after an appropriate normalization; while the
surface X is an arbitrary co-dimension two spacelike surface connecting the ropes. The
entanglement entropy is determined by first extremizing the area of all possible surfaces X
and then choosing the minimal area. The resulting configuration is referred to as a swing
surface which is denoted by γA = γ ∪p∈∂A γ(p) where γ is a spacelike bench connecting the
null ropes γ(p).

The proposal (1.1) is compatible with the RT/HRT prescription in the AdS/CFT
correspondence. In this case, the ropes γ(p) shrink towards the boundary and the swing
surface reduces to the well-known RT/HRT surface. In contrast, in the examples of non-
AdS holography considered in this paper, the crucial difference between (1.1) and the
RT/HRT proposal is that the spacelike surface X is connected to the boundary interval
A by the null ropes γ(p). The ropes are necessary to satisfy the homology constraint and
to consistently extend the replica trick from the boundary to the bulk. This extension of
the replica trick leads to a generalization of the Lewkowycz-Maldacena argument [7] and it
allows us to show that the generalized gravitational entropy localizes on the swing surface,
thereby providing a derivation of our proposal. Using the swing surface proposal (1.1), we
also extend the concept of relative entropy to non-AdS holography and verify the first law
of entanglement entropy.

As explicit examples, we study the proposal (1.1) in two models of non-AdS holography
dubbed flat3/BMSFT and (W)AdS3/WCFT. In the first model, flat3 refers to three-
dimensional asymptotically flat spacetimes whose asymptotic symmetry group is the three-
dimensional version of the Bondi-van der Burg-Metzner-Sachs (BMS) group [30–32]. Hence,
the phase space of gravity in these backgrounds is organized by the same symmetry group
as that of a two-dimensional BMS-invariant field theory (BMSFT) [33–36]. In the second
model, WCFT refers to a warped conformal field theory — a two-dimensional quantum field
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theory characterized by a Virasoro-Kac-Moody algebra [37, 38] — whose bulk description
is gravity on either asymptotically AdS3 spacetimes with Dirichlet-Neumann boundary
conditions [39] or asymptotically warped AdS3 backgrounds [40, 41].

It has been noticed in [12, 21] that swing surfaces appear as the geometric descrip-
tion of holographic entanglement entropy in flat3/BMSFT and (W)AdS3/WCFT for single
intervals on zero-mode backgrounds. In a companion paper [42], we work out the mod-
ular Hamiltonian above zero-mode backgrounds from the field theory side and match it
to a gravitational charge in the bulk. These studies are based on a generalization of the
Rindler method [6, 10] or, equivalently, on the existence of a local modular Hamiltonian.
In this paper we propose that swing surfaces work for more general intervals and more
general backgrounds, and provide a Lewkowycz-Maldacena type argument in support of
this proposal. We will illustrate how to apply the general prescription put forward in
section 2.3 to both flat3/BMSFT and (W)AdS3/WCFT, without resorting to the Rindler
method or the existence of a global modular flow generator. Using this new approach, we
reproduce the previous results of [12, 21] on zero mode backgrounds and obtain new results
on perturbative states above these backgrounds.

The paper is organized as follows. In section 2 we propose a general prescription for
the computation of holographic entanglement entropy in terms of swing surfaces. Therein
we extend relative entropy to models of non-AdS holography and check that the first
law of entanglement entropy holds. In addition, we comment on the generalization of our
results to multiple intervals, the entanglement wedge associated with the swing surface, and
deformations of the swing surface. In sections 3 and 4 we test the proposal in two models of
non-AdS holography, namely the flat3/BMSFT and (W)AdS3/WCFT correspondences. In
particular, we reproduce previous results on holographic entanglement entropy for arbitrary
zero-mode backgrounds in both of these models. Furthermore, in section 3 we extend
these results to linearized perturbations of asymptotically flat three-dimensional spacetimes
and discuss strong subadditivity in flat3/BMSFT. We collect several additional results in
appendices A – E. In appendix A we prove that in cases where the bulk modular flow is an
exact Killing vector, the bench of the swing surface is an extremal surface; in appendix B we
describe general results on the parametrization of null geodesics; in appendix C we extend
the approximate modular flow generator into the bulk; in appendix D we give additional
details on the swing surface of three-dimensional flat spacetimes; and in appendix E we
describe null geodesics in locally AdS3 spacetimes.

2 A general proposal for holographic entanglement entropy

In this section we propose a geometric prescription for entanglement entropy in models
of holography beyond AdS/CFT. These models consist of a (d + 1)-dimensional theory
of gravity in the bulk and a d-dimensional field theory at the boundary satisfying the
following conditions:

(1) The bulk theory of gravity admits a semiclassical description in terms of Einstein
gravity.
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(2) The field theory is invariant under a symmetry group G and the vacuum state is
invariant under a subgroup of G whose generators are denoted by hi.

(3) Consistent boundary conditions exist such that the asymptotic symmetry group in
the bulk agrees with G at the boundary.

(4) The bulk theory admits a solution with Killing vectors Hi that correspond to the
generators hi at the boundary. This bulk geometry is identified with the vacuum
state in the dual field theory.

(5) The partition function in the bulk theory of gravity agrees with the partition function
of the field theory at the boundary.

In analogy with the AdS/CFT correspondence, we expect that additional conditions are
necessary to guarantee a consistent holographic correspondence, see e.g. [43] for a review.
In addition, we require that

(6) A local modular Hamiltonian can be written down for ball-shaped regions (single
intervals in d = 2) on the vacuum, as discussed in more detail in section 2.1.

All of the properties above are satisfied in the AdS/CFT correspondence, as well as
in models of non-AdS holography including flat3/BMSFT and (W)AdS3/WCFT. In par-
ticular, condition (6) provides a geometric description of entanglement entropy for special
regions on the vacuum that corresponds to the RT/HRT surface in AdS/CFT [6], and a
swing surface in both flat3/BMSFT and (W)AdS3/WCFT [12, 21, 42]. In the following, we
will first describe the swing surface on the vacuum state and then extend it to general states
and shapes of the entangling surface. We also explore the consequences of our proposal
to the relative entropy of general states, the entanglement wedge, and the entanglement
entropy of multiple intervals.

2.1 Modular flow and swing surfaces on the vacuum

In this section we review previous results on holographic entanglement entropy on the
vacuum in models of holography satisfying the properties listed above [12, 21, 42]. In
particular, we will show that the geometric picture of entanglement entropy in the bulk is
a swing surface which consists of a co-dimension two spacelike surface that hangs from the
subregion A at the boundary by a collection of null geodesics.

Let us consider a co-dimension one subregion A on the d-dimensional boundary ∂M
of the bulk (d + 1)-dimensional spacetime M. The entanglement entropy of subregion A
on a state |ψ〉 is given by the von Neumann entropy

SA = − tr(ρA log ρA), (2.1)

where ρA = trĀ |ψ〉 〈ψ| is the reduced density matrix of subregion A obtained by tracing
over the degrees of freedom on the complement Ā. The entanglement entropy can be
understood as a thermal entropy with respect to the modular Hamiltonian Hmod such that

ρA = e−Hmod . (2.2)
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The modular Hamiltonian generates a modular flow in the causal development of subre-
gion A and is generically nonlocal. In relativistic QFTs, examples where a local modular
Hamiltonian can be written down are related to the Rindler wedge of the vacuum [44, 45],
which has led to fruitful results in CFTs [6, 46, 47]. This approach has also been extended
to BMSFTs and WCFTs in [12, 21, 42].

In the aforementioned examples, the modular Hamiltonian generates a flow that is
geometrically realized and corresponds to a symmetry of the underlying quantum field
theory. In particular, the modular flow generator can be written as

ζ =
∑
i

aihi ≡ 2π∂τ , (2.3)

where hi are the vacuum symmetry generators of the quantum field theory, ai are param-
eters that depend on subregion A, and we have introduced the Rindler time coordinate τ .
As shown for two-dimensional CFTs in [48] and both BMSFTs and WCFTs in [42], the
coefficients ai can be uniquely determined by requiring that (i) for any real parameter s,
the flow esζ maps any point in the causal domain D of A to another point in D and leaves
the boundary ∂D of the causal domain invariant; and (ii) the flow eiζ maps any point in
D back to itself and hence generates the thermal identification

τ ∼ τ + 2πi. (2.4)

The modular flow generator (2.3) can also be interpreted as generating translations along a
local Rindler time coordinate τ . The origin of this interpretation can be traced back to the
existence of a symmetry transformation that maps subregion A in ∂M to a noncompact
generalized Rindler spacetime ∂M̃, as described in more detail in [10, 12, 21].

According to our assumptions, the vacuum state in the field theory is dual to a space-
time in the bulk that is invariant under the same set of symmetries. In particular, the
vacuum symmetry generators hi at the boundary correspond to the set of Killing vectors
Hi in the bulk satisfying Hi|∂M = hi, or more explicitly, Ha

i |r=1/ε = hai where r = 1/ε
is a cutoff surface along the bulk radial coordinate and a labels the coordinates at the
boundary. Thus, the modular flow generator at the boundary (2.3) can be expressed as a
linear combination of Killing vectors in the bulk such that

ξ =
∑
i

aiHi ≡ 2π∂τ , τ ∼ τ + 2πi, (2.5)

where the coefficients ai are the same coefficients featured in (2.3). Note that the Rindler
time function τ defined in (2.5) is a natural extension of the boundary Rindler time (2.3)
into the bulk, and hence it satisfies the same periodicity condition (2.4). By abuse of
notation, we use the same variable τ to denote the Rindler time function in both the
boundary and the bulk.

The thermal identification in (2.5) implies that the bulk modular flow generator ξ
features a bifurcating Killing horizon with surface gravity 2π. Let us denote the bifurcating
surface by γξ and the outward half (towards the boundary) of the future/past Killing
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horizon by N±. Then, N± corresponds to the future/past light-sheet of γξ and the modular
flow generator (2.5) satisfies

ξ
∣∣
γξ

= 0, ∇µξν
∣∣
γξ

= 2πnµν , (2.6)

ξν∇νξµ
∣∣
N±

= ±2πξµ, (2.7)

where nµν is the binormal unit vector of γξ. From Frobenius’ theorem, as well as the fact
that ξ is normal to the light-sheets N±, it follows that

ξ[µ∇νξλ]
∣∣
N±

= 0. (2.8)

For more details on the bulk modular flow generator in non-AdS holography see [42].
In models of non-AdS holography like flat3/BMSFT and (W)AdS3/WCFT, the fixed

points of the boundary modular flow generated by ζ are not the fixed points of the bulk
modular flow generated by ξ. This means that the bifurcating surface γξ is not attached
to the interval A at the boundary. Instead, the homology condition is satisfied by a
generalization of the RT surface γA that is defined by

γA = γ ∪ γb∂ , γb∂ ≡ ∪p∈∂Aγ(p), (2.9)

where ∂A is the boundary of the subregion A, γ(p) is the trajectory of each point p ∈ ∂A
generated by the bulk modular flow, and γ is a subregion of the bifurcating surface γξ
that is bounded by the intersection of γξ with γb∂ . Since ∂A belong to the null surface
N+ ∪N−, the latter of which is invariant under the bulk modular flow, we learn that the
entire trajectory γ(p) lies on N+ ∪ N−. Furthermore, since the tangent vector of γ(p) is
parallel to ξ, which is by definition null on N±, we conclude that γ(p) is a null geodesic.

We refer to surfaces like γA that consist of a spacelike bench γ and a collection of
null ropes γb∂ as swing surfaces. In particular, for single intervals in flat3/BMSFT and
(W)AdS3/WCFT we have γb∂ = γ+ ∪γ− where γ± ⊂ N± are null geodesics connecting the
endpoints of the interval A at the boundary to the endpoints of the spacelike surface γ in
the bulk. In these examples, the shape of γA indeed looks like a swing hanging from the
boundary at ∂A. As shown in appendix A, the bench γ extremizes the distance between
the ropes γ+ and γ−. Consequently, the swing surface γA plays the role of the RT/HRT
surface in these models of non-AdS holography. The entanglement entropy of the boundary
interval A is then given by the area of the swing surface in Planck units [12, 21]

SA = Area(γA)
4G . (2.10)

To summarize, for states where the bulk modular flow generator is an exact Killing
vector, the ropes of the swing surface are null geodesics generated by the modular flow
while the bench of the swing surface is the set of fixed points of the modular flow generator
that extremizes the distance between the ropes.
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2.2 Approximate modular flow for general states

For general states and/or shapes of the entangling surface, the bulk modular flow is no
longer generated by an exact Killing vector of the background geometry. In this section we
find the vector field that generates the modular flow near the swing surface by generalizing
the approach of [49] to models of non-AdS holography satisfying the conditions described
at the beginning of section 2.

The approximate modular flow generator in the boundary. Once we have the
global modular flow generator ζ for the vacuum state, we can generalize it into a local
version that is valid for more general states and shapes of the entangling surface A. Note
that the boundary ∂A of A is a co-dimension two surface in ∂M. At each point p ∈ ∂A
there is a two-dimensional plane transverse to ∂A within which it is always possible to find
a local Rindler coordinate system in a small neighborhood near p.2 In other words, it is
always possible to find an approximate modular flow generator

ζ(p) =
∑
i

a
(p)
i hi = 2π∂τ(p) , (2.11)

where hi are the symmetry generators in the transverse plane near p and τ(p) parametrizes
time in the local Rindler coordinates. We assume that all the τ(p) can be smoothly sewn
together close to ∂A so we will drop the subscript (p) henceforth. When d = 2, ∂A is a set
of isolated points. In this case, for each endpoint p ∈ ∂A, the approximate modular flow
generator and the associated Rindler coordinate transformation can be obtained from the
corresponding expressions for single intervals on the vacuum by sending the other endpoint
to infinity. In higher dimensions, ∂A is a co-dimension two surface in ∂M. We assume
that appropriate gluing conditions exist such that the approximate modular flow generator
can be smoothly defined on a small neighborhood of ∂A.

