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1 Introduction

Recent progress [1–7] in quantum gravity has shown that spacetime geometry can emerge
from quantum entanglement. This emergence provides appealing explanations for many
intuitive properties of the physical world, including the existence of gravity [8–11], condi-
tions on the allowed distribution of energy and matter [12, 13], and the unitarity of black
hole dynamics [14, 15]. Most of these developments have taken place in the context of
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the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence [16, 17], although
some proposals relating geometry and entanglement also apply to flat or de Sitter geome-
tries [5, 7, 18–20]. As an example of the holographic principle [21, 22], AdS/CFT describes
a duality between a (d+1)-dimensional bulk theory with the presence of gravity in asymp-
totic AdS spacetime, and a d-dimensional conformal field theory (CFT) without gravity
on the boundary. For the purposes of studying quantum gravity, the duality is especially
powerful because the CFT is an object whose basic rules we understand. However, much
remains to be understood about the relationships between the two sides of the duality.

One such challenge in the AdS/CFT duality is to understand how the boundary de-
grees of freedom without gravity can reorganize themselves into a higher dimensional bulk
configuration with gravity. This is called the problem of bulk reconstruction, and this
paper reports two results on this topic. First, we describe a perturbative procedure to
reconstruct the bulk geometry given an appropriate set of boundary entanglement data.
Second, we show that this reconstruction procedure can detect whether the putative bulk
dual is semi-classical in the sense of having only weak fluctuations about an average value.

Our first result builds on a number of works that study bulk metric reconstruction
using geodesic lengths [23–26] or entanglement entropy [27].1 Early efforts in this area
often utilized bulk symmetries to simplify the problem of recovering the bulk metric from
minimal geodesic data [35–37]. Later work on differential entropy and hole-ography [27, 38]
furthered our understanding using information theoretic quantities and suggested a method
to recover the bulk, although no explicit reconstruction formula was given for generic cases.
More recently, it was shown that in certain cases, static geometries [39], or even the full
dynamical metric [40], can be fixed non-perturbatively by boundary entanglement data
without any prior knowledge of the bulk symmetries. However, barring a few well-known
examples with symmetries, there does not exist a reconstruction procedure that directly and
explicitly converts entropy data into bulk metrics. Our work addresses this missing element.

Our second result arises from the basic issue that we have a far from complete un-
derstanding of what kind of boundary states correspond to semi-classical bulk geometries.
Some necessary conditions are expected from holographic entropy inequalities [41] and
from consistency relations for any putative metric reconstruction procedure.2 In general,
we do not expect all quantum states from the boundary CFT to correspond to well-defined
semi-classical geometries in the bulk. On the contrary, we expect an abundance of non-
geometrical states obtained, for instance, by superposing states with macroscopically dis-
tinct dual geometries such as the AdS vacuum and an AdS black-hole geometry. Therefore,
to better understand holographic duality, we must also address the necessary and sufficient
conditions under which a bulk geometry can emerge from the boundary state. Our work
also addresses this open question.

1More generally, but less explicitly, there are also proposals for bulk reconstruction using tensor net-
works [4, 28–31], modular Hamiltonians [32], and light-cone cuts [33, 34]. These rely on different boundary
data and methodologies which we will not discuss here.

2One typically proceeds by assuming the boundary state has a bulk geometry and running the recon-
struction procedure. If the boundary state actually does not have a bulk geometry, then the reconstruction
procedure will lead to internal inconsistencies.
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In this paper, we study the above issues in the context of AdS3/CFT2 using an ap-
proach based on the tensor Radon transform. The method is for metric solutions that
are close to AdS3, hence it is restricted at present to perturbative problems. To linear
order in the perturbation, each quantum state on the boundary corresponds to a constant
time slice in the bulk, so we provide a numerical reconstruction algorithm that takes the
entanglement entropies of intervals in the boundary state as input, and outputs the best-fit
bulk metric tensor of the spatial slice in the linearized regime. This solution is unique up
to gauge transformations. The algorithm also provides a quantitative indicator of whether
the boundary data admits a bulk geometric description near AdS3. This is measured by
the quality of the fit, which intuitively quantifies how far the boundary entanglement data
of a given state is from being geometric. A poor quality of the fit indicates the boundary
data lack consistency with a semi-classical geometry.

As a proof of principle, we explore several reconstructions numerically in holography
and with a 1d free fermion CFT. We find that free fermion ground states in the presence
of disorder and a mass deformation do not correspond to a well-defined bulk geometries.
Likewise, mixtures of states where each is dual to a distinct classical geometry can also
fail to have a well-defined bulk geometry. In addition to these static examples, the method
is applied to several dynamical scenarios including global and local quenches in the free
fermion model and entanglement dynamics in a toy model scrambling system. In the
case where the dynamics is scrambling, we find that the bulk description is qualitatively
consistent with an in-falling spherical shell of bulk matter experiencing gravitational at-
traction. These results further demonstrate that it is both feasible and interesting to study
AdS/CFT using tensor Radon transform techniques coupled with modest (laptop-scale)
computational resources.

The remainder of the paper is organized as follows. In section 2, we briefly review the
basic assumptions, especially how entanglement entropy can be tied to metric tensors via
the tensor Radon transform. We give a general review on the tensor Radon transform in
appendix A. Its adaptation to a hyperbolic geometry and the gauge fixing procedure are
found in appendix B and appendix C, respectively. In section 3, we introduce the numerical
reconstruction procedure, which we elaborate in detail in appendix D. In section 4, we
apply the reconstruction algorithm to static and dynamical boundary entanglement data.
In section 5, we discuss these reconstructions and how geometrical and non-geometrical
can be distinguished using the relative reconstruction error. Finally we conclude with
some remarks and directions for future work in section 6.

2 Boundary rigidity and bulk metric reconstruction

We begin with the vacuum state |0〉CFT of a hologaphic CFT. Because this state has
conformal symmetry at all scales, it must be dual to empty AdS [16]. When the bulk theory
is Einstein gravity coupled to matter, the bulk geometry controls the leading entanglement
structure of the CFT state via the Ryu-Takayanagi (RT) formula [2, 3]. Given a boundary
region A, the RT formula computes the von Neumann entropy S(A) in terms of a minimal
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area surface,

S(A) = 1
4G min

γA
Area[γA], (2.1)

where Area[γ] is the area of γA, G is Newton’s constant, and the minimum runs over bulk
surfaces γA that are homologous to A. In the time symmetric case where RT applies, all of
these surfaces can be taken to lie in a time-symmetric spacelike surface Σ. In other words,
the Ryu-Takayanagi formula says that the von Neumann entropy of a state on a boundary
subregion is given by area of the minimal area bulk surface that subtends the region.

If we have access to a boundary state, in the sense of knowing its von Neumann
entropies on all (connected) subregions, then the RT formula translates these entropic
quantities into a set of boundary anchored minimal surface areas. Because these minimal
surfaces all lie on the spatial slice Σ, recovering the bulk geometry from entanglement
reduces to a pure geometry problem where we try to find the interior metric gij of a Rie-
mannian manifoldM while knowing only the areas of minimal surfaces that are anchored
to its boundary ∂M. This is precisely the statement of the boundary rigidity problem [42],
which is well-studied in the field of integral geometry [43].

For this work, we focus exclusively on the case of AdS3/CFT2, where minimal surfaces
are simply geodesics and spatial slices are 2d Riemannian manifolds. For a class of 2d
Riemanian manifolds (called simple manifolds), it is known that the lengths of all boundary-
anchored geodesics indeed fixes the bulk metric uniquely up to gauge equivalence [44].
Because the single interval von Neumann entropies in the ground state of a 2d CFT are
universally determined by the central charge [45], the RT formula combined with boundary
rigidity completely fixes the bulk geometry to be that of hyperbolic space [46, 47]. Of
course, this is precisely the induced geometry on a time-symmetric slice of AdS, as it had
to be based on the grounds of symmetry.3

It is natural to ask whether we can exploit the power of the RT formula and the
results from boundary rigidity theory to reconstruct dual geometries from boundary states
other than the vacuum. For instance, given a generic non-vacuum state |ψ〉CFT, can we
apply the same principles to reconstruct the metric tensor for the bulk geometry from the
set of boundary-anchored geodesic lengths? There are several obstacles that prevent us
from recovering the bulk metric tensor exactly using the above methods, even if |ψ〉CFT
has a well-defined dual geometry. First, since it may not be possible for minimal surfaces
(or extremal surfaces in the dynamical case [48]) to foliate entire space(time) manifold,
thus we can only reconstruct regions where there is at least a local foliation with minimal
or extremal surfaces. Second, even for the regions whose geometries are fixed by the
entanglement data [40], there is no explicit reconstruction formula for the general boundary
rigidity problem.

3Since the lengths of geodesics on an asymptotically AdS spacetime are divergent when extended to the
boundary, it is understood that the geodesics are actually regularized to be anchored on a cutoff surface
that is some finite distance away from an arbitrarily chosen coordinate in the bulk. For the rest of this
work, we will always impose a UV cutoff for the CFT, or equivalently, an IR cut off in the bulk geometry
so that the geodesic lengths stay finite.
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Although such problems are difficult to solve in general, it is typically easier to recon-
struct the difference between the dual geometry and a known reference, or background,
geometry. This is known as the linearized boundary rigidity problem [42, 43]. In this work,
instead of a direct reconstruction of the of the dual geometry for |ψ〉CFT, we reconstruct
the differences in the entanglement patterns as linearized metric perturbations around the
AdS background.

To do so, we first fix the background geometry to be vacuum AdS3. Working with a
given constant-time slice, let us suppose that |ψ〉CFT has a slightly different entanglement
structure compared to |0〉CFT, and is dual to a bulk geometry with a metric that is close,
but not equal, to that of pure hyperbolic space on our time-slice. Then by the RT formula,
the boundary-anchored geodesic lengths now differ slightly from those of pure hyperbolic
space. For a given boundary subregion A, the change in the geodesic length anchored at
A is related to the vacuum subtracted entropy of the state by

∆L(A) = Lψ(A)− L0(A) = Sψ(A)− S0(A)
4G , (2.2)

where Lψ(A) and L0(A) denotes the lengths of geodesics anchored at the end points of A
for states |ψ〉CFT and |0〉CFT, respectively.

This change in geodesic length corresponds to a change in the bulk metric

g
(0)
ij 7→ gij = g

(0)
ij + hij , (2.3)

where g(0)
ij is the pure hyperbolic metric and hij is the perturbation. For the linearized

problem, the goal is to find hij to leading order, with hij viewed as a rank two symmetric
tensor field on the hyperbolic background. Note that geodesics of the background metric
remain geodesics of the perturbed metric to first order in h since geodesics satisfy an
extremality condition. Changes in entanglement due to variations in the minimal surface
itself are of order h2 [8]. The leading order change in geodesic length can then be written as

∆L(A) = Lψ(A)− L0(A)

=
∫
γA

√
(g(0)
ij + hij)γ̇iAγ̇

j
A ds−

∫
γA

√
g

(0)
ij γ̇

i
Aγ̇

j
A ds

= 1
2

∫
γA

hij γ̇
i
Aγ̇

j
A ds+O(h2), (2.4)

where γA is the geodesic of the hyperbolic background anchored at the end points of A and
γ̇iA denotes unit tangent vectors along γA. The tangent vectors are normalized such that

g
(0)
ij γ̇

i
Aγ̇

j
A = 1. (2.5)

For simplicity, we will use L(γA) and L(A) interchangeably, often dropping the ex-
plicit dependence on A and simply writing L(γ) when there is no confusion, with the
understanding that γ is a boundary-anchored geodesic.

