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1 Introduction

There is a long history of relating scattering amplitudes to conservative two-body classical
observables. Traditionally, such approaches have made extensive use of the quantum action
of gravity [1], and have been used most commonly to compute non-relativistic classical and
quantum corrections to the interaction Hamiltonian [2–6]. Other approaches still have
utilized on-shell methods to compute the amplitudes, before producing the interaction
Hamiltonian [7–9]. Other than the interaction Hamiltonian, refs. [7, 9, 10] also extracted
information about the metric from the two-to-two scattering amplitude.

Even compared to this illustrious record, tremendous progress on this topic in a rela-
tively short time has been inspired by the detection of gravitational waves (GWs) by the
LIGO and Virgo collaborations [11]. Developments in this time have by and large focused
on the post-Minkowskian (PM) expansion of amplitudes and observables [12, 13]. This
has required new tools for the conversion of PM amplitudes to classical quantities such
as the interaction Hamiltonian [14–16], the linear and angular impulse and radiated mo-
mentum [17, 18], the scattering angle [19–21], and the metric [22]. On the front of the
amplitudes themselves, the current state-of-the-art is the third post-Minkowskian (3PM)
amplitude for scalar-scalar scattering [23–25] (extended to include tidal effects in ref. [26]).
The 3PM amplitude for massless scattering was also computed in ref. [27]. Moreover,
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amplitudes techniques have been used to compute observables in modified theories of grav-
ity [28, 29].

There has also been significant progress made on the inclusion of spin effects. The
spin-1/2 × spin-1/2 amplitude was computed up to the second post-Minkowskian order
using heavy particle effective theory (HPET) techniques in ref. [30], and was converted to
a spinning Hamiltonian as part of the spin-inclusive formalism of ref. [16]. An alternative
approach to this amplitude involving the leading singularity was presented in ref. [31].
Making use of the massive on-shell variables of ref. [32], several results including all orders
in spin were achieved in refs. [33–39]. Some of the notable results from these works include
the interpretation of a Kerr black hole as a minimally-coupled infinite spin particle, the
scattering angle at the second post-Minkowskian (2PM) order up to fourth order in spin,
an amplitudes interpretation of the Newman-Janis complex deformation of Schwarzchild
spacetime, and the full 1PM spinning Hamiltonian. Finally, ref. [40] argued that the
scattering of minimally coupled spinning particles minimizes the generated entanglement
entropy.

Though a plethora of novel results have been achieved using amplitudes-based ap-
proaches, the vast majority of results directly applicable to GW templates have been derived
using general relativistic methods. Of particular relevance to this paper are the compu-
tations of tidal effects on the binary inspiral problem. In this context, several tools have
been applied to the computations of these effects. Two such tools are the post-Newtonian
(PN) and PM approximations. In the PN context, tidal moments were first introduced
in ref. [41]. Ref. [42] incorporated tidal effects into the effective one-body (EOB) formal-
ism [43], and ref. [44] presented tidal contributions to the binding energy within the EOB.
Most recently, tidal effects on the PM scattering angle have been computed in refs. [45, 46]

Up to this point, almost all amplitudes approaches to the binary inspiral problem
have ignored finite size and tidal effects. In fact, the recent work of ref. [26] is the first
application of amplitudes methods to the calculation of these effects. By focusing on
operators quadratic in the Weyl tensor, they computed tidal contributions to spinless
amplitudes arising from the electric and magnetic quadrupoles, up to the next-to-leading-
PM order (O(G3)).1 Converting their amplitudes to classical observables, they found
agreement with results derived from conventional general relativistic methods [42, 44–47].

In this paper, we expand on the work of ref. [26]. Through application of the Hilbert se-
ries (see e.g. [48–56]), we obtain a gravitational action comprising all operators quadratic in
the Weyl tensor and quadratic in a real scalar field. This action is sufficient to fully describe
all spinless tidal contributions to the amplitude at the leading-PM order (O(G2)). Since
we are only interested in the classical portion of the amplitude, we exploit the manifest
~ scaling of the heavy limit of the action to isolate only classically contributing opera-
tors [30]. This simplifies the computation, and we are able to straightforwardly produce
the full classical tidal integrand at the leading-PM order. Integrating the integrand in
principle requires knowledge of the general even-rank triangle integral. However, we are
able circumvent this issue since we are simply interested in the leading-in-~ portion of the

1Note that one-loop is the leading order where tidal effects can contribute to conservative dynamics.
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integral that is proportional to S ≡ π2/
√
−q2. This allows us to find a form of the general

even-rank triangle integral that we have explicitly checked up to rank 10, and that was
proven in ref. [57] while this paper was in review. Applying this results in the complete
leading-PM tidal amplitude. We indeed find the leading-PM contribution of ref. [26] as the
leading contribution to our amplitude. We then use our amplitude to derive all leading-PM
tidal corrections to the Hamiltonian and the scattering angle, comparing to existing results
along the way.

The layout of this paper is as follows: we begin in section 2 by presenting the full
tidal actions for electromagnetism and gravity coupled to real scalars at quadratic order
in the field strength or the Weyl tensor respectively. We include a brief primer on the
Hilbert series in this section, as it is the main tool in our construction. With the tidal
actions in hand, section 3 focuses on the computation of tidal contributions to the one-
loop amplitudes. The heavy limits of the tidal actions are also presented here. We conclude
in section 4.

2 Tidal actions

This section is dedicated to the presentation of the tidal actions up to quadratic order in
the field strengths or Weyl tensors respectively for QED or gravity coupled to a real scalar.
We achieve the complete forms of these actions through application of the Hilbert series.
As such, we begin with a brief introduction to the Hilbert series before presenting the
results of the series and corresponding tidal actions for QED and then gravity. Technical
details about the Hilbert series are postponed to appendix A.

2.1 Hilbert series for tidal effects

The Hilbert series uses character orthonormality to count group invariants. It is an impor-
tant tool for constructing a basis of higher-dimensional operators, and has been applied to
the effective-field-theory extension of the Standard Model in refs. [51–54], while ref. [56]
also included gravity.

