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1 Introduction

The rich physics of four-dimensional N = 2 supersymmetric gauge theories is sometimes
encoded in the intricate ways in the geometry of the moduli space of vacua. It is impor-
tant to decipher this structure both for the understanding of less supersymmetric more
realistic gauge theories, and for the unexpected applications. One recurring theme is the
relation between the four dimensional physics and the two dimensional physics, such as the
BPS/CFT correspondence [8, 17–19].

Not only that the string/M-theory embedding [48, 50] of such gauge theories enriched
the physical intuition about these correspondences, the availability of exact localization
computation [14] of their partition functions have been largely utilized to precisely quan-
tify those correspondences. One of the interesting discoveries was the duality of quantum
and classical regimes. In particular, it was found that the problem of quantizing Hitchin
integrable systems translates to the problem of holomorphic symplectic geometry of the
moduli space of flat connections and its Lagrangian subvarieties [9]. The physical under-
standing of such a duality was provided in [10] by reducing the gauge theory to the sigma
models with boundaries associated to certain branes, and a gauge theoretical derivation of
the correspondence was provided in [11] at specific examples.

Another version of quantum/classical duality was presented in [7, 12], where the N = 2
gauge theories are connected to the Riemann-Hilbert problem and isomonodromic defor-
mations of Fuchsian systems on Riemann surfaces. To be precise, the correspondences were
established in the language of Liouville conformal field theory in [7, 12]. The N = 2 gauge
theories appear indirectly through their identification of their partition functions and the
Liouville correlation functions [1]. It is actually better to state the correspondences in
gauge theory context in some aspects, especially for the purpose of this work, as we shall
see hereafter. In these works, some variants of the gauge theory partition functions, which
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purely lie in the quantum regime, are identified either with the isomonodromic tau func-
tion [7] or with the Hamilton-Jacobi potential for isomonodromic deformations of Fuchsian
system [12], which belong to the quasi-classical regime.1 In the case of the sl(2) Fuchsian
system on the Riemann sphere with four regular punctures, the main example throughout
this work, the associated N = 2 gauge theory is the one with the SU(2) gauge group and
four fundamental hypermultiplets. It is known that the isomonodromic deformations of
this Fuchsian system is described by Painlevé VI, the most general second-order non-linear
ordinary differential equation with the Painlevé property.

A mystery is that even though the both results connect the N = 2 gauge theories to
the Riemann-Hilbert problem and isomonodromic deformations of Fuchsian systems, the
field theory settings in which the correspondence arises are rather different. The compu-
tation of the partition function of N = 2 gauge theories on the non-compact C2 involves a
regularization implemented by the Ω-background, weakly gauging the maximal torus of the
spacetime isometry U(1)ε1 × U(1)ε2 ⊂ SO(4). In [7], the isomonodromic tau function for
a Fuchsian system is expressed as an infinite sum of the gauge theory partition functions
with shifted Coulomb moduli, subject to the self-dual limit ε2 = −ε1 of the Ω-background.
The resulting sum is superficially similar to the dual magnetic partition function in [15].2

Meanwhile, in [12], the Hamilton-Jacobi potential for isomonodromic deformations of the
same Fuchsian system is expressed as the free energy, i.e., the asymptotics of the partition
function in the NS limit ε2 → 0 of the Ω-background. Recall that the time-derivative of
the isomonodromic tau function [38–42] is, by definition, the Hamiltonian for the isomon-
odromic flow, while the Hamilton-Jacobi equation equates the Hamiltonian to the time-
derivative of the Hamilton-Jacobi potential. In this sense, the two approaches provide two
seemingly different expressions for more or less the same mathematical quantity in two
different limits of the equivariant parameters. The goal of this work and the companion
paper [25] is to reconcile this conflict between the self-dual limit and the NS limit, and
to establish an explicit connection between the two approaches to the Riemann-Hilbert
problem and the isomonodromic tau function.

The main character of the play is the blowup Ĉ2 which is essentially obtained by
replacing the origin 0 ∈ C2 of the spacetime by an exceptional divisor P1. The study of
N = 2 gauge theories on the blowup was initiated in [13]. The partition function of N = 2
gauge theories on the blowup can also be computed by supersymmetric localization. It is
an infinite sum of a product of two gauge theory partition functions on the ordinary C2,
with shifted Coulomb moduli and Ω-background parameters. In the limit of the blowing
down, where the size of the exceptional divisor shrinks to zero, the spacetime reduces to
the ordinary C2. Meanwhile, the physics should not depend on the size of the exceptional
divisor, so that the partition function would not be affected by such a procedure. As a
consequence, the gauge theory partition function satisfies a non-trivial relation which we
refer to as the blowup formula. The blowup formula contains rich analytic information on

1See also the related work [36, 37].
2Although it was pointed out in [14] that the ε1 = −ε2 partition function might be a tau-function of

some version of KP-Toda hierarchy, since the latter can be expressed through free fermions using Sato
Grassmanian.
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the gauge theory partition function, and in particular it was used in [13] to exactly prove
that the asymptotics of the partition function in the limit ε1, ε2 → 0 is identical to the
Seiberg-Witten prepotential.

An interesting feature of the blowup formula is, as just mentioned, that it relates the
gauge theory partition functions with shifted Coulomb moduli and Ω-background param-
eters. More precisely, the blowup formula schematically looks like

Z(a,m, ε1, ε2; q) =
∑
n∈Z
Z(a+ nε1,m, ε1, ε2 − ε1; q)Z(a+ nε2,m, ε1 − ε2, ε2; q), (1.1)

where m denotes the masses of hypermultiplets and q denotes the gauge coupling. We im-
mediately notice that the shift in the Ω-background parameters occurs in such a way that it
connects the self-dual limit and the NS limit of the Ω-background. Thus, we may naturally
expect, at least conceptually, that the blowup formula is the key to resolve our mystery.

The above blowup formula, however, does not directly lead to the solution as it is. The
last important ingredients are half-BPS surface (co-dimension two) defects of N = 2 gauge
theories. The half-BPS surface defects can be engineered in various ways, and the exact su-
persymmetric partition functions of the N = 2 gauge theory in the presence of these surface
defects are also available. The surface defect can be viewed as a two-dimensional gauged
linear sigma model on a surface coupled to the bulk four-dimensional gauge theory, whose
local chiral operators thereby form non-trivial chiral ring relations. In the presence of the
Ω-background, such relations uplift to differential equations in the gauge coupling and the
complexified FI parameter satisfied by the partition function, which can be regarded as dou-
ble quantization of the chiral ring relations. These differential equations can be exactly de-
rived from the non-perturbative Dyson-Schwinger equations, the constraints on the partition
functions following from the regularity property of a special class of chiral observables called
the qq-characters [20–24, 31]. Now, the result of [12] in fact can be re-phrased as stating that
the free energy S of the N = 2 gauge theories coupled to a surface defect on the z2-plane,

Ψ(a,m, ε1, ε2; q, z) = exp
(
ε1
ε2
S(a,m, ε1; q, z) +O(1)

)
(1.2)

is equivalent to the Hamilton-Jacobi potential. This is a consequence of taking the limit
ε2 → 0 to the mentioned differential equation satisfied by the surface defect partition
function.

Equipped with non-local defects, we may wonder how the blowup formulas for their
partition functions would work and what their consequences would be. In this paper,
we suggest novel blowup formulas for the surface defect partition functions, which are
schematically in the form

Ψ(a,m, ε1, ε2; q, z) =
∑
n∈Z
Z(a+ nε1,m, ε1, ε2 − ε1; q)Ψ(a+ nε2,m, ε1 − ε2, ε2; q, z), (1.3)

where z denotes the complexified FI parameter of the gauged linear sigma model of the
defect on the z2-plane. This blowup formula contains rich analytic information on the
surface defect partition function, just as the previous one without the defect does for the
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ordinary partition function. Most importantly, we find that the result of [7] can be derived
from the result of [12] by taking the NS limit ε2 → 0 to this blowup formula. In this
sense, the above blowup formula is a refinement of the relation in [7] with the non-zero
Ω-background parameter ε2 6= 0.

The derivation involves precise matching between the gauge theory parameters and the
monodromy data of the associated Fuchsian system. For this, we also need to construct the
horizontal section of the Fuchsian system in gauge theoretical language, from which we can
explicitly compute the monodromy data in gauge theory parameters. It turns out that we
need a further insertion of a half-BPS surface defect on the z1-plane on top of the surface
defect on the z2-plane, so that the resulting configuration is intersecting surface defects
coupled to the bulk gauge theory. We show that the regular part of the partition function
gives the horizontal section of the Fuchsian system in the limit ε2 → 0. The intersecting
surface defect partition functions are expressed as series in the gauge couplings and the
complexified FI parameters, which are valid inside their own convergence domains only.
To compute the monodromy data, we need the connection formulas between the horizontal
sections lying in different convergence domains. By an investigation similar to the one
in [11], where the analytic continuation of the one-point function of a surface observable on
the z1-plane was discussed, we achieve such connection formulas by analytically continuing
the intersecting surface defect partition functions from one domain to another. By properly
concatenating the connection formulas, we finally express the monodromy data in gauge
theoretical terms. The result verifies the expectations of [7].

Historically, the connection between the two dimensional quantum field theories, their
lattice versions such as Ising model, and the Painlevé equations goes back to the works of [2]
and more recently, in the N = 2 d = 2 supersymmetric context, to [5]. In some ways our
present work cements the link between the N = 2 d = 4 physics and the two dimensional
theories, by providing a natural habitat of the isomonodromic equations in the realm of
correlation functions of four dimensional theories. For the works relating two-dimensional
CFTs to the isomonodromic deformation problems, see [29, 33, 56–60].

The paper is organized as follows. In section 2, we begin with the preliminaries of
the Riemann-Hilbert correspondence and isomonodromic deformations of Fuchsian system
on Riemann surfaces. The main purpose of this section is to give a minimal background
for the conjectural relation of [7] to the readers who are not familiar with it. Section 3
provides constructions of half-BPS surface defects by orbifolding and partial higgsing. We
also introduce construction of intersecting surface defects by partial higgsing. The partition
functions of (intersecting) surface defects are written explicitly. Section 4 explains how the
free energy of the gauge theory coupled to a surface defect is identified with the Hamilton-
Jacobi potential for isomonodromic deformations of Fuchsian systems. This is mainly
re-phrasing the result of [12] in purely gauge theoretical terms. In section 5, we show that
the NS limit of the intersecting surface defect partition function provides the horizontal
section of the Fuchsian system, and compute the monodromy data of the Fuchsian system
in gauge theoretical terms. In particular, the analytic continuations of intersecting surface
defect partition functions are studied to achieve the connection formulas between different
convergence domains. In section 6, we suggest new blowup formulas for surface defect
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partition functions. We also provide evidences to these formulas, including their consistency
with analytic continuation along the flow of the surface defect parameter. Finally, we derive
the result of [7] by taking the NS limit of the blowup formula in section 7. We carefully take
into account the action of the bäcklund transformations of Painlevé VI on the monodromy
space, thereby recovering the exact expression written in [7]. We conclude in section 8 with
discussions. The appendices contain some computational details.

2 Preliminaries

This section is devoted to reviewing the generalities of Riemann-Hilbert correspondence
and isomonodromic deformations of Fuchsian systems, in the view of their relations to
the supersymmetric gauge theories. In particular, the main purpose of this section is to
setup the conventions and to provide a background of the conjecture made in [7] and its
generalizations. Readers with expertise may safely skip to the next section.

2.1 Painlevé VI and the GIL conjecture

We closely follow the convention used in [28], unless specified. Painlevé equations were
discovered as a result of the classification of the second-order first-degree nonlinear ordi-
nary differential equations (ODEs) without movable critical points. The most general one,
Painlevé VI (PVI), is written as follows:

d2w

dq2 = 1
2

( 1
w

+ 1
w − 1 + 1

w − q

)(
dw

dq

)2
−
(1
q

+ 1
q− 1 + 1

w − q

)
dw

dq
(2.1)

+ 2w(w − 1)(w − q)
q2(q− 1)2

(θ∞ + 1
2

)2
− θ2

0q

w2 + θ2
1(q− 1)

(w − 1)2 +

(
1
4 − θ

2
q

)
q(q− 1)

(w − q)2

 ,
where θi, i = 0, q, 1,∞ are given parameters. The solution of this equation w(q) is called
the Painlevé transcendent.

Painlevé equations admit Hamiltonian formulations, where the equations of motion are

dw

dq
= ∂H

∂pw
,

dpw
dq

= −∂H
∂w

. (2.2)

The relevant Hamiltonian is given by

H(w, pw; q) = w(w − q)(w − 1)
q(q− 1) pw

(
pw −

2θ0
w
− 2θq − 1

w − q
− 2θ1
w − 1

)
+ w(θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞ − 1)

q(q− 1) .

(2.3)

By solving for p and substituting it back, we recover (2.1) from the equations of mo-
tion (2.2). We recognize q plays the role of time in the Hamiltonian formulation, and thus
refer to it (and, later, also its analogues) as time from now on.

We define the Painlevé VI tau function τ(q) as the generating function for the Hamil-
tonian. More precisely, it is defined to produce the Painlevé VI Hamiltonian under the
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derivative of its log [7, 28]:

d

dq
log τ(q) = H(w, pw; q)− w(w − 1)

q(q− 1) pw + w(θ0 + θq + θ1 + θ∞)
q(q− 1)

+ (θ0 + θq)2

q
−
θ2
∞ − θ2

0 − θ2
q − θ2

1 − 2θ0θq − 2θ0θ1 − 2θqθ1

1− q
,

(2.4)

where the last two terms on the right hand side, which are only rational functions of time q,
are not important in the sense that they could be absorbed into the Hamiltonian H(w, pw; q)
without affecting the dynamics (2.2). The tau function τ(q) is always defined up to this
ambiguity, and we fix this ambiguity by regarding the above equation as the definition of the
tau function. The conjecture made in [7] states that the Painlevé VI tau function, around
the critical point q = 0, can be expressed as an infinite sum of the partition functions of
the four-dimensional N = 2 supersymmetric SU(2) gauge theory with four fundamental
hypermultiplets subject to the self-dual Ω-background, with shifted arguments:3

τ(q) =
∑
n∈Z

enβZ(a+ nε1,m; ε1,−ε1; q)

=
∑
n∈Z

enβZ(α+ n,θ; q).
(2.5)

In this equation, q appears as the gauge coupling and is identified with the time in PVI (2.1).
a, m = (mi)4

i=1, and (ε1, ε2 = −ε1) are the equivariant parameters for the actions of the
maximal tori of the global SU(2) gauge symmetry, the SO(8) flavor symmetry, and the
SO(4) Lorentz symmetry, respectively. They are also called the Coulomb modulus, the
masses for the hypermultiplets, and the Ω-background parameters, respectively (see ap-
pendix A for a brief review). As just mentioned, we have set the self-dual limit ε2 = −ε1
of the Ω-background. Then the remaining Ω-background parameter ε1 only plays the role
of the mass scale, and we absorbed it in the second line into the definition of dimensionless
parameters defined by

α := a

ε1
, θ0 := m3 −m4

2ε1
, θq := m3 +m4

2ε1
, θ1 := m1 +m2

2ε1
, θ∞ := m1 −m2

2ε1
, (2.6)

relating the hypermultiplet masses with the θ-parameters appearing in PVI (2.1). The pa-
rameters α and β in (2.5) can be thought of as the integration constants for the equations
of motion (2.2). As we see here, α is identified with the Coulomb modulus of the gauge
theory, while the gauge theoretical meaning of β is unclear yet and will be clarified later
in section 5. The conjecture (2.5) was proven in [29] by using the crossing symmetry of
Liouville correlation functions. In this paper, we provide a gauge theoretical derivation
of (2.5) by using half-BPS surface defects on the blowup.

3The tau function τ(q) written in (2.5) differs from the tau function τGIL(q) written in [7, 28] by a simple
function of q, namely

τGIL(q) = q−θ
2
0−θ

2
q(1− q)2θqθ1τ(q).

This difference is also reflected in the relation (2.4). The difference is of course non-essential and merely con-
ventional. We find τ(q) more natural to consider in the gauge theory context, so we stick with our definition.
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2.2 Riemann-Hilbert correspondence

We begin by introducing Fuchsian systems on a Riemann surface. An sl(2) Fuchsian
system on the punctured sphere P1

r+3 := P1 \ {z−1 = ∞, z0, · · · , zr, zr+1} is defined by a
matrix-valued linear differential equation,

dΦ
dy

= A(y)Φ :=
r+1∑
i=0

Ai(z)
y − zi

Φ, y ∈ P1 \ {z−1 =∞, z0, · · · , zr, zr+1} (2.7)

where zi’s are the positions of the r + 3 punctures which are assumed to be distinct and

(A0, A1, · · · , Ar+1) ∈ g :=
r+1⊕
i=0

sl(2) (2.8)

are matrix-valued functions. We also define

A∞ := −
r+1∑
i=0

Ai ∈ sl(2). (2.9)

We assume that the matrices A∞, A0, · · · , Ar+1 are diagonalizable and their eigenvalues
are all distinct.

In (2.7), Φ takes the value in C2. By placing two independent column solutions into
a fundamental matrix, we can regard Φ as a 2 × 2 matrix. Now for each element in the
fundamental group γ ∈ π1

(
P1
r+3
)
, analytic continuation of the solution Φ along the loop γ

produces a new solution Φ′, which is related to the original solution Φ by a monodromyMγ :

Φ′ = ΦMγ . (2.10)

Hence the monodromies of the solution provides a representation of the fundamental group
into SL(2),

M : π1
(
P1
r+3

)
−→ SL(2).

γ 7−→Mγ

(2.11)

We did not fix the baespoint of the fundamental group, so that the monodromy M is al-
ways defined up to an overall conjugation by SL(2). The monodromy space Mz, where the
monodromy data M takes value, is thus given by

M ∈Mz := Hom
(
π1
(
P1
r+3

)
, SL(2)

)
/SL(2). (2.12)

Hence a Fuchsian system is associated to a representation of the fundamental group by its
monodromy data. We define the Riemann-Hilbert map by this monodromy representation,

RH : g −→Mz. (2.13)

So far, we have seen that an sl(2) Fuchsian system defines a representation of the fun-
damental group π1(P1

r+3) into SL(2) by the monodromies of the solution Φ. The Riemann-
Hilbert problem is the question about the converse: for a given monodromy data, can we

– 7 –



J
H
E
P
1
2
(
2
0
2
0
)
0
0
6

reconstruct a Fuchsian system which exhibits this monodromy? The solution to this prob-
lem is not unique, and there are many solutions corresponding to the given monodromy
data. In particular, the monodromy data do not depend on the positions z of the poles,
while the Fuchsian system (2.7) has an explicit dependence on them. Hence we are led to
study the deformations of the Fuchsian system with respect to the positions of the poles,
which preserve the monodromies so that the deformations lead to a family of solutions to
the Riemann-Hilbert problem for the same monodromy data. Such deformations are called
isomonodromic deformations.

2.3 Isomonodromic deformations of Fuchsian systems

We study the deformations of the matrices (Ai)r+1
i=0 with respect to (zi)r+1

i=0 which preserve
the monodromies of the solution Φ. The deformations are isomonodromic when they can
be compensated by a gauge transformation of the connection ∂y −A, namely,

− ∂A

∂zj
= [∂y −A, εj ] . (2.14)

Solving for the gauge variation parameter εj by equating the terms of order (y− zj)−2, we
get εj = Aj

y−zj . Plugging it back and taking the residues in y → zi, we obtain

∂Ai
∂zj

= [Ai, Aj ]
zi − zj

, i 6= j

∂Ai
∂zi

= −
∑
j 6=i

[Ai, Aj ]
zi − zj

,
(2.15)

for i, j = 0, · · · , r + 1. These equations are called the Schlesinger equations for isomon-
odromic deformations of the Fuchsian system. Namely, the monodromies of the Fuchsian
system (2.7) do not depend on (zi)r+1

i=0 if the matrices (Ai(z))r+1
i=0 satisfy (2.15). The con-

verse, that any isomonodromic deformation is described by the Schlesinger equations, is
generally not true unless we impose some reasonable assumptions. In this paper, we will
be interested only in isomonodromic deformations generated by the Schlesinger equations.

The Schlesinger equations (2.15) admit a canonical Hamiltonian formulation, as we
now discuss. We consider the standard Lie-Poisson bracket on g∗ ∼ g which is written as4{

(Ai)ab , (Aj)
c
d

}
= δij

(
δad (Ai)cb − δ

c
b (Aj)ad

)
. (2.16)

Then the time-dependent Hamiltonians defined by

Hi =
∑
j 6=i

TrAiAj
zi − zj

, i = 0, · · · , r + 1, (2.17)

give the following equations of motion

∂Ai
∂zj

= {Ai, Hj}, i, j = 0, · · · , r + 1, (2.18)

4Here g is identified with its dual g∗ by the Killing form, A 7→ Tr(A · ).
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which precisely reproduce the Schlesinger equations (2.15). It is also straightforward to
check that these Hamiltonians are mutually Poisson-commuting

{Hi, Hj} = 0, i, j = 0, · · · , r + 1, (2.19)

and also satisfy the condition

∂Hi

∂zj
= ∂Hj

∂zi
, i, j = 0, · · · , r + 1. (2.20)

Due to these conditions, we can define the generating function τ(z) of the Hamiltonians,
called the isomonodromic tau function. Namely,

Hi = d

dzi
log τ(z), i = 0, · · · , r + 1. (2.21)

It is immediate that
d log τ(z) =

∑
i<j

TrAiAj d log(zi − zj), (2.22)

where the right hand side is a closed 1-form due to the Schlesinger equations (2.15).
The Hamiltonian system defined on g can be reduced by a symplectic reduction. First

we can restrict the system to a symplectic leaf

r+1
i=1
Oi = O0 × · · · × Or+1 ⊂ g, (2.23)

obtained by choosing a conjugacy class (i.e., an adjoint orbit) Oi of Ai by choosing detAi =
−θ2

i for each i = 0, · · · , r+ 1. Then we perform the symplectic quotient to get the reduced
symplectic manifold

Ez(θ) :=
(
r+1
i=1
Oi
) //

SL(2), (2.24)

where the double slash denotes the symplectic quotient. Note that A∞ is an integral of
motion:

∂A∞
∂zi

= {A∞, Hi} = 0, i = 0, · · · , r + 1, (2.25)

which generates the action of SL(2) on r+1
i=1 Oi by simultanuous conjugations. Imposing the

moment map equation for this action is equivalent to setting A∞ a fixed diagonal matrix.
We can further take the quotient with respect to the residual symmetry of the conjugation
of diagonal matrices, thereby performing a symplectic quotient. A simple dimension count
shows that the reduced symplectic manifold is 2r-dimensional, dim Ez(θ) = 2r. On the
reduced symplectic leaves, the Hamiltonians (2.17) are redundant since the combinations

r+1∑
i=0

Hi = 0,
r+1∑
i=0

ziHi =
∑
i<j

TrAiAj , (2.26)

generate trivial dynamics. In particular,

r+1∑
i=0

zi
∂Aj
∂zi

= [Aj , A∞]. (2.27)
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Thus the solutions to the Schlesinger equations are invariant under the reparametrizations
of the times z0, · · · , zr+1 by

zi 7→ azi + b, i = 0, · · · , r + 1, a 6= 0. (2.28)

Hence, without loss of generality, we can set z0 = 1 and zr+1 = 0, only considering r times
(zi)ri=1 and corresponding r Hamiltonians (Hi)ri=1. Note that when the moduli space of
Fuchsian system is restricted to Ez(θ), the monodromy space is also reduced to

Mz(θ) :=
{
M ∈Hom

(
π1
(
P1
r+3

)
,SL(2)

) ∣∣∣ TrMγi = 2cos2πθi, i=−1, · · · , r+1
}/

SL(2),
(2.29)

where γi is a small loop around each puncture zi, i = −1, · · · , r + 1. A simple dimension
count shows that dimMz(θ) = 2r. The Riemann-Hilbert map is reduced to a symplecto-
morphism on the reduced moduli space,

RH : Ez(θ) −→Mz(θ). (2.30)

2.4 Painlevé VI from isomonodromic deformation

We end the section by explaining how Painlevé VI emerges in the simplest case r = 1 of the
isomonodromic deformations discussed so far. We choose the adjoint orbits O0 ×Oq ×O1
by imposing

detA2
i = −θ2

i , i = 0, q, 1, (2.31)

and restrict to a level set of the moment map

A∞ :=
(
−θ∞ 0

0 θ∞

)
= −(A0 +Aq +A1). (2.32)

We can parametrize the reduced symplectic leaf by

Ai =
(
ui + θi −uiwi
ui+2θi
wi

−ui − θi

)
, i = 0, q, 1, (2.33)

with the constraint (2.32). In particular, due to the constraint
∑
i=0,q,1 uiwi = 0, the

component A12 of the connection can be written as

∑
i=0,q,1

− uiwi
y − zi

= k(y − w)
y(y − q)(y − 1) . (2.34)

It can be shown that the conjugate momentum for the variable w is

pw :=
∑

i=0,q,1

ui + 2θi
w − zi

. (2.35)

We get rid of k as a result of modding out the overall conjugation of SL(2). It turns out that
the remaining variables (w, pw) form a Darboux coordinate system on the two-dimensional
reduced moduli space Eq(θ).

– 10 –



J
H
E
P
1
2
(
2
0
2
0
)
0
0
6

Painlevé VI arises precisely when we describe the isomonodromic flow of the Fuchsian
system in the Darboux coordinates (w, pw). First we express the matrices Ai, i = 0, q, 1
in terms of w, pw, and k. Then a straightforward computation shows that the Schlesinger
equations

dA0
dq

= − [A0, Aq]
q

,
dA1
dq

= [A1, Aq]
1− q

, (2.36)

imply Painlevé VI (2.1) satisfied by w(q). Namely, Painlevé VI describes the isomonodromic
flow of the sl(2) Fuchsian system defined on the four-punctured sphere.