To make concrete progress in this work, we simplify the full problem by taking the
linearized bulk result for changes in geodesic length to be equal to the full change in
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boundary entanglement entropy,

∆L(γ) ≈ 1
2

∫
γ
γ̇iγ̇jhij ds. (2.6)

This approximation enables calculations; going beyond it may be technically non-trivial,
but it is likely not a fundamental obstacle.

With this simplification, the length perturbation becomes the integrated longitudinal
projection of the metric perturbation along a geodesic γ. This is precisely the tensor Radon
transform R2[h] of the metric perturbation hij , which is discussed in [49]. Also see [50] for
a related proposal using the Radon transform. Given a symmetric 2-tensor field hij , the
tensor Radon transform R2[h] defines a map from the space of boundary geodesics to the
complex numbers given by

R2[hij ](γA) ≡
∫
γA

hij γ̇
i
A(s)γ̇jA(s) ds, (2.7)

where γA is the background geodesic anchored at the boundary of A.
As an aside, we note that there exist several related notions of Radon transform. A

standard Radon transform on a Riemannian manifold is defined by integrating some quan-
tity on a minimal co-dimension one surface, whereas an X-ray Radon transform is defined
similarly, but for a dimension one surface, i.e., a geodesic. For two spatial dimensions, as
is the case we consider here, the two definitions coincide. For more details on the Radon
transform, see appendix A.

Formally, the bulk metric deformation can be recovered by inverting the tensor Radon
transform. Schematically, we can write

R−1
2 [2∆L] = R−1

2 [R2[hij ]] = hij , (2.8)

where R−1
2 denotes some (not yet properly defined) inverse Radon transform, and where

∆L denotes the collection of boundary anchored geodesic length deviations.
Throughout, we work exclusively in the perturbative regime, to leading order in

h, which allows us to relate geodesic length deformations to the Radon transform
through (2.4). It also ensures that the resulting geometric solution, when it exists, is
uniquely determined by the boundary entropy data [44, 47].4 We wish to comment here
that despite restrictions to the perturbative regime, hij can still capture highly non-trivial
physics. Indeed, standard calculations of gravitational waves and the dynamics of typical
stars, planets, and galaxies are all done in the weak-field regime.

Before we can proceed with the inversion process, we must give meaning to the inverse
Radon transform. For this purpose, it is important to note that the Radon transform has
a non-trivial kernel: given any vector field ξ on M such that ξ|∂M = 0, we necessarily have

R2[∇iξj +∇jξi] = 0. (2.9)
4In general, we are not guaranteed a unique solution for the bulk metric, even if one exists, because

the assumption that the manifold is simple breaks down for sufficiently large deviations from a constant
curvature background [23]. Working in the perturbative limit ensures that the Radon transform remains
well-defined. See appendix A.
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Physically, any Radon transform of a pure gauge deformation that reduces to the identity
at the boundary is zero. The presence of this kernel is natural because the transform
relates geodesic lengths (which are gauge invariant) to metric tensors (which are not), so
the Radon transform can only be injective up to gauge.

In the presence of such a kernel, we must fix a gauge prescription in order to recover a
metric tensor uniquely. We will use a prescription which we call the holomorphic gauge [51].
In a crude sense, the holomorphic gauge preferentially reconstructs the trace part of the
metric at the cost of diminishing non-zero contributions to the off-diagonal.5 This provides
two independent gauge constraints in two spatial dimensions, which would allow us to
proceed with the reconstruction. For a more detailed description of the gauge constraints
and Radon transform on a hyperbolic background, see appendix B.

As a final comment, in the above discussion we have explicitly assumed that the bound-
ary state corresponded to a well-defined bulk geometry. Below we will construct algorithmic
machinery which can actually carry out the reconstruction in this case. However, we will
also see that the algorithm can be applied to a more general class of states, with interest-
ing results.

3 Numerical methods for reconstruction

The inversion formula for the flat-space scalar Radon transform is a well-known classical
result in integral geometry [43]. Explicit reconstruction formulas for scalar and vector
Radon transforms are also available for constant negative curvature backgrounds [44, 52].
However, there are currently no explicit reconstruction formulas available for higher rank
tensors on curved backgrounds, although several results in the literature come close to
a solution in various regimes [44, 51–53, 53–55]. In the absence of an exact analytic re-
construction formula, we instead draw inspiration from the general principles employed in
seismology to study the Earth’s interior [56] in developing our numerical method.

In this section, we give a brief overview of the method. The full details of the dis-
cretization, gauge fixing, and solutions for the constrained least square problem can be
found in appendix D.

3.1 Discretization and optimization procedures

The basic idea behind our numerical reconstruction is straightforward. We first discretize
the bulk and boundary regions into a finite number of tiles. To each tile T in the bulk,
we associate a tensor hij(T ), and for each interval A on the boundary, we associate a
geodesic (of the background metric) γA anchored on the endpoints of the interval. In
two spatial dimensions, a rank-2 symmetric tensor has 3 independent degrees of freedom.
Each geodesic anchored at the end points of an interval generates a linear equation via the

5There exists other gauge fixing prescriptions as well. The most commonly considered prescription is
known as the solenoidal gauge. See appendix A. We choose an alternative gauge prescription for various
reasons of convenience. For more details on gauge fixing, see appendix C.
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discretized version of the Radon transform (2.7), defined by

2∆L(γA) = R2[hij ] ≈
∑
T
W ij(T , γA)hij(T ), , (3.1)

where the tensor W ij contains information about the direction of the tangent vectors γ̇A,
as well as the arc length ∆s(γA, T ) of the geodesic segment that passes through each tile
T . In equation (3.1), we sum over all bulk tiles T and over repeated indices. Naturally,
one has W ij(T , γA) = 0 if the geodesic does not pass through a tile T .

We can abbreviate equation (3.1) in matrix form as

b = Wh, (3.2)

where W and h are vectorized representations of W ij and hij , and where b denotes the
corresponding geodesic length deformations. As a result, given a specific discretization, the
discretized forward Radon transform can be written as a linear map W : VB → Vγ from
the space of tile-wise constant bulk tensor valued functions VB to the space of boundary
anchored geodesic lengths Vγ . Both spaces are finite dimensional due to the discretization.

Since the forward Radon transform has a non-trivial kernel in the continuum limit,
we must impose a gauge fixing condition to recover a unique solution. We give the full
detail of the gauge fixing conditions and the accompanying partial differential equations in
appendix C. To ensure the problem is well-posed, we set the holomorphic gauge constraints
as discretized partial differential equations, which we formally write as

Ch = 0. (3.3)

Here, C denotes the constraint matrix representing the partial differential operator asso-
ciated with the gauge constraint. Reconstruction of the metric perturbation then corre-
sponds to finding the solution to the linear equations (3.1) above, subject to the linear
constraints (3.3).

In practice, there does not always exist exact solutions hij which satisfies the con-
strained system. This can be due to a variety of reasons, such as the presence of dis-
cretization errors, or if the boundary data is simply inconsistent with a geometric bulk,
i.e., if the boundary entropy function fails to lie within the range of the forward Radon
transform [43, 44, 51]. Instead of trying to look for an exact solution, it is more natural to
look for the best-fit solution h∗ which solves the constrained minimization problem

min
h
‖Wh− b‖,

subject to Ch = 0. (3.4)

The objective function is linear and we are guaranteed a unique global minimum. Thus
we will say that h∗ is the optimal geometric solution corresponding to boundary data b.
We will also write h∗(b) when we need to denote the dependence of h∗ on the initial
boundary data.

Even with the existence of an optimal reconstruction h∗, we do not expect generic
boundary data to correspond to a geometric dual in general. A useful quantity is the
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relative error of reconstruction, which measures the tension between the best-fit solution
and the actual data. We can consider various relative errors. If we know the exact bulk
solution, say h0, then we can denote the bulk relative error as

Ebulk = ‖h∗ − h0‖
‖h0‖

, (3.5)

where h∗ is the bulk metric tensor reconstructed from the forward transform of h.
More commonly however, we do not have access to an a priori geometric state. Instead,

we have a CFT state |ψ〉CFT from which we can extract discretized boundary data bψ. In
this case, we can likewise consider the boundary relative error, defined by

Ebdy = ‖W[h∗(bψ)]− bψ‖
‖bψ‖

. (3.6)

The boundary relative error is simply the normalized distance from bψ to the subspace
of boundary data vectors with geometric duals, which is the same quantity minimized by
the constrained least squares problem (3.4). The boundary relative error therefore serves
to quantify the degree to which a state is geometric or non-geometric. We will discuss in
greater detail in section 5 how the relative errors can be used to distinguish geometric data
from non-geometric data on the boundary.

To ensure the reliability of the reconstruction algorithm for the inverse tensor Radon
transform, we also perform the numerical inversion of boundary data b whose bulk tensor
field is known. We produce such boundary data by preparing various known bulk tensor
valued functions h0 in the holomorphic gauge then generating its corresponding geodesic
data b0 through a forward tensor Radon transform. Subsequently, we apply the numerical
reconstruction to the geodesic data and compare the reconstructed h∗(b0) to the original
test function h0. We find remarkable agreement in our reconstructions. Absent rigorous
analytic convergence guarantees, the successful benchmarking of the algorithm on known
cases serve to provide confidence in the fidelity of the reconstruction. Details of this
benchmarking process are given in appendix E.

4 Reconstructed geometries

The forward tensor Radon transform is generally neither injective nor surjective. There-
fore, not all boundary data can be interpreted as the Radon transform of a bulk tensor
field. However, it may be possible to derive necessary and sufficient characterization of
what boundary data corresponds to a bulk tensor field. Such a criterion is known as a
range characterization of the tensor Radon transform. Ranges characterizations of various
transforms have been discussed extensively for scalar and vector cases on curved back-
grounds and tensor cases on flat background [43, 44, 51]. However, it remains an active
topic of research for transforms on curved background for higher rank tensor fields.

Although we lack a rigorous analytic characterization for the tensor Radon transform,
our numerical methods can still effectively capture the parts of the entanglement data that
do not lie within the range of the tensor Radon transform. Since the Radon transform is

– 9 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
3

linear, any contribution that cannot be fitted to a bulk tensor field in the global best-fit
reconstruction effectively captures the non-geometric contribution for the discrete recon-
struction. More specifically, the relative boundary error (3.6) serves as a indicator for the
fraction of the boundary entropy data which does not lie within the range, i.e., the fraction
which can be considered non-geometric.

In the upcoming sections, we reconstruct geometries from boundary entanglement
entropies generated by holographic systems as well as those generated numerically from a
1d free fermion system. We then discuss how their relative boundary errors Ebdy can be
used as a standard to distinguish states that have a well-defined classical dual geometry
from the ones that do not. This provides a direct quantitative condition for whether a
state is geometric.

For entanglement entropies generated by holographic systems, we expect a weakly
coupled gravity dual, and therefore spacetime geometries that are generically classical at
low energies. The same can not be expected for a generic many-body quantum system at
criticality [57], although they may still capture interesting features using a dual spacetime
prescription. For instance, in a free fermion system, the conformal field theory has neither
strong coupling nor a large central charge. Although it is unclear what the dual bulk
description would be, it is generally expected that any geometric description must be one
where gravity is strongly coupled, the leading order RT formula does not apply, and the
spacetime is dominated by quantum effects. Therefore, the reconstruction is likely poor in
the absence of a large number of symmetries. We will find that numerical evidence support
these basic intuitions.