The input for the Hilbert series is the field content and the fields’ representations
under compact symmetries. The output is the number of invariant operators with a given
field content and covariant derivatives. Redundancies coming from integration-by-parts
relations and field redefinitions are taken into account.

We first want to construct operators with real scalar fields φ coupled to photons. The
Lorentz group SO(1, 3) is not a compact group, but we can use the Euclidean group SO(4) '
SU(2)L × SU(2)R to find the group invariants. We then work with fields transforming in
irreducible representations of SU(2)L and SU(2)R built from linear combinations of the
field strength Fµν and the dual field strength F̃µν = 1

2εµνρσF
ρσ:

FµνL/R ≡
1
2
(
Fµν ± iF̃µν

)
. (2.1)

The characters for FµνL/R and φ are the input to the Hilbert series.
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We restrict our attention to the operators with two real scalar fields, two field strengths,
and an arbitrary number of covariant derivatives. The output of the Hilbert series HF 2

d for
mass dimension d = 6 + 2n is

HF 2
6+2n =

⌊
n+ 2

2

⌋ (
F 2
Lφ

2D2n + F 2
Rφ

2D2n
)

+
⌊
n+ 1

2

⌋
FLFRφ

2D2n, (2.2)

where n ≥ 0 is an integer and bxc is the floor function.
Now consider the Hilbert series for two real scalars coupled to gravity. As explained in

appendix B, non-redundant operators quadratic in the curvature can be written in terms
of the Weyl tensor Cµνρσ. Thus we need only the group characters of

CµνρσL/R = 1
2
(
Cµνρσ ± iC̃µνρσ

)
, (2.3)

where C̃µνρσ = 1
2ε
µναβC ρσ

αβ is the dual to the Weyl tensor. The Hilbert series HC2
d for

two real scalar fields, two Weyl tensors, and an arbitrary number of covariant derivatives is

HC2
6+2n =

⌊
n+ 2

2

⌋ (
C2
Lφ

2∇2n + C2
Rφ

2∇2n
)

+
⌊
n

2

⌋
CLCRφ

2∇2n, (2.4)

for integer n ≥ 0.
We use the output of the Hilbert series as a guide for constructing a basis of higher-

dimensional operators which capture all leading-PM tidal effects in electromagnetism and
gravity.

2.2 QED

The Lagrangian we are after couples a real scalar to photons through operators quadratic
in the field strength:

LQED = 1
2 (∂µφ) (∂µφ)− m2

2 φ2 + ∆Ltidal
QED. (2.5)

Here ∆Ltidal
QED describes the tidal interactions between two real scalars and two field strength

tensors. We are interested in using the Hilbert series in eq. (2.2) to construct this contri-
bution at general mass dimension.

Ultimately, there is a freedom in the operator basis we use (see appendix B). We choose
a basis that is optimized for the computation of classical amplitudes. Such a basis does
not include any structures of the form DµφDµφOF 2 . These can be seen to mix with φ2OF 2

in the heavy limit, hence one could receive contributions to classically-contributing heavy
operators from an infinite number of operators in the full action. Furthermore, we will
avoid derivative placements that produce any structure that can be removed by a field
redefinition; see appendix B for a list of such structures. Accounting for these criteria, we
will build our basis out of operators of the following form:

O(n)
LL,k = [Dµ1...µkφ] [Dν1...νkφ]

[
Dµ1...µkα1...αn−2kFL,ρσ

]
[Dν1...νkα1...αn−2kF ρσL ] , (2.6a)

O(n)
RR,k = [Dµ1...µkφ] [Dν1...νkφ]

[
Dµ1...µkα1...αn−2kFR,ρσ

]
[Dν1...νkα1...αn−2kF ρσR ] , (2.6b)

O(n+1)
LR,k = [Dρµ1...µkφ] [Dσν1...νkφ]

[
Dµ1...µkα1...αn−2kFL,ρτ

]
[Dν1...νkα1...αn−2kF στR ] , (2.6c)

– 4 –



J
H
E
P
1
2
(
2
0
2
0
)
0
2
4

where 0 ≤ k ≤ bn/2c. This range of k produces the number of operators dictated by the
Hilbert series. We have defined Dµ1...µn ≡ Dµ1 . . . Dµn .

We would like to construct our action out of the fields Fµν and F̃µν . To do so we
simply replace FµνL,R in terms of the field strength and its dual. After this replacement the
operators above become

O(n)
LL,k = 2 [Dµ1...µkφ] [Dν1...νkφ]

[
Dµ1...µkα1...αn−2kFρσ

]
[Dν1...νkα1...αn−2kF ρσ]

+ 2i [Dµ1...µkφ] [Dν1...νkφ]
[
Dµ1...µkα1...αn−2kFρσ

] [
Dν1...νkα1...αn−2k F̃ ρσ

]
, (2.7a)

O(n)
RR,k = 2 [Dµ1...µkφ] [Dν1...νkφ]

[
Dµ1...µkα1...αn−2kFρσ

]
[Dν1...νkα1...αn−2kF ρσ]

− 2i [Dµ1...µkφ] [Dν1...νkφ]
[
Dµ1...µkα1...αn−2kFρσ

] [
Dν1...νkα1...αn−2k F̃ ρσ

]
, (2.7b)

O(n+1)
LR,k = 2 [Dρµ1...µkφ] [Dσν1...νkφ]

[
Dµ1...µkα1...αn−2kFρτ

]
[Dν1...νkα1...αn−2kF στ ]

− 1
2η

ρσ [Dρµ1...µkφ] [Dσν1...νkφ]
[
Dµ1...µkα1...αn−2kFρτ

]
[Dν1...νkα1...αn−2kF στ ] .

(2.7c)

Both operators in eqs. (2.7a) and (2.7b) contain P-odd terms. We are not interested in
such effects, so we ignore these operators. Also note that, by integrating by parts twice,
the second term in eq. (2.7c) can be reexpressed in terms of other operators already present
and terms that can be removed by field redefinitions, up to contributions cubic in the field
strength.