Let us consider the horizontal section Φ =
(
φ1
φ2

)
of the Fuchsian system,

(∂y −A(y)) Φ(y) = 0. We can convert this first-order differential equation into a second-
order differential equation for φ1:

0 =
(
∂2
y −

(
TrA+ ∂yA12

A12

)
∂y + detA− ∂yA11 + A11

A12
∂yA12

)
φ1(y). (2.37)

By substituting (2.33) into this equation, we get

0 =
[
∂2
y +

(1
y

+ 1
y − q

+ 1
y − 1 −

1
y − z

)
∂y

− θ2
0
y2 −

θ2
q

(y − q)2 −
θ2

1
(y − 1)2 −

(
θ∞ + 1

2

)2
− θ2

0 − θ2
q − θ2

1 − 1
4

y(y − 1)

+ z(z − 1)
y(y − z)(y − 1)

(
pw −

θ0
z
− θq
z − q

− θ1
z − 1

)

− q(q− 1)
y(y − q)(y − 1)

(
H(w, pw; q)− θq

z − q

+
θ0 + θq − 2θ0θq − q

(
θ2

0 + θ2
q + θ2

1 − θ2
∞ − θ∞ + θq + 2θ0θ1

)
q(q− 1)

)]
φ1(y),

(2.38)

where the Hamiltonian H(w, pw; q) is nothing but that of the Painlevé VI:

H(w, pw; q) = w(w − q)(w − 1)
q(q− 1) pw

(
pw −

2θ0
w
− 2θq − 1

w − q
− 2θ1
w − 1

)
+ w(θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞ − 1)

q(q− 1) .

(2.39)

Generically there are two independent solutions to the Fuchsian differential equation (2.38),
and we denote them as

(
φ

(1)
1 (y), φ(2)

1 (y)
)
. As we have seen earlier, the solutions to the

Schlesinger equation are given by the isomonodromic flow (w, pw) = (w(q), pw(q)). In other
words, when the Fuchsian differential equation (2.38) is restricted to the isomonodromic
flow (w, pw) = (w(q), pw(q)), the monodromies of the solution

(
φ

(1)
1 (y), φ(2)

1 (y)
)
define the

monodromy data M which is independent of q. This is precisely the image of (w(q), pw(q))
in Mq(θ) under the Riemann-Hilbert map.

To precisely describe the Riemann-Hilbert map, we need a coordinate system on the
reduced monodromy space Mq(θ). It is convenient to use Darboux coordinate systems to
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make the symplectomorphicity of the Riemann-Hilbert map manifest. The reduced mon-
odromy space Mq(θ) can be equipped with various kinds of Darboux coordinate systems,
but the one which is relevant to its connection to the isomonodromic tau functions and
supersymmetric gauge theories turns out to be the NRS coordinate system [9]. The NRS
coordinate system was introduced in for reduced moduli spaces of flat SL(2)-connections
on generic Riemann surfaces. For our main example of the four-punctured sphere, it is a
coordinate sysetm (α, β) which simply parametrizes the monodromies MA,B along the two
independent (in π1) loops, which we denote as the A- and B-loops (see figure 2), by

TrMA = −2 cos 2πα (2.40)

and

TrMB = (cos 2πθ∞ + cos 2πθ1) (cos 2πθ0 + cos 2πθq)
2 sin2 πα

+ (cos 2πθ∞ − cos 2πθ1) (cos 2πθ0 − cos 2πθq)
2 cos2 πα

−
∑
±

4
∏
ε=± cosπ(∓α− θq + εθ0) cosπ(∓α− θ1 + εθ∞)

sin2 2πα
e±β .

(2.41)

It can be shown that the coordinates α and β defined in this way form a Darboux coordinate
system on Mq(θ). The symplectomorphism of Riemann-Hilbert can be described in terms
of Darboux coordinates

RH : Eq(θ) −→Mq(θ)
(w, pw) 7−→ (α, β).

(2.42)

This implies the image (α, β) is constant along the isomonodromic flow (w(q), pw(q)). In
this sense, α and β can be considered as the initial condition for Painlevé VI which is a
second-order ODE.

3 N = 2 supersymmetric gauge theories with surface defects

As we will see in later sections, half-BPS surface (codimension-two) defects play crucial roles
in the correponsdence of four-dimensional N = 2 supersymmetric gauge theories and the
isomonodromic deformations of Fuchsian systems. In particular, half-BPS surface defects
can be used in the correspondence with the isomonodromic deformations to realize apparent
singularities and horizontal sections of the associated Fuchsian system. In the M-theory
perspective, we consider four-dimensional theories of class S realized as the worldvolume
theory on M5-branes wrapping a Riemann surface [30]. The relevant half-BPS surface
defects are engineered by inserting M2-branes wrapping two-dimensional surfaces inside the
four-dimensional spacetime. In the field theory limit, the bulk four-dimensional theory of
class S gets coupled to the gauged linear sigma model living on a two-dimensional surface,
which thereby realizes a surface defect. The position of the M2-brane insertion on the
Riemann surface translates into the complexified FI parameter of this sigma model, and it
provides an apparent singularity of the associated Fuchsian system on the Riemann surface.
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In the presence of the Ω-background, half-BPS surface defects may lie only on the
z1-plane or on the z2-plane. These two choices are not equivalent, so that in particular
they contribute to the partition function differently in the NS limit where one of the two
Ω-background parameters is taken to be zero. We choose our convention that the NS limit
is always ε2 → 0. Then we will see in later sections that the surface defects we need for the
connection to the Riemann-Hilbert correspondence are the ones on the z2-plane.5 To con-
struct the horizontal section of the associated Fuchsian system, we need a further insertion
of a surface defect on the z1-plane, so that the resulting configuration is the intersecting
surface defects coupled to the bulk theory. In this section, we discuss the constructions of
these (intersecting) half-BPS surface defects and expressions of their partition functions.

Half-BPS surface defects can be constructed in various ways. Here, we introduce two
constructions, orbifolding and partial higgsing, relevant to our discussion. We also intro-
duce a construction of intersecting surface defects by partial higgsing. In particular, the
main objects to be considered are the partition functions of the gauge theory in the pres-
ence of those (intersecting) surface defects. We compute them explicitly and discuss their
properties. For preliminary discussions on the N = 2 partition functions and conventions
used in this section, see appendix A.

3.1 Construction of surface defects

3.1.1 Orbifold

We consider the N = 2 supersymmetric gauge theories on an orbifold defind by the following
Zp-action on the flat spacetime C2,

ζ : (z1, z2) 7−→ (ζz1, z2), ζ ∈ Zp. (3.1)

Note that there is an orbifold singularity along the z2-plane {z1 = 0}. This orbifold can
be mapped to the ordinary C2 by

(z1, z2) 7−→ (z̃1 = zp1 , z̃2 = z2). (3.2)

Then the N = 2 gauge theory on C2
z̃1,z̃2 develops a surface defect on the z̃2-plane by a

singular boundary condition of the gauge field (see [23–25] for more details).
At the level of the partition functions, the Zp-action fractionalizes the contributions

to the relevant equivariant integrations according to its irreducible representations. The
partition function of the N = 2 gauge theory in the presence of the orbifold surface defect
is, therefore, computed by keeping the Zp-invariant parts only. More precisely, the singular
boundary condition breaks the global U(N) gauge symmetry in general, and we have to
specify the subgroup left to be preserved to fully characterize the surface defect. This is
equivalent to the choice of the coloring function,

c : N −→ Zp, (3.3)
5For the discussion on the surface defects on the z1-plane and on the NS limit of their partition functions,

see [11].
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for which the preserved subgroup is assigned as ω∈Zp U(|c−1(ω)|) ⊂ U(N). We can turn
on the magnetic fluxes on the support of the surface defect for each U(1) ⊂ U(|c−1(ω)|).
The singularity in the gauge field and the magnetic flux combine into the fractionalized
couplings qω, satisfying

q =
∏
ω∈Zp

qω, (3.4)

where q is the bulk instanton counting parameter. We can parametrize these couplings by

q0 = q
z1
z0
, qp−1 = z0

zp−1

qω = zω+1
zω

, ω = 1, · · · , p− 2.
(3.5)

The partition function of the gauge theory in the presence of the orbifold surface defect
is then computed by doing the path integral over the Zp-invariant locus of fields. The path
integral localizes to a finite-dimensional integral over the instanton moduli space, which
admits the ADHM description. The ADHM construction of the moduli space MN,k of
U(N)-instantons with the instanton number k involve the linear maps (B1, B2, I, J), where
B1,2 ∈ End(K), I ∈ Hom(N,K), and J ∈ Hom(K,N), with the vector spaces N = CN and
K = Ck. The instanton moduli space MN,k is obtained by imposing the ADHM equation
and the stability condition:

[B1, B2] + IJ = 0
K = C[B1, B2]I(N)

(3.6)

modulo the GL(K)-action

(B1, B2, I, J) −→
(
g−1B1g, g

−1B2g, g
−1I, Jg

)
, g ∈ GL(K). (3.7)

Now upon the Zp-orbifolding, the space N = CN and K = Ck are decomposed accord-
ing to the Zp-representations as

N =
⊕
ω∈Zp

Nω ⊗ Rω, Nω :=
∑

α∈c−1(ω)
eβaα , (3.8)

and

K =
⊕
ω∈Zp

Kω ⊗ Rω, Kω :=
N∑
α=1

eβaα
λ

(α)
1∑
j=1

qj−1
2

∑
1≤i≤λ(α)t

j

c(α)+i−1≡ω mod p

qi−1
1 , (3.9)

where Rω, ω = 0, · · · , p− 1 are one-dimensional irreducible representations of Zp in which
the generator ζ = e

2πi
p acts by ζω. Let ΩN (ζ) and ΩK(ζ) be the representation of the

action of ζ on N and K. Then we impose the constraint

ζB1 = Ω−1
K B1ΩK , B2 = Ω−1

K B2ΩK , I = Ω−1
K IΩN , ζJ = Ω−1

N JΩK . (3.10)

These constraints imply the ADHM matrices are decomposed by

B1,ω : Kω −→ Kω−1, B2,ω : Kω −→ Kω,

Iω : Nω −→ Kω, Jω : Kω −→ Nω−1.
(3.11)
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The ADHM equation is also decomposed into

B1,ωB2,ω −B2,ω−1B1,ω + Iω−1Jω = 0, ω ∈ Zp. (3.12)

Let us define B̃1,2 ∈ End(K̃), Ĩ ∈ Hom(Ñ , K̃), and J̃ ∈ Hom(K̃, Ñ) by

K̃ = K0, Ñ =
⊕
ω∈Zp

Nω,

B̃1 = B1,1B1,2 · · ·B1,p−1B1,0, B̃2 = B2,0

Ĩ =
p−1∑
m=0

B1,1B1,2 · · ·B1,m−1Im−1 J̃ =
p−1∑
m=0

JmB1,m+1B1,m+2 · · ·B1,p−1B1,0.

(3.13)

Then it is straightforward to show that we have the ordinary ADHM equation with the
new matrices,

[B̃1, B̃2] + Ĩ J̃ = 0. (3.14)

In other words, we have constructed a projection M
Zp
N,k −→ M

N,̃k
of the moduli space of

instantons on the Zp-orbifold to the moduli space of instantons on the ordinary C2. By
integrating along the fiber of the projection, we produce a cohomology class of M

N,̃k
which

we interpret as the surface defect observable.
At the level of the fixed points of the moduli spaces with respect to the global symmetry

actions, the projection can be understood as a map

ρ : λ 7−→ Λ (3.15)

between two N -tuples of Young diagrams. Let us define

ãα =

aα, c(α) = 0
aα + (p− c(α))ε1, c(α) = 1, · · · , p− 1

, (3.16)

and also

K̃ω :=

K0, ω = 0
qp−ω1 Kω, ω = 1, · · · , p− 1

. (3.17)

Then we see that

K̃ = K̃0 =
N∑
α=1

eβãα
Λ(α)

1∑
j=1

qj−1
2

Λ(α)t
j∑
i=1

q̃i−1
1 , (3.18)

where the N -tuples of Young diagrams Λ is defined by Λ(α)
1 = λ

(α)
1 and

Λ(α)t
j =


1 +

[
λ

(α)t
j −1
p

]
, c(α) = 0[

λ
(α)t
j c(α)−1

p

]
, c(α) = 1, · · · p− 1

. (3.19)

Hence we obtain the projection ρ (3.15) at the level of the fixed points with respect to the
global symmetry action.
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The surface defect observable can be obtained by first projecting to the Zp-invariant
part and then re-expressing the projectetd partition function as expectation value of an
observable. After the Zp-projection, the partition function is written as

ΨZ2,1-loop
c,f ΨZ2,non-pert

c,f =
∑
λ

∏
ω∈Zp

qkωω E
[
T [λ]Zp

]
, (3.20)

where
T Zp =

[
−SS

∗

P ∗12
+ MS∗

P ∗12

]Zp
. (3.21)

We need to properly split this character into the bulk part and the surface defect part. For
this, let us define

S̃ω =

S0, ω = 0
qp−ω1 Sω, ω = 1, · · · p− 1

(3.22)

and also S̃ω+p = S̃ω. Then we see that

S̃ :=
p−1∑
ω=0

S̃ω = Ñ − P̃12K̃, (3.23)

where q̃1 := qp1 , P̃1 := 1 − q̃1, and P̃12 := (1 − q̃1)(1 − q2). A straightforward computation
shows that the first term in the character (3.21) becomes

− S̃S̃∗

P̃ ∗12
+

∑
1≤ω<ω′≤p

S̃ωS̃
∗
ω′

P ∗2
. (3.24)

The first term is precisely the bulk equivariant character. The second term should then be
interpreted as the character for the surface defect observable.

When the gauge theory contains hypermultiplets, the equivariant parameters for the
flavor symmetry group enter into the character as in the second term in (3.21). We assign
color f to those hypermultiplet masses

f : M −→ Zp, (3.25)

and define Mω := f−1(ω), ω ∈ Zp. Then we also modify the masses a bit by

M̃ω =

M0, ω = 0
qp−ω1 Mω, ω = 1, · · · p− 1

, (3.26)

and define M̃ =
∑p−1
ω=0 M̃ω. A straightforward computation shows that the second term in

the character (3.21) becomes

M̃S̃∗

P̃ ∗12
−

∑
1≤ω<ω′≤p

M̃ωS̃
∗
ω′

P ∗2
. (3.27)

The first term is precisely the matter contribution to the bulk equivariant character. Thus,
the second term should be interpreted as the character for the surface defect observable.
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All in all, the partition function can be re-expressed as

ΨZ2,1-loop
c,f ΨZ2,non-pert

c,f =
∑
Λ

q|Λ|O2,c,f [Λ]E
[
− S̃S̃

∗

P̃ ∗12
+ M̃S̃∗

P̃ ∗12

]
, (3.28)

where the surface defect observable is

O2,c,f [Λ] :=
∑

λ∈ρ−1(Λ)

∏
ω∈Zp

zkω−1−kω
ω E

 ∑
1≤ω′<ω′′≤p

(
S̃ω′ − M̃ω′

)
S̃∗ω′′

P ∗2

 . (3.29)

It was shown in that the surface defect observable can be viewed as the partition function
of the gauged linear sigma model on the z2-plane and its coupling to the bulk gauge theory.
The choice of coloring function c corresponds to the choice of the vacuum of this gauged
linear sigma model.

3.1.2 Vortex string

We start from the superconformal A2-quiver gauge theory. The instanton partition function
of this theory can be written as

ZA2 =
∑
λ

∏
i=1,2

q|λ
(i)|E [TA2 [λ]] , (3.30)

where the character TA2 is

TA2 =
∑

i=1,2
(NiK

∗
i + q12N

∗
i Ki − P12KiK

∗
i )−N0K

∗
1 − q12N

∗
3K2

−N1K
∗
2 − q12N

∗
2K1 + P12K1K

∗
2 ,

(3.31)

and the 2N -tuple of Young diagrams λ =
(
λ(1),λ(2)

)
enumerate fixed points of the in-

stanton moduli space with respect to the global symmetry group.
We partially higgs the gauge group down to U(N). The partial higgsing is initiated

by the constraints
a1,α = a0,α − δαγε1, (3.32)

where we made a choice γ ∈ {1, · · · , N}. These constraints make N hypermultiplets nearly
massless (exactly massless in the flat spacetime ε1 = 0). The massless hypermultiplet
scalars may develop expectation values, higgsing the first U(N) gauge node. Due to the
ε1-mistach in the constraint, the U(1) gauge group is restored along a codimension-two
plane (z2-plane) where the gauge field configuration is squeezed into a vortex. The net
result is the U(N) gauge theory with 2N hypermultiplets, coupled to a two-dimensional
linear sigma model on the z2-plane. The choice of γ ∈ {1, · · · , N} passes to the choice of
the vacuum of this gauged linear sigma model. Hence we generate a surface defect coupled
to the bulk gauge theory in this sense.

At the level of the fixed points of the instanton moduli space, the N -tuple of Young
diagrams λ(1) is restricted by the constraints (3.32) as

λ(1) =

∅, · · · ,∅, λ(1,γ)

· · ·︸ ︷︷ ︸
k

, ∅, · · · ,∅

 , k ∈ Z≥0. (3.33)
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In terms of the vector space K1, this implies

K1 = µ
1− qk2
1− q2

, (3.34)

with µ = eβ(a0,γ−ε1). The character TA2 simplifies accordingly, and we can split it into the
bulk and the surface defect contributions. The net result is

ΨL,non-pert
γ =

∑
λ

q|λ|OL2,γ [λ]E [TA1 [λ]] =
〈
OL2,γ

〉
Z inst
A1 , (3.35)

where TA1 is the character for the U(N) gauge theory with 2N hypermultiplets

TA1 = NK∗ + q12N
∗K − P12KK

∗ −N0K
∗ − q12N

∗
3K, (3.36)

and the surface defect observable OL2,γ is

OL2,γ [λ] :=
∞∑
k=0

z−k
k∏
l=1

Y2(a0,γ + lε2) [λ]
P0(a0,γ + lε2)

∏
�∈λ(2)

a0,γ − ε1 − c�
a0,γ − c�

. (3.37)

In the decoupling limit q→ 0, the surface defect observable reduces to the partition function
of the gauged linear sigma model on the z2-plane. When the gauge coupling is turned on,
the non-trivial coupling between the degrees of freedom on the bulk and the surface defect
start to contribute to the partition function, through the Y-observable in the numerator.
Note that the convergence domain for this partition function is 0 < |q| < 1 < |z|.

We can similarly engineer the gauge theory coupled to the vortex string surface defect
whose partition function converges in the domain 0 < |z| < |q| < 1. We start from the
A2-quiver gauge theory again. This time, we impose different constraints:

a2,α = a3,α − ε− δαγε1, (3.38)

with a choice γ ∈ {1, · · · , N}. The gauge group is partially higgsed as earlier, leaving
the U(N) gauge theory with 2N hypermultiplets coupled to a vortex string surface defect.
Then, for the reasons to be clarified later, we would like to make the following re-definitions

a0,α −→ −a0,α − ε
a1,α −→ −a1,α α = 1, · · · , N.
a3,α −→ −a3,α + 2ε

(3.39)

The partition function can be written as

ΨR,non-pert
γ =

∑
λ

q|λ|E
[
T ′A1 [λ]

] ∞∑
k=0

(
z

q

)k k∏
l=1

Y′(−a3,γ + lε2) [λ]
P ′3(−a3,γ + 2ε+ lε2)

∏
�∈λ

−a3,γ − ε1 − c′�
−a3,γ − c′�

.

(3.40)
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Here, we defined

T ′A1 [λ] :=
[
NK∗ + q12N

∗K − P12KK
∗ −N0K

∗ − q2
12N

∗
3K

]∣∣∣ a→−a
a0→−a0−ε
a3→−a3+2ε

,

c′� := c�|a→−a ,

P ′3(x) :=
N∏
α=1

(x+ a3,α − 2ε),

Y′(x) := Y(x)|a→−a .

(3.41)

3.2 Construction of intersecting surface defects

In this section, we construct N = 2 gauge theory with intersecting half-BPS surface de-
fects. The surface defects would be lying on the z1-plane and z2-plane, so that they are
intersecting with each other at the origin. Due to the presence of mutually intersecting
defects, most of the N = 2 supersymmetry is broken but we still have the scalar super-
charge preserved. Then, since U(1)2 ⊂ SO(4) isometry is still preserved, we can turn on
the Ω-background with respect to them. The partition function of the gauge theory in the
presence of the intersecting defects is a path-integral which localizes onto the fixed points
of this Ω-deformed supercharge. This partition function can also be understood as the
two-point function of the two surface defect observables.

The configuration of intersecting surface defects were analyzed as a 4d/2d/0d coupled
system in [61, 62]. In particular, their partition functions were conjecturally identified with
the Liouville correlation functions with in the presence of arbitrary degenerate fields [61],
in the context of [1]. We may regard our analysis as giving a proof of this statement to
relevant cases by using non-perturbative Dyson-Schwinger equations (see section 5.1).

We would like to stress that the idea of using intersecting surface defects to construct
solutions to KZ or BPZ type differential equations can be implemented in more general
settings. In [63], the folded instanton configuration is considered on top of the ZN regular
orbifold surface defect, which allows a concrete connection between the gauge theory, WZW
models, and spin chain systems.

We provide a specific construction of such intersecting surface defects, which resembles
the construction of a single surface defect by a partial Higging that we have seen in the
last section. Here, we start from the linear A3-quiver gauge theory. The partition function
of the A3-quiver gauge theory is written as

ZA3 =
∑
λ

∏
i=1,2,3

q
|λ(i)|
i E [TA3 [λ]] , (3.42)

where the character TA3 is given by

TA3 =
∑

i=1,2,3
(NiK

∗
i + q12N

∗
i Ki − P12KiK

∗
i )−N0K

∗
1 − q12N

∗
4K3

−N1K
∗
2 − q12N

∗
2K1 + P12K1K

∗
2 −N2K

∗
3 − q12N

∗
3K2 + P12K2K

∗
3 .

(3.43)

Let us initiate partial Higging for the first and the third gauge nodes by setting

a1,α = a0,α − δα,hε1

a3,α = a4,α − ε− δα,lε2,
(3.44)
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for some chosen h, l ∈ {1, · · · , N}, and define q2 = q, q1 = 1
z , and q3 = y

q . Then almost
all the Young diagrams in λ(1) become empty except a single-row λ(1,h), while almost all
the Young diagrams in λ(3) also become empty except a single-column λ(3,l). We have the
following simplified expressions accordingly,

K1 = µ
1− qk1

2
1− q2

, K3 = µ′
1− qk3

1
1− q1

, (3.45)

where we defined µ = ea1,h = ea0,h−ε1 and µ′ = ea3,l = ea4,l−ε−ε2 . Then the character (3.43)
simplifies to

TA3 = N2K
∗
2 + q12N

∗
2K2 − P12K2K

∗
2 −N0K

∗
2 − q2

12N
∗
4K2

+ µP1q
k1
2 K

∗
1 + q12K1(N∗1 − S∗2)− µP1K

∗
2

+ µ′P2q
k3
1 K

∗
3 + q12K3(N∗3 − q−1

12 S
∗
2)− q12µ

′−1P−1
2 K2

(3.46)

Note that the first line is precisely the character for the A1-quiver gauge theory, namely, the
U(N) gauge theory with 2N fundamental hypermultiplets (with some shifts in the masses
that we will be more precise soon):

TA1 = N2K
∗
2 + q12N

∗
2K2 − P12K2K

∗
2 −N0K

∗
2 − q2

12N
∗
4K2. (3.47)

The second line and the third line can be interpreted as the surface defect observables
lying on z2-plane and z1-plane, respectively. Accordingly, the partition function becomes
the two-point function of these two observables in the A1-quiver gauge theory,

Υ0<|y|<|q|<1<|z|
l,h =

∑
λ

q|λ|O
0<|y|<|q|
1,l [λ]O1<|z|

2,h [λ]E [TA1 [λ]] =
〈
O

0<|y|<|q|
1,l O

1<|z|
2,h

〉
ZA1 ,

(3.48)
whose convergence domain is 0 < |y| < |q| < 1 < |z|. Here we have defined the instanton
partition function for the A1-quiver gauge theory

ZA1 :=
∑
λ

q|λ|E [TA1 [λ]] , (3.49)

and the surface defect observables

O
0<|y|<|q|
1,l [λ] :=

∞∑
k3=0

(
y

q

)k3 k3∏
m=1

Y(a4,l − 2ε+mε1) [λ]
P4(a4,l +mε1)

∏
�∈λ

a4,l − 2ε− ε2 − c�
a4,l − 2ε− c�

O
1<|z|
2,h [λ] :=

∞∑
k1=0

z−k1
k1∏
m=1

Y(a0,h +mε2) [λ]
P0(a0,h +mε2)

∏
�∈λ

a0,h − ε1 − c�
a0,h − c�

.

(3.50)

In the zero bulk instanton sector, |λ(2)| = 0, Y2-observable simplifies to a polynomial
Y2(x) =

∏N
α=1(x− a2,α). Then the surface defect observables O1 and O2 reduce to general-

ized hypergeometric functions, which are partition functions of the two-dimensional gauged
linear sigma model on the Hom(O(−1),CN )-bundle over PN−1 whose Kähler modulus is
q1 and q3, respectively. The choice of l, h ∈ {1, · · · , N} is exactly the choice of vacua of
these two gauged linear sigma models. Therefore, the intersecting surface defect partition
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function is just the product of these two partition functions of gauged linear sigma models
lying on the z1-plane and the z2-plane. In the non-zero bulk instanton sector, we start to
get contributions from the coupling between the bulk and the two surface defects.

We can similarly construct intersecting surface defects whose partition function is given
by the series convergent in the domain 0 < |z| < |q| < 1 < |y|. We also start from the
A3-quiver gauge theory (3.42), and impose the constraints

a1,α = a0,α − δα,lε2

a3,α = a4,α − ε− δα,hε1.
(3.51)

These constraints initiate higging of the gauge group, leaving U(N) gauge theory with 2N
hypermultiplets coupled to intersecting vortex string surface defects. For reasons to be
clear later, we re-define the parameters as

a0,α −→ −a0,α − ε
a2,α −→ −a2,α

a4,α −→ −a4,α + 3ε.
(3.52)

The partition function thus defined is the intersecting surface defect partition function
Υ0<|z|<|q|<1<|y|
l,h lying in the domain 0 < |z| < |q| < 1 < |y|:

Υ0<|z|<|q|<1<|y|
l,h =

∑
λ

q|λ|O′
1<|y|
1,l [λ]O′0<|z|<|q|2,h [λ]E

[
T ′A1 [λ]

]
, (3.53)

where the defect observables are

O′
0<|z|<|q|
2,h [λ] =

∞∑
k3=0

(
z

q

)k3 k3∏
m=1

Y′(−a4,h + ε+mε2)
P ′4(−a4,h + 3ε+mε2)

∏
�∈λ

−a4,h + ε− ε1 − c′�
−a4,h + ε− c′�

O′
1<|y|
1,l [λ] =

∞∑
k1=0

y−k1
k1∏
m=1

Y′(−a0,l − ε+mε1)
P ′0(−a0,h − ε+mε1)

∏
�∈λ

−a0,l − ε− ε2 − c′�
−a0,l − ε− c′�

,

(3.54)

where we have defined

T ′A1 =
[
NK∗ + q12N

∗K − P12KK
∗ −N0K

∗ − q2
12N

∗
4K

]∣∣∣ a0→−a0−ε
a→−a

a4→−a4+3ε

P ′0(x) = P0(x)|a0→−a0−ε

P ′4(x) = P4(x)|a4→−a4+3ε

c′� = c�|a→−a .