It is difficult to present certain reconstructions from dynamical systems in a paper. A
list of the animated reconstructions for various dynamical processes are linked here.6

4.1 Holographic reconstructions

As a benchmark for holographic geometry reconstructions, we first reconstruct the metric
for the thermal AdS geometry in the linearized regime. The entropy data we use are gen-
erated by the minimal geodesic lengths in a BTZ geometry [58] using the Ryu-Takayanagi
formula. Since the data corresponds to a bulk geometry by construction, the reconstruction
should show good agreement with said geometry at linear order. This includes the correct
qualitative behaviour in the bulk, and a positive metric perturbation present deeper into
the bulk. It must also afford relatively small reconstruction errors, which can be attributed
to factors such as discretization errors, approximations made in linearization, and working
on a fixed hyperbolic background despite the changes in bulk geometry.

Indeed, as shown in figure 1, we find good agreement with our expectations in the
reconstruction. By probing deeper into the bulk, the geodesics for a thermal geometry
travel through larger distances, resulting in a net positive change in the metric perturba-
tion. Note that at linear order, we can not detect a change in bulk topology, which the

6Link: https://www.youtube.com/playlist?list=PLCjJ3kjqxOfw1aIa5c0X6KSpox1-AjM5b.
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Figure 1. Thermal state reconstruction. Plot shows the individual tensor components h11, h12, h22
of the metric perturbation from left to right, respectively. The boundary relative errors are Ebdy .
10−2 across a wide range of temperatures.

entanglement data dual to a BTZ geometry should predict. This is because of the fixed
background metric.7

Motivated by entanglement dynamics in holography, we can also construct heuristics
for the entanglement growth of a boundary theory. For instance, under a global quench,
we expect qualitative growth of entanglement to be captured by

SA(t) ≈ min{svt, s|A|} (4.1)

for t ≥ 0, where entanglement for any region will grow linearly in time after the initial
stage, until the entropy satisfies a volume law [59, 60]. Here s denotes the entropy density,
v the speed of entropy growth, and t the time that has elapsed since the quench. The
size of the boundary interval is denoted by |A|. The corresponding metric and curvature
perturbations are shown in figure 2.

As the system thermalizes, larger subregions have a volume law entropy. The wavefront
of the entanglement spread is reflected in the bulk as a spherically symmetric perturbation
moving from the boundary to the center. Assuming Einstein gravity, which holds for
holographic CFTs, the curvature perturbation δR also reflects the bulk matter distribution
through the linearized Hamiltonian constraint for each instance of time [49]. Therefore,
this thermalization process is consistent with the collapse of a spherical shell of matter [59].

4.1.1 Mixture of thermal states

There are also instances where we do not expect a well-defined geometry to exist. For ex-
ample, when the state is taken from a theory where the bulk is strongly coupled and/or the
state is a macroscopic superposition of certain classical geometries, quantum gravitational
effects can dominate, leading to a breakdown of the classical geometric description.

7Suppose the background metric is updated using the new found metric perturbation. Then we should
recover the fact that the corrected geodesics avoid the central region of the bulk. However, geodesic
avoidance alone does not necessarily indicate the formation of a horizon. For instance, adding a single
massive particle in AdS will lead to a back-reacted geometry where geodesics avoid the region near the
inserted mass.
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(a) Component h11.

(b) Linearized scalar curvature perturbation.

Figure 2. Metric perturbation from volume law entropy growth (4.1). Plots are ordered from left
to right as time increases. We only give h11 for the sake of clarity, because h12 ≈ 0 and h22 ≈ h11.
The boundary relative error is Ebdy ≈ 0.03.

In this section, as an example of a potentially non-geometric holographic state, we look
at mixtures of thermal AdS geometries at various temperatures. We will consider states of
the form

ρ = pρ(T1) + (1− p)ρ(T2), (4.2)

where ρ(Ti) are thermal states of a CFT with distinct temperatures T1 and T2. From [61],
the von Neumann entropy of the mixture is estimated as

S(ρA) = S(ρ1,A) + S(ρ2,A) +H(p), (4.3)

where we write ρi,A to denote the reduced state of ρ(Ti) on a boundary region A, and where

H(p) = −p log p− (1− p) log(1− p) (4.4)

is a Shannon-like term that corresponds to the entropy of mixing [62]. Physically, such a
state can be created by superposing two thermofield double states at different tempera-
tures, and then tracing out one side of the wormhole. For CFTs with strong bulk gravity
where GN ≈ 1, we find the superposition incurs a large error, indicating non-geometric con-
figurations in the bulk. However, for a CFT with a weakly coupled dual where GN � 1,
the geometry smoothly interpolates between the two temperatures at the linearized level,
consistent with our expectation that the entropy operator is proportional to the area op-
erator at leading order in N (figure 3). In the language of Radon transform, this is caused
by the entropy of mixing H(p) being a non-geometrical contribution.
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Figure 3. Component h11 of a mixture of two thermal geometries at two distinct temperatures.
Top diagram for GN ≈ 1 and bottom for GN � 1, both with LAdS = 1. From left to right, we
increase the mixing ratio p and the geometry transitions smoothly from one at lower temperature
to the other at higher temperature when the gravitational coupling is weak. The reconstruction
is dominated by artifacts and have large error if the coupling is strong, leading to a contribution
GNH(p) in the leading order.

4.2 1D free fermion

Given that the reconstruction procedure relies only on the von Neumann entropy of a state,
we may also apply it to various quantum many-body systems where we do not necessarily
expect the conformal field theory to be dual to a semi-classical bulk theory with weakly
coupled gravity. The lack of a semi-classical geometric dual will generally be reflected in
the presence of a large boundary reconstruction error. One example where the separation
between geometric and non-geometric states is particularly manifest is the contrast between
the reconstruction of holographically motivated data and that of a 1d free fermion.

Generic low-energy states for free fermion systems are generally believed to have a
highly quantum bulk because the conformal field theory is non-interacting, and has a small
central charge. Heuristically, the strong-weak nature of the holographic duality suggests
that such systems should result in a strongly coupled bulk geometry, if such geometries
even exist. In this section, we give a few examples indicating that generic excited states in
the free fermion system are indeed non-geometric. However, we shall also see that certain
large-scale geometric properties may nevertheless be present, even if the overall state is
ostensibly non-geometric.

For our reconstruction, we consider a 100-site massless free fermion system with peri-
odic boundary conditions, and with Hamiltonian

Ĥ0 = −
∑
i

â†i âi+1 + h.c., (4.5)

where, as usual, the creation and annihilation operators satisfy the canonical anti-
commutation relations

{âi, â†j} = δij , {âi, âj} = 0, {â†i , â
†
j} = 0. (4.6)
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We shall also consider various quench dynamics and deformations of the free fermion
system.

The free fermion system is described by a (1 + 1)-d conformal field theory in the
thermodynamic limit, with central charge c = 1/2 [63]. Here we study directly the regulated
lattice model. Any such model of non-interacting fermionic modes can be studied efficiently
numerically with a cost scaling polynomially with the number of fermion modes N . In
particular, we can compute all of the single interval entanglement entropies via [64]. The
key point is that the state of the system is Gaussian. In particular, given a subset A of the
fermions, the reduced density matrix is ρA ∝ e−KA with KA quadratic in â and â†,

KA = â†kAâ. (4.7)

Here kA is an |A| × |A| Hermitian matrix that determines all correlation functions of
fermions in A. It is related to the 2-point function via

GAij = 〈â†i âj〉
∣∣
i,j∈A =

( 1
ek

T
A + 1

)
ij

. (4.8)

The entropy of A is then determined by the eigenvalues of kA, but there is also a direct
formula in GA:

S(A) = −tr
[
GA lnGA + (1−GA) ln(1−GA)

]
. (4.9)

To fix our background geometry, we numerically compute the ground state entangle-
ment of the critical Hamiltonian Ĥ0. To consider non-vacuum emergent geometries, we
consider states |ψ〉 6= |0〉, which are not necessarily energy eigenstates of Ĥ0. For instance,
these excited states can be generated by first deforming the Hamiltonian away from criti-
cality through a mass deformation

Ĥ0 7→ Ĥ0 +mĤ1, (4.10)

and then finding the ground state |ψm〉 of the perturbed Hamiltonian. For small m, the
new ground state |ψm〉 is generically an excited state with relatively low energy in the
unperturbed system.

We will study reconstructions in both the static and dynamical cases. For the static
case, we reconstruct the emergent geometry of the new ground states |ψm〉 by finding the
best-fit geometry using the discrete Radon transform. We do this for a number of distinct
values of m. For the dynamical case, we consider the quench dynamics corresponding
to the deformation Ĥ1. We start with some fixed deformed ground state |ψm〉 and then
time evolve the state with the free Hamiltonian Ĥ0 and reconstruct the geometry that
corresponds to each time step: |ψm(t)〉 = exp(−itĤ0)|ψm〉.

4.2.1 Local deformations

In this section and the next, we will consider deformations of the form

Ĥ1 =
∑
i∈S

â†i âi+1 + h.c., (4.11)
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Figure 4. Components of the reconstructed metric tensor perturbation corresponding to the
ground state of a mass deformed Hamiltonian, with the deformation located at a single site located
along the positive x-axis. The boundary relative error is Ebdy ≈ 0.62.

wherem is a small positive parameter, and where S is a set of sites where we introduce such
deformations. The perturbation serves to deform the ground state wavefunction around
the sites near S. We label the sites counter-clockwise from 0 to 99, starting with site 0
aligned with the positive x-axis (i.e., site i sits on the unit circle at angle θi = 2πi/100).
We will consider local perturbations where S consists of one or two sites in this section,
and more global perturbations in the next section.

Figure 4 shows the best-fit geometry arising from the ground state |ψm〉 corresponding
to a local mass deformation at a single site S = {0}, located along the positive x-axis. We
can see that, in contrast to the holographic reconstructions in section 4.1, the geometries
shown in figure 4 are heavily dominated by noise and local artifacts. The correspond-
ing relative error of reconstruction is also larger by more than an order of magnitude as
compared to the holographic cases (see figure 13a in section 5 for a more comprehensive
comparison of relative errors). The large error of reconstruction can be seen as a hallmark
of the fact that the underlying state is non-geometric.

Note that the lack of geometric features in the reconstruction does not necessarily
indicate that the reconstruction procedure is flawed. In fact, non-geometric features are
expected because not all boundary data should produce geometric reconstructions. Our
reconstruction procedure has equipped us with information of telling apart when that will
happen. We will discuss this further in section 5.

Nevertheless, there are cases where some large-scale geometric features can be ex-
tracted from the plot. This is especially clear in the dynamical case, where we consider
the quench dynamics obtained by evolving the deformed ground state |ψ〉 using the free
fermion Hamiltonian Ĥ0. The reconstruction, performed timeslice by timeslice, is shown in
figure 5 (only the dominant component h11 is shown). While it may not be entirely clear,
figure 5 reveals a large scale shockwave that originates from the deformation site and then
travels across the bulk before being reflected at the left boundary.

The large-scale geometry is heavily obscured by non-geometric noise in figure 5. To
better extract the large-scale features that we consider to be relevant, we must filter out
the small-scale artifacts what we consider to be “noise”.
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Figure 5. Quenched time dynamics of the reconstructed geometry corresponding to a single mass
deformation along the x-axis (see figure 4 for the t = 0 geometries). Only the dominant component
h11 is shown here. The average reconstruction error over time is Ebdy ≈ 0.52.