The approximate modular flow generator ζ(p) and the local Rindler time τ defined
near ∂A can be used to define measures of entanglement using the replica trick. In analogy
with the discussion in CFTs, we expect that the replica trick can be performed on the field
theory at the boundary by making n copies of ∂M and gluing them cyclically along A.
The replica symmetry can then be implemented by imposing periodic boundary conditions
around each point p ∈ ∂A such that

τ ∼ τ + 2πin, φ∂M(τ + 2πin) = φ∂M(τ), (2.12)

where φ∂M collectively denote the fields in the boundary field theory.3 Consequently, the
Rényi and entanglement entropies can be defined in a similar fashion to CFTs, namely,

Sn = 1
1− nZn, Zn ≡ tr ρnA = tr e−nHmod , (2.13)

SA = lim
n→1

Sn = lim
n→1

n∂n
(
n logZ1 − logZn

)
. (2.14)

2For d = 2 the normal plane refers to the entire manifold at the boundary, namely ∂M.
3This picture is valid for states symmetric under time reversal. For more general states, we need to sew

different Rindler wedges together and use the Schwinger-Keldysh formalism, in analogy with the derivation
of the HRT proposal [8].
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The approximate modular flow generator in the bulk. Let us now extend the
approximate modular flow generator ζ(p) into the bulk. The first step is to extend the d-
dimensional vector field ζ(p) into a (d+1)-dimensional vector field ξ(p)

∞ near the asymptotic
boundary. The vector field ξ(p)

∞ is given by

ξ(p)
∞ =

∑
i

a
(p)
i Hi, (2.15)

where Hi are the approximate Killing vectors near p ∈ ∂A satisfying Hi|∂M = hi and the
coefficients a(p)

i are the same coefficients featured in (2.11). It follows that ξ(p)
∞ |∂M = ζ(p).

The next step is to extend the (d + 1)-dimensional vector field ξ
(p)
∞ defined near the

asymptotic boundary into the bulk. As described in the previous section, when the bulk
modular flow generator is an exact Killing vector, the modular flow moves each point
p ∈ ∂A into the bulk along a null geodesic. When the bulk modular flow is no longer
generated by a Killing vector, we still expect it to move a point p ∈ ∂A along a null
geodesic until it reaches a fixed point in the bulk, if the latter exists. A starting point
p and a null vector ξ(p)

∞ uniquely determine a null geodesic γ(p) towards the bulk. This
property enables us to extend ξ(p)

∞ defined near the asymptotic boundary to a null vector
field ξ(p) defined along γ(p) satisfying

ξ(p)µξ(p)
µ = 0, ξ(p)∣∣

∂M = ζ(p). (2.16)

In appendix B, we show that in a Lorentzian manifold it is always possible to parametrize
the null geodesic γ(p) in terms of coordinates xµ(λ) and xµ(τ) — where λ is an affine
parameter and τ the local Rindler time — such that the tangent vector ξ(p)µ = 2πdxµ/dτ =
2π(dλ/dτ)(dxµ/dλ) satisfies

ξ(p)µ∇µξ(p)ν = ±2πξ(p)ν , (2.17)

where the ± sign indicates that the vector is outward or inward directed. The parametriza-
tion above shows that the parameter τ defined via 2π∂τ = ξ(p) has identification τ ∼ τ+2πi.
Hence, ξ(p) naturally extends the local Rindler time at the boundary into the bulk along
the null geodesics. Furthermore, note that the null vector field ξ(p) defined in this way has
a fixed point ∂γ(p) at a finite affine parameter.

Finally, we can extend the vector field ξ(p) defined on the null geodesics γ(p) into a
vector field ξ defined on the entire (d+ 1)-dimensional manifoldM by requiring that

ξ
∣∣
γ(p)

= ξ(p), (2.18)

(Lξg)µν ∼ O(r−αµν ) as r →∞, (2.19)
ξ
∣∣
γξ

= 0, (2.20)

∇µξν
∣∣
γξ

= 2πnµν . (2.21)

The first condition (2.18) requires ξ to be tangent to the null line γ(p) with a normalization
that is fixed by (2.17) and the boundary condition (2.16). Since γ(p) is null, its tangent

– 8 –



J
H
E
P
1
2
(
2
0
2
0
)
0
6
4

vector is also normal to γ(p) and as a result of Frobenius’ theorem we have

ξ[µ∇νξλ]
∣∣
γ(p)

= 0, (2.22)

which is the generalization of eq. (2.7). The second condition (2.19) requires ξ to be an
asymptotic Killing vector at the boundary (r → ∞), which must be compatible with the
boundary conditions δgµν ∼ O(r−αµν ) of the gravitational theory where αµν are constants.
The third line (2.20) defines γξ as the set of fixed points of ξ, which naturally contains the
set of fixed points of ξ(p), namely ∪p∈∂A∂γ(p) ⊂ γξ. Finally, (2.21) implies that ξ is the
boost generator in the local Rindler frame near γξ such that the parameter τ defined by

2π∂τ = ξ, (2.23)

corresponds to a local Rindler time coordinate on the two dimensional plane normal to γξ
at each point in γξ.

A vector field satisfying eqs. (2.18) – (2.21) always exists, although it is not uniquely
determined away from A, γξ, and γ(p) [49]. The non-uniqueness of ξ away from these
surfaces is not a problem, however, since we are only interested on the value of ξ on the
swing surface γA and the boundary subregion A.

2.3 The minimal swing surface proposal

In this section we extend the replica trick to the bulk and derive the holographic entangle-
ment entropy following the lines of argument of Lewkowycz and Maldacena [7]. In what
follows, we assume that the gravitational theory in the bulk is described by Einstein gravity.

In section 2.2 we defined a vector field ξ that is tangent to the set of null geodesics
emanating from the boundary ∂A of subregion A at the boundary and features a set of
fixed points γξ in the bulk. A crucial difference between models of non-AdS holography and
standard AdS/CFT is that in the former case, the boundary points p ∈ ∂A are not fixed
points of the bulk modular flow generated by ξ, namely ∂A 6⊂ γξ. This is also reflected
in our continuation of the local Rindler time and the replica trick from the boundary to
the bulk. In order to see this, let us consider a subset of γξ that is bounded by the null
geodesics γ(p) such that

γ ⊂ γξ, ∂γ = γξ ∩ γb∂ = ∪p∈∂A∂γ(p), (2.24)

where ∂γ is the boundary of γ and γb∂ = ∪p∈∂Aγ(p) is the collection of null geodesics γ(p).
The local Rindler time τ can be extended from the boundary endpoints p ∈ ∂A to ∂γ(p)
along the null geodesics γ(p), which further continues along the bulk surface γ. This con-
struction of the Rindler time function allows us to extend the replica trick into the bulk.

With this preparation, we can use the Lewkowycz-Maldacena and Dong-Lewkowycz-
Rangamani arguments [7, 8] to derive the bulk description of entanglement entropy. The
derivation follows closely the steps of Lewkowycz and Maldacena [7] for states with time
reversal symmetry which admit an Euclidean formulation. For more general states a similar
argument along the lines of [8] is expected. In the following we will first determine the
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set of fixed points of the replica symmetry from the bulk equations of motion and then
calculate the generalized gravitational entropy.

Let us first extend the replica trick to the bulk. We will argue that γ is the set of fixed
points of the replica symmetry as n→ 1 and that γ is an extremal surface bounded by γb∂ .
The metric near the surface γ can be expanded as

ds2 = dρ2 + ρ2dτ2
E +

(
hij + 2xaKaij

)
dyidyj + · · · , τE ∼ τE + 2π, (2.25)

where yi denote the coordinates on the co-dimension two surface γ, ρ denotes the distance
from γ, τE is the Wick rotation of the local Rindler time τ , and a stands for indices on the
plane (ρ, τE) orthogonal to γ. The metric on γ can be expanded in terms of ρ, with the
linear order term given by the extrinsic curvature tensor Kaij of γ. Note that all of the
bulk fields including Kaij are collectively denoted by φ and satisfy the periodic boundary
conditions φ(τE) = φ(τE + 2π).4

In analogy with the discussion in [7], we can define the n-th smooth coverMn of the
bulk manifoldM by changing the period of τE in (2.25) to τE ∼ τE + 2πn. Furthermore,
we can define the Zn quotient ofMn by M̂n =Mn/Zn, the latter of which features conical
singularities at the loci of fixed points of Zn that are denoted by γn. In order to calculate
the entanglement entropy we must take the n → 1 limit and our construction indicates
that γn

∣∣
n→1 is just the surface γ.5 The metric ĝn of M̂n in the transverse directions can

be expanded near γ as

ds2
ĝn = n2dρ2 + ρ2dτ2

E + · · · , τE ∼ τE + 2π. (2.26)

Note that assuming replica symmetry, the bulk fields on M̂n also satisfy the periodic
boundary conditions φ(τE) = φ(τE + 2π). Then the linearized equations of motion around
γ determine the shape of γ when n− 1 is small. In particular, Einstein’s equations require
the trace of the extrinsic curvature to vanish and hence γ must be an extremal surface in
Einstein gravity [7].

Let us now calculate the generalized gravitational entropy. In order to accomplish this,
we use the equivalence of the bulk and boundary partition functions and assume that the
dominant saddle has replica symmetry in the bulk. The classical contribution to logZn in
eq. (2.14) can be calculated in the bulk by the on-shell action I[M] on the n-th smooth
coverMn of the original manifoldM,

logZn = −I[Mn] = −nI[M̂n]. (2.27)

The entanglement entropy (2.14) can then be rewritten as

SA = n2∂nI[ĝn]
∣∣
n→1 =

on-shell

∫
∂M̂n

Θ[g, ∂nĝn]
∣∣
n=1, (2.28)

where we have omitted terms proportional to the bulk equations of motion which vanish
on-shell and the presymplectic potential Θ[g, ∂nĝn] comes from total derivative terms in

4There might be subtleties in this identification related to the presence of nonlocal boundary conditions,
as discussed for example in [11].

5Here we have assumed that there are no additional saddles in the n→ 1 limit.
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the variation of the action. In eq. (2.28), ∂M̂n denotes all the co-dimension one boundaries
of the manifold M̂n, which include the asymptotic boundary as well as the tip at ρ → 0.
By assumption, the boundary conditions guarantee that the asymptotic boundary does not
contribute to the on-shell action. As a result, the only boundary contributions to (2.28)
come from the boundary at ρ = 0.6 For Einstein gravity, the entanglement entropy is thus
given by

SA =
∫
γ×S1

Θ[g, ∂nĝn]
∣∣
n=1 =

∫
γ
ξ ·Θ[g, ∂nĝn]

∣∣
n=1 (2.29)

= Area(γ)
4G = Area(γA)

4G . (2.30)

Combining (2.30) together with the fact that γ is an extremal surface bounded by the γb∂
surfaces, our proposal for holographic entanglement entropy is given by the minimal area
of all the surfaces XA such that

SA = min ext
XA∼A

Area(XA)
4G , XA = X ∪ γb∂ , (2.31)

where X is a spacelike surface that hangs from ∂A by the collection of null ropes γb∂ . All
of the surfaces XA are homologous to A which we denote by XA ∼ A. The entanglement
entropy is then given by the area of the swing surface γA = γ ∪ γb∂ where the bench γ

minimizes the area of the surfaces X connecting the ropes γb∂ .
The crucial difference between (2.31) and the RT/HRT proposal in AdS/CFT is that

the surface γ is not directly attached to the boundary at ∂A but is instead connected to
∂A by the null ropes γb∂ . This guarantees that the swing surface is homologous to the
subregion A at the boundary. Note that in the derivation of (2.31) we have assumed that
the bulk theory is described by Einstein gravity. In more general theories of gravity, we
expect the area to be replaced by a generalized area which depends on the gravitational
theory under consideration [50]. In particular, in higher derivative theories of gravity the
generalized area contains the Wald term and terms involving extrinsic curvatures [51].

Note that since the bench is not directly anchored to ∂A, the holographic entanglement
entropy could potentially be free of divergences. This implies that the entanglement entropy
does not necessarily satisfy the area law at the boundary or, in two dimensions, that it
does not have a logarithmic dependence on the length of the subsystem. We will see
that in flat3/BMSFT the entanglement entropy is indeed divergence-free and that it does
not have any logarithmic dependence on the size of the subsystem. On the other hand,
in (W)AdS3/WCFT the entanglement entropy depends logarithmically on the size of the
subsystem along one direction and it depends linearly on the size of the other direction.
In this case such a linear dependence is related to the fact that WCFTs are nonlocal along
one direction.

Let us conclude by summarizing our proposal for holographic entanglement entropy in
holographic dualities beyond AdS/CFT satisfying the assumptions listed at the beginning

6It is possible that there are corner contributions from the boundary ∂γ of γ but we do not see such
terms in the explicit examples discussed later in this paper.
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of section 2. The holographic entanglement entropy of a subregion A at the boundary is
given by (2.31) and can be calculated by following these steps:

(1) For each p ∈ ∂A, find the approximate modular flow generator ζ(p) as described in
section 2.2.

(2) For each p ∈ ∂A, find the null geodesic γ(p) emanating from p whose tangent vector
is an asymptotic Killing vector that reduces to ζ(p) at the asymptotic boundary.

(3) Find the extremal surface spanning the region bounded by γb∂ = ∪p∈∂Aγ(p).

(4) If there are multiple extremal surfaces choose the one with the minimal area.

In these steps, one needs to be careful about the cutoff at infinity, as we will see in more
detail in the following sections.

2.4 Relative entropy for general states

In this section we derive general expressions for the relative entropy of general states and
provide a formal check of our proposal (2.31) in Einstein gravity. Relative entropy is a
quantum information measure that quantifies the distinguishability between two states ρ
and σ that is defined by

S(ρ||σ) ≡ tr(ρ log ρ)− tr(ρ log σ) = ∆〈Hmod(σ)〉 −∆SA. (2.32)

In (2.32), ∆〈Hmod(σ)〉 = − tr(ρ log σ) + tr(σ log σ) is the difference in the expectation
value of the modular Hamiltonian associated with the state σ while ∆SA = − tr(ρ log ρ) +
tr(σ log σ) is the difference of the entanglement entropy. Relative entropy has several
important features including: (i) it is positive definite, namely S(ρ||σ) ≥ 0; and (ii) it
monotonically increases with the size of the system such that S(ρA||σA) ≤ S(ρB||σB)
where A and B are two subregions satisfying A ⊂ B.

