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1 Introduction

W∞ algebras have attracted renewed interest in the last years. They are some of the most

basic symmetry algebras that arise in 2d CFTs. The algebra WN is the unique chiral

algebra that has besides the stress tensor a field of every spin s ∈ {3, 4, . . . , N} [1, 2]. WN

algebras arise as the symmetry algebra in the AGT correspondence [3, 4], which relates 4d
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N = 2 SU(N) gauge theory with Toda theory. Toda theory is the natural W-analogue of

Liouville theory. However, unlike in Liouville theory, a closed-form expression for the three-

point functions of Toda theory still seems out of reach. WN algebras also arise naturally

in the 4d N = 2 superconformal theories and 6d N = (2, 0) theory, where they appear as

the cohomology of a certain superconformal supercharge [5, 6].

WN algebras have played a central role in the higher spin AdS3/CFT2 correspon-

dence [7]. The matching of this symmetry algebra in the correspondence was one of the

main pieces of evidences for the duality.

All WN algebras stem from the W∞[c, λ] algebra, which depends beyond the central

charge c also on a further parameter λ [7–13]. This parameter is in a sense the analytic

continuation of N . W∞[c, λ] has a generating field of every spin s ∈ Z≥2. If λ = N ∈ Z≥2,

the algebra develops an ideal and can be consistently truncated to WN . Hence W∞[c, λ]

unifies all WN algebras. It has a richer structure than WN , since it depends on two

parameters c and λ. It was realized in [11] that there are in fact three values of λ for which

the resulting algebras are isomorphic:

W∞[c, λ1] ∼=W∞[c, λ2] ∼=W∞[c, λ3] . (1.1)

This phenomenon is called triality, which acts as an outer automorphism of the algebra.

For many purposes, it is useful to add a free u(1) current to the algebra and consider

the algebra W1+∞[c, λ] ∼= u(1) ×W∞[c, λ], which has one generating higher spin field of

every spin s ∈ N. This algebra is isomorphic to the affine Yangian of gl(1) [14–17], and this

connection implies remarkable properties of the representation theory for W1+∞[c, λ]. The

representation theory of the algebra can be formulated in terms of plane partitions, i.e. 3d

partitions. Via this correspondence, states in the vacuum representation of W1+∞ can be

labeled by plane partitions and so their generating function – the MacMahon function – is

the vacuum character ofW1+∞. This picture also generalizes to non-trivial representations

of the algebra. They correspond to plane partitions with non-trivial asymptotics along

the three coordinate axes. Thus, a large set of representations are labeled by three 2d

Young diagrams which specify the asymptotics of the 3d partitions. An example of such

a configuration is drawn in figure 1. The triality symmetry is manifest in the Yangian

description, it simply permutes the three coordinate axes of the plane partitions.

In two-dimensional CFTs, one is often interested in truncations of the algebra for

special values of parameters. For instance the codimension 2 truncations of W1+∞ lead to

rational models. In the context of W1+∞, codimension 1 truncations are well-understood.

They are labeled by triples of non-negative integers (N1, N2, N3). Such a triple specifies

a one-dimensional curve in the parameter space λ where the algebra truncates. These

algebras arise at the triple Y -shaped junction of supersymmetric interfaces in N = 4 SYM.

For this reason, they were given the name YN1,N2,N3 algebra [18, 19]. In the Yangian picture,

these truncations have again a very simple interpretation – they correspond to constrained

plane partitions in which the box at position (N1, N2, N3) is not allowed. Minimal model

CFTs correspond to intersections of two such truncation curves and in the Yangian picture

to periodic plane partitions. This gives in particular a very simple unifying combinatorial

characterization of the characters of these models.

– 2 –
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Figure 1. A plane partition in the representation specified by the three Young diagrams ,

and .

Given the success of this program for the W1+∞ algebra, one may ask whether there is

an analogous construction for different or larger algebras. In particular, one would like to

capture other (quasi-)rational minimal models such as the su(2)k WZW model at rational

level k = −2 + p
q with p ≥ 2 and gcd(p, q) = 1 or supersymmetric algebras. One example

of such an extension is the N = 2 W1+∞ algebra, to which a supersymmetric version of

the affine Yangian [19–21] can be associated.

In this work, we make further progress towards achieving this goal. We do so by con-

sidering a flavored extension of W1+∞, i.e. we add matrix degrees of freedom. The algebra

we want to consider possesses m2 generating fields of every spin s ∈ N. In particular, the

spin 1 fields define an affine Kac-Moody algebra gl(m)k and the higher spin fields transform

in the adjoint representation of this Kac-Moody algebra. It turns out that there is unique

algebra (depending now on three parameters – the central charge c and the analogous pa-

rameter to λ as well as the matrix rank m) with this spin content. This algebra and its

cousins were studied before in [22–27], where it was sometimes referred to as ‘rectangular

W-algebra’. Moreover, its geometric realizations are described in [28].

We find that these algebras have in fact a very beautiful structure. Analogously to the

situation in W1+∞ [12, 29], there seems to be a basis of generators in which the algebra

becomes especially simple. We construct this basis naturally by defining a matrix-extended

Miura transformation. A similar matrix-extended Miura transformation was considered

in [30]. In this extended Miura transformation, we start with n copies of Kac-Moody

algebra gl(m)κ and construct a matrix-valued differential operator. This defines matrix-

valued higher spin fields defining the matrix-extended W1+∞ algebra. In this basis, the

non-linearity of the algebra is only quadratic. We also find that the structure constants

are independent of m. Thus the matrix-structure is straightforward to incorporate. Since

the algebra simplifies so significantly, we are able to guess a closed-form formula for the

structure constants of the algebra.
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The matrix-extension of the algebra breaks the triality symmetry of W1+∞ down to

a duality symmetry. This is however partially compensated by the fact that the matrix-

structure leads to the appearance of other outer automorphism generators. These are given

by spectral flow, which extends to the whole matrix-extended algebra. Thus the full outer

automorphism group (for m ≥ 3) turns out to be Z2×Dm, where Dm is the dihedral group

with m elements.

We then study truncations of the algebra and find that they follow a very intuitive

pattern. Analogously to the m = 1 case, truncations are specified by m + 2 integers, 4 of

which are independent.

This paper is organized as follows. In section 2, we review the most important features

of W1+∞ and the Miura transformation. We discuss the matrix-extended Miura transfor-

mation and the structure of the algebra in section 3. Section 4 explores the representation

theory and truncations of the algebra. We end with a discussion and outlook in section 5.

2 Review of the W1+∞ algebra

Before initiating our study of the matrix-extended W1+∞ algebra, we review the most

salient features of the W1+∞ algebra.

2.1 The Miura transformation

The algebra û(1)×Wn can be defined as follows. Let J be a û(1) current with defining OPE

J(z)J(w) ∼ κ+ 1

(z − w)2
, (2.1)

where κ ∈ C \ {−1} is a complex parameter. This choice of normalization will be very

useful in what follows. Consider now the differential Miura operator

L(z) =

n∏
i=1

(−κ ∂ + J (i)(z)) , (2.2)

where we employed n copies of the U(1) current. The ordering of the product is such

that the index (i) increases from left to right (for discussion of other orderings and the

associated R-matrix see [31]). We can rewrite

L(z) =
n∑
k=0

U(k)(z)(−κ ∂)n−k , (2.3)

thereby defining the spin k fields U(k)(z). U(k) read [12]

U(1) =

n∑
i=1

J (i) , (2.4a)

U(2) =

n∑
i<j

(J (i)J (j))− κ
n∑
i=1

(i− 1)∂J (i) , (2.4b)
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U(3) =
n∑

i<j<k

(J (i)J (j)J (k))− κ
n∑
i<j

(
(i− 1)∂J (i)J (j) + (j − 2)J (i)∂J (j)

)
+
κ2

2

n∑
i=1

(i− 1)(i− 2)∂2J (i) , (2.4c)

U(k) =
k∑
r=1

(−κ)k−r
∑

i1<···<ir
`1+···+`r=k−r

r∏
j=1

(
ij −

∑j−1
s=1 `s − j
`j

)
∂`jJ (ij) , (2.4d)

where we wrote down the first three fields explicitly. It is a well-known fact [2, 29, 32]

that the OPEs of these fields close on themselves and are strong generators for the algebra

û(1)×Wn.

