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1 Introduction

5d N = 1 superconformal field theories (SCFTs) are non-perturbative in nature. The first
such theories were understood as the UV completion of non-renormalizable 5d supersym-
metric gauge theories realized by an embedding into string theory [1]. Geometrizations of
these constructions have proven to be an efficient method for systemizing large classes of 5d
SCFTs [2–23] and have greatly expanded the list of known examples and their properties.

The classification of 6d N = (1, 0) SCFTs is organized by an enumeration of admissible
F-theory geometries [24, 25]. These geometries are elliptically fibered Calabi-Yau 3-folds
with the classification amounting to a characterization of the possible base geometries and
permitted singular fibers above these. The base geometries are built from non-Higgsable
clusters connected by conformal matter theories and other links. These conformal matter
theories [26] are SCFTs themselves and essential building blocks of the classification result.
Sharpening this classification, it was argued in [27] that under certain Higgs and tensor
branch flows all classified 6d N = (1, 0) SCFTs are generated starting from a small set of
UV-progenitor theories, the rank k (E8, GADE) orbi-instanton theories.

Circle compactifications of 6d N = (1, 0) SCFTs yield 5d KK-theories for which suit-
able mass deformations trigger an RG flow to 5d N = 1 SCFTs. Geometrically the mass
deformations are realized as partial resolutions of the fiber singularities of the Calabi-Yau
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3-fold used to engineer the 6d SCFT. By M-/F-theory duality the 5d SCFT is then real-
ized by M-theory on this partially resolved Calabi-Yau 3-fold. This observation has been
systematized to a classification programme in [7–9, 13–15, 17] and suggests an avenue to
utilize the classification of 6d N = (1, 0) SCFTs for 5d N = 1 SCFTs. As a first step
in this programmme 5d SCFTs originating from 6d conformal matter theories of types
(En, Am), (Dn, Dn), (En, En) and non-Higgsable clusters were analysed [13–15]. We report
on 5d SCFTs originating from the 6d (En, Em) with n 6= m conformal matter theories.
This serves as an initial step in analyzing the associated circle reductions of the 6d UV-
progenitor theories with the ultimate goal of systematically determining all 5d theories that
descend through 6d SCFTs. Extending this approach to include 5d SCFTs reached through
RG flows triggered by Higgs branch vacuum expectation values would further connect to
recent results in [28–35].

We study the 5d N = 1 SCFTs at generic points of their Couloumb branches via the
associated resolved Calabi-Yau 3-folds. These exhibit a non-flat fiber given by a reducible
surface S = ∪kSk which collapses in the singular limit and characterizes the SCFT. Much
of the resolution independent data of the surface S can be subsumed into combined fiber
diagrams (CFDs), introduced in [12, 13], which then manifestly encode many properties
of the SCFT such as the superconformal flavor symmetry, BPS states, mass deformations
and possible quiver descriptions. This constitutes a uniform geometric formulation of many
known results from field theoretic and brane web considerations [36–46].

This paper is organized as follows. In section 2 we discuss the singular geometries
realizing (En, Em) conformal matter and their resolutions. We compute the marginal fiber
diagrams and the underlying geometries of the irreducible components of the non-flat sur-
face S. We conclude the section with a derivation of the marginal CFDs for (En, Em)
conformal matter. In section 3 we utilize the CFDs to enumerate 5d SCFTs descending
from the marginal theories via mass deformations. Furthermore we derive possible weakly
coupled quiver descriptions of the marginal theories and its descendants, which are not
excluded by consistency constraints imposed by their CFDs and those derived in [47].

2 Marginal geometries for conformal matter

Marginal theories in 5d are circle reductions of 6d N = (1, 0) gauge theories which UV
complete to a 6d N = (1, 0) SCFT. Consider a marginal theory given by a 5d N = 1 gauge
theory with gauge group G and gauge algebra g of rank r = rank g coupled to massive
matter. At generic points of its Coulomb branch the field content is given by r massless
U(1) vector multiplets and massive hypermultiplets associated with the W-bosons of the
broken gauge symmetry and the original matter multiplets. Integrating out the W-bosons
the dynamics of the low energy effective theory is governed by a prepotential F cubic in
the U(1) vector multiplets. The terms involving the scalars φi of the r vector multiplets
parametrizing the Coulomb branch reads

F =
(

1
2g2

5d
hijφ

iφj + k

6dijkφ
iφjφk

)
+ 1

12

( ∑
α∈Φg

∣∣∣αiφi∣∣∣3 −∑
Rf

∑
λ∈WRf

∣∣∣λiφi +mf

∣∣∣3) . (2.1)
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Figure 1. Sketch of the singular Calabi-Yau 3-fold geometry X3 (2.5). Minimal singularities of
Kodaira-type are supported along base divisors u, v = 0 and enhance to a non-minimal singularity
upon collision at the origin.

Here g5d is the 5d Yang-Mills coupling constant, hij = trTiTj is the metric on the moduli
space involving the Lie algebra generators Ti, the integer k is the Chern-Simons level, dijk =
1
2 tr (Ti (TjTk + TkTj)) is a symmetric group theoretic quantity, Rf are the representations
of the massive hypermultiplets with masses mf and WRf

is the weight system of these
representations [1, 2].

Let the 6d N = (1, 0) SCFT associated to this marginal theory be realized by F-theory
on a singular Calabi-Yau 3-fold X3. Then the marginal theory is realized by M-theory
at low energies on a crepant resolution Z3 of this Calabi-Yau 3-fold. Given a basis of
Kähler classes Ji ∈ H1,1(Z3) of unit volume and defining coordinates J = φiJi the triple
intersections cijk = Si · Sj · Sk =

∫
Z3
Ji ∧ Jj ∧ Jk set the cubic term of the prepotential

1
6cijkφ

iφjφk ⊂ F describing the marginal theory [2, 48]. Here Si are complex surfaces dual
to the basis Ji of Kähler classes. Masses are set by volumes of two-cycles within Z3 and
their intersection structure determines the representation theoretic details of (2.1).

Mass deformations of the marginal theory and subsequent RG flows of the 5d theories
correspond in geometry to partial singular limits Z3 → X ′3 parametrized by the RG flow.
For suitably chosen mass deformations this procedure results in a family of 5d SCFTs
enumerated by partial resolutions of X3. These SCFTs are thereby derived from the smooth
geometry Z3 of the 5d marginal theory, they are referred to as descendants of the marginal
theory. Consequently the starting point to the analysis of this tree of descendants and
their properties is the marginal geometry Z3.

2.1 Singular elliptically fibered Calabi-Yau 3-folds

The geometries we use to engineer 5d N = 1 conformal matter are non-compact singular
elliptically fibered Calabi-Yau 3-folds with a holomorphic section and non-isolated, non-
minimal singularities. We begin the construction of these geometries with an elliptically
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fibered 3-fold X3 and write
E ↪→ X3

π−→ B2 , (2.2)

where E is the elliptic fiber and B2 is the 2-fold Kähler base. The 3-fold X3 is realized as
a hypersurface within the weighted projective bundle over B2 given by

X4 = P231
(
K−2
B2
⊕K−3

B2
⊕O

)
, (2.3)

where KB2 denotes the canonical bundle of the base B2. Let (u, v) be global complex
coordinates on the base B2 and take [x : y : w] to be the homogenous coordinates of the
fiber. The elliptic fiber is then realized by the Tate form [49–51]

X3 : 0 = y2 − x3 + a1xyw − a2x
2w2 + a3yw

3 − a4xw
4 − a6w

6 , (2.4)

with the sections an ∈ Γ(B2,K
−n
B2

) encoding base dependence. The holomorphic section
of the fibration is given by s : B2 → X3 mapping as (u, v) 7→ [1 : 1 : 0]. The divisor
σ = [w = 0] ⊂ X4 thus intersects X3 precisely along the image of s and once in each fiber.