Let us now consider the holographic dual of relative entropy between the vacuum state
σ and an excited state ρ. For the vacuum state we assume that the exact modular flow
generator is known in both the boundary and the bulk, which we respectively denote by
ζvac and ξvac. On the other hand, for the excited state there is no exact Killing vector
generating the modular flow. Nevertheless, as discussed in section 2.2, we can always find
a vector field that behaves like the exact modular flow generator in the vacuum state as it
approaches γA. This vector field is denoted by ξ and satisfies eqs. (2.19) — (2.21) together
with the condition

ξ
∣∣
∂M = ζvac. (2.33)

The approximate modular flow generator ξ can be used to define the quasilocal en-
ergy in the d-dimensional non-timelike region Σ that is bounded by A at the boundary
and the swing surface γA in the bulk such that ∂Σ = A ∪ γA. Using the covariant phase
space formalism [52–54], the diffeomorphism associated with ξ is generated by the Hamil-
tonian δHξ[φ]

δHΣ
ξ [φ] =

∫
Σ
dχξ[φ, δφ], (2.34)
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where the d-form dχξ[φ, δφ] is determined by the gravitational action, φ collectively denotes
the bulk fields, and δφ denotes their on-shell variations. If there exists a (d−1)-form Qξ[φ]
and a d-form K[φ] such that χξ[φ, δφ] = δ(Qξ[φ]− ξ ·K[φ]) on ∂Σ, then the gravitational
charge in the region Σ is integrable and can be written as a surface charge on ∂Σ = A∪γA,

HΣ
ξ [φ] =

∫
∂Σ

(
Qξ[φ]− ξ ·K[φ]

)
≡ Q∂Σ

ξ = QAξ −Q
γA
ξ , (2.35)

where we split the integral over the asymptotic boundary A and the swing surface γA.
We now show that the proposed holographic entanglement entropy (2.31) is given by

the surface charge QγAξ = Qγξ +Qγb∂ξ evaluated along the swing surface in Einstein gravity,
where Qξ[g] is given by

Qξ[g] = − 1
16πG(d− 1)!∇

µξνεµνµ3...µd+1dx
µ3 ∧ · · · ∧ dxµd+1 . (2.36)

Let us first consider the contribution of the null ropes γb∂ to the surface charge QγAξ . Since
the vector field ξ is orthogonal to γb∂ , Frobenius’ condition (2.22) implies that

∫
γb∂
Qξ[g] ∝∫

γb∂
ξ[α∇µξν]dλ ∧ · · · = 0. Furthermore, the fact that ξ is tangent to γb∂ and K[φ] is

antisymmetric means that
∫
γb∂

ξ ·K[φ] = 0 as well. Consequently, the charge on the ropes
vanishes. Let us now consider the surface charge Qγξ evaluated on the bench γ of the swing
surface. In this case, the fixed point condition (2.20) implies that

∫
γ ξ ·K[g] = 0 while

the normalization (2.21) implies that Qξ[g] is proportional to the area of the bench. As a
result, we find that the surface charge along the swing surface is given by the area of the
bench in Planck units,

QγAξ = Area(γ)
4G = Area(γA)

4G = SA, (2.37)

which is the holographic entanglement entropy according to our proposal (2.31).
On the other hand, as demonstrated in [42], the surface charge evaluated along A is

holographically dual to the expectation value of the modular Hamiltonian Hmod between
two states,

∆〈Hmod〉 = ∆QAξ . (2.38)

Using the holographic dictionary (2.37) and (2.38), we can define the holographic dual of
relative entropy, in analogy with the discussion in AdS/CFT [49],

S
(
ρA||σA

)
= ∆〈Hmod〉 −∆SA = HΣ

ξ [φ]−HΣ
ξ [φvac]. (2.39)

In particular, when ρ is an infinitesimal perturbation above the vacuum σ, ξ is an exact
Killing vector of the background fields φ and δHΣ

ξ [φ] = δQAξ [φ] − δQγAξ [φ] = 0 implies
the first law of entanglement entropy. In contrast, when ρ is a finite perturbation of the
vacuum state σ, ξ is no longer an exact Killing vector and the relative entropy can be
non-zero. The modular Hamiltonian in explicit models of non-AdS holography is studied
in detail in the companion paper [42].
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Figure 2. Two-dimensional sketch of two competing swing surfaces γA1 ∪ γA2 and γA1A2 homolo-
gous to the disjoint union of two intervals A1 and A2. The dotted lines denote the ropes while the
solid lines denote the benches.

2.5 Remarks

In this section we comment on a few consequences of our proposal for holographic entan-
glement entropy, including the entanglement entropy for multiple intervals, deformations
of the swing surface, and the entanglement wedge.

Multiple intervals. For three-dimensional bulk spacetimes, the proposal (2.31) implies
that the entanglement entropy for multiple intervals can be obtained by pairing the end-
points and summing over the areas of the swing surfaces associated with each pair. Generi-
cally, there are several different ways of pairing points that is consistent with the homology
constraint. In this case, as in the RT/HRT prescription in AdS/CFT, we must choose the
configuration that yields the minimal area.

As an example, let us consider the disjoint union of two intervals A1 and A2. Then,
the holographic entanglement entropy is given in terms of the area by

SA1∪A2 = 1
4Gmin

(
Area(γA1 ∪ γA2), Area(γA1A2)

)
, (2.40)

where γA1 ∪ γA2 and γA1A2 denote the two possible swing surfaces depicted in figure 2. In
particular, for two intervals that are far apart from each other we clearly have

SA1∪A2 = Area(γA1 ∪ γA2)
4G , (2.41)

and the mutual information I = SA1 + SA2 − SA1∪A2 vanishes. A phase transition occurs
when the intervals A1 and A2 are close enough to each other such that Area(γA1 ∪ γA2) =
Area(γA1A2) and the entropy is given by

SA1∪A2 = Area(γA1A2)
4G . (2.42)

This observation is consistent with the calculation of mutual information of WCFTs in [16].
Mutual and 3-partite information have also been discussed in flat holography in [55].
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Towards the entanglement wedge. Let us comment briefly on the entanglement wedge
associated with the swing surface. Let yi with i = 1, . . . , d − 1 denote the coordinates
parametrizing the co-dimension two surface γξ in the bulk. Starting from any point on γξ
there is an outgoing, future-directed null geodesic orthogonal to γξ. We denote the vector
tangent to this geodesic by lµ∂µ = ∂λ with λ the affine parameter whose value on γξ is
chosen to be zero.

The collection of such null geodesics span N+, the future directed part of the light-sheet
of γξ with non-positive expansion. By requiring that the coordinates yi remain the same
along the null geodesics on N+, all points on N+ can be parametrized by (λ, yi). Following
the discussion in appendix B, we can then find a vector field ξ satisfying ξν∇νξµ|N+ = 2π
by requiring that

ξµ = 2π(dλ/dτ)lµ, (2.43)

where (d2τ/dλ2) = −(dτ/dλ)2. The solution to this equation is τ = τ0 + log |λ| where
τ0 corresponds to the freedom of rescaling the affine parameter. From this construction,
it can be explicitly seen that ξ|γξ = 0, which tells us that γξ is the set of fixed points of
the vector field ξ. Similarly, we can define the past directed part of the light-sheet N−
and define ξ on it as well. By construction, all the null ropes satisfy γ(p) ⊂ N+ ∪ N−.
Consistency of the holographic duality also requires (N+ ∪N−) ∩ ∂M = ∂D where ∂D is
the boundary of the causal domain D of A. A pre-entanglement wedge Wξ can be defined
as the region bounded by N+ ∪N− ∪D. We expect the entanglement wedge to be a subset
of the pre-entanglement wedge as the former should be associated with γA instead of γξ.
We leave this and related questions for further work.

Deformations of the swing surface. Let us now consider deforming the swing surface
γA along N+. For convenience we work with d = 2. Consider an infinitesimal deformation
along the null geodesics such that the change of the area A is related to the expansion
by limA→0

1
A
dA
dλ = θ. In the examples where an explicit Rindler transformation is known,

ξ corresponds to an exact Killing vector in the bulk and the light-sheets N± are Killing
horizons with zero expansion. In these examples, we can deform one of the ropes of the
swing surface, for example γ+, to a spacelike geodesic γ′+ ⊂ N+ whose intersection with γξ
remains on the original bench γ. In this case, the bench γ′ of the deformed swing surface is
a subset of γ. Nevertheless, the total length of the deformed swing surface γ′A = γ′+∪γ′∪γ−
remains the same. We can similarly deform the rope γ− → γ′− within N−. In particular,
we can shrink the entire bench to a point such that the deformed swing surface becomes
γA = γ′+ ∪ γ′−, as illustrated by the red curve in figure 3. This phenomenon has also
been observed in the context of flat holography [22]. For more general backgrounds, a
deformation of the swing surface within the lightsheets N+ ∪N− will generically decrease
its length if the expansion θ is negative. This is similar to the property of the HRT surface
in the AdS/CFT correspondence [2].

To summarize, we conclude that a deformation of the swing surface within the light-
sheets N+ ∪ N− does not increase the total area. We expect that this property of swing
surfaces can be used to prove useful entanglement entropy inequalities, such as strong
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γξ

N+N−

p+

p−

Figure 3. Deformations (green and red) of the swing surface (blue) in N+ ∪N−. The dashed lines
are ropes and the solid lines are benches. The ropes of the original swing surface are null while the
deformed ones are spacelike. Note that the bench of the red surface has shrunk to a point. Such
deformations preserve the area when the expansion θ on N+ ∪N− vanishes and decrease the area
when θ is negative.

subadditivity [56]. However, since the swing surface contains null ropes which cannot be
included in a spacelike surface, the maximin argument used in [56] can not be directly
adopted. In this paper, we perform a few explicit checks of strong subadditivity in both
flat3/BMSFT and AdS3/WCFTs on zero mode backgrounds. In these examples, we find
that strong subadditivity is satisfied in WCFTs, while it can be violated in BMSFTs. We
leave a general discussion of entanglement entropy inequalities for future work. For re-
lated discussions on other inequalities of entanglement entropy in BMSFTs and WCFTs
see [57, 58].

3 Swing surfaces in flat3/BMSFT

In this section we describe how the general proposal for holographic entanglement entropy
works for asymptotically flat spacetimes in the flat3/BMSFT correspondence. More con-
cretely, we derive the swing surface for zero-mode backgrounds, compute the variation of
the entanglement entropy that results from perturbations of these spacetimes, and discuss
strong subadditivity in these models of non-AdS holography.

Einstein gravity in asymptotically flat three-dimensional spacetimes admits consistent
boundary conditions at future null infinity that lead to a set of asymptotic symmetries
described by the three-dimensional BMS algebra [33]. This observation leads to the con-
jectured duality between gravity in asymptotically flat spacetimes and BMS-invariant field
theories at the boundary, namely to the flat3/BMSFT correspondence [34–36]. In the bulk,
the space of solutions of pure Einstein gravity in Bondi gauge is described by

ds2 = Θ(φ)du2 − 2dudr + 2
[
Ξ(φ) + 1

2u∂φΘ(φ)
]
dudφ+ r2dφ2, (3.1)
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where φ ∼ φ + 2π and Θ(φ), Ξ(φ) are two periodic functions. When Θ(φ) = M and
2Ξ(φ) = J are constants, the metric (3.1) describes zero-mode backgrounds with energy
M/8G and angular momentum J/8G. These solutions include, in particular, the global
Minkowski vacuum withM = −1 and J = 0, conical defect geometries where −1 < M < 0,
and flat cosmological solutions where M > 0.

Entanglement entropy in BMSFTs has been computed for single intervals in the vacuum
as well as thermal and more general states in [18–21, 57]. In particular, ref. [21] found that
the geometric dual of entanglement entropy in flat spacetimes is not given by the RT/HRT
surface, but instead by what we call a swing surface in this paper (see figure 1). The latter
motivates our proposal (2.31). The results of [21] are based on the generalized Rindler
method. This method exploits the symmetries of BMSFTs and the vacuum state to devise
a BMS transformation that maps the causal domain of dependence D of an interval A on
the original manifold ∂M to a generalized Rindler spacetime. Since this is a symmetry
transformation, the entanglement entropy associated with the interval A ∈ ∂M on the
vacuum can be obtained from the thermal entropy in Rindler space. This result can be
generalized to thermal states by an additional symmetry transformation.

For zero-mode backgrounds, the generalized Rindler method can be extended into
the bulk where it can be used to determine the swing surface whose area reproduces the
entanglement entropy of the BMSFT at the boundary. If we parametrize the interval
A along the u and φ coordinates at the boundary by lu and lφ respectively, then the
holographic entanglement entropy is given by

SA = 1
4G

[√
M

(
lu + Jlφ

2M

)
coth

(√
Mlφ
2

)
− J

M

]
. (3.2)

Using the holographic dictionary, the entropy (3.2) matches the entanglement entropy of
BMSFTs on thermal states [18, 21]. In what follows, we will show that the proposal (2.31)
reproduces the entanglement entropy of zero-mode backgrounds given in (3.2) without
using the Rindler method. We will also consider linearized fluctuations around zero-mode
backgrounds and show that the variation of the entanglement entropy matches the variation
of the modular Hamiltonian.

3.1 Approximate modular flow

The modular flow generator for the vacuum state in BMSFTs was first written down in [21]
and has been studied in more detail in [22–24, 42]. As described in section 2, this mod-
ular flow generator plays an important role in the derivation of holographic entanglement
entropy for both the vacuum and more general states. In this section we write down the
approximate modular flow generator for general states near the endpoints of the interval
at the boundary, which we then use to determine the ropes of the swing surface.