To more clearly extract the underlying large-scale features of what appears to be waves
generated by the perturbations, we perform some pre-processing of the boundary data to
smooth out the small-scale noise. This is done by averaging the entanglement entropies
of two neighbouring intervals of the same size. More precisely, suppose S(i, j) is the von
Neumann entropy on the interval from site i to site j. Then the smoothing procedure we
applying is similar to a filter by convolving with a 2-site window function such that

S(i, j)→ S(i, j) + S(i+ 1, j + 1)
2 . (4.12)

This produces a less noisy reconstruction and significantly reduces the amount of non-
geometric contributions to boundary relative errors. Intuitively, the smoothing procedure
acts as a low-pass filter in the space of boundary intervals. This serves to remove the short
distance artifacts normally associated with non-geometricality. While we used a specific
filter in this example, one may apply more general filter constructions for other purposes.8

We wish to emphasize that this filtering procedure is not a part of our reconstruction
process. It is merely here to assist us in gaining some intuition regarding the qualitative
physical behaviour of this type of dynamical process. One could imagine that the filtering
reveals what the bulk physical process might have looked like, had the state actually
been geometric.

8It is reasonable to suspect that the two site averaging of entanglement entropy works well as a filter
here because UV details in the free fermion Hamiltonian (4.5) with Fermi momentum ±π/2 contributed
to non-geometric noise. We might therefore expect that we can remove such non-geometric contributions
through coarse-graining by grouping together adjacent sites in pairs. While this grouping does indeed
remove some non-geometric noise, it does not remove it entirely: the reconstruction error after grouping is
0.1 . E . 0.3, which is in between what is shown in figure 5 and figure 6. Given that the smoothed data
reconstruction error is still significantly larger than that of completely geometric data, it is not clear if the
non-geometric contribution completely reside in the UV.
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Figure 6. Quenched time dynamics of the reconstructed geometry corresponding to a single mass
deformation along the x-axis. The boundary data is pre-processed by smoothing to remove small-
scale details (see figure 5 for the corresponding unsmoothed reconstruction). Only the dominant
component h11 is shown here. The relative error is 0.03 . Ebdy . 0.1.

Figure 7. Quenched time dynamics of the reconstructed geometry corresponding to a mass defor-
mation at two distinct sites (S = {0, 30}). The trace of hij is shown here. The boundary relative
error is Ebdy ≈ 0.41.

The corresponding smoothed geometries are shown in figure 6. It can be seen that
smoothing significantly reduces local noise, and clearly reveals large-scale time dynamics
associated with the quench that looks like a (shock)wave.

As another example, the quench dynamics of a state with two distinct deformations
at sites S = {0, 30} is shown in figure 7 (unsmoothed) and figure 8 (smoothed).

In all cases, we see that the free fermion Hamiltonian will generate seemingly non-
interacting waves that traverse through the hypothetical bulk spacetime. Since the under-
lying time dynamics is integrable, the same entanglement feature recurs after the waves
traverse the entire system; we show one such iteration in our figures.
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Figure 8. Quenched time dynamics of the reconstructed geometry corresponding to a mass de-
formation at two distinct sites (S = {0, 30}). The boundary data is pre-processed by smoothing
to remove small-scale details. The trace of hij is shown here. The boundary relative error is
Ebdy ≈ 0.05.

4.2.2 Global deformations

Similar to the previous analysis for local deformations, we can also consider global de-
formations in the same vein. In this section, we will consider Hamiltonian perturbations
of the same form as (4.11), but now with deformations located at every other site, i.e.,
S = {0, 2, 4, · · · , 98}.

In figure 9, we show the geometries reconstructed from the ground state |ψm〉 of a
Hamiltonian with the aforementioned global deformations, plotted across a range of m
values. Again, we find the overall geometry to be highly dominated by noise, with a large
relative error of reconstruction indicating that the underlying state is non-geometric. The
relative error of reconstruction generally becomes worse with increasing values of m (see
figure 13b). Qualitatively, the reconstructions for the different values of m appear similar,
the main difference being the overall magnitude of the metric perturbation.

Looking at the corresponding quench dynamics (see figure 10 for the unsmoothed
reconstruction and figure 11 for the smoothed version), we see that the large-scale geometry
involves a spread of entanglement that is qualitatively similar to the configuration obtained
in the thermalization scenario considered in section 4.1. However, in this case the bulk
“matter” is non-interacting. The integrability of free fermion Hamiltonian ensures that the
falling shockwave returns to the boundary after some finite time instead of collapsing into
a steady configuration.

4.3 Random disorder

Finally, we can take a look at the geometries arising from a random perturbation of the
free fermion system. Disorder is introduced by adding a random external field at each site
of the spin chain

Ĥdisorder = Ĥ0 +
∑
i

wiâ
†
i âi, (4.13)
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Figure 9. Components of the reconstructed metric tensor perturbation corresponding to the
ground state of a globally mass deformed Hamiltonian (with m values as shown), with deformations
located at every other site. The relative errors are approximately Ebdy ≈ 0.25 for this set of plots
(see figure 13b).

Figure 10. Quenched time dynamics of the reconstructed geometry corresponding to a global
mass deformation (see figure 9 for the t = 0 geometries). The component h22 is shown here.
The boundary relative error is maximal Ebdy ≈ 0.22 near t = 0 and is minimal Ebdy ≈ 0.006
around t = 20.
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Figure 11. Quenched time dynamics of the reconstructed geometry corresponding to a global
mass deformation. The boundary data is pre-processed by smoothing to remove small-scale de-
tails. The dominant component h22 is shown here. The boundary relative error is largely similar
to the unsmoothed version except at the initial/final times, where it is significantly reduced by
the smoothing.

where each parameter wi is a random parameter chosen i.i.d. from a uniform random
distribution over the interval [−0.1, 0.1].

In figure 12, we show a generic sampling of ground states obtained from such random
disorder. As would be naively expected, the resulting ground states have generically large
relative errors, with no discernible large scale features (quench dynamics also reveal no
discernible large-scale patterns) or symmetries.

5 Geometry detection

In this section, we summarize the results of the previous reconstructions and comment
on their similarities and differences. We also emphasize that a small relative error of
reconstruction is indicative of a classical bulk geometry in which boundary entropies are
computed via the RT formula, whereas a large error may indicate some combination of (1)
no classical geometry, (2) no classical geometry near the AdS background, or (3) a classical
geometry but where entropies have non-trivial contributions from sources other than the
area of RT surfaces, e.g. higher order corrections. For the purpose of this discussion, we
refer to all three of these negative cases as non-geometric, but it would clearly be desirable
to distinguish them further in future work.

From the results of the mass deformation, we confirm that generic low-energy states of
a free fermion system do not appear to have a good geometric reconstruction. Comparing
the ground states of the mass deformed 1d free fermion with that of the thermal AdS
state, we see that the relative errors for the 1d free fermion are significantly larger than
those of the holographic data (see figures 13a, 13b, 14). Smoothing of the boundary data
reduces the relative error of reconstruction by a significant amount (as would be expected
due to the reduction of small-scale artifacts). However, even with smoothing, the level of
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Figure 12. A bulk best-fit reconstruction of a state generated with random disorder. Each row is
a reconstruction of a particular instance with random disorder. The boundary relative errors vary
across a wide range of values, but typically 0.05 . Ebdy . 1 (see figure 13a).

error is clearly distinguishable from the reconstructions of known geometric states such as
thermal AdS.

In particular, ground states of the locally deformed 1d free fermion Hamiltonian
have a relative error that is of order ∼ 1. Smoothing of the boundary data brings this
down to ∼ 10−1, which is still an order of magnitude larger in comparison to the thermal
AdS reconstructions, which have a relative error on the order of ∼ 10−2. The unsmoothed
relative error for the global deformation of the 1d free fermion hovers around ∼ 10−1.
Smoothing brings this down significantly to ∼ 10−2. The most likely explanation for the
pronounced effect of smoothing here is due to the global symmetry present in the globally
deformed state. We also see that the relative errors for reconstructions corresponding to
random disorder in the 1d free fermion tends to interpolate between the results for local
and global deformations across different random instances, with the best case relative er-
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Figure 13 (a). A histogram of relative errors
from different boundary data: Thermal AdS
(TAdS), global mass deformation (MD), local
quench without smoothing (LQ), and system
with random disorder (Disorder). Boundary rel-
ative error Ebdy plotted on the x-axis.

Figure 13 (b). Global mass deformation er-
rors, as a function of the deformation parameter
m. Red dots denote the boundary relative error
of the original fermion data. Blue squares are
relative errors after smoothing.

rors being . 10−1 and the worst case being ∼ 1. A summary of these results is plotted
in figure 13a, which shows a histogram of the number of instances for each type of re-
construction, as we vary some of the relevant parameters (i.e., temperature, mass, etc).
In figure 13b, we also plot the relative error of reconstruction as a function of the mass
deformation parameter m. As would be expected, we see that a larger mass deformation,
and hence a larger deviation from criticality, contributes positively to the relative error of
reconstruction regardless of smoothing.

A summary of the time dynamics of the relative errors is shown in figure 14. For
the dynamical reconstructions, we see that the relative error generally varies with time.
This is most noticeable with the global quench dynamics, where the relative error tends to
decrease as entanglement spreads. Although one starts with a mass deformed state with
large relative error at t = 0, subsequent evolution can effectively wash out non-geometric
features the system begins to thermalize. The state at t ≈ 20 captures basic entanglement
properties of a thermal state, thus the reconstruction is thermal AdS-like with small relative
errors. Nevertheless, the state cannot actually thermalize due to integrability; the system
recurs at later times and the relative error rebounds.

At this point, it is not completely clear why the global quench states have such small
relative error at intermediate times. A likely guess that the enhanced symmetries for
the globally deformed states contribute to a more geometrical reconstruction, with the
effect being especially pronounced at intermediate times when the system is maximally
thermal, before it is kicked back by integrability. Such behaviour is not seen in the local
quench disorder, where the magnitude of the relative error is larger, and remains stable
across the time evolution. However, symmetry is likely not the full answer either, since
otherwise we would expect the disordered models to generically have larger relative error
compared to the global mass deformed state, whereas we observer the disordered model
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Figure 14. Relative boundary error as a function of time for a free fermion system after a quench.
GQS, GQ, LQS, LQ denote global quench with smoothing, global quench without smoothing, local
quench with smoothing, and local quench without smoothing, respectively. Dashed line marks the
average relative error for the thermal AdS entropy data.

to be peaked at smaller errors. While the full characterization for which states appear
more geometric than others is currently unknown, it seems likely that there are many
contributing factors to a successful reconstruction, among them properties like symmetry
and thermality.

Finally, we show the relative errors corresponding to the superposition of thermal states
in figure 15. We find two regimes for the geometricality of the superposition, depending on
the magnitude of the mixing term GNH(p). We find the superposition to be non-geometric
when the entropy of mixing provides a significant correction to the geodesic lengths. This
implies a generally non-geometrical construction when GNH(p) ≈ 1, as would be the case
when the gravitational coupling GN is strong, or when the entropy of mixing is made large
by superposing a large number of distinct geometries.

Conversely, in the weak coupling limit with few distinct superpositions, the contribu-
tion of the mixing term GNH(p) to the geodesic lengths becomes negligible, causing the
entropy operator to be approximately linear in this regime. This leads to a smooth, geomet-
ric interpolation between the two distinct geometries as we tune the probability of mixing.
The clear separation between the two cases is clearly illustrated in figure 15, where we plot
the relative errors for a state constructed as a mixture of two distinct thermal states.

In summary, we find that the boundary relative error provides a useful measure for
the extent to which a state is geometric or non-geometric. Through the discretized Radon
transform, we confirm some existing expectations for the geometric nature of certain holo-
graphic states, as well as states arising from many-body systems that are generally believed
to be non-geometric. We find that generic low-lying energy states of a free fermion sys-
tem are indeed dominated by non-geometric contributions as indicated by our algorithm.
However, there also exists states in these systems that have small relative error, such as

– 23 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
3

Figure 15. Boundary relative errors for superpositions of thermal AdS geometries.

the configurations following a global quench. It is suspected that the enhanced symmetries
for the globally deformed states contributes to a more geometrical reconstruction. More-
over, quench dynamics reveal large-scale patterns of geometric evolution, despite the states
themselves being non-geometric as characterized by the relative error. Further advances in
the tensor Radon transform and its range characterization may help us understand what
kind of properties in the boundary data lead to good reconstructions, and the nature of
the large-scale behavior revealed by the numerical transform.