We introduce singularities of Kodaira type above the base divisors Su = {u = 0} ⊂ B2
and Sv = {v = 0} ⊂ B2. This amounts to prescribing the vanishing orders of the sections
an ∈ Γ(B2,K

−n
B2

) along Su, Sv when expanded in the coordinates (u, v). Denoting the two
sets of exponents for u and v by (i1, i2, i3, i4, i6) and (j1, j2, j3, j4, j6) respectively the Tate
form (2.4) now reads

X3 : 0 = y2 − x3 + b1xyw
(
ui1vj1

)
− b2x2w2

(
ui2vj2

)
+ b3yw

3
(
ui3vj3

)
− b4xw4

(
ui4vj4

)
− b6w6

(
ui6vj6

)
,

(2.5)

with singularities along [0 : 0 : 1] ∈ E over Su, Sv and a generically non-minimal singularity
at the point u = v = 0 in the base. We sketch the setup in figure 1. The classes of various
section are

x : 2σ + 2c1 , y : 3σ + 3c1 ,

w : σ , bn : nc1 − inSu − jnSv ,
u : Su , v : Sv ,

(2.6)

where c1 = c1 (TB2) is the first Chern class of the base B2.

2.2 Resolution of singularities

We resolve the singularities of the Calabi-Yau 3-fold (2.5) by blowing up in the base once
to remove the non-minimal singularity located at u = v = 0 and subsequently resolving
the codimension 1 and 2 singularities in the fiber. We adhere to the resolution procedure
and notation presented in [52, 53], which we reintroduce where necessary.

The non-minimal singularity is removed by the blowup

u→ εu , v → εv , (2.7)

together with the rescaling x→ ε2x and y → ε3y which introduces the exceptional divisor
E = {ε = 0} in the base B̃2 → B2. The rescaling of the two sections x, y previously
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belonging to Γ(B2,K
−k
B2

) with k = 2, 3 respectively is due to the canonical bundle shifting
to K

B̃2
= KB2 + E. Physically this resolution amounts to moving onto the tensor branch

of the SCFT. The chern class c1 and base divisor classes Su, Sv are all shifted by a copy
of the exceptional divisor E to

x : 2σ + 2c1 − 2E , y : 3σ + 3c1 − 3E ,
w : σ , bn : nc1 − nE − inSu − jnSv + inE + jnE ,

u : Su − E , v : Sv − E .

The partially resolved geometry Y3 is explicitly given by substituting (2.7) into (2.5) with
an overall power ε6 removed by a proper transform

Y3 : 0 = y2 − x3 + b1xyw
(
ui1vj1

)
εi1+j1−1 − b2x2w2

(
ui2vj2

)
εi2+j2−2

+ b3yw
3
(
ui3vj3

)
εi3+j3−3 − b4xw4

(
ui4vj4

)
εi4+j4−4 − b6w6

(
ui6vj6

)
εi6+j6−6 .

(2.8)
This gives a hypersurface in Y4 = P

(
O⊕K−2

B̃2
⊕K−3

B̃2

)
where B̃2 is the blowup of the base

B2. The coordinates u, v can no longer vanish simultanesouly, the non-minimal singularity
is removed.

The Calabi-Yau 3-fold Y3 still exhibits singularities in codimension 1 and 2 which can
be removed with additional blowups in the ambient space [54–57]. Singularities at

Codim 1 Singularities : 0 = sa = sb = sc ,

Codim 2 Singularities : 0 = si = sj ,
(2.9)

where sa, si are place holders for generic sections of the Calabi-Yau, are resolved by the
replacements

Codim 1 Blowup : sa → sasd , sb → sbsd , sc → scsd ,

Codim 2 Blowup : si → sisk , sj → sjsk ,
(2.10)

together with a proper transform which removes a factor of s2
d, sk from the transformed

Tate form. We abbreviated these replacements together with their proper transforms by

Codim 1 Blowup : (sa, sb, sc; sd) ,
Codim 2 Blowup : (si, sj ; sk) .

(2.11)

These blowups introduce the exceptional divisors Dsd
, Dsk

⊂ Ỹ4 in the blowup of Y4. We it-
erate these resolutions and obtain a smooth Calabi-Yau 3-fold Z3 realized as a hypersurface
in Z4 given by the multi blowup of Y4

Z3 ⊂ Z4 : Ẽ ↪→ Z3
π−→ B̃2 . (2.12)

This fibration is non-flat, i.e. it contains fibers S of complex dimension 2 which encode the
SCFT data. Non-flat fibrations of this kind have most recently been studied in [5, 6, 10].
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2.3 Geometries for (En, Em) conformal matter

We select two distinct sets of vanishing orders for the ordered set of coefficients
(b1, b2, b3, b4, b6) appearing in (2.8) corresponding to E-type singularities

E6 : (1, 2, 2, 3, 5) ,
E7 : (1, 2, 3, 3, 5) ,
E8 : (1, 2, 3, 4, 5) ,

(2.13)

and substitute these into the Tate-model (2.5). The vanishing orders (2.13) can be found
in the lists of possible elliptic fiber degeneracies presented e.g. in [50, 52]. We blowup in
the base B2 as in (2.7) to find the Tate models for the partially resolved geometries

(E6, E7) : 0 = y2 − x3 + b1uvxyε− b2u2v2x2ε2 + b3u
3v2yε2 − b4u3v3xε2 − b6u5v5ε4 ,

(E6, E8) : 0 = y2 − x3 + b1uvxyε− b2u2v2x2ε2 + b3u
3v2yε2 − b4u4v3xδ3

1 − b6u5v5ε4 ,

(E7, E8) : 0 = y2 − x3 + b1uvxyε− b2u2v2x2ε2 + b3u
3v3yε3 − b4u3v4xε3 − b6u5v5ε4 .

(2.14)
We resolve each E-type singularity individually using two of the blowup sequences

E6 : {x, y, u;u1}, {x, y, u1;u2}, {y, u1, u2;u3}, {y, u1;u4}, {y, u2;u5},
{y, u3;u6}, {u1, u4;u7}, {u4, u3;u8},

E7 : {x, y, u;u1}, {x, y, u1;u2}, {y, u1;u3}, {y, u2;u4}, {u2, u3;u5},
{u1, u3;u6}, {u2, u4;u7}, {u3, u4;u8}, {u4.u5;u9}, {u5, u8;u10}
{u3, u5;u11},

E8 : {x, y, u;u1}, {x, y, u1;u2}, {y, u2;u3}, {y, u1, u3;u4}, {y, u1;u5},
{u1, u3;u6}, {u2, u3;u7}, {u3, u4;u8}, {u1, u4;u9}, {u1, u5;u10},
{u3, u6;u11}, {u4, u6;u12}, {u6, u8;u13}, {u3, u11;u14}, {u8, u11;u15} .