Let us consider an interval A ∈ ∂M whose endpoints ∂A are given in terms of (u, φ)
coordinates by

∂A =
{(
u−, φ−

)
,
(
u+, φ+

)}
, u+ − u− = lu, φ+ − φ− = lφ , (3.3)
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where lu and lφ are assumed to be positive. The approximate modular flow generator for
general states can be obtained near the endpoints (3.3) in the following way. Consider first
the vacuum state on the plane. The modular flow generator ζ is the symmetry genera-
tor (2.3) that leaves the causal domain D of the interval A invariant. Its normalization is
fixed by requiring that eiζ maps points in D back to themselves. These conditions allow us
to determine each of the ai coefficients featured in (2.3), as has been explicitly done in [42],
with the result

ζ

2π =
[
u+(φ− φ−)2 − u−(φ− φ+)2

(φ− − φ+)2 + u(2φ− φ− − φ+)
φ− − φ+

]
∂u + (φ− φ−) (φ− φ+)

φ− − φ+
∂φ. (3.4)

The approximate modular flow generator ζ(p) for general states around the endpoint p ∈ ∂A
can be obtained from this expression by sending the other endpoint of ∂A to infinity. We
consequently find

ζ(±) = ∓2π
[(
u− u±

)
∂u +

(
φ− φ±

)
∂φ
]
, (3.5)

where ζ(±) denotes the approximate modular flow generator associated with the (u±, φ±)
endpoint. In particular, note that the endpoints (u±, φ±) are fixed points of the approxi-
mate modular flow generator, a property inherited from the exact modular flow generator
of the vacuum state.

The ropes of the swing surface correspond to null geodesics γ± that emanate from the
endpoints (u±, φ±) of the boundary interval A. As described in section 2.3, the tangent
vector of these geodesics must reduce to the approximate modular flow generator (3.5) at
a cutoff surface near the asymptotic boundary. Since ζ(±) vanishes at the endpoints of A,
the tangent vectors of γ± are parallel to the radial direction ∂r at the cutoff surface. On
the other hand, it is not difficult to verify that any vector that points along the radial
direction is null everywhere in spacetimes that are solutions of pure Einstein gravity in
the Bondi gauge (3.1). Therefore, the ropes γ± of the swing surface can be described in
the region r ∈ [0,∞) by u = u±, φ = φ±. There are subtleties in the parametrization of
these geodesics in the Bondi gauge beyond r = 0, as discussed in detail in appendix D.
For the zero-mode solutions (3.1) with M > 0, the range of the radial coordinate r can be
extended to negative values, such that the ropes γ± of the swing surface lie along radial
null geodesics that are given by

γ± : u = u±, φ = φ±, r ∈ (−∞,∞). (3.6)

The parametrization of the ropes for zero-mode backgrounds with M < 0 can be found in
appendix D.3.

We have shown that the ropes γ± emanating from the endpoints (u±, φ±) of the interval
at the boundary are given by null geodesics along the radial coordinate of the asymptot-
ically flat spacetimes (3.1). According to our general proposal (2.31), the holographic
entanglement entropy is then given by the area of the extremal surface in the bulk that
connects the null geodesics γ+ and γ−, as described in detail next.
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3.2 The Poincaré vacuum

Before considering more general cases, let us briefly illustrate how the propoosal (2.31)
works for single intervals on the Poincaré vacuum. The Poincaré vacuum describes the
vacuum state of the dual BMSFT on the plane and its metric is simply given by

ds2 = −2dudr + r2dz2, (3.7)

where z ∈ (−∞,∞). For convenience, we consider a symmetric interval at the boundary
whose endpoints ∂A are parametrized in terms of the (u, z) coordinates by

∂A =
{(
− lu

2 −,−
lz
2

)
,

(
lu
2 ,

lz
2

)}
. (3.8)

where lu and lz are both positive.
As discussed in the previous section, the null geodesics γ± emanating from the end-

points (3.8) are tangent to ∂r and given by

γ± : u = ± lu2 , z = ± lz2 , r ∈ (−∞,∞). (3.9)

The next step in the holographic entropy proposal described in section 2.3 consists of
finding the extremal surface X that lies between the null geodesics (3.9). In flat space this
surface is just a line — a spacelike geodesic to be more precise — that connects γ+ to γ−.
The length of the surfaces XA = γ− ∪X ∪ γ+ is thus given

L(r+, r−) =
√
r−r+l2z + 2(r− − r+)lu, (3.10)

where, r± denote the points along γ± where X is attached. The extremum of (3.10) is
found at

r− = −r+ = 2lu
l2z
, (3.11)

which determines the location of the swing surface γA = γ− ∪ γ ∪ γ+. In particular, the
bench γ of the swing surface can be parametrized in terms of the z coordinate by

γ : u(z) = lulz
8z + luz

2lz
, r(z) = − lu

zlz
, (3.12)

where z ∈ (−∞,−lz/2] ∪ [lz/2,∞).7 Finally, the area of the swing surface γA is given by

SA = Area(γA)
4G = lu

2Glz
. (3.13)

This expression agrees with the entanglement entropy computed on the field theory side
of the flat3/BMSFT correspondence, which can be seen by taking the J → 0 and M → 0
limits in (3.2).

7There is a subtlety with the range of z in the parametrization of the bench (3.12), as discussed in detail
in appendix D.1.
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3.3 Zero-mode backgrounds

Let us now test the holographic entropy proposal (2.31) on the more general zero-mode
backgrounds describing flat cosmological solutions with M > 0

ds2 = Mdu2 − 2dudr + Jdudφ+ r2dφ2, φ ∼ φ+ 2π. (3.14)

These backgrounds can be regarded as the flat limit of the BTZ black hole in AdS3 [59].
The case M < 0, which includes the global Minkowski vacuum, is also interesting and is
treated in detail in appendix D.3. For convenience, we consider once again a symmetric
interval A at the boundary that is given by (3.3) with

(u±, φ±) =
(
± lu

2 ,±
lφ
2

)
. (3.15)

According to our prescription (2.31), the holographic entanglement entropy is given
by the distance of a geodesic connecting two points on the ropes γ+ and γ−, which are the
radial null geodesics described in (3.6). The distance between these geodesics is given by

ML(r+, r−)2 = l2uM
2 + 2luM

(
lφ
√
Mrc + r− − r+

)
+ r2

c

(
l2φM + 2

)
− 2 cosh

(
lφ
√
M
)(
r2
c − r−r+

)
+ 2lφ

√
Mrc(r− − r+)

+ 2rc
(
r+ − r−

)
sinh

(
lφ
√
M
)
− 2r−r+,

(3.16)

where we used rc ≡ J/2
√
M while r+ and r− denote the radial coordinates of two points

along γ+ and γ−, respectively. We find that the extremum of (3.16) corresponds to the
following choice of r±

r− = −r+ =
luM + lφ

√
Mrc − rc sinh

(
lφ
√
M
)

cosh
(
lφ
√
M
)
− 1

. (3.17)

These values of r± determine the points along the ropes γ± (3.6) where the bench γ of the
swing surface is attached (see appendix D.2 for the parametrization of the bench). The
holographic entanglement entropy is then given by the area of the swing surface γA =
γ− ∪ γ ∪ γ+, namely

SA = Area(γA)
4G = 1

4G

∣∣∣∣√M(
lu + Jlφ

2M

)
coth

(√
Mlφ
2

)
− J

M

∣∣∣∣. (3.18)

The absolute value guarantees that the entanglement entropy, which corresponds to the
length of the swing surface, is a positive quantity. When the argument of the absolute
value is positive, eq. (3.18) agrees with the entanglement entropy of BMSFTs at finite
temperature in (3.2). It would be interesting to understand how the absolute value in
the bulk computation of the entanglement entropy emerges in the field theory side of the
calculation, a question that we leave for future work.
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3.4 Beyond zero-mode backgrounds

In this subsection we apply the general prescription for holographic entanglement entropy
to arbitrary linearized fluctuations of the zero-mode background (3.14) and show that the
first law of entanglement entropy is satisfied in flat3/BMSFT.

Let us consider linearized perturbations of the metric compatible with the parametriza-
tion of the phase space in (3.1), namely

δgµνdx
µdxν = δΘ(φ)du2 +

[
δΞ(φ) + 1

2u∂φδΘ(φ)
]
dudφ. (3.19)

Note that the parametrization of the null geodesics γ± in (3.6) is independent of the
parameters of the background and remain null in the perturbed spacetime. Also, since the
bench of the swing surface corresponds to an extremal configuration, it remains extremal to
linear order in the perturbations of the metric. As a result, the only effect of the linearized
perturbation (3.19) is to change the area (length) of the swing surface. The variation of
the length of the spacelike bench is thus given by

δL(r+, r−) =
∫
γ
dφ δ

√
gµν∂φxµ∂φxν . (3.20)

Using the parametrization of the bench given in eqs. (D.13) and (D.14) we find that
δL(r+, r−) can be conveniently written as

δL(r+, r−) = 1
4π

∫ lφ/2

−lφ/2
dφ
[
T (φ)δΘ(φ) + 2Y (φ)δΞ(φ)

]
, (3.21)

where, as discussed in appendix D.2, we have deformed the contour of integration so that
φ ∈ [−lφ/2, lφ/2], while the T (φ) and Y (φ) functions read

T (φ) = π

2M sinh
(√Mlφ

2
){(Jlφ + 2luM)

[
coth

(√
Mlφ
2

)
cosh(

√
Mφ)− csch

(√
Mlφ
2

)]

+ 2J√
M

[
cosh(

√
Mφ)− cosh

(√
Mlφ
2

)]
− 2Jφ sinh(

√
Mφ)

}
, (3.22)

Y (φ) = 2π
√
M sinh

(√Mlφ
2
)[ cosh

(√
Mlφ
2

)
− cosh(

√
Mφ)

]
. (3.23)

The variation of the holographic entanglement entropy is thus given by

δSA = δL(r+, r−)
4G = 1

16πG

∫ lφ/2

−lφ/2
dφ
[
T (φ)δΘ(φ) + 2Y (φ)δΞ(φ)

]
. (3.24)

It is not difficult to verify that for zero-mode fluctuations where δΘ(φ) = δM and δΞ(φ) =
δJ/2, eq. (3.24) can be integrated within the space of solutions, which reproduces the finite
expression for the entanglement entropy given in (3.18).

In section 2, we argued that the area of the swing surface agrees with the gravitational
charge associated with the modular flow generator evaluated along the swing surface. This
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can be explicitly shown for perturbations of zero-mode backgrounds in flat3/BMSFT. In-
deed, it is not difficult to show that the infinitesimal gravitational charge δQγAξ [g] on the
swing surface receives no contributions from the ropes and that the result agrees with the
variation of the area (3.24), namely

δQγAξ [g] = δQγξ [g] = δSA. (3.25)

In addition, we note that (3.24) also matches the infinitesimal charge δQAξ [g] evaluated
on the boundary interval A. This charge corresponds to the variation of the modular
Hamiltonian, as shown explicitly in section 3 of [42]. We thus find that the swing surface
proposal satisfies the first law of entanglement entropy,

δSA = δQγAξ [g] = δQAξ [g] = δ 〈Hmod〉 , (3.26)

in agreement with the general discussion in section 2.3.
To conclude, we have calculated the holographic entanglement entropy in flat3/BMSFT

using the swing surface proposal (2.31) on zero-mode backgrounds and linearized fluctua-
tions of these spacetimes, and checked explicitly that the first law of entanglement entropy
holds. These results provide additional evidence that swing surfaces are the geometric
duals of entanglement entropy in BMS-invariant field theories.

3.5 Comments on strong subadditivity

Let us now comment on the implications of entanglement entropy for single intervals to
strong subadditivity. For adjacent intervals A, B, and C at the boundary, strong subaddi-
tivity is the statement that

SAB + SBC ≥ SB + SABC , (3.27)

where AB ≡ A ∪ B. We consider the following cases.

3.5.1 Fixed slope

For simplicity, let us first consider three intervals with the same slope. In these cases, the
entanglement entropy of the interval A at the boundary is a function of a length scale L,
namely SA = S(L). Thus, in order to test if strong subadditivity is satisfied, we need to
test if the entanglement entropy is upper convex (i.e. concave), namely if

S′′(L) ≤ 0. (3.28)

In what follows we will test which of the zero mode backgrounds described in this section
satisfy strong subadditivity. In particular, we will show that for intervals with the same
slope strong subadditivity is satisfied for the Minkowski and Poincaré vacua but that it
can fail for backgrounds with conical deficits and for flat cosmological solutions.
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Global Minkowski vacuum. For the global Minkowski vacuum given in (3.1) with
Θ(φ) = M = −1 and 2Ξ(φ) = J = 0, the entanglement entropy (D.28) satisfies

S′′(lφ) = lu
4Glφ

[
lφ
2 cot

(
lφ
2

)
− 1

]
csc2

(
lφ
2

)
≤ 0. (3.29)

Since S(lφ) is upper convex, we find that strong subadditivity is satisfied for adjacent
intervals with fixed slope lu/lφ.

Poincaré vacuum. For the Poincaré vacuum (3.7), the holographic entanglement en-
tropy (3.13) is constant and proportional to the slope lu/lz of the interval at the boundary.
As a result, the entanglement entropy saturates strong subadditivity, i.e. S′′(lz) = 0.

Conical defects. The conical defect geometries are described by (3.1) with Θ(φ) = M

and −1 < M < 0. Their entanglement entropy is derived in (D.27) and its second derivative
with respect to lφ is given by

S′′(lφ) = −sM4G

(
lu
lφ

+ J

2M

)[√−Mlφ
2 cot

(√−Mlφ
2

)
− 1

]
csc2

(√−Mlφ
2

)
≤ 0, (3.30)

where s = sign
[√
−M

(
lu + Jlφ

2M

)
cot

(√−Mlφ
2

)
− J

M

]
takes into account the effect of the

absolute value in (D.27). As a result, we find that S′′(lφ) ≤ 0 implies[(
lu
lφ

+ J

2M

)
+ J

(−M)3/2lφ
tan

(√−Mlφ
2

)](
lu
lφ

+ J

2M

)
≥ 0. (3.31)

Therefore, strong subadditivity is satisfied on conical defect geometries with positive an-
gular momentum J > 0 for intervals with lu > 0, lφ > 0, and lu

lφ
+ J

2M > 0.