All-in-all, there are two generic structures out of which we build the tidal action. The
tidal contribution to the action to all mass dimensions is thus

∆Ltidal
QED =

∞∑
n=0

N∑
k=0

{
a

(n)
k [Dµ1...µkφ] [Dν1...νkφ]

[
Dµ1...µkα1...αn−2kFρσ

]
[Dν1...νkα1...αn−2kF ρσ]

+ b
(n+1)
k [Dρµ1...µkφ] [Dσν1...νkφ]

[
Dµ1...µkα1...αn−2kFρτ

]
[Dν1...νkα1...αn−2kF στ ]

}
,

(2.8)

where N ≡ bn/2c and we have introduced the Wilson coefficients a(n)
k and b

(n+1)
k . Note

that the covariant derivatives acting on the real scalars or field strenghts reduce to partial
derivatives. One can easily incorporate P-odd operators into this tidal action by including
the same operators as in the first line in eq. (2.8) where one of the field strenghts is replaced
by a dual field strength.

2.3 Gravity

We repeat the procedure from the previous section, only this time for a real scalar coupled
to gravity. The relevant action is

√
−gLGR =

√
−g

[
gµν

2 (∂µφ) (∂νφ)− m2

2 φ2 + ∆Ltidal
GR

]
. (2.9)

We will find the form of the tidal contribution at general mass dimension using the Hilbert
series in eq. (2.4).
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The optimal basis for our purposes satisfies the same criteria as in the previous section.
As such, our basis comprises operators of the form

O(n)
LL,k = [∇µ1...µkφ] [∇ν1...νkφ]

[
∇µ1...µkα1...αn−2kCL,ρσαβ

] [
∇ν1...νkα1...αn−2kCρσαβL

]
, (2.10)

O(n)
RR,k = [∇µ1...µkφ] [∇ν1...νkφ]

[
∇µ1...µkα1...αn−2kCR,ρσαβ

] [
∇ν1...νkα1...αn−2kCρσαβR

]
, (2.11)

O(n+2)
LR,k = [∇ρσµ1...µkφ] [∇αβν1...νkφ]

[
∇µ1...µkα1...αn−2kCL,λρτσ

] [
∇ν1...νkα1...αn−2kCλατβR

]
.

(2.12)

We introduced the shorthand notation ∇µ1...µn = ∇µ1 . . .∇µn . In this case as well k is in
the range 0 ≤ k ≤ N .

These operators can be expressed in terms of the Weyl tensor and its dual. The exact
same procedure as in the QED case, along with covariant conservation of the Levi-Civita
tensor [58], results in only two forms of operators comprising the basis, modulo P-odd
operators. The tidal contribution to the action is thus

∆Ltidal
GR = (2.13)
∞∑
n=0

N∑
k=0

{
c

(n)
k [∇µ1...µkφ] [∇ν1...νkφ]

[
∇µ1...µkα1...αn−2kCρσαβ

] [
∇ν1...νkα1...αn−2kCρσαβ

]
+ d

(n+2)
k [∇ρσµ1...µkφ] [∇αβν1...νkφ]

[
∇µ1...µkα1...αn−2kCλρτσ

] [
∇ν1...νkα1...αn−2kCλατβ

]}
,

to all mass dimensions. The coefficients c(n)
k and d(n+2)

k are the Wilson coefficients for the
action. Again, the P-odd operators which could be added to the basis take the same form
as the first line in eq. (2.13) with one of the Weyl tensors replaced by a dual Weyl tensor.

3 Tidal effects at the leading-PM order

The actions in eqs. (2.8) and (2.13) describe all tidal effects that can arise from terms
quadratic in the electromagnetic field strength and the curvature, respectively. In fact,
these actions are sufficient for describing all tidal effects at the one-loop order, which cor-
responds to the leading-PM order in the case of gravity. We present in this section the full
classical one-loop tidal contributions to both electromagnetic and gravitational amplitudes.
Since we are exclusively interested in classical contributions, we can take advantage of the
heavy limits of these actions to identify the only operators which contribute classically at
this loop order [30]. This results in significant simplifications to the Feynman rules and
the loop integrals involved.

We follow the method in refs. [30, 59–61] to take the heavy limit of real scalars. Namely,
we apply the field redefinition

φ→ 1√
2m

(
e−imv·xχ+ eimv·xχ∗

)
, (3.1)

and drop quickly oscillating terms. Furthermore, by counting the powers of ~ associated
with each operator, and given that the triangle diagram in figure 1 is the only topology
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p2

p2 − l

p2 + q

l

l + q

p1

p1 − q

Figure 1. The only topology contributing classical tidal effects at one loop. The tidal effects of
particle 1 are probed. The wavy lines represent either photons or gravitons.

of interest at the one-loop level, we only need the operators at leading order in the 1/m
expansion.

We present first the heavy limit of the electromagnetic tidal action, as well as the full
classical one-loop tidal contribution to the electromagnetic amplitude, before moving on
to the case of gravity. We have normalized all amplitudes by multiplying by 4m1m2. This
compensates for the normalization in eq. (3.1).2

3.1 QED

Beginning with the Lagrangian in eq. (2.5), we apply the field redefinition in eq. (3.1) to
obtain

LHQET = χ∗iv · ∂χ+ ∆Ltidal
HQET + . . . , (3.2a)

where

∆Ltidal
HQET = (3.2b)
∞∑
n=0

N∑
k=0

{
a

(n)
k m2k−1[vµ1...µkχ∗][vν1...νkχ][Dµ1...µkα1...αn−2kFρσ][Dν1...νkα1...αn−2kF ρσ]

+b(n+1)
k m2k+1[vρµ1...µkχ∗][vσν1...νkχ][Dµ1...µkα1...αn−2kFρτ ][Dν1...νkα1...αn−2kF στ ]

}
+ . . . .