(2.15)

We have listed these blowups in the notation introduced in (2.11) here with the generic
sections sa, si now explicitly given by x, y, ui, vi. The Cartan divisors intersecting according
to the affine En-Dynkin diagrams among the exceptional divisors of (2.15) are

E6 : {u, u8, u6, u7, u5, u3, u2} = {DE6
αi
| i = 0, . . . , 6} ,

E7 : {u, u6, u11, u10, u9, u7, u4, u8} = {DE7
αi
| i = 0, . . . , 7} ,

E8 : {u, u10, u9, u12, u13, u15, u14, u7, u8} = {DE8
αi
| i = 0, . . . , 8} ,

(2.16)

Finally the remaining singularities are resolved by the cross term blowups, i.e. blowups
involving a mix of sections and introducing δk,(

E
(v)
6 , E

(u)
7

)
: {ε, u4; δ2}, {ε, v5; δ3}, {δ2, u4; δ4}, {δ3, v5; δ5}, {x, y, ε; δ6}, {y, δ6; δ7},

{δ6, δ7; δ8}, {x, δ7; δ9}, {x, y, δ2; δ10}, {x, y, δ3; δ11} ,(
E

(v)
6 , E

(u)
8

)
: {ε, u3; δ2}, {ε, v5; δ3}, {δ2, u3; δ4}, {δ3, v5; δ5}, {δ4, u3; δ6}, {δ6, u3; δ7},

{x, y, ε; δ8}, {y, δ8; δ9}, {δ8, δ9; δ10}, {x, δ9; δ11}, {δ9, δ11; δ12},

– 6 –
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{δ9, δ12; δ13}, {x, y, δ2; δ14}, {y, δ14; δ15}, {δ14, δ15; δ16}, {x, y, δ3; δ17},
{y, δ17; δ18}, {x, y, δ4; δ19}, {y, δ2, δ10; δ20}, {y, δ3, δ10; δ21} ,(

E
(u)
7 , E

(v)
8

)
: {ε, u4; δ2}, {ε, v3; δ3}, {δ2, u4; δ4}, {δ3, v3; δ5}, {δ4, u4; δ6}, {δ5, v3; δ7},

{v3, δ7; δ8}, {x, y, ε; δ9}, {y, δ9; δ10}, {δ9, δ10; δ11}, {x, δ10; δ12},
{δ10, δ12; δ13}, {δ10, δ13; δ14}, {x, y, δ2; δ15}, {y, δ15; δ16}, {δ15, δ16; δ17},
{x, y, δ3; δ18}, {y, δ18; δ19}, {δ18, δ19; δ20}, {x, y, δ4; δ21}, {x, y, δ5; δ22},
{y, δ2, δ12; δ23}, {y, δ3, δ12; δ24} , (2.17)

where the superscript α in E(α)
n denotes the choice of base coordinate over which the En

singularity is fibered in the Tate model (2.8).
The projective relations introduced by the blowups prohibit the sections δ2 and

δ2, δ9, δ14 and δ2, δ10, δ15, δ18 from vanishing for (E6, E7) and (E6, E8) and (E7, E8) re-
spectively. For all other sections ε, δi restricting the associated divisors to the smooth
Calabi-Yau 3-fold yields an irreducible complex surface. The number of these surface com-
ponents is the rank r of the associated SCFT, we have

(E6, E7) : r = 10 , (E6, E8) : r = 18 , (E7, E8) : r = 20 . (2.18)

2.4 Intersection ring

The intersection ring of the divisors of the fully resolved Calabi-Yau 3-fold Z3 ⊂ Z4 deter-
mines the 5d physics. There are vertical and horizontal divisors in Z3. The vertical divisors
are pull backs of divisors in the base B̃2, i.e. π∗(E), π∗(Su), π∗(Sv), while the horizontal
divisors are the exceptional divisors Dui , Dvi , Dδi

⊂ Z4 introduced in the blowups of (2.11)
restricted to Z3 together with the divisor associated to the holomorphic section σ.

The intersection rings of the 3-fold Z3 and its base B̃2 are related as

σ · |Z3 σ · |Z3 π
∗(V ) = −c1(TB̃2) · |

B̃2
V ,

σ · |Z3 π
∗(V ) · |Z3 π

∗(V ) = V · |
B̃2
V ,

V · |Z3 π
∗(V ) · |Z3 π

∗(V ) = 0 ,

(2.19)

where V = E,Su, Sv. The first chern class of the base B2 = {(u, v)} = C2 prior to the
blowup vanishes and consequently that of the blowup B̃2 evaluates to c1(TB̃2) = c1(K̄

B̃2
) =

−c1(K
B̃2

) = −E. After the base blowup (2.7) the base coordinates u, v can no longer vanish
simultaneously implying that their associated divisors do not intersect

(Su − E) · (Sv − E) = 0 . (2.20)

The exceptional divisor E is a curve of self-intersection −1 while Su, Sv intersect exactly
once in B2 and thus we derive

Su · E = Sv · E = 0 , (2.21)

which together with the previous result fixes all intersection of the kind (2.19).
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For horizontal divisors in the 3-fold Z3 we have the relations

σ ·Dui = σ ·Dvi = σ ·Dδi
= 0 , (2.22)

as the centers of the blowups introducing the exceptional divisors Dui , Dvi , Dδi
are located

in the w = 1 patch of Z3. Finally note that the intersection of any three divisors Di in Z3
can be lifted to an intersection in the ambient space Z4 by

D1 · |Z3 D2 · |Z3 D3 = D1 · |Z4 D2 · |Z4 D3 · |Z4 [Z3] . (2.23)

Each blowup introduces a projective relation prohibiting the involved coordinates from
vanishing simultaneously. Consequently their associated divisors do not intersect. One
therefore obtains a quadratic or cubic intersection relation for every blowup. For example
the projective relation [x : y : w] gives rise to the identity

0 = σ · (2σ + 2c1) · (3σ + 3c1) , (2.24)

while the base blowup gives rise to (2.20). These relations can be used to evaluate mixed
intersections involving distinct horizontal divisors [52].

A subset of the exceptional divisors Dui , Dvi are Cartan divisors DEn
αi

labelled by the
root αi they correspond to within the affine En root system. On the 3-fold Z3 these are
fibered as

P1
αi
↪→ DEn

αi

π−→Wν , (2.25)

where ν = u, v depending on which coordinate is associated with the En singularity. We
equivalently write DEn

αi
= D

(ν)
αi if the En singularitiy is fibered above ν = 0. Here we

introduced Wν = {ν = 0} ⊂ Z3. The position of the fibers P1
αi

within the exceptional
locus π−1(Wν) are determined by the pull back properties of the projection π : Z3 → B̃2,
which are derived from the replacement relations (2.7) and (2.10) and condensed in the
transformations

u→ u εξ
(u)
1

r∏
j=2

δ
ξ

(u)
j

j

∏
i

u
m

(u)
i

i ,

v → v εξ
(v)
1

r∏
j=2

δ
ξ

(v)
j

j

∏
i

v
m

(v)
i

i ,

ε→ ε
r∏
j=2

δ
ζj

j .