Flat cosmological solutions. For flat cosmological solutions we have Θ(φ) = M > 0
in eq. (3.1) and the entanglement entropy (3.18) satisfies

S′′(lφ) = s
M

4G

(
lu
lφ

+ J

2M

)[√
Mlφ
2 coth

(√
Mlφ
2

)
− 1

]
csch2

(√
Mlφ
2

)
, (3.32)

where s = sign
[√
M
(
lu+ Jlφ

2M

)
coth

(√
Mlφ
2

)
− J
M

]
. SinceM is positive, requiring S′′(lφ) ≤ 0

gives rise to the condition[(
lu
lφ

+ J

2M

)
− J

M3/2lφ
tanh

(√
Mlφ
2

)](
lu
lφ

+ J

2M

)
≤ 0. (3.33)

Hence, strong subadditivity is always violated for intervals with lu > 0 and lφ > 0 on flat
cosmological solutions with positive angular momentum J > 0.

3.5.2 Changing the slope

Thus far we have only considered intervals with the same slope and found that strong
subadditivity can be violated in flat cosmological solutions. We now show that for more
general intervals, strong subadditivity can also be violated in other backgrounds. In order
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to illustrate this let us consider the Poincaré vacuum and three adjacent intervals A, B,
C parametrized by (lu, lz) = (dA, lA), (dB, lB), (dC , lC), all of which are assumed to be
positive. This means that the interval AB is given by (dA + dB, lA + lB) and similarly for
the intervals BC and ABC. Strong subadditivity (3.27) then implies

dA + dB
lA + lB

+ dB + dC
lB + lC

≥ dB
lB

+ dA + dB + dC
lA + lB + lC

, (3.34)

which leads to the condition

(dA + dB)
(
dB
lB
− dC
lC

)
+ (dB + dC)

(
dB
lB
− dA
lA

)
≤ 0. (3.35)

We thus find that strong subadditivity can be violated in the Poincaré vacuum for some
configurations of the intervals. A sufficient but not necessary condition for strong subad-
ditivity to be satisfied is for the slope of the middle interval B to be smaller or equal than
the slopes of the two adjacent intervals A and C, namely that dB

lB
≤ dA

lA
, dClC .

To summarize, we find that the fate of strong subadditivity of entanglement entropy
in BMSFT depends on the background as well as the subregions, in contrast to AdS/CFT
where strong subadditivity is universally satisfied. It would be interesting to understand
the origin of the violations of strong subadditivity in flat holography which we leave for
future work.

4 Swing surfaces in (W)AdS3/WCFT

In this section we use the holographic entanglement entropy proposal (2.31) to construct
the swing surfaces of zero-mode asymptotically AdS3 backgrounds satisfying Dirichlet-
Neumann boundary conditions [39]. These swing surfaces agree with the geometric picture
put forward in [12] and reproduce the entanglement entropy of single intervals in WCFTs
at the boundary [10, 12]. Note that the backgrounds considered in this section are also
compatible with the Brown-Henneaux boundary conditions [60] that lead to a dual CFT
at the boundary. We will show that in this case the bench of the swing surface is pushed
all the way to the boundary and reduces to the standard RT/HRT surface [1, 2]. Finally,
we will consider warped AdS3 backgrounds and show that our results apply equally well
to this class of spacetimes.

Three-dimensional Einstein gravity with a negative cosmological constant admits alter-
native boundary conditions from those of Brown and Henneaux [60] that lead to different
asymptotic symmetries at the boundary [39, 61–64]. In particular, the asymptotic sym-
metries compatible with the Dirichlet-Neumann CSS boundary conditions are described
by a Virasoro-Kac-Moody algebra [39]. These are the same symmetries characterizing a
class of nonrelativistic quantum field theories known as warped CFTs [37, 38], a fact that
motivates the so-called AdS3/WCFT correspondence. The space of solutions of Einstein
gravity satisfying CSS boundary conditions can be described in Fefferman-Graham gauge
by two functions L(u) and J(u), as well as a constant Tv, such that

ds2 = dr2

r2 + r2du
[
dv + J ′(u)du

]
+ L(u)(du)2 + T 2

v

[
dv + J ′(u)du

]2
+ 1
r2T

2
vL(u)du

[
dv + J ′(u)du

]
,

(4.1)
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where we have set the radius of AdS3 to one and the lightcone coordinates (u, v) satisfy
(u, v) ∼ (u+ 2π, v + 2π). The latter are related to the coordinates (x, y) of the WCFT at
the boundary at r →∞ by a state-dependent map [38]

u = x, v = x+ y

2µTv
, (4.2)

where µ is a parameter characterizing the WCFT.
In analogy with the asymptotically flat spacetimes discussed in section 3, it is helpful

to discuss the zero-mode backgrounds described by (4.1). When L(u) = T 2
u and J(u) are

constants, the backgrounds (4.1) reduce to zero-mode solutions of three-dimensional gravity
that are also compatible with Brown-Henneaux boundary conditions, and whose energy and
angular momentum are respectively given by E = (T 2

u + T 2
v )/4G and J = (T 2

u − T 2
v )/4G.

The zero-mode backgrounds described by (4.1) include the global AdS3 vacuum when
E = −1/8G and J = 0, conical defect geometries when −1/8G < E < 0, and BTZ black
holes when E ≥ |J | ≥ 0.

The generalized Rindler method described briefly in section 3 works in a similar way in
the (W)AdS3/WCFT correspondence [10, 12]. In particular, the holographic entanglement
entropy associated with an interval A at the boundary is reproduced by the area of a swing
surface in the bulk. For zero-mode backgrounds, the holographic entanglement entropy is
given by [12]

SA = Tvlv
4G + 1

4G log
[sinh(Tulu)

εTu

]
, (4.3)

where lu and lv denote the lengths of the interval A along the u and v coordinates, and ε is
the UV cutoff in the WCFT. Note that the gravitational Tu and Tv parameters are related
to the thermodynamic potentials of the WCFT at the boundary. Using the holographic
dictionary, one finds that (4.3) reproduces the entanglement entropy for single intervals in
thermal states in WCFTs. In the following we will show how (4.3) can be obtained from
the general prescription for holographic entanglement entropy proposed in section 2.3. In
addition, we will discuss the role played by the boundary conditions in the derivation of
the swing surface and describe how the swing surface reduces to the RT/HRT surface
in AdS/CFT.

Comments on strong subadditivity. It is interesting to note that the entanglement
entropy for zero mode backgrounds (4.3) satisfies strong subadditivity for adjacent intervals.
Indeed, we note that the first term of (4.3) is linear in lv and does not contribute to the
check of strong subadditivity, while the second term is upper convex in lu, namely it satisfies

S′′(lu) = −T
2
u

4Gcsch2(Tulu) ≤ 0, (4.4)

for both real and imaginary values of Tu. This means that strong subadditivity is satisfied
for the global AdS3 vacuum, the Poincaré vacuum, conical defect geometries, and BTZ
black holes. This result is to be expected since the second term in (4.3) is the same as that
of a chiral half of a two-dimensional CFT, which is known to satisfy strong subadditivity.
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4.1 Approximate modular flow

The first step in our proposal for holographic entanglement entropy is the identification
of the approximate modular flow generator near the endpoints ∂A of the interval A at
the boundary. In this section we will write down the approximate modular flow generator
for general states which we will use in the next section to construct the ropes γ± of the
swing surface.

Let us consider a WCFT on the canonical cylinder where the Virasoro and U(1) co-
ordinates, denoted by x and y respectively, satisfy (x, y) ∼ (x + 2π, y). On the canonical
cylinder, the vacuum expectation values of zero-mode charges depend on a parameter µ
that is given in holographic WCFTs by µ =

√
−c/6k, where c is the central charge and k

is the U(1) level of the Virasoro-Kac-Moody algebra. In particular, these vacuum expecta-
tion values can be removed by a warped conformal transformation that takes the canonical
cylinder to the so-called reference cylinder where (x, y) ∼ (x + 2π, y − iµ) [16]. We con-
sider a general parametrization of the interval A on the canonical cylinder such that its
endpoints are given by

∂A =
{(
x−, y−

)
,
(
x+, y+

)}
, x+ − x− = lx, y+ − y− = ly. (4.5)

The modular flow generator on the vacuum of such a WCFT can be obtained via the
Rindler method. It can also be derived by finding the linear combination of the vacuum
symmetry generators that leaves the causal domain of dependence of A invariant. For a
general interval, the exact modular flow generator on the vacuum state satisfies [42]

ζ = i

e2πi(x+−x−) − 1

[
e2πi(x−x−) + e−2πi(x−x+) − e2πi(x+−x−) − 1

]
∂x − 2πµ∂y. (4.6)

We can obtain the approximate modular flow ζ(p) for general states near the endpoint
p ∈ ∂A by sending the other endpoint of A to infinity. The approximate modular flow
generator is thus given by

ζ(±) = ∓2π(x− x±)∂x − 2πµ∂y, (4.7)

where the ± superscript refers to the (x±, y±) endpoint.
It is instructive to compare (4.7) to the approximate modular flow of a CFT. The latter

can be obtained in a similar way from the exact modular flow generator on the vacuum
state found in e.g. [48]. If we denote the two chiral coordinates of the CFT by u and v,
the approximate modular flow generator is then given by

ζ
(±)
CFT = ∓[2π(u− u±)∂u − 2π(v − v±)∂v], (4.8)

which corresponds to the boost generator near each of the endpoints (u±, v±). A crucial
difference between eqs. (4.7) and (4.8) is the finite 2πµ∂y term characteristic of holographic
WCFTs. This term guarantees that ζ(±) does not vanish at the endpoints of the interval
A, in contrast with the behavior of ζ(±)

CFT. Furthermore, we see that up to this term, the
approximate modular flow generator (4.7) corresponds to half of that of a CFT, which
follows from the fact that WCFTs feature only one copy of the Virasoro algebra.
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We note that the endpoints ∂A of the interval A are fixed points of the modular flow
generator (4.7) despite the presence of the 2πµ∂y term. As argued in [16], the replica
trick in WCFT must be understood as opening up the local reference plane near each of
the endpoints and gluing circles satisfying the identification (z, y) ∼ (ze2πi, y − iµ). The
2πµ∂y term guarantees that ζ(p) is compatible with the replica trick and that it maps the
endpoints of A back to themselves. Furthermore, as shown in appendix C.2, the 2πµ∂y
term is necessary to extend the approximate modular flow generator ζ(p) into an asymptotic
Killing vector in the bulk, the latter of which played an important role in the derivation
of the swing surface proposal in section 2.3. Finally, we note that the 2πµ∂y term is
also necessary to match the entanglement entropy in the bulk and boundary sides of the
AdS3/WCFT correspondence [12].

The next step in the holographic entropy proposal is to determine the null geodesics
γ± extending from the endpoints ∂A at the boundary into the interior of the spacetime.
Note that since the vector tangent to the ropes must reduce to (4.7) at the boundary,
the former must have components along ∂y = (1/2µTv)∂v where we used the map (4.2)
relating the WCFT and AdS3 lightcone coordinates. Due to the dependence on Tv, we
expect the parametrization of the ropes to depend on the background spacetime, as we
explicitly verify in the next section. Once the ropes γ± are determined, the swing surface
can be obtained by finding the extremal surface connecting γ+ and γ−.

4.2 Swing surfaces for zero-mode backgrounds

We now test the holographic entanglement entropy proposal and determine the swing
surface of generic zero-mode backgrounds. For convenience, we work in the following gauge

ds2 = dρ2

4(ρ2 − 4T 2
uT

2
v ) + ρ dudv + T 2

udu
2 + T 2

v dv
2, (4.9)

which is related to the Fefferman-Graham gauge used in (4.1) by the change of coordinates
ρ = r2 + T 2

uT
2
v /r

2. In these coordinates the endpoints of the interval A at the boundary
are parametrized by

∂A =
{
(u−, v−), (u+, v+)

}
, u+ − u− = lu, v+ − v− = lv, (4.10)

and are related to the field theory parametrization used in (4.5) via the map (4.2).
Let us first determine the ropes γ± of the swing surface. As described in section 2.3, the

ropes γ± are null geodesics emanating from the boundary endpoints (4.10) whose tangent
vectors reduce to the approximate modular flow generator (4.7) at the boundary. Since the
zero-mode backgrounds (4.9) feature two commuting Killing vectors ∂u and ∂v, the null
geodesics γ± satisfy two conservation equations

T 2
uu
′ + ρv′

2 = pu, T 2
v v
′ + ρu′

2 = −pv, (4.11)

where primes denote derivatives with respect to the affine parameter λ while pu and −pv
denote the momenta along the u and v coordinates. Furthermore, since the ropes of the
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swing surface are required to be null, we also have

ρ′2

4(ρ2 − 4T 2
uT

2
v ) + T 2

uu
′2 + T 2

v v
′2 + ρ u′v′ = 0. (4.12)

In appendix E we show that the solution to eqs. (4.11) and (4.12) that reaches the
boundary as λ→∞ must necessarily have pupv ≥ 0 and, furthermore, that null geodesics
with pupv > 0 do not satisfy the boundary condition (2.16). Instead, the ropes of the swing
surface can be obtained from the solutions to eqs. (4.11) and (4.12) with pv = 0, which can
be written as8

γ± :



ρ = 4|pu|Tvλ+ ρ0,

u = ∓ 1
4Tu

log
(
ρ+ 2TuTv
ρ− 2TuTv

)
+ ũ±,

v = ∓ 1
4Tv

log
[
(ρ2 − 4T 2

uT
2
v )/ρ2

∞
]

+ ṽ±,

(4.13)

where ρ0, ũ±, and ṽ± are integration constants, λ is the affine parameter, and ρ∞ is a radial
cutoff in the bulk. We have parametrized the solutions (4.13) such that the γ± geodesic
carries ±|pu| momentum. Nevertheless, note that the value of pu can be absorbed by a
rescaling of the affine parameter λ that does not change the solution. It is also useful to
note that at the cutoff surface ρ = ρ∞, the solutions (4.13) reach the point

(u, v, ρ) =
(
ũ± ∓

Tv
ρ∞

+O
( 1
ρ2
∞

)
, ṽ± ∓

T 2
uTv
ρ2
∞

+O
( 1
ρ3
∞

)
, ρ∞

)
. (4.14)

We now show that the boundary condition (2.16) is satisfied by the null geodesics (4.13)
and determine the values of the integration constants ũ, ṽ, and ρ0. As shown in appendix B,
we can always find a parameter τ(λ) such that the vector ξ(±) tangent to γ± satisfies the
normalization condition (2.17). As a result, the tangent vector of (4.13) can be written as

ξ(±) ≡ 2πdλ
dτ

dxµ

dλ
∂µ = ±2πλ(u′∂u + v′∂v + ρ′∂ρ)

= 2πTv(ρ− ρ0)
ρ2 − 4T 2

uT
2
v

(
∂u −

ρ

2T 2
v

∂v

)
± 2π(ρ− ρ0)∂ρ.