We have defined vµ1...µn = vµ1 . . . vµn . In these equations, dots represent operators scaling
with higher powers of ~. We can ignore these operators as the computation of classical
effects at the one-loop level only requires contributions from the leading-in-~ operators.

At this point there is an apparent contradiction in the tidal operators we have claimed
to be leading in ~. Increasing n or decreasing k at fixed n increases the number of derivatives
acting on the photon field, thereby increasing powers of ~ in the resulting contributions
to amplitudes [17]. However, the derivative structure of the subleading tidal terms in the
worldline action [44, 45, 47] suggests that we are right to keep these terms. Therefore, much
like in the case of spin effects where the spin vector absorbs a power of ~ [18], we propose

2More precisely, this factor is the leading-in-~ portion of the heavy scalar external states in momentum
space [62].
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that the tidal coefficients must scale with ~ to absorb the factors from the operators. The
scalings that cancel those of the operators in eq. (3.2) are

a
(n)
k ∼ ~−2n+2k−2, (3.3a)

b
(n+1)
k ∼ ~−2n+2k−2. (3.3b)

As in the case of spin, this scaling is necessary to make contact between portions of the
amplitude and classical quantities.

We proceed now to use the heavy action to compute the classical one-loop tidal am-
plitude. We let particle i have momentum pi = mivi + ki, where we have applied the usual
heavy-particle decomposition of the momentum. Note that we cannot generate three-point
vertices with a photon and two real scalars, so we take particle 2 to be complex in this
context, i.e. particle 2 obeys the action given by eq. (B.3) in ref. [30]. The portion of the
leading-PM amplitude involving only the k = 0 terms in eq. (3.2) is

∆Ak=0
2 = − e

2

π2Sm2

∞∑
n=0

(−1)n
(
q2

2

)n+1 [
a

(n)
0 + m2

1
8 b

(n+1)
0 (3ω2 + 1)

]
. (3.4)

We have defined S ≡ π2/
√
−q2 and ω ≡ v1 · v2. The notation ∆A denotes an electromag-

netic amplitude linear in the tidal coefficients in eq. (3.2b).
Let’s now extend this result to general k. The unintegrated form of the amplitude is

∆A2 = −8ie2m2

∞∑
n=0

N∑
k=0

(−1)nm2k
1

(
q2

2

)n−2k [
2
(
q2

2

)
a

(n)
k v1µ1...µ2kI

µ1...µ2k
/ (3.5)

+m2
1b

(n+1)
k

(
ω2 q

2

2 vµ1...µ2kI
µ1...µ2k
/ + vµ1...µ2k+2I

µ1...µ2k+2
/

)]
.

To integrate the general k amplitude, we need knowledge of integrals of the form

v1µ1...µ2kI
µ1...µ2k
/ =

∫
d4l

(2π)4
(v1 · l)2k

l2(l + q)2(−v2 · l)
. (3.6)

This task is simplified since we in fact only need the portion of this integral proportional
to the non-analytic structure S, and even then only the leading-in-~ contribution to this
portion. We observe the following pattern for the portion of the integral we are interested in:

v1µ1...µ2kI
µ1...µ2k
/ =

(
1
2

)
k

4k (1)k
(ω2 − 1)kq2kI/ +O(~2k), (3.7)

where (a)b is the Pochhammer symbol and

I/ =
∫

d4l

(2π)4
1

l2(l + q)2(−v2 · l)
. (3.8)

Note that, since the scalar triangle integral scales as ~−1, the leading term in eq. (3.7) scales
as ~2k−1. We have explicitly checked eq. (3.7) up to 2k = 10 using the Passarino-Veltman
reduction [63]. Equation (3.7) was proven in ref. [57] while this paper was in review.
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Armed with eq. (3.7), we compute a result for general n, k;

∆A2 = −e
2Sm2
π2

∞∑
n=0

N∑
k=0

(−1)n
(
q2

2

)n−k+1

m2k
1 (ω2 − 1)k (3.9)

×

a(n)
k

(
1
2

)
k

2k (1)k
+ 1

2m
2
1b

(n+1)
k


(

1
2

)
k

(1)k
ω2 −

(
1
2

)
k+1

2 (1)k+1
(ω2 − 1)


 .

We can reorganize the sums to make the dependence on q2 more transparent:

∆A2 =
∞∑
i=0

e2

π2

(
−q

2

2

)i+1

Sm2fi(ω), (3.10)

where

fi(ω) ≡
i∑

k=0

(
1
2

)
k

2k(1)k
(1−ω2)k

[
m2k

1 a
(i+k)
k + 2k

8(k+1)m
2k+2
1 b

(i+k+1)
k

[
(2k+3)ω2+(2k+1)

]]
,

(3.11)

after some algebraic simplification of the Pochhammer symbols.

3.2 Gravity

We turn now to the leading-PM gravitational tidal amplitude. Once again the first step is
to find the action describing a heavy scalar. Beginning with the Lagrangian in eq. (2.9),
we apply the field redefinition in eq. (3.1) to obtain

√
−gLHBET =

√
−g

[1
2m(gµνvµvν − 1)χ∗χ+ χ∗iv · ∂χ+ ∆Ltidal

HBET + . . .

]
, (3.12a)

where

∆Ltidal
HBET = (3.12b)
∞∑
n=0

N∑
k=0

{
c

(n)
k m2k−1[vµ1...µkχ∗][vν1...νkχ][∇µ1...µkα1...αn−2kCρσαβ ][∇ν1...νkα1...αn−2kCρσαβ ]

+d(n+2)
k m2k+3[vρσµ1...µkχ∗][vαβν1...νkχ][∇µ1...µkα1...αn−2kCλρτσ][∇ν1...ν2α1...αn−2kCλατβ ]

}
+ . . . .