(2.26)

Here m(u,v)
i are the Dynkin labels of the respective Lie algebra En, Em and we take the

relations (2.26) as a definition for the multiplicity integers ξ(u,v)
j . This implies that the pull

backs of the vanishing loci Wν and the exceptional base divisor E are given by

π−1 (Wu) =
r∑

k=1
ξ

(u)
k Sk +

∑
i

m
(u)
i Dui ,

π−1 (Wv) =
r∑

k=1
ξ

(v)
k Sk +

∑
i

m
(v)
i Dvi ,

π−1(E) =
r∑

k=2
ζkSk

(2.27)
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where the divisors {νi = 0} = Dνi and surfaces Sk = {δk = 0} for k = 2, . . . , r and S1 =
{ε = 0} with ν = u, v have been introduced.

The fiber P1
αi

of a Cartan divisorDEn
αi
, DEm

αi
is called a flavor curve if it is fully contained

in the reducible surface S = ∪rk=1Sk. Consider a divisorDEn
αi

associated to the complex base
coordinate u and therefore giving Wu when projected to the base. Then the intersection
π−1(Wv) · DEn

αi
= P1

αi
yields the full fiber component of the horizontal divisor DEn

αi
as

π−1(Wv) is vertical and Wu,Wv intersect transversely in the base. For Cartan divisors
D

(u)
αi associated to simply laced algebras one therefore has

π−1(Wv) ·D(u)
αi
·D(u)

αi
= −2 , (2.28)

where we have indicated the coordinates (u, v) the algebra En is associated with by super-
scripts rather than the algebra. Intersecting the expansion of π−1(Wv) given in (2.27) with
D

(u)
αi ·D

(u)
αi we find two negative contributions. The intersection with

∑
im

(v)
i Dvi vanishes

precisely when the fiber of D(u)
αi is a flavor curve as then it is not contained any of the Dvi .

Thus D(u)
αi contributes a flavor curve presicely when

r∑
k=1

ξ
(v)
k Sk ·D(u)

αi
·D(u)

αi
= −2 . (2.29)

Identical arguments apply with u, v interchanged.

2.5 Reduced intersection matrices

The reduced intersection matrices encode how the flavor curves P1
αi

(2.25) of the Cartan
divisors DEn

αi
are contained within the surface components Sk. It is motivated by (2.29)

and defined by the triple intersections

IEn
ik = DEn

αi
·DEn

αi
· Sk , (2.30)

within Z3. The criterium (2.29) for a Cartan divisor to contribute a flavor curve now
becomes

Flavor Curve P1
αi
⊂ DEn

αi
:

r∑
k=1

ξ
(u,v)
i IEn

ik = −2 , (2.31)

where intersection are weighted by ξ(u,v) if the divisors DEn
αi

project toWv,Wu respectively.
Directly from (2.26) using the blowups (2.17) and (2.15) we compute the integers ξ(u,v) to

ξ
(u)
(E6,E7) = (1, 1, 2, 1, 3, 1, 1, 2, 1, 2, 1) ,

ξ
(v)
(E6,E7) = (1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2) ,

ξ
(u)
(E6,E8) = (1, 1, 2, 1, 3, 1, 4, 5, 1, 1, 2, 2, 3, 2, 2, 4, 1, 1, 3, 3, 2) ,

ξ
(v)
(E6,E8) = (1, 1, 1, 2, 1, 3, 1, 1, 1, 1, 2, 2, 3, 1, 1, 2, 2, 2, 1, 2, 3) ,

ξ
(u)
(E7,E8) = (1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 2, 3, 2, 2, 4, 1, 1, 2, 3, 1, 3, 2) ,

ξ
(v)
(E7,E8) = (1, 1, 1, 2, 1, 3, 1, 4, 5, 1, 2, 1, 2, 3, 1, 1, 2, 2, 2, 4, 1, 3, 2, 3) .

(2.32)
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Taking these multiplicities into account we find the three tables of triple intersections

D2
αi
Sk v v8 v6 v7 v5 v3 v2 u u6 u11 u10 u9 u7 u4 u8

ε −2 −2 −2 −1 0 −1 0 −2 −2 −2 −2 −1 0 0 −1
δ5 0 0 0 0 0 0 0 0 0 0 0 −1 −2 −2 −1
δ6 0 0 0 −1 −2 −1 −2 0 0 0 0 0 0 0 0∑
ξkSk −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

D2
αi
Sk v v7 v8 v6 v5 v3 v2 u u10 u9 u12 u13 u15 u14 u7 u8

ε −2 −2 −2 −1 0 −1 0 −2 −2 −2 −2 −2 −2 −1 0 −1
δ6 0 0 0 −1 −2 −1 −2 0 0 0 0 0 0 0 0 0
δ8 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −2 −1∑
ξkSk −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

D2
αi
Sk u u6 u11 u10 u9 u7 u4 u8 v v8 v7 v11 v13 v14 v15 v9 v10

ε −2 −2 −2 −2 −1 0 0 −1 −2 −2 −2 −2 −2 −1 0 0 0
δ7 0 0 0 0 −1 −2 −2 −1 0 0 0 0 0 0 0 0 0
δ9 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 −2 −2 −2∑
ξkSk −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

(2.33)
for (E6, E7), (E6, E8), (E7, E8) respectively. We only depict the non-vanishing rows. The
final row lists the summed columns weighted with multiplicities. The weights ξ(u,v)

k for
all rows depicted is 1 as seen in (2.32). The final row verifies that all Cartan divisors
contribute a flavor curve to the geometry making it marginal.

2.6 Fiber diagrams and surface geometries

In the singular limit Z3 → X3 the SCFT originates from the collapse of the reducible
surface S = ∪kSk in the non-flat fibration. M5 branes wrapping irreducible components
of S give rise to tensionless magnetically charged strings and M2 branes wrapping curves
in S generate a tower of electrically charged states. Both enhance the spectrum in the
singular limit. The nature of these enhancements depends crucially on the geometry of
S = ∪kSk which we study here in detail for the geometries of (En, Em) conformal matter
given in (2.3). Much of the SCFT data can be captured in so called combined fiber diagrams
(CFDs) which effectively depict the Mori-cone of S [12–14] together with curves of vanishing
self-intersection. They subsume the resolution dependent fiber diagrams associated to each
surface component Sk into a single graph.

Fiber diagrams are pictorial representations of the full intersection matrix

Ipqk = Dp ·Dq · Sk , (2.34)

within Z3 where Dp,q run over all Cartan divisors DEn
αi
, DEm

αj
together with the divisors

Dx, Dy, Dw, Dδk
associated to the sections x, y, w, δk. Each surface Sk has its own fiber
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Figure 2. The figure shows the intersection matrix (2.34) for the rank 10 (E6, E7) marginal
geometry computed from the resolution (2.17). The genus of a yellow/blue curves is formally
g = −1,−2 respectively, while uncolored curves are of vanishing genus. The former are reducible
while the latter are irreducible. Dashed lines denote negative intersection between curves indicating
common components.

diagram and depicts the intersection matrix (2.34) for fixed k. Nodes represent divisors
and are labelled by the associated sections. The self-intersection of each curve Sk · Dp is
recorded in the center of the representing node. The genus of a curve C ⊂ Sk is fixed from
the intersection matrix by the relation

KSk
· |Sk

C + C · |Sk
C = 2g(C)− 2 = Sk · Sk · C + C · C · Sk , (2.35)

with the double intersections taken in the surface Sk and the triple intersections taken in
the Calabi-Yau 3-fold. Here KSk

is the canonical bundle of the surface.
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Figure 3. Continuation of figure 2.

