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E-mail: bartlomiej.czech@gmail.com, dolivas@live.com.mx,

wang-zz17@mails.tsinghua.edu.cn

Abstract: We write down Crofton formulas — expressions that compute lengths of space-

like curves in asymptotically AdS3 geometries as integrals over kinematic space — which

apply when the curve and/or the background spacetime is time-dependent. Relative to

their static predecessor, the time-dependent Crofton formulas display several new features,

whose origin is the local null rotation symmetry of the bulk geometry. In pure AdS3 where

null rotations are global symmetries, the Crofton formulas simplify and become integrals

over the null planes, which intersect the bulk curve.

Keywords: AdS-CFT Correspondence, Gauge-gravity correspondence

ArXiv ePrint: 1905.07413

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2020)063

mailto:bartlomiej.czech@gmail.com
mailto:dolivas@live.com.mx
mailto:wang-zz17@mails.tsinghua.edu.cn
https://arxiv.org/abs/1905.07413
https://doi.org/10.1007/JHEP12(2020)063


J
H
E
P
1
2
(
2
0
2
0
)
0
6
3

Contents

1 Introduction 1

2 Review 2

2.1 Differential entropy 3

2.2 Null vector alignment 4

2.3 The Crofton formula 7

2.4 Kinematic space 9

3 Covariant Crofton formula 9

3.1 Comments 11

4 Covariant Crofton formula in pure AdS3 12

4.1 Integral over null planes 12

4.2 Induced measure over null planes 16

4.3 Example 17

4.4 Other locally AdS3 geometries 18

5 Discussion 20

1 Introduction

Recent years have taught us much about the emergence of space, but not nearly as much

about the nature of time. Alongside insights that eventually found covariant formulations

— most notably the Ryu-Takayanagi proposal [1, 2] with its covariant generalizations [3, 4]

— are many new, intriguing ideas and concepts, which presume the existence of a preferred

spatial slice of the bulk geometry. Examples include the holographic entropy cone [5] (but

see [6] for a covariantization in d = 2 + 1 bulk dimensions), the analogy with tensor

networks [7–9] (but see [10]) or bit threads [11] (but see [12, 13]). At a more basic level,

it is not known how to compute holographically the proper time along a bulk timelike

curve — i.e., how to describe the experience of a bulk observer moving in a maneuverable

rocket — even though analogous calculations for spacelike curves are known in d = 2 + 1

dimensions [14–16].

This paper is motivated by a desire to narrow the gap between our understanding of

space and time. Short of computing the proper time along a bulk worldline, we tactically

retreat to spacelike curves in 2 + 1 dimensions to attend to those relevant calculations,

which have relied on non-covariant assumptions. We focus in particular on the Crofton

formula [16], which says that the length of a spacelike curve on a static slice of an asymptot-

ically AdS3 geometry ‘counts’ the geodesics which intersect the said curve. In holographic
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theories and subject to reasonable assumptions detailed below, the correct measure for this

‘counting’ problem has a direct information theoretic meaning on the boundary: it is the

conditional mutual information of regions, which are selected by the geodesics. This is

a powerful lesson about the information theoretic origin of the notion of distance in the

bulk [17, 18], which has led to a number of interesting insights and follow-ups [19–37].

However, the scope of this lesson has been mostly limited to the static setup.1 The main

result of the present paper is a Crofton formula for a spacelike curve in an asymptotically

AdS3 geometry, which does not restrict the curve to live on a preferred slice of the bulk

spacetime.

The covariant Crofton formula (3.4) has a number of interesting features, one of which

is that there are many such formulas for a single curve! Different formulas that compute

the length of the same curve are related to one another by a certain ‘gauge freedom,’ which

is generated in the bulk by local null rotations.2 We will decode this statement and explain

the importance of null rotations at various stages of the text, starting with section 2.2. A

second interesting fact about the covariant Crofton formula is that it does not integrate over

the geodesics that intersect the curve. In a generic asymptotically AdS3 geometry one can

take many different regions of integration and none of them favors geodesics that intersect

the curve. We have not found a generally applicable characterization of all admissible

integration regions except in pure AdS3, where the Crofton formula — instead of integrating

over intersecting geodesics — integrates over all null planes (homogeneous lightsheets) that

intersect the curve. As we explain below, this fact too originates from the null rotation

symmetry of the bulk geometry.

The paper is organized as follows: section 2 reviews the necessary background material

— differential entropy, the static Crofton formula, null rotations and kinematic space. In

section 3 we write down the covariant Crofton formulas for general horizonless, asymptot-

ically AdS3 geometries. Section 4 explains the simplifications that occur in locally pure

AdS3 geometries, with the final result that the length of a spacelike curve in pure AdS3

‘counts’ the null planes that intersect the curve. We close with a Discussion.

2 Review

The setup of this paper is the AdS3/CFT2 correspondence. We assume that the low

energy bulk theory is Einstein gravity so that entanglement entropies of CFT intervals are

computed by lengths of bulk geodesics [1–4]. The starting point is the differential entropy

formula [14, 15], which expresses the length of a general spacelike bulk curve in terms of

lengths of geodesics, i.e. — when applicable — in terms of entanglement entropies of CFT

intervals.

1Refs. [23, 24, 27] have applied kinematic space (space of geodesics) techniques in time-dependent set-

tings, but they exploited an integrated version of the Crofton formula — differential entropy [14, 15] —

without writing down the Crofton formula explicitly.
2This ‘gauge freedom’ should not be confused with the modular gauge symmetry and the associated

modular Berry connection, whose holonomies are computed by eq. (2.3); see [30, 36, 37].
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In this section we review differential entropy as well as other concepts, which will be

useful in the remainder of the paper. The presentation in section 2.2 is partly new and

complements the findings of ref. [15].

2.1 Differential entropy

Consider a smooth, closed spacelike curve in the bulk of an asymptotically AdS3, horizon-

less geometry. (We comment on the impact of horizons as we discuss our results.) For

convenience, we will also assume a certain notion of convexity to be defined momentarily.

By smoothness, every point on the curve has a tangent geodesic; we denote the boundary

coordinates of its endpoints with:

yL(λ) = (zL(λ), z̄L(λ)) and yR(λ) = (zR(λ), z̄R(λ)) (2.1)

Here λ is a parameter around the curve and z, z̄ are lightlike coordinates on the boundary

cylinder:

z = θ + t and z̄ = θ − t . (2.2)

The subscripts L and R mark the left and right endpoints of the geodesic, as seen from

the boundary interval (yL(λ), yR(λ)) looking into the bulk. Throughout this paper we will

consider only oriented geodesics, so that we can unambiguously say that geodesic (2.1)

subtends the CFT interval (yL(λ), yR(λ)) and not (yR(λ), yL(λ)). The family of oriented

geodesics (2.1) (equivalently, the family of subtended intervals (yL(λ), yR(λ))) is the one

whose entanglement wedges meet the curve at exactly one point each. (With the other

orientation, the entanglement wedges of the subtended intervals would each have contained

the entire bulk curve.) In the 2+1-dimensional, time-dependent context, the convexity of

the curve will mean for us that this condition can be globally satisfied.