In these equations, dots represent operators scaling with higher powers of ~. Note that we
must keep the term χ∗iv · ∂χ in the action even though it is subleading in m since it is the
kinetic term for the heavy scalar. Following the arguments in section 3.1, we propose the
following ~-scaling of the gravitational tidal coefficients:

c
(n)
k ∼ ~−2n+2k−4, (3.13a)

d
(n+2)
k ∼ ~−2n+2k−4. (3.13b)
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First we reproduce the leading-PM amplitude from ref. [26]. We need only the opera-
tors with n = k = 0 for this task. Thus the amplitude for the leading tidal effect is

∆Mn=k=0
2 = G2q4Sm3

2

[
16c(0)

0 + m4
1

8 d
(2)
0 (35ω4 − 30ω2 + 11)

]
. (3.14)

This agrees with ref. [26] with the identification c
(0)
0 → λ/4 and d

(2)
0 → η/(4m4

1). Here
∆M is a gravitational amplitude linear in the tidal coefficients in eq. (3.12b).

We easily extend this result by including terms at all orders in n and with k = 0:

∆Mk=0
2 = 4G2Sm3

2

∞∑
n=0

(−1)n
(
q2

2

)n+2 [
16c(n)

0 + m4
1

8 d
(n+2)
0 (35ω4 − 30ω2 + 11)

]
. (3.15)

The result for general k depends on integrals of the form in eq. (3.6). Specifically, the
amplitude in terms of these integrals is

∆M2 = 512iπ2G2m3
2

∞∑
n=0

N∑
k=0

(−1)nm2k
1

(
q2

2

)n−2k+2 {
2c(n)
k vµ1...µ2kI

µ1...µ2k
/ (3.16)

+m4
1d

(n)
k

[
q4(1− 2ω2)2vµ1...µ2kI

µ1...µ2k
/ + 4q2(1− 4ω2)vµ1...µ2k+2I

µ1...µ2k+2
/

+8vµ1...µ2k+4I
µ1...µ2k+4
/

]}
.

We can integrate this using eq. (3.7) to obtain the result for all n, k:

∆M2 = 4G2m3
2S

∞∑
n=0

N∑
k=0

(−1)nm2k
1 (ω2 − 1)k

(
q2

2

)n−k+2
16c(n)

k

(
1
2

)
k

2k(1)k
(3.17)

+m4
1d

(n+2)
k

(1− 2ω2)2

(
1
2

)
k

2k−1(1)k
+ (1− 4ω2)(ω2 − 1)

(
1
2

)
k+1

2k−1(1)k+1
+ (ω2 − 1)2

(
1
2

)
k+2

2k(1)k+2


 .

A suggestive structure arises when k 6= 0: each contribution is proportional to the factor
(ω2 − 1)k. This factor is small in the PN limit, thus we can see already from the PM
amplitude level that the corresponding operators must be subleading in the PN limit, in
agreement with the constructions in refs. [44, 45, 47]. In fact, this squares perfectly with
principles from classical gravitational effective field theories (EFTs). Terms with k 6= 0
involve derivatives of the Weyl tensor of the form v · ∇. These reduce to time derivatives
in the PN limit, which are subleading compared to spatial derivatives [64].

Once again, we reorganize the sums in powers of the transfer momentum. The ad-
vantage of doing so is that contributions are grouped by their significance to observables.
We find

∆M2 = 4G2Sm3
2

∞∑
i=0

(
−q

2

2

)i+2

gi(ω), (3.18a)
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where after some simplification

gi(ω) ≡
i∑

k=0

(−1)k
(

1
2

)
k

2k(1)k
(ω2 − 1)k

[
16m2k

1 c
(i+k)
k (3.18b)

+ m2k+4
1 d

(i+k+2)
k

4(k + 2)(k + 1)
[
(2k + 5)(2k + 7)ω4 − 6(2k + 5)ω2 + (4k2 + 12k + 11)

]]
.

The amplitude is now presented in an optimal form for conversion to the Hamiltonian or
scattering angle. We present these quantities in the next section, and defer comparison of
this result with the literature until then.

In this section we have only computed the tidal contribution of particle 1 to the am-
plitude. If one is interested in the tidal effects from both particles at this order, one must
simply symmetrize the results here in the particle labels.

3.3 Gravitational Hamiltonian and scattering angle

We use now our leading-PM amplitude in eq. (3.18) to compute the full leading-PM tidal
corrections to the Hamiltonian and the scattering angle. Beginning with the Hamiltonian,
there are two ways we may proceed. The first is to match to the EFT of ref. [14], and
the second is through the Lippmann-Schwinger equation [29]. As we are working to linear
order in the tidal coefficients, there will be no contributions from the Born iteration, so we
work here with the latter formulation. The Hamiltonian as a function of the center-of-mass
momentum and the separation between the bodies is given by

H(p, r) =
∑
n=1,2

√
p2 +m2

i + V (p, r) + ∆V (p, r). (3.19)

Here V (p, r) is the point particle potential and can be found up to 3PM order in refs. [23,
24]. ∆V (p, r) incorporates tidal corrections. At the order to which we have worked, these
tidal corrections are simply the Fourier transform of the leading-PM amplitude in the
center-of-mass frame:

∆V (p, r) = −
∫

d3q
(2π)3 e

−iq·r∆M2(p, q). (3.20)

In this frame the transfer momentum becomes qµ = (0,q), so q2 = −q2. Substituting now
eq. (3.18) into this after incorporating the non-relativistic normalization 1/4E1E2,

∆V (p, r) = −G
2m3

2
E2ξ

∞∑
i=0

(−1)i(2i+ 4)!
2i+3r2i+6 gi(ω), (3.21)

where E ≡ E1 +E2 is the total energy in the center-of-mass frame and ξ ≡ E1E2/E
2. The

i = 0 term is in exact agreement with eq. (10) of ref. [26].
With this in hand we can compute the scattering angle using the method of ref. [20].