Moreover, this basis (to which we shall henceforth refer to as Miura or quadratic basis)

of Wn has several advantages. While the fields U(k) are not quasi-primary, the OPEs have

at most quadratic non-linearity in this basis and hence take the form [12, 29]

U(j)(z)U(k)(w) ∼
∑
`,m,r,s

C`,m,r,sj,k (κ, n)
(∂rU(`)∂

sU(m))(w)

(z − w)j+k−r−s−`−m
, (2.5)

where C`,m,r,sj,k (κ, n) are the structure constants of the algebra, which are polynomial in this

basis. This structure simplies further. It was noticed in [12] that one can rewrite the OPE

in the following form

U(j)(z)U(k)(w) ∼ −
∑

`+m<j+k

D`,m
j,k (κ, n)

U(`)(z)U(m)(w)

(z − w)j+k−`−m
, (2.6)

where the coefficients D`,m
j,k (κ, n) are also polynomial in n and κ. Notice that this fixes

the entire structure of the derivatives recursively. Hence, knowing only C`,m,0,0j,k (κ, n),

one can reconstruct the entire OPE including derivatives. From now on, we will write

C`,mj,k (κ, n) ≡ C`,m,0,0j,k (κ, n). Moreover, it was observed in [12] that the structure constants

obey a ‘shift symmetry’ of the form

C`,mj,k (κ, n) = C`−1,m−1j−1,k−1 (κ, n− 1) , (2.7)

and thus one can always reduce to the case where m = 0 (in the case that ` = 0 instead, we

can use the fact that C`,mj,k (κ, n) = (−1)j+k−`−mCm,`k,j (κ, n)).1 The result for the structure

constants can be found in [12].

It was discussed extensively in the literature [7, 12], that Wn can be realized as a

truncation of a bigger algebra, the so-called W∞[λ] algebra, which contains one strong

generator for every spin s ∈ N≥2. In the following, we will often consider the algebra

W1+∞[λ] ≡ û(1) ×W∞[λ], since many properties are more conveniently expressed in this

formulation. W1+∞[λ] depends besides the central charge on additional parameter λ. Upon

specialization of λ = n ∈ N, the algebra forms an ideal and the relevant truncation is again

1It could also happen that j = 0 or k = 0. But for j = 0, we have clearly C`,m0,k (κ, n) = δ`0δ
m
k . We will

exclude this trivial case.
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û(1) ×Wn. The structure constants of W1+∞[λ] are those given in [12], where we simply

allow n(= λ) to take arbitrary complex values.

A useful parametrization of the algebra is given by setting

λ1 = n , λ2 = − nκ

κ+ 1
, λ3 = nκ , (2.8)

which satisfy
1

λ1
+

1

λ2
+

1

λ3
= 0 . (2.9)

It was first noticed in [11] that W1+∞[λ] has a discrete triality symmetry which acts

by permutation on the parameters λi.

2.2 Truncations and the gluing construction

We have already explained that W1+∞ admits a truncation for λ1 ∈ N to û(1) × Wn.

In [12, 18, 19], it was discovered that there exist more general truncations of W1+∞, the so-

called Y-algebras. Y-algebras are parametrized by three integers N1, N2 and N3 ∈ N0 and

are located on curves in the two-dimensional parameter space spanned by the parameters

λi, where
N1

λ1
+
N2

λ2
+
N3

λ3
= 1 . (2.10)

They also depend on the one remaining continuous parameter (which in the literature is

conventionally denoted by Ψ). Note that due to relation (2.9) the triples Nj differing by

an overall constant shift lead to same restriction on the parameters of the algebra.

For an arbitrary choice of parameters Nj ≥ 0 the algebra YN1,N2,N3 can be defined by

quotienting out W1+∞ by an ideal generated by a singular vector at level

(N1 + 1)(N2 + 1)(N3 + 1) , (2.11)

which corresponds to a rectangular configuration of boxes of dimension N1 × N2 × N3 in

the Yangian picture [18]. Alternatively, one may write a free field representation in terms

of N1 +N2 +N3 free fields where this singular vector is identically equal to zero [33]. Note

that only in the case that (at least) one of Nj parameters is equal to zero (and parameter

Ψ is generic), this quotient is simple. Since it is possible for a simple algebra to have non-

simple subalgebras, in some situations (like when we consider gluing) we have to consider

these more general non-simple quotients as well.2 The simplest special case of û(1) ×Wn

corresponds to the truncation N1 = n, N2 = N3 = 0.

Y-algebras serve as fundamental building blocks for more general W-algebras. Con-

structing these more complicated W-algebras is achieved via the gluing construction [19].

2The simplest example is the algebra Y111 with central charge c = 0. All the fields different from the

identity form an ideal and the corresponding simple quotient has just the identity operator. We can however

find a free field realization of this algebra in terms of three free bosons and in this representation the first

null field is at level 8 corresponding to a rectangular configuration of 2 × 2× 2 boxes [33].
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Analogously to the topological vertex, we represent a YN1,N2,N3-algebra by the vertex

N1

N2

N3
. (2.12)

This is motivated by the fact that YN1,N2,N3 algebras arise as the operator algebra of local

operators living on the trivalent junction of codimension 1 defects in twisted 4d N = 4

super-Yang-Mills theory coming from N1 + N2 + N3 D3-branes stretched between a D5,

NS5 and (1, 1)-brane [18]. When gluing two of these building blocks together, the resulting

algebra depends on the relative orientation of the corresponding trivalent vertices. The

change of orientation of a vertex corresponds to an action of S-duality on the branes. We

assign (p, q)-charges to the legs of each vertex. These charges must satisfy the charge

conservation condition and additional condition∑
i

pi = 0 ,
∑
i

qi = 0 , p1q2 − p2q1 = 1 . (2.13)

The S-duality can be compensated by performing an appropriate change in the parameters

λi. To state this change, it is simplest to use yet a different parametrization of the YN1,N2,N3

algebra in terms of εi, i = 1, 2, 3, which satisfy∑
i

εi = 0 , λiεi = N1ε1 +N2ε2 +N3ε3 . (2.14)

These parameters are only defined up to an overall multiple, so actually one conventionally

parametrizes them in terms of Ψ = − ε2
ε1

[18].

The gluing construction is a way to compose several vertices to build bigger VOAs.

For this, we draw diagrams like

N3

N1

N2

N4 , (2.15)

which represents a conformal extension of the algebra

YN1,N2,N3 × YN3,N2,N4 (2.16)

with the appropriate λ parameters. The fields extending the algebra are called gluing fields

and from the brane point of view correspond to line operators stretched along the edges of

the diagram. For more details see [19].
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3 The matrix-extended W1+∞ algebra

In this paper, we study a matrix-extended version of W1+∞[λ]. This algebra was studied

previously in [23–25] and generalizations were considered in [26, 27]. The purpose of this

paper is to expose the structure of this algebra and to study its representation theory. The

matrix structure turns out to be surprisingly simple if looked at in the correct variables

and many of the properties of W1+∞[λ] still hold.

The algebra possesses m2 generating fields of every spin s ∈ N, which transform in the

adjoint representation of the global symmetry gl(m). Thus, the algebra enjoys in particular

a ĝl(m) Kac-Moody symmetry. The algebra contains a central û(1) current and decoupling

it would lead to ŝl(m) Kac-Moody symmetry. This is analogous to the decoupling of the

û(1) current in W1+∞[λ], which yields W∞[λ]. Many of the properties of the algebra are

clearest (and the description is more uniform) when keeping it.