Under these assumptions, the length of the curve equals [14, 15]:

length =

∫
dλ

dyµR
dλ

∂S(yL(λ), yR)

∂yµR

∣∣∣
yR=yR(λ)

, (2.3)

where the summed index µ = 0, 1 is shorthand for y0 = z and y1 = z̄. Quantity S(yL, yR) is

the length of the bulk geodesic that connects yL and yR on the boundary. When the geodesic

is minimal3 and the homology constraint is satisfied, this is equal to the entanglement

entropy of the CFT interval (yL, yR). We set 4GN ≡ 1 throughout.

Eq. (2.3) is the differential entropy formula. It is useful to inspect briefly the geometry

underlying it. First, suppose the bulk geometry is static and consider a bulk curve contained

in a static slice. In this case, dyR/dλ points in the spacelike (θ) boundary direction and

the formula simplifies upon setting the arbitrary parameter λ ≡ θR:

length =

∫
dθR

∂S(θL, θR)

∂θR

∣∣∣
θL=θL(θR)

(2.4)

3As a consequence of the Gao-Wald focusing theorem [38], it is even possible for yL and yR to become

timelike-separated on the boundary while the bulk geodesic in question remains spacelike. Naturally, in

this case the length of the spacelike geodesic does not compute a boundary entanglement entropy.
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Figure 1. Two sequences of geodesics tangent to a common bulk static curve. On the right, the

sequence is finer and the intersection points of consecutive pairs of geodesics live closer to the bulk

curve. In the continuum, the intersection points approach the bulk curve, which is identified with

the common envelope of the geodesics.

The function θL(θR) simply picks the geodesics tangent to the bulk curve. Now consider

a discrete subset of them, with coordinates θL = θL(θ
(i)
R ) and θR = θ

(i)
R . The consecutive

geodesics intersect on the bulk static slice; call the intersection of the (i − 1)th and ith

geodesic Pi. In the limit in which the spacing between consecutive geodesics becomes finer,

the points Pi approach the bulk curve and the integrand of (2.4) becomes, up to a total

derivative, the infinitesimal distance between Pi and Pi+1 — that is, the length element

along the curve. This is illustrated in figure 1.

When the curve does not live on a static slice — or when the background geometry is

not static — the geometric picture in figure 1 must be modified. Indeed, if the curve is not

confined to a static two-dimensional submanifold of the bulk, the consecutive geodesics will

not in general intersect. We explain the requisite modification of figure 1 after introducing

one further generalization of formula (2.3).

2.2 Null vector alignment

This subsection reviews and extends the material of [15]. That reference showed that

the points yL(λ) and yR(λ) can be chosen in other ways — their connecting geodesic not

tangent to the bulk curve — and still satisfy eq. (2.3). The condition to be imposed, which

generalizes tangency, is called ‘null vector alignment’ (NVA).

Null vector alignment at point λ on the curve means that the geodesic passes through

λ and that it is tangent to the lightsheet emanating from the curve. Equivalently, null

vector alignment can be stated as the tangency of two lightsheets — one emanating from

the curve and one from the geodesic; see figure 2. This type of relation between the curve

and a geodesic is an inherently Lorentzian concept; its only Euclidean analogue is if the

curve and the geodesic are tangent to one another.
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Figure 2. A bulk curve (red) has two orthogonal lightsheets emanating from it. In the left panel,

we display narrow strips of the outgoing orthogonal lightsheet (orange) and the ingoing orthogonal

lightsheet (gray) in a neighborhood of a point λ, highlighting the orthogonal null rays generated by

vectors no and ni (white lines). We also show the lightsheets emanating from the tangent geodesic

(blue). In the right panel, we show the NVA geodesics tangent to the outgoing lightsheet at λ. These

geodesics are locally related to one another by a null rotation, which fixes the outgoing orthogonal

null vector no. In the limit of infinite null rapidity, the NVA geodesics approach the outgoing

orthogonal null vector no. The unique geodesic which is NVA with respect to both lightsheets is

the tangent (blue) geodesic.

Two families of NVA geodesics. Note that the curve has two lightsheets emanating

from it. Assuming that the curve is closed and convex, we can label one of them the

outgoing lightsheet and the other the ingoing lightsheet; see figure 2. Consequently, at any

given point on the curve there are two families of NVA geodesics: one family tangent to the

outgoing lightsheet and one family tangent to the ingoing lightsheet. There is one geodesic

which is common to both families: because it follows the intersection of both lightsheets,

it is the geodesic tangent to the curve.

Null rotations. All geodesics that are null vector-aligned (NVA) at λ are related to the

geodesic tangent at λ by a transformation, which is locally a null rotation. To understand

this fact in more detail, refer to figure 2 and consider a neighborhood of the point λ small

enough to be treated as flat space, so nomenclature from the 2+1-dimensional Lorentz

group will apply. At λ, our curve selects a privileged triple of vectors (a triad): the curve’s

tangent t and two null vectors no and ni orthogonal to the curve. Locally, the outgoing

lightsheet is a null plane generated by the tangent vector t and by no. The normal vector

to this null plane is no itself; because it is null, no both lives on the null plane and is

normal to it. The family of NVA geodesics that are tangent to the outgoing lightsheet

therefore have one thing in common: they are orthogonal to the null vector no. The

Lorentz transformation, which locally relates to one another this family of NVA geodesics,

must therefore preserve the vector no. Of course, the same analysis applies to the other

family of NVA geodesics, with the replacement no → ni.

In 2+1 dimensions, a rotation fixes a timelike vector while a boost fixes a spacelike

vector. Transformations that fix a null vector are a distinct conjugacy class of the Lorentz

group called ‘null rotations.’ Because the null rotations about a given null vector form a
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non-compact Abelian subgroup of the Lorentz group, we will (with some abuse of standard

terminology) call the parameter that coordinatizes that subgroup a ‘rapidity.’ The role of

null rotations in the AdS/CFT correspondence was previously discussed e.g. in [39].

In case null rotations seem unfamiliar, we illustrate them with the following example.

Consider a small neighborhood of a point λ on the bulk curve; we assume the neighborhood

small enough to be treated as flat. With an appropriate choice of coordinates, the vectors

discussed in the previous paragraphs can be written as

no =

 1

1

0

 and ni =

 1

−1

0

 and t =

 0

0

1

 , (2.5)

where we take the metric to be diag(−1, 1, 1). An SO(1, 2) transformation that fixes no and

maps different NVA geodesics from the outgoing family to one another can be written as:

N =

 1 + ρ2/2 −ρ2/2 −ρ
ρ2/2 1− ρ2/2 −ρ
−ρ ρ 1

 , (2.6)

where ρ parameterizes the ‘null rapidity’ and ranges from −∞ to +∞. Explicitly, we have:

Nno = no and Nni = ni + ρ2no − 2ρ t and Nt = t− ρno (2.7)

This last equation is the NVA condition, stated in the same language as eq. (4.14) in [15].

In there, the authors described the NVA condition as the demand that the normalized

tangent vector to the bulk curve (vector t) and the tangent to the NVA geodesic (vector

Nt) differ only by a multiple of an orthogonal null vector (here no).