Note that Veff in ref. [20] is related to the potential in position space by Veff = 2Eξ∆V .3

3We thank Andrea Cristofoli for pointing this out.
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Accounting for this, the scattering angle is

∆χ = G2m3
2

E

∞∑
i=0

(−1)i(2i+ 4)!(i+ 3)
2i+2p2

∞b
2(i+3)

√
πΓ
(
i+ 7

2

)
Γ(i+ 4) gi(ω), (3.22)

where b is the impact parameter and p∞ = |p|, the magnitude of the center-of-mass three-
momentum. Evaluating this at i = 0 and noting that p∞b = J , the angular momentum,
we find exact agreement with the O(J−6) portion of eq. (13) in ref. [26]. This also agrees
with ref. [45] upon converting to their notation and matching Wilson coefficients:

p∞ →
m1m2
E

p∞, J → Gm1m2j, (3.23)

c
(0)
0 → − 1

12mσ
(2), d

(2)
0 → 1

4m3

(
µ(2) + 8

3σ
(2)
)
. (3.24)

A similar notation conversion along with the Wilson coefficient map in eq. (3.24) also
produces agreement with the sum of eqs. (5.5) and (5.6) of ref. [46]. We remark that
the Wilson coefficient matching in eq. (3.24) is equivalent to the matching of ref. [26].
Moreover, this matching can be seen directly from the level of the heavy action: it is the
condition that equates the n = 0, k = 0 portion of the heavy tidal action eq. (3.12b) with
the l = 2 term of the classical worldline action in ref. [47], up to factors of χ∗χ.

To check the i = 1 term we have repeated the calculation starting from the worldline
action of ref. [45], promoting each term to a quantum-field-theory operator, and multiplying
by χ∗χ. Doing so we find the following matching conditions on the Wilson coefficients of
the two operator bases:

c
(1)
0 → − 1

32m1σ
(3), (3.25a)

c
(2)
1 → 1

144m1

(
−µ(3) − 12σ′(2) + 9

2σ
(3)
)
, (3.25b)

d
(3)
0 → 1

12m3
1

(
µ(3) + 3σ(3)

)
, (3.25c)

d
(4)
1 → 1

36m5
1

(
9µ′(2) − µ(3) + 24σ′(2) − 3σ(3)

)
. (3.25d)

This mapping is also consistent with the form factors in eq. (4.39) of ref. [45], reproducing
the same ω structure in gi(ω) as in the form factors.4 Note, however, that this mapping
is only appropriate up to overall constants when comparing to the form factors, as we are
comparing different quantities.

As a final check on the Wilson coefficient matching conditions, we computed the fac-
torizable portion of the tree-level 3→ 3 amplitude at linear order in the tidal coefficients.
Matching the amplitudes computed from both bases, we indeed find again the matching
conditions in eqs. (3.24) and (3.25).

4Note that ω in our notation is equivalent to γ in the notation of ref. [45].
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4 Summary and outlook

While the application of scattering amplitudes to the binary point-particle inspiral problem
has seen much progress in recent years, the description of finite size and tidal effects is a
novel and exciting development. We have demonstrated the applicability of powerful EFT
tools to this problem. Namely, through the Hilbert series we have been able to write
down an action which includes all possible operators involving two real scalars and two
Weyl tensors. These operators represent the leading-PM tidal effects, and the action they
compose is sufficient to describe all tidal contributions to the 2PM amplitude for scalar-
scalar scattering.

The computation of this amplitude was easily performed by taking the heavy limit of
the tidal action and isolating only those operators with the correct ~ scaling to contribute
classically. A subtlety arose in this identification of classically contributing operators:
operators with an increasing number of derivatives acting on the Weyl tensors would have
to be considered classical. This runs counter to the wisdom that more derivatives produce
more powers of ~. To resolve this tension, we proposed that the Wilson coefficients of the
action must themselves scale with compensating powers of ~, analogously to the absorption
of ~ by the spin vector. We presented the unintegrated form of the leading-PM amplitude,
and integrated it using the form of the rank-2k triangle integral in eq. (3.7). We found
agreement where our amplitude has overlap with existing results. The amplitudes were then
converted into a Hamiltonian and scattering angle, and once again we found agreement with
known results.

There are two obvious extensions to this work. The first is the inclusion of tidal
effects from operators with higher powers of the Weyl tensor. An operator involving n

powers of the Weyl tensor contributes to vertices with n or more gravitons and two matter
lines, and thus contributes to conservative dynamics starting at the nPM order. Second
is the inclusion of spin effects. This point is perhaps the more pressing of the two, since
tidal effects for objects of large enough spin may also have implications for the Compton
amplitude. The gravitational Compton amplitude acquires a spurious pole for matter with
spin s ≥ 2 [32], an occurrence which is believed to derive from the necessarily composite
nature of particles with large spin. If this is true then it is natural to expect that the
inclusion of tidal effects may aid in remedying this non-locality. Both of these avenues can
be pursued using the same Hilbert series methods we have employed here. We leave these
ideas for future research.
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A Hilbert series

Below we list the mathematical details we used in the construction of the Hilbert series for
tidal effects. For a detailed account of the Hilbert series, see e.g. refs. [50–56].

The Hilbert series H for a given field content φ is the contour integral of the plethystic
exponential:5

H =
∫
dµ

1
P

PE[χφ], (A.1)

where the plethystic exponential (PE) generates all symmetric (antisymmetric) tensor prod-
ucts of the representations of the bosonic (fermionic) field content. The factor 1/P re-
moves a total derivative, where the momentum generating function P is defined below in
eq. (A.15). The plethystic exponential takes the form

PEφ = exp
[ ∞∑
r=0

zr+1 φr

rDr∆φ
χφ(xr1, . . . , xrk)

]
, (A.2)

where ∆φ is the mass dimension of φ and z = ±1 when φ is a boson/fermion, respectively.
Here χφ is the character of the representation of φ. When we consider several fields, we
simply multiply their plethystic exponentials.