The algebra is parametrized in terms of three parameters, which we take to be κ, n

and m. In terms of these parameters, the spin 1 fields lead to the Kac-Moody algebra

gl(m)nκ , (3.1)

and the central charge of the whole algebra takes the form

c =
mn

m+ κ

[
1 +mκ− (n2 − 1)κ2

]
. (3.2)

The triality symmetry ofW1+∞ is broken to a duality symmetry in the matrix-extended

case. The basic reason is that the level of the Kac-Moody algebra cannot be rescaled if

m ≥ 2 and thus any discrete symmetry has to fix the level nκ, as well as the central charge

(and the matrix rank m). The unique such transformation is

κ→ −m− κ , n→ − nκ

m+ κ
, (3.3)

which generates the duality symmetry in this case.

3.1 Miura transformation

Analogously to the Miura transformation for û(1)×Wn, we can introduce a matrix-valued

differential operator

L(z) =
n∏
i=1

(−κ1m×m∂ + J
(i)a

b (z)E b
a ) =

n∑
k=0

U a
(k) b (z)E b

a (−κ ∂)n−k , (3.4)

where J
(i)a

b (z) satisfies the gl(m)κ algebra. Here, E b
a are elementary matrices forming a

basis for the matrix of m×m matrices, satisfying E b
a E d

c = δbcE
d
a . We chose the convention

to label the fields in the product from left to right. We have

J
(i)a

b (z)J
(i)c

d (w) ∼
δabδ

c
d + κ δcbδ

a
d

(z − w)2
+
δcbJ

(i)a
d (w)− δadJ

(i)c
b (w)

z − w
. (3.5)

– 8 –
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The normalization of the û(1) current J
(i)a

a is important and is the natural generalization

of (2.1). This defines the matrix-valued higher spin fields U(k)(z). Explicitly, we have in

components

U a
(1) b =

n∑
i=1

J
(i)a

b , (3.6a)

U a
(2) b =

n∑
i<j

J (i)a
cJ

(j)c
b − κ

n∑
i=1

(i− 1)∂J
(i)a

b , (3.6b)

U a
(3) b =

n∑
i<j<k

J (i)a
cJ

(j)c
dJ

(k)d
b − κ

n∑
i<j

(
(i− 1)∂J (i)a

cJ
(j)c

b + (j − 2)J (i)a
c∂J

(j)c
b

)
+
κ2

2

n∑
i=1

(i− 1)(i− 2)∂2J
(i)a

b . (3.6c)

which (except for the matrix multiplication and replacement α0 → −κ) is exactly of the

same form as the corresponding fields in W1+∞ [12]. These expressions are actually special

cases of the fusion coproduct in matrix-extended W1+∞ which (except for the additional

contraction of indices) is of the same form as in [12]. The existence of this coproduct is a

direct consequence of the multiplicative structure of the Miura operators.

By explicit calculation, we have shown that the higher spin fields U(k) close on them-

selves under OPEs.3 In fact, this is only true if we choose the normalization of the û(1)

current in the way we did. One can always change the normalization of the generators of

the diagonal subalgebra, but fixing the form of the Miura factor (3.4) the normalization

of the currents is already fixed if we want the algebra to close quadratically. Notice that

the quadratic pole in (3.5) is actually an R-matrix of gl(m) and satisfies the Yang-Baxter

equation. The low-lying OPEs take the form

U a
(1) b (z)U c

(1) d (w) ∼
n(κδadδ

c
b + δabδ

c
d)

(z − w)2
+
δcbU

a
(1) d (w)− δadU c

(1) b (w)

z − w
, (3.7a)

U a
(1) b (z)U c

(2) d (w) ∼ −
κ(n− 1)n(κδadδ

c
b + δabδ

c
d)

(z − w)3

+
(n− 1)(κδadU

c
(1) b (w) + δabU

c
(1) d (w))

(z − w)2

+
δcbU

a
(2) d (w)− δadU c

(2) b (w)

z − w
, (3.7b)

U a
(1) b (z)U c

(3) d (w) ∼
κ2(n− 2)(n− 1)n(κδadδ

c
b + δabδ

c
d)

(z − w)4

−
κ(n− 2)(n− 1)(κδadU

c
(1) b (w) + δabU

c
(1) d (w))

(z − w)3

+
(n− 2)(κδadU

c
(2) b (w) + δabU

c
(2) d (w))

(z − w)2

+
δcbU

a
(3) d (w)− δadU c

(3) b (w)

z − w
, (3.7c)

3We have checked this for the OPE U a
(j) b (z)U c

(k) d (w) for j + k ≤ 7. We do however not have a general

proof of this fact.

– 9 –



J
H
E
P
1
2
(
2
0
1
9
)
1
7
5

U a
(2) b (z)U c

(2) d (w) ∼
n(n− 1)(κ(1 + κ2 − 2nκ2)δadδ

c
b) + (1 + 3κ2 − 4nκ2)δabδ

c
d)

2(z − w)4

−
(n− 1)(nκ2 − 1)(δcbU

a
(1) d (w)− δadU c

(1) b (w))

(z − w)3

−
(n− 1)2κ(δcdU

a
(1) b (w)− δabU c

(1) d (w))

(z − w)3

−
δcdU

a
(2) b (w) + δabU

c
(2) d (w) + κδcbU

a
(2) d (w) + κδadU

c
(2) b (w)

(z − w)2

−
n(n− 1)κ(κδcb∂U

a
(1) d (w) + δcd∂U

a
(1) b (w))

(z − w)2

−
(n− 1)((U a

(1) bU
c

(1) d )(w) + κ(U a
(1) dU

c
(1) b )(w))

(z − w)2

+
δcbU

a
(3) d (w)− δadU c

(3) b (w)

z − w

−
κδcb∂U

a
(2) d (w) + δab∂U

c
(2) d (w)

z − w

−
n(n− 1)κ(κδcb∂

2U a
(1) d (w) + δcd∂

2U a
(1) b (w))

2(z − w)

+
(U c

(1) bU
a

(2) d )(w)− U a
(1) dU

c
(2) b )(w)

z − w

−
(n− 1)(κ∂U a

(1) dU
c

(1) b )(w) + ∂U a
(1) bU

c
(1) d )(w)

z − w
. (3.7d)

For illustration, we have also written down the next OPEs U a
(1) b (z)U c

(4) d (w) and

U a
(2) b (z)U c

(3) d (w) in appendix A. Besides noticing that the algebra indeed seems to close

on the higher spin fields U a
(j) b (z), we observe many more special features:

1. First and foremost, it is highly surprising that the dependence on the rank m of the

matrix is completely absent in the OPE coefficients. This only seems to happen in

the Miura basis. This is in contrast with the first OPEs in the primary basis worked

out in [25], where the dependence on m is non-trivial. It is this property which allows

us to proceed much further in our analysis than one might initially hope for. The

flavor indices are never summed over in the OPE, only permuted. This is even more

clear if we define U a
(0) b = δab 1 and use it to eliminate the Kronecker delta factors

from the OPE. In other words, the only place where the rank m enters the OPEs

is the range of indices, but since we never sum of them, formally the algebra looks

identical for any value of m.

2. We observe that the non-linearity is the Miura basis is at most quadratic, exactly

as in the case of the Miura transformation in W1+∞. Furthermore all the deriva-

tives are determined completely by the coefficients of non-derivative terms and can

be resummed if we consider bi-local expansions instead of OPEs. This is just as

in [12, 29].

– 10 –



J
H
E
P
1
2
(
2
0
1
9
)
1
7
5

3. A third special property of the Miura basis is that the coefficients are all polynomial

in κ and n. We will see below that the structure constants have also many symmetry

properties.

4. Unlike the case ofW1+∞ where the fields U(1), U(2) and U(3) generate the full algebra,

in the matrix-extended case (i.e. when m > 1) already U(1) and U(2) suffice to generate

the whole algebra.