We should remember, however, that a null rotation maps different NVA geodesics to

one another only in a small neighborhood of the point λ. One exception is pure AdS3, in

which any null geodesic is related to any other by a global isometry. This feature, which

we exploit extensively in section 4, will allow us to make stronger statements in locally

AdS3 spacetimes.

From geodesics to curves. Given a family of geodesics with endpoints yL(λ) and yR(λ),

what is the curve whose length eq. (2.3) computes? Equivalently, how to find a curve which

is NVA to a given continuous family of geodesics? Ref. [15] answered this question by

generalizing the static construction reviewed in section 2.1, which involved a sequence Pi
of intersection points of consecutive tangent geodesics. The argument there left out curves

with time dependence (even when tangent geodesics and not NVA geodesics are used); the

construction of [15] also covers this special case.

For illustration, refer to figure 3. To each geodesic (labeled by λ) assign a lightsheet

emanating from it; call it W (λ). As we emphasized before, every geodesic has two such

lightsheets; the choice of W (λ) should be continuous. As in section 2.1, consider a discrete

progression of geodesics and lightsheets labeled by a sequence λ(i). The λ(i−1)-geodesic

meets the W (λ(i)) lightsheet at a point, which we call Qi. Now follow the unique lightray,

– 6 –
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Figure 3. How the same sequence of geodesics defines a bulk curve using outgoing (left) and

ingoing (right) lightsheets in the NVA condition. The green lines are pieces of geodesics λ and the

red lines are null segments that join these pieces. In the continuum limit, the pieces of geodesics and

lightrays become the bulk curve. The constructions with outgoing and ingoing lightsheets typically

generate different bulk curves.

which is contained in W (λ(i)) and passes through Qi, until it meets the geodesic λ(i); call

that meeting point Pi. In the limit of increasingly fine spacing between consecutive λ(i)s,

the sequence of points Pi will converge to a continuous curve that satisfies eq. (2.3).

We offer a few comments on this construction: in the static discussion in section 2.1,

the points Qi and Pi coincided. When we exploit the NVA freedom or describe a time-

dependent space-like curve using tangent geodesics, the points Qi and Pi do not coincide

except in the continuum limit. Finally and most importantly, a given sequence of geodesics

generally picks out two distinct bulk curves to which they are NVA: one constructed by

taking the W (λ)s to be the outgoing lightsheets and one from the ingoing lightsheets.

From curves to geodesics. For a given bulk curve, there is a large freedom in choosing

a continuous family of NVA geodesics. Each such choice of yL(λ) and yR(λ) will of course

satisfy eq. (2.3). The first freedom is discrete: the geodesics can be taken from the outgoing

or the ingoing lightsheets. The further freedom is in choosing a continuous, λ-dependent

rapidity parameter, which sets the magnitude of the local null rotation separating the NVA

geodesics from the tangent geodesics at each λ.

2.3 The Crofton formula

The differential entropy formula recasts the length of a closed bulk curve as a one-dimen-

sional integral over a sequence of NVA geodesics. When the curve is static and tangent

(not general NVA) geodesics are used, it can be converted to a two-dimensional integral

over geodesics that intersect the curve; this is the Crofton formula [16]. Our interest in

this paper is in generalizing this picture to setups with time dependence.

What converts a one-dimensional integral into a two-dimensional integral is Stokes’s

theorem. One way to apply it to the static version of the differential entropy formula (2.4)

– 7 –



J
H
E
P
1
2
(
2
0
2
0
)
0
6
3

is to write

length =

∫ θL=θL(θR)

?
dθRdθL

∂2S(θL, θR)

∂θR ∂θL
(2.8)

and choose the lower limit of integration marked ‘?’ so that∫
dθR

∂S(θL, θR)

∂θR

∣∣∣
?

= 0 . (2.9)

This is tantamount to choosing a second ‘curve’ of zero length and subtracting it from

equation (2.4). More generally, any expression of the form (2.8) computes the difference

between lengths of two curves: the one defined by the upper and the lower limit of inte-

gration:

lengthupper − lengthlower =

∫ θL=θupperL (θR)

θL=θlower
L (θR)

dθRdθL
∂2S(θL, θR)

∂θR ∂θL
(2.10)

Applying Stokes’s theorem to rewrite formula (2.4) necessarily requires a choice of a second

limit of integration because the loop {(θL(θR), θR)}θR is not contractible in the space of

geodesics on a static slice of AdS3 (kinematic space). If it were contractible — if a homotopy

from {(θL(θR), θR)}θR to the trivial loop could be found — then the projection (θL, θR)→
θR would produce a homotopy, which contracts a loop around a circle to a point.

In a horizon-free geometry (dual to a CFT pure state),4 the most natural way of

using (2.10) to compute the length of a given bulk curve is to let both limits of integration

sweep the tangent geodesics, but one with endpoints reversed. Explicitly, if the upper limit

of integration is the locus θL = θL(θR) then the lower limit of integration sets θL = θ−1
L (θR).

On the latter integration contour, eq. (2.4) evaluates to the length of the original bulk curve

with an extra minus sign for the reversal of orientation. The resulting integration region

in eq. (2.10) encompasses all the geodesics on the static slice that intersect the bulk curve;

see figure 4.

In sum, we arrive at the following Crofton formula for the length of a closed spacelike

curve living on a static slice of the bulk geometry:

length =
1

2

∫
{geodesics that intersect the bulk curve}

dθRdθL
∂2S(θL, θR)

∂θR ∂θL
(2.11)

We shall soon write down an analogue of this formula for curves, which do not live on a

static slice of the bulk.

Comment. When S(θL, θR) computes a boundary entanglement entropy, the integrand

in eqs. (2.8), (2.10) and (2.11) has a direct interpretation in quantum information theory.

It is the conditional mutual information of two infinitesimal intervals of length dθL and

dθR conditioned on the interval (θL, θR), and as such it is guaranteed to be positive by the

strong subadditivity inequality [40, 41]. In fact, even when S(θL, θR) does not compute a

boundary entanglement entropy positivity still holds; see section 6 of [6] for details. We

may interpret eq. (2.11) as a ‘count’ of geodesics that intersect the bulk curve.

4In the presence of a horizon, the RT geodesic with endpoints (yL, yR) = (y1, y2) is different from the

one with endpoints (yL, yR) = (y2, y1).

– 8 –



J
H
E
P
1
2
(
2
0
2
0
)
0
6
3

θR

θL
-1(θR)

θL(θR)

Figure 4. In eq. (2.10), setting the upper limit of integration to the locus θL = θL(θR) and

the lower limit to θL = θ−1
L (θR) results in an integration region, which encompasses all oriented

geodesics that intersect the bulk curve. Here we display which geodesics are integrated over for a

fixed value of θR.

2.4 Kinematic space

The static Crofton formula (2.11) sweeps geodesics drawn from a single slice of the bulk

geometry. In seeking a generalization to the time-dependent case, we will have to go outside

these restricted settings and consider the space of all oriented spacelike geodesics. This

general, four-dimensional kinematic space was studied in [23, 24].