(3.55)

4 Surface defects and Hamilton-Jacobi equations for isomonodromic de-
formations

The partition functions of four-dimensional N = 2 gauge theories subject to Ω-background
have explicit dependence on gauge couplings and equivariant parameters. The partition
function manifests various correspondences which relate the gauge theory with interesting
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mathematical objects, encoded in its responses to the variations of those parameters. Such
analytic properties of the partition functions can be extracted by using a special class
of chiral observables, called the qq-characters [20–22]. The crucial property of the qq-
characters is the regularity of their vacuum expectation values, which encode non-trivial
chiral ring relations in the presence of Ω-background [20–22, 32].

In the presence of half-BPS surface defects, the qq-characters are especially powerful
since they lead to closed differential equations satisfied by the partition functions in many
cases [23, 24, 31], which can be regarded as double quantization of the chiral ring relation
of the coupled system. In this section, we discuss such differential equations satisfied by the
surface defect partition functions. The NS limit of the differential equation reveals that the
asymptotics of the surface defect partition function is the Hamilton-Jacobi potential for the
isomonodromic flow. Moreover, we verify that the very asymptotics of the surface defect
partition function can also be viewed as the generating function of the Riemann-Hilbert
map.

4.1 Non-perturbative Dyson-Schwinger equations

We state the non-perturbative Dyson-Schwinger equations satisfied by the partition func-
tions of the N = 2 U(2) gauge theory with four fundamental hypermultiplets in the presence
of the half-BPS surface defects introduced in the previous section. From these equations
it can be verified that the partition function satisfies a differential equation in gauge cou-
plings. We do not reproduce the derivation here, but only state the result.

4.1.1 Orbifold

Let us consider the U(N) gauge theory with matter multiplets on the Zp-orbifold, intro-
duced in section 3.1.1. The fundamental qq-characters of this theory are

Xω(x) = Yω+1(x+ ε) + (−1)|Nω |+|Mω |qω
Pω(x)
Yω(x) , ω ∈ Zp, (4.1)

where Pω(x) =
∏
i∈f−1(ω)(x −mi). The non-perturbative Dyson-Schwinger equations are

constraints following from the regularity of their expectation values:

0 =
[
x−n

] 〈
Xω(x)

〉
, ω ∈ Zp, n ≥ 1. (4.2)

Our main example is the U(2) gauge theory with four hypermultiplets on the Z2-
orbifold, for which the color functions are chosen as

c−1(0) = γ, c−1(1) = γ̄,

Mω =
∑
i=1,2

eβmω,i , ω ∈ Z2.
(4.3)

Then we have two fundamental qq-characters:

X0(x) = Y1(x+ ε)− q

z

P0(x)
Y0(x)

X1(x) = Y0(x+ ε)− zP1(x)
Y1(x) .

(4.4)
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The non-perturbative Dyson-Schwinger equations for them imply that the partition func-
tion annihilates a differential operator in gauge couplings. We do not reproduce the deriva-
tion, but only state the result. First, for notation convenience let us get rid of all the tilde
above the equivariant parameters, and re-define the hypermultiplet masses (mf )4

f=1 as

mi = m−,i, m2+i = m+,i, i = 1, 2. (4.5)

Then we define

Ψ̃Z2
γ = z

−aγ+aγ̄+ε2
2ε2

+ ε1
ε2

(θ0+θq)
q
− (aγ−aγ̄ )2

4ε1ε2
+ ε1
ε2

(θ0+θq)2+θ0+θq− ε2
4ε1

× (1− q)−
ε1
ε2

(θ0+θq+θ1+θ∞)(θ0+θq+θ1−θ∞)−2θ0−θq−θ1− ε2
2ε1 ΨZ2,non-pert

γ ,

(4.6)

where we have used the dimensionless θ-parameters (2.6) for the hypermultiplet masses.
We have used the notation β̄ ∈ {1, 2} \ {β}. Then the non-perturbative Dyson-Schwinger
equation (4.2) implies that the modified partition function satisfies the following differential
equation

0 =
[
ε2

2∂
2
z − ε1ε2

(2θ0
z

+ 2θq
z − q

+ 2θ1
z − 1

)
∂z + ε1ε2

q(q− 1)
z(z − q)(z − 1)

∂

∂q

+ ε2
1

z(z − q)(z − 1)

{
z

(
θ0 + θq + θ1 + θ∞ + ε2

2ε1

)(
θ0 + θq + θ1 − θ∞ + ε2

2ε1

)
+ ε2
ε1z

(
θ0 + ε2

4ε1

)}]
Ψ̃Z2(a,m, ε1, ε2; q, z).

(4.7)

Note that the solutions Ψ̃Z2(a,m, ε1, ε2; q, z) lie in the domain 0 < |q| < |z| < 1.

4.1.2 Vortex string

Let us consider the A2-quiver gauge theory. The fundamental qq-characters of this theory
are

X1(x) = Y1(x+ ε) + q1
Y0(x)Y2(x+ ε)

Y1(x) + q1q2
Y0(x)Y3(x+ ε)

Y2(x)

X2(x) = Y2(x+ ε) + q2
Y1(x)Y3(x+ ε)

Y2(x) + q1q2
Y0(x− ε)Y3(x+ ε)

Y1(x− ε) .

(4.8)

The non-perturbative Dyson-Schwinger equations are the regularity conditions for their
expectation values:

0 =
[
x−n

] 〈
Xi(x)

〉
, i = 1, 2, n ≥ 1. (4.9)

Now we partially higgs the gauge group by imposing the constraints

a1,α = a0,α − δαγε1. (4.10)

As we have seen in section 3.1.2, the resulting theory is the U(2) gauge theory with four fun-
damental hypermultiplets coupled to a vortex string surface defect. The non-perturbative
Dyson-Schwinger equations (4.9) imply that the partition function of this theory satisfies
a differential equation in gauge couplings. We do not reproduce the derivation here, but
only state the result. First, let us re-define the hypermultiplet masses as

mα = a0,α, m2+α = a3,α − ε, α = 1, 2, (4.11)
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so that we have the masses (mf )4
f=1 for four fundamentals. We also modify the partition

function by

Ψ̃L
γ = z

−mγ+mγ̄+ε2
2ε2

+ ε1
ε2

(θ0+θq+θ1) (1− z−1
)2θ1 ε1ε2 +1

q
− (a1−a2)2

4ε1ε2
+ ε1
ε2

(θ0+θq)2+θ0+θq− ε2
4ε1

× (1− q)−
ε1
ε2

(θ0+θq+θ1+θ∞)(θ0+θq+θ1−θ∞)−2θ0−θq−θ1− ε2
2ε1 ΨL,non-pert

γ ,

(4.12)

where we have used the dimensionless θ-parameters (2.6). Then the modified partition
function satisfies

0 =
[
ε2

2∂
2
z − ε1ε2

(2θ0
z

+ 2θq
z − q

+ 2θ1
z − 1

)
∂z + ε1ε2

q(q− 1)
z(z − q)(z − 1)

∂

∂q

+ ε2
1

z(z − q)(z − 1)

{
z

(
θ0 + θq + θ1 + θ∞ + ε2

2ε1

)(
θ0 + θq + θ1 − θ∞ + ε2

2ε1

)
+ ε2
ε1z

(
θ0 + ε2

4ε1

)}]
Ψ̃L(a,m, ε1, ε2; q, z).

(4.13)

Note that the solutions Ψ̃L(a,m, ε1, ε2; q, z) lie in the domain 0 < |q| < 1 < |z|.
Similarly, we can start from the A2-quiver gauge theory with the constraints

a2,α = a3,α − ε− δαγε1, (4.14)

and make the re-definition

a0,α −→ −a0,α − ε
a1,α −→ −a1,α α = 1, 2.
a3,α −→ −a3,α + 2ε

(4.15)

Then we make a shift in Coulomb moduli and modify the partition function by

Ψ̃R
γ (a+δγε1) (4.16)

=
(
z

q

)−mγ+2−mγ̄+2
2ε2

+ ε1
ε2
θ0+ 1

2
(1−z)2θ1 ε1ε2 +1

q
−

(a1,γ−a1,γ̄+ε1)2

4ε1ε2
+ ε1
ε2

(θ0+θq+ 1
2)2+θ0+θq+ 1

2−
ε2
4ε1

×(1−q)−
ε1
ε2

((θ0+θq+θ1+θ∞)(θ0+θq+θ1−θ∞)+2θq+2θ1+1)−2θ0−3θq−3θ1−3− 5ε2
2ε1 ΨR,non-pert

γ (a+δγε1),

where δγ = (δα,γ)α=1,2. The modified partition function can be shown to satisfy the
differential equation (4.13). Note that the solutions Ψ̃R

γ produced in this way are in the
domain 0 < |z| < |q| < 1.

4.2 Hamilton-Jacobi equation for Painlevé VI

The non-perturbative Dyson-Schwinger equations simplify in some limits in the space of pa-
rameters. In particular, for our study of isomonodromic deformations, we consider asymp-
totics of the surface defect expectation value in the NS limit ε2 → 0, as well as the limit
of the differential equation it obeys. The result is the Hamilton-Jacobi formulation of the
isomonodromic problem, as we recall now. Note that this observation was originally made
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in [12], albeit in the context of the Liouville conformal field theory which is related to
our discussion through the identification of gauge theory partition functions and Liouville
conformal blocks [1]. We emphasize that the non-perturbative Dyson-Schwinger equation
allows us to re-establish the result of [12] in purely gauge theoretical context, without
resorting to the CFT arguments (see also [25]).

We have shown that the surface defect partition function satisfies

0 =
[
ε2

2∂
2
z − ε1ε2

(2θ0
z

+ 2θq
z − q

+ 2θ1
z − 1

)
∂z + ε1ε2

q(q− 1)
z(z − q)(z − 1)

∂

∂q

+ ε2
1

z(z − q)(z − 1)

{
z

(
θ0 + θq + θ1 + θ∞ + ε2

2ε1

)(
θ0 + θq + θ1 − θ∞ + ε2

2ε1

)
+ ε2
ε1z

(
θ0 + ε2

4ε1

)}]
Ψ̃γ(a,m, ε1, ε2; q, z)

(4.17)

In the NS limit ε2 → 0, the partition function shows the following asymptotic behavior6

Ψ̃γ(a,m, ε1, ε2; q, z) = exp
(
ε1
ε2
S̃γ(a,m, ε1; q, z) +O(1)

)
. (4.18)

There is a choice of the vacuum γ ∈ {1, 2} of the gauged linear sigma model on the z2-plane,
which yield inequivalent asymptotics S̃γ . The analysis below on the asymptotics S̃ applies
for both choices of γ, so we omit the subscript from now on and consider the availability of
two choices is always understood. Note that S̃ is dimensionless, so that we can also write
S̃(a,m, ε1; q, z) = S̃(α,θ; q, z) by using the dimensionless parameters (2.6). The crucial
observation made in [12] is that when the limit ε2 → 0 is applied to (4.17) it reduces to
the Hamilton-Jacobi equation for Painlevé VI

H+
(
z,
∂S̃

∂z
; q
)

+ ∂S̃

∂q
= 0, (4.19)

where the Hamiltonian is given by

H+(z, p; q) = z(z − q)(z − 1)
q(q− 1) p

(
p− 2θ0

z
− 2θq
z − q

− 2θ1
z − 1

)
+ z(θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞)

q(q− 1) .

(4.20)

It is crucial to note that even though the equation of motion for this Hamiltonian implies
z(q) obeys Painlevé VI, it is not exactly w(q) that we have seen in section 2.1. By directly
comparing their Hamiltonians H+(z, p; q) (2.3) and H(w, pw; q) (4.20), we notice that there
is following half-integer shift in θ-parameters from w(q) to z(q),

θq −→ θq + 1
2

θ∞ −→ θ∞ −
1
2 .

(4.21)

6Here, we assume that the Coulomb moduli is generic. It would be interesting to study special locus of
Coulomb moduli for which the surface defect partition function splits into parts, each of which defines a
twisted superpotential as its asymptotics [31], in its correspondence to the Riemann-Hilbert problem.
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This simple shift will actually play an important role in section 7.2 in deriving the GIL
relation and exactly identifying the monodromies of the associated Fuchsian system in
terms of the α and β parameters.

4.3 Generating function of Riemann-Hilbert symplectomorphism

In the previous section, we have seen that the asymptotics S̃(α,θ, z; q) of the surface defect
partition function in the NS limit ε2 → 0 is identified with the Hamilton-Jacobi potential
for the Painlevé VI. In this section, we will verify that S̃(α,θ, z; q) can also be viewed as the
generating function of the Riemann-Hilbert map, which is a symplectomorphism from the
moduli space of sl(2) Fuchsian system on a Riemann surface to the space of representations
of its fundamental group into SL(2) given by the monodromies.

We define the Riemann-Hilbert map

RH : Eq
(
θ0, θq + 1

2 , θ1, θ∞ −
1
2

)
−→Mq

(
θ0, θq + 1

2 , θ1, θ∞ −
1
2

)
(z, p) 7−→ (α, β)

(4.22)

by

p = ∂S̃

∂z
, β = ∂S̃

∂α
. (4.23)

The first equation implicitly determines α in terms of z and p, and then the second equation
determines β in terms of z and p. We can show that (α, β) provides a local coordinate
system on the monodromy space Mq

(
θ0, θq + 1

2 , θ1, θ∞ − 1
2

)
as follows. By taking the

q-derivatives of these equations, we get

dp(q)
dq

=
(
∂

∂z

∂S̃

∂q

)∣∣∣∣∣
z=z(q)

+ ∂2S̃

∂z2

∣∣∣∣∣
z=z(q)

dz(q)
dq

+ ∂2S̃

∂α∂z

∣∣∣∣∣
z=z(q)

dα

dq

= − ∂H+(z, p; q)
∂z

∣∣∣∣∣z=z(q)
p=p(q)

+ ∂2S̃

∂α∂z

∣∣∣∣∣
z=z(q)

dα

dq
,

(4.24)

and

dβ

dq
=
(
∂

∂α

∂S̃

∂q

)∣∣∣∣∣
z=z(q)

+ ∂2S̃

∂α∂z

∣∣∣∣∣
z=z(q)

dz(q)
dq

+ ∂2S̃

∂α2

∣∣∣∣∣
z=z(q)

dα

dq

= ∂2S̃

∂α∂z

∣∣∣∣∣
z=z(q)

−∂H+(z, p; q)
∂p

∣∣∣∣∣z=z(q)
p=p(q)

+ dz(q)
dq

+ ∂2S̃

∂α2

∣∣∣∣∣
z=z(q)

dα

dq
.

(4.25)

These two equations imply α and β are constants if and only if (z(q), p(q)) is a solu-
tion to the Hamiltonian equations of motion, namely, an isomonodromic flow. There-
fore, (α, β) indeed parametrizes the monodromies of the sl(2) Fuchsian system on the
four-punctured sphere, and forms a local coordinate system on the monodromy space
Mq

(
θ0, θq + 1

2 , θ1, θ∞ − 1
2

)
. Also it is straightforward to show that the map defined in

this way preserves the symplectic structure. In this sense, S̃ is the generating function of
the Riemann-Hilbert map (4.22).
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It is not clear yet whether α and β are precisely the NRS coordinates on
Mq

(
θ0, θq + 1

2 , θ1, θ∞ − 1
2

)
, which parametrize the trace invariants of the monodromies by

TrMA = −2 cos 2πα (4.26)

and

TrMB = (− cos 2πθ∞ + cos 2πθ1) (cos 2πθ0 − cos 2πθq)
2 sin2 πα

− (cos 2πθ∞ + cos 2πθ1) (cos 2πθ0 + cos 2πθq)
2 cos2 πα

+
∑
±

4
∏
ε=± sin π(∓α− θq + εθ0) sin π(∓α− θ1 + εθ∞)

sin2 2πα
e±β .

(4.27)

Be aware of the half-integer shifts in the θ-parameters compared to (2.40) and (2.41).
To verify that α = a

ε1
and β = ∂S̃

∂α are indeed the NRS Darboux coordinates, we need an
explicit construction of the flat section of the Fuchsian system in the gauge theory context,
from which we can compute the monodromies along the loops in π1

(
P1 \ {0, q, 1,∞}

)
and

express them in terms of α = a
ε1

and β = ∂S̃
∂α . We will perform such a construction in the

next section.

5 Intersecting surface defects and monodromy data

Recall that our goal is to describe the isomonodromic tau function in gauge theoretical
language. Being the constants of isomonodromic deformations, the monodromy data of
the Fuchsian system explicitly appear in the expression of the tau function. Hence, it is
important to know how such monodromy data are encoded in gauge theoretical terms.

In turn, we first need to construct the horizontal section of the Fuchsian system, as
well as the Hamilton-Jacobi action of the previous section, in gauge theoretical terms. The
relevant gauge theory setting turns out to be the intersecting surface defects that we have
constructed in section 3.2.

In this section, we study the non-perturbative Dyson-Schwinger equations for the in-
tersecting surface defect partition function and their implications. In particular, it is shown
that the partition function satisfies a differential equation which reduces to the Fuchsian
differential equation associated to the Fuchsian system in the NS limit ε2 → 0. Next, we
study how the intersecting surface defects partition functions analytically continue to each
other. The monodromy data of the Fuchsian system are finally obtained in gauge theoret-
ical terms by concaternating such analytic continuations and taking the limit ε2 → 0.

5.1 Intersecting surface defects and non-perturbative Dyson-Schwinger equa-
tions

Recall that we constructed the intersecting surface defects by starting from the A3-quiver
gauge theory and then partially Higgsing the gauge group. The fundamental qq-characters
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for the A3-quiver gauge theory read as follows:

X1(x) =Y1(x+ε)+q1
Y0(x)Y2(x+ε)

Y1(x) +q1q2
Y0(x)Y3(x+ε)

Y2(x) +q1q2q3
Y0(x)Y4(x+ε)

Y3(x)

X2(x) =Y2(x+ε)+q2
Y1(x)Y3(x+ε)

Y2(x) +q1q2
Y0(x−ε)Y3(x+ε)

Y1(x−ε) +q2q3
Y1(x)Y4(x+ε)

Y3(x)

+q1q2q3
Y0(x−ε)Y2(x)Y4(x+ε)

Y1(x−ε)Y3(x) +q1q
2
2q3

Y0(x−ε)Y4(x+ε)
Y2(x−ε) (5.1)

X3(x) =Y3(x+ε)+q3
Y2(x)Y4(x+ε)

Y3(x) +q2q3
Y1(x−ε)Y4(x+ε)

Y2(x−ε) +q1q2q3
Y0(x−2ε)Y4(x+ε)

Y1(x−2ε) .

The non-perturbative Dyson-Schwinger equations follow from the regularity of their expec-
tation values. More precisely, we have[

x−n
] 〈

Xi(x)
〉

= 0, i = 1, 2, 3, n ≥ 1. (5.2)

Now to construct the intersecting surface defects, we specialize some of the Coulomb moduli
in the A3-quiver gauge theory to initiate partial higging, as we have seen in section 3.2,

a1,α = a0,α − δα,hε1

a3,α = a4,α − ε− δα,lε2.
(5.3)

We have seen that these constraints partially higgs the gauge group and produce intersect-
ing surface defects coupled to the bulk U(2) gauge theory with four hypermultiplets. The
intersecting surface defect partition function Υ0<|y|<|q|<1<|z|

l,h (3.48) obtained in this way
converges in the domain 0 < |y| < |q| < 1 < |z|. Now with these constraints imposed, we
have simplified Y-observables,

Y1(x) = Y0(x)x− a0,h + ε1 − k1ε2
x− a0,h − k1ε2

Y3(x) = Y4(x+ ε) x− a3,l − k3ε1
x− a3,l − ε2 − k3ε1

.

(5.4)

Substituting these to the fundamental qq-characters (5.1), we can obtain non-trivial iden-
tities satisfied by the partition function from the non-perturbative Dyson-Schwinger equa-
tions (5.2). More precisely, the intersecting partition function is a particular specialization
of the case considered in [23, 24, 31], where it was proven that the surface defect partition
function solves the null-vector decoupling equation for the corresponding degenerate Liou-
ville conformal block [53]. This differential equation was investigated in the conformal field
theory point of view in [33], but it is important not to resort to any CFT argument in our
approach. We do not reproduce the derivation here, only the result is stated.

First, let us re-define the intersecting surface defect partition function with the follow-
ing perturbative prefactors:

Υ̂0<|y|<|q|<1<|z|
l,h =

3∏
i=0

zLii
∏

0≤i<j≤3

(
1− zj

zi

)Tij
Υ0<|y|<|q|<1<|z|
l,h , (5.5)
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where z0 = z, z1 = 1, z2 = q, z3 = y, and

Li≡
(ai+1,1−ai+1,2)2−(ai,1−ai,2)2

4ε1ε2
+ (āi− āi+1 +ε)(āi− āi+1)

ε1ε2
, i= 0,1,2,3

Tij = 2(āj− āj+1 +ε)(āi− āi+1)
ε1ε2

, i, j= 0,1,2,3.
(5.6)

With the higgsing constraint (5.3), the prefactors simply so we can write

Υ̂0<|y|<|q|<1<|z|
l,h =z

−a0,h+a0,h̄+2ε1+ε2
2ε2

(
y

q

)a4,l−a4,l̄+ε
2ε1

q
−∆0−∆q+

ε2−(a2,1−a2,2)2

4ε1ε2
+ 2ε1+3ε2

4ε1 (5.7)

×
(

1− 1
z

) 2ā0−2ā2+ε1+2ε2
2ε2

(
1− q

z

) 2ā0−2ā4+4ε1+5ε2
2ε2

(
1− y

z

)− 1
2
(1−y)

−2ā0+2ā2+ε1
2ε1

×(1−q)
(2ā0−2ā2−ε1)(2ā2−2ā4+4ε1+5ε2)

2ε1ε2

(
1− y

q

)−2ā2+2ā4−2ε1−3ε2
2ε1 Υ0<|y|<|q|<1<|z|

l,h .

Here, we used the notation āi = ai,1+ai,2
2 and also defined

∆0 = ε2 − (a4,1 − a4,2)2

4ε1ε2
, ∆∞ = ε2 − (a0,1 − a0,2)2

4ε1ε2

∆q = −(2ā2 − 2ā4 + 2ε1 + 3ε2)(2ā2 − 2ā4 + 4ε1 + 5ε2)
4ε1ε2

∆1 = −(2ā0 − 2ā2 − ε1)(2ā0 − 2ā2 + ε1 + 2ε2)
4ε1ε2

∆L = −1
2 −

3ε2
4ε1

, ∆H = −1
2 −

3ε1
4ε2

.

(5.8)

Then the modified partition function Υ̂0<|y|<|q|<1<|z|
l,h satisfies the following differential equa-

tions

0 =
[
ε2
ε1
∂2
z −

(1
z

+ 1
z − 1

)
∂z + q(q− 1)

z(z − q)(z − 1)∂q + y(y − 1)
z(z − y)(z − 1)∂y + (5.9a)

+ ∆∞ −∆0 −∆q −∆1 −∆L −∆H

z(z − 1) +

+ ∆0
z2 + ∆q

(z − q)2 + ∆1
(z − 1)2 + ∆L

(z − y)2

]
Υ̂0<|y|<|q|<1<|z|
l,h , (5.9b)

0 =
[
ε1
ε2
∂2
y −

(1
y

+ 1
y − 1

)
∂y + q(q− 1)

y(y − q)(y − 1)∂q + z(z − 1)
y(y − z)(y − 1)∂z+

+ ∆∞ −∆0 −∆q −∆1 −∆L −∆H

y(y − 1) + (5.9c)

+ ∆0
y2 + ∆q

(y − q)2 + ∆1
(y − 1)2 + ∆H

(y − z)2

]
Υ̂0<|y|<|q|<1<|z|
l,h . (5.9d)

In accordance with the correspondence proposed in [1] these equations are precisely the
BPZ equations [53] satisfied by the Liouville conformal block with the insertion of two
degenerate fields at y and z. Since we are not resorting to any CFT argument throughout
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the paper, we shall not describe here the CFT context of these equations in detail. Note
that the equations do not have explicit dependence on the choice of intersecting surface
defects l and h, so that we have four solutions in total for each l, h ∈ {1, 2}.

Next, let us consider the other extremal domain, 0 < |z| < |q| < 1 < |y|. As we
have seen in section 3.2, we construct the intersecting surface defect partition function
Υ0<|z|<|q|<1<|y|
l,h in this domain by the higgsing

a1,α = a0,α − δα,lε2

a3,α = a4,α − ε− δα,hε1,
(5.10)

followed by the re-definition of parameters,

a0,α −→ −a0,α − ε
a2,α −→ −a2,α

a4,α −→ −a4,α + 3ε.
(5.11)

Then the regularity of the expectation values of the qq-characters (5.1) implies the following
differential equation

0 =
[
ε2

2∂
2
z − ε1ε2

(1
z

+ 1
z − 1

)
∂z + ε1ε2

q(q− 1)
z(z − q)(z − 1)∂q + ε1ε2

y(y − 1)
z(z − y)(z − 1)∂y

+ ε1ε2

(
∆0
z2 +

∆′q
(z − q)2 + ∆′1

(z − 1)2 + ∆L

(z − y)2 +
∆∞ −∆0 −∆′q −∆′1 −∆L −∆H

z(z − 1)

)]

× Υ̂0<|z|<|q|<1<|y|
l,h , (5.12a)

0 =
[
ε2

1∂
2
y − ε1ε2

(1
y

+ 1
y − 1

)
∂y + ε1ε2

q(q− 1)
y(y − q)(y − 1)∂q + ε1ε2

z(z − 1)
y(y − z)(y − 1)∂z

+ ε1ε2

(
∆0
y2 +

∆′q
(y − q)2 + ∆′1

(y − 1)2 + ∆H

(y − z)2 +
∆∞ −∆0 −∆′q −∆′1 −∆L −∆H

y(y − 1)

)]

× Υ̂0<|z|<|q|<1<|y|
l,h , (5.12b)

satisfied by the modified partition function

Υ̂0<|z|<|q|<1<|y|
l,h = y

a0,l−a0,l̄+ε1+2ε2
2ε1

(
z

q

)−a4,h+a4,h̄+ε
2ε2

q
−∆′0−∆′q+

ε2−(a2,1−a2,2)2

4ε1ε2
+ 3ε1+2ε2

4ε2 (5.13)

×
(

1− 1
y

)−2ā0+2ā2−ε2
2ε1

(
1− q

y

)−2ā0+2ā4−3ε1−4ε2
2ε1

(
1− z

y

)− 1
2

(1− z)
2ā0−2ā2+2ε1+3ε2

2ε2

× (1− q)
(−2ā0+2ā2−2ε1−3ε2)(−2ā2+2ā4−ε1−2ε2)

2ε1ε2

(
1− z

q

) 2ā2−2ā4+3ε1+4ε2
2ε2 Υ0<|z|<|q|<1<|y|

l,h ,

where we defined

∆′q = −(2ā2 − 2ā4 + ε1 + 2ε2)(2ā2 − 2ā4 + 3ε1 + 4ε2)
4ε1ε2)

∆′1 = −(2ā0 − 2ā2 + ε2)(2ā0 − 2ā2 + 2ε1 + 3ε2)
4ε1ε2

.