6 Discussion

In this work, we took some first steps in addressing the explicit bulk metric reconstruction
problem in holography, as well as the question of whether non-geometrical bulk states
can be detected from boundary data alone. Motivated by the tensor Radon transform,
we provided — and explicitly implemented — an algorithm that reconstructs the bulk
metric tensor without any a priori assumptions on the symmetries or form of the metric
tensors, other than the fact that they are perturbatively close to AdS. We applied this
reconstruction to entanglement data from holographic systems with large N , as well as
to that of a 1d free fermion system. The reconstruction was also applied, time-slice by
time-slice, to time-evolving states. We confirmed that, assuming the linearized Einstein’s
equations, thermalization following a global quench in holographic systems is consistent
with a shell of in-falling matter in the bulk that finally settles into a state that appears
to be gravitationally bound deep inside the bulk. This kind of behaviour is absent in
free fermion systems where the corresponding shockwave of “in-falling matter” repeatedly
oscillates between the boundary and the bulk due to the integrability of the system.

We also provided a partial answer to whether a given state in the conformal field theory
has a well-defined geometric dual on the gravity side. We find that boundary reconstruction
errors provide a quantitative measure that distinguished “geometrical” states, such as the
ones we find in large N theories with semi-classical duals, from “non-geometrical” states like
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the generic excited states of a free fermion spin chain. This is a precise, albeit coarse, way
of understanding what portion of the boundary data lies outside the range of the tensor
Radon transform, and therefore cannot be interpreted as a tensor field on a hyperbolic
background. In the instances we have examined, this measure was an effective indicator of
non-geometricality.

Finally, our initial attempts in developing this algorithm indicate that efficient numer-
ical reconstructions of the bulk metric tensor from entanglement entropy data, at least at
the linearized level, are achievable. This is partly because the optimization problem we
consider is linear in nature and can be solved in polynomial time with low computational
power. As such, it provides an efficiently computable tomographic procedure that trans-
lates boundary entropy data, where the underlying spacetime and gravitational dynamics
are hidden, to a setting where it is manifest. Although a wealth of previous analytic results
are available, the flexibility of numerical studies is also invaluable, as we have found in var-
ious areas of physics from quantum many-body systems to numerical general relativity. As
we start to move away from the more tractable dynamics of quantum systems that carry
simplifying assumptions such as symmetries, the full force of numerical methods will prove
to be extremely helpful. Here we provide one such preliminary construction which can
hopefully provide a stepping stone for future advances.

Further work is clearly required to improve upon our first efforts. Here we list but a
few major directions where progress can be made.

On the front of new results in mathematics, especially related to tensor Radon trans-
form:

i To put our geometry detector on a firmer mathematical footing, one needs a rigorous
characterization of the range of tensor Radon transforms on curved backgrounds, in
particular, the hyperbolic background. In the language of holographers, we are in
need of a set of necessary [40, 41] and sufficient conditions that characterizes what
type of quantum states have semi-classical dual geometries. A complete characteri-
zation of the range of Radon transform on hyperbolic space, for example, precisely
provides such conditions that checks whether a set of entanglement data is dual to a
semi-classical geometry close to AdS.

ii It is also crucial to obtain an explicit reconstruction formula in closed form. Such
formulae are known for the Euclidean background, and for the case of scalar or vector
Radon transform on curved backgrounds. Development of these results will further
enable calculations in the continuum limit, which is relevant for AdS/CFT.

On the front of new results in physics:

i We hope to extend this method to higher dimensions, which so far has faced the most
obstacles in bulk metric reconstruction. Because area variation can already be cast
as a tensor Radon transform in arbitrary dimensions [49], the idea of discretization
followed by gauge fixing and linear optimization may simply be extended to min-
imal surfaces. Similarly, X-ray transforms in higher dimensions that makes use of
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correlation data can also be viable [23]. This may provide a numerically computable
alternative to other methods [40, 65, 66].

ii Although we examine dynamical cases, we only reconstruct the spatial metrics for
each individual time slice. Reconstruction of the full linearized space-time metric
perturbation against the AdS background should also be possible by gluing together
these spatial slices. However, one has to be careful about gauge fixing and the role
played by the time coordinate. More work is needed to clarify these constructions.

iii It is also worthwhile to go beyond linearized level. A known approach is to apply
the inverse Radon transform iteratively, such that the background geometry is up-
dated using the reconstructed metric perturbation hij . Such method is used in the
geophysics community [56, 67]. However, we have to be careful about the change in
extremal surface beyond the linear level, especially in the dynamical cases. This is
worthwhile though, since working beyond the linearized level should allow a better
understanding of non-trivial topologies, for example. As we have seen in this work,
they are invisible at the linearized level despite our expectation that collapse of bulk
matter should lead to such changes in geometry.

iv Reconstruction of entanglement data from other quantum systems. Thus far, we
have only seen limited application of this reconstruction algorithm, largely limited
by the availability of entanglement data. Nevertheless, it may be possible to compute
these entanglement approximately for smaller but more interesting quantum many-
body systems using tensor networks or other classical techniques. It may also be
worthwhile to obtain data for geodesic lengths via other more accessible data, such
as correlation functions or mutual information.

v In light of the difficulty in computing von Neumann entropies for quantum systems,
we can explore the possibility of using quantum Renyi entropies, which also have a ge-
ometric interpretation in holography [68]. A prominent advantage is its computability
using numerics and measurability in actual quantum systems. Reconstructions using
such data can enable us to directly acquire entropy data from quantum simulations
and experimental setups.

vi Similar techniques using Radon transforms to recover the metric tensor of geometry
emerged from entanglement are also applicable to near-flat manifolds outside the
context of AdS/CFT. In fact, the Radon transform on flat-space is much better
understood. Similar reconstructions should be possible for constructions like [18]
where, for instance, the relevant quantum states can be low energy states of a gapped
local Hamiltonian.

Finally, there is also much progress to be made in our reconstruction algorithm and
related numerics.

i One area of improvement is a data-driven modelling. For our current work, we fixed
a particular tiling that is easy to implement. However, it has been shown that a tiling
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depending on the boundary data can lead to improvement for bulk reconstruction [69].
These include Voronoi partitions or improved modelling using Bayesian inference [70].

ii Our discretization, constraint, and interpolation methods are all extremely simplistic,
as appropriate for a proof of concept implementation. Numerous improvements can
be made to improve the accuracy of the reconstruction algorithm, for example: proper
triangular meshes, finite-element methods, better regularization techniques, etc. We
expect that the reconstruction procedure here can be drastically improved in fidelity
by adapting proper numerical techniques.

A The tensor Radon transform

Here, let us formally define the geodesic tensor Radon transform. We begin with an
introduction to the tensor Radon transform in general, but will quickly specialize to the
special case of the 2-tensor Radon transform on the Poincare disk (with finite cutoff).

In short, the m-tensor geodesic Radon transform Rm is a map which takes a sym-
metric m-tensor field defined on a sufficiently well-behaved Riemannian manifold M (with
boundary) to the space of geodesics on that manifold.

A.1 General definitions

Let (M, g) be an n-dimensional Riemmanian manifold with boundary ∂M and metric g.
We say that (M, g) is a simple manifold if ∂M is strictly convex9 and any two points in M
are connected by a unique geodesic segment which depends smoothly on the endpoints [71].
Alternatively, a simple manifold is one in which the boundary is strictly convex, and where
the exponential map expp : exp−1

p (M) → M is a diffeomorphism for every p ∈ M . Fixing
some p ∈M , we may identify a simple manifold with a strictly convex domain Ω of Rn.

The simplicity of a manifold is a sufficient condition for the geodesic Radon transform
to be well-defined [72]. There are more general conditions available, but simplicity will
generally be sufficient for our purposes. From now on, unless otherwise stated, all of our
manifolds will be assumed to be simple.

Let SM denote the unit circle bundle of M . The bundle SM is the collection of all
pairs (p, v), where p ∈M and where v ∈ TpM is a unit tangent vector at p. The boundary
of the unit circle bundle, denoted ∂SM , consists of all such pairs where p ∈ ∂M . The
boundary of the unit circle bundle naturally splits into two components, ∂+SM consisting
of all the inward pointing vectors, and ∂−SM consisting of all the outward pointing vectors.
We will define both components to be closed, i.e., vectors tangent to ∂M will be in both
∂+SM and ∂−SM .

Given (p, v) ∈ ∂+SM , let γp,v : [0, τ(p, v)]→M denote the unique unit speed geodesic
through (p, v), i.e., the unique geodesic such that

γp,v(0) = p, and γ̇p,v(0) = v. (A.1)

9Namely, given any two points p, q ∈ ∂M , there exists a geodesic segment connecting p and q that meets
∂M only at p and q.
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The parameter τ(p, v) denotes the exit time10 of γp,v, i.e., the first non-zero time such that
γp,v(τ) ∈ ∂M . Note the exit time is well-defined under the assumption that the underlying
manifold is simple.

Now, let fi1···im be a smooth, symmetric (covariant) m-tensor field on M . Then the
Radon transform of f is defined by

Rm[f ](p, v) =
∫ τ(p,v)

0
fi1···im(γp,v(s)) γ̇i1p,v(s) · · · γ̇imp,v(s) ds. (A.2)

Thus, the Radon transform is a map Rm : Sm(M) → C∞(∂+SM) which takes the space
Sm(M) of smooth, symmetric (covariant) m-tensors on M to the space C∞(∂+SM) of
smooth functions on the inward pointing boundary unit circle bundle component ∂+SM .
Since we can uniquely identify each (p, v) ∈ ∂+SM with a corresponding unit speed geodesic
γp,v, it will be often convenient to consider the Radon transform as a map on the space of
boundary anchored geodesics.

A.2 s-injectivity

There are a few natural questions we may ask for the Radon transform, the foremost being
the surjectivity and the injectivity of the transform. We will not comment much on the
range of the tensor Radon transform, except to note that the tensor Radon transform is
generally not surjective. This, of course, corresponds to the well known fact that not all
boundary states have a well-defined bulk dual. A useful analytic characterization of the
range remains an open problem for the tensor Radon transform on generic manifolds.