Its coordinates are zL, z̄L, zR, z̄R, which we defined in section 2.1. In applying Stokes’

theorem to the differential entropy formula (2.3), we will encounter the 2-form, which is

the exterior derivative of its integrand:

ω = (∂L∂RS)dzLdzR + (∂̄L∂̄RS)dz̄Ldz̄R + (∂̄L∂RS)dz̄LdzR + (∂L∂̄RS)dzLdz̄R , (2.12)

where ∂L = ∂zL and ∂̄L = ∂z̄L and likewise for ·R.

A big simplification occurs in the case of the CFT2 ground state and its Virasoro

descendants: the entanglement entropy decomposes into two pieces, which depend only on

zL, zR (respectively z̄L, z̄R). As a result, the two last terms in (2.12) drop out. Since ω

has no joint z, z̄-dependence, we can represent the kinematic space of the vacuum and its

descendants as a product of two topological cylinders, one coordinatized by zL and zR and

the other by z̄L and z̄R. The geometry of this factorized kinematic space was discussed in

detail in [23].

3 Covariant Crofton formula

In the previous section, we went from the static differential entropy equation (2.4) to the

Crofton integral (2.11) using Stokes’s theorem. We will do the same to find the covariant

Crofton formula.

– 9 –
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The integrand will be the form ω we encountered in eq. (2.12), i.e. the exterior deriva-

tive of the covariant differential entropy integrand from eq. (2.3). To enclose a compact

two-dimensional region of integration, we again need two boundary contours.5 We will rep-

resent them as two parametric curves in kinematic space: (yoL(λ), yoR(λ)) and (yĩL(λ), yĩR(λ)).

Each of them individually, when plugged into eq. (2.3), computes the length of some bulk

curve. Thus, Stokes’s theorem tells us that:

length(o) − length( ĩ ) =

∫ (yoL(λ), yoR(λ))

(yĩL(λ), yĩR(λ))
ω (3.1)

The integral is taken over any smooth two-dimensional surface within the four-dimensional

kinematic space with boundaries at the prescribed limits. Another way to characterize the

region of integration is to say that we integrate over the image of any homotopy, which

deforms {(yĩL(λ), yĩR(λ))}λ to {(yoL(λ), yoR(λ))}λ in kinematic space.

If the geometry is horizonless, we may use (3.1) to isolate the length of a single given

curve by setting the limits of integration so that:

length(o) = +length of given curve

length( ĩ ) = −length of given curve

The minus sign is easy to fix: the differential entropy formula incurs an extra minus sign

when we switch the left and right endpoints of our oriented geodesics.6

A mechanical way is see that orientation reversal introduces the needed minus sign

is to view the bulk spacetime upside down: this switches the left and right endpoints of

all intervals, but also switches the way in which we sweep the length of the curve, from

clockwise to counterclockwise and vice versa. More formally, we can add to (2.3) a total

derivative term

length =

∫
dλ

dyµR
dλ

∂S(yL(λ), yR)

∂yµR

∣∣∣
yR=yR(λ)

−
∫
dS(yL(λ), yR(λ))

= −
∫
dλ

dyµL
dλ

∂S(yL, yR(λ))

∂yµL

∣∣∣
yL=yL(λ)

(3.2)

and observe that the resulting integrand has the same form as in (2.3), except for the

switch yL(λ) ↔ yR(λ) and the minus sign. We will shortly recognize the same fact from

yet another perspective.

It is useful to introduce a special notation for the reversal of endpoints:

˜ : (zL, z̄L, zR, z̄R) −→ (zR, z̄R, zL, z̄L) (3.3)

5The reason, as in the static case, is topological. If we could contract the loop {(yoL(λ), yoR(λ))}λ then

the projection (yL, yR) → yR would produce a homotopy, which contracts a loop wrapping around the

boundary cylinder to a single boundary point.
6Note that if the geometry contained a horizon, it would be an obstruction to finding a homotopy

between a set of NVA geodesics and its orientation-reversed counterpart. In this case, computing the

length difference of two distinct but homotopic curves using equation (3.1) is the best we can do. We return

to this point briefly in section 4.4 when we discuss locally pure AdS3 geometries.
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In eq. (3.1), we anticipated this notation as well as the following conclusion: the lower limit

of integration should be a trajectory of geodesics that are NVA to the curve — i.e., which

satisfy eq. (2.3) — but with their endpoints reversed.

In summary, the general covariant version of the Crofton formula reads:

length =
1

2

∫ (yoL(λ), yoR(λ))

(yĩL(λ), yĩR(λ))
ω . (3.4)

Here (yoL(λ), yoR(λ)) and (yiL(λ), yiR(λ)) are any two smooth families of geodesics that

are NVA to the bulk curve, ˜ is the endpoint reversal map defined in (3.3) and the in-

tegral is carried out over any smooth two-dimensional submanifold of kinematic space

with the prescribed boundaries, i.e. the image of a homotopy from {(yĩL(λ), yĩR(λ))}λ to

{(yoL(λ), yoR(λ))}λ.

3.1 Comments

Formula (3.4) merely rewrites eq. (2.3) using Stokes’s theorem. We will see that it becomes

much sharper when we apply it in pure AdS3. Before that, however, we pause for a few

comments about the application of (3.4) in general asymptotically AdS3 geometries:

A large freedom. The length of a given bulk curve can be computed using formula (3.4)

in multiple ways. First, we can choose any set of NVA geodesics on either limit of inte-

gration; both choices have a freedom described at the end of section 2.2. Further, we

have a freedom of completing the domain of integration in any smooth way. In the static

formula (2.11), all this freedom was killed off by restricting to quantities defined on a

static slice.

Two branches of differential entropy, unified. We observed in section 2.2 that for

each curve there are two classes of differential entropy formulae, which involve geodesics

that are tangent to the outgoing and ingoing orthogonal lightsheets. Eq. (2.10) gives an

opportunity to unify them: we can choose (yoL(λ), yoR(λ)) — the NVA geodesics for the

upper limit of integration — from the outgoing family and choose the endpoint-reversed

lower limit (yiL(λ), yiR(λ)) from the ingoing family. The superscripts in the notation of

eqs. (3.1), (3.4) anticipated this choice. At the level of eq. (2.3), the two families of NVA

geodesics were not smoothly deformable into each other, being connected only through

their joint special case of tangent geodesics. Going to the Crofton formula reveals that

they form a boundary of a common smooth submanifold of kinematic space.

Four perspectives on the covariant Crofton formula. Formula (2.10) can be rewrit-

ten in other equivalent ways, which are generated by time reversal and parity. For clarity,

we will apply these transformations passively, i.e. keeping the bulk curve fixed and chang-

ing perspective. Applied this way, time reversal T simply swaps the ingoing and outgoing

lightsheets: i↔ o. Parity P , in turn, changes the sign of the line element along the curve,

as well as swapping the left and right endpoints of all geodesics as in eq. (3.3). All in all,
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T and P generate these four Crofton formulae:

P→ 1

2

∫ (yoL(λ), yoR(λ))

(yĩL(λ), yĩR(λ))
ω

T→ 1

2

∫ (yiL(λ), yiR(λ))

(yõL(λ), yõR(λ))
ω

P→ −1

2

∫ (yĩL(λ), yĩR(λ))

(yoL(λ), yoR(λ))
ω

T→ −1

2

∫ (yõL(λ), yõR(λ))

(yiL(λ), yiR(λ))
ω

P→

(3.5)

This transformation law under time reversal and parity is why we think it preferable to

take the upper and lower integration limits in (3.4) from distinct (ingoing and outgoing)

NVA families.