(4.15)

On the other hand, using the map (4.2), we can rewrite the boundary modular flow gener-
ator (4.7) in terms of the bulk coordinates such that

ζ(±) = ∓2π(u− u±)(∂u + ∂v)−
π

Tv
∂v. (4.16)

Comparing the u and v components of the tangent vector (4.15) to the components of the
approximate modular flow generator (4.16), we find that the boundary condition ξ(±)|∂M =
ζ(±) is satisfied at the cutoff surface ρ = ρ∞ provided that ρ0 = 2T 2

v and

u = u± ∓
Tv
ρ∞

+O
( 1
ρ2
∞

)
. (4.17)

8The solutions with pu = 0 and pv 6= 0 are similar to eq. (4.13) with u ↔ v. These geodesics have
nonvanishing ξ(±)u components at the boundary and do not satisfy the boundary condition ξ(±)

∣∣
∂M

= ζ(±).
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Furthermore, comparing (4.17) to the point (4.14) reached by the null geodesics γ± at the
cutoff surface, the later of which is also required to match (4.10) as ρ∞ →∞, we obtain

ũ± = u± +O
( 1
ρ2
∞

)
, ṽ± = v± +O

( 1
ρ2
∞

)
. (4.18)

Consequently, the null geodesics with pv = 0 given in (4.13) describe the ropes of the
swing surface.

The next step in the holographic entropy proposal (2.31) consists of finding the ex-
tremal surface lying between the ropes. The latter can be determined by extremizing the
geodesic distance between two points on γ+ and γ−. In order to facilitate the discussion
on warped AdS3 backgrounds in section 4.4, we derive the geodesic distance L(p1, p2) be-
tween two spatially separated points p1 = (u1, v1, ρ1) and p2 = (u2, v2, ρ2) by exploiting
the symmetries of locally AdS3 spacetimes. The geodesic distance must be invariant under
the simultaneous action of the local isometries of the zero-mode backgrounds (4.9), namely
under SL(2, R)L × SL(2, R)R transformations.9 We first note that there are two indepen-
dent functions D+(p1, p2) and D−(p1, p2) that are invariant under an SL(2, R)L × U(1)R
subgroup where U(1)R generates translations along v. These functions are given by

D± =e±Tvv12

8TuTv

[
e±Tuu12

√(
ρ1 + 2TuTv

)(
ρ2 + 2TuTv

)
− e∓Tuu12

√(
ρ1 − 2TuTv

)(
ρ2 − 2TuTv

)]
, (4.19)

where xµ12 ≡ x
µ
1−x

µ
2 for any two coordinates xµ1 and xµ2 . Requiring L(p1, p2) to be invariant

under the full SL(2, R)R group implies that the geodesic distance depends on p1 and p2 only
through the combination D(p1, p2) = D+(p1, p2)+D−(p1, p2). Furthermore, the functional
L(D) can be determined from the normalization condition gµν∂µL(p1, p2)∂νL(p1, p2) = 1
where the derivative is taken with respect to one of the points, say p2. As a result, we find
that the geodesic distance L(p1, p2) between two spatially separated points in the locally
AdS3 backgrounds (4.9) is given by

L(p1, p2) = cosh−1 [D(p1, p2)
]
. (4.20)

The location of the extremal surface lying between the γ+ and γ− ropes is determined
by extremizing the geodesic distance (4.20) where we take p1 ∈ γ− and p2 ∈ γ+ with

ρ1 = 2TuTv coth[2Tu(u1 − u−)], v1 = v− −
1

2Tv
log

{sinh[2Tu(u1 − u−)]
2TuTvρ−1

∞

}
, (4.21)

ρ2 = 2TuTv coth[2Tu(u+ − u2)], v2 = v+ + 1
2Tv

log
{sinh[2Tu(u+ − u2)]

2TuTvρ−1
∞

}
. (4.22)

9The SL(2, R)L generators are given by the following Killing vectors

L0 = − 1
2Tu

∂u, L±1 = e±2Tuu
[
− ρ

Tu
√
ρ2 − 4T 2

uT 2
v

∂u + Tu√
ρ2 − 4T 2

uT 2
v

∂v ±
√
ρ2 − 4T 2

uT 2
v ∂ρ

]
,

while the SL(2, R)R generators can be obtained from the expressions above by letting u↔ v and Tu ↔ Tv.
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In this parametrization, the D+(u1, u2) and D−(u1, u2) functions are given by

D+(u1, u2) = e−lvTvρ−1
∞ TuTv csch(2Tuu+1) csch(2Tuu2−) sinh

[
Tu(lu + 2u21)

]
, (4.23)

D−(u1, u2) = elvTv sinh(luTu)
4ρ−1
∞ TuTv

, (4.24)

where we note that D−(u1, u2) is independent of the u1 and u2 parameters. Solving the
extremality conditions corresponds to solving ∂u1D+ = ∂u2D+ = 0. In this way, we find
that the endpoints of the bench are located at

u1 = u2 = u+ + u−
2 . (4.25)

The spacelike geodesic lying between the null ropes at the points determined by (4.25) is
a line with fixed values of u and ρ that extends along the v direction

γ : u = u+ + u−
2 , v ∈

[
v+ + v− −∆v

2 ,
v+ + v− + ∆v

2

]
, ρ = 2TuTv coth(Tulu), (4.26)

where ∆v is given by

∆v ≡ lv + 1
Tv

log
[sinh(Tulu)

2TuTvρ−1
∞

]
. (4.27)

This expression for the bench agrees with the results obtained in [42] where γ was shown
to correspond to the set of fixed points of the bulk modular flow generator. We also note
that the bench of the swing surface always lies outside of the horizon of the BTZ black
hole which is located at ρ = 2TuTv.

The holographic entanglement entropy obtained from the area of the swing surface
γA = γ− ∪ γ ∪ γ+ is then given by

SA = Area(γA)
4G = Tvlv

4G + 1
4G log

[sinh(Tulu)
2TuTvρ−1

∞

]
, (4.28)

which matches the entanglement entropy of WCFTs at the boundary (4.3) provided that
ρ∞ is related to the WCFT cutoff ε by

ρ∞ = 2Tv
ε
. (4.29)

The relationship (4.29) between the radial cutoff in the bulk and the UV cutoff at the
boundary can be derived, for example, from the Rindler transformation found in ref. [12].

To conclude, we have explicitly checked that the holographic entropy proposal (2.31)
reproduces the entanglement entropy of single intervals in the AdS3/WCFT correspon-
dence. In particular, the swing surface γA = γ− ∪ γ ∪ γ+ described by the ropes (4.13) and
the bench (4.26) reproduces the geometric picture previously obtained from the Rindler
method in [12].
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4.3 Swing surfaces as RT/HRT surfaces in AdS3/CFT2

Let us now comment on swing surfaces in the AdS3/CFT2 correspondence. In order to
construct a swing surface in AdS3/CFT2, we first need to find the set of null geodesics whose
tangent vector reduces to the approximate modular flow generator of two-dimensional CFTs
at the boundary. It is not difficult to check that null geodesics with pv = 0 have tangent
vectors (4.15) that are not compatible with the approximate modular flow generator of
CFTs, the latter of which are given in (4.8). Therefore, we must consider null geodesics
with pupv > 0, whose tangent vectors are given near the asymptotic boundary by (see
appendix E)

ξ(±) = ∓2π
[
(u− u±)∂u + (v − v±)∂v − 2ρ∞∂ρ

]
+ subleading. (4.30)

The u and v components of the vectors (4.30) and (4.8) differ by a relative sign, unless the
null geodesics are pushed strictly to infinity, in which case these terms vanish exactly. Thus,
in the AdS3/CFT2 correspondence the ropes of the swing surface can be interpreted as null
geodesics that have shrunk all the way to the boundary. In particular, the extremal surface
lying between the ropes is the RT/HRT surface and the swing surface proposal (2.31)
reduces to the standard RT/HRT prescription.

4.4 Warped AdS3

The proposal for holographic entanglement entropy described in section 2 can be generalized
to warped AdS3 spacetimes that are solutions to some massive gravity theories [65–67] as
well as Einstein gravity with additional matter fields [68]. The zero-mode warped AdS3
backgrounds can be written in the same gauge used in (4.9) such that

ds2 = (1 + α2T 2
v )dρ2

4(ρ2 − 4T 2
uT

2
v ) + ρ dudv +

[
T 2
u −

α2(ρ2 − 4T 2
uT

2
v )

4

]
du2 + T 2

v dv
2, (4.31)

where α denotes the warping parameter. When α → 0 we recover the locally AdS3 back-
grounds described in eq. (4.9).

Let us consider a single interval A at the boundary whose endpoints are parametrized
by (4.10). In order to determine the holographic entanglement entropy we must first
determine the ropes of the swing surface. The latter correspond to null geodesics whose
tangent vectors satisfy the boundary condition ξ(±)|∂M = ζ(±). In this way, we find that
the ropes are given by

γ± :



ρ = 4|pu|Tvλ
1 + α2T 2

v

+ ρ0,

u = ∓ 1
4Tu

log
(
ρ+ 2TuTv
ρ− 2TuTv

)
+ u±,

v = ∓ 1
4Tv

log
[
(ρ2 − 4T 2

uT
2
v )/ρ2

∞
]

+ v±,

(4.32)

which are the same null geodesics of the locally AdS3 backgrounds given in (4.13) after
a rescaling of the affine parameter λ → (1 + α2T 2

v )λ. It is not difficult to check that the
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vectors ξ(±) tangent to the ropes γ± are given by (4.15) and that their u and v components
match those of the approximate modular flow generator of WCFTs at the boundary (4.16).

We now find the extremal surface lying between the γ+ and γ− ropes of the swing
surface. In general, finding the geodesic between two arbitrary points in the warped AdS3
background (4.31), or a general expression for the geodesic distance, is a complicated task.
Nevertheless, we find that it is possible to determine the bench without using the explicit
expression for the geodesic distance between two points. In warped AdS3, the geodesic
distance must be invariant under the action of its local isometry group, namely SL(2, R)L×
U(1)R, where the U(1)R factor corresponds to translations along v while the SL(2, R)L
generators are given in footnote 9. In the previous section, we found that there are two
independent functions D+(p1, p2) and D−(p1, p2) that are invariant under SL(2, R)L ×
U(1)R transformations. As a result, the geodesic distance Lα(p1, p2) depends on the points
p1 and p2 only through the functions D+(p1, p2) and D−(p1, p2) given in (4.19) such that

Lα(p1, p2) = Lα(D+, D−). (4.33)

As a special case, for the locally AdS3 backgrounds obtained by setting α = 0, we have
L0(D+, D−) = cosh−1(D+ + D−) as described in detail in section 4.2. We also note that
the D±(p1, p2) functions are independent of the warping parameter α.

Let us take p1 ∈ γ−, p2 ∈ γ+, and use the parametrization of the null geodesics
introduced in eqs. (4.22) and (4.21). It is useful to note that the null geodesics γ± satisfy
the following equation

∂u1D−(u1, u2) = ∂u2D−(u1, u2) = 0, (4.34)

for both AdS3 and warped AdS3 spacetimes. This follows from the fact that D−(p1, p2) is
a constant independent of the u1 and u2 parameters, cf. eq. (4.24). We thus find that the
extremality conditions reduce to

∂u1Lα(u1, u2) = ∂D+Lα(D+, D−) ∂u1D+(u1, u2) = 0, (4.35)
∂u2Lα(u1, u2) = ∂D+Lα(D+, D−) ∂u2D+(u1, u2) = 0. (4.36)

It follows that the solutions to ∂u1D+(u1, u2) = ∂u2D+(u1, u2) = 0 automatically solve the
extremality conditions (4.35) and (4.36). This means that the bench of the swing surface
is the same in both AdS3 as well as warped AdS3 spacetimes, and is given by eq. (4.26).
The area of the swing surface γA = γ− ∪ γ ∪ γ+ is then given by

SA = Area(γA)
4G = Tvlv

4G + 1
4G log

[sinh(Tulu)
2TuTvρ−1

∞

]
, (4.37)

which agrees with the AdS3 result (4.28) and matches the entanglement entropy of single
intervals in WCFTs where the bulk and boundary cutoffs are related by (4.29).

In eqs. (4.35) and (4.36) we have assumed that ∂D−Lα(D+, D−) does not diverge,
which can be explicitly verified to be the case in the α → 0 limit. In addition, it is
possible that other extremal surfaces exist in WAdS3 satisfying eqs. (4.35) and (4.36) with
∂D+Lα(D+, D−) = 0. We note that this does not happen in AdS3 where ∂D+L0(D+, D−) =
[sinhL(u1, u2)]−1 > 0 for all real values of u+ and u−, which means that the extremality
condition is equivalent to ∂u1D+(u1, u2) = ∂u2D+(u1, u2) = 0.
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A Bulk modular flow and extremal surfaces

In this appendix we show that, in three spacetime dimensions, the set of fixed points of
a Killing vector ξ extremizes the distance between two null geodesics γ± whose tangent
vector is parallel to ξ.