(5.14)
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Note that the parameters (5.8) become identical to (5.14) after the shift of the Coulomb
moduli,

a2,α −→ a2,α − δα,lε2 − δα,hε1. (5.15)

Hence, the differential equations (5.9) become (5.12) after this shift. The intersecting
surface defect partition functions Υ̂0<|y|<|q|<1<|z|

l,h and Υ̂0<|z|<|q|<1<|y|
l,h define solutions to

these equations in the respective domain, up to this shift of the Coulomb moduli.

5.2 Hamilton-Jacobi equation and Fuchsian differential equation

In the previous section, we expressed the differential equations satisfied by the intersecting
surface defect partition functions in the form of the BPZ equation for the corresponding
degenerate Liouville conformal block. For the purpose of the present work, however, it is
useful to properly re-define the partition function with extra multiplicative prefactor and re-
write the differential equations accordingly. In particular, we show in this section that the
NS limit ε2 → 0 of those differential equations provide the Hamilton-Jacobi equation and
the Fuchsian differential equation associated to the isomonodromy problem in section 2.
We modify the intersecting surface defect partition function to set these equations into
the form that we prefer. We emphasize that the modification is non-essential and merely
conventional.

We modify the partition function by the following re-definition,

Υ̃l,h(a2,a0,a4,ε1,ε2;q,z,y)

=
(
y(y−q)(y−1)

y−z

) 1
2
z
−
a4,1−a4,2+ε1

2ε2 (1−z)−
2ā0−2ā2−ε1

2ε2 (z−q)−
ā4−ā2−2ε

ε2

×q
−2(a4,1−a4,2)(ā4−ā2−2ε1−ε2)+2ε1(ā4−ā2−2ε)−ε22

4ε1ε2

×(1−q)
2(a4,1−ā2−2ε)2+(a0,2−ā2)(a4,1−a4,2)+(a0,1−ā2)(2a0,2−2ā2+a4,1−a4,2)+2ε1(ā4−ā2−2ε)

2ε1ε2

×(1−q)
2(2ā0+2a4,1−a4,2−4ā2−2ε)−ε1

2ε1
+ ε2
ε1

×Υ̂l,h(a2,a0,a4,ε1,ε2;q,z,y). (5.16)

Also, let us re-define the hypermultiplet masses so that they only appear as fundamentals:

mα := a0,α, mα+2 := a4,α − 2ε, α = 1, 2, (5.17)

while we omit the subscript of the Coulomb moduli:

aα := a2,α, α = 1, 2. (5.18)
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Then the differential equations (5.9) are modified accordingly:

0 =
[
ε2

2∂
2
z −

(
ε1ε2

(2θ0
z

+ 2θq
z−q

+ 2θ1
z−1

)
− ε2

2
y−z

)
∂z+ε1ε2

θq+ 1
2 + ε2

4ε1
(z−q)2

+ε1ε2
y(y−1)

z(z−y)(z−1)

(
∂y+ θ0

y
+
θq+ 1

2
y−q

+ θ1
y−1

)
+ε1ε2

q(q−1)
z(z−q)(z−1)

(
∂

∂q
−
θq+ 1

2
y−q

)

+ ε2
1

z(z−q)(z−1)

{
z (θ0 +θq+θ1 +θ∞)(θ0 +θq+θ1−θ∞)+ zε2

ε1

(
2θ0 +θq+2θ1−

1
2

)

− 3ε2
2

4ε2
1
z+ qε2

zε1

(
θ0 + ε2

4ε1

)}]
Υ̃(a,m,ε1,ε2;q,z,y) (5.19)

and

0=
[
ε2

1∂
2
y+ε2

1

(1
y

+ 1
y−q

+ 1
y−1−

1
y−z

− ε2
ε1

(1
y

+ 1
y−1

))
∂y

−ε2
1

(
θ2

0−
ε22
4ε21

y2 +

(
θq+ 1

2

)2
− ε22

4ε21
(y−q)2

+
θ1
(
θ1+ ε2

ε1

)
(y−1)2 +

θ2
∞−θ2

0−
(
θq+ 1

2

)2
−θ2

1− 1
4 + ε2

ε1
(θ1−1)+ ε22

2ε21
y(y−1)

)

+ε2
1

z(z−1)
y(y−z)(y−1)

(
ε2
ε1
∂z−

θ0
z
−
θq+ 1

2
z−q

− θ1
z−1

)
(5.20)

+ε2
1

q(q−1)
y(y−q)(y−1)

(
ε2
ε1

∂

∂q
+
θq+ 1

2
z−q

−
θq+ 1

2−2θ0θq−q
(
(θ0+θ1)2+(θq+θ∞+1)(θq−θ∞+1)

)
q(q−1)

+ ε2
ε1

θ0+q
(
2θ0+2θ1+θq− 1

2

)
q(q−1) + ε2

2
ε2

1

1+3q
4q(q−1)

)]
Υ̃(a,m,ε1,ε2;q,z,y),

where we have used the dimensionless θ-parameters (2.6).
Now, let us consider the NS limit ε2 → 0 of these equations. The asymptotics of the

partition function is governed by the twisted superpotential S̃h, which received contribution
only from the defect on the z2-plane, while the regular part χl gets contribution only from
the defect on the z1-plane. Here, l, h ∈ {1, 2} enumerates the choices of the surface defects
on the z1-plane and the z2-plane, respectively. More explicitly, we can write

Υ̃l,h(a,m, ε1, ε2; q, z, y) = exp
(
ε1
ε2
S̃h(a,m, ε1; q, z)

)
(χl(a,m, ε1; q, y) +O(ε2)) . (5.21)

Note that the presence of the additional surface defect on the z1-plane does not affect the
singular part S̃(a,m, ε1; q, z), so that it is identical to the one (4.18) which appears in the
asymptotics of the partition function with a single surface defect on the z2-plane. However,
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the regular part is affected by the presence of the additional defect on the z1-plane and
provides a non-trivial function χ(a,m, ε1; q, y).

Taking the NS limit ε2 → 0 to (5.19), we recover the Hamilton-Jacobi equation (4.19)
that we have seen in section 4.2,

H+
(
z,
∂S̃

∂z
; q
)

+ ∂S̃

∂q
= 0, (5.22)

where the Hamiltonian is given by

H+(z, p; q) = z(z − q)(z − 1)
q(q− 1) p

(
p− 2θ0

z
− 2θq
z − q

− 2θ1
z − 1

)
+ z(θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞)

q(q− 1) .

(5.23)

This is precisely the Painlevé VI Hamiltonian (4.20) that we obtained in section 4.2 from
a single surface defect on the z2-plane. We emphasize again that this Hamiltonian defines
an isomonodromic flow z(q) which is different from the isomonodromic flow w(q) defined
by H(w, pw; q) in (2.39), since there is the half-integer shift (5.60) in θ-parameters in
H+(z, p; q) compared to H(w, pw; q).

On the other hand, by taking the NS limit ε2 → 0 to (5.20) we get

0 =
[
∂2
y +

(1
y

+ 1
y − q

+ 1
y − 1 −

1
y − z

)
∂y

− θ2
0
y2 −

(
θq + 1

2

)2

(y − q)2 −
θ2

1
(y − 1)2 −

θ2
∞ − θ2

0 −
(
θq + 1

2

)2
− θ2

1 − 1
4

y(y − 1)

+ z(z − 1)
y(y − z)(y − 1)

(
∂S̃

∂z
− θ0

z
−
θq + 1

2
z − q

− θ1
z − 1

)
(5.24)

− q(q− 1)
y(y − q)(y − 1)

(
− ∂S̃

∂q
−
θq + 1

2
z − q

+
θq + 1

2 − 2θ0θq − q
(
(θ0 + θ1)2 + (θq + θ∞ + 1)(θq − θ∞ + 1)

)
q(q− 1)

)]
χ(y),
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or, recalling that p = ∂S̃
∂z and H+

(
z, ∂S̃∂z ; q

)
= −∂S̃

∂q ,

0 =
[
∂2
y +

(1
y

+ 1
y − q

+ 1
y − 1 −

1
y − z

)
∂y

− θ2
0
y2 −

(
θq + 1

2

)2

(y − q)2 −
θ2

1
(y − 1)2 −

θ2
∞ − θ2

0 −
(
θq + 1

2

)2
− θ2

1 − 1
4

y(y − 1)

+ z(z − 1)
y(y − z)(y − 1)

(
p− θ0

z
−
θq + 1

2
z − q

− θ1
z − 1

)
(5.25)

− q(q− 1)
y(y − q)(y − 1)

(
H+(z, p; q)−

θq + 1
2

z − q

+
θq + 1

2 − 2θ0θq − q
(
(θ0 + θ1)2 + (θq + θ∞ + 1)(θq − θ∞ + 1)

)
q(q− 1)

)]
χ(y).

This Fuchsian differential equation is almost identical to (2.38), which we directly got from
the sl(2) Fuchsian system on the four-punctured sphere with the local monodromies around
the punctures fixed by the θ-parameters, but not exactly. Just as the Painlevé VI Hamil-
tonian (5.23) has shifts (5.60) in θ-parameters compared to (2.39), the equations (2.38)
and (5.25) differ by the same half-integer shift in θ-parameters (5.60). Hence the solutions
to these equations also define distinct monodromies along the loops in π1(P1 \{0, q, 1,∞}).
More precisely, the monodromy data of the Fuchsian differential equation (5.25) takes its
value in Mq

(
θ0, θq + 1

2 , θ1, θ∞ − 1
2

)
, while the monodromy data of (2.38) takes its value in

Mq(θ) = Mq (θ0, θq, θ1, θ∞).

5.3 Analytic continuation of the intersecting surface defects expectation value

In the previous section, we have seen that the expectation value of the intersecting surface
defects has a regular part in the NS limit ε2 → 0, which solves the second-order Fuchsian
differential equation associated to the sl(2) Fuchsian system on a Riemann surface. Hence
we can obtain the monodromy of the solutions to this equation by first computing the
monodromy of the intersecting surface defect partition functions along given loops in the
fundamental group and then taking the limit ε2 → 0. This is analogous to the procedure
in [11] of computing the monodromy data of opers.

The multi-valuedness of the surface defect expectation value is worth some discussion.
The “classical” monodromy, under the simple transport z 7→ e2πiz, e.g. in the domain
0 < |z| < |q| < 1 < |y|, is due to the way we chose to normalize the surface defect operator
in the Ω-background. A typical normalization in the equivariant gauged A-model on the Ω-
deformed disk (or cigar) contains the factor ∝ zσ/~, where ~ is the Ω-deformation parameter
corresponding to the rotational symmetry of the cigar/disk, and σ is the scalar in the vector
multiplet corresponding to some gauge U(1)-symmetry, and z is the exponentiated complex
FI parameter corresponding to that symmetry. With boundary conditions at infinity (or the
boundary of the disk) selecting a specific fixed point of the global symmetry action on the
target space, the value of σ becomes fixed in terms of the twisted masses — the equivariant
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parameters of that global symmetry. In terms of the non-linear sigma model data, the role
of the σ is played by the value at the fixed point of the function, which completes the closed
two-form, representing the Kähler class, to the equivariantly closed class of degree 2.

To enable the computation of monodromy we need to understand how the expectation
values of the intersecting surface defects analytically continue across the different conver-
gence domains. In the S-class theory associated with the Riemann surface C the Kähler
moduli of the sigma models living on the surface defect belongs to C [30]. Strictly speaking,
this statement has not been derived in quantum field theory. Our analysis is probably the
best one hope for in the case of a Lagrangian S-class theory. We shall see that, indeed,
for the A1-type theory, the Kähler moduli of the surface defects belong to the 4-punctured
sphere C = P1\{0, q, 1,∞}. The Riemann surface C is divided into several convergence
domains for the partition function, so that within each domain the partition function has
an instanton expansion, both in the bulk gauge coupling and in the exponentiated com-
plex FI parameters. The complexified FI parameters of both surface defects, the one on
the z1-plane and the one on the z2-plane, can be adiabatically transported along C. The
corresponding non-abelian Berry phase is what we are after.

5.3.1 Adiabatic z-transport of the z1 = 0 surface defect

We start from the intersecting surface defect partition function in the domain 0 < |y| <
|q| < 1 < |z|. Here, z and y are the complexified Kähler parameters of the effective two
dimensional sigma models on the z2-plane and the z1-plane, respectively. As we have seen
in the section 3.2, the partition function can be viewed as the two-point function of the
two surface defect observables O1 and O2. Then we can write out O2 to obtain

Υ0<|y|<|q|<1<|z|
l,h

=
∑
λ

q|λ|E [TA1 [λ]]O0<|y|<|q|
1,l [λ]

×
∞∑
k=0

z−k
N∏
α=1

Γ
(
k + 1 + a0,h−a2,α

ε2

)
Γ
(
1 + a0,h−a0,α

ε2

)
Γ
(
1 + a0,h−a2,α

ε2

)
Γ
(
k + 1 + a0,h−a0,α

ε2

) ∏
�∈λ

a0,h + kε2 − c� − ε1
a0,h + kε2 − c�

=
∑
λ

q|λ|E [TA1 [λ]]O0<|y|<|q|
1,l [λ]

×
∞∑
k=0

z−k
N∏
α=1

Γ
(
k + 1− λ(α)

1 + a0,h−a2,α
ε2

)
Γ
(
1 + a0,h−a0,α

ε2

)
Γ
(
1 + a0,h−a2,α

ε2

)
Γ
(
k + 1 + a0,h−a0,α

ε2

)
×
λ

(α)
1∏
j=1

a0,h − a2,α − λ(α)t
j ε1 + (k − j + 1)ε2

ε2
.

(5.26)
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R+R−

C

a2,1−a0,h
ε2

+ λ
(1)
1 − 1

a2,N−a0,h
ε1

+ λ
(N)
1 − 1

0 1 2

Figure 1. The contour C on the x−a0,h

ε2
-plane.

We can represent this partition function by the following contour integral,

Υ0<|y|<|q|<1<|z|
l,h

=−
N∏
α=1

Γ
(
1+ a0,h−a0,α

ε2

)
Γ
(
1+ a0,h−a2,α

ε2

)(−z)
a0,h
ε2
∑
λ

q|λ|E [TA1 [λ]]O0<|y|<|q|
1,l [λ] (5.27)

×
∫
C
dx(−z)−

x
ε2

Γ
(
−x−a0,h

ε2

)∏N
α=1Γ

(
1−λ(α)

1 + x−a2,α
ε2

)
∏
α 6=hΓ

(
1+ x−a0,α

ε2

) N∏
α=1

λ
(α)
1∏
j=1

x−a2,α−λ(α)t
j ε1−(j−1)ε2

ε2
,

where the contour C is chosen as in figure 1. The series expansion (5.26) is recovered
once we add to the contour a semicircle R+ closing to the right. It can be shown, for
|z| > 1, that the integral along the semicircle goes to zero as the radius goes to infinity.
Then we just pick up the residues from the simple poles on the right, recovering the series
expansion (5.26) that we started with.

Now, let us adiabatically move z while keeping y fixed to get to the domain |q| < |z| < 1.
Then it can be shown that the integral along the semicircle R− on the left now converges
to zero, so that we can close the contour in the opposite way. Then we pick up the residues

– 36 –



J
H
E
P
1
2
(
2
0
2
0
)
0
0
6

from the simple poles on the left to obtain

Υ0<|y|<|q|<1<|z|
l,h =

N∑
h′=1

∏
γ 6=h

Γ
(
1 + a0,h−a0,γ

ε2

)
Γ
(
a2,h′−a0,γ

ε2

)
×
∏
α 6=h′

Γ
(
a2,h′−a2,α

ε2

)
Γ
(
1 + a0,h−a2,α

ε2

)z(−z)
a0,h−a2,h′

ε2 Υ0<|y|<|q|<|z|<1
l,h′ ,

(5.28)

where we defined the instanton part of the intersecting surface defect partition function in
the domain 0 < |y| < |q| < |z| < 1 by

Υ0<|y|<|q|<|z|<1
l,h′ =

∑
λ

q|λ|E[TA1 [λ]]O0<|y|<|q|
1,l [λ]O|q|<|z|<1

2,h′ , (5.29)

where we defined the surface defect observable

O
|q|<|z|<1
2,h′ =

∞∑
k=0

zk−λ
(h′)
1

(−1)k

k!

×
∏
α 6=h′

Γ
(
−k + λ

(h′)
1 − λ(α)

1 + a2,h′−a2,α
ε2

)
Γ
(
a2,h′−a2,α

ε2

) N∏
δ=1

Γ
(
a2,h′−a0,δ

ε2

)
Γ
(
−k + λ

(h′)
1 + a2,h′−a0,δ

ε2

)
×

N∏
δ=1

λ
(δ)
1∏
j=1

a2,h′ − a2,δ +
(
λ

(h′)
1 − k − j

)
ε2 − λ(δ)t

j ε1

ε2
. (5.30)

We can also appropriately define the modified partition function Υ0<|y|<|q|<|z|<1
l,h by

Υ̂0<|y|<|q|<|z|<1
l,h

= z
−a2,h+a2,h̄+ε

2ε2

(
y

q

)a4,l−a4,l̄+ε
2ε1

q
−∆0−∆q+

ε2−(a2,1−a2,2)2

4ε1ε2
+ 2ε1+3ε2

4ε1

× (1− z)
2ā0−2ā2+ε1+2ε2

2ε2

(
1− q

z

) 2ā2−2ā4+4ε1+5ε2
2ε2

(
1− y

z

)− 1
2

(1− y)
−2ā0+2ā2+ε1

2ε1

× (1− q)
(2ā0−2ā2−ε1)(2ā2−2ā4+4ε1+5ε2)

2ε1ε2

(
1− y

q

)−2ā2+2ā4−2ε1−3ε2
2ε1 Υ0<|y|<|q|<|z|<1

l,h ,

(5.31)

so that

Υ̂0<|y|<|q|<1<|z|
l,h =

N∑
h′=1

∏
γ 6=h

Γ
(
1 + a0,h−a0,γ

ε2

)
Γ
(
a2,h′−a0,γ

ε2

) ∏
α 6=h′

Γ
(
a2,h′−a2,α

ε2

)
Γ
(
1 + a0,h−a2,α

ε2

)Υ̂0<|y|<|q|<|z|<1
l,h′ . (5.32)

It is immediate that Υ̂0<|y|<|q|<|z|<1
l,h would solve differential equations in gauge couplings

satisfied by Υ̂0<|y|<|q|<1<|z|
l,h . In the case of N = 2, these differential equations are (5.19)

and (5.20). The above formula is nothing but the connection formula for the analytic
continuation of solutions to these differential equations. Let us define the connection matrix

(
C(2)
∞

)
hh′

=
∏
γ 6=h

Γ
(
1 + a0,h−a0,γ

ε2

)
Γ
(
a2,h′−a0,γ

ε2

) ∏
α 6=h′

Γ
(
a2,h′−a2,α

ε2

)
Γ
(
1 + a0,h−a2,α

ε2

) , (5.33)
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where the superscript (2) indicates that it is relevant to the adiabatic flow of the surface
defect on the z2-plane. Then the above connection formula can be written simply as

Υ̂0<|y|<|q|<1<|z|
l,h =

N∑
h′=1

(
C(2)
∞

)
hh′

Υ̂0<|y|<|q|<|z|<1
l,h′ . (5.34)

Next, we can initiate an adiabatic flow of z starting from the domain 0 < |z| < |q| <
1 < |y|. We have the intersecting surface defect partition function Υ0<|z|<|q|<1<|y| lying in
this domain. We may adiabatically flow z to the domain 0 < |q| < |z| < 1 < |y|. By a
procedure similar to the one described above, we get the connection formula

Υ0<|z|<|q|<1<|y|
l,h =

N∑
h′=1

∏
γ 6=h

Γ
(
1 + a4,γ−a4,h

ε2

)
Γ
(
a4,γ−a2,h′−ε

ε2

)
×
∏
α 6=h′

Γ
(
a2,α−a2,h′

ε2

)
Γ
(
1 + a2,α−a4,h+ε

ε2

) q
z

(
−z
q

)a4,h−a2,h′−ε
ε2 Υ0<|q|<|z|<1<|y|

l,h′ ,

(5.35)

where the intersecting surface defect partition function in the domain 0 < |q| < |z| < 1 < |y|
is defined by

Υ0<|q|<|z|<1<|y|
l,h =

∑
λ

q|λ|E[T ′A1 [λ]]O′1<|y|1,l [λ]O′|q|<|z|<1
2,h [λ], (5.36)

where the new surface defect observable is

O′
|q|<|z|<1
2,h [λ] =

∞∑
k=0

(
q

z

)k−λ(h)
1 (−1)k

k!

×
∏
α 6=h

Γ
(
−k + λ

(h)
1 − λ(α)

1 + a2,α−a2,h
ε2

)
Γ
(
a2,α−a2,h

ε2

) N∏
δ=1

Γ
(
a4,δ−a2,h−ε

ε2

)
Γ
(
−k + λ

(h)
1 + a4,δ−a2,h−ε

ε2

)
×

N∏
δ=1

λ
(δ)
1∏
j=1

−a2,h + a2,δ − λ
(δ)t
j ε1 − (k − j − λ(h)

1 )ε2

ε2
. (5.37)

We can properly modify the partition function in the domain 0 < |q| < |z| < 1 < |y| by

Υ̂0<|q|<|z|<1<|y|
l,h = y

a0,l−a0,l̄+ε1+2ε2
2ε1

(
q

z

)a2,h−a2,h̄−2ε1−ε2
2ε2

q
−∆′0−∆′q+

ε2−(a2,1−a2,2)2

4ε1ε2
+ 3ε1+2ε2

4ε2

×
(

1− 1
y

)−2ā0+2ā2−ε2
2ε1

(
1− q

y

)−2ā0+2ā4−3ε1−4ε2
2ε1

(
1− z

y

)− 1
2

(1− z)
2ā0−2ā2+2ε1+3ε2

2ε2

× (1− q)
(−2ā0+2ā2−2ε1−3ε2)(−2ā2+2ā4−ε1−2ε2)

2ε1ε2

(
1− q

z

) 2ā2−2ā4+3ε1+4ε2
2ε2 Υ0<|q|<|z|<1<|y|

l,h . (5.38)

Then the connection formula reads

Υ0<|z|<|q|<1<|y|
l,h =

N∑
h′=1

(
C(2)

0

)
hh′

Υ̂0<|q|<|z|<1<|y|
l,h′ , (5.39)
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where we defined the connection matrix

(
C(2)

0

)
hh′

=
∏
γ 6=h

Γ
(
1 + a4,γ−a4,h

ε2

)
Γ
(
a4,γ−a2,h′−ε

ε2

) ∏
α 6=h′

Γ
(
a2,α−a2,h′

ε2

)
Γ
(
1 + a2,α−a4,h+ε

ε2

) . (5.40)

5.3.2 y-transporting the surface defect at z2 = 0

Now we start from the intersecting surface defect partition function Υ0<|y|<|q|<|z|<1
l,h in the

domain 0 < |y| < |q| < |z| < 1 and move the complexified Kähler parameter y of the
effective sigma model on the z1-plane to another domain 0 < |q| < |y| < |z| < 1. We write
out the observable O1,β in the partition sum as follows:

Υ0<|y|<|q|<|z|<1
l,h

=
∑
λ

q|λ|E[TA1 [λ]]O|q|<|z|<1
2,h [λ]

×
∞∑
k=0

(
y

q

)k N∏
α=1

Γ
(
k + 1− l

(
λ(α)

)
+ a4,l−2ε−a2,α

ε1

)
Γ
(
1 + a4,l−a4,α

ε1

)
Γ
(
1 + a4,l−2ε−a2,α

ε1

)
Γ
(
k + 1 + a4,l−a4,α

ε1

)
×
l(λ(α))∏
i=1

a4,l − 2ε− a2,α + (k − i+ 1)ε1 − λ(α)
i ε2

ε1

(5.41)

By using a similar trick of contour integral, we can find the following analytic continuation
formula

Υ0<|y|<|q|<|z|<1
l,h =

N∑
α=1

∏
β 6=l

Γ
(
1 + a4,l−a4,β

ε1

)
Γ
(
a2,l′+2ε−a4,β

ε1

)
×
∏
α 6=l′

Γ
(
a2,l′−a2,α

ε1

)
Γ
(
1 + a4,l−2ε−a2,α

ε1

) q
y

(
−y
q

)a2,l′−a4,l+2ε
ε1 Υ0<|q|<|y|<|z|<1

l′,h ,

(5.42)

where we defined the analytically continued partition function by

Υ0<|q|<|y|<|z|<1
l′,h =

∑
λ

q|λ|E[TA1 [λ]]O|q|<|z|<1
2,h [λ]O|q|<|y|<1

1,l′ [λ], (5.43)

with the new surface defect observable

O
|q|<|y|<1
1,l′ [λ] =

∞∑
k=0

(
q

y

)k−l(λ(l′)
)

(−1)k

k!