4 Covariant Crofton formula in pure AdS3

Two dramatic simplifications occur in locally pure AdS3 geometries. We concentrate on

global AdS3 first, and discuss other locally AdS3 geometries later.

The first simplification. is that the entanglement entropy of an interval decomposes

into a left-moving and a right-moving component (see e.g. [24, 42]):

S(zL, z̄L, zR, z̄R) = s(zL, zR) + s̄(z̄L, z̄R) ≡ c

6
log

sin(zR − zL)/2

µ
+
c

6
log

sin(z̄R − z̄L)/2

µ
(4.1)

The decomposition is a consequence of the unbroken SO(2, 1)× SO(2, 1) global symmetry

of the CFT2. With the Brown-Henneaux relation [43] c = 3LAdS/2GN and our convention

4GN ≡ 1, the coefficients in front of the logarithms are simply LAdS. In subsequent formulas

for bulk lengths, we will not write down the explicit units of LAdS. Owing to eq. (4.1), the

integrand of the Crofton formula becomes:

ωAdS3 = (∂L∂Rs)dzLdzR + (∂̄L∂̄Rs̄)dz̄Ldz̄R (4.2)

Note that (4.2) is invariant under four independent copies of circle reparameterizations,

acting on each coordinate separately.

The second simplification. concerns the freedom of choosing the integration domain

for the Crofton formula. Both limits of integration in (3.4) are subject to an ambiguity,

which is parameterized by a single function on a circle. This function is the null rapidity

parameter that separates the NVA geodesic from the tangent geodesic at a each point on

the curve. It can be chosen freely everywhere along the curve, subject only to a continuity

requirement. One may ask whether this large freedom stabilizes (leaves invariant) some

bulk object or collection of objects, other than the given bulk curve itself. Identifying such

a fixed set of the NVA freedom would allow us to unify all formulas (3.4) and organize

them more meaningfully. As it turns out, the global symmetries of AdS3 allow us to do

just that.

4.1 Integral over null planes

Recall that all geodesics which are NVA to a given bulk curve at a point λ are locally

related to one another by null rotations. Because AdS3 is a homogeneous space, nothing
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contaminates this statement further away from λ. In particular, all geodesics that are

NVA to a given point on a curve are related by a null rotation globally. We said previously

that a null rotation preserves a null vector, just like rotations and boosts preserve timelike

and spacelike vectors, respectively. In a homogeneous space like AdS3, this means that a

null rotation preserves a whole, globally defined plane orthogonal to its fixed null vector.

Planes orthogonal to null vectors are called null planes; they are generated by one spacelike

and one null vector.7 These null planes are the fixed sets of the NVA freedom, which we

described abstractly in the previous paragraph.

To understand this in greater detail, refer to figure 2 and consider the NVA geodesics

tangent to the outgoing lightsheet at λ. In the notation of the paragraph ‘Null rotations’

(section 2.2), the tangent vectors of all such NVA geodesics are orthogonal to the null vector

no and, if they are properly normalized, they differ from one another only by multiples of

no. In other words, the NVA geodesics span out a plane generated by the curve’s tangent

t and by no — a plane orthogonal to the null normal vector no. All this is to say that

the null plane is fixed under our NVA null rotation freedom even as individual geodesics

contained in it transform into one another. For future use, we note that the null plane

has exactly one lightray (the one generated by the normal vector no) in common with the

bulk curve’s outgoing lightsheet and that it is tangent to (shares a single point with) the

bulk curve.

A null plane meets the asymptotic boundary of AdS3 on two boundary null rays:

z = ztop and z̄ = z̄top (4.3)

We labeled the asymptotic borders of the null plane with the subscript ‘top’ because these

boundary null rays meet at the top of the null plane, which is a boundary point with

coordinates (ztop, z̄top); see figure 5. The location of the top completely specifies the null

plane, so ztop and z̄top are good coordinates on the space of all null planes in AdS3.

Because the NVA geodesics tangent to the outgoing (respectively ingoing) lightsheet

at λ never leave the null plane, they must begin on one and end on the other of the two

loci in (4.3). In particular, we must have either

zR = ztop and z̄L = z̄top or

zL = ztop and z̄R = z̄top. (4.4)

A quick inspection reveals that the upper case applies to NVA geodesics tangent to the

outgoing lightsheet while the lower case is valid for the ingoing family. Focusing on the

upper (outgoing) case, observe that the extreme limit of exercising our null rotation freedom

at λ will produce a geodesic which is still NVA to the bulk curve but which becomes lightlike.

This is the unique lightray common to the null plane and the bulk curve’s orthogonal

lightsheet: the lightray through λ shot in the direction no. This null ray reaches the

7Null planes are a null generalization of H2 and AdS2-hyperplanes of AdS3, which are generated by two

spacelike vectors (respectively one spacelike and one timelike vector). In standard embedding coordinates,

a null plane is given by N ·X ≡ (N−1, N0, N1, N2) · (X−1, X0, X1, X2) = 0 with normal vector N ·N = 0;

this is in contrast to H2 and AdS2-hyperplanes described by the same planar equation with N ·N ≶ 0.
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Figure 5. The geodesics from the outgoing family, which are NVA to the bulk curve (red) at a

common point. In pure AdS3, such geodesics are contained in and span the null plane, which is

generated by the orthogonal outgoing lightray no (yellow) and the tangent geodesic (blue). All these

NVA geodesics end on boundary lightrays zR = ztop and z̄L = z̄top, which is where the null plane

meets the asymptotic boundary. The coordinates (zR, z̄L) = (ztop, z̄top) are therefore common to

all these NVA geodesics, independent of the gauge freedom parameterized by φ and φ̄.

boundary precisely at (ztop, z̄top). In other words, the top of the null plane fixed by the

NVA freedom is where the lightray generated by no arrives at the asymptotic boundary.

These observations identify a crisp common feature of all possible integration limits

in (3.4) in CFT2 vacuum / pure AdS3. Whatever contour

(yoL(λ), yoR(λ)) = (zoL(λ), z̄oL(λ), zoR(λ), z̄oR(λ)) (4.5)

we choose for the upper limit of integration, we know that (zoR(λ), z̄oL(λ)) must trace the

boundary endpoints of orthogonal outgoing null rays shot out from the bulk curve. This is

because the locus (zoR(λ), z̄oL(λ)), interpreted as a family of tops of null planes tangent to

the bulk curve, is invariant under the NVA freedom; see figure 5. Similarly, the lower limit

of integration (yĩL(λ), yĩR(λ)) must be chosen so that its projection in kinematic space onto

the zR, z̄L coordinates,

(z ĩR(λ), z̄ ĩL(λ)) = (ziL(λ), z̄iR(λ)), (4.6)

traces the boundary endpoints of orthogonal ingoing null rays shot from the bulk curve.