Let us now consider the problem of injectivity. The tensor Radon transform has a
natural kernel. Let (M, g) be an n-dimensional simple Riemannian manifold. We will let
dV denote the canonical volume form, which is locally given by

dV =
√
|g| dx1 ∧ · · · ∧ dxn, (A.3)

where (x1, · · · , xn) is some oriented chart, and where |g| is the determinant of the metric gij
in that chart. We will let ∇ denote the Levi-Civita connection onM . Now, let SmM denote
the space of (covariant) symmetric m-tensors on M . We will define the inner derivative11

d : SmM → Sm+1M by

df = σ∇f, (A.4)

where σ denotes complete symmetrization. In local coordinates, we simply have

(df)i1···im+1 = f(i1···im;im+1), (A.5)

10Or since γp,v is unit speed parametrized, the total arclength of γp,v.
11Despite the confusingly similar notation, d is not the exterior derivative d, which acts on forms and

not symmetric tensors. Unfortunately, the notation is somewhat well-established in the integral geometry
community, and so we will stick to it. We will never need to use the exterior derivative in this paper,
but nevertheless we will denote the inner derivative with boldface font d as a reminder that it is not the
exterior derivative.
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where parentheses indicate the complete symmetrization of the contained indices as usual.
We will likewise define the divergence12 δ : SmM → Sm−1M to be

δf = Trm,m+1(∇f), (A.6)

where Trm,m+1 denotes (Riemannian) contraction between the mth and (m + 1)th argu-
ments. In local coordinates, we have

(δf)i1,··· ,im−1 = fi1,··· ,im−1,j;kg
jk. (A.7)

The operators d and −δ are adjoint for compactly supported symmetric tensor fields
on M . More generally, for any compact region D ⊆M , we have∫

D
〈du, v〉+ 〈u, δv〉 dV =

∫
∂D
〈iνu, v〉 dS, (A.8)

where u and v are (sufficiently smooth) symmetric tensors of the appropriate orders, iν
denotes interior multiplication with respect to an outward pointing normal ν, and where dS
is the induced volume form on ∂D. The inner product 〈·, ·〉 on SmM is given by complete
contraction, i.e.,

〈u, v〉 = gi1j1 · · · gimjmui1,··· ,imvj1,··· ,jm . (A.9)

The significance of the operators δ and d are as follows. Let Hk(SmM) denote the
Sobolev space of m-symmetric tensors, i.e., the space of all sections which are k-times
(weakly) differentiable, and such that all derivatives are locally square integrable. Each
Hk(SmM) can be given the structure of a Hilbert space when M is compact. Then we
have the generalized Helmholtz decomposition as follows:

Theorem 1 (Generalized Helmholtz Decomposition [43]). Let (M, g) be a compact Rie-
mannian manifold with boundary. Let k ≥ 1 and m ≥ 0 be integers. Given any section
f ∈ Hk(SmM), there exists uniquely determined f s ∈ Hk(SmM) and v ∈ Hk+1(Sm−1M)
such that

f = f s + dv, where δf s = 0, and v|∂M = 0. (A.10)

The fields f s and dv are called the solenoidal and potential parts of f .

Note that in the case m = 1, Theorem 1 is just the usual Helmholtz decomposition

F = −∇ϕ+∇×A (A.11)

after identifying vectors and covectors using the metric.
The decomposition of a symmetric tensor field into solenoidal and potential parts

gives us a natural identification of the kernel for the Radon transform. Indeed, we have
the following result:

12Again, δ is not the co-exterior derivative. We will use the same boldface convention.
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Theorem 2. Let (M, g) be a simple manifold and let Rm be the m-tensor Radon transform
on M . Let v ∈ Hk+1(Sm−1M) be a vector field such that v|∂M = 0. Then

Rm[dv] = 0. (A.12)

Therefore, Theorem 2 identifies a natural kernel for the Radon transform, namely the
space of all potential tensor fields. Since every sufficiently smooth tensor field can be
decomposed uniquely into a potential and a solenoidal part, a natural question is whether
the solenoidal part is uniquely recoverable from the Radon transform, i.e., whether the
space of potential tensor fields exhausts the kernel of the Radon transform. If this is
indeed the case, i.e., if Rm[f ] = 0 implies f s = 0, then we say that the Radon transform is
s-injective.

The question of the s-inectivity of the Radon transform is a fundamental problem in
integral geometry. The general case remains open, although the case for 2-dimensional
simple manifolds was settled in the affirmative [73]:

Theorem 3 (s-injectivity [73]). Let (M, g) be a simple 2-dimensional Riemannian mani-
fold. Then the tensor Radon transform Rm on M is s-injective for all m ≥ 0.

Note that in the case of the scalar transform for m = 0, all scalar functions are
automatically solenoidal, so the scalar Radon transform R0 is injective in the usual sense.

Given the s-injectivity of the Radon transform, we can recover the bulk tensor field by
imposing the solenoidal gauge condition

f = f s. (A.13)

The solenoidal gauge is the most commonly employed gauge condition for the tensor Radon
transform, but it comes with some inconvenient features. In particular, it does not respect
the decomposition of a tensor into its trace and traceless parts. The 2-tensor Radon
transform on a purely trace bulk tensor field is identical to the scalar Radon transform
on the corresponding trace function, but the inversion of the 2-tensor Radon transform
under the solenoidal gauge introduces extraneous gauge degrees of freedom which causes
the recovered field to disagree with the original. This is rather undesirable, since the
corresponding scalar transform is purely injective and admits a unique recovery. We will
instead employ an alternative gauge condition, which we introduce in section C, that makes
the tensor Radon transform consistent with the scalar Radon transform for pure trace fields.

B The Radon transform on the Poincare disk

Let us now focus our attention to the case of a single time-slice of AdS3. Such a time-slice
is isomorphic to the hyperbolic plane, which we will consider in the Poincare disk model.
Concretely, the Poincare disk is the Riemannian manifold of constant scalar curvature
R = −1, defined within the open unit disk

D = {z ∈ C | |z| < 1} . (B.1)
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We will cover the Poincare disk using its natural Cartesian coordinates (x, y), or equiva-
lently, using complex coordinates z = x+ iy. The metric is then given by

g(z) = 4(dx2 + dy2)
(1− x2 − y2)2 = 4(1− |z|2)−2 |dz|2, (B.2)

where |dz|2 = dz · dz = dx2 + dy2. We will denote the Poincare disk by H = (D, g).
Geometrically, the geodesics of the Poincare disk are circular segments which are orthogonal
to the boundary circle S1.

Both for physical reasons, and to properly define the Radon transform, we cannot
work with the Poincare disk in its entirety.13 Rather, we must impose a cutoff. We will let
κ ∈ (0, 1) be a cutoff radius, and consider the cutoff disk

Dκ = {z ∈ C | |z| < κ}. (B.3)

Then we consider the cutoff Poincare disk to be the manifold defined by Hκ = (Dκ, g).
We will be mainly interested in the Radon transform for symmetric 2-tensors. The

Poincare disk (with cutoff) is a simple manifold. As such, the Radon transform is always
well-defined on the Poincare disk. To that end, let fij be a symmetric 2-tensor field on Hκ.
The Radon transform is then given by

R2[h](p, v) =
∫ τ(p,v)

0
fij(γ(s))γ̇ip,v(s)γ̇jp,v(s) ds. (B.4)

Note that since the boundary of the (cutoff) Poincare disk is a circle, we may uniquely
identify each geodesic γp,v with a connected subregion A (i.e., a circular arc) of the bound-
ary. The corresponding geodesic is then the minimal surface with respect to that boundary
subregion. In this way, we may regard the image of the Radon transform as a function on
the space of boundary subregions.

The metric on the Poincare disk is an isotropic metric. Let us write

g(z) = 4(1− |z|2)−2|dz|2 = e2λ(z)|dz|2. (B.5)

We may then write a unit tangent vector as v = e−λ(cos θ, sin θ), where θ is the natural
angular coordinate on the unit disk. Then we can decompose the Radon transform as

fij γ̇
iγ̇j = e−2λ

(
f11 cos2 θ + 2f12 cos θ sin θ + f22 sin2 θ

)
(B.6)

= e−2λ
(
f11 + f22

2 + f12 sin 2θ + f11 − f22
2 cos 2θ

)
= e−2λ

(
h0 + he2iθ + he−2iθ

)
,

13Technically, the Radon transform doesn’t really care about the fact that the Poincare disk is non-
compact, especially since there is still a well-defined notion of (asymptotic) boundary. However, it is much
more convenient to work with a compact manifold with an actual boundary.
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where in the last line we’ve defined the components

h0 = 1
2 Trh, (B.7)

h = 1
4(f11 − 2if12 − f22), (B.8)

h = 1
4(f11 + 2if12 − f22). (B.9)

The components h0, h, and h will be called the trace, holomorphic, and anti-holomorphic
parts of f , respectively. Note that in this way, we can always identify any symmetric
2-tensor fij with a function f̃ ≡ fij γ̇iγ̇j of harmonic content (−2, 0, 2).

We can then equivalently write the tensor Radon transform in the h-components as

R2[g](p, v) =
∫ τ(p,v)

0
e−2λ(γ(s))

(
h0(γ(s)) + h(γ(s))e2iθ(s) + h(γ(s))e−2iθ(s)

)
ds. (B.10)

Note that the trace component of the transform simply gives the scalar transform (after
absorbing the metric into the definition of h0). Therefore the tensor Radon transform R2
is essentially equivalent to the scalar Radon transform for tensors which are purely trace.

As previously mentioned, the solenoidal gauge does not respect the decomposition of
the tensor into trace and traceless parts. It will therefore be convenient to find a gauge
which preserves this decomposition. We do so in appendix C.

C The holomorphic gauge

In this section, we present an alternative to the solenoidal gauge, which we call the holo-
morphic gauge, which both uniquely fixes a solution space to the inverse Radon transform
and preserves the scalar part of the transform.

To define the holomorphic gauge, we first introduce some background. We employ
global isothermal coordinates (x, y, θ) on the unit circle bundle SH of the Poincare disk,
where (x, y) are the usual Poincare coordinates on the base manifold, and where θ is a fiber
coordinate indicating the angular direction of a tangent vector.

We can define the geodesic flow X, given in global isothermal coordinates on the unit
circle bundle by

X = e−λ (cos θ ∂x + sin θ ∂y + (− sin θ ∂xλ+ cos θ ∂yλ) ∂θ) , (C.1)

where we write the metric as g = e2λ(dx2 + dy2). Writing the vector field in terms of
complex coordinates, we can decompose the geodesic flow as X = η+ + η−, where

η+ = e−λeiθ (∂ + i∂λ ∂θ) , (C.2)

η− = e−λeiθ
(
∂ + i∂λ ∂θ

)
= η+, (C.3)

where ∂ = 1
2(∂x − i∂y) and ∂ = 1

2(∂x + i∂y) are the Wirtinger derivatives.
Let Ωk = L2(SH)∩ker(∂θ− ik) be the space of square-integrable functions on the unit

circle bundle with fixed harmonic content k. Then it can be shown [54] that η± are smooth
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elliptic differential operators such that η± : Ωk → Ωk±1 for any k ∈ Z. In particular, note
that ∆ ≡ η+η− = η−η+ is also a smooth elliptic partial differential operator.

Note that the geodesic flow X is naturally related to the Radon transform as fol-
lows [43]: Let fij be a symmetric 2-tensor field, and let us define the function

u (x, y, θ) =
∫ τ+(γ)

0
fij γ̇

iγ̇j ds, (C.4)

where γ denotes the unique unit speed geodesic through (x, y), with initial angle θ, and
where τ+(γ) denotes the exit time of the geodesic. Note that we have u|∂−SM = 0 and

u|∂+SM = R2[f ], (C.5)

by construction. If γ(x0,y0,θ0) is a geodesic through (x0, y0, θ0), then

u
(
γ(x0,y0,θ0)(t), θ(x0,y0,θ0)(t)

)
=
∫ τ+(γ)

t
fij γ̇

iγ̇j ds, (C.6)

where θ(x0,y0,θ0)(t) ≡ arg
[
γ̇(x0,y0,θ0)(t)

]
denotes the angle of the tangent vector to γ(x0,y0,θ0)

at time t. Differentiating with respect to t, we get

γ̇i
∂u

∂xi
+ θ̇

∂u

∂θ
= −fij γ̇iγ̇j . (C.7)

Note that the left-hand side is precisely the expression Xu.14 Denoting by uf the unique
solution to the transport equation (C.7) with boundary condition uf |∂−SM = 0, it follows
that the Radon transform R2[f ] is given by

R2[f ] = uf |∂+SM . (C.8)

The transport equation can therefore be seen as the differential form of the Radon trans-
form.