×
∏
α 6=l′

Γ
(
−k + l

(
λ(l′)

)
− l

(
λ(α)

)
+ a2,l′−a2,α

ε1

)
Γ
(
a2,l′−a2,α

ε1

) N∏
γ=1

Γ
(
a2,l′+2ε−a4,γ

ε1

)
Γ
(
−k + l

(
λ(l′))+ a2,l′+2ε−a4,γ

ε1

)
×

N∏
γ=1

l(λ(γ))∏
i=1

a2,l′ − a2,γ +
(
l
(
λ(l′)

)
− k − i

)
ε1 − λ(γ)

i ε2

ε1
. (5.44)
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We can multiply a proper prefactor to Υ0<|q|<|y|<|z|<1
l,h

Υ̂0<|q|<|y|<|z|<1
l,h

= z
−a2,h+a2,h̄+ε

2ε2

(
q

y

)−a2,l+a2,l̄−ε1−2ε2
2ε1

q
−∆0−∆q+

ε2−(a2,1−a2,2)2

4ε1ε2
+ 2ε1+3ε2

4ε1

× (1− z)
2ā0−2ā2+ε1+2ε2

2ε2

(
1− q

z

) 2ā2−2ā4+4ε1+5ε2
2ε2

(
1− y

z

)− 1
2

(1− y)
−2ā0+2ā2+ε1

2ε1

× (1− q)
(2ā0−2ā2−ε1)(2ā2−2ā4+4ε1+5ε2)

2ε1ε2

(
1− q

y

)−2ā2+2ā4−2ε1−3ε2
2ε1 Υ0<|q|<|y|<|z|<1

l,h ,

(5.45)

so that the connection formula reads

Υ̂0<|y|<|q|<|z|<1
l,h =

N∑
α=1

(
C(1)

0

)
ll′

Υ̂0<|q|<|y|<|z|<1
l′,h . (5.46)

Here, we have defined the connection matrix

(
C(1)

0

)
ll′

=
∏
β 6=l

Γ
(
1 + a4,l−a4,β

ε1

)
Γ
(
a2,l′+2ε−a4,β

ε1

) ∏
α 6=l′

Γ
(
a2,l′−a2,α

ε1

)
Γ
(
1 + a4,l−2ε−a2,α

ε1

) , (5.47)

where the superscript (1) indicates the adiabatic flow of the surface defect on the z1-plane.
Similarly, we can start from the domain 0 < |q| < |z| < 1 < |y| and flow y to another

domain 0 < |q| < |z| < |y| < 1, as follows.

Υ0<|q|<|z|<1<|y|
l,h =

N∑
l′=1

∏
β 6=l

Γ
(
1 + a0,β−a0,l

ε1

)
Γ
(
a0,β−a2,l′+ε

ε1

)
×
∏
α 6=l′

Γ
(
a2,α−a2,l′

ε1

)
Γ
(
1 + a2,α−a0,l−ε

ε1

)y(−y)
a2,l′−a0,l−ε

ε1 Υ0<|q|<|z|<|y|<1
l′,h ,

(5.48)

where we have defined the intersecting surface defect partition function in the domain
0 < |q| < |z| < |y| < 1 by

Υ0<|q|<|z|<|y|<1
l,h =

∑
λ

q|λ|E[T ′A1 [λ]]O′|q|<|z|<1
2,h [λ]O′|q|<|y|<1

1,l [λ], (5.49)

with the new surface defect observable

O′
|q|<|y|<1
1,l [λ] =

∞∑
k=0

yk−l(λ(l)) (−1)k

k!

×
∏
α 6=l

Γ
(
−k+ l

(
λ(l)

)
− l
(
λ(α′)

)
+ a2,α−a2,l

ε1

)
Γ
(
a2,α−a2,l

ε1

) N∏
δ=1

Γ
(
a0,δ−a2,l+ε

ε1

)
Γ
(
−k+ l

(
λ(l))+ a0,δ−a2,l+ε

ε1

)
×

N∏
δ=1

l(λ(δ))∏
i=1

−a2,l+a2,δ+
(
l
(
λ(l)

)
−k− i

)
ε1−λ(δ)

i ε2

ε1
. (5.50)
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We may modify this partition function by

Υ̂0<|q|<|z|<|y|<1
l,h = y

a2,l−a2,l̄+ε
2ε1

(
q

z

)a2,h−a2,h̄−2ε1−ε2
2ε2

q
−∆′0−∆′q+

ε2−(a2,1−a2,2)2

4ε1ε2
+ 3ε1+2ε2

4ε2

×(1−y)
−2ā0+2ā2−ε2

2ε1

(
1− q

y

)−2ā0+2ā4−3ε1−4ε2
2ε1

(
1− z

y

)− 1
2

(1−z)
2ā0−2ā2+2ε1+3ε2

2ε2

×(1−q)
(−2ā0+2ā2−2ε1−3ε2)(−2ā2+2ā4−ε1−2ε2)

2ε1ε2

(
1− q

z

) 2ā2−2ā4+3ε1+4ε2
2ε2 Υ0<|q|<|z|<|y|<1

l,h .

(5.51)

so that the connection formula reads

Υ̂0<|q|<|z|<1<|y|
l,h =

N∑
α=1

(
C(1)
∞

)
ll′

Υ̂0<|q|<|z|<|y|<1
l′,h , (5.52)

where we have defined the connection matrix

(
C(1)
∞

)
ll′

=
∏
β 6=l

Γ
(
1 + a0,β−a0,l

ε1

)
Γ
(
a0,β−a2,l′+ε

ε1

) ∏
α 6=l′

Γ
(
a2,α−a2,l′

ε1

)
Γ
(
1 + a2,α−a0,l−ε

ε1

) . (5.53)

5.3.3 y-transporting the surface defect at z2 = 0 across z

Lastly, we need the connection formula between the solutions in the domain 0 < |q| < |z| <
|y| < 1 and 0 < |q| < |y| < |z| < 1. This amounts to resumming the intersecting surface
defect partition function Υ̂0<|q|<|y|<|z|<1

l,h as a series in y
z and expanding it as a series in z

y to
glue it to Υ̂0<|q|<|z|<|y|<1

l,h . This resummation is trickier than the analytic continuations that
we have obtained in the previous section, but can be accomplished in the following way.

Let us consider the degeneration limit q → 0 of the partition function
Υ̂0<|q|<|y|<|z|<1
l,h (5.45) in the domain 0 < |q| < |y| < |z| < 1 and the differential equa-

tions (5.9) that it satisfies. We have to carefully decouple the q-dependent prefactor of
Υ̂0<|q|<|y|<|z|<1
l,h to have a well-defined limit:

Υ̂0<|y|<|z|<1
l,h := lim

q→0
q

∆0+∆q−
ε2−(a2,1−a2,2)2

4ε1ε2
+
a2,l−a2,l̄

2ε1
+ ε2

4ε1 Υ̂0<|q|<|y|<|z|<1
l,h . (5.54)

By taking the limit to (5.9) we have reduced differential equations,

0 =
[
ε2

2∂
2
z − ε1ε2

(1
z

+ 1
z − 1

)
∂z + ε1ε2

y(y − 1)
z(z − y)(z − 1)∂y (5.55a)

+ε1ε2

(∆0+q

z2 + ∆1
(z − 1)2 + ∆L

(z − y)2 + ∆∞ −∆0+q −∆1 −∆L −∆H

z(z − 1)

)]
Υ̂0<|y|<|z|<1
l,h ,

0 =
[
ε2

1∂
2
y − ε1ε2

(1
y

+ 1
y − 1

)
∂y + ε1ε2

z(z − 1)
y(y − z)(y − 1)∂z (5.55b)

+ε1ε2

(∆0+q

y2 + ∆1
(y − 1)2 + ∆H

(y − z)2 + ∆∞ −∆0+q −∆1 −∆L −∆H

y(y − 1)

)]
Υ̂0<|y|<|z|<1
l,h ,

where we have defined

∆0+q =
ε2 − (a2,l − a2,l̄ + ε2)2

4ε1ε2
. (5.56)
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Similarly, we carefully decouple the q-dependent prefactor in the solution
Υ̂0<|q|<|z|<|y|<1
l,h (5.51) in the other domain 0 < |q| < |z| < |y| < 1 by

Υ̂0<|z|<|y|<1
l,h := lim

q→0
q

∆′0+∆′q−
ε2−(a2,1−a2,2)2

4ε1ε2
−
a2,h−a2,h̄

2ε2
+ ε1

4ε2 Υ̂0<|q|<|z|<|y|<1
l,h . (5.57)

Then the reduced differential equations obtained as the limit of (5.12) are

0 =
[
ε2

2∂
2
z − ε1ε2

(1
z

+ 1
z − 1

)
∂z + ε1ε2

y(y − 1)
z(z − y)(z − 1)∂y (5.58a)

+ε1ε2

(
∆′0+q

z2 + ∆′1
(z − 1)2 + ∆L

(z − y)2 +
∆∞ −∆′0+q −∆′1 −∆L −∆H

z(z − 1)

)]
Υ̂0<|z|<|y|<1
l,h ,

0 =
[
ε2

1∂
2
y − ε1ε2

(1
y

+ 1
y − 1

)
∂y + ε1ε2

z(z − 1)
y(y − z)(y − 1)∂z (5.58b)

+ε1ε2

(
∆′0+q

y2 + ∆′1
(y − 1)2 + ∆H

(y − z)2 +
∆∞ −∆′0+q −∆′1 −∆L −∆H

y(y − 1)

)]
Υ̂0<|z|<|y|<1
l,h ,

where we have defined

∆′0+q =
ε2 − (a2,h − a2,h̄ − ε1)2

4ε1ε2
. (5.59)

Effectively, what we have done is to bring the puncture at q close to 0 and merge them
together. This is equivalent to turning off the bulk gauge coupling in the gauge theory
point of view. Hence we are left with the two-dimensional sigma models on the z1-plane
and the z2-plane interacting at the origin.

Let us note that the equations (5.55) become identical to (5.58) after the following
re-definition of the Coulomb moduli,

a2,α −→ a2,α − δα,lε2 − δα,hε1. (5.60)

The reduced partition functions Υ̂0<|y|<|z|<1
l,h and Υ̂0<|z|<|y|<1

l,h provide the solutions to the
equation in the respective domain. To accomplish the connection formua between these
solutions, we need to re-expand Υ̂0<|y|<|z|<1

l,h , which is a series in y
z and z, as a series in

z
y and y. Then we can compare the re-expanded series with Υ̂0<|z|<|y|<1

l,h to achieve the
connection formula.

For this, we need to explicitly write the series expansion of the reduced partition
function. The non-perturbative part Υ0<|y|<|z|<1

l,h of the reduced partition function is given
by the limit q→ 0 to the non-perturbative part Υ0<|q|<|y|<|z|<1

l,h of the full partition function
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given in (5.43), with the surface observables given by (5.44) and (5.30):

Υ0<|y|<|z|<1
l,h = lim

q→0

∑
λ

q|λ|E[TA1 [λ]]O|q|<|y|<1
1,l [λ]O|q|<|z|<1

2,h [λ]

= lim
q→0

∑
λ

y|λ|E[TA1 [λ]]

×
∞∑
k=0

(
q

y

)k+|λ|−l(λ(l)) (−1)k

k!

×
∏
α 6=l

Γ
(
−k+ l

(
λ(l)

)
− l
(
λ(α)

)
+ a2,l−a2,α

ε1

)
Γ
(
a2,l−a2,α

ε1

) N∏
γ=1

Γ
(
a2,l+2ε−a4,γ

ε1

)
Γ
(
−k+ l

(
λ(l))+ a2,l+2ε−a4,γ

ε1

)
×

N∏
γ=1

l(λ(γ))∏
i=1

a2,l−a2,γ +
(
l
(
λ(l)

)
−k− i

)
ε1−λ(γ)

i ε2

ε1
(5.61)

×
∞∑
k′=0

zk
′−λ(h)

1
(−1)k′

k′!

×
∏
α 6=h

Γ
(
−k′+λ

(h)
1 −λ

(α)
1 + a2,h−a2,α

ε2

)
Γ
(
a2,h−a2,α

ε2

) N∏
δ=1

Γ
(
a2,h−a0,δ

ε2

)
Γ
(
−k′+λ

(h)
1 + a2,h−a0,δ

ε2

)
×

N∏
δ=1

λ
(δ)
1∏
j=1

a2,h−a2,δ+
(
λ

(h)
1 −k′−j

)
ε2−λ(δ)t

j ε1

ε2
.

Here, we have taken the rank of the bulk gauge group N generic, but it is implicitly
understood that we set N = 2 whenever we restrict our attention to the solutions to the
differential equations (5.55). The summation over non-negative integers k gets non-zero
contribution only when k + |λ| − l

(
λ(λ)

)
= 0 due to the limit q → 0. This implies k = 0

and |λ| = l
(
λ(l)

)
, namely, the Young diagrams

(
λ(α)

)N
α=1

are empty except λ(l) which is
single-columned. The expression of the partition function is simplified accordingly. After
many cancellations between the bulk contribution and the surface observable contribution,
we obtain

Υ0<|y|<|z|<1
l,h =

∞∑
k=0

yk

k!

N∏
γ=1

Γ
(
k + a2,l−a0,γ

ε1

)
Γ
(
a2,l−a0,γ

ε1

) ∏
α 6=l

Γ
(
a2,l−a2,α+ε

ε1

)
Γ
(
k + a2,l−a2,α+ε

ε1

)
×
∞∑
k′=0

zk
′−(1−δ0,k)δl,h

k′!

N∏
γ=1

Γ
(
k′ + 1 + a0,γ−a2,h

ε2

)
Γ
(
1 + a0,γ−a2,h

ε2

) ∏
α 6=l

Γ
(
1 + a2,α−a2,h

ε2

)
Γ
(
k′ + 1 + a2,α−a2,h

ε2

)
×

N∏
γ=1

Γ
(
−k′ + a2,h−a0,γ

ε2

)
Γ
(
−k′ + (1− δ0,k)δl,h + a2,h−a0,γ

ε2

) ∏
α 6=h

Γ
(
−k′ + (1− δ0,k)(δl,h − δl,α) + a2,h−a2,α

ε2

)
Γ
(
−k′ + a2,h−a2,α

ε2

)
×
(
a2,h − a2,l + (δl,h − k′ − 1)ε2 − kε1

ε2

)1−δ0,k
. (5.62)

The first two lines indicate that this is the partition function of two-dimensional sigma
models on the z1-plane and the z2-plane, whose target space is O(−1) ⊕ O(−1) → P1,
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respectively. It is not a simple product of the two, however, because of the interaction
between the two models at the origin which contributes the third and the fourth lines
to the partition function. Hence, we see that the bulk gauge theory decouples due to
the decoupling limit q → 0, and the surface defects becomes effectively a pair of two-
dimensional sigma models, weakly interacting with each other via a bi-local observable.
Here by the bi-local observable we mean an operator in the combined theory, which is local
from the point of view of an observer, living on the worldsheet of one of these sigma models.
In a sense, this configuration is a two dimensional analogue of the crossed instantons setup
of [20–22].

Note that the expression (5.62) allows analytic continuation to the domain 0 < |z| <
|y| < 1 automatically. We just have to re-write z = z

yy and expand. When h = l, we
recognize that the power of zy begins from −1, when k = 1 and k′ = 0. Hence the partition
function is re-gathered as a series in z

y and y as

Υ0<|y|<|z|<1
l,h=l

=−y
z

∏
α 6=l

a2,l−a2,α
a2,l−a2,α+ε

×

 ∞∑
k,k′=0

yk+k′−1+δ0,k
(
z

y

)k′+δ0,k (−1)k′

k!k′!

N∏
γ=1

Γ
(
k+ a2,l−a0,γ

ε1

)
Γ
(
a2,l−a0,γ

ε1

) Γ
(
a2,h−a0,γ

ε2

)
Γ
(
−k′+1−δ0,k+ a2,h−a0,γ

ε2

)
×
∏
α 6=l

Γ
(
1+ a2,l−a2,α+ε

ε1

)
Γ
(
k+ a2,l−a2,α+ε

ε1

) Γ
(
−k′+1−δ0,k+ a2,l−a2,α

ε2

)
Γ
(
1+ a2,l−a2,α

ε2

) ×
(−k′ε2−kε1

ε2

)1−δ0,k
×
(
−ε2
ε1

)
=−y

z

∏
α 6=l

a2,l−a2,α
a2,l−a2,α+ε×

(
1+O

(
z

y
,y

))
. (5.63)

When h 6= l, on the other hand, it is straightforward from (5.62) that the re-expansion
as a series in z

y and y is trivial:

Υ0<|y|<|z|<1
l,h( 6=l) = 1 +O

(
z

y
, y

)
. (5.64)

As a result of the re-expansion (5.63) and (5.64) of Υ0<|y|<|z|<1
l,h , we produce the so-

lutions to the reduced differential equations (5.55) in the domain 0 < |z| < |y| < 1. By
explicitly solving the equations by a series expansion in z

y and y, it follows that the solution
is uniquely determined once the critical exponents of y and z are chosen. The uniqueness
of the solution implies the identification of Υ̂0<|y|<|z|<1

l,h and Υ̂0<|z|<|y|<1
l,h , up to the multi-

plicative prefactor in (5.63). More precisely, after taking account of the shift (5.60) in the
Coulomb moduli, we establish this connection formula as follows:

Υ̂0<|y|<|z|<1
l,h =

N∑
α,β,l′=1

(
Ch
M

)
lα

(S2)αβ
(
Sh1
)
βl′

Υ̂0<|z|<|y|<1
l′,h , (5.65)
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where the shift matrices are defined by

(S2)αβ = eε2
∂
∂aα δαβ(

Sh1
)
αβ

= e
ε1

∂
∂ah δαβ ,

(5.66)

and the connection matrix is given by

(
Ch
M

)
ll′

=

∏
α 6=l

a2,l − a2,α
a2,l − a2,α + ε

δl,h δll′ . (5.67)

In the case of N = 2, we can explicitly write this 2× 2 matrix as

C+
M =

( a2,1−a2,2
a2,1−a2,2+ε 0

0 1

)
, C−M =

(
1 0
0 a2,2−a2,1
a2,2−a2,1+ε

)
. (5.68)

Here we are abusing the notation and use h ∈ {1, 2} and (−1)h−1 ∈ {±} interchangeably.
Having established the analytic continuation (5.65) of the reduced partition functions,

we now investigate the analytic continuation of the full partition functions, Υ̂0<|q|<|y|<|z|<1
l,h

and Υ̂0<|q|<|z|<|y|<1
l,h , which solve (5.9) and (5.12) in the respective domain. We can view

the reduced partition functions Υ̂0<|y|<|z|<1
l,h and Υ̂0<|z|<|y|<1

l,h as the initial condition of the
solutions at q = 0. Then the solutions as series expansions in q are uniquely determined
by the differential equations. Hence, the connection formula (5.65) immediately uplifts to
the connection formula for the full partition functions as it is:

Υ̂0<|q|<|y|<|z|<1
l,h =

N∑
α,β,l′=1

(
Ch
M

)
lα

(S2)αβ
(
Sh1
)
βl′

Υ̂0<|q|<|z|<|y|<1
l′,h . (5.69)

With this last piece of the puzzle, we have achieved all the analytic continuations of the
intersecting surface defect partition functions that we need in computing the monodromy
data of the associated Fuchsian system.

5.4 Monodromy data

We have seen the N = 2 gauge theory with (intersecting) surface defects is associated to
the Riemann-Hilbert correspondence and isomonodromic deformation of Fuchsian system
through their partition functions. Their NS limits provide the generating function of the
Riemann-Hilbert map, the Hamilton-Jacobi potential for the isomonodromic flow, and in
particular the solutions to the Fuchsian differential equation. Based upon these relations,
the monodromy data of the associated Fuchsian system can be expressed in gauge theoret-
ical terms, as we describe now for our main example of the sl(2) Fuchsian system on the
four-punctured sphere (see figure 2).

Recall that the intersecting surface defect partition function Υ̃ annihilates a differential
operator in coupling constants, which we denote as ̂̂D here, whose NS limit is the Fuchsian
differential equation D̂χ = 0. In other words, the solutions to the associated Fuchsian
differential equation are obtained as the regular part of the intersecting surface defect
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∞

1
q

0

z
A

B

Figure 2. The A-loop and the B-loop on the four-punctured sphere P1\{0, q, 1,∞}. Here, z is
the position of the apparent singularity, around which the monodromy of the associated Fuchsian
system is trivial. The A-loop is depicted as the blue line, while the B-loop is drawn as the red line.

partition function in the NS limit ε2 → 0. Hence, the strategy to compute the monodromy
data of the Fuchsian system is simply to compute the monodromy of the intersecting surface
defect partition functions first and then to take the NS limit of it. The Riemann surface
C is divided into several convergence domains of the intersecting surface defect partition
function, and a given loop γ ∈ π1(C) may remain in a single convergence domain or may
pass through several convergence domains. In the former case, the computation of the
monodromy Mγ is straightforward, while in the latter case the monodromy Mγ is a bit
more involoved, being given by a concatenation of analytic continuations.

For our main example of the four-punctured sphere, C = P1 \ {0, q, 1,∞}, there are
six independent loops. Four of them are small loops encircling the four punctures and
the remaining two, which we refer to as the A-loop and the B-loop, are non-local loops
depicted in figure 2. Let us begin with the small loop around the puncture at 0. This loop
is entirely contained in the domain 0 < |y| < |q| < |z| < 1, where the solution to ̂̂

D is
given by the intersecting surface defect partition function Υ̃0<|y|<|q|<|z|<1 that we obtained
in section 5.3.1. Thus we simply continue this partition function along the path

y −→ y eit with 0 ≤ t ≤ 2π, (5.70)

to enclose the punctures at 0. Then the non-integral part of the exponent of y produces
a multiplicative factor as we move along 0 ≤ t ≤ 2π, producing the monodromy R0. A
straightforward computation shows that

R0 = diag
(
e
πi
m1−m2+ε2

ε1 , e
πi
−m1+m2+ε2

ε1

)
. (5.71)

The monodromy of the Fuchsian system is then computed by taking the limit ε2 → 0,

R0 = lim
ε2→0

R0 = diag
(
e
πi
m1−m2
ε1 , e

−πim1−m2
ε1

)
. (5.72)

The monodromy itself is not an invariant notion since it depends on the basis in which it
is expressed. Hence we take the trace invariant which is simply

TrR0 = 2 cos 2πθ0, (5.73)
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where we used the dimensionless θ-parameter. The outcome is not at all surprising, since
it is immediate from the Fuchsian differential equation (5.25) that the trace invariant of
the monodromy R0 should be as above.

We can deal with the monodromy around the puncture at ∞ in a similar manner. The
loop encircling the infinity is entirely contained in the domain 0 < |q| < |z| < 1 < |y|. The
intersecting surface defect partition function Υ̃0<|q|<|z|<1<|y|, also obtained in section 5.3.1,
yields solutions to the differential operator ̂̂D in this domain. This time we should continue
along the path which is clockwise from the origin

y −→ y e−it with 0 ≤ t ≤ 2π, (5.74)

to enclose the infinity counterclockwise. Then we immediately compute the monodromy

R∞ = diag
(
e
πi
−m3+m4+ε1−2ε2

ε1 , e
πi
m3−m4+ε1−2ε2

ε1

)
, (5.75)

and also the trace invariant of the monodromy R∞,

TrR∞ = Tr lim
ε2→0

R∞ = −2 cos 2πθ∞. (5.76)

Again, the result is expected from the Fuchsian differential equation (5.25).
Before we consider the other two small loops around the punctures at q and 1, let

us turn to the A-loop first. The A-loop only remains in the convergence domain in the
middle, 0 < |q| < |y| < |z| < 1, so that the computation of the monodromy along it
is immediate.7 As we have seen in section 5.3.2, the intersecting surface defect partition
function Υ̃0<|q|<|y|<|z|<1 provides the solutions to the ̂̂D in this domain. Thus we simply
continue this partition function along the path

y −→ y eit with 0 ≤ t ≤ 2π, (5.77)

to enclose the punctures at 0 and q, thereby making the A-loop. A straightforward com-
putation shows that

MA = diag
(
e
πi
a1−a2−ε1+2ε2

ε1 , e
πi
−a1+a2−ε1+2ε2

ε1

)
. (5.78)

The monodromy of the Fuchsian system is then computed by taking the limit ε2 → 0,

MA = lim
ε2→0

MA = diag
(
−eπi

a1−a2
ε1 ,−eπi

−a1+a2
ε1

)
. (5.79)

Hence the trace invariant is simply

TrMA = −2 cos 2πα, (5.80)

where we used the dimensionless parameter α = a1−a2
2ε1 = a

ε1
.

7It is a matter of convention to choose the A-loop to be inside the domain 0 < |q| < |y| < |z| < 1 or the
domain 0 < |q| < |z| < |y| < 1. As discussed earlier, z is the position of the apparent singularity, and the
monodromy around the small loop around z is the identity.
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Now, the small loops around the punctures q and 1 are not entirely contained in a single
convergence domain. Rather, we can compose these loops out of the rotation matrices R0,
R∞ and the A-loop MA, which lie inside distinct convergence domains. These monodromy
matrices are represented in different bases, so we need the connection matrices to account
for the change of bases. These connection matrices are precisely what was computed in the
section 5.3.2, by analytic continuations of intersecting surface defect partition functions.
In particular, we can express

Rq = MAC(1)
0
−1

R−1
0 C(1)

0

R1 = M−1
A C(1)

∞
−1R−1

∞ C(1)
∞ .

(5.81)

Then the trace invariants of the monodromies of the Fuchsian system are

TrRq = Tr lim
ε2→0

Rq = −2 cos 2πθq

TrR1 = Tr lim
ε2→0

R1 = 2 cos 2πθ1,
(5.82)

where we re-expressed the hypermultiplet masses with the dimensionless θ-parameters.
Once again, these trace invariants are indeed what we expect from the Fuchsian differential
equation (5.25).