We are using the Hilbert series to generate operators with neutral scalars, photons,
and gravitons. Thus we need their respective conformal representations:

χφ = χ[1,(0,0)](D;α, β), (A.3)

χFL = χ[2,(1,0)](D;α, β), (A.4)

χFR = χ[2,(0,1)](D;α, β), (A.5)

χCL = χ[3,(2,0)](D;α, β), (A.6)

χCR = χ[3,(0,2)](D;α, β). (A.7)

We could have included the characters for the U(1) gauge group in electromagnetism, but,
since both the scalars and the photons are neutral, their characters would be trivial.

The characters for the unitary conformal representations of interest are [53, 55, 56, 65]

χ[1,(0,0)](D;α, β) = DP (D;α, β)(1−D2), (A.8)

χ[3/2,(1/2,0)](D;α, β) = D3/2P (D;α, β)
[
χ(1/2,0)(α, β)−Dχ(0,1/2)(α, β)

]
, (A.9)

χ[3/2,(0,1/2)](D;α, β) = D3/2P (D;α, β)
[
χ(0,1/2)(α, β)−Dχ(1/2,0)(α, β)

]
, (A.10)

χ[2,(1,0)](D;α, β) = D2P (D;α, β)
[
χ(1,0)(α, β)−Dχ(1/2,1/2)(α, β) +D2

]
, (A.11)

χ[2,(0,1)](D;α, β) = D2P (D;α, β)
[
χ(0,1)(α, β)−Dχ(1/2,1/2)(α, β) +D2

]
, (A.12)

5The modification term ∆H will not be relevant for us as we consider operators with mass dimension
greater than 4.
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χ[3,(2,0)](D;α, β) = D3P (D;α, β)
[
χ(2,0)(α, β)−Dχ(3/2,1/2)(α, β) +D2χ(1,0)(α, β)

]
,

(A.13)

χ[3,(0,2)](D;α, β) = D3P (D;α, β)
[
χ(0,2)(α, β)−Dχ(1/2,3/2)(α, β) +D2χ(0,1)(α, β)

]
,

(A.14)

where

P (D;α, β) = 1
(1−Dαβ)(1−D/(αβ))(1−Dα/β)(1−Dβ/α) (A.15)

is the momentum generating function [53]. The characters of the Euclidean Lorentz group
are simply products of SU(2) characters;

χ(l1,l2)(α, β) = χ
SU(2)
l1

(α)× χSU(2)
l2

(β). (A.16)

The SU(2) characters we need are

χ
SU(2)
0 (α) = 1, (A.17)

χ
SU(2)
1/2 (α) = α+ 1

α
, (A.18)

χ
SU(2)
1 (α) = α2 + 1 + 1

α2 , (A.19)

χ
SU(2)
3/2 (α) = α3 + α+ 1

α
+ 1
α3 , (A.20)

χ
SU(2)
2 (α) = α4 + α2 + 1 + 1

α2 + 1
α4 . (A.21)

Finally, the Haar measure for the Euclidean Lorentz group SO(4) ' SU(2)L × SU(2)R is

∫
dµLorentz =

( 1
2πi

)2 ∮
|α|=1

dα

2α (1− α2)
(

1− 1
α2

)∮
|β|=1

dβ

2β (1− β2)
(

1− 1
β2

)
. (A.22)

B Redundant operators

The operator basis for leading-PM tidal effects in eq. (2.13) is a complete, non-redundant
basis for all operators involving two scalars and two Weyl tensors. However, the explicit
form of the operator basis involves some choices, originating from two types of redundancies:
field redefinitions and integration-by-parts relations.

First we consider redundancies from field redefinitions. The free equation of motion
(EOM) for the scalar field is

∂2φ+m2φ = 0. (B.1)

A composite operator which contains the factor ∂2φ can be removed from the operator
basis by an appropriate choice of field redefinition which exchanges it for the operator m2φ.
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When constructing operators where partial derivatives are acting on the scalar fields, we
need only consider symmetric, traceless combinations of the derivatives.6

Similarly, the free EOM for the gauge field is

∂µF
µν = 0. (B.2)

Also, we find that

∂2Fµν = 0 (B.3)

by using the Bianchi identity ∂[αFµν] = 0. Again, we only need symmetric, traceless
combinations of derivatives acting on the field strengths, where none of the derivatives are
contracted with that field strength.

For gravity, we have Einstein’s equation in vacuum:

Rµν = 0, (B.4)

where Rµν is the Ricci tensor. This means that we don’t include the Ricci tensor nor the
Ricci scalar in the operator basis as they can be removed by an appropriate redefinition of
the metric tensor.7

Since the Weyl tensor is the traceless part of the Riemann tensor,

Cµνρσ = Rµνρσ −
(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+ 1

3gµ[ρgσ]νR, (B.5)

where A[µν] = 1
2(Aµν −Aνµ) for any tensor A, we can freely work with either the Riemann

tensor or the Weyl tensor. For our purposes, it is most convenient to work with the Weyl
tensor because it transforms in an irreducible representation of the Euclidean Lorentz
group; see appendix A.

In vacuum, we find that

∇µCµνρσ = 0, (B.6)
∇2Cµνρσ = O(C2), (B.7)

up to terms with Ricci tensors or Ricci scalars. Thus we need only keep symmetric, traceless
combinations of covariant derivatives acting on the Weyl tensors.

Next we will illustrate the redundancies coming from integration-by-parts relations by
looking at some possible dimension-8 operators:

O1 = φφ [∇µCρσαβ ]
[
∇µCρσαβ

]
, (B.8)

O2 = [∇µφ] [∇µφ]CρσαβCρσαβ , (B.9)
O3 = φ [∇µφ] [∇µCρσαβ ]Cρσαβ . (B.10)

6We could also replace the partial derivatives with covariant derivatives. Note that commutators of
covariant derivatives are related to field strengths or curvature; [Dµ, Dν ] ∼ Fµν or [∇µ,∇ν ] ∼ R.

7From an amplitude perspective, ref. [66] showed that the modification of the Einstein-Hilbert action
by the addition of R2 and RµνRµν terms does not affect the amplitude. Ref. [47] found an explicit field
redefinition of the graviton field that removes traces of the Riemann curvature from the tidal worldline
action, including in the presence of matter.
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Here, O1 corresponds to the operator with coefficient c(1)
0 in eq. (2.13), while O2 and O3

are absent from eq. (2.13). The Hilbert series in eq. (2.4) informs us that there should
be only one P-even operator at this mass dimension, but it does not tell us which one we
should choose.