Since nothing in the operator product expansion depends on the rank m of matrices or the

structure of matrix multiplication (and this is true even for Jacobi identities), one expects

that there should exist various generalizations of this construction. For super Lie algebras

this is worked out explicitly in [28].

3.2 Bootstrap

We have computed the OPEs of U a
(j) b (z)U c

(j) d (w) predicted by the Miura transformation

for j+k ≤ 7. To explore the algebra to higher orders, it is useful to just impose everything

we know about the algebra and see that there is a unique solution. We refer to this

technique as bootstrap and it was successfully applied to many W-algebras [11, 12, 34–

37]. Essentially, we impose the Jacobi identities (i.e. associativity) on the OPE, using the

initial data provided by the Miura transformation. Using this technique, we have shown

that there is a unique solution to the constraints coming from the Jacobi identities and

have computed U a
(j) b (z)U c

(j) d (w) for j + k ≤ 16 using Thieleman’s package [38]. We will

in the following sections discuss what we learn from the direct calculation.

3.3 Structure constants

Let us present the structure constants as found by the bootstrap calculation. We first

concentrate on the non-derivative terms, which we write as

U a
(j) b (z)U c

(k) d (w) ∼
∑

`+m<j+k

C`,mj,k (κ, n)

(
U a
(`) bU

c
(m) d

)
(w)

(z − w)j+k−l−m

+
∑

`+m<j+k

C̃`,mj,k (κ, n)

(
U a
(`) dU

c
(m) b

)
(w)

(z − w)j+k−l−m
+ derivatives . (3.8)

Our conjecture for the structure constants takes the form

C0,0
j,k (κ, n) =

(−1)k+1κj+k−2(j + k − 2)!n!(n− 1)!

(j − 1)!(k − 1)!(n− j)!(n− k)!

× 4F3

[
1− j, 1− k, 1− κ−1, 1 + κ−1

2, 2− j − k, 1− n
; 1

]
, (3.9)

C̃0,0
j,k (κ, n) =

(−1)k+1κj+k−1(j + k − 2)!n!(n− 1)!

(j − 1)!(k − 1)!(n− j)!(n− k)!

× 4F3

[
1− j, 1− k, 1− κ−1, 1 + κ−1

1, 2− j − k, 1− n
; 1

]
, (3.10)
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and for ` ≥ 1,m = 0

C`,0j,k(κ, n) =
(−1)k+1κj+k−`−2(n− `)!

(n− j)!(n− k)!

min(j−2,k−1,j+k−`−2)∑
r=0

(j + k − `− r − 2)!

×
r∏
s=1

(
1− 1

κ2s2

)[
(n− r − 1)!

(r + 1)(j − `− r − 1)!(k − r − 1)!

+
`−1∑
a=0

ba−1
2
c∑

b=0

(n− r − 2− b)!(−1)a+1
(
a−b−1
b

)(
`−a+b
b+1

)
(r + 2)b

(j − `− r + a− 1− b)!(k − r − a− 1 + b)!

]
, (3.11)

and

C̃`,0j,k(κ, n) = δj+k,`+1 +
(−1)k+1κj+k−`−1(n− `)!

(n− j)!(n− k)!

min(j−1,k−1,j+k−`−2)∑
r=0

(j + k − `− r − 2)!

×
r∏
s=1

(
1− 1

κ2s2

)[
(n− r − 1)!

(j − `− r − 1)!(k − r − 1)!

+
`−1∑
a=0

ba
2
c∑

b=0

(−1)a(n− r − b− 1)!(r)b+1

(
a−b
b

)(
`−a+b−1

b

)
(j − `− r + a− b)!(k − r − a+ b− 1)!

−
`−1∑
a=0

ba−1
2
c∑

b=0

(−1)a(n− r − b− 2)!(r + 1)b+1

(
a−b−1
b

)(
`−a+b
b+1

)
(j − `− r + a− b− 1)!(k − r − a+ b− 1)!

]
. (3.12)

The structure constants for ` = 0 andm ≥ 1 can be obtained from these using the symmetry

C`,mj,k (κ, n) = (−1)j+k−l−mCm,`k,j (κ, n) (3.13)

and

C̃`,mj,k (κ, n) = (−1)j+k−l−mC̃m,`k,j (κ, n) (3.14)

which is an obvious consequence of the commutativity of the OPE. To obtain structure

constants with both ` and m non-zero, we observe that the structure constants satisfy the

translation symmetry

C`,mj,k (κ, n) = C`−1,m−1j−1,k−1 (κ, n− 1), j, k, `, m > 0 , (3.15)

and

C̃`,mj,k (κ, n) = C̃`−1,m−1j−1,k−1 (κ, n− 1), j, k, `, m > 0 . (3.16)

The structure constants with ` = m = 0 were derived in the same way as the corresponding

structure constant in the case of W1+∞ by solving a recurrence relation coming from the

fusion coproduct [12]. The remaining ones fit all the data obtained by bootstrap up to

spins j + k ≤ 16. Note that since nothing depends on the rank m of the matrix part

of the algebra, we could have used directly the results of [12] in the m = 1 case if only

there was a way to distinguish the two index structures corresponding to C`,mj,k (κ, n) and

C̃`,mj,k (κ, n). This is the only new element in the matrix-extended W1+∞ algebra compared
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to standard W1+∞. In W1+∞ where m = 1, both index structures become the same and

C + C̃ corresponds to structure constants of [12].

To describe the derivative terms, we can essentially repeat the discussion in the case

of W1+∞ [12]. All the derivative terms can be resummed if instead of standard OPEs one

considers bi-local expansions. For each fixed j and k, the combinations

U ac
(jk) bd (z, w) ≡U a

(j) b (z)U c
(k) d (w) +

∑
`+m<j+k

D`,m
j,k (κ, n)

U a
(`) b (z)U c

(m) d (w)

(z − w)j+k−l−m

+
∑

`+m<j+k

D̃`,m
j,k (κ, n)

U a
(`) d (z)U c

(m) b (w)

(z − w)j+k−l−m
(3.17)

(valid for any finitely separated z 6= w, not just for the singular terms as z → w) are regular

as z → w. The transformation between products of two U a
(j) b fields and the bi-local fields

U ac
(jk) bd is triangular in the bi-index (jk). So it can be inverted to give

U a
(j) b (z)U c

(k) d (w) =
∑

`+m<j+k

C`,mj,k (κ, n)
U ac
(`m) bd (z, w)

(z − w)j+k−l−m

+
∑

`+m<j+k

C̃`,mj,k (κ, n)
U ac
(`m) db (z, w)

(z − w)j+k−l−m
, (3.18)

which now holds as a bi-local expansion at separated points. Comparing this to (3.8) yields

D`,m
j,k (κ, n) and D̃`,m

j,k (κ, n) and Taylor expanding this formula gives the usual operator

product expansion, including all the derivative terms [12].

3.4 The Virasoro tensor

The algebra possesses a unique (total) Virasoro tensor with the following properties:

1. U a
(k) b (z) has conformal weight k w.r.t. T (z)

2. All the spin 1 currents U a
(1) b (z) are primary of spin 1 with respect to T (z).

It is given by

T (z) =
1

2(κ+m)
(U a

(1) bU
b

(1) a )(z)− κ(n− 1)

2(κ+m)
∂U a

(1) a (z)− 1

κ+m
U a
(2) a (z) . (3.19)

This can be seen as a generalized Sugawara construction. Indeed, for n = 1, the latter two

terms are not present and we recover the standard Sugawara construction. In general, the

Virasoro tensor can be written as the sum of two terms,

T (z) = TSugawara(z) + Tcoset(z) , (3.20)

which correspond to the first and second line in (3.19), respectively. TSugawara(z) and

Tcoset(z) are two commuting energy-momentum tensors. Tcoset has the interpretation of

being the energy-momentum tensor of the coset of the matrix-extended W∞ algebra by its

spin 1 currents.