This is because (4.6) is the other family of tops of null planes tangent to the bulk curve

— data that is, once again, unaffected by changes in the NVA null rapidity parameter.

There are two continuous families of null planes tangent to the bulk curve — eq. (4.5) and

eq. (4.6) — because there are two null vectors orthogonal to the curve at each point.
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Figure 6. The integration region in (4.8) comprises null planes, which intersect the bulk curve.

The tops of those null planes fall between the loci (4.5) and (4.6) and comprise points, which are

neither entirely spacelike nor entirely timelike-separated from the whole curve.

The full domain of integration must have boundary points (zL, z̄R) fall in between

those two curves. There are various ways to characterize this region; see figure 6. One is

to say that it comprises those boundary points, which are spacelike-separated from at least

one point on the curve and timelike-separated from at least one point on the curve:(
∪p∈curve causal future of p

)
∩
(
∪q∈curve spacelike from q

)
∩ asymptotic boundary (4.7)

It is possible to describe the region of integration by using the null cuts of [44]. But the

most succinct way is to observe that a null plane dropped from any point in (4.7) necessarily

intersects the bulk curve. Indeed, the boundary of (4.7) are precisely those points, whose

null planes barely skirt the curve.

In summary, the Crofton formula (3.4) in AdS3 is an integral over null planes that

intersect the bulk curve:

length =
1

2

∫
{null planes that intersect the bulk curve}

j∗ωAdS3 (4.8)

Here j∗ωAdS3 is the pullback of form (4.2) onto the two-dimensional space of null planes

parameterized by zL and z̄R. We discuss this pullback in the next subsection.

Non-convex curves. In the static case, a generalization of formula (2.11) that applies

to non-convex curves reads [16]:

length =
1

4

∫
{geodesics that intersect the bulk curve}

dθRdθL
∂2S(θL, θR)

∂θR ∂θL
n(θL, θR) (4.9)

Here n(θL, θR) is the number of intersections of geodesic (θL, θR) with the bulk curve on the

static slice. For convex curves, this number is either 2 (for intersecting geodesics) or 0 (for
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non-intersecting ones), except for the codimension-1 set of tangent geodesics. Substituting

these values of n(θL, θR) recovers equation (2.11).

It is easy to see that the generalization of (4.8) to non-convex curves follows the same

pattern:

length =
1

4

∫
{null planes σ}

j∗ωAdS3 n(σ) , (4.10)

where n(σ) is the number of intersections of the bulk curve with the null plane σ. For convex

curves this number is again either 2 or 0, except for the codimension-1 set of null planes

that are tangent to the bulk curve; this establishes the consistency of (4.10) with (4.8).

For non-convex curves, one can prove eq. (4.10) by adding and subtracting to the curve

geodesic segments that complete its convex cover.

Remark. Ref. [46]8 provides a general formula for the volume of an m-dimensional locus

in n-dimensional hyperbolic space in terms of its intersections with r-dimensional hyper-

planes, for any r+m ≥ n. Our Crofton formula (4.10) is one natural generalization of that

result to the Lorentzian context. It is interesting that the Lorentzian version singles out

null planes as the homogeneous objects to be integrated. It should be straightforward to

generalize (4.10) to higher-dimensional pure anti-de Sitter spaces, but we do not pursue it

in this paper.

4.2 Induced measure over null planes

In eq. (4.8), we are instructed to integrate the pullback of ω onto the space of null planes.

By what map

j : {null planes} −→ kinematic space (4.11)

are we pulling ω back?

On the boundary of the integration region, that is for null planes tangent to the

bulk curve, map j assigns to a null plane with top point (zR(λ), z̄L(λ)) a geodesic that is

NVA to the bulk curve at λ. Of course, if (zoR(λ), z̄oL(λ)) is the boundary endpoint of the

outgoing orthogonal null ray then the NVA geodesic j
(
(zoR(λ), z̄oL(λ))

)
must be tangent to

the outgoing lightsheet; an analogous consistency condition applies to the ingoing family. In

the interior of the integration region, the assignment of geodesics to null planes is arbitrary

except for a smoothness requirement. The ‘boundary conditions’ for the embedding map

j are summarized by the following equations:

j
(
(zoR(λ), z̄oL(λ))

)
= (yoL(λ), yoR(λ)) (4.12)

j
(
(z ĩR(λ), z̄ ĩL(λ))

)
= (yĩL(λ), yĩR(λ)) = (yiR(λ), yiL(λ)) (4.13)

Naturally, different bulk curves will give rise to different embeddings j.

To be more explicit, let us change coordinates from zL, z̄L, zR, z̄R to zL, z̄R and:

φ = (zR − zL)/2 and φ̄ = (z̄R − z̄L)/2. (4.14)

8See eq. (2.8) and the discussion below.
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The two-dimensional surface in kinematic space, over which we carry out the integral in

eq. (3.4), is now specified by two functions φ(zR, z̄L) and φ̄(zR, z̄L). In terms of these

functions, the embedding of the space of null planes in kinematic space is:

j(zR, z̄L) = (zL = zR − 2φ(zR, z̄L), z̄L, zR, z̄R = z̄L + 2φ̄(zR, z̄L)). (4.15)

Pulling back ωAdS3 by this map, we obtain the integrand of the Crofton formula (4.10):

j∗ωAdS3 =
1

2

(
∂R cot φ̄− ∂̄L cotφ

)
dzRdz̄L (4.16)

We refer to the functions φ(zR, z̄L) and φ̄(zR, z̄L) collectively as a ‘gauge freedom.’

Conditions (4.12), (4.13) say that on the boundary of the integration region, i.e. for

null planes tangent to the bulk curve, the parameters φ and φ̄ are not independent. Their

relation serves to impose the NVA condition. For a geodesic that already lives on a null

plane tangent to the bulk curve, all that remains to satisfy the NVA condition is to insure

that the geodesic passes through the curve. Therefore, equation (4.12) simply states that

the geodesic (yoL(λ), yoR(λ)) meets the bulk curve at λ; see figure 5.

4.3 Example

We exemplify the above results by computing the circumference of a circle in AdS3 in

arbitrary gauge. Let us use coordinates

ds2 = −(1 +R2) dt2 + (1 +R2)−1dR2 +R2 dθ2, (4.17)

remembering that dimensions of length are supplied by factors of LAdS. The null rays

orthogonal to the circle of radius R = R0 at t = 0 reach the asymptotic boundary at

t = cot−1R0 and t = π − cot−1R0. Therefore, the region of integration in eq. (4.8)

will cover:

R : cot−1R0 ≤ ttop =
zR − z̄L

2
≤ π− cot−1R0 and 0 ≤ θtop =

zR + z̄L
2

≤ 2π. (4.18)

The choice of gauge φ(zR, z̄L) and φ̄(zR, z̄L) is arbitrary in the interior of the integration

region, but on the boundary we must ensure that the selected geodesic (choice of gauge on

the null plane) touches the circle. This requirement becomes:

cotφ+ cot φ̄ = ±2R0 , (4.19)

where the upper sign holds for the outgoing family and the lower sign for the ingoing family

of null planes. Substituting all these into (4.8) gives:

1

2

∫
R

dzRdz̄L
2

(
∂R cot φ̄− ∂̄L cotφ

)
= −1

4

∫
R
dθtopdttop

(
∂θtop(cot φ̄− cotφ) + ∂ttop(cotφ+ cot φ̄)

)
= −1

4

∫
{ttop=π−cot−1R0}

dθtop

(
cot φ̄+ cotφ

)
+

1

4

∫
{ttop=cot−1R0}

dθtop

(
cot φ̄+ cotφ

)
= 2πR0 (4.20)
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4.4 Other locally AdS3 geometries

The results of this section extend essentially unchanged to all locally AdS3 (Bañados)

geometries [47]. The reason is that such geometries are obtained from pure AdS3 by large

diffeomorphisms — transformations which do not affect the structure of null planes, only

their boundary parameterization. But the two-form (4.2) is reparameterization-invariant.