As described in section 2.1, the bulk modular flow generator ξ of the vacuum is an
exact Killing vector that can be used to determine the swing surface γA that is homologous
to the interval A at the boundary. In three spacetime dimensions, the swing surface is given
by γA = γ− ∪ γ ∪ γ+ where the ropes γ± are null geodesics emanating from the endpoints
of A that lie tangent to the modular flow. Let q± denote the intersection between these
null geodesics and the set of fixed points γξ of the bulk modular flow generator. Then, the
bench γ of the swing surface is the subset of γξ that lies between the points q+ and q−.

The modular flow esξ maps any point p ∈M to a one-parameter family of points p(s)
where p(0) = p. Under the modular flow, points on γ± remain on γ± and the set of fixed
points γξ are left invariant. In particular, we have

q±(s) = q±, ∀s ∈ R. (A.1)

Let us now consider the geodesic distance L(p1, p2) between two points p1 and p2. Since ξ
is an exact Killing vector, the geodesic distance is invariant under the simultaneous action
of esξ on the points p1 and p2, namely

L
(
p1(s), p2(s)

)
= L(p1, p2). (A.2)

Consequently, we find that for any point p+ ∈ γ+ the geodesic distance L(p+, q−) is inde-
pendent of p+ and is given by the distance between the two fixed points

L(p+, q−) = L
(
q+, q−

)
, ∀p+ ∈ γ+, (A.3)

where we have assumed that L(p+, q−) is a continuous function of p+. Similarly, the
distance between the fixed point q+ and any point p− ∈ γ− is independent of p−. This
guarantees that the points q+ and q− extremize the distance L(p+, p−) between any two
points p+ ∈ γ+ and p− ∈ γ−. As a result, the bench of the swing surface extremizes the
geodesic distance between the ropes γ+ and γ−.
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B Parametrization of null geodesics

In this appendix we show that it is always possible to parametrize a null geodesic in terms
of a parameter τ such that the tangent vector ξµ = 2πdxµ(τ)/dτ satisfies (2.17), namely

ξµ∇µξν = ±2πξν . (B.1)

By definition, τ is not an affine parameter; nevertheless, it can be related to an affine
parameter λ via the reparametrization λ = f(τ), where xµ(λ) satisfies the geodesic equation

dxµ

dλ
∇µ
(
dxν

dλ

)
= 0. (B.2)

In order to accomplish this we need to solve the ODE(
d2τ

dλ2

)(
dτ

dλ

)−2
= ∓1, (B.3)

whose solution is given by

τ = τ0 ± log |λ− λ0|. (B.4)

The null geodesic reaches the boundary when λ→ ±∞. For the upper plus sign in (B.4),
the boundary corresponds to τ → +∞ and the tangent vector ξµ points towards the
boundary; while for the lower minus sign, the boundary corresponds to τ → −∞ and the
tangent vector ξµ points towards the bulk. Using (B.4) we find that

ξµ = 2πdx
µ

dτ
= 2πdλ

dτ

dxµ

dλ
= ±2π(λ− λ0)dx

µ

dλ
, (B.5)

which shows that λ = λ0 is a fixed point of ξ provided that dxµ/dλ does not diverge at λ0.

C The approximate modular flow generator in the bulk

In this appendix we show how the approximate bulk modular flow generator ξ(p)
∞ de-

scribed in section 2.2 can be determined in the models of non-AdS holography considered
in this paper.

C.1 Flat3/BMSFT

The approximate modular flow generator ζ(±) of BMSFTs (3.5) can be extended into
the bulk of the asymptotically flat spacetimes (3.1) by finding the linear combination
of asymptotic Killing vectors that reduces to ζ(±) near the endpoints of the boundary
interval A. As discussed in section 3, three-dimensional Einstein gravity with a vanishing
cosmological constant admits an infinite number of asymptotic symmetries described by
the three-dimensional BMS algebra. These symmetries are generated by the action of the
asymptotic Killing vectors

η =
[
ε(φ) + u∂φσ(φ)

]
∂u + σ(φ)∂φ − r∂φσ(φ)∂r +O(1/r), (C.1)
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where ε(φ) and σ(φ) are two arbitrary periodic functions. The approximate modular flow
generator in the bulk is denoted by ξ(±)

∞ and can be obtained from the asymptotic Killing
vectors (C.1) by letting ε(φ) = ±2πu± and σ(φ) = ∓2π(φ− φ±), whereupon

ξ(±)
∞ = ∓2π

[
(u− u±)∂u + (φ− φ±)∂φ − r∂r

]
. (C.2)

By construction, the u and φ components of (C.2) reproduce the approximate modular
flow generator of BMSFTs at the boundary (3.5). We also note that the asymptotic Killing
vectors (C.2) are tangent to the ropes of the swing surface, not only at the boundary, but
also in the interior of the asymptotically flat spacetimes (3.1). This follows from the fact
that the u and v components of (C.2) vanish along the ropes of the swing surface and that
any vector proportional to ∂r is null everywhere in the class of spacetimes (3.1).

C.2 AdS3/WCFT

We now consider the approximate modular flow generator in the bulk side of the
AdS3/WCFT correspondence. The asymptotic Killing vectors of AdS3 gravity compat-
ible with the CSS boundary conditions can be written as [39]

η = ε(u)(∂u + ∂v) + σ(u)
2Tv

√
−c/6k

∂v −
rε′(u)

2 ∂r +O(1/r), (C.3)

where ε(u) and σ(u) are two arbitrary functions. The approximate bulk modular flow
generator ξ(±)

∞ can be obtained by finding the combination of ε(u) and σ(u) functions
for which the u and v components of (C.3) match those of ζ(±) in eq. (4.16). Using
ε(u) = ∓2π(u− u±) and σ(u) = −2π

√
−c/6k, we find that ξ(±)

∞ is given by

ξ(±)
∞ = ∓2π(u− u±)(∂u + ∂v)−

π

Tv
∂v ± πr∂r +O(1/r). (C.4)

The norm of this asymptotic Killing vector is given by

ξ(±)
∞ · ξ(±)

∞ = ∓ 2π(u− u±)ω±r2 + π2 + T 2
v ω

2
± + 4π2(u− u±)2L(u)

∓ 2π(u− u±)ω±T 2
vL(u)

r2 +O(1/r4),
(C.5)

where we used the general metric (4.1) and ω± ≡ ∓2π(u− u±)[1 + J ′(u)]− π/Tv.
From (C.5) we find that the approximate modular flow generator ξ(±)

∞ is null, up to
terms of O(1/r4), on a surface N± that contains the endpoints of the boundary interval A
and is given by

N± : u = u± ∓
Tv
r2 +O(1/r4). (C.6)

Given an endpoint (u±, v±) at the boundary and the tangent vector ξ(±)
∞ , we can solve for

the null geodesic equations and find the ropes γ± of the swing surface for the more general
backgrounds (4.1). Once the ropes of the swing surface are known, we can extend the
approximate modular flow generator ξ±∞ into the interior of the spacetime. As a consistency
check, we note that the null geodesics for the zero-mode backgrounds (4.9) given in (4.13)
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lie on the light-sheet N± near the asymptotic boundary, and their tangent vectors (4.15)
approach (C.4). Moreover, for these backgrounds, the light-sheets N± (C.6) have a closed-
form expression, since the bulk modular flow generator is locally an exact Killing vector,
and are given in the Fefferman-Graham gauge by [42]

N± : r2 = ∓TuTv coth
[
Tu(u− u±)

]
. (C.7)

D Parametrization of the swing surface in flat3/BMSFT

In this appendix we describe in more detail the parametrization of the swing surface in the
flat3/BMSFT correspondence.

D.1 Comments on the swing surface for the Poincaré vacuum

Let us begin by noting that a subtlety arises in the description of the bench of the swing
surface for the Poincaré vacuum given in (3.12). Intuitively, one might expect that z ∈
[−lz/2, lz/2] but this range does not accurately parametrize the bench since both the u
and r coordinates in (3.12) diverge when z → 0. In order to determine the actual range of
z, it is more convenient to use Cartesian coordinates (t, x, y) satisfying

t = (l2z + 4z2) r4lz
+ 2u
lz
, x = zr + lu

lz
, y = (l2z − 4z2) r4lz

− 2u
lz
, (D.1)

such that ds2 = −dt2 + dx2 + dy2. In these coordinates, the bench γ is just a straight line
parametrized by

(t, x, y) =
(

0, 0,− lu2z

)
where y+ ≤ y ≤ y−, y± = ∓ lu

lz
. (D.2)

When y goes from y− to 0 and then from 0 to y+, the z coordinate goes from −lz/2 to −∞
and then continues from +∞ to lz/2. As a result, there seems to be a jump in z from −∞
to +∞ as y passes through zero. We can avoid this discontinuity by regularizing y such
that y = −(lu/2R)e−iθ where R is large. It then follows that, as we go around the point
y = 0, z goes around a big circle at infinity CR : Reiθ with θ ∈ [0, π]. The bench can then
be parametrized by (D.2) with the following range of z

z ∈ [lz/2, R) ∪ CR ∪ (−R,−lz/2], (D.3)

which can be thought of as the complement of z ∈ [−lz/2, lz/2], i.e. the range of the interval
A at the boundary.

We learn two important facts from the discussion above: (i) a smooth bench cannot
be parametrized in the range z ∈ [−lz/2, lz/2] in Poincaré coordinates, but instead by the
complementary range (D.3); and (ii) integrals along the bench of the form

∫
γ dzf(z), where

f(z) is analytic in the upper-half complex plane, can be equivalently integrated over the
range z ∈ [−lz/2, lz/2]. The second fact is useful in the calculation of the variation of the
entanglement entropy.
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D.2 The swing surface for zero-mode M > 0 backgrounds

In this appendix we describe the parametrization of the swing surface for the zero-mode
asymptotically flat spacetimes considered in section 3.3.

The ropes. As discussed in section 3.1, in a region sufficiently close to the boundary,
the ropes γ± of the swing surface extend from the endpoints ∂A of A along null geodesics
tangent to ∂r. However, a subtlety arises when these geodesics extend into the interior of
the zero-mode backgrounds (3.14) with M > 0 in the Bondi gauge. In order to see this, let
us consider the following coordinate transformation between retarded Bondi coordinates
(u, φ, r) and Cartesian coordinates (t, x, y) such that ds2 = −dt2 + dx2 + dy2,

t = 1√
M

[
r cosh(

√
Mφ)− rc sinh(

√
Mφ)

]
,

x = 1√
M

[
r sinh(

√
Mφ)− rc cosh(

√
Mφ)

]
,

y = 1√
M

(
r −Mu−

√
Mrcφ

)
,

(D.4)

where rc ≡ J/2
√
M is assumed to be non-negative. It is not difficult to see from the

first two equations that the region r2 > r2
c is mapped to the region t2 − x2 > 0 in global

Minkowski space and vice versa. Furthermore, since φ satisfies

φ = − 1√
M

log
[√

M(t− x)
r + rc

]
= 1√

M
log

[√
M(t+ x)
r − rc

]
, (D.5)

requiring φ to be real implies that global Minkowski can be divided into four regions (see
figure 4):

Region II: r > rc, or equivalently t− x > 0 and t+ x > 0,

Region III: −rc < r < rc, or equivalently t− x > 0 and t+ x < 0,

Region IV: r < −rc, or equivalently t− x < 0 and t+ x < 0,

Region I: t− x > 0 and t+ x < 0, not covered by (D.4).

Note that when J = 0, region III can not be covered with real Bondi coordinates.
In Cartesian coordinates, the null rope γ+ can be written in region II as

γ+ :



t = 1√
M

[
λ cosh

(√
Mlφ
2

)
− rc sinh

(√
Mlφ
2

)]
,

x = 1√
M

[
λ sinh

(√
Mlφ
2

)
− rc cosh

(√
Mlφ
2

)]
,

y = 1√
M

(
λ−M lu

2 −
√
Mrc

lφ
2

)
,

(D.6)
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I

II

III

IV

x

t

γ

γd

γa

γb

γc

Figure 4. Four regions of a two-dimensional slice of Minkowski space. The Bondi coordinates with
r > 0 cover only region II and part of region III. When r ∈ (−∞,∞), the Bondi coordinates cover
regions II, III, and IV. We also show the image of the bench under the map (D.4). For small J , the
bench γ = γa ∪ γb ∪ γc ∪ γd ends in Region II and IV. The segment in the middle is dashed as it
corresponds to analytically continued complex coordinates (u, r, φ).

where λ ≥ 0. The rope γ+ can be extended to regions III and IV by letting λ take negative
values. Then, we can use the inverse coordinate transformation to express γ+ in Bondi
gauge. The inverse coordinate transformation is given by

u = 1
M

(
r −
√
My −

√
Mrcφ

)
,

φ = − 1√
M

log
[√

M(t− x)
r + rc

]
= 1√

M
log

[√
M(t+ x)
r − rc

]
,

r = ±
√
M(t2 − x2) + r2

c ,

(D.7)

where the minus sign is taken in regions III and IV for negative values of r. A similar
analysis holds for the γ− rope such that the null geodesics γ± can be parametrized by

γ± : u = ± lu2 , φ = ± lφ2 , r ∈ (−∞,∞). (D.8)

The bench. Let us now describe the parametrization of the bench for the zero-mode
backgrounds (3.14) with M > 0. In Cartesian coordinates, the two endpoints of γ are
located at q± = (t±, x±, y±) where

t± = ∓

[√
M
(
Jlφ + 2Mlu

)
coth

(√Mlφ
2
)
− 2J

]
4M sinh

(√Mlφ
2
) , (D.9)

x± = −
(
Jlφ + 2Mlu

)
4
√
M sinh(

√
Mlφ
2 )

, (D.10)

y± = ∓ 1
4M

[√
M(Jlφ + 2Mlu) coth2

(√
Mlφ
2

)
− 2J coth

(√
Mlφ
2

)]
. (D.11)
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In Cartesian coordinates, the bench corresponds to a line that can be parametrized by

γ : x = x+, y = y+
t+
t, t ∈ [t+,−t+]. (D.12)

In particular, the norm of a vector tangent to the bench is given by sinh(
√
Mlφ/2) and is

always positive so that the bench is spacelike.
Using the inverse coordinate transformation (D.7), we find that the bench (D.12) in

Bondi coordinates can be parametrized in terms of φ by

r(φ) =
[

2J cosh(
√
Mφ)−

√
M(Jlφ + 2luM)csch

(√Mlφ
2
)

4
√
M sinh(

√
Mφ)

]
, (D.13)

u(φ) = r(φ)
M
− Jφ

2M

+
cosh

(√Mlφ
2
)

4M sinh(
√
Mφ)

[
(Jlφ + 2luM)csch

(√
Mlφ
2

)
cosh

(√
Mφ

)
− 2J√

M

]
. (D.14)

Another subtlety arises with the range of the φ coordinate due to the fact that the
bench (D.12) spans different patches of Minkowski space as illustrated in figure 4. For
positive values of lu, lφ, M and J , we always have t+ + x+ < 0 and t− − x− > 0. Further-
more, for sufficiently small J , one can see that q+ is in region IV while q− is in region II.
For large J , both q+ and q− can be in region III, in which case γ remains in region III.