We now explicitly discuss the rank 10 (E6, E7) marginal geometry, giving the results
for the other cases of (En, Em) without derivation as the analysis extends unaltered to
these cases. The fiber diagrams for a rank 10 (E6, E7) marginal geometry are shown in
figures 2 and 3. The genus of the uncolored curves vanishes, the light yellow curves have
a formal genus of g = −1 and the single light blue curve has a formal genus of g = −2
indicating that these are reducible. Solid links denote positive intersection between two
curves, dashed links denote negative ones indicating that connected surfaces share common
irreducible components. Finally the degree of the surface Sk, given by the self-intersection
of the canonical divisor, is given by the triple intersection number

S3
k = (−1, 4, 4, 5, 4, 8, 8, 4, 8, 8) , (2.36)

for k = 1, 3, 4, . . . , 11. The leading (−1) follows as the surface S1 in figure 3 is the degree
9 surface P2 blown up 10 times.
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While fiber diagrams are readily computable they only depict the intersection relations
between the curves Dp · Sk which for higher rank geometries are generally reducible and
given by a linear combinations of curves generating the geometry of the generalized del
Pezzo surfaces Sk. We now make the connection to the classification of generalized del
Pezzo surfaces as given in [58] manifest. We begin by flopping v3/7, v6, v8 and u8/9, u10,

u11, u6 from S1 over S3, S4 to S5, S6 respectively to collect all the curves contributing to the
E6, E7 Dynkin diagrams in the surfaces S5, S6. These flops amount to changing the order
of the blowups (2.17) and a transition of phases in the gauge theory description. Blowing
down a (-1) curve connecting to curves of self-intersection m,n gives the transition

m− (−1)− n → (m+ 1)− (n+ 1) , (2.37)

while blowing up (-1) curve has the opposite effect

m− n → (m− 1)− (−1)− (n− 1) . (2.38)

Here flopping a curve from Sk into Sl involves a blow down in Sk and a blowup in Sl.
Further blowups and blow downs decrease and increase the degrees of the surfaces by 1
such that the degrees of S1, S5, S6 are now 6, 1, 1 respectively. The reduced intersection
matrix for the flopped geometry reads

D2
αi
Sk v v8 v6 v7 v5 v3 v2 u u6 u11 u10 u9 u7 u4 u8

ε −1 0 0 0 0 0 0 −1 0 0 0 0 0 0 0
δ5 0 0 0 0 0 0 0 −1 −2 −2 −2 −2 −2 −2 −2
δ6 −1 −2 −2 −2 −2 −2 −2 0 0 0 0 0 0 0 0∑
ξkSk −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2 −2

(2.39)

Next we decompose the reducible curves into irreducible components by explicitly studying
the hypersurface equation restricted to the locus of the reducible curve. These are then
matched to the geometries of generalized del Pezzo surfaces as classified by degree in [58].
We determine the geometries, shown in figures 4 and 5, of the individual surfaces underlying
the fiber diagrams to be

S6
1 : Bl3P2 (toric)
S4

3 : Bl5P2 (toric)
S4

4 : Bl5P2 (toric)
S1

5 : Type (D6 +A1)1 (non-toric)
S1

6 : Type (A5 +A2)1 (non-toric)
S8

7 : F6 (toric)
S8

8 : F1 (toric)
S4

9 : Bl5P2 (toric)
S8

10 : P1 × P1 (toric)
S8

11 : P1 × P1 (toric)

(2.40)
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where we have denoted the degree of the surfaces as given in figures by a superscript and
F1,F6 are Hirzebruch surfaces. The subscripts on (D6+A1)1, (A5+A2)1 denote the number
of blow-ups performed on the geometry. The intersection of the fiber diagrams shown in
figures 2 and 3 are reproduced by the identifications

S3 : δ7 = 2C1 + 2C2 + C3 , δ9 = C1 + 2C2 , δ10 = C3 + 2C4 , y = C2 + C4 ,

S4 : δ7 = 2C1 + 2C2 + C3 , δ9 = C1 + 2C2 , δ11 = C3 + 2C4 , y = C2 + C4 ,

S5 : x = 2C1 + u4 , y = C1 + C2 ,

S6 : x = C1 + C2 + C3 , y = C1 + C2 + C3 + v + v8 + v6 + v3 + v2 ,

δ4 = C3 + C4

S7 : δ3 = 2C1 , δ4 = 2C2 , δ9 = C1 + C2 ,

S9 : δ3 = 2C1 + C2 , δ4 = 2C3 + C4 , δ7 = C2 + C4 ,

x = 2C5 , y = C1 + C3 + C5 ,

S10 : δ3 = 2C1 , x = 2C2 , y = C1 + C2 ,

S11 : δ4 = 2C1 , x = 2C2 , y = C1 + C2 , (2.41)

in the geometries shown in figures (4) and (5). Here we have only listed the identification
of the reducible green curves in figures 2 and 3. Curves Ci ⊂ Sk are a priori unrelated and
enumerate excess generators of the Cox ring of Sk not directly associated with a section of
the resolved Calabi-Yau geometry.

2.7 Combined Fiber diagrams (CFDs)

A combined fiber diagram (CFD) is generated from a collection of fiber geometries as-
sociated to the surface components Sk by jointly representing the Mori-cone generators
of the surfaces Sk, i.e. the (−2) curves and rational (−1) curves with normal bundle
O(−1)⊕O(−1). Gluing curves Σkl = Sk ∩Sl are excluded. In addition curves of vanishing
self-intersection are shown. The CFDs are independent of the flop transitions moving curves
between the Sk and describe all Coulomb branch phases of a gauge theory equally [14].

In general the (−1) curves will be a linear combination of the curves depicted in figure 4
and 5, however manipulating the geometry using the flop transitions we can make these
manifest. For the (E6, E7) geometry these flops are depicted in figure 6 with the resulting
(−1) curve labelled by C5 emerging in the surface component S9 as shown in the bottom
right of figure 6. A second (−1) curve is already manifest within the surface component S1
shown in figure 4 and labelled by w. The (−2) curves are the flavor curves colored green
in figures 4 and 5.

Alternatively we can compute the reduced intersection matrices

I
(En,Em)
zk = Dz ·Dz · Sk , (2.42)

with z = x, y, w and sum over all surface components Sk. In all cases (n,m) = (6, 7),
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Figure 4. The picture shows an (E6, E7) marginal geometry related to the blowup sequence
in (2.17). Each diagram depicts the full set of generators for the Cox ring of the surface Sk. The
curves Ci in individual surfaces are distinct and enumerate excess generators not directly associated
to section of the Calabi-Yau geometry. Their relation to the divisors of the Calabi-Yau restricted
to Sk is listed in (2.41). Flavor curves of self-intersection (−2) are colored green, manifest gluing
curves are colored yellow and the remaining curves are colored white. Homologous curves are listed
by ‘/ ’.