Finally, we are left with the B-loop which is the most complicated. By concatenating
the connection matrices, the shift matrices, and the rotation matrices, we construct the
following sequence of continuations of solutions along the B-loop,

Υ̃0<|q|<|y|<|z|<1 C(1)
0
−1

−−−−→ Υ̃0<|y|<|q|<|z|<1 R−1
0−−−→ Υ̃0<|y|<|q|<|z|<1 C(1)

0−−−→ Υ̃0<|q|<|y|<|z|<1

CMS2S1−−−−−→ Υ̃0<|q|<|z|<|y|<1 C(1)
∞
−1

−−−−→ Υ̃0<|q|<|z|<1<|y| R−1
∞−−−→ Υ̃0<|q|<|z|<1<|y| C(1)

∞−−−→ Υ̃0<|q|<|z|<|y|<1

S−1
1 S−1

2 C−1
M−−−−−−−−→ Υ̃0<|q|<|y|<|z|<1. (5.83)

Hence the corresponding monodromy is

M±
B = C±MS2S±1 C(1)

∞
−1R∞C(1)

∞ S±1
−1S−1

2 C±M
−1C(1)

0
−1

R0C(1)
0 . (5.84)

Recalling the asymptotics of the intersecting surface defect partition function has the singu-
lar part, Υ̃l,h = exp

[
ε1
ε2
S̃h
]

(χl+O(ε2)), we compute the monodromy of the Fuchsian system
along the B-loop by taking the limit ε2 → 0. Also, note that we have a choice of the vac-
uum of the gauged linear sigma model on the z2-plane, which is reflected in the superscript
± (again, we abuse the notation and use h ∈ {1, 2} and (−1)h−1 ∈ {±} interchangeably).
These two choices provide two different results for the monodromy computation, yielding

M±B = lim
ε2→0

(
C±MS2S±1 C(1)

∞
−1R∞C(1)

∞ S±1
−1S−1

2 C±M
−1C(1)

0
−1

R0C(1)
0 e

ε1
ε2
S̃±
)
. (5.85)
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A lengthy but straightforward computation gives

TrM+
B = (−cos2πθ∞+cos2πθ1)(cos2πθ0−cos2πθq)

2sin2πα

− (cos2πθ∞+cos2πθ1)(cos2πθ0 +cos2πθq)
2cos2πα

+4
∏
± sinπ(−α−θq±θ0)sinπ(−α−θ1±θ∞)

sin2 2πα

× Γ(2α)2

Γ(−2α)2
∏
±

Γ(−α−θq±θ0)Γ(−α−θ1±θ∞)
Γ(α−θq±θ0)Γ(α−θ1±θ∞)

(2α)2∏
±(α−θ1±θ∞)e

∂S̃+
∂α

+4
∏
± sinπ(α−θq±θ0)sinπ(α−θ1±θ∞)

sin2 2πα

×
(

Γ(2α)2

Γ(−2α)2
∏
±

Γ(−α−θq±θ0)Γ(−α−θ1±θ∞)
Γ(α−θq±θ0)Γ(α−θ1±θ∞)

(2α)2∏
±(α−θ1±θ∞)

)−1

e−
∂S̃+
∂α ,

and

TrM−B = (−cos2πθ∞+cos2πθ1)(cos2πθ0−cos2πθq)
2sin2πα

− (cos2πθ∞+cos2πθ1)(cos2πθ0 +cos2πθq)
2cos2πα

+4
∏
± sinπ(−α−θq±θ0)sinπ(−α−θ1±θ∞)

sin2 2πα

× Γ(2α)2

Γ(−2α)2
∏
±

Γ(−α−θq±θ0)Γ(−α−θ1±θ∞)
Γ(α−θq±θ0)Γ(α−θ1±θ∞)

∏
±(−α−θ1±θ∞)

(2α)2 e
∂S̃−
∂α

+4
∏
± sinπ(α−θq±θ0)sinπ(α−θ1±θ∞)

sin2 2πα

×
(

Γ(2α)2

Γ(−2α)2
∏
±

Γ(−α−θq±θ0)Γ(−α−θ1±θ∞)
Γ(α−θq±θ0)Γ(α−θ1±θ∞)

∏
±(−α−θ1±θ∞)

(2α)2

)−1

e−
∂S̃−
∂α .

It is crucial to note that the products of Γ-functions appearing in the third and the fifth
lines are precisely the contributions from the 1-loop part of the asymptotics of the surface
defect partition function, namely, the effective twisted superpotential S̃. Note that the
1-loop part of the surface defect partition function is given by

S1-loop
± = lim

ε2→0

ε2
ε1

log
[ ∏
ξ=±

Γ2(0;ε1,ε2)Γ2 (ξ2αε1;ε1,ε2)∏
ξ′=±Γ2 ((ξα−θq+ξ′θ0)ε1;ε1,ε2)Γ2 ((ξα−θ1 +ξ′θ∞)ε1;ε1,ε2)

×
∏
ξ=±Γ1((±α−θ1 +ξθ∞)ε1;ε2)

Γ1(±2αε1;ε2)

]
, (5.86)

where the first line is the 1-loop contribution from the bulk, while the second line is the
1-loop contribution from the surface defect on z2-plane. The subscript ± denotes the
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choice of the vacuum of the gauged linear sigma model on the z2-plane. Then we see that

∂S1-loop
+
∂α

=log
[

Γ(2α)2

Γ(−2α)2
∏
±

Γ(−α−θq±θ0)Γ(−α−θ1±θ∞)
Γ(α−θq±θ0)Γ(α−θ1±θ∞)

(2α)2∏
±(α−θ1±θ∞)

]
(5.87a)

∂S1-loop
−
∂α

=log
[

Γ(2α)2

Γ(−2α)2
∏
±

Γ(−α−θq±θ0)Γ(−α−θ1±θ∞)
Γ(α−θq±θ0)Γ(α−θ1±θ∞)

∏
±(−α−θ1±θ∞)

(2α)2

]
. (5.87b)

See appendix B for the detail of the computation. Therefore, this factor can be absorbed
into the 1-loop part of the effective twisted superpotential S̃, simplifying the expression of
the monodromy as

TrMB = (− cos 2πθ∞ + cos 2πθ1) (cos 2πθ0 − cos 2πθq)
2 sin2 πα

− (cos 2πθ∞ + cos 2πθ1) (cos 2πθ0 + cos 2πθq)
2 cos2 πα

+
∑
±

4
∏
ε=± sin π(∓α− θq + εθ0) sin π(∓α− θ1 + εθ∞)

sin2 2πα
e±

∂S̃
∂α ,

(5.88)

for both choices of the surface defect on the z2-plane.
To recapitulate, we have expressed the monodromy data of the Fuchsian system as-

sociated to the surface defect in four dimensional gauge theory, in terms of the gauge-
theoretic physical quantities. The monodromy along the small loops encircling the punc-
tures are fixed by the hypermultiplet masses, re-expressed in dimensionless θ-parameters
as (5.73), (5.76), and (5.82). This implies that we restrict our monodromy space to the
reduced space Mq

(
θ0, θq + 1

2 , θ1, θ∞ − 1
2

)
, as expected from the Fuchsian differential equa-

tion (5.25). We use the Darboux coordinates (α, β) of [9] to parametrize this space. In
turn, they are determined in terms of the Coulomb modulus a and the effective twisted
superpotential S̃ by (5.80) and (5.88). Namely,

α = a

ε1
, β = ∂S̃(α,θ, z, q)

∂α
. (5.89)

Thus we have understood how the image (α, β) under the Riemann-Hilbert map parameter-
izes the monodromy data, so that α and β are indeed preserved along the isomonodromic
flow z(q).

6 Surface defects on blowup

N = 2 supersymmetric gauge theories placed on the blowup Ĉ2 are useful to unveil non-
trivial properties of the ordinary N = 2 supersymmetric gauge theories on the C2. The
blowup is defined by replacing the origin 0 ∈ C2 by an exceptional divisor P1, namely,

Ĉ2 =
{

((z1, z2), (w1 : w2)) ∈ C2 × P1 | z1w2 = z2w1
}
. (6.1)
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C2 Ĉ2

z1

z2

z1

z2

P1

Figure 3. The ordinary C2 and the blowup Ĉ2.

The maximal torus of the spacetime isometry U(1)ε1 ×U(1)ε2 ⊂ SO(4) of C2 uplifts to the
isometry on Ĉ2 by

((z1, z2), (w1 : w2)) 7−→ ((q1z1, q2z2), (q1w1 : q2w2)) ,

(q1, q2) =
(
eβε1 , eβε2

)
∈ U(1)ε1 ×U(1)ε2 .

(6.2)

The fixed points of the isometry are the north and the south poles on the exceptional divisor.
The spacetime locally looks like the ordinary C2 with different weights for the isometry
action. Then the partition function of the N = 2 gauge theory on the blowup can be
computed by properly multiplying the contributions from all the fixed points. Meanwhile,
we may take the limit of the size of the exceptional divisor going to zero without affecting
the physics, so that the partition function reduces to the one for the ordinary C2. The
non-trivial identity satisfied by the partition function derived by this procedure essentially
comprises what we call the blowup formula for the N = 2 gauge theory partition functions.
The non-trivial identity contains rich information on the gauge theory partition functions,
and in particular it was used in [13] to exactly prove that the asymptotics of the partition
function in the limit ε1, ε2 → 0 is identical to the Seiberg-Witten prepotential.

An interesting question is how the blowup formula would work in the presence of
non-local defects. For example, the insertion of Donaldson-type surface observables (more
commonly known as two-observables of Trφ2) on the exceptional divisor was already dis-
cussed in [13]. In this section, we discuss the half-BPS surface defects that extend along one
of the non-compact directions in Ĉ2, and suggest novel blowup formulas for their partition
functions. We also discuss how those newly suggested blowup formulas are consistent with
the analytic continuations of the complexified FI parameter of the gauged linear sigma
model living on the surface defect, which have been explored in section 5.3.1 and [11].
The application of the blowup formulas for the surface defect partition functions to the
correspondence with the isomonodromic deformation of Fuchsian systems will be discussed
in the next section.
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6.1 Blowup formula without surface defect

We consider four-dimensional N = 2 supersymmetric U(2) gauge theory with four funda-
mental hypermultiplets. The partition function depends on various equivariant parameters
and the gauge coupling,

Z(a,m, ε1, ε2; q) = Zclassical(a, ε1, ε2; q)Z1-loop(a,m, ε1, ε2)Z inst(a,m, ε1, ε2; q). (6.3)

Here, the perturbative parts are given by

Zclassical(a, ε1, ε2; q) = q
− 1

2ε1ε2

∑2
α=1 a

2
α (6.4)

and
Z1-loop(a,m, ε1, ε2) =

∏
α,β=1,2 Γ2(aα − aβ ; ε1, ε2)∏
α=1,2
i=1,··· ,4

Γ2(aα −mi; ε1, ε2) . (6.5)

Now we consider placing the theory on the blowup Ĉ2. The fixed points of the spacetime
isometry are the north pole and the south pole of the exceptional divisor P1. Around these
fixed points, the spacetime locally looks like a C2 with shifted weights of the isometry
action. Hence when the size of the exceptional divisor is large, the partition function is
computed as the sum over the fluxes on the exceptional divisor where the summand is a
product of two ordinary partition functions with shifted arguments. Thus, we are led to
the blowup formula for the partition function,

Ẑc1=kC(a,m,ε1,ε2;q) (6.6)

=
∑

n=(n1,n2)∈(Z+ k
2 )2

n1+n2=0

Z
(

a+nε1,m+ k

2ε1,ε1,ε2−ε1;q
)
Z
(

a+nε2,m+ k

2ε2,ε1−ε2,ε2;q
)
.

where C denotes the exceptional divisor and c1 is the first Chern class of the torsion free
sheave on the blowup Ĉ2 giving instanton. See [13] for more detail. We can determine the
blowup partition function Ẑc1=kC(a,m, ε1, ε2; q) by taking the opposite limit of the size
of the exceptional divisor. When the total flux is zero (k = 0), the gauge theory on the
blowup reduces to the theory on C2 as the size of the exceptional divisor shrinks to zero,
and we expect to recover the original partition function:

Z(a,m, ε1, ε2; q) =
∑

n=(n1,n2)∈Z2

n1+n2=0

Z(a + nε1,m, ε1, ε2 − ε1; q)Z(a + nε2,m, ε1 − ε2, ε2; q).

(6.7)
When the total flux is non-zero (k = 1), the gauge theory on the blowup does not have a
sensible limit as the size of the exceptional divisor shrinks to zero. Thus, we expect that
the blowup partition function simply vanishes:

0 =
∑

n=(n1,n2)∈(Z+ 1
2)2

n1+n2=0

Z
(

a+nε1,m+ ε1
2 ,ε1,ε2−ε1;q

)
Z
(

a+nε2,m+ ε2
2 ,ε1−ε2,ε2;q

)
.

(6.8)
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It is sometimes useful to write out the blowup formulas for the instanton part of the
partition function. This can be accomplished by explicitly computing the ratio of pertur-
bative parts (6.4)–(6.5) appearing in these blowup formulas. For notational convenience,
let us define the ratio of 1-loop part of the partition functions as follows,

Ln,k(a,m, ε1, ε2)

:=
Z1-loop

(
a + nε1,m + k

2ε1, ε1, ε2 − ε1
)
Z1-loop

(
a + nε2,m + k

2ε2, ε1 − ε2, ε2
)

Z1-loop (a,m, ε1, ε2) .
(6.9)

Although this ratio of double gamma functions looks quite complicated, it is in fact a
simple rational function in equivariant parameters (see appendix B). Then the blowup
formulas (6.7) and (6.8) become

Z inst(a,m, ε1, ε2; q)

=
∑

n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)Ln,k=0(a,m, ε1, ε2)

×Z inst(a + nε1,m, ε1, ε2 − ε1; q)Z inst(a + nε2,m, , ε1 − ε2, ε2; q),

(6.10)

and

0 =
∑

n=(n1,n2)∈(Z+ 1
2)2

n1+n2=0

q
1
2 (n2

1+n2
2)Ln,k=1(a,m, ε1, ε2) (6.11)

×Z inst
(

a + nε1,m + ε1
2 , ε1, ε2 − ε1; q

)
Z inst

(
a + nε2,m + ε2

2 , ε1 − ε2, ε2; q
)
.

6.2 Blowup formula with surface defect

Now we consider the N = 2 gauge theory with the insertion of a half-BPS surface defect.
In particular, to make a contact with the system of isomonodromic deformation we need to
insert a canonical surface defect which can be engineered by either a Z2-orbifold or a partial
higgsing of a larger gauge group. The surface defect partition functions can be computed in
both constructions. Since we can still put the theory on the blowup Ĉ2, a natural question
is what the blowup formula for this surface defect partition function would be.

There are two choices of the support of the surface defect which are consistent with
the Ω-background: the z1-plane and the z2-plane. Without loss of generality, we choose
to insert the defect on the z2-plane. Now when our theory is placed on the blowup Ĉ2,
one of the two fixed points of the isometry, say, the north pole of the exceptional divisor
is attached to the z1-plane, while the south pole is attached to the z2-plane. In turn,
our theory looks very differently locally around those fixed points compared to the theory
without a surface defect. Namely, on the local patch of C2 around the north pole we see
our theory being absent of any defect insertion, while we recover the theory with the defect
on the local patch of C2 around the south pole. Consequently, we expect the following
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C2 Ĉ2

z1

z2

z1

z2

P1

Figure 4. A surface defect on the ordinary C2 and the blowup Ĉ2. The surface defect is extended
along the non-compact z1-plane, drawn in the red line. On the blowup Ĉ2, the surface defect is
attached to the south pole of the exceptional divisor P1.

blowup formula for the surface defect partition function to be satisfied,

Ψ̂c1=kC(a,m,ε1,ε2;q,z) (6.12)

=
∑

n=(n1,n2)∈(Z+ k
2 )2

n1+n2=0

Z
(

a+nε1,m+ k

2ε1,ε1,ε2−ε1;q
)

Ψ
(

a+nε2,m+ k

2ε2,ε1−ε2,ε2;q,z
)
.

As in the case without the defect, we expect that the blowup partition function
Ψ̂c1=kC(a,m, ε1, ε2; q, z) reduces to the original surface defect partition function if the
total flux is zero (k = 0). Therefore, we are led to

Ψ(a,m, ε1, ε2; q, z) =
∑

n=(n1,n2)∈Z2

n1+n2=0

Z(a + nε1,m, ε1, ε2−ε1; q)Ψ(a + nε2,m, ε1−ε2, ε2; q, z).

(6.13)
Now we can make an interesting expectation for the case when the total flux is non-zero
(k = 1). When there is no surface defect, the flux on any 2-cycle is always zero so that
there is no sensible limit when the size of the exceptional divisor shrinks to zero, yieding
zero for the blowup partition function. However, when we have a surface defect, there is
already a non-zero flux along the support of the defect so that we can expect that the flux
along the exceptional divisor gets absorbed into the support of the defect when we blow
down the theory to C2. Hence, we expect that the blowup partition function is, instead of
being zero, again proportional to the surface defect partition function C2,

Ψ(a,m,ε1,ε2;q,z) (6.14)

∼
∑

n=(n1,n2)∈(Z+ 1
2)2

n1+n2=0

Z
(

a+nε1,m+ ε1
2 ,ε1,ε2−ε1;q

)
Ψ
(

a+nε2,m+ ε2
2 ,ε1−ε2,ε2;q,z

)
.

The precise multiplicative factor in front is to be determined (it cannot be 1 because of the
mismatch of the classical part at least), but it already exhibits a drastic difference from
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the blowup formula for the ordinary partition function without the defect, where the left
hand side is simply zero.

6.2.1 Orbifold

In section 3.1.1, we have seen that the orbifolding of the spacetime can be used to en-
gineer a surface defect in the gauge theory. In our main example of U(2) gauge theory
with four hypermultiplets on the Z2-orbifold, we can explicitly write down the partition
function (3.28) as

ΨZ2
β (a,m, ε1, ε2; q, z) = ΨZ2,classical

β (a, ε1, ε2; q, z)ΨZ2,1-loop
β (a,m, ε1, ε2)

×ΨZ2,non-pert
β (a,m, ε1, ε2; q, z),

(6.15)

where β ∈ {1, 2} is the choice of the vacuum of the gauged linear sigma model on the
orbifold surface defect, realized by the Z2-coloring. We have seen that the exponent of the
complexified FI parameter z satisfies 0 < |q| < |z| < 1. The classical part of the partition
function is simply

ΨZ2,classical
β (a, ε1, ε2; q, z) = z

−
aβ−aβ̄

2ε2 q
−
a2
β

+a2
β̄

2ε1ε2 (6.16)

and the 1-loop part is

ΨZ2,1-loop
β (a,m, ε1, ε2) =

∏
α,α′=1,2 Γ2(aα − aα′ ; ε1, ε2)∏

α=1,2
∏4
i=1 Γ2(aα −mi; ε1, ε2)

∏
i=1,2 Γ1(aβ −mi; ε2)

Γ1(aβ − aβ̄ ; ε2) . (6.17)

The instanton part is given by

ΨZ2,non-pert
β (a,m, ε1, ε2; q, z)

=
∑
Λ

q|Λ|E [T [Λ]] (6.18)

×
∑

λ∈ρ−1(Λ)
zk1−k0E [(K∗1 −K∗0 )(N1 − P2K1 + q1P2K0 −M1) + q2N

∗
0 (K1 − q1K0)] .

The blowup formula (6.13) in the absence of the flux k = 0 is expected to be satisfied
by the full surface defect partition function Ψβ(a,m, ε1, ε2; q, z). By plugging the explicit
forms of the perturbative parts into the formula (6.13), we obtain the blowup formula for
the non-perturbative part of the partition function,

ΨZ2,non-pert
β (a,m,ε1,ε2;q,z) =

∑
n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)z

1
2 (nβ̄−nβ)Ln,k=0(a,m,ε1,ε2)

×
Γ
(
aβ−aβ̄
ε2

+nβ−nβ̄
)

Γ
(
aβ−aβ̄
ε2

) ∏
i=1,2

Γ
(
aβ−mi
ε2

)
Γ
(
aβ−mi
ε2

+nβ
)

×Z inst(a+nε1,m,ε1,ε2−ε1;q)ΨZ2,non-pert
β (a+nε2,m,ε1−ε2,ε2;q,z).

(6.19)

This is indeed a non-trivial identity to be satisfied by the surface defect partition function.
We checked that this identity holds in series expansion in q

z and z.
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It is possible to repeat this exercise to the case of non-zero flux k = 1, (6.14). Remark-
ably, we find another non-trivial identity satisfied by the surface defect partition function:

ΨZ2
β (a,m,ε1,ε2;q,z)

=−q−
1
4 z

1
2

1−q
1−z (6.20)

×
∑

n=(n1,n2)∈(Z+ 1
2)2

n1+n2=0

Z
(

a+nε1,m+ ε1
2 ,ε1,ε2−ε1;q

)
ΨZ2
β

(
a+nε2,m+ ε2

2 ,ε1−ε2,ε2;q,z
)
.

Note that the left hand side is non-zero but proportional to the surface defect partition
function even though the sum is taken over half-integers. We have checked this identitiy
in series expansion in q

z and z.

6.2.2 Vortex string

The vortex string surface defect in the U(2) gauge theory with four hypermultiplets can
be engineered by starting from the quiver U(2)×U(2) gauge theory and partially higgsing
the gauge group [11, 23, 24]. The surface defect partition function can be decomposed into
the classical part, the 1-loop part, and the non-perturbative part:

ΨL
β (a,m, ε1, ε2; q, z) = ΨL,classical

β (a,m, ε1, ε2; q, z)ΨL,1-loop
β (a,m, ε1, ε2)

×ΨL,non-pert
β (a,m, ε1, ε2; q, z),

(6.21)

where β ∈ {1, 2} is the choice of the vacuum of the gauged linear sigma model on the z2-
plane. Depending on the contents of the gauged linear sigma model on the z2-plane and its
coupling to the bulk gauge theory, all the pieces of the partition function vary accordingly.
Let us start from the vortex string surface defect, whose complexified FI parameter is in
the domain 0 < |q| < 1 < |z|. The classical part of the partition function is

ΨL,classical
β (a,m, ε1, ε2; q, z) = z

−
mβ−mβ̄

2ε2 q
−
a2
1+a2

2
2ε1ε2 , (6.22)

and the 1-loop part is given by

ΨL,1-loop
β (a,m, ε1, ε2) =

∏
α,α′=1,2 Γ2(aα − aα′ ; ε1, ε2)∏

α=1,2
∏4
i=1 Γ2(aα −mi; ε1, ε2)

∏
α=1,2 Γ1(aα −mβ ; ε2)

Γ1(mβ −mβ̄ ; ε2) . (6.23)

The non-perturbative part can be written out as

ΨL,non-pert
β (a,m,ε1,ε2;q,z)=

∑
λ

q|λ|E [T [λ]]
∞∑
k=0

z−k
k∏
l=1

Y(mβ+lε2)[λ]
lε2(mβ−mβ̄+lε2)

∏
�∈λ

mβ−ε1−c�
mβ−c�

.

(6.24)
The blowup formula (6.13) in the absence of the flux k = 0 is expected to be satisfied by the
full partition function Ψβ(a,m, ε1, ε2; q, z). We can convert this equation to a non-trivial
identity satisfied by the non-perturbative part, by explicitly substituting the perturbative
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part. The result is

ΨL,non-pert
β (a,m, ε1, ε2; q, z)

=
∑

n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)Ln,k=0(a,m, ε1, ε2)

∏
γ=1,2

Γ
(
aγ−mβ
ε2

)
Γ
(
aγ−mβ
ε2

+ nγ
)

×Z inst(a + nε1,m, ε1, ε2 − ε1; q)ΨL,non-pert
β (a + nε2,m, ε1 − ε2, ε2; q, z).

(6.25)

This is indeed a non-trivial identity to be satisfied by the surface defect partition function.
We have checked this identity in series expansion in q and z−1.

We can do a similar exercise to the case of non-zero flux k = 1. We find another
non-trivial identity:

ΨL
β (a,m,ε1,ε2;q,z)

= q−
1
4 (1−q) (6.26)

×
∑

n=(n1,n2)∈(Z+ 1
2)2

n1+n2=0

Z
(

a+nε1,m+ ε1
2 ,ε1,ε2−ε1;q

)
ΨL
β

(
a+nε2,m+ ε2

2 ,ε1−ε2,ε2;q,z
)
.

Note that the left hand side is non-zero but proportional to the surface defect partition
function even though the summation is taken over half-integers. We have checked this
identitiy in series expansion in q and z−1.

Next, let us turn to the vortex string surface defect whose complexified FI parameter is
in the domain 0 < |z| < |q| < 1. The surface defect partition function is again decomposed
into the classical part, the 1-loop part, and the non-perturbative part:

ΨR
β (a,m, ε1, ε2; q, z) = ΨR,classical

β (a,m, ε1, ε2; q, z)ΨR,1-loop
β (a,m, ε1, ε2)

×ΨR,non-pert
β (a,m, ε1, ε2; q, z),

(6.27)

where β ∈ {1, 2} is the choice of the vacuum of the gauged linear sigma model on the
z2-plane. The classical part is given by

ΨR,classical
β (a,m, ε1, ε2; q, z) = z

−
mβ+2−mβ̄+2

2ε2 q
−
a2
1+a2

2
2ε1ε2 , (6.28)

and the 1-loop part is given by

ΨR,1-loop
β (a,m, ε1, ε2) =

∏
α,α′=1,2 Γ2(aα − aα′ ; ε1, ε2)∏

α=1,2
∏4
i=1 Γ2(aα −mi; ε1, ε2)

∏
α=1,2 Γ1(mβ+2 + ε− aα; ε2)

Γ1(mβ+2 −mβ̄+2; ε2) .

(6.29)
Finally, the non-perturbative part is given by

ΨR,non-pert
β (a,m, ε1, ε2; q, z) (6.30)

=
∑
λ

q|λ|E
[
T ′A1 [λ]

] ∞∑
k=0

(
z

q

)k k∏
l=1

Y′(−mβ+2 − ε+ lε2) [λ]
P ′3(−mβ+2 + ε+ lε2)

∏
�∈λ

−mβ+2 − ε− ε1 − c′�
−mβ+2 − ε− c′�

.
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We expect the full surface defect partition function to satisfy the blowup formula (6.13)
in the absence of the flux k = 0. In fact, we observe there is a slight deviation from this
naive expectation, and the equality holds with an additional multiplicative prefactor:

ΨR
β (a,m, ε1, ε2; q, z)

= (1− q)
ε2
(

2a1+2a2−2ε−2ε1−
∑4

i=1 mi
)

ε1(ε1−ε2) (6.31)

×
∑

n=(n1,n2)∈Z2

n1+n2=0

Z(a + nε1,m + ε1, ε1, ε2 − ε1; q)ΨR
β (a + nε2,m + ε2, ε1 − ε2, ε2; q, z).

Reducing this formula to the one for the non-perturbative part, we obtain

ΨR,non-pert
β (a,m, ε1, ε2; q, z)

= (1− q)
ε2
(

2a1+2a2−2ε−2ε1−
∑4

i=1 mi
)

ε1(ε1−ε2)

×
∑

n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)Ln,k=0 ∏

γ=1,2

Γ
(
mβ+2+ε−aγ

ε2

)
Γ
(
mβ+2+ε−aγ

ε2
− nγ

) (6.32)

×Z inst(a + nε1,m + ε1, ε1, ε2 − ε1; q)ΨR,non-pert
β (a + nε2,m + ε2, ε1 − ε2, ε2; q, z).

This blowup formula looks more natural when all the masses are re-defined to be anti-
fundamentals. Let us define m′ =

(
m′f

)4

f=1
= (mf + ε)4

f=1. Then the above blowup
formula can be expressed as

ΨR,non-pert
β (a,m′, ε1, ε2; q, z)

= (1− q)
ε2
(

2a1+2a2+2ε2−
∑4

i=1 m
′
i

)
ε1(ε1−ε2)

×
∑

n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)L′

n,k=0 ∏
γ=1,2

Γ
(
m′β+2−aγ

ε2

)
Γ
(
m′
β+2−aγ
ε2

− nγ
)

×Z inst(a + nε1,m′, ε1, ε2 − ε1; q)ΨR,non-pert
β (a + nε2,m′, ε1 − ε2, ε2; q, z).