For simplicity, let us work out the range of φ in detail for the case where J = 0. As we
move along the bench from q+ to q−, t increases from t+ < 0 to zero and then to t− = |t+|.
Using the relations r2 = M(t2 − x2) and cosh(

√
Mφ) =

√
Mt/r we find that in Bondi

coordinates the bench γ can be divided into four segments denoted by γa through γd such
that (see figure 4):

• in segment γa with t ∈ [t+, x+), the coordinate transformation (D.4) is well de-
fined and increasing t corresponds to increasing r ∈ [−

√
M(t2+ − x2

+), 0−) and
φ ∈ [lφ/2,∞);

• in segment γb with t ∈ (x+, 0], we have purely imaginary r : i0− → −i
√
M |x+| and

an imaginary part in φ :∞− iπ
2
√
M
→ 0+ − iπ

2
√
M
;

• in segment γc with t ∈ [0,−x+), we have purely imaginary r : −i
√
M |x+| → −i0+

and an imaginary part in φ : 0− − iπ
2
√
M
→ −∞− iπ

2
√
M
;

• in segment γd with t ∈ (−x+, |t+|], the coordinate transformation is real again, with
r ∈ (0+,

√
M(t2− − x2

−)] and φ ∈ (−∞,−lφ/2].

Note that we have to be careful when passing through t = x+. When t→ x+ + 0+, we
have r → 0+ and thus cosh(

√
Mφ) = +∞. On the other hand, when t→ x+ +0−, we have

r → 0− and cosh(
√
Mφ) = −∞, so φ must have an imaginary part ±iπ/

√
M . The change

in the imaginary part appears exactly at r = 0 where the phase is ambiguous. In order
to resolve the discontinuity in φ, we can introduce a regularization by setting r = εeiθ for
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small enough ε. Then, when r goes from 0+ to 0−, θ goes from 0 to π. Consequently, φ
changes continuously from ∞ to ∞− iπ

2
√
M
→ 0+ − iπ

2
√
M
. We will denote this part by C+.

Similarly, there is also a segment C− that connects γc to γd.
Finally, let us consider an integral along the bench

∫
γ dφf(φ) where γ = γa ∪ C+ ∪

γb ∪ γc ∪ C− ∪ γd. If the integrand f(φ) is an analytic function, then we can continuously
deform this contour so that φ ∈ [−lφ/2, lφ/2]. Consequently, integrals along the bench can
be equivalently evaluated along this range, namely∫

γ
dφf(φ) =

∫ lφ/2

−lφ/2
dφf(φ). (D.15)

To summarize, the bench for zero-mode backgrounds with M > 0 is described by
eqs. (D.13) and (D.14). Furthermore, for integrals on the bench, we can take the range of
φ to be [−lφ/2, lφ/2].

D.3 The swing surface for zero-mode M < 0 backgrounds

In this appendix we describe the parametrization of the swing surface for asymptotically
flat zero-mode M < 0 backgrounds including the global Minkowski vacuum.

The ropes. As discussed in section 3.1, the null geodesics γ± of the swing surface origi-
nate from the endpoints ∂A of the interval A and are proportional to ∂r near the asymp-
totic boundary. The description of these null geodesics as they move into the interior of the
M < 0 backgrounds differs from that of M > 0 backgrounds, as they acquire φ-dependence
in the Bondi gauge. In order to see this it is convenient to introduce Cartesian coordinates
satisfying ds2 = −dt2 + dx2 + dy2,

t = 1√
−M

(
r −Mu−

√
−Mrcφ

)
,

x = 1√
−M

[
r cos(

√
−Mφ)− rc sin(

√
−Mφ)

]
,

y = 1√
−M

[
r sin(

√
−Mφ) + rc cos(

√
−Mφ)

]
,

(D.16)

where rc ≡ J/2
√
−M is real. It is not difficult to show that x2 + y2 = (r2 + r2

c )/(−M).
As a result, when the angular momentum is finite, the Bondi coordinates cover only a part
of Minkowski space where a circle of radius rc/

√
−M is excised from the (x, y) plane in

addition to a deficit angle. In Cartesian coordinates the null geodesics γ± correspond to
straight lines originating at the asymptotic boundary at (3.15) that are parametrized by
the value of the radial coordinate such that

γ± :



t = 1√
−M

(
λ∓M lu

2 ∓
√
−Mrc

lφ
2

)
,

x = 1√
−M

[
λ cos

(√−Mlφ
2

)
∓ rc sin

(√−Mlφ
2

)]
,

y = 1√
−M

[
± λ sin

(√−Mlφ
2

)
+ rc cos

(√−Mlφ
2

)]
.

(D.17)
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Note that the parameter λ in eq. (D.17) can take both positive and negative values and
the asymptotic boundary is reached when λ→∞.

In Bondi gauge, the null geodesics γ± consist of two segments such that γ± = γ
(1)
± ∪γ

(2)
± .

In the first segment the u and φ coordinates are fixed and the radial coordinate varies from
r →∞ to r = 0 such that

γ
(1)
± : u = ± lu2 , φ = ± lφ2 , r ∈ [0,∞). (D.18)

On the other hand, the u and φ coordinates vary in the second segment of the ropes and
the radial coordinate grows from r = 0 to r →∞. This segment can be parametrized by10

γ
(2)
± :


u = ± lu2 −

J

2M

(
φ∓ lφ

2

)
+ r

M
,

r = J√
−M

tan
[√−M(φ∓ lφ

2 )
2

]
,

φ ∈
[
± lφ

2 ,±
lφ
2 + π√

−M

)
. (D.19)

The two segments of the ropes are joined at the point (u, φ, r) = (±lu/2,±lφ/2, 0), which
corresponds to the lower limit of the φ coordinate in (D.19), namely φ = ±lφ/2. On the
other hand, the upper limit of φ on the second segment γ(2)

± of the ropes φ → ±lφ/2 +
π/
√
−M corresponds to the point (u, φ, r)→

(
∞,± lφ

2 + π√
−M ,∞

)
.

The bench. According to the holographic entropy proposal described in section 2.3, the
bench γ of the swing surface γA is the spacelike geodesic that extremizes the distance
between the γ+ and γ− ropes. The bench obtained in this way can be parametrized in
terms of the φ coordinate by

r(φ) = −
2J cos(

√
−Mφ)−

√
−M(Jlφ + 2Mlu) csc

(√−Mlφ
2

)
4
√
−M sin(

√
−Mφ)

, (D.20)

u(φ) = − Jφ2M + r(φ)
M

−
cos

(√−Mlφ
2

)
4M sin(

√
−Mφ)

[
(Jlφ + 2Mlu)csc

(√−Mlφ
2

)
cos(
√
−Mφ)− 2J√

−M

]
, (D.21)

which correspond to the analytic continuation of eqs. (D.13) and (D.14). The bench γ

intersects the first segment of γ+ and the second segment of γ−, or vice versa, depending
on the value of the angular momentum with respect to the “critical” value Jc defined by

Jc = 2(−M)3/2lu√
−Mlφ − sin(

√
−Mlφ)

. (D.22)

When J > Jc, the bench ends on the first segment of γ+ and the second segment of γ−.
Otherwise, when J < Jc, the bench ends on the second segment of γ+ and the first segment

10When J = 0, the second segment is given by γ(2)
± : u = ± lu2 + r

M
, φ = ± lφ2 + π√

−M , r ∈ [0,∞). In this
case, the value of the φ coordinate jumps discontinuously between the first and second segments. Hence, it
is convenient to keep J 6= 0 as a regulator as it guarantees a smooth parametrization of the ropes.
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of γ−. Without loss of generality let us consider the J < Jc case which includes the global
Minkowski vacuum. In this case, we find that the range of φ parametrizing the location of
the bench is given by

φ∗ < φ <
2π√
−M

− lφ
2 , (D.23)

where φ∗ ≥ lφ/2 and satisfies

φ∗ = lφ
2 + 2√

−M
tan−1

{
csc

(√−Mlφ
2

)2[
J sin(

√
−Mlφ)−

√
−M(Jlφ + 2Mlu)

]
2J

}
. (D.24)

Let us now consider the length of the swing surface γA = γ− ∪ γ ∪ γ+. Since the ropes
γ± are null, only the bench γ yields a nonvanishing contribution to the length of the swing
surface. When J < Jc, the length L of the bench is given by

L =
∫
γ

√
gµνdxµdxν =

∫ 2π/
√
−M−lφ/2

φ∗

√
gµν∂φxµ∂φxνdφ. (D.25)

Despite the complicated value of φ∗ at which the bench and the rope intersect, we find
that in both the J < Jc and J > Jc cases, the length of γ is given by

L =
∣∣∣∣√−M(

lu + Jlφ
2M

)
cot

(√−Mlφ
2

)
− J

M

∣∣∣∣. (D.26)

Consequently, the holographic entanglement entropy reads

SA = Area(γA)
4G = 1

4G

∣∣∣∣√−M(
lu + Jlφ

2M

)
cot

(√−Mlφ
2

)
− J

M

∣∣∣∣, (D.27)

which corresponds to the analytic continuation of (3.18) and agrees with the independent
derivations of entanglement entropy in refs. [18, 21]. In particular, for the global Minkowski
vacuum where M = −1 and J = 0, the holographic entanglement entropy is given by

SA = lu
4G cot

(
lφ
2

)
. (D.28)

E Null geodesics in AdS3

In this appendix we describe the null geodesics of the zero-mode AdS3 backgrounds (4.9)
whose momenta satisfy pupv > 0.

Let us parametrize the null geodesics in terms of (u, v, ρ) coordinates that depend on
an affine parameter λ. The geodesics satisfy the conservation equations (4.11) reproduced
here for convenience

T 2
uu
′ + ρv′

2 = pu, T 2
v v
′ + ρu′

2 = −pv, (E.1)

as well as the null constraint (4.12) which is given by

ρ′2

4(ρ2 − 4T 2
uT

2
v ) + T 2

uu
′2 + T 2

v v
′2 + ρ u′v′ = 0. (E.2)
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We assume the momenta pu and pv along the u and v coordinates satisfy pupv > 0, which
guarantees that the geodesics reach the asymptotic boundary at large λ. The solution to
eqs. (E.1) and (E.2) is then given by

ρ = p2
up

2
v(2λ+ λ0)2 − p2

uT
2
v − p2

vT
2
u

pupv
,

u = − 1
4Tu

log
{
p2
v[Tu + pu(2λ+ λ0)]2 − p2

uT
2
v

p2
v[Tu − pu(2λ+ λ0)]2 − p2

uT
2
v

}
+ u0,

v = + 1
4Tv

log
{
p2
u[Tv + pv(2λ+ λ0)]2 − p2

vT
2
u

p2
u[Tv − pv(2λ+ λ0)]2 − p2

vT
2
u

}
+ v0,

(E.3)

where λ0, u0, and v0 are integration constants and λ is the affine parameter. In particular,
at the cutoff surface ρ = ρ∞ near the asymptotic boundary ∂M, the null geodesics (E.3)
reach the point

(u, v, ρ) =
(
u0 −

√
pv

puρ∞
+O

( 1
ρ∞

)
, v0 +

√
pu
pvρ∞

+O
( 1
ρ∞

)
, ρ∞

)
. (E.4)

We see that the null geodesics (E.3) emanate from a point (u0, v0) at the boundary. Fur-
thermore, we find that at the cutoff surface, the vector ξ ≡ 2πλ(dxµ/dλ)∂µ tangent to (E.3)
is given by

ξ = −2π
[
(u− u0)∂u + (v − v0)∂v − 2ρ∞∂ρ

]
+ subleading. (E.5)

We now note that null geodesics with pupv > 0 cannot describe the ropes γ± of the
swing surface in (W)AdS3/WCFT. This is because the u and v components of ξ in (E.5)
vanish at the endpoints, while the approximate modular flow generator of a WCFT is finite,
cf. eq. (4.16). Null geodesics with pupv > 0 cannot describe ropes in AdS3/CFT2 either.
In order to show this we first note that the relative sign between the ∂u and ∂v terms
in (E.5) is independent of the values of the momenta pu and pv, or the relative sign in the
expansion of the null geodesics along the u and v coordinates in (E.4). This means that
for any null geodesic whose momenta satisfy pupv > 0, the tangent vector (E.5) reduces
to the generator of dilations near the asymptotic boundary. In contrast, the modular flow
generator in the AdS3/CFT3 correspondence generates boost near the endpoints of the
boundary interval.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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