(6, 8), (7, 8) we find ∑
k

I
(En,Em)
xk = 0 ,

∑
k

I
(En,Em)
yk = −1 ,

∑
k

I
(En,Em)
wk = −1 ,

(2.43)

indicating the presence of two (−1) curves within S =
⋃r
i=1 Sk. From the fibers given

in figures 4 and 5 one extracts the flavor curves these connect to and the presence of an
additional curve of vanishing self-intersection.
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Figure 5. (E6, E7) marginal geometry. Figure 4 continued.

We depict the three resulting CFDs associated to (E6, E7), (E6, E8), (E7, E8) conformal
matter in figures 7, 8, 9. All depicted curves are curves of vanishing genus and the normal
bundle of the (-1) curves is given by O(−1)⊕O(−1).

3 Descendants and weakly coupled quivers

The combined fiber diagrams (CFDs) derived in section 2 distill key features of the res-
olutions (2.15) and (2.17). Taking the CFDs in figures 7, 8 and 9 as starting points we
turn to discuss descendant 5d SCFTs and weakly coupled quiver descriptions of (En, Em)
conformal matter.

3.1 Descendant SCFTs

The structure of the collapsing surface S = ∪kSk determines the SCFT data in the singular
limit and can be manipulated in various ways. In section 2.6 we flopped (−1) curves be-
tween surface components Sk to access different gauge theory phases of the weakly coupled
description of the marginal gauge theory. Alternatively (−1) curves can be flopped out of
S resulting in a complex surface S′ which is not phase equivalent to the one it originates
from. The SCFT generated by M-theory when collapsing the surface S′ is referred to as a
descendant theory or just descendant of the SCFT associated to the surface S. Its flavor
symmetry, BPS spectrum and weakly coupled descriptions are distinct from the marginal
theory. The series of flop transitions giving all possible descendant theories of a marginal
theory can be unified into unique manipulations on its associated CFD referred to as CFD
transitions which were laid out in [12, 13] and which we now reproduce.
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Figure 6. In each line the figure shows a pair of blow downs and blowups used to partially flop
v2, u4 from the surfaces S5, S6 over S11, S10 to S9. This series of flops makes the (−1) curve of the
CFD which connects to u4, v2 manifest.

Denote the nodes of a CFD by Ci and label these with their self-intersection and genus
(ni, gi). The intersection matrix is denoted by mij = Ci · Cj . Given this data a CFD
transition generates a new CFD given by the labels (n′i, g′i) and the intersection matrix m′ij
with the two rules:

1. Remove a curve Ci of self-intersection (−1) and vanishing genus from the CFD,
delete the corresponding row and column of the intersection matrix mij and update
the reduced matrix m′jk according to

m′jk = mjk +mijmik (3.1)

with i 6= j, k. If Ci intersects multiple curves apply the rule (3.1) pairwise.
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Figure 7. Marginal Combined fiber diagram (CFD) for (E6, E7) conformal matter. The genus of
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Figure 8. Marginal Combined fiber diagram (CFD) for (E6, E8) conformal matter. The genus of
all depicted curves vanishes.
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Figure 9. Marginal Combined fiber diagram (CFD) for (E7, E8) conformal matter. The genus of
all depicted curves vanishes.
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Figure 10. The CFD of the first descendant of the (E6, E7) marginal CFD derived from a single
application of the CFD transition rules (3.1), (3.2) to the right most (−1) curve of the marginal
CFD in figure 7.

2. Update the labels of the remnant curves Cj according to

n′j = nj +m2
ij , g′j = gj +

m2
ij −mij

2 . (3.2)

We give an example of the CFD transition generating the first descendant of the marginal
(E6, E7) geometry in figure 10.

The full tree of descendants is obtained by applying the CFD transition rules (3.1), (3.2)
until there are no more (−1) curves remaining in the CFD. Enumerating the list of descen-
dants for (En, Em) conformal matter we thus find

(E6, E7) : 90 , (E6, E8) : 196 , (E7, E8) : 225 . (3.3)

descendant CFDs and 5d SCFTs.

3.2 Constraints on weakly coupled quiver descriptions

Given a marginal 5d theory its possible weakly coupled quiver gauge theory descriptions
are heavily constrained:

1. Box Graph CFDs: the flavor symmetry of a quiver gauge theory is a subgroup of the
flavor symmetry of the SCFT it completes to. Further, descendants of quiver gauge
theories are weakly coupled descriptions of the descendants of the associated SCFT
and the structure of the extended Coulomb branch must embed within the marginal
geometry. As a consequence box graph CFDs derived from the extended Coulomb
branch must form subgraphs of the CFD [14]. Conversely, the possible subgraphs
of the marginal CFD correspond to partial quivers embedded within any consistent
quiver gauge theory completing to the SCFT. The list of box graph CFDs is given
in figure 11. When multiple subgraphs are embedded they must not intersect. This
ensures that the descendant structure of the quiver gauge theory is reproduced within
that of the SCFTs.
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Figure 11. List of box graph CFDs derived from the extended Coulomb branch of weakly coupled
5d quiver gauge theories. The integer N enumerate the number of blue curves of the box graph
CFD. These necessarily embed into the CFD of any 5d SCFT to which the quiver theory completes.
Only U(N) and SU(N) box graph CFDs embed into the marginal CFDs of (En, Em) conformal
matter. The embeddings are shown in figure 12. This list is a partial recreation of a table found
in [14].

2. Gauge and Flavor Rank: the gauge rank rG of a quiver gauge theory is given by
the sum of the ranks of the gauge nodes and must coincide with the rank for the
SCFT, i.e. the number of irreducible surface components of S = ∪kSk as they were
counted in (2.18). The flavor rank rF is the rank of the total global symmetries. For
quivers the total global symmetry receives a factor of the topological U(1)I abelian
symmetry for every gauge node and a factor U(1)B for a single full hypermultiplet
in the bifundamental of two gauge groups. Finally the classical flavor symmetries
contribute. The flavor rank coincides with the rank of the enhanced flavor symmetry
of the SCFT and for (En, Em) conformal matter is simply rF = n+m+ 1.

3. Number of Hypermultiplets: the number of hypermultiplets connecting to any single
gauge node is constrained by positivity conditions on the Coulomb branch metric
and monopole string tensions [47]. We list the implied restrictions on the matter
content relevant for weakly coupled quiver descriptions of (En, Em) conformal matter
in table 2.

We now repeatedly apply these rules to determine quiver candidates for (En, Em)
conformal matter theories.

3.3 Quiver descriptions of maximal and submaximal depth

We now derive quiver descriptions consistent with the conditions above for (En, Em) con-
formal matter theories. We discuss each theory in turn.
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Figure 12. List of possible embeddings of box graph CFDs into the marginal CFD of (E6, E7)
conformal matter. Four embeddings related by a symmetry to the embeddings 3,4,5,7,8 are omitted.
Each graph is labelled with the flavor symmetry manifest in the corresponding subquiver. When
multiple box graph CFDs are embedded no two curves of distinct embeddings intersect.