The key result leading to the holomorphic gauge is then the following theorem.
14Let us explicitly calculate θ̇ here. We start with the geodesic equation

γ̈i + Γijkγ̇j γ̇k = 0.

Evaluating the x component, for example, we get

d

ds
(e−λ cos θ) + e−2λ∂1λ(cos2 θ − sin2 θ) + 2e−2λ∂2λ sin θ cos θ = 0.

Taking the derivative and expanding, we then have

−e−2λ(∂1λ cos2 θ + ∂2λ sin θ cos θ)− e−λ sin θ · θ̇ + e−2λ∂1λ(cos2 θ − sin2 θ) + 2e−2λ∂2λ sin θ cos θ = 0,

which simplifies as

−e−λ∂1λ sin θ + e−λ∂2λ cos θ = θ̇,

so that equation (C.7) is given by

e−λ
[

cos θ ∂
∂x

+ e−λ sin θ ∂
∂y

+
(
− sin θ ∂λ

∂x
+ cos θ ∂λ

∂y

)
∂

∂θ

]
u (x, y, θ) = Xu (x, y, θ) = −f̃ (x, y, θ) ,

where f̃ ≡ fij γ̇iγ̇j , as given in equation (B.6).
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Theorem 4. For any symmetric 2-tensor f ∈ L2(SM), there exists a unique 2-tensor
h ∈ L2(SM) such that R2f = R2h, and such that h is of the form

h = h0 + h2 + h−2, (C.9)

where h0 ∈ L2(M) ∩ Ω0, and where h±2 ∈ ker η∓ ∩ Ω±2.

Proof. We adapt the proof from Theorem 1 of [51], which covers the case where the un-
derlying metric is the usual flat Euclidean metric. Let f ∈ L2(SM) ∩ Ωk be given. Then
consider the differential equation

η−f = ∆v, (C.10)
v|∂SM = 0, (C.11)

where v ∈ H1(SM) ∩ Ωk−1. Since ∆ is a smooth elliptic operator, it follows from the
standard theory of elliptic differential equations that the above system admits a unique
(weak) solution v. Given such a solution, let us define g = f − η+v. It follows that

η−g = η−(f − η+v) = 0. (C.12)

This shows that each f ∈ L2(SM) ∩ Ωk can be written uniquely as

f = η+v + g, (C.13)

where v ∈ H1(SM) ∩ Ωk−1, v|∂SM = 0, and where g ∈ L2(SM) such that η−g = 0.
Next, let f be a given 2-tensor which we may write as

f = f0 + f−2 + f2, (C.14)

where fk ∈ Ωk. The transport equation gives us

Xu = −f, (C.15)
u|∂−SM = 0, (C.16)

u|∂+SM = R2f. (C.17)

Let us apply the previously derived decomposition to write f2 = η+v1 +g2, where v1|∂SM =
0 and where η−g2 = 0. This gives us

f2 = η+v1 + g2 (C.18)
= Xv1 − η−v1 + g2, (C.19)

which allows us to write the transport equation as

X(u+ v1) = −(f0 − η−v1 + f−2 + g2), (C.20)

where η−g2 = 0. Since v1|SM = 0, it follows that we have (u + v1)|∂+SM = u|∂+M = R2f .
If we define the 2-tensor h by

h = h0 + h−2 + h2, (C.21)

where h0 = f0 − η−v1 and h−2 = f−2, then h satisfies R2h = R2f , and is such that
η−h2 = 0. We may repeat this reasoning with the f−2 term (using the complex conjugate
of the previous decomposition) to obtain the desired result.
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Definition 5. We will define a 2-tensor whose components satisfy the conditions of The-
orem 4 to be in the holomorphic gauge.

Importantly, let us note that if a 2-tensor f is purely scalar, i.e., f = f0, then it is
trivially already in the holomorphic gauge. Thus the holomorphic gauge is a gauge which
respects the scalar part of the transform. This is to be contrasted with the solenoidal
gauge, which will introduce spurious off-diagonal components even for scalar tensor fields.

Since h±2 ∈ Ω±2, let us write h2 = he2iθ and h−2 = he−2iθ, where h, h ∈ L2(M). In
this notation, the holomorphic gauge condition reads

η+(he−2iθ) = 0, (C.22)

η+(he−2iθ) = 0. (C.23)

We have

η(he−2iθ) = e−λeiθ (∂ + i∂λ ∂θ) (he−2iθ) (C.24)
= e−λe−iθ (∂ + 2∂λ)h, (C.25)

so the holomorphic gauge conditions simplify to the Schrodinger type equations

(∂ + 2∂λ)h = 0, (C.26)
(∂ + 2∂λ)h = 0. (C.27)

We can solve these equations by introducing an integrating factor of e2λ. Then the equation
for h gives us

0 = e2λ∂h+ 2∂λ e2λh (C.28)
= ∂(e2λh). (C.29)

This amounts to saying that the solutions are holomorphic functions (up to an exponential
factor) on the unit disk D. We can therefore generate any solution as follows: Given any
function on the unit circle h|∂D : ∂D→ C, we can extend h into the unit disk using Cauchy’s
integral formula to get

h(z) = cλe
−2λ(z)

2πi

∮
∂D

h|∂D(w)
w − z

dw, (C.30)

where we write cλ = e2λ(1) to denote the (constant) value of e2λ on the unit circle. We
will use this convenient reconstruction property of solutions in the holomorphic gauge to
benchmark the numerical (inverse) Radon transform in appendix E.

D The numerical (inverse) Radon transform

In this appendix, we describe the details of the numerical (inverse) Radon transform.
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The manifold we work with is the hyperbolic plane H2, which is modeled as the Poincare
disk, i.e., the unit disk equipped with the canonical hyperbolic metric

g = 4
(1− x2 − y2)2 (dx2 + dy2), (D.1)

where (x, y) are global Poincare coordinates. For physical reasons, and to make the Radon
transform well-defined, we must impose a cutoff on the Poincare disk. We thus pick a
constant κ ∈ (0, 1) and work with the Poincare disk restricted to r ≤ κ. Equivalently,
the cutoff Poincare disk can be regarded (after a rescaling of the metric) as a model for a
hyperbolic plane with curvature equal to −κ2.

To perform the numerical Radon transform, we must first discretize the Poincare disk.
A natural first choice would be to use a uniform tiling, a choice which conforms best to
the intrinsic symmetries of the Poincare disk. However, the Gauss-Bonnet theorem places
limitations on how fine a uniform tiling can be, and the inability to take the tile size to
zero is an unwieldy restriction. Instead, we opt for a simple square tessellation which we
perform in the Beltrami-Klein model.

The Beltrami-Klein model is related to the Poincare disk model through the change
of coordinates

(r, θ) 7→ (R,Θ) =
( 2r

1 + r2 , θ

)
, (D.2)

where (r, θ) denotes polar Poincare coordinates, and (R,Θ) denotes polar Beltrami-Klein
coordinates. The Beltrami-Klein model has the convenient property that geodesics are
straight lines. This makes a square tessellation in the Beltrami-Klein model the closest
analogue to a regular Euclidean square tessellation for the hyperbolic plane. The fig-
ures present throughout this paper showcase the corresponding square tessellation in the
Poincare disk.

Given a tessellation of the Poincare disk, we can discretize any function f by assigning
to a given tile T the value of f at the centroid of T . Ordering the tiles arbitrarily, we can
regard the discretized functions as vectors,

f =


f(T1)

...
f(TN )

 . (D.3)

We must also discretize the (ideal) boundary of the Poincare disk for the Radon trans-
form. We do so by placingM equally spaced boundary sites on the unit circle. We will then
consider the collection of all geodesics originating from one boundary site and terminating
on another. We can order the boundary sites by their angular position on the unit circle,
and the geodesics lexicographically by the angular positions of their endpoints.
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For each geodesic of the background geometry, the integral (B.10) can then be dis-
cretized by replacing the functions h0, h and h with their piece-wise constant discretizations:

I2[g](γj) =
∫
γj

e−2λ(γj(s))
(
h0(γj(s)) + h(γj(s))e2iθ(s) + h(γj(s))e−2iθ(s)

)
ds (D.4)

≈
∑
T

[
h0(T )W0(γj , T ) + h(T )W (γj , T ) + h(T )W (γj , T )

]
, (D.5)

where W0,W , and W contain the information on the geodesic and the remaining parts of
the integrand. Explicitly, W0 and W are defined by

W0(γj , T ) =
∫
γj

e−2λ(γj(s)) 1T (γj(s)) ds, (D.6)

W (γj , T ) =
∫
γj

e−2λ(γj(s))+2iθ(s) 1T (γj(s)) ds, (D.7)

where 1T (γ(s)) is an indicator function such that

1T (x) =

1 x ∈ T ,
0 x /∈ T .

(D.8)

Note that W0 is nothing but the arc lengths of the geodesic segments that intersects a tile
T . The function W , on the other hand, also contains a complex weight which captures the
directionality of the geodesic in the tile.

It’s important to note that W0 and W depend only on the particular choice of dis-
cretization, and can be pre-computed.

We can collect all of the quantities into a matrix equation. Let W be the K × 3N ,
where K =

(M
2
)
, defined by

W =


W0(γ1, T1) · · · W0(γ1, TN ) W (γ1, T1) · · · W (γ1, TN ) W (γ1, T1) · · · W (γ1, TN )
W0(γ2, T1) · · · W0(γ2, TN ) W (γ2, T1) · · · W (γ2, TN ) W (γ2, T1) · · · W (γ2, TN )

... . . . ...
... . . . ...

... . . . ...
W0(γK , T1) · · · W0(γK , TN ) W (γK , T1) · · · W (γK , TN ) W (γK , T1) · · · W (γK , TN )

.
(D.9)

Likewise, let h be the length 3N vector defined by

h =
(
h0(T1) · · ·h0(TN ) h(T1) · · · h(TN ) h(T1) · · · h(TN )

)T
. (D.10)

Then the discretized Radon transform, which we denote by ∆L, is given by the matrix
equation

∆L = Wh. (D.11)

The discrete inverse Radon transform is then just the inverse problem to the sys-
tem (D.11). However, the inverse problem is complicated by the fact that the Radon
transform is neither surjective nor injective (recall that the forward transform has a non-
trivial kernel that corresponds to the gauge degrees of freedom).
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To make the inverse well-posed, we must supplement it with a set of gauge constraints
to pick out a unique inverse (when it exists) in the continuum case. In the discrete analog,
we expect the kernel to be visible through the presence of zero eigenvalues in the singular
value spectrum of W. Due to discretization and numerical errors, the system (D.11)
will either be singular or extremely ill-conditioned. As in the continuum case, we will
supplement the system (D.11) with a set of discretized gauge constraints to make the
problem well-posed.

For our implementation, we discretize the holomorphic gauge conditions given by equa-
tions (C.24) and (C.25). The holomorphic gauge constraints are simple first order partial
differential equations. They can be realized discretely by implementing ∂x and ∂y are
finite-difference operators. We will use a simple three-point stencil for the finite-difference
operators, although higher-order variations can be used for increased accuracy. For exam-
ple, the x partial of a function f at tile i will be approximated by

∂xf(Ti) ≈
f(TR(i))− f(TL(i))

2 , (D.12)

where L(i) and R(i) denote the indices of the tiles to the immediate left and right of tile i.15

The y-partials are analogous. In this way, we can write discretize the partial derivatives as
matrices ∆̃x and ∆̃y.16 Since the vector h effectively contains 3 copies stacked on top of
each other, we define the operators

∆x =
(
∆̃x | ∆̃x | ∆̃x

)
, (D.13)

∆y =
(
∆̃y | ∆̃y | ∆̃y

)
.