We first explain the above statements in greater detail, and then address an inconve-

nience which arises when the large diffeomorphism produces a horizon.

Equivalence of all locally AdS3 geometries up to large diffeomorphisms. The

next paragraphs review standard material; good recent references include [48, 49]. A locally

AdS3 geometry can be written in the form:

ds2 =
du2

u2
−
(
dz

u
− uL̄(z̄)dz̄

)(
dz̄

u
− uL(z)dz

)
(4.21)

As before, we omit explicit factors of LAdS, which can be restored by dimensional analysis.

Specific examples of interest include L(z) = L(z̄) = 0, which is the Poincaré patch of AdS3,

and L(z) = L̄(z̄) = −c/24 ≡ −1/4 in our conventions, which describes pure global AdS3.

In AdS3/CFT2, functions L(z) and L̄(z̄) are expectation values of the holomorphic and

anti-holomorphic component of the stress tensor in the CFT2 state dual to the bulk geom-

etry. Such stress tensor expectation values can be brought down to zero by an appropriate

boundary conformal transformation:

z → f(z) and z̄ → f̄(z̄). (4.22)

Finding f(z) from L(z) involves ‘inverting the Schwarzian derivative’; this is a well studied

problem but its explicit solution will not be necessary for our purposes. Because map (4.22)

takes the CFT2 state to the vacuum on the line,9 it must extend to a bulk diffeomorphism

between geometry (4.21) and the Poincaré patch of AdS3. This diffeomorphism was written

down explicitly in [49] (see also [50]). Again, we will not need its explicit form in this paper.

Given a bulk curve in geometry (4.21), we are free to first apply the large diffeo-

morphism to go to Poincaré patch coordinates and only then write down formula (4.8)

to compute the length of the curve. Re-interpreting this Poincaré patch formula back in

coordinates (4.21) reveals that the domain of integration in all Bañados geometries must

always consist of null planes that intersect the curve. For, viewed as a coordinate change,

the diffeomorphism relating (4.21) to the Poincaré patch does not affect null planes or the

criterion of whether or not they intersect the bulk curve.

On the other hand, the diffeomorphisms under discussion are nontrivial physical trans-

formations because they do not vanish at infinity. This means that we should be careful

about potential effects of transformation (4.22) on the two-form (4.2). Luckily, the latter is

invariant under independent conformal transformations of its individual coordinates. This

is readily seen from the explicit form of:

ωAdS3 = (∂L∂Rs)dzLdzR + (∂̄L∂̄Rs̄)dz̄Ldz̄R

9Mapping to the vacuum on the circle can also be done, but then we would need to set the transformed

stress tensor to the appropriate Casimir energy density, which is L(z) = L̄(z̄) = −1/4.
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Since transformation (4.22) does not mix the left-moving and the right-moving coordinates,

it merely re-parameterizes the function s(zL, zR) (and likewise for s̄(z̄L, z̄R)), which leaves

the form of ωAdS3 unaffected.

To see this in more detail, observe that the bulk diffeomorphism identifies the geodesic

which connects (zL, z̄L) and (zR, z̄R) in geometry (4.21) with the geodesic that connects

(f(zL), f̄(z̄L)) and (f(zR), f̄(z̄R)) in the Poincaré patch. The only difference between the

lengths of the identified geodesics arises from the cutoff dependence introduced by f(z).

The constant cutoff u = µ in geometry (4.21) maps to the non-constant u = µ/f ′(z) in

the Poincaré patch [49]. From this, and the fact that in three bulk dimensions cutoffs

at either end shift lengths by additive constants, we deduce that lengths of geodesics in

geometry (4.21) equal

s(zL, zR) = log
f(zR)− f(zL)

µ/
√
f ′(zR)f ′(zL)

and s̄(z̄L, z̄R) = log
f̄(z̄R)− f̄(z̄L)

µ/
√
f̄ ′(z̄R)f̄ ′(z̄L)

, (4.23)

where the numerators reflect lengths of geodesics in Poincaré AdS3 at a constant cutoff.

Working purely in the CFT2, we could have obtained this well known result by using the

replica trick and evaluating the two-point function of twist operators in the (f(z), f̄(z̄))

conformal frame.

Now note that equation (4.23) only differs from the Poincaré AdS3 formula by a rescal-

ing of the cutoff. In particular, if we name the new coordinates (in which the state becomes

the vacuum) f(z) ≡ w (and f̄(z̄) ≡ w̄) then

s(zL, zR) = log
wR − wL

µ/
√

(dwR/dz)(dwL/dz)
and s̄(z̄L, z̄R) = log

w̄R − w̄L
µ/
√

(dw̄R/dz̄)(dw̄L/dz̄)
(4.24)

and therefore (4.22) only shifts
√
µ→

√
µ/f ′(z) (and likewise for the right-movers) relative

to the vacuum on the line. Importantly, this shift only enters s(zL, sR) as an additive piece

without joint dependence on zL and zR, so it drops out from the Crofton form. Thus, for a

bulk curve in a locally AdS3 geometry, we may equally well use the Crofton formula (4.8)

in the (z, z̄) frame or in the (w, w̄) frame in which the geometry is Poincaré AdS3 (albeit

subject to a non-constant cutoff):

∂2

∂zR∂zL
s(zL, zR)dzRdzL =

∂2

∂wR∂wL
log

wR − wL
µ/
√

(dwR/dz)(dwL/dz)
dwRdwL

=
∂2

∂wR∂wL
log

wR − wL
µ

dwRdwL (4.25)

We see that the algebraic form of the integrand ωAdS3 (equation (4.2)) is indeed unaffected

by conformal transformations, so if it works in one conformal frame, it must work in all

of them.

In summary, large diffeomorphisms that transform locally AdS3 geometries into one

another do not affect the validity of equation (4.8).

Horizons. When we extend diffeomorphisms (4.22) into the bulk, we generically find that

the transformation breaks down at special loci in the bulk. This happens, for example,
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when we map a horizonless geometry (such as global AdS3) into a geometry with a horizon

(such as a BTZ black hole). Formally speaking, equation (4.8) still applies in this case

— only we must remember that in most of its domain the function S(zL, z̄L, zR, z̄R) does

not compute boundary entanglement entropies but certain more general quantities, which

include entwinement [51]. However, in practice formula (4.8) becomes unwieldy. Null planes

(or rather, their equal time sections) wrap arbitrarily many times around the horizon, which

implies that the region of integration in (4.8) — understood as the boundary locus where

the null planes’ tops live — extends to future infinity.