In fact, these operators are related through integration-by-parts relations,

O1 = O2 + EOM +O(C3), (B.11)
O1 = −O3, (B.12)

up to a total derivative, operators proportional to the leading-order EOM, and operators
with more than two Weyl tensors. We discard the total derivative due to momentum
conservation, and the EOM operators can be removed through a field redefinition. In
fact, the Hilbert series have implicitly removed, whenever possible, operators with more
derivatives in place of operators with fewer derivatives, i.e. using the EOM.

When we have more than one operator at a given mass dimension, we must carefully
include independent operators which cannot be related through integration-by-parts rela-
tions or field redefinitions. A systematic way of taking into account integration-by-parts
relations is detailed in refs. [52, 67]. We enumerate all the ways of partitioning the deriva-
tives (ignoring integration-by-parts relations), which we call {xi}. Then we enumerate all
gauge-invariant operators with one fewer covariant derivative which transform as a Lorentz
four-vector, {yi}. We can then apply a total derivative to the yi’s, which will generate a re-
lation among the xi’s. The number of independent constraints coming from this procedure
is given by the rank of the matrix of constraint equations.

Let’s illustrate the procedure for the dimension-8 operators. We assign the xi = Oi
for i = 1, 2, 3. For the operators with one covariant derivative, we can have the covariant
derivative act on a scalar or on a Weyl tensor;

y1,µ = φ [∇µφ]CρσαβCρσαβ , (B.13)
y2,µ = φφ [∇µCρσαβ ]Cρσαβ . (B.14)

Now we apply the total derivative on the yi’s:

∇µy1,µ = x1 + 2x2 = 0, (B.15)
∇µy2,µ = 2x2 + x3 = 0. (B.16)

Note that we have dropped operators with D2φ or D2C because they can either be removed
by field redefinitions or produce operators with more than two Weyl tensors. We can write
the equations in matrix form,

M · x ≡
(

1 2 0
0 2 1

)x1
x2
x3

 = 0. (B.17)

The number of independent operators is 3− rank(M) = 3− 2 = 1.
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We have applied this method to ensure the operators in our basis are independent
up to mass dimension 14. For the higher mass dimensions, we used the on-shell methods
discussed in appendix C.

We have illustrated the freedom in choosing an operator basis coming from integration-
by-parts relations. However, certain operator bases are better suited for calculations in the
heavy limit. For example, the heavy limit of O2 feeds down to the dimension-6 operator
φφCρσαβC

ρσαβ , so this operator doesn’t contribute new information with regards to the
classical portion of the amplitude. In fact, we would also need to include subleading-in-~
corrections from O2 to reproduce the correct subleading tidal effects.

The operator basis in eq. (2.13) is chosen to optimally produce all leading-PM tidal
effects in the classical limit.

C Operator basis from an on-shell perspective

A different approach to constructing the operator basis is to first look at the corresponding
on-shell amplitudes. Following the discussion in ref. [68], we consider the non-factorizable
part of the two-scalar-two-photon amplitude A(φφ; γγ). We label the momenta for the
photons by p1 and p2, and the momenta of the massive scalars by p3 and p4. For the
helicity assignments γ+(p1)γ+(p2) and γ−(p1)γ+(p2), the structures carrying the correct
little group weights are

[12] and 〈1|(p3 − p4)|2], (C.1)

respectively. The amplitudes for the other helicity assignments can be constructed from
the same building blocks after exchanging angle and square brackets. The non-factorizable
part of the two amplitudes with positive helicity for p2 are

A(φφ; γ+(p1), γ+(p2)) = [12]2a(s12, s13, s14), (C.2)
A(φφ; γ−(p1), γ+(p2)) = 〈1|(p3 − p4)|2]2b(s12, s13, s14), (C.3)

where a(s12, s13, s14) and b(s12, s13, s14) are polynomials of the Mandelstam variables sij =
(pi+pj)2. Taking into account the relation s12+s13+s14 = 2m2, and keeping the symmetry
3↔ 4, the polynomials take the form

a(s12, s13, s14) =
∞∑
i=0

∞∑
j=0

ai,j
Λ2i+4j+2 s

i
12(s13s14)j , (C.4)

b(s12, s13, s14) =
∞∑
i=0

∞∑
j=0

bi,j
Λ2i+4j+4 s

i
12(s13s14)j , (C.5)

where Λ is some unfixed dimensionful scale and ai,j and bi,j are dimensionless coefficients.
By comparing the non-factorizable part of the on-shell amplitudes with the output of

the Hilbert series in eq. (2.2), one can find a correspondence between the Wilson coefficients
of the action and the coefficients ai,j , bi,j . This helps us in inferring the higher-dimensional
operators, since we can now construct operators which have the field content given by the
Hilbert series and which reduce to the amplitudes when imposing on-shell conditions.
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Similarly, we can compare the on-shell amplitudes for two scalars and two gravitons,

M(φφ; g2+(p1), g2+(p2)) = [12]4c(s12, s13, s14), (C.6)
M(φφ; g2−(p1), g2+(p2)) = 〈1|(p3 − p4)|2]4d(s12, s13, s14), (C.7)

with the output of the Hilbert series in eq. (2.4). The same arguments apply to the
polynomials c and d as a and b, so they become

c(s12, s13, s14) =
∞∑
i=0

∞∑
j=0

ci,j
Λ2i+4j+4 s

i
12(s13s14)j , (C.8)

d(s12, s13, s14) =
∞∑
i=0

∞∑
j=0

di,j
Λ2i+4j+8 s

i
12(s13s14)j , (C.9)

with dimensionless coefficients ci,j and di,j . We see a similar correspondence between the
on-shell amplitudes and the effective operators as in the QED case.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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