The central charge of the total energy-momentum tensor is stated in (3.2).
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3.5 Coset description

It is known [19, 24, 25] that the (truncations of) matrix-extended W1+∞ algebras can be

realized as cosets of the form
gl(M +N)k

gl(N)k
. (3.21)

Let us match these parameters with (κ, n,m). First of all, our matrix-extended W1+∞ has

gl(m)nκ Kac-Moody symmetry while the coset has gl(M)k symmetry, i.e. we have

nκ = k, m = M. (3.22)

The central charge of the coset is

k((M +N)2 − 1)

k +M +N
− k(N2 − 1)

k +N
(3.23)

while our algebra has central charge (3.2). Comparing these we find two solutions,

m = M, n =
k

k +N
, κ = k +N , (3.24a)

m = M, n = − k

k +M +N
, κ = −k −M −N (3.24b)

which are related by the duality (3.3). Taking M = m fixed and letting N and k run over

positive integers we find a three one-parametric families of codimension 1 truncations of

matrix-extended W1+∞,

nκ− j = 0 , nκ− κ+ j = 0 , nκ+ κ+m+ j = 0 , j = 1, 2, . . . (3.25)

Later we will discuss more general truncations and those we see here will be denoted by

jY,X + jZ and XT + jZ.

3.6 Spectral flow

Let us discuss a further discrete symmetry of the algebra. This symmetry is already present

in the case of regular W1+∞[λ], but becomes much more interesting in the present context.

The affine Kac-Moody algebra gl(m)k has the dihedral group Dm as outer automorphism

group acting by spectral flow and conjugation (the latter is discussed in the next subsec-

tion). This is reflected in the symmetry of the affine Dynkin diagram, as displayed in

figure 2.

As we will discuss now, these symmetries extend to the whole of the matrix-extended

W1+∞ algebra.

Let us first recall the spectral flow of gl(m). Geometrically, spectral flow is induced

from conjugation of the Kac-Moody generators with loops in the loop group [39, 40]. Let

us consider the following loop in the loop group for t ∈ [0, 1]

γ(t) = exp(2πitω) ∈ GL(m) , (3.26)
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Spectral flow

Conjugation

Figure 2. The Dynkin diagram of affine sl(m) (in the example m = 9) and the action of outer

automorphisms.

where ω = diag(ω1, . . . , ωn) ∈ gl(m) is the spectral flow vector. In order for the loop to

close, we need ω ∈ Zm, which we can identify with the weight lattice of gl(m). Such a loop

acts as follows on the currents

σω(Jab )(z) = z−ωa+ωbJab (z)−
κωaδ

a
b

z
. (3.27)

By construction, this is an automorphism of the algebra (where we use the same nor-

malizations as in the Miura transformation, see (3.5)). If ω is in the root lattice, the

automorphism becomes inner, since we are conjugating with a contractible loop. Thus,

there is a Zm spectral flow symmetry, which is outer. We can take it to be generated by

ω0 = (1, 0, 0, . . . , 0). The outer automorphism acts also non-trivially on representations

by performing a cyclic permutation of the affine Dynkin labels. Note however that this

yields in general infinite-dimensional ground-state representations, since unless k ∈ Z≥0,

the resulting Dynkin labels associated to the finite-dimensional part of the algebra will not

be integer.

To extend spectral flow symmetry to the matrix-extended W1+∞ algebra, we sim-

ply apply spectral flow to each of the constituents in (3.4). This leads to a very simple

transformation law for the Miura operator:4

σω (Lab) (z) = z−ωaLab(z)zωb . (3.28)

Correspondingly, one can read off the transformation behavior of the higher spin fields

σω(U a
(j) b (z)) =

j∑
k=0

(−κ)k
(
ωb
k

)
(n− j + 1)k

z−ωa+ωbU a
(j−k) b (z)

zk
, (3.29)

where (a)k is the Pochhammer symbol. Thus, the spectral flow symmetry readily extends

to the matrix-extended W1+∞ algebra.

4In principle, one could imagine to choose ω independently for each of the factors in the Miura trans-

formation, but this does not preserve the algebra defined by the Miura transformation.
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3.7 Conjugation

Finally, there is one last outer automorphism generator τ . It again extends from gl(m)nκ,

where it is given by conjugation, sending the matrix to minus its transpose:

τ(U a
(1) b )(z) = −U b

(1) a (z) . (3.30)

The extension to the matrix-extended W1+∞ algebra takes the form

τ(U a
(j) b )(z) = (−1)j

j∑
k=1

(
n− k
j − k

)
κj−k ∂j−kU b

(k) a (z) . (3.31)

This can also be directly derived from the Miura transformation. Defining the action

τ(J
(i)a

b ) = −J (n+1−i)b
a (3.32)

on the generating fields, one can directly check that this automorphism induces the auto-

morphism (3.31) on the higher spin fields. Notice in particular the sign (−1)j in (3.31),

which roughly implies that odd-spin fields get a minus sign under the automorphism.

Combining all the outer automorphisms we discussed (duality, spectral flow and conju-

gation), one can check directly that the full outer automorphism symmetry of the algebra

is Z2 ×Dm, where Dm is the dihedral group with 2m elements. For m = 2, conjugation is

in fact inner, so the automorphism group is Z2 × Z2. Finally, for m = 1, we have triality

symmetry, so the automorphism group is S3.

3.8 The block decomposition

In this section, we discuss the existence of a conformal embedding5

W1+∞(κ, n;m1)×W1+∞

(
κ+m1,

nκ
κ+m1

;m2

)
⊂ W1+∞(κ, n;m1 +m2) , (3.33)

where m = m1 +m2 and we wrote W1+∞(κ, n;m) for the matrix-extended W1+∞ algebra

with the respective parameters. We can define this embedding explicitly as follows. In the

following, indices a, b, . . . are indices of gl(m1) and run from 1 to m1, while i, j, . . . are

indices of gl(m2) and run from m1 + 1 to m1 + m2 = m. We denote the corresponding

fields by U
[1] a
(j) b and U

[2] i
(k) j . We have

U
[1] a
(j) b = U a

(j) b , (3.34a)

U
[2] i
(1) j = U i

(1) j −
U a
(1) a δ

i
j

κ+m1
, (3.34b)

U
[2] i
(2) j = U i

(2) j −
U a
(2) a δ

i
j +

(
κ
2 +m1

)
∂U a

(1) a δ
i
j

κ+m1
+m1∂U

i
(1) j − (U i

(1) aU
a

(1) j )

−
(U a

(1) aU
i

(1) j )

κ+m1
+

(U a
(1) bU

b
(1) a )δij

2(κ+m1)
+

(U a
(1) aU

b
(1) b )δij

2(κ+m1)2
, (3.34c)

5We could just embed commuting diagonal elements of our matrices to find m commuting copies ofW1+∞

algebra, but in order to make comparison with the gluing construction, we need a conformal embedding of

these.
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U
[2] i
(3) j = U i

(3) j −
U a
(3) a δ

i
j +m1∂U

a
(2) a δ

i
j + 1

6(3m2
1 − 3 + 4m1κ+ 2κ2)∂2U a

(1) a δ
i
j

κ+m1

+m1∂U
i

(2) j +
m1(κ+m1 − 1)(κ+m1 + 1)∂2U i

(1) j

2(κ+m1)
− (U i

(1) aU
a

(2) j )

− (U a
(1) jU

i
(2) a )−

(U a
(1) aU

i
(2) j ) + (U i

(1) jU
a

(2) a )− (U a
(1) bU

b
(2) a )δij

κ+m1

+
(U a

(1) aU
b

(2) b )δij

(κ+m1)2
− (κ+ 2m1)(U

i
(1) a∂U

a
(1) j )

−
(κ+ 2m1)(U

a
(1) a∂U

i
(1) j )

κ+m1
−

(m2
1 + 1 + κm1)(U

a
(1) j ∂U

i
(1) a )

κ+m1

−
(κ+ 2m1)(U

i
(1) j ∂U

a
(1) a )

2(κ+m1)
+

(3κ+ 5m1)(U
a

(1) b∂U
b

(1) a )δij

3(κ+m1)

+
(5κ+ 8m1)(U

a
(1) a∂U

b
(1) b )δij

6(κ+m1)2
+ (U i

(1) aU
a

(1) bU
b

(1) j )

+
(U i

(1) aU
b

(1) bU
a

(1) j ) + 1
2(U a

(1) bU
b

(1) aU
i

(1) j )− 1
3(U a

(1) bU
b

(1) cU
c

(1) a )δij

κ+m1

+
(U a

(1) aU
b

(1) bU
i

(1) j )− (U a
(1) bU

b
(1) aU

c
(1) c )δij

2(κ+m1)2

−
(U a

(1) aU
b

(1) bU
c

(1) c )δij

6(κ+m1)3
. (3.34d)

Since U
[2] i
(1) j , U

[2] i
(2) j and U

[2] i
(3) j generate the matrix-extendedW1+∞ algebra, all higher

generators are also fixed.6 One can check directly that U
[1] a
(j) b and U

[2] i
(k) j commute and

the lowest U
[2] i
(k) j satisfy the OPEs of the matrix-extended W1+∞ with parameters given

in (3.33).