There is a special circumstance, however, where we may extract utility from for-

mula (4.8) even in the presence of a horizon. Consider two curves Γ1 and Γ2, which

live in the same homotopy class of the fundamental group of the spacetime. Each of them

is intersected by null planes whose tops live arbitrarily far in the future on the asymptotic

boundary. But the set of null planes which intersect one and not the other is compact, and

can be integrated over in a practical way. Therefore, we highlight formula

length(Γ1)− length(Γ2) =
1

4

∫
{null planes σ}

j∗ωAdS3

(
nΓ1(σ)− nΓ2(σ)

)
(4.26)

as a special consequence of (4.10), which is useful even in the presence of a horizon. In

particular, if the bulk curves are homotopic then the support of integral (4.26) is compact.

5 Discussion

We have obtained Crofton formulas (3.4), which compute lengths of spacelike curves in

horizonless but otherwise general, asymptotically AdS3 geometries. Crofton formulas are

integrals over geodesics, which satisfy a certain relation to the curve. In (3.4), the requisite

relation is that the geodesics are part of a homotopy, which deforms one loop in the space of

geodesics into another. The beginning (ending) loop in this homotopy consists of geodesics,

which are null vector-aligned (NVA) to the ingoing (outgoing) orthogonal lightsheet of the

curve. As the geodesics we consider are oriented, we must in addition stipulate that in one

of the two loops the geodesics are endpoint-reversed.

We took on the problem of covariantizing the Crofton formula in the hope of informing

a future quest for an understanding of bulk time, akin to the present understanding of how

holographic bulk space emerges from quantum entanglement in the boundary theory. Let

us list the lessons we reaped from this exploration:

• Underlying the static differential entropy formula (2.4) is the notion of tangency

between a curve and a geodesic segment. In the covariant case, the tangency condition

is replaced by a weaker one: that the orthogonal lightsheets shot from the curve and

from the geodesic be tangent. This is the null vector alignment (NVA) condition [15].

Thus, in going from the static (2.4) to the covariant (2.3) differential entropy, we

effectively trade geodesic segments for local patches of lightsheets.

• Weakening the required notion of tangency provides a large freedom in the differential

entropy formula and an even larger ‘gauge freedom’ for Crofton formulas. Geomet-
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rically, this freedom is generated by null rotations in the bulk — the local symmetry

that stabilizes a local piece of a lightsheet.

• In the interior of the integration region in the Crofton formula, the ‘gauge freedom’

means that we no longer integrate over intersecting geodesics, but over a more ab-

stractly defined collection of them. The integral covers the image of a homotopy: a

continuous way of deforming geodesics which are NVA to the curve’s ingoing light-

sheet into those, which are NVA to the curve’s outgoing lightsheet.

• Contrary to what one may have inferred from the static Crofton formula (2.11), even

in the static case there is nothing special about geodesics which intersect the curve.

The example discussed in section 4.3 is a case in point: any asymmetric choice of

‘gauge’ φ 6= φ̄ will bring into the integral (4.20) geodesics that do not intersect the

static circle.

Characterizing the integration region as a homotopy that links the two sets of NVA

geodesics is not very revealing because it follows so directly from applying Stokes’s theorem

to the differential entropy formula (2.3). For general geometries, we have not found a crisper

characterization of the integration region. If it can be formulated, it must rely on the NVA

condition which, as we explained in section 2.2, is a manifestation of the null rotation

symmetry of sufficiently small neighborhoods of points on the curve. This suggests that a

more satisfactory reading of formula (3.4) will rely on a deeper holographic understanding

of bulk null rotations and of their fixed axes — bulk null rays. Lightlike separation in the

bulk was previously studied from a holographic perspective in [45], but we believe that

further scrutiny, perhaps along information theoretic lines, may be fruitful.

In locally AdS3 geometries, however, our results simplify dramatically:

• Instead of local patches of lightsheets, in pure AdS3 we may work with globally defined

lightsheets (null planes), which are fixed sets of null rotations.

• Null planes give a natural way of parameterizing the two-dimensional integral (3.4).

No matter how we exploit the ‘gauge freedom’ in eq. (3.4), the integral always covers

the same null planes.

• The final answer, eq. (4.8) with measure (4.16), splits up into two separate pieces,

which depend only on the left-moving (respectively right-moving) component of the

‘gauge choice,’ φ (respectively φ̄). This is a consequence of the unbroken SO(2, 1)×
SO(2, 1) global conformal symmetry.

• The two summands in (4.8) are only ‘coupled’ at the boundary of the integration

region where the NVA condition is imposed, as in eq. (4.19) in the example in sec-

tion 4.3.

These simplifications occur because a null rotation in pure AdS3 stabilizes a globally de-

fined null plane. This is why in pure AdS3 null planes become the basic objects that label

the geodesics to be integrated over. In our view, this fact contains some hint for covariantiz-

ing the program of deriving geometry from quantum entanglement. For example, could
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one devise tensor networks, whose individual tensors correspond to null planes instead of

points [7–9] or geodesics [21] on a spatial slice?

Our final remark concerns isolating the two independent components of the pulled-back

measure (4.16). As explained in refs. [30, 36], the two-form (4.2) can be identified with the

modular Berry curvature and, as a consequence, its integrals compute modular Berry trans-

formations — generalizations of the familiar Berry phases [52, 53], which are induced by

varying the modular Hamiltonians. For example, equation (2.10) computes the difference

between the modular Berry transformations induced by drawing θR-dependent modular

Hamiltonians from the continuous family of intervals {(θupper
L (θR), θR)}|θR , relative to the

family of intervals {(θlower
L (θR), θR)}|θR . Eq. (2.10) evaluates to a difference of two lengths

because in this case the modular Berry transformation is a translation along the geodesic.

More generally, a modular Berry transformation lives in the commutant of the given

modular Hamiltonian. In pure AdS3, global conformal symmetry SO(2, 2) alone guarantees

that this commutant must be at least as large as SO(1, 1) × SO(1, 1). Translations along

the geodesic correspond to one combination of the two SO(1, 1)s; the other one corresponds

to modular boosts generated by the modular Hamiltonian itself. The way to capture this

effect is to flip the relative sign in eq. (4.2) or in (4.16). Thus, integrals of the form

ω
(−)
AdS3

= −(∂L∂Rs)dzLdzR + (∂̄L∂̄Rs̄)dz̄Ldz̄R (5.1)

or

j∗ω
(−)
AdS3

=
1

2

(
∂R cot φ̄+ ∂̄L cotφ

)
dzRdz̄L (5.2)

compute the component of a modular Berry transformation, which is an evolution with

the modular Hamiltonian over some finite amount of modular time. In the bulk of AdS3,

this is a finite boost in the plane orthogonal to the geodesic. In the example of section 4.3,

we can compute this modular boost by substituting the integrand of eq. (4.20) with (5.2)

and setting the limits of integration to any generic family of geodesics that are NVA to

the circle so long as φ 6= φ̄. More details on the bulk picture of this construction will be

given in [54].
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