From the box graphs in figure 11 only those of type U(N) and SO(2N) embed into the
marginal CFD of figures 7, 8, 9. The possible eight embeddings into the marginal (E6, E7)
CFD are shown in figure 12 together with the flavor symmetry they make manifest. Each of
these embeddings gives rise to a subquiver which realizes this flavor symmetry as rotations
on its hypermultiplets, the pairs are listed in table 1.

Next we connect the consistent subquivers by introducing additional gauge nodes and
bifundamental hypermultiplets. The resulting quiver must have the gauge and flavor rank

(E6, E7) : (rG, rF ) = (10, 14) , (3.4)

be anomaly free and respect the consistency constraints on the number of attached hyper-
multiplets at each gauge node as listed in table 2. There are many such quivers and we
restrict the analysis to those of maximal depth, i.e. those with the most descendants or
equivalently with the highest number of matter multiplets.

These quivers are of the structure

Maximal Depth Quivers (E6, E7) : 5F− Sp(n1)−
∏

G− Sp(n2)− 6F , (3.5)

with n1 + n2 + nΠG = 10 where
∏
G abbreviates the internal structure of the 5d quiver

and nΠG the sum of the ranks of the gauge nodes it features. The links in (3.5) connecting
to the fundamental matter are full hyper-multiplets.

The global symmetry rank must be 14 whereby the interior is either empty and the
Sp(n) gauge nodes are connected by a full bifundamental hypermultiplet or it consists of
a single gauge node G linked to the Sp(n) gauge nodes by half-hypermultiplets. Conse-
quently such a node G must have a real fundamental representation. This in turn poses
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Subgroup of GF Subquivers for (E6, E7)

U(6) 6F− SU(n)

U(8) 8F− SU(n)

SO(4) 2F− Sp(n)

SO(10) 5F− Sp(n)

SO(12) 6F− Sp(n)

SO(4)× SO(4) 2F− Sp(n1)⊕ 2F− Sp(n2)

SO(4)× SO(12) 2F− Sp(n1)⊕ 6F− Sp(n2)

SO(10)× SO(12) 5F− Sp(n1)⊕ 6F− Sp(n2)

Table 1. We list the flavor subgroups and their corresponding subquiver for (E6, E7) conformal
matter derived from the possible embeddings of the box graph CFDs in figure 12 into the marginal
(E6, E7) CFD.

Quiver Gauge Group Representations Upper Bounds

SU(N) (Sym,AS,F; k)
(1, 1, 1; 0), (1, 0, N − 2; 0), (1, 0, 0;N/2),

(0, 2, 8; 0), (0, 2, 7; 3/2), (0, 1, N + 6; 0),

(0, 1, 8;N/2), (0, 0, 2N + 4; 0),

Sp(N) (AS,F) (1, 8), (0, 2N + 6)

SO(N) (V) (N − 2)

F4 (26) (3)

SU(3) (F; k) (6; 4), (3; 13/2), (0; 9)

SU(4) (AS,F; k)
(4, 0; 4), (3, 4; 2), (3, 0; 5), (2, 0; 6),

(1, 0; 7), (0, 8; 3), (0, 0; 8)

SU(5) (AS,F; k) (3, 3; 0), (3, 1; 3), (3, 2; 3/2), (0, 5; 11/2)

SU(6) (AS,F; k) (3, 0; 3)

Sp(2) (AS,F) (3, 0), (2, 4)

Sp(3) (AS,F) (2, 0)

Table 2. The configuration of hypermultiplets connecting to a gauge node of a 5d quiver gauge
theory are constrained if it is to complete to an SCFT. The table summarizes the constraints for
SU(n), Sp(n) gauge nodes including their low rank outliers. The second column abbreviates the
notation used in the third. Here Sym,AS,F,V, k denote the symmetric, antisymmetric, fundamen-
tal and vector representations as well as the Chern-Simons level respectively. For Sp(n), SO(n), F4
the final column is an upper bound on the possible number hypermultiplets while for SU(n) the
interpretation is more subtle, we refer to [47]. The above table is a partial recreation of tables
found in [14].
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the additional constraint that this representation should be even dimensional as the theory
is otherwise anomalous, due to an Sp(n) gauge node connecting to a total odd number of
half-hypermultiplets.

We consider the case of an empty interior first and connect the two symplectic gauge
groups by a single full bifundamental hypermultiplet. The global symmetry group of this
quiver is

G = SO(10)× SO(12)×U(1)2
I × SU(2)B , rF = 14 , (3.6)

where the SU(2)B rotates the two bifundamental half-hyper multiplets. The global sym-
metry rank is as required. The remaining constraints then read

Sp(n1) : 2n2 + 5 ≤ 2n1 + 6 ,
Sp(n2) : 2n1 + 6 ≤ 2n2 + 6 ,

rG : n1 + n2 = 10 ,
(3.7)

where the first two inequalities are derived from the constraint on the number of funda-
mental hypermultiplets as listed in table 2 for the gauge nodes Sp(n1), Sp(n2) respectively.
The only admissible quiver of this type is thus

5F− Sp(5)− Sp(5)− 6F . (3.8)

The last consistency condition we apply is that the classical global symmetries of the
descendants of quiver (3.8) must include into the flavor group of the corresponding CFD
descendants. The first descendant of the marginal (E6, E7) CFD is shown in figure 10 and
displays the global symmetry

G = E6 × E7 ×U(1)I , (3.9)

while the two corresponding descent quivers of the candidate (3.8), obtained by decoupling
one hypermultiplet on either side of the quiver, display the global symmetry groups

G1 = SO(10)× SO(10)×U(1)×U(1)× SU(2) ,
G2 = SO(8)× SO(12)×U(1)×U(1)× SU(2) .

(3.10)

We have that SO(10)×U(1) ⊂ G1 and SO(10)×SU(2) ⊂ G1 as well as that SO(8)×U(1) ⊂
G2 and SO(12) × SU(2) ⊂ G2 include into E6, E7 respectively. The quiver (3.8) is thus a
good weakly coupled quiver candidate for (E6, E7) conformal matter.

We move on to study the case where the interior of the maximal depth quivers (3.16)
consists of a single gauge node G which we require to have a real, even dimensional fun-
damental representation. This leaves the two choices G = F4, SO(2n) for the added gauge
node. We consider the case G = F4 first. The constraints in table 2 now yield the bounds

Sp(n1) : 5 + 26
2 ≤ 2n1 + 6 ,

Sp(n2) : 6 + 26
2 ≤ 2n2 + 6 ,

F4 : 2n1
2 + 2n2

2 ≤ 3 ,

(3.11)
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with the gauge rank constraint n1 + n2 = 6. The gauge rank constraint together with the
last constraint in (3.11) are not solvable and G = F4 is excluded. When G = SO(2n) the
constraints take the form

Sp(n1) : 5 + n ≤ 2n1 + 6 ,
Sp(n2) : 6 + n ≤ 2n2 + 6 ,

SO(2n) : n1 + n2 ≤ 2n− 2 ,
(3.12)

with the gauge rank constraint n1 + n2 + n = 10. This system has four solutions given
by (n1, n2, n) = (2, 3, 5), (2, 4, 4), (3, 3, 4), (4, 2, 4). For each of these quivers the global
symmetry of all of its descendants is a subgroup of the global symmetry of the associated
SCFT descendants derived from the CFD transitions.