One can iterate this procedure to find the conformal embedding

m

×̀
=1

W1+∞

(
κ+ `,

nκ

κ+ `

)
⊂ W1+∞(κ, n;m) . (3.35)

Thus, there are m commuting W1+∞ subalgebras inside matrix-extended W1+∞. The

corresponding λ-parameters read

λ`1 =
nκ

κ+ `− 1
, λ`2 = − nκ

κ+ `
, λ`3 = nκ . (3.36)

This embedding extends the well-known result where the right-hand side is affine gl(m)κ
(corresponding to the case n = 1), which is proved for instance in [41, Cor. 1.2.].

4 Truncations of algebra

Finally, we discuss truncations of the algebra. We have already seen several such trunca-

tions. For n ∈ N, it is manifest from the Miura transformation that the field U a
(n+1) b (z)

6In fact, for m2 > 1 already U
[2] i

(1) j and U
[2] i

(2) j generate the complete algebra.
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is never produced in OPEs and hence generates an ideal inside the algebra. Similarly, it is

well-known that in gl(m)k with k ∈ Z, the field

(U 1
(1) m · · ·U

1
(1) m )︸ ︷︷ ︸

k+1

(4.1)

generates an ideal inside the algebra. We have also seen a third family of truncations using

the coset description in section 3.5. However, there are more general truncations which

lead to an intriguing structure generalizing the Y-algebras to the matrix case.

4.1 Highest weight states

To discuss the representation theory below, it will be useful to understand higher-weight

states of the algebra. To do so, it is simplest to think about the algebra in terms of its

modes. The OPE of the fields like (3.7) can be translated into commutators of modes by

computing

[U a
(j) b,r , U

c
(k) d,s ] =

∮
0

dw

∮
w

dz zr+j−1ws+k−1U a
(j) b (z)U c

(k) d (w) . (4.2)

A highest-weight representation of the algebra has a highest-weight state |λ〉 satisfying

U a
(j) b,r |λ〉 = 0 . (4.3)

for all j ∈ N, all a and b and all r > 0. We also demand that the highest weight state is a

highest weight state with respect to the global gl(m) subalgebra, which amounts to

U a
(1) b,0 |λ〉 = 0 (4.4)

for a < b. This makes the highest weight state unique.

One can see from the OPEs, that it is sufficient to impose the conditions

U i
(1) i+1,0 |λ〉 = 0 , i ∈ {1, . . . ,m− 1} , (4.5a)

U m
(1) 1,1 |λ〉 = 0 , (4.5b)

U 1
(1) 1,1 |λ〉 = 0 , (4.5c)

U m
(2) 1,1 |λ〉 = 0 , (4.5d)

U m
(3) 1,1 |λ〉 = 0 , (4.5e)

Moreover, the Cartan generators U a
(1) a,0 act diagonally and their eigenvalue is given by

λ. Thus, these generators can be thought of as the ‘simple roots’ of the algebra.

The Verma module is then generated by acting with all negative modes, as well as

with U a
(0) b for a > b on the highest weight state. The irreducible representation space is

obtained by dividing the Verma module by all null-vectors.
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4.2 Singular fields

We now consider the algebra for low values of m = 2, 3, 4, 5 and we compute all truncations

up to certain level. Technically, we do this by computing singular fields in the vacuum

representation of the algebra, i.e. fields which are both descendants and highest-weight

fields satisfying (4.5). By systematically listing the states in the vacuum representation of

the algebra, we can search for singular vectors satisfying these conditions. In this brute-

force analysis, we are restricted to small m. For m = 2, we have been able to work up to

level 8, for m = 3, 4 up to level 6, and for m = 5 up to level 5. Equivalently, one could work

out the Kac determinant (Shapolov form) of the vacuum representation. However, this is

computationally far more ineffective, so we chose to work with singular fields instead.

As expected, we find that singular fields appear only if certain relations beween the

parameters κ, n and m are satisfied. For instance, at level 2, we find four different curves

in the parameter space where singular fields appear. These are

n− 1 = 0 , nκ+ κ+m = 0 , nκ− 1 = 0 , nκ+ 1 = 0 . (4.6)

The first and third curves were expected, and already discussed in the introductory part of

this section. The presence of the second curve is required by the duality symmetry (3.3).

The last curve is already duality invariant on its own. One can think of these four trunca-

tions as corresponding to four basic Miura factors. Analogously to the situation in W1+∞,

applying the fusion to these basic Miura transforms allows us to realize any other trunca-

tion of the algebra. The first Miura factor is the central object studied here and represents

matrix-valuedW1+∞ in terms of a Kac-Moody algebra. The second one is obtained from it

by applying duality automorphism as already mentioned. The last two elementary Miura

factors are studied in greater detail in [28].

We should also mention that the latter three curves in parameter space degenerate for

n = 1 to the singular fields of gl(m)κ Kac-Moody algebra (provided that m ≥ 3). The

complete data of our computation is discussed in the next subsection.

4.3 The gluing construction

In order to interpret the results from our computation, it is useful to employ the gluing con-

struction, which we have reviewed in subsection 2.2. The m commuting W1+∞ algebras

inside matrix-extended W1+∞, which were discussed in subsection 3.8 are exactly those

W1+∞ algebras whose Y-algebras can be glued together according to the gluing construc-

tion [19]. Thus, we expect that truncations of the matrix-extended version of W1+∞ are

captured by gluings as in figure 3. We will see that these gluings account in fact for all trun-

cations of the matrix-extended algebra that we found by explicit study of singular vectors.

In order for the gluing to be possible, we need to satisfy all the gluing conditions (2.13).

Moreover, we want to impose the additional condition

N`+1 −N` = N`+2 −N`+1 , ` ∈ {1, . . . ,m− 1} , (4.7)

which ensures that the basic gluing fields have spin 1. Hence, the numbers on the right of

the figure 3 change linearly. Then the truncation condition (2.10) amounts to

N`+1

λ`1
+
N`

λ`2
+
N

λ`3
=

(κ+ `− 1)N`+1 − (κ+ `)N` +N

nκ

!
= 1 ., (4.8)
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· · ·

N1

N2

N3

N4

N

Figure 3. Truncations of the matrix-extended W1+∞ algebra via gluing.

which is actually independent of `. From the direct search for singular vectors, it turns

out that the truncations predicted from the gluing construction account for all singular

vectors. From now we discuss the truncations of the algebra for rank 2, i.e. m = 2. All the

singular vectors for m = 2 up to level 8 are displayed in table 1.7

We should note that in this picture, the duality symmetry (3.3) simply acts by vertically

reflecting the diagram. The fact that truncations always appear in duality invariant pairs

(or are duality invariant by themselves) is a good consistency check of our computations.