The discretized holomorphic gauge conditions can then be written as

Ch = (∆x + i∆y + 2Λ)h, (D.14)

where Λ is the matrix defined by

Λ =
(
Λ̃ | Λ̃ | Λ̃

)
, (D.15)

where Λ̃ has entries given by

Λ̃ij = ∂λ(Ti) δij . (D.16)
15This approximation will work for all non-boundary tiles. The tiles on the boundaries will have to use

forwards or backwards finite-differences instead. For example, for a tile on the left boundary, we get

∂xf(Ti) ≈
−3f(Ti) + 4f(TR(i))− f(TR(R(i)))

2 .

16The entries of ∆̃x are given by

(∆̃x)ij =
δL(i),j − δR(i),j

2

if tile i is a non-boundary tile, with the appropriate modifications for the boundaries.

– 38 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
3

E Accuracy of the numerical reconstruction

In the absence of an analytic reconstruction formula in the continuum case, we need to
validate the numerical reconstruction so as to provide confidence that it performs the
inverse transform correctly. To do so, we will first benchmark the numerical reconstruction
using various test cases obtained by instantiating known rank-2 symmetric tensor fields in
the bulk in the holomorhpic gauge. From equation (C.30), we can see that a bulk solution
in the holomorphic gauge can be readily generated by prescribing the boundary values.

As a benchmarking test, we therefore test the reconstruction algorithm as follows:

1. We first pick an arbitrary function h|∂D : ∂D → C on the unit circle. We also pick
another arbitrary scalar function h0 : D→ C.

2. Using equation (C.30), we extend the function h|∂C into the bulk to get a holomorphic
function h : D→ D.

3. From the functions h0 and h, we define the bulk tensor

f = h0 + he2iθ + he−2iθ, (E.1)

where h denotes the complex conjugate of h. The f defined in this way is a real-valued
continuum bulk 2-tensor with components fixed in the holomorphic gauge.

4. We run the forward numerical Radon transform to generate boundary data b. From
b, we then run the discretized inverse Radon transform with holomorphic gauge
constraints to numerically recover a discretized bulk solution h.

5. Finally, we compare the values of h, evaluated at the centroids of the discretized
tiling, with the reconstructed value h. Denoting the exact solution at the centroids
as h∗, we can evaluate the relative error

Ebulk = ‖h− h∗‖
‖h∗‖

(E.2)

to get a sense of the reconstruction quality.

In the absence of known analytic results, and before we move onto with physically
relevant examples, we can run the above test with several choices of boundary functions
h|∂D as a proof of concept that the numerical inverse Radon transform is performing an
adequate reconstruction.

Below, we show some sample test cases for the numerical inverse transform. All of the
transforms shown below are performed with 1000 bulk tiles and 100 boundary sites (for a
total of 4950 geodesics), following the procedure outlined above.

The reconstructions here show good agreement with the original bulk data. On a
qualitative level, the plots of the bulk metric profile are essentially indistinguishable be-
tween the original and the reconstruction. The bulk relative errors across various test cases
range from 0.01 to 0.1, indicating quantitatively successful reconstructions in general. The
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Figure 16. Top: Original bulk data generated with h0(x, y) = xy and h|C(θ) = sin(2θ). Bottom:
The bulk data reconstructed after running the forward Radon transform to get boundary data.
Visually, the two sets of data are identical. The relative error between the two are Ebulk ≈ 0.0227
(relative error 0.004643 without boundary tiles).

boundary relative errors are typically an order of magnitude smaller than the bulk relative
errors, ranging from 0.001 to 0.01. The magnitudes of the boundary relative errors for
these known test cases can serve as an estimate for the general magnitude of numerical
errors present in the algorithm. See figures 16–19.17

It should be noted that the relative errors shown here can actually be slightly mis-
leading. Most sources of error in the reconstruction arise due to large fluctuating values of
the boundary tiles. Tiles at or near the boundary are generally underconstrained due to
the relatively small number of geodesics which pass through any given boundary region.
This allows the boundary tiles to take on arbitrary values in order to minimize the relative
boundary error as the algorithm is designed to do, although this comes at the cost of bulk
accuracy. We can see that if we exclude the values of the boundary tiles from the calcu-
lation of relative error, that the relative error of the reconstruction is generally an order
of magnitude smaller. This suggests that the bulk reconstruction performs very well deep
into the bulk, with larger errors towards the boundary. This is important to keep in mind,
since it suggests that the qualitative bulk picture provided by the numerical inverse should
be generally trustworthy.

17Note that the errors between the original and the reconstruction would be better illustrated as difference
plots. Due to the unfortunately circumstances around the world during the writing of this paper, some of
the reconstruction data is currently quarantined away from one of the authors.
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Figure 17. Top: Original bulk data generated with h0(x, y) = 2e−(x2+y2) and h|C(θ) = cos(2θ) +
sin(3θ). Bottom: The bulk data reconstructed after running the forward Radon transform to get
boundary data. Visually, the two sets of data are identical. The relative error between the two are
Ebulk ≈ 0.0273 (relative error 0.005516 without boundary tiles).

Figure 18. Top: Original bulk data generated with h0(x, y) = 1/(1 + x2 + y2) and h|C(θ) =
cos(5θ). Bottom: The bulk data reconstructed after running the forward Radon transform to get
boundary data. Visually, the two sets of data are identical. The relative error between the two are
Ebulk ≈ 0.0885 (relative error 0.01357 without boundary tiles).
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Figure 19. Top: Original bulk data generated with h0(x, y) = x2 + y2 and h|C(θ) = 2 cos(θ) +
3 sin(3θ). Bottom: The bulk data reconstructed after running the forward Radon transform to get
boundary data. Visually, the two sets of data are identical. The relative error between the two are
Ebulk ≈ 0.01886 (relative error 0.003709 without boundary tiles).

E.1 Constrained optimization

With the discrete Radon transform (D.11) and the discretized holomorphic con-
straints (D.14), we can solve this linear system for h as a constrained optimization problem:

min
h
‖Wh− b‖, (E.3)

subject to Ch = 0,

We look for a best-fit solution h∗ that solves the above system. In general, we do not expect
there to exist a solution h∗ such that Wh∗−b = 0, due to either numerical/discretization
errors or the boundary data being non-geometric.

Because the objective function is linear, this problem has a unique global solution
that can be obtained using standard constrained least squares. We briefly review the
method below.

Theorem 6. Consider the constrained least square problem (E.3). Assuming the stacked
matrix (

W
C

)
(E.4)

is left-invertible and C is right-invertible, a vector h∗ uniquely solves the constrained least
square problem (E.3) if and only if there exists some g such that(

W†W C†

C 0

)(
h∗
g

)
=
(

W†b
0

)
. (E.5)

– 42 –



J
H
E
P
1
2
(
2
0
2
0
)
0
3
3

Proof. Suppose that (h∗,g) satisfies (E.5). Clearly h∗ satisfies the constraint Ch∗ = 0.
Then for any h that satisfies the constraint Ch = 0, we have

‖Wh− b‖2 = ‖W(h− h∗) + Wh∗ − b‖2 (E.6)
= ‖W(h− h∗)‖2 + ‖Wh∗ − b‖2 + 2(h− h∗)†W†(Wh∗ − b) (E.7)
= ||W(h− h∗)||2 + ||Wh∗ − b||2 + 2(h− h∗)†C†g (E.8)
= ||W(h− h∗)||2 + ||Wh∗ − b||2 (E.9)
≥ ||Wh∗ − b||2, (E.10)

where in the second line we used the definition of the norm ‖v‖2 = v†v, in the third line
we used the fact that

W†Wh∗ + C†g = W†b, (E.11)

and in the fourth line we used the fact that

C(h− h∗) = Ch−Ch∗ = 0− 0 = 0. (E.12)

Therefore, h∗ is an optimal solution. Furthermore, the optimal constrained solution is
obtained if and only if (

W
C

)
(h− h∗) = 0. (E.13)

By assumption the stacked matrix is left-invertible, therefore the minimum h = h∗ is
also unique.

In the reverse direction, it suffices to show the matrix in (E.5) is invertible. Suppose
on the contrary the matrix is non-invertible. Then there must exist a vector (h,g) 6= 0
such that (

W†W C†

C 0

)(
h
g

)
=
(

0
0

)
. (E.14)

Left multiplying both sides by (h,g)†, we have

(
h† 0†

)(WTW C†

C 0

)(
h
g

)
= h†W†Wh + h†C†g = 0. (E.15)

Noting that Ch† = 0, we get ‖Wh‖2 = 0, so that Wh = 0. Since the stacked matrix (E.4)
is injective, it follows that we must have h = 0. The system (E.14) then reduces to

C†g = 0. (E.16)

We then conclude that g = 0 since C is right-invertible by assumption. This is in contra-
diction with the assumption that (h,g) 6= 0. Hence the matrix in equation (E.5) must be
invertible, and a solution for g must exist.
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E.2 Interpolation and regularization

In principle, the optimal solution h∗ can be obtained through straightforward matrix inver-
sion of equation (E.5). Suppose h is a column vector with 3N entries, and the constraint
matrix is M × 3N , then any well-known polynomial algorithm for matrix inversion is of
O
(
(M + 3N)3). The inversion of system (E.5) is slightly complicated by the fact that the

matrix W is generally expected to be extremely ill-conditioned. We can get around this
by regularizing the system.

To make the least squares problem (E.5) better conditioned, and to smooth out small
scale fluctuations in the discretized reconstruction, we employ a derivative type Tikhonov
regularization. We replace the matrix W†W in (E.5) by

W†W + γ
(
∆†x∆x + ∆†y∆y

)
, (E.17)

where γ > 0 is a regularization parameter which controls the strength of the regularization,
and where ∆x and ∆y are the discretized partial differential operators defined in (D.13).
This replacement effectively changes the least squares problem in (E.3) to

min
h

(
‖Wh− b‖2 + γ‖∆xh‖2 + γ‖∆yh‖2

)
, (E.18)

subject to Ch = 0,

which both regularizes the system so that the smallest singular values of W are of order
√
γ and also takes into account the strength of fluctuations in the resulting solution. Since

we expect small scale fluctuations to be mostly due to bulk discretization errors, this choice
of regulator serves as a reasonable filter. In this note, all of our reconstructions employ
regularization with γ = 10−8.

In the case of fixed data but variable number of bulk tiles, the reconstruction can also
become ill-conditioned when the number of bulk degrees of freedom exceed the number of
boundary constraints in the form of geodesic lengths. Roughly speaking, because we have
O(3N) number of bulk degrees of freedom, one for each tensor component at a particular
tile. Suppose there are K sites on the boundary, then the number of linear equations from
geodesic lengths is of order O(K2). Hence the reconstruction can become ill-conditioned
when 3N > K2. While it is possible to decrease the number of bulk tiles, or increase
the number of boundary sites, both come at a cost depending on our requirements for
reconstruction. As an alternative, we can also interpolate between geodesic data by adding
virtual sites and the lengths of geodesics for the extended set of sites.

In the current implementation, we add the virtual sites in between the original lattice
sites such that the new lattice scale is half of the original. Let us label all sites sequentially
along the counter clockwise direction on the boundary circle from 1 through 2K such that
2K + 1 ≡ 1. To generate the geodesic lengths between a virtual site j and an original site
i, we average the lengths of two geodesics that are anchored at (i, j + 1) and (i, j − 1). For
a geodesic that ends on two virtual sites, i, j. We take the 4-point average of the original
geodesic lengths for the ones anchored at (i, j + 1), (i, j − 1), (i+ 1, j), and (i− 1, j).
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