It follows with the same reasoning as above that the last class of maximal depth quivers,
which are of the structure

G

−

5F − Sp(n1) − Sp(n2) − 6F
or

G

−

5F − Sp(n1) − Sp(n2) − 6F
(3.13)

where all internal links are again bifundamental half-hypermultiplets, have no consistent
realizations.

Over all we thus find five consistent quivers of maximal depth for (E6, E7) confor-
mal matter

5F− Sp(5)− Sp(5)− 6F ,

5F− Sp(2)− SO(10)− Sp(3)− 6F ,

5F− Sp(2)− SO(8)− Sp(4)− 6F ,

5F− Sp(3)− SO(8)− Sp(3)− 6F ,

5F− Sp(4)− SO(8)− Sp(2)− 6F .

(3.14)

We repeat the analysis and determine consistent weakly couple quivers for (E6, E8)
and (E7, E8) conformal matter theories. Their flavor and gauge rank are

(E6, E8) : (rG, rF ) = (18, 15) ,
(E7, E8) : (rG, rF ) = (20, 16) ,

(3.15)

with the quivers of maximal depth of the structure

Maximal Depth Quivers (E6, E8) : 5F− Sp(n1)−
∏

G− Sp(n2)− 8F ,

Maximal Depth Quivers (E7, E8) : 6F− Sp(n1)−
∏

G− Sp(n2)− 8F .
(3.16)

These exhibit a manifest global symmetry of rank 15 and 16 respectively and consequently
the interior must be empty. A hypermultiplet connecting the two Sp gauge nodes would vi-
olate the constraint on the flavor rank and thus there are no potential quivers of type (3.16)
for (E6, E8) and (E7, E8) conformal matter.
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We move on to consider quivers of submaximal depth for (E6, E8) and (E7, E8) con-
formal matter theories. These are of the structure

Submaximal Depth Quivers (E6, E8) : 5F− Sp(n1)−
∏

G− Sp(n2)− 5F ,

Submaximal Depth Quivers (E7, E8) : 5F− Sp(n1)−
∏

G− Sp(n2)− 6F ,
(3.17)

as derived from the box graph embeddings in to the (E6, E8) and (E7, E8) CFDs in figures 8
and 9. These quivers have a manifest flavor symmetry of rank 12, 13 whereby in both cases
the interior

∏
G of the quiver is required to consist of either three gauge nodes connected

by half-hypermultiplets or two gauge nodes connected by a hypermultiplet. We analyse
the case of (E6, E8) in detail and state the result for (E7, E8).

There are five choices of a connected interior
∏
G if we restrict to quivers without

loops. The potential quivers for (E6, E8) conformal matter theories of this kind read

5F− Sp(n1)−G1 −G2 −G3 − Sp(n2)− 5F (3.18)

G3

−

5F − Sp(n1) − G1 − G2 − Sp(n2) − 5F
(3.19)

G3

−

G2

−

5F − Sp(n1) − G1 − Sp(n2) − 5F

(3.20)

where all interior links consist of half-hypermultiplets, as well as the quivers

5F− Sp(n1)−G1 −G2 − Sp(n2)− 5F (3.21)

G2

−

5F − Sp(n1) − G1 − Sp(n2) − 5F
(3.22)

where all interior links are given by half-hypermultiplets except for G1 − G2 links which
consists of a full hypermultiplet. An analysis of the quiver type (3.18) is very similar to
that of maximal depth quivers and as only solutions we find 47 quivers of the structure

5F− Sp(n1)− SO(r1)− Sp(n3)− SO(r2)− Sp(n2)− 5F . (3.23)

A discussion of the quivers (3.19)–(3.21), paralleling the following, shows that there are no
consistent realizations of these. We therefore restrict the discussion to the final quiver (3.22)
of trinion topology.

The gauge node G1 of the quiver (3.22) necessarily has a real, even dimensional fun-
damental representation and thus G1 = F4, SO(2r). The case G1 = F4 is found to be
inconsistent. For G1 = SO(2r) the constraints from table 2 applied to the bottom line of
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the quiver (3.22) together with the gauge rank constraint then read

Sp(n1) : 5 + 2r
2 ≤ 2n1 + 6 ,

Sp(n2) : 5 + 2r
2 ≤ 2n2 + 6 ,

G1 : dim R + 2n1
2 + 2n2

2 ≤ 2r − 2 ,

rG : n1 + n2 + r + rankG2 = 18 ,

(3.24)

where dim R abbreviates the dimension of the lowest dimensional non-trivial representation
of the undetermined gauge group G2. We find dim R ≤ 8 and applying the constraints
from table 2 to the gauge node G2 we find the only consistent choices to be G2 = SU(n)0
with n = 5, 6. Here the subscript denotes a vanishing Chern-Simons level. The consistent
quiver descriptions for (E6, E8) conformal matter of quiver type (3.22) are thus

SU(6)0
−

5F − Sp(3) − SO(14) − Sp(3) − 5F

SU(5)0

−

5F − Sp(3) − SO(14) − Sp(4) − 5F

(3.25)

With a similar analysis we find the potential quiver of submaximal depth for (E7, E8)
conformal matter with connected interior to be of the structure

5F− Sp(n1)− SO(r1)− Sp(n3)− SO(r2)− Sp(n2)− 6F . (3.26)

The constraints on the number of hypermultiplets attaching to any one gauge node are
solved by 45 integer tuples (n1, r1, n3, r2, n2). Here all internal links are bifundamental
half-hypermultiplets.

4 Conclusion and outlook

In this paper we reported on Calabi-Yau manifolds (2.15), (2.17) realizing marginal 5d
gauge theories in M-theory that originate from 6d (En, Em) conformal matter theories
and derived their associated combined fiber diagrams which are given in figures 7, 8, 9.
These we used to constrain the list of quiver gauge theories of maximal and submaximal
depth (3.14), (3.25), (3.26) which in the strong coupling limit potentially complete to the
respective SCFTs.

The presented resolution of the (En, Em) singularities has no associated weakly cou-
pled quiver gauge theory description as the geometries can not be consistently ruled. It
would be interesting to study which quiver gauge theories can be realized by altering the
resolution sequence such that the geometry allows for rulings. A systematic study of this
requires understanding the structure with which the surface components Sk glue to form
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the reducible surface S = ∪kSk. Describing which geometric transitions mediate between
surfaces with different ruling would facilitate an enumeration of all quiver gauge theories
associated to a marginal geometry and is one possible avenue for further research. For rank
2 theories this is achieved in [9].

It is clear that the three constraints presented in section 3.2 which restrict the potential
quiver gauge theories are not sufficient. The list of quivers (3.14) for (E6, E7) contain
in part quivers which at the same level of reasoning are candidates to UV complete to
descendants of (E7, E7) conformal matter, cf. [13]. Further constraints generalising the
results of [47] such as recently explored in [20] are needed to decide the UV behaviour of
the proposed quivers.

The results of this paper complete the list of 5d theories originating from 6d conformal
matter theories, as initiated in [12, 13], which are relevant to the discussion of circle reduc-
tions of the 6d UV-progenitor theories. The natural next step is the analysis of the higher
rank progenitor theories with the final goal of systematizing all 5d theories that descend
through Higgsable 6d SCFTs by RG flows induced through mass deformations and Higgs
branch vacuum expectation values.
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