(6.33)

In particular, there is no shift in the new mass parameters. The L′ here is the ratio of bulk
1-loop contributions with anti-fundamentals,

L′
n,k(a,m, ε1, ε2) (6.34)

:=
Z ′1-loop

(
a + nε1,m′ − k

2ε1, ε1, ε2 − ε1
)
Z ′1-loop

(
a + nε2,m′ − k

2ε2, ε1 − ε2, ε2
)

Z ′1-loop (a,m′, ε1, ε2)
,

where the 1-loop part of the bulk partition function with anti-fundamentals is

Z ′1-loop (a,m′, ε1, ε2
)

=
∏
α,β=1,2 Γ2(aα − aβ ; ε1, ε2)∏
α=1,2
i=1,··· ,4

Γ2(m′i − aα; ε1, ε2) . (6.35)
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For the case of the non-zero flux k = 1, similarly, we have

ΨR
β (a,m,ε1,ε2;q,z)

= (1−q)1+
ε2
(

2a1+2a2−2ε−
∑4

i=1mi
)

ε1(ε1−ε2) (6.36)

×
∑

n=(n1,n2)∈(Z+ 1
2)2

n1+n2=0

Z
(

a+nε1,m+ ε1
2 ,ε1,ε2−ε1;q

)
ΨR
β

(
a+nε2,m+ ε2

2 ,ε1−ε2,ε2;q,z
)
.

In terms of the partition functions with anti-fundamentals, this blowup formula can also
be written as

ΨR
β (a,m′,ε1,ε2;q,z)

= (1−q)1+
ε2
(

2a1+2a2+2ε−
∑4

i=1m
′
i

)
ε1(ε1−ε2) (6.37)

×
∑

n=(n1,n2)∈(Z+ 1
2)2

n1+n2=0

Z
(

a+nε1,m′−
ε1
2 ,ε1,ε2−ε1;q

)
ΨR
β

(
a+nε2,m′−

ε2
2 ,ε1−ε2,ε2;q,z

)
.

6.2.3 Analytic continuations and blowup formulas

As we have learned in section 3.1, the surface defect partition functions are expressed
as series expansions in certain convergence domains, either when they are engineered by
orbifolding or partial higgsing. Accordingly, the blowup formulas for the surface defect
partition functions that we have seen in the previous discussion were checked in specific
convergence domains, where the very surface defect partition functions lie in. Meanwhile,
we also have seen the analytic continuations across those convergence domains connect
different surface defect partition functions through connection formulas. Thus a natural
question that arises is whether the validity of the blowup formulas is not affected across
different convergence domains.

The expectation is naturally that the blowup formulas in different convergence domains
connect to each other by the connection formulas for the surface defect partition functions.
Hence, this is also a non-trivial check on the validity of the blowup formulas for the surface
defect partition functions, in the sense that the blowup formulas are grouped together by if
and only conditions. In what follows, we explain that the naive expectation is indeed true.

Let us begin with the Z2-orbifold surface defect, whose expectation value converges in
the domain 0 < |q| < |z| < 1. When there is no flux through the exceptional divisor, the
blowup formula reads

ΨZ2,non-pert
β (a,m, ε1, ε2; q, z) =

∑
n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)z

1
2 (nβ̄−nβ)Ln,k=0(a,m, ε1, ε2)

×
Γ
(
aβ−aβ̄
ε2

+ nβ − nβ̄
)

Γ
(
aβ−aβ̄
ε2

) ∏
i=1,2

Γ
(
aβ−mi
ε2

)
Γ
(
aβ−mi
ε2

+ nβ
) (6.38)

×Z inst(a + nε1,m, ε1, ε2 − ε1; q)ΨZ2,non-pert
β (a + nε2,m, ε1 − ε2, ε2; q, z).
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As we have seen in section 5.3.1, we need to multiply an appropriate connection matrix
to make use of the connection formula corresponding to the adiabatic flow of the surface
defect on the z2-plane.8 We multiply entries of the connection matrix C(2)

∞ to the blowup
equation to yield(

C(2)
∞ (a,m, ε2)

)
αβ

ΨZ2,non-pert
β (a,m, ε1, ε2; q, z)

=
∑

n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)z−

1
2 (nβ−nβ̄)Ln,k=0(a,m, ε1, ε2)

×
Γ
(
aβ−aβ̄
ε2

+ nβ − nβ̄
)

Γ
(
aβ−aβ̄
ε2

) ∏
i=1,2

Γ
(
aβ−mi
ε2

)
Γ
(
aβ−mi
ε2

+ nβ
)

(
C(2)
∞ (a,m, ε2)

)
αβ(

C(2)
∞ (a + nε2,m, ε2)

)
αβ

×Z inst(a + nε1,m, ε1, ε2 − ε1; q)

×
(
C(2)
∞ (a + nε2,m, ε2)

)
αβ

ΨZ2,non-pert
β (a + nε2,m, ε1 − ε2, ε2; q, z).

(6.39)

A straightforward computation shows that the ratio of Γ-functions in the middle simplifies
to

Γ
(
aβ−aβ̄
ε2

+nβ−nβ̄
)

Γ
(
aβ−aβ̄
ε2

) ∏
i=1,2

Γ
(
aβ−mi
ε2

)
Γ
(
aβ−mi
ε2

+nβ
)

(
C(2)
∞ (a,m,ε2)

)
αβ(

C(2)
∞ (a+nε2,m,ε2)

)
αβ

=
∏
γ=1,2

Γ
(
aγ−mα
ε2

)
Γ
(
aγ−mα
ε2

+nγ
) .

(6.40)
In particular, this expression is independent of β. The blowup formula thus becomes(

C(2)
∞ (a,m, ε2)

)
αβ

ΨZ2,non-pert
β (a,m, ε1, ε2; q, z)

=
∑

n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)z−

1
2 (nβ−nβ̄)Ln,k=0(a,m, ε1, ε2)

∏
γ=1,2

Γ
(
aγ−mα
ε2

)
Γ
(
aγ−mα
ε2

+ nγ
)

×Z inst(a + nε1,m, ε1, ε2 − ε1; q)

×
(
C(2)
∞ (a + nε2,m, ε2)

)
αβ

ΨZ2,non-pert
β (a + nε2,m, ε1 − ε2, ε2; q, z).

(6.41)

To make use of the connection formula , we need to multiply appropriate prefactors to the
non-perturbative part of the surface defect partition functions on both sides and take the
sum over β = 1, 2. Then we may continue the complexified FI parameter to the domain
0 < |q| < 1 < |z|, where the left hand side becomes the vortex string surface defect
partition functions. The ratio of additional prefactors just mentioned miraculously cancels
the z factor inside the summation, so that the sum over β = 1, 2 on the right hand side
also gives a vortex string surface defect partition function with the shifts in the arguments.

8In section 5.3.1 we considered the analytic continuation of the intersecting surface defect partition func-
tions. Here we have a surface defect only on the z2-plane, but the connection formulas and the connection
matrices for the analytic continuation are exactly the same. See [11].
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Hence we arrive at the blowup formula for this surface defect partition function:

ΨL,non-pert
α (a,m, ε1, ε2; q, z)

=
∑

n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)Ln,k=0(a,m, ε1, ε2)

∏
γ=1,2

Γ
(
aγ−mα
ε2

)
Γ
(
aγ−mα
ε2

+ nγ
)

×Z inst(a + nε1,m, ε1, ε2 − ε1; q)ΨL,non-pert
α (a + nε2,m, ε1 − ε2, ε2; q, z).

(6.42)

This is precisely the blowup formula (6.25) for the vortex string surface defect partition
function in the domain 0 < |q| < 1 < |z| suggested in the previous section.

Similarly, we can also analytically continue the blowup formula for the orbifold surface
defect partition function to the domain 0 < |z| < |q| < 1. This procedure is a bit more
involved compared to the previous case due to a non-trivial shift in the Coulomb moduli.
To make use of the connection formula, let us shift the Coulomb moduli and multiply the
entries of the connection matrix C(2)

0 to the blowup formula (6.19):(
C(2)

0 (a,m,ε2)
)
αβ

ΨZ2,non-pert
β (a−δε1,m,ε1,ε2;q,z)

=
∑

n=(n1,n2)∈Z2

n1+n2=0

q
1
2 (n2

1+n2
2)z

1
2 (nβ̄−nβ)Ln,k=0(a−δε1,m,ε1,ε2) (6.43)

×
Γ
(
aβ−aβ̄−ε1

ε2
+nβ−nβ̄

)
Γ
(
aβ−aβ̄−ε1

ε2

) ∏
i=1,2

Γ
(
aβ−mi−ε1

ε2

)
Γ
(
aβ−mi−ε1

ε2
+nβ

)
(
C(2)

0 (a,m,ε2)
)
αβ(

C(2)
0 (a+(n−δ)ε2,m,ε2)

)
αβ

×Z inst(a+(n−δ)ε1,m,ε1,ε2−ε1;q)

×
(
C(2)

0 (a+(n−δ)ε2,m,ε2)
)
αβ

ΨZ2,non-pert
β (a+(n−δ)ε2−δ(ε1−ε2),m,ε1−ε2,ε2;q,z),

where δ = (δαβ)α=1,2. Now a straightforward computation shows that

Ln,k=0(a − δε1,m, ε1, ε2)
Ln−δ,k=0(a − δε1,m, ε1, ε2)

Γ
(
aβ−aβ̄−ε1

ε2
+ nβ − nβ̄

)
Γ
(
aβ−aβ̄−ε1

ε2

)
∏
i=1,2

Γ
(
aβ−mi−ε1

ε2

)
Γ
(
aβ−mi−ε1

ε2
+ nβ

)
(
C(2)

0 (a,m, ε2)
)
αβ(

C(2)
0 (a + (n− δ)ε2,m, ε2)

)
αβ

=
∏
γ=1,2 Γ

(
mα+2+ε−aγ

ε2

)
Γ
(
mα+2+ ε2

2 +ε1−aβ
ε2

− nβ + 1
2

)
Γ
(
mα+2+ ε2

2 +ε1−aβ̄
ε2

− nβ̄ −
1
2

)

=
∏
γ=1,2

Γ
(
mα+2+ε−aγ

ε2

)
Γ
(
mα+2+ ε2

2 +ε1−aγ
ε2

− n′γ
) ,

(6.44)

where we introduced half-integers n′β = nβ − 1
2 and n′

β̄
= nβ̄ + 1

2 . Note that this expression
becomes independent of β. Now we multiply the prefactor introduced in section 4.1.1 and
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take the sum over β = 1, 2 in the both sides of the blowup equation. The left hand side
becomes the vortex string surface defect partition function by the analytic continuation.
On the right hand side, the z factor inside the sum miraculously cancels due to the ratio of
prefactors, and the sum over β = 1, 2 also yields the vortex string surface defect partition
function with the shifted arguments. All in all, we get

ΨR,non-pert
α (a,m, ε1, ε2; q, z)

= (1− q)1+
ε2
(

2a1+2a2−2ε−
∑4

i=1 mi
)

ε1(ε1−ε2) (6.45)

×
∑

n=(n1,n2)∈(Z+ 1
2)2

n1+n2=0

q
1
2 (n2

1+n2
2)− 1

4Ln,k=1(a,m, ε1, ε2)
∏
γ=1,2

Γ
(
mα+2+ε−aγ

ε2

)
Γ
(
mα+2+ ε2

2 +ε1−aγ
ε2

− nγ
)

×Z inst
(

a + nε1,m + ε1
2 , ε1, ε2 − ε1; q

)
ΨR,non-pert
α

(
a + nε2,m + ε2

2 , ε1 − ε2, ε2; q, z
)
.

This is precisely the blowup formula (6.36) for the vortex string surface defect partition
function in the domain 0 < |z| < |q| < 1 with non-zero flux. Amazingly, we recovered
the blowup formula with non-zero flux (half-integer sum) from the blowup formula with
zero flux (integer sum). The prefactor in front also comes out correctly as suggested in the
previous section.

We can alternatively start from the blowup formula (6.20) for the orbifold surface
defect partition function with non-zero flux, and analytically continue to the domain 0 <
|q| < 1 < |z| or 0 < |z| < |q| < 1. A straightforward computation similar to the one just
described shows that it analytically continues to the blowup formulas (6.26) and (6.31)
for the vortex string surface defect partition functions, respectively. Note in particular we
recover a blowup formula with zero flux (6.31) (integer sum) from a blowup formula with
non-zero flux (6.20) (half-integer sum).

7 Isomonodromic tau functions: connecting the NS limit and the self-
dual limit

In this section, we finally derive the main conjecture of [7] relating the isomonodromic
tau functions to the self-dual limit (ε1 = −ε2) of the gauge theory partition functions. In
particular, we show that the NS limit (ε2 → 0) of the blowup formula for the surface defect
partition functions leads to the conjectured statement. In this sense, the blowup formula
connects the NS limit and the self-dual limit of the gauge theory partition function, thereby
explaining the mysterious fact that the same isomonodromic tau function emerges in both
limits.

7.1 Painlevé VI tau function

As we have studied in section 6.2, the blowup formula reads

Ψ(a,m, ε1, ε2; q, z) =
∑
n∈Z
Z(a+ nε1,m, ε1, ε2 − ε1; q)Ψ(a+ nε2,m, ε1 − ε2, ε2; q, z), (7.1)
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for any value of z. We are omitting a prefactor which for z in the domain 0 < |z| < |q| < 1
approaches 1 in the NS limit ε2 → 0. We have seen in section 4.2 that the ε2 → 0
asymptotics of the vev of the surface defect is

Ψ(a,m, ε1, ε2; q, z) = exp
[
ε1
ε2
S(a,m, ε1; q, z) + · · ·

]
. (7.2)

When we take the limit ε2 → 0 to the blowup formula, the singular terms (expO(ε−1
2 ))

cancel each other, but due to the ε1-shifts in the arguments the regular terms leave a
non-trivial equation. We are led to

e
S+ε1 ∂S

∂ε1 =
∑
n∈Z

enε1
∂S
∂aZ(a+ nε1,m, ε1,−ε1; q). (7.3)

Note that on the right hand side we have an infinite sum of SU(2) gauge theory partition
functions on the self-dual Ω-background with the integer shifts in the Coulomb modulus.
Since the Ω-background parameter ε1 only plays the role of the mass scale, we define the
following massless parameters

α := a

ε1
, θ0 := m3 −m4

2ε1
, θq := m3 +m4

2ε1
, θ1 := m1 +m2

2ε1
, θ∞ := m1 −m2

2ε1
. (7.4)

We denote Z(α+ n,θ; q) := Z(a+ nε1,m, ε1,−ε1; q).
The equation (7.3) is valid for any z. To relate this equation to the isomonodromic

tau function, we consider the isomonodromic flow z(q) which preserves the monodromy
of the associated Fuchsian system. In other words, we consider the symplectomorphism
generated by S̃(α, z, θ; q),

p = ∂S̃

∂z
, β = ∂S̃

∂α
. (7.5)

As we have seen in section 5.4, α and β parametrize the monodromy data of the Fuchsian
system. The isomonodromic flow z(q) and p(q) are thus determined by requiring α and β
to be constants of motion. By taking the time derivative to the second equation, we get

0 = dβ

dq
=
(
∂

∂α

∂S̃

∂q

)∣∣∣∣∣
z=z(q)

+ ∂2S̃

∂α∂z

∣∣∣∣∣
z=z(q)

dz(q)
dq

= ∂2S̃

∂α∂z

∣∣∣∣∣
z=z(q)

−∂H+(z, p; q)
∂p

∣∣∣∣∣z=z(q)
p=p(q)

+ dz(q)
dq

 , (7.6)

where we have used ∂S̃
∂q = −H+

(
z, ∂S̃∂z ; q

)
in the second line. Also we can take the time

derivative to the first equation to obtain

dp(q)
dq

=
(
∂

∂z

∂S̃

∂q

)∣∣∣∣∣
z=z(q)

+ ∂2S̃

∂z2

∣∣∣∣∣
z=z(q)

dz(q)
dq

= − ∂H+(z, p; q)
∂z

∣∣∣∣∣z=z(q)
p=p(q)

,

(7.7)
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where we have used ∂S̃
∂q = −H+

(
z, ∂S̃∂z ; q

)
in the second line. In other words, the isomon-

odromic flow z(q) and p(q) are solutions to the Hamiltonian equations of motion, as they
should be. The constants of motion α and β can be regarded as the integration constants
of these equations.

Now we restrict the equation (7.3) to z = z(q). Then, noting that ∂S
∂α = ∂S̃

∂α = β since
the prefactor for the effective twisted superpotential does not depend on the Coulomb
moduli α = a

ε1
, we have

τ(q) := e

(
S+ε1 ∂S

∂ε1

)∣∣∣
z=z(q) =

∑
n∈Z

enβZ(α+ n,θ; q), (7.8)

where α and β are now constants which parametrize the monodromies of the associated
Fuchsian system. We claim that the left hand side of this equation can indeed be identified
as the Painlevé VI tau function.

Before we present the proof of the statement, let us examine the expression written on
the right hand side. The gauge theory partition function Z(α,θ; q) is the product of the
classical part, the 1-loop part, and the instanton part:

Z(α,θ; q) = Zcl(α; q)Z1-loop(α,θ)Z inst(α,θ; q). (7.9)

The classical part is simply
Zcl(α; q) = qα

2
, (7.10)

while the 1-loop part is given as

Z1-loop(α,θ) =
∏
±

Γ2(±2αε1; ε1,−ε1)∏4
i=1 Γ2(±αε1 −mi; ε1,−ε1)

= 1
(2π)3−2θq−2θ1

∏
±

∏
ε=±G(1± α− θq + εθ0)G(1± α− θ1 + εθ∞)

G(1± 2α) ,

(7.11)

where we used (C.3) in the second equality. The constant prefactor in front is not very
important, and can be absorbed into the definition of τ(q). Lastly the instanton part is
given as

Z inst(α,θ; q) =
∑
λ,µ

q|λ|+|µ|
∏

(i,j)∈λ

((α+ i− j − θ1)2 − θ2
∞)((α+ i− j − θq)2 − θ2

0)
h2
λ(i, j)(−2α+ 1− i− j + µi + λtj)2

×
∏

(i,j)∈µ

((−α+ i− j − θ1)2 − θ2
∞)((−α+ i− j − θq)2 − θ2

0)
h2
µ(i, j)(2α+ 1− i− j + λi + µtj)2 ,

(7.12)

where λ and µ are Young diagrams, λt is the transpose of λ, and hλ(i, j) := λi−j+1−i+λtj
is the hook length of (i, j) ∈ λ.

Now we prove that the left hand side of (7.8) satisfies the defining relation for the
tau function. In other words, we take the derivative d

dq log τ(q) and show that it indeed
reproduces the right hand side of the GIL relation. First, note that there is a slight
difference between the generating function S̃ and the asymptotics S, namely,

S̃ = S + ∆S, (7.13)
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where the difference ∆S varies according to the convergence domain:

∆SL = (θ0 + θq + θ1) log z + 2θ1 log
(

1− 1
z

)
+ (θ0 + θq)2 log q

− (θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞) log(1− q),
∆SZ2 = (θ0 + θq) log z + (θ0 + θq)2 log q

− (θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞) log(1− q),

(7.14)

and thus we have
d

dq

(
S + ε1

∂S

∂ε1

)∣∣∣∣
z=z(q)

= d

dq

(
S̃ + ε1

∂S̃

∂ε1

)∣∣∣∣∣
z=z(q)

− d

dq

(
∆S + ε1

∂∆S
∂ε1

)∣∣∣∣
z=z(q)

. (7.15)

The first term can be computed as

dS̃(α, z(q),θ; q)
dq

= ∂S̃

∂q

∣∣∣∣∣
z=z(q)

+ ∂S̃

∂z

∣∣∣∣∣
z=z(q)

dz(q)
dq

= −H+(z(q), p(q); q) + p(q) ∂H
+(z, p; q)
∂p

∣∣∣∣∣z=z(q)
p=p(q)

=
[(
p
∂

∂p
− 1

)
H+(z, p; q)

]∣∣∣∣z=z(q)
p=p(q)

,

(7.16)

where we have used the equation of motion (7.6) for the second equality. Also, the second
term in (7.15) can be computed as

d

dq

(
ε1
∂S̃

∂ε1

)∣∣∣∣∣
z=z(q)

=
(
ε1

∂

∂ε1

∂S̃

∂q

)∣∣∣∣∣
z=z(q)

+ ε1
∂2S̃

∂ε1∂z

∣∣∣∣∣
z=z(q)

dz(q)
dq

=−
[
ε1

∂

∂ε1
H+

(
z,
∂S̃

∂z
;q
)]∣∣∣∣∣

z=z(q)
+ ε1

∂2S̃

∂ε1∂z

∣∣∣∣∣
z=z(q)

dz(q)
dq

=−ε1
∂H+(z,p;q)

∂ε1

∣∣∣∣∣z=z(q)
p=p(q)

+ ε1
∂2S̃

∂ε1∂z

∣∣∣∣∣
z=z(q)

dz(q)
dq
− ∂H

+(z,p;q)
∂p

∣∣∣∣∣z=z(q)
p=p(q)


=−ε1

∂H+(z,p;q)
∂ε1

∣∣∣∣∣z=z(q)
p=p(q)

, (7.17)

where we used the equation of motion (7.6) in the last line. Finally, a simple computation
shows that

d

dq

(
∆S + ε1

∂∆S
∂ε1

)∣∣∣∣
z=z(q)

= −(θ0 + θq)2

q
− (θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞)

1− q
,

(7.18)
for both expressions in (7.14). All in all, we have

d

dq
log τ(q) =

[(
p
∂

∂p
− ε1

∂

∂ε1
− 1

)
H+(z, p; q)

]∣∣∣∣z=z(q)
p=p(q)

+ (θ0 + θq)2

q
+ (θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞)

1− q
.

(7.19)
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Note that the Painlevé VI Hamiltonian H+(z, p; q) is decomposed into a term quadratic
in p, a term linear in p, and a p-independent term. The quadratic term changes the sign
due to the p∂p − 1 operation. The p-independent term also changes the sign due to the
−ε1∂ε1 − 1 operation, since it is quadratic in θ-parameters. At last, the p-linear term also
changes the sign because this term is also linear in θ-parameters. Therefore, we obtain
d

dq
log τ(q) = H+(z(q), p(q); q) + (θ0 + θq)2

q
+ (θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞)

1− q
.

(7.20)
Thus we have proven that τ(q) is indeed the Painlevé VI tau function. The terms on
the right hand side other than the Hamiltonian are only rational functions of time q, and
therefore could have been absorbed into the ambiguity of the definition of the tau function
itself. In [25] a general argument about the tau-functions non-stationary integrable systems
with Hamiltonians quadratic in momenta is presented.

Remark. In the domain 0 < |z| < |q| < 1, we cannot directly use the blowup for-
mula (6.31) due to the shift in the fundamental masses. Instead, we can re-define the
masses to the ones for the anti-fundamentals and use the blowup formula (6.33), where
there is no shift for the masses. Even though the fundamentals and anti-fundamentals
appear differently in the gauge theory partition function, they do in the self-dual limit of
the Ω-background. Hence, by taking the limit ε2 → 0 to this blowup formula we recover
the same expression for the tau function,

τ(q) =
∑
n∈Z

enβZ(α+ n,θ; q), (7.21)

where the q-derivative gives
d

dq
logτ(q) =H ′

+(z(q),p(q);q)

− z(q)(z(q)−q)(z(q)−1)
q(q−1) p(q)

( 1
z(q)−q

+ 1
z(q)−1

)
+ 2z(q)(θ0 +θq+θ1−1)

q(q−1)

+ (θ0 +θq)2

q
+ (θ0 +θq+θ1 +θ∞)(θ0 +θq+θ1−θ∞)

1−q
. (7.22)

It is important to note that the Hamiltonian is still different from H+(z, p; q) due to the
fact that we have used anti-fundamental masses. In particular, the Hamiltonian here is

H ′
+(z, p; q) = z(z − q)(z − 1)

q(q− 1) p

(
p− 2θ0

z
− 2θq − 1

z − q
− 2θ1 − 1

z − 1

)
+ z(θ0 + θq + θ1 + θ∞ − 1)(θ0 + θq + θ1 − θ∞ − 1)

q(q− 1) .

(7.23)

Then (z(q), p(q)) is a solution to the Hamiltonian equation of motion, i.e., isomonodromic
flow generated by this Hamiltonian. Compared to the Hamiltonian H(w, pw; q), there is
half-integer shifts in the θ-parameters,

θ1 −→ θ1 −
1
2

θ∞ −→ θ∞ −
1
2 .

(7.24)
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7.2 Okamoto transformations

The relation that we derived in (7.20) is not precisely in the form written down in [28].
This is because the isomonodromic flow z(q) that we obtained from the gauge theory is
not identical to the isomonodromic flow considered there. Here, we explain how these
two distinct isomonodromic flows are related to each other by an Okamoto transformation
(namely, a Bäcklund transformation for Painlevé VI, see [25] for more discussion), and how
this procedure directly recovers the exact form of the GIL relation from (7.20).9

7.2.1 Okamoto transformation and the Painlevé VI tau function

We have seen in section 4.3 that the complexified FI parameter z(q) of the surface defect
obeys Painlevé VI when the monodromies of the corresponding Fuchsian system are con-
stant. The main problem is the monodromy parameters which define this isomonodromic
flow z(q) are slightly different from the monodromy parameters which define the isomon-
odromic flow, say, w(q) considered in [28]. In fact, from w(q) to z(q) the θ-parameters
change as

θq −→ θq + 1
2

θ∞ −→ θ∞ −
1
2 .

(7.25)

This can be easily checked by directly comparing the Painlevé VI Hamiltonians which
define the flows z(q) and w(q). To recover the GIL relation as written in [28], we need
to find the transformation rule between (z(q), p(q)) and (w(q), pw(q)), and re-express the
Hamiltonian H(z(q), p(q); q) in terms of (w(q), pw(q)).

The transformation of Painlevé system with respect to the shift (7.25) was studied
in [35]. It corresponds to one of the Okamoto transformations of Painlevé VI. The full group
of Okamoto transformations is isomorphic to the affine Weyl group of F4. Its subgroup
corresponding to the D̂4 can be seen in the quiver description of the moduli space of flat
SL(2)-connections on the 4-punctured sphere (it also related to the Spin(8) R-symmetry
group of the SU(2) gauge theory with 4 fundamental hypers).