We have decorated some vertices with red dots. These signal that the respective vertex

already possesses a null-vector at the given level. Indeed, the Y-algebra in the vertex has

a null-vector at level (2.11), which remains null in the extended algebra. Experimentally,

we see that this always happens if N1 = 0 or N3 = 0. We observe in these cases that there

is also a very simple rule to determine the sl(2) representation in which the null-vector

resides: the spin is always one more than the left number in the diagram. We should also

clarify that the null-vector appears for all spins up to some maximal spin, which is the spin

we display in table 1.

There are however also cases without red dots, like the last diagram for the level 2

truncations in table 1. While for these values in parameter space, the vertices do possess

null-vectors, they would appear at higher levels (and different spins). Thus, the singular

vector originates from the gluing fields in these cases. For instance, focusing again on the

last diagram for level 2, the vertices do contain null-vectors, but by (2.11) these would only

appear at level 4 = (0 + 1)(1 + 1)(1 + 1).

Let us look in more detail at the level 2 singular vector. There is a unique field which

is primary with respect to both the commuting W1+∞ subalgebras with û(1) charge 0.8 It

represents the gluing primary which is with respect to both of these algebras a primary

7We have omitted level 1, since it behaves a bit singular in our parametrization. We have a null-vector

at level 1, if nκ = 0. But since the denominator in (4.8) vanishes at this value, we cannot directly translate

this condition into a gluing picture. Morally, it should however correspond to the diagram, where all entries

are zero. The resulting truncation is the Heisenberg algebra.
8Note that our usage of the two commuting W1+∞ algebras breaks gl(2)→ u(1)⊕u(1). Since the overall

u(1) charge is still central, we measure here the u(1) ⊂ sl(2) charge.
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Level 2
1

0

0

0

nκ− 1

spin 2

0

2

1

0

n− 1

spin 1

0

0

1

2

nκ+ κ+ 2

spin 1

0

1

1

1

nκ+ 1

spin 0

Level 3
2

0

0

0

nκ− 2

spin 3

0

4

2

0

n− 2

spin 1

0

0

2

4

nκ+ 2κ+ 4

spin 1

Level 4

3

0

0

0

nκ− 3

spin 4

1

2

1

0

nκ− κ− 1

spin 2

1

0

1

2

nκ+ κ+ 1

spin 2

0

6

3

0

n− 3

spin 1

0

0

3

6

nκ+ 3κ+ 6

spin 1

0

1

2

3

nκ+ κ+ 3

spin 0

0

3

2

1

nκ− κ+ 1

spin 0

Level 5
4

0

0

0

nκ− 4

spin 5

0

8

4

0

n− 4

spin 1

0

0

4

8

nκ+ 4κ+ 8

spin 1

0

2

2

2

nκ+ 2

spin 1

Level 6

5

0

0

0

nκ− 5

spin 6

2

2

1

0

nκ− κ− 2

spin 3

2

0

1

2
nκ+ κ

spin 3

1

4

2

0

nκ− 2κ− 1

spin 2

1

0

2

4

nκ+ 2κ+ 3

spin 2

0

10

5

0

n− 5

spin 1

0

0

5

10

nκ+ 5κ+ 10

spin 1

0

5

3

1

nκ− 2κ+ 1

spin 0

0

1

3

5

nκ+ 2κ+ 5

spin 0

Level 7
6

0

0

0

nκ− 6

spin 7

0

12

6

0

n− 6

spin 1

0

0

6

12

nκ+ 6κ+ 12

spin 1

Level 8

7

0

0

0

nκ− 7

spin 8

3

2

1

0

nκ− κ− 3

spin 4

3

0

1

2

n+ κ− 1

spin 4

1

6

3

0

nκ− 3κ− 1

spin 2

1

0

3

6

nκ+ 3κ+ 5

spin 2

0

14

7

0

n− 7

spin 1

0

0

7

14

nκ+ 7κ+ 14

spin 1

0

4

3

2

nκ− κ+ 2

spin 1

0

2

3

4

nκ+ κ+ 4

spin 1

0

7

4

1

nκ− 3κ+ 1

spin 0

0

1

4

7

nκ+ 3κ+ 7

spin 0

0

3

3

3

nκ+ 3

spin 0

Table 1. Truncations for m = 2. We suppressed the angles and arrows in the gluing diagrams for

simplicity.
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labeled by (�,�) representation along the glued edge.

Uprim
(2) = −n(nκ− κ+ 1)U 1

(2) 1 + n(κ+ κn+ 1)U 2
(2) 2 + κ2(n− 1)n∂U 1

(1) 1

− κn(n− 1)(κn+ κ+ 1)(U 1
(1) 2U

2
(1) 1 ) + (n− 1)(κn+ 1)(U 1

(1) 1U
1

(1) 1 )

− (n− 1)(κn+ κ+ 1)(U 1
(1) 1U

2
(1) 2 ) . (4.9)

It becomes the singular field upon specialization nκ − 1 = 0, n − 1 = 0, nκ + κ + 2 = 0

or nκ+ 1 = 0. This primary field does not sit in a definite sl(2) representation, but upon

specialization of the parameters sits either in the spin 0, spin 1 or spin 2 representation,

according to table 1.

4.4 The stable range

After having discussed the case m = 2, let us discuss also higher values m. It is particularly

useful to look at region of large m, since then some irregularities associated to small matrix

size disappear and the properties of singular vectors stabilize.

We have checked that the same structure persists for higher values of m and the

corresponding data for m = 3, 4 and 5 is shown in appendix C. One can see that the

singular gluing fields appear here at different levels compared to their analogues for m = 2.

For example, let us look at the sequence of truncation curves

0

3

3

3

, 0

3

3

3

3

, 0

3

3

3

3

3

, 0

3

3

3

3

3

3

, . . . (4.10)

The first null-vector appears at level 8 for m = 2, but at level 6 for m = 3 and for m ≥ 4, it

appears at level 4. We define the stable level to be the level of the null-vector for m→∞.

Note however that the corresponding null-vector appears at this level for all but a finite

number of values of m. For small values of m, the corresponding representation might not

exist, which is why one observes the null-vector only higher up. Describing this unstable

behavior is complicated and we focus in the following on the stable levels.

To formalize the discussion, it is useful to introduce names for the four truncation

conditions appearing at level 2 (here displayed for m = 4):

X = 0

4

3

2

1

0

, XT = 0

0

1

2

3

4

, Y = 1

0

0

0

0

0

, Z = 0

1

1

1

1

1

. (4.11)

Note that X and XT are exchanged under duality. They represent our basic Miura factor

and its dual. The space of all allowed truncations is then the positive cone over these four

generators, i.e. every truncation curve can be written as

kXX + kXTXT + kY Y + kZZ (4.12)
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with kX , kXT , kY and kZ ∈ Z≥0. The corresponding truncation curve in the parameter

space reads

nκ− kXκ+ kXT(κ+m)− kY + kZ = 0 . (4.13)

Since we can shift all numbers in the gluing diagram equally (without changing the values

of parameters of the algebra), we can identify Y + Z ∼ 0 and thus always choose either

kY = 0 or kZ = 0. Similarly, we have X + XT = mZ, which allows us to choose either

kX = 0 or kXT = 0.

One observes from the data that kY and kZ always have the null-vector at the same

stable level k + 1. Thus, there seems to be a second ‘duality’ symmetry9 in the large rank

limit which exchanges the truncation Y with Z. This lets one make a guess for the level

at which the null-vector appears.

If kZ = 0, we always have a read dot present in the diagram and thus the level of the

null-vector is inherited from W1+∞ [19]. This leads to the formula

Level = (kX + 1)(kXT + 1)(kY + 1) , (4.14)

where it is understood that either kX = 0 or kXT = 0.

If on the other hand kY = 0, we expect the same level by the additional ‘duality’

symmetry, except that kY is interchanged with kZ . Thus, we conjecture the general formula

for the level of the null-vector in the stable range to be

Level = (kX + 1)(kXT + 1)(kY + 1)(kZ + 1) , (4.15)

where it is again understood that either kX = 0 or kXT = 0 and similarly that either

kY = 0 or kY = 0. This conjecture is consistent with all the data we have computed.