Below we describe how the relevant Okamoto transformation is accounted for in our
expression of the Painlevé tau function.

Let us be given with a solution (w(q), pw(q)) of the Painlevé VI system:

dw(q)
dq

= ∂H

∂pw
,

dpw(q)
dq

= −∂H
∂w

, (7.26)

where
H(w, pw; q) = w(w − q)(w − 1)

q(q− 1) pw

(
pw −

2θ0
w
− 2θq − 1

w − q
− 2θ1
w − 1

)
+ w(θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞ − 1)

q(q− 1) .

(7.27)

9In [25] a slightly different route, using the orbifold surface defect, is taken, leading to the GIL relation
in a more direct way.
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We define an auxiliary function h(q):

h(q) := q(q− 1)H(w(q), pw(q); q)− q (θ0 + θ1)2

− 1
2
(
θ2

0 − θ2
1 + 2θ0(2θq − 1) + (θq + θ∞)(θq − θ∞ − 1)

)
.

(7.28)

Then it was proven in [35] that h(q) satisfies the following nonlinear ordinary differential
equation:

dh

dq

[
q(1− q)d

2h

dq2

]2

+
[
dh

dq

(
2h− (2q− 1)dh

dq

)
+ (θ2

0 − θ2
1)(θ2

q − θ2
∞ − θq − θ∞)

]2
(7.29)

=
(
dh

dq
+ (θ0 + θ1)2

)(
dh

dq
+ (θ0 − θ1)2

)(
dh

dq
+ (θq + θ∞)2

)(
dh

dq
+ (θq − θ∞ − 1)2

)
.

In other words, we can say a solution (w(q), pw(q)) to Painlevé VI provides a solution h(q)
to (7.29). In fact, the converse is also true: given a solution h(q) to (7.29), we can construct
solutions w(q) and pw(q) to Painlevé VI as rational functions of h, dh

dq , and
d2h
dq2 [35]. In

this sense, we have a one-to-one birational correspondence Γ between the solution spaces
of the two equations:

Γ(h(q)) = (w(q), pw(q)). (7.30)

Let us now consider the shift (7.25). We apply this shift to (7.29) and find that the
following h+(q) satisfies this shifted equation [35],

h+ = h− w(w − 1)pw + (θ0 + θq + θ1 + θ∞)w − 1
2(2θ0 + θq + θ∞). (7.31)

By applying the birational correspondence Γ to h+, we obtain a solution (z(q), p(q)) to
Painlevé VI with the shift (7.25). Since h+ is written in terms of w and pw, we obtain a
birational transformation from (w(q), pw(q)) to (z(q), p(q)) accordingly.

This birational transformation is quite lengthy and complicated, so it will not be explic-
itly written here. Nevertheless, we can easily obtain the expression of the new Hamiltonian
H+(z(q), p(q); q) in terms of the original variables w(q) and pw(q), by combining (7.28)
and (7.31):

H+(z(q), p(q); q) = H(w(q), pw(q); q)− w(q)(w(q)− 1)
q(q− 1) pw(q) + w(q)(θ0 + θq + θ1 + θ∞)

q(q− 1) .

(7.32)
Substituting this to the relation (7.20) derived in the previous section, we finally obtain

d

dq
log τ(q) = H(w(q), pw(q); q)− w(q)(w(q)− 1)

q(q− 1) pw(q) + w(q)(θ0 + θq + θ1 + θ∞)
q(q− 1)

+ (θ0 + θq)2

q
+ (θ0 + θq + θ1 + θ∞)(θ0 + θq + θ1 − θ∞)

1− q
.

(7.33)

This is precisely the GIL relation written in [28].

– 68 –



J
H
E
P
1
2
(
2
0
2
0
)
0
0
6

Remark. In the domain 0 < |z| < |q| < 1, we have another Hamiltonian
H ′+(z, p; q) (7.23). Just as what we have done above, we may re-express z(q), p(q), and
H ′+(z(q), p(q); q) in terms of w(q) and pw(q) by taking account of the Okamoto transfor-
mation from (w, pw) to (z, p), which involves the half-integer shifts in θ-parameters,

θ1 −→ θ1 −
1
2

θ∞ −→ θ∞ −
1
2 .

(7.34)

Then we may substitute this expression into (7.22), recovering the GIL expression (7.33)
for the isomonodromic tau function.

7.2.2 The Okamoto maps of monodromy data

In making the Okamoto transformation from (w(q), pw(q)) to (z(q), p(q)) corresponding to
the shift (7.25), we have not yet specified which new solution a given solution is mapped
to under the transformation. In other words, we only argued the function h+(q) (7.31)
provides a solution to the equation (7.29) with the shifted θ-parameters, but it is a partic-
ular solution in the two-dimensional solution space. When the birational correspondence
Γ is applied, this ambiguity is passed to the integration constants α and β for the isomon-
odromic flow (z(q), p(q)).

The question can be rephrased in the context of the Riemann-Hilbert correspondence
as follows. The Riemann-Hilbert map sends the solution (w(q), pw(q)) of the Painlevé VI
system to a point in the moduli space Mq(θ) of SL(2) flat connections on the four punctured
sphere, with the conjugacy classes for small loops around the punctures fixed in terms of
the θ-parameters. The Okamoto transformation (z(q), p(q)) of (w(q), pw(q)) is a solution of
a new Painlevé VI system. The latter is sent, by the Riemann-Hilbert map, to an element
of the SL(2)-monodromy space Mq

(
θ0, θq + 1

2 , θ1, θ∞ − 1
2

)
. It is similar to the original

monodromy space altough the shifts in the θ-parameters as (7.25) imply these moduli
spaces are not isomorphic as symplectic varieties. The problem is to find the element in
this monodromy space obtained from the procedure described so far, i.e., to study how the
push-forward of the Okamoto transformation with respect to the Riemann-Hilbert map
acts on the monodromy space.

It is important to properly answer this question to precisely identify the meaning of α
and β appearing on the right hand side of the GIL relation,

τ(q) =
∑
n∈Z

enβZ(α+ n,θ; q). (7.35)

Recall from section 5 that α and β parametrize the monodromies of the Fuchsian system
associated to (z(q), p(q)) by (5.80) and (5.88), namely,

TrMA = −2 cos 2πα (7.36)
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and

TrMB = (− cos 2πθ∞ + cos 2πθ1) (cos 2πθ0 − cos 2πθq)
2 sin2 πα

− (cos 2πθ∞ + cos 2πθ1) (cos 2πθ0 + cos 2πθq)
2 cos2 πα

+
∑
±

4
∏
ε=± sin π(∓α− θq + εθ0) sin π(∓α− θ1 + εθ∞)

sin2 2πα
e±β .

(7.37)

The question is how the monodromies of the Fuchsian system associated to (w(q), pw(q))
are parametrized by α and β. This is indeed a non-trivial problem, but in [43] it was shown
that the answer is in fact very simple.10 We just have to undo the half-integer shifts (7.25)
in the above formulas, yielding

TrMA = −2 cos 2πα (7.38)

and

TrMB = (cos 2πθ∞ + cos 2πθ1) (cos 2πθ0 + cos 2πθq)
2 sin2 πα

+ (cos 2πθ∞ − cos 2πθ1) (cos 2πθ0 − cos 2πθq)
2 cos2 πα

−
∑
±

4
∏
ε=± cosπ(∓α− θq + εθ0) cosπ(∓α− θ1 + εθ∞)

sin2 2πα
e±β .

(7.39)

These formulas precisely match with the definitions of α and β parameters in [28]. Hence
we complete the derivation of the GIL relation.

8 Discussion

We have derived the conjectural expression for the isomonodromic tau function as an
infinite sum of N = 2 gauge theory partition functions by taking the NS limit of the
blowup formula for the surface defect partition function, given that the free energy of
the N = 2 gauge theory with a surface defect is the Hamilton-Jacobi potential for the
isomonodromic flow. Our method nicely connects the two independent approaches to the
isomonodromic problem, one associated to the self-dual limit and the other associated to
the NS limit of the Ω-background. It also provides a physical intuition for the origin of the
gauge theoretical expression of the isomonodromic tau function.

The obvious desirable generalizations of our story would be higher rank quiver gauge
theories on the supersymmetric side, and higher rank isomonodromy problems on higher
genus Riemann surfaces with more punctures. The relevant geometry and the conjectural
generalization of the GIL formula are described in [25]. Let us outline some issues with
these generalizations.

First of all, for the general Riemann surface the supersymmetric side is most likely
non-Lagrangian class S theory. For genus zero with 2 regular and p+1 minimal punctures,

10For more works on the action of Okamoto transformations on the monodromy space, see also [44–46].
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for SL(N) flat connections, the supersymmetric side is the quiver gauge theory with linear
quiver with p nodes, with the gauge group SU(N)p. For genus one with pminimal punctures
one gets the SU(N)p theory corresponding to the affine quiver with p nodes.

For example, already in the SU(2)p case, when the Riemann surface is the sphere with
p+ 3 punctures, we need p insertions of the surface defects, whose complexified FI param-
eters with their conjugate momenta give coordinates (zi, pi)pi=1 on the moduli spaceMflat

θ

of flat SL(2,C)-connections. Their expectation value conjecturally satisfies p differential
equations in both the bulk gauge couplings and the complexified FI parameters, whose NS
limit gives the Hamilton-Jacobi equations for the isomonodromic flows. Finally the blowup
formula for the surface defect partition function would involve a sum over a p-dimensional
lattice of the self-dual partition function of the bulk theory at the shifted Coulomb moduli.

Another interesting direction is the extension to the higher rank theory (see the appen-
dices D and F in [25]). The simplest example is the A2 theory with the Riemann sphere
with two regular punctures at 0 and∞ and two minimal punctures at q and 1, meaning that
the eigenvalues of A0, A∞ ∈ sl(3) are all distinct, while the eigenvalues of Aq, A1 ∈ sl(3) are
maximally degenerate (see the appendices D and F in [25]). The dimension of the reduced
moduli space is 4. With a proper choice of the pair of pants decomposition, the correspond-
ing class S theory is the SU(3) gauge theory with six hypermultiplets. Then we may insert
a Z3-orbifold surface defect. Two fractional couplings, say, z1 and z2, and their conjugate
momenta (the topological charges of the surface theory) would provide a local Darboux
coordinate system on the reduced moduli space of flat connections. The orbifold surface
defect partition function satisfies the Knizhnik-Zamolodchikov equation [34]. In the ε2 → 0
limit it reduces to the Hamilton-Jacobi equation [36] for the isomonodromic deformation
of the sl(3) meromorphic connection with regular (first-order) poles, with two regular and
two minimal residues. Such connection can be mapped, in a standard fashion, to a third-
order ordinary differential equation with regular singularities. The isomonodromic flow can
be, in turn, also mapped to a third-order ordinary differential equation in q. However, to
exhibit all deformations we need more parameters. On the supersymmetric gauge theory
side the additional parameter, say log(q3), comes from the Trφ3 (formal) deformation of
the microscopic prepotential (see [8]). However, we don’t quite understand the geometry
of this deformation in the two dimensional context. Informally, we should study the de-
formation of q3 as well as of q that preserves the monodromy data, except that it is not
guaranteed that with q3 turned on the relevant object still can be viewed as a meromorphic
connection. The Hamilton-Jacobi potential would be properly generalized with q3 and this
is still expected to be the free energy of the surface defect theory with an appropriate
inclusion of q3 in gauge theoretical manner. The same applies to the tau function as an
infinite sum of the bulk gauge theory partition functions.

Another aspect to be investigated is the S-duality. Strictly speaking, the GIL expres-
sion of the tau function only allows an expansion around q = 0. To achieve expansions
around other critical points, q = 1 and q =∞, we need similar expressions as infinite sum
of gauge theory partition functions, where the gauge coupling q is replaced by 1−q or q−1.
We choose different pants decomposition of the four-punctured sphere accordingly, so that
the new (α, β) coordinates which appear in the GIL-like formulas would differ from the

– 71 –



J
H
E
P
1
2
(
2
0
2
0
)
0
0
6

original ones, related to each other by canonical transformations as discussed in [9]. In the
gauge theory context, this amounts to going to the S-dual frame. It would be nice to see
whether blowup formulas for surface defect partition functions with such S-duality trans-
formations would still provide the gauge theoretical expressions for the isomonodromic tau
functions expanded in the corresponding domains of q. Indeed, the simpler versions of the
blowup formulas were used in [49] in tests of the S-duality of the N = 4 theory.

We believe the novel blowup formulas for the partition functions of the gauge theory
in the presence of surface defects deserve further analysis by themselves. Their implica-
tions in the view of the refined topological string and the quantum toroidal algebra are
unclear as of yet. In the geometric engineering of N = 2 gauge theories [47], the insertion
of half-BPS surface defects corresponds to incorporating open strings [51]. In the point of
view of the algebraic engineering [3], where the gauge theory partition function is repre-
sented as a correlation function of operators which intertwine representations of quantum
toroidal algebra, the insertion of the surface defect can be realized by properly extending
the quantum toroidal algebra [4]. It would be nice to formulate the blowup formula in
these contexts and study its implications.
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A Partition functions of N = 2 supersymmetric quiver gauge theories

We give a brief review on the partition functions of the N = 2 quiver gauge theories. For
more details on this subject, see [20–22] for example.

For an oriented graph γ, we denote the sets of its vertices and edges and Vertγ and
Edgeγ , respectively. We define s, t : Edgeγ → Vertγ as the maps which send an edge to its
source and target, respectively. For each vertex we assign two integers,

n = (ni)i∈Vertγ ∈
(
Z>0

)Vertγ
, m = (mi)i∈Vertγ ∈

(
Z≥0

)Vertγ
. (A.1)
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The N = 2 quiver gauge theory associated to γ is the four-dimensional N = 2 supersym-
metric gauge theory, whose gauge group is

Gg =
i∈Vertγ

U(ni), (A.2)

and whose flavor group is

Gf =
(

i∈Vertγ
U(mi)×U(1)Edgeγ

)/
U(1)Vertγ . (A.3)

Here the overall U(1)Vertγ transformation has been mod out due to the gauge symmetry,

(ui)i∈Vertγ :
(
(gi)i∈Vertγ , (ue)e∈Edgeγ

)
7→
(
(uigi)i∈Vertγ , (us(e)ueu

−1
t(e))e∈Edgeγ

)
. (A.4)

The field contents of the theory are the following: the vector multiplets Φ = (Φi)i∈Vertγ
in the adjoint representation of Gg, the fundamental hypermultiplets Qfund = (Qi)i∈Vertγ
in the fundamental representation of Gg and the antifundamental representation of Gf ,
and finally the bifundamental hypermultiplets Qbifund = (Qe)e∈Edgeγ in the bifundamental
representation (ns(e), nt(e)) of Gg. The N = 2 supersymmetric action is then fixed up to
the gauge couplings,

qi = exp(2πiτi)
(
τi = ϑi

2π + 4πi
g2
i

)
, i ∈ Vertγ , (A.5)

and the masses of the hypermultiplets,

m = ((mi)i∈Vertγ , (me)e∈Edgeγ ),

mi = diag(mi,1, · · · ,mi,mi) ∈ End(Cmi), me ∈ C. (A.6)

The global symmetry group of the theory is

H = Gg ×Gf ×Grot, (A.7)

where Gg (A.2) is the group of global gauge symmetry, Gf (A.3) is the group of flavor
symmetry, and Grot = SO(4) is the group of the Lorentz symmetry. We turn on equivariant
parameters for the maximal torus TH ⊂ H. The equivariant parameters for Gg is the
vacuum expectation values of the complex scalars,

〈Φi〉 = ai, ai = diag(ai,1, · · · , ai,ni) ∈ End(Cni), i ∈ Vertγ . (A.8)

The equivariant parameters for Gf is the masses of the hypermultiplets (A.6). Finally
the equivariant parameters for Grot is the Ω-deformation parameters ε1, ε2. The partition
function of the theory is a function of these parameters (a,m, ε) ∈ Lie(TH). In expressing
the partition function, we abuse our notation and denote the vector spaces and their TH -
equivariant characters in the same letters. Hence we write

Ni =
ni∑
α=1

eβai,α , Mi =
mi∑
f=1

eβmi,f . (A.9)
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It is helpful to use the following notation for abbreviated expressions,

qi ≡ eβεi , Pi ≡ 1− qi i = 1, 2,
q12 ≡ q1q2, P12 ≡ (1− q1)(1− q2).

(A.10)

The partition function factors into the classical, one-loop, and the instanton parts:

Z(a,m, ε, q) = Zclassical Z1-loop Z inst. (A.11)

The classical part is given by

Zclassical(a, ε, q) =
∏

i∈Vertγ
q
− 1

2ε1ε2

∑ni
α=1 a

2
i,α

i . (A.12)

The one-loop part is given by

Z1-loop(a,m, ε)

= E

 1
(1− e−βε1)(1− e−βε2)

 ∑
i∈Vertγ

(Mi −Ni)N∗i +
∑

e∈Edgeγ

eβmeNt(e)N
∗
s(e)

 , (A.13)

where the E-symbol is defined by

E [· · · ] ≡ exp

 d
ds

∣∣∣∣∣
s=0

1
Γ(s)

∫ ∞
0

dββs−1[· · · ]

 , (A.14)

which converts a character into a product of weights. In particular, the E-symbol regular-
izes an infinite product of weights such as (A.13) by the Barnes double gamma function,

Γ2(x; ε1, ε2) ≡ exp

− d

ds

∣∣∣∣∣
s=0

1
Γ(s)

∫ ∞
0

dββs−1 e−βx

(1− e−βε1)(1− e−βε2)

 . (A.15)

The instanton part Z inst is obtained by a TH -equivariant integral over the instanton
moduli space. Given the vector of the instanton charges k = (ki)i∈Vertγ ∈ Z≥0, the total
framed noncommutative instanton moduli space of the quiver gauge theory for γ is

Mγ(n,k) ≡
i∈Vertγ

M(ni, ki), (A.16)

where M(ni, ki) is the ADHM moduli space

M(n, k) =

 B1,2 : K → K,

I : N → K,J : K → N

∣∣∣∣∣ [B1, B2] + IJ = 0,
[B1, B1

†] + [B2, B2
†] + II† − J†J = ζ

}/
U(k).

(N = Cn,K = Ck) (A.17)

Solving the real moment map equation [B1, B1
†] + [B2, B2

†] + II† − J†J = ζ and dividing
by the compact U(k) is equivalent to imposing the stability condition and dividing by the
complex group GL(k),

M(n, k) =

 B1,2 : K → K,

I : N → K,J : K → N

∣∣∣∣∣ [B1, B2] + IJ = 0,
K = C[B1, B2] I(N)

}/
GL(k). (A.18)
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The TH -equivariant integration over the instanton moduli space (A.16) localizes on the
set of fixed points of TH -action, Mγ(n,k)TH , which is the set of colored partitions λ =
((λ(i,α))ni

α=1)i∈Vertγ , where each λ(i,α) is a partition,

λ(i,α) =
(
λ

(i,α)
1 ≥ λ(i,α)

2 ≥ · · · ≥ λ(i,α)
l(λ(i,α)) > λ

(i,α)
l(λ(i,α))+1 = · · · = 0

)
, (A.19)

with the size |λ(i,α)| =
∑l(λ(i,α))
i=1 λ

(i,α)
i = ki,α constrained by ki =

∑
α ki,α = |λ(i)|. At each

fixed point λ, the vector space Ki carrys a representation of TH with the weights given by
the formula

Ki[λ] =
ni∑
α=1

∑
�∈λ(i,α)

eβc� , (A.20)

where we have defined the content of the box,

c� = ai,α + ε1(i− 1) + ε2(j − 1) for � = (i, j) ∈ λ(i,α) ⇐⇒ 1 ≤ j ≤ λ(i,α)
i . (A.21)

The tangent bundle and the matter bundle comprise the character

T [λ] =
∑

i∈Vertγ
(NiK

∗
i + q12N

∗
i Ki − P12KiK

∗
i −M∗i Ki)

−
∑

e∈Edgeγ

eβme(Nt(e)K
∗
s(e) + q12N

∗
s(e)Kt(e) − P12Kt(e)K

∗
s(e)), (A.22)

assoicated to each fixed point λ ∈Mγ(n,k)TH . At last the instanton part of the partition
function is evaluated by

Z inst(a; m; ε; q) =
∑
λ

∏
i∈Vertγ

q
|λ(i)|
i E [T [λ]] , (A.23)

where we have used the E-symbol (A.14). Note that the one-loop part and the instanton
part can be combined into

Z1-loop(a,m,ε)Z inst(a;m;ε;q) (A.24)

=
∑
λ

∏
i∈Vertγ

q
|λ(i)|
i E

 1
(1−e−βε1)(1−e−βε2)

 ∑
i∈Vertγ

(Mi−Si)S∗i +
∑

e∈Edgeγ

eβmeSt(e)S
∗
s(e)

 ,
with the character Si ≡ Ni − P12Ki.

The regularized characteristic polynomials of the adjoint scalars form important chiral
observables, called the Y-observables, are defined by

Yi(x) ≡ xni exp
∞∑
l=1
− 1
lxl

Tr Φl
i|0, (A.25)

Their expressions at the fixed point λ are written as

Yi(x)[λ] =
ni∏
α=1

(x− ai,α)
∏

�∈λ(i,α)

(x− c� − ε1)(x− c� − ε2)
(x− c�)(x− c� − ε)

 . (A.26)
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which shows that upon the regularization, the instanton contribution makes the polyno-
mials into rational functions of the auxiliary variable x. The Y-observable can be simply
written as

Yi(x)[λ] = β−ni E[−eβxS∗i ]. (A.27)

Note that the Y-observables are the generating functions for the chiral observables

Oi,k[λ] ≡ Tr Φk
i |0[λ]

=
ni∑
α=1

aki,α +
∑

�∈λ(i,α)

(
(c� + ε1)k + (c� + ε2)k − ck� − (c� + ε)k

) . (A.28)

The qq-characters for the quiver gauge theories are given as certain Laurent polynomials
of the Y-observables.

B 1-loop part of the partition functions

The 1-loop parts of the partition functions are regularized by using the Barnes double
gamma function,

Γ2(x; ε1, ε2) := exp
[
− d

ds

∣∣∣∣
s=0

1
Γ(s)

∫ ∞
0

dββs−1 e−βx

(1− e−bε1)(1− e−bε2)

]
, (B.1)

and also the gamma function

Γ1(x; ε2) := exp
[
− d

ds

∣∣∣∣
s=0

1
Γ(s)

∫ ∞
0

dββs−1 eβx

1− e−βε2

]
=

√
2π/ε2

ε
x
ε2
2 Γ

(
x
ε2

) . (B.2)

In particular, the 1-loop part of the partition function of the SU(2) gauge theory with four
fundamental hypermultiplets is given by

Z1-loop =
∏
±

Γ2(0; ε1, ε2)Γ2(±2a; ε1, ε2)∏4
i=1 Γ2(±a−mi; ε1, ε2)

. (B.3)

If the theory is coupled to the surface defect on z2-plane, the gauged linear sigma model
living on the surface defect also contributes to the 1-loop part of the partition function.
Depending on the complexified FI parameter z of the sigma model, the gauge and the
matter contents of the sigma model vary and thus the 1-loop part of the partition function
changes accordingly. For example, in the domain 0 < |q| < |z| < 1,

Ψ1-loop
± =

∏
ξ=±

Γ2(0; ε1, ε2)Γ2(ξ2a; ε1, ε2)∏4
i=1 Γ2(ξa−mi; ε1, ε2)

∏
i=1,2 Γ1(±a−mi; ε2)

Γ1(±2a; ε2) . (B.4)

Accordingly, the 1-loop part of the effective twisted superpotneital is computed as

S1-loop
± = lim

ε2→0

ε2
ε1

log Ψ1-loop
± (B.5)
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Using the following identities regarding the NS limits of the gamma functions,
∂

∂x

(
lim
ε2→0

ε2 log Γ2(x; ε1, ε2)
)

= − log Γ1(x; ε1)

∂

∂x

(
lim
ε2→0

ε2 log Γ1(x; ε2)
)

= − log x,
(B.6)

we obtain

∂S1-loop
+
∂α

= log

 Γ
(

2a
ε1

)2

Γ
(
−2a
ε1

)2

4∏
i=1

Γ
(
−a+mi

ε1

)
Γ
(
a−mi
ε1

) (2a)2∏
i=1,2(a−mi)

 (B.7a)

∂S1-loop
−
∂α

= log

 Γ
(

2a
ε1

)2

Γ
(
−2a
ε1

)2

4∏
i=1

Γ
(
−a+mi

ε1

)
Γ
(
a−mi
ε1

) ∏
i=1,2(−a−mi)

(2a)2

 . (B.7b)

This is precisely the relation (5.87) that we used to absorb the 1-loop part into the twisted
superpotential S̃.

In section 6, we have defined the function Ln,k(a,m, ε1, ε2) by a ratio of the 1-loop
part of the bulk partition function,

Ln,k(a,m, ε1, ε2)

:=
Z1-loop

(
a + nε1,m + k

2ε1, ε1, ε2 − ε1
)
Z1-loop

(
a + nε2,m + k

2ε2, ε1 − ε2, ε2
)

Z1-loop (a,m, ε1, ε2) .
(B.8)

A straightforward computation shows that

Ln,k(a,m, ε1, ε2) =
∏N
α,β=1 s

nα− k2 (mβ − aα, ε1, ε2)∏N
α,β=1 s

nα−nβ (aβ − aα, ε1, ε2)
, (B.9)

where

sn(x, ε1, ε2) =



∏
i,j≥0

i+j≤n−1
(x− iε1 − jε2) n > 0∏

i,j≥0
i+j≤−n−2

(x+ (i+ 1)ε1 + (j + 1)ε2) n < −1

1 n = 0 or 1

(B.10)

In particular, this is a rational function of equivariant parameters.

C Double gamma function and Barnes G-function

We define the double gamma function Γ2(x; ε1, ε2) by

Γ2(x; ε1, ε2) = exp
[
− d

ds

∣∣∣∣
s=0

1
Γ(s)

∫ ∞
0

dββs−1 e−βx

(1− e−βε1)(1− e−βε2)

]
. (C.1)

In the self-dual limit of the Ω-background ε2 = −ε1, it is easy to show that

Γ2(x; ε1,−ε1) =̇ exp

 d

ds

∣∣∣∣
s=0

∑
n1,n2≥0

1
(1 + x

ε1
+ n1 + n2)s

 , (C.2)
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where the equality is regarded as a regularization of the right hand side. From this relation
we identify

Γ2(x; ε1,−ε1) = (2π)
1
2 + x

2ε1

G
(
1 + x

ε1

) , (C.3)

where G(x) is the usual Barnes G-function.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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