The additional ‘duality’ symmetry and the elegant final formula seems to beg for a deeper

interpretation.10

One can similarly make an educated guess for the gl(m) representation which the null-

state appears. From the data, the representation of the null-vector seems to be given by

the Dynkin labels

[kY + 1, 0, . . . , 0, kY + 1] (4.16)

in the stable range.

5 Summary and outlook

The Miura transformation in the case of W1+∞ is a very powerful construction. Apart

from providing a free field representation of the algebra, it also shows the existence of a

quadratic basis of the generating fields which allows one to write the operator product

9We put quotation marks around it, since this is not a real symmetry.
10At the level of Grassmannian subalgebra of matrix-valuedW1+∞ (which is obtained by taking the coset

with respect to the gl(m)nκ subalgebra), it is a consequence of the exact duality which exchanges all the

ranks with their negatives (which is actually what we see in these diagrams). Having a finite value of rank

m = 2, 3, . . . however breaks this symmetry so we see its consequences only in the stable region where the

value of the rank m does not play a role.
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expansions of W1+∞ in a closed form. In the first part of this work we checked that all

these special properties remain true even if we consider the matrix-extended version of

W1+∞. The free field representation is now replaced by an affine Lie algebra, but the

operator product expansions remain quadratic and again we are able to write closed form

formulas for all the OPEs. Surprisingly, there is almost no dependence of the OPEs on the

rank or structure of the matrix part of the algebra.

In the second part we studied the structure of truncations of the vacuum module of

the algebra which shows a more intricate structure than in the case of W1+∞. The gluing

construction explains for which codimension 1 curves in the parameter space there is a

singular vector in the vacuum representation, but to understand the level and spin of these

one must make a more detailed analysis. The space of simple truncations turns out to be

a cone over positive integers generated by four basic level 2 truncations.

There are several possible further directions and applications that are worth studying.

Yangian, R-matrix, shuffle algebra. The algebra W1+∞ has a dual description as

the affine Yangian of ĝl(1) [14]. One way to understand the map to Yangian variables is

via the Maulik-Okounkov R-matrix [31, 42, 43]. It would be very interesting to generalize

this construction to the matrix-extended case and find the matrix-extended version of the

Yangian generators, see also [23]. The generators ofW1+∞ act on orbital degrees of freedom

in Calogero models [44], so one expects there should be an action of matrix-extendedW1+∞
on spin-Calogero models. The Yangian variables are closely related to the shuffle algebra

description and it would be nice to have a matrix generalization of the map [16] between

the quadratic basis generators and the shuffle algebra. The integrable structure of the

algebras considered here was also studied in interesting work [45, 46] where Bethe ansatz

equations were conjectured and conserved commuting quantities were studied for certain

specializations of the parameters.

Grassmannian. Although W1+∞ can be used as a building block via the gluing proce-

dure to construct a large class of vertex operator algebras, there are examples of vertex

operator algebras which don’t seem to be decomposable into these blocks. One such exam-

ple is the Grassmannian coset GL(M+N)k/GL(M)k×GL(N)k which for M,N > 1 is larger

than W1+∞ and in fact there is a three-parametric family of these algebras (i.e. we have

one more parameter than in W1+∞). This algebra is a subalgebra of the matrix-extended

W1+∞ and should have a duality symmetry S3×Z2. It is the fundamental building block of

all unitary flag coset algebras. All these properties make it an interesting object to study.
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A OPEs and structure constants

In the main text, we have displayed the OPEs of the algebra until j + k = 4. Here, we

display for further illustration of the properties discussed in the main text also the OPEs

with j + k = 5. They take the form

U a
(1) b (z)U c

(4) d (w)

∼ −
(n− 3)(n− 2)(n− 1)nκ3(κδadδ

c
b + δabδ

c
d)

(z − w)5

+
(n− 3)(n− 2)(n− 1)κ2(κδadU

c
(1) b (w) + δabU

c
(1) d (w))

(z − w)4

−
(n− 3)(n− 2)κ(κδadU

c
(2) b (w) + δabU

c
(2) d (w))

(z − w)3

+
(n− 3)(κδadU

c
(3) b (w) + δabU

c
(3) d (w))

(z − w)2
+
δcbU

a
(4) d (w)− δadU c

(4) b (w)

z − w
, (A.1)

U a
(2) b (z)U c

(3) d (w)

∼
(n− 2)(n− 1)nκ

(
κ(3nκ2 − κ2 − 2)δadδ

c
b + (3nκ2 − 2κ2 − 1)δabδ

c
d

)
(z − w)5

+
(n− 2)(n− 1)2κ2δcdU

a
(1) b (w) + (n− 2)(n− 1)

(
nκ2 − 1

)
κδcbU

a
(1) d (w)

(z − w)4

+
−2(n− 2)(n− 1)

(
nκ2 − 1

)
δadU

c
(1) b (w)κ

(z − w)4

−
(n− 2)(n− 1)

(
4nκ2 − 3κ2 − 1

)
δabU

c
(1) d (w)

2(z − w)4

+
(n− 2)(n− 1)κ

(z − w)3
(
nκ2δcb∂U

a
(1) d (w)− κ(U a

(1) dU
c

(1) b )(w)

+ nκδcd∂U
a

(1) b (w)− (U a
(1) bU

c
(1) d )(w)

)
+

(n− 2)κδcdU
a

(2) b (w) + (n− 2)δcbU
a

(2) d (w)

(z − w)3

+
(n− 2)

(
nκ2 + κ2 − 1

)
δadU

c
(2) b (w) + (n− 2)nκδabU

c
(2) d (w)

(z − w)3

+
(n− 2)

2(z − w)2

(
n2κ3δcb∂

2U a
(1) d (w)− nκ3δcb∂2U a

(1) d (w)

− 2nκ2
(
∂U a

(1) dU
c

(1) b

)
(w) + 2κ2

(
∂U a

(1) dU
c

(1) b

)
(w)
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+ n2κ2δcd∂
2U a

(1) b (w)− nκ2δcd∂2U a
(1) b (w)

− 2nκ
(
∂U a

(1) bU
c

(1) d

)
(w) + 2κ

(
∂U a

(1) bU
c

(1) d

)
(w)

+ 2κ(U a
(1) dU

c
(2) b )(w) + 2(U a

(1) bU
c

(2) d )(w)
)

−
δcdU

a
(3) b (w) + κδcbU

a
(3) d (w) + 2κδadU

c
(3) b (w) + 2δabU

c
(3) d (w)

(z − w)2

+
−2
(
∂U a

(1) bU
c

(2) d

)
(w) + n

(
∂U a

(1) bU
c

(2) d

)
(w)

z − w

+
−2κ

(
∂U a

(1) dU
c

(2) b

)
(w) + nκ

(
∂U a

(1) dU
c

(2) b

)
(w)

z − w

+
−κ
(
∂2U a

(1) bU
c

(1) d

)
(w) + 3

2nκ
(
∂2U a

(1) bU
c

(1) d

)
(w)

z − w

+
−1

2n
2κ
(
∂2U a

(1) bU
c

(1) d

)
(w)− κ2

(
∂2U a

(1) dU
c

(1) b

)
(w)

z − w

+

3
2nκ

2
(
∂2U a

(1) dU
c

(1) b

)
(w)− 1

2n
2κ2

(
∂2U a

(1) dU
c

(1) b

)
(w)

z − w

+
−(U a

(1) dU
c

(3) b )(w) + (U c
(1) bU

a
(3) d )(w)

z − w

+
−κδcb∂U a

(3) d (w)− δab∂U c
(3) d (w)

z − w

+

1
6(n− 2)(n− 1)nκ2(κδcb∂

3U a
(1) d (w) + δcd∂

3U a
(1) b (w))

z − w

+
δcbU

a
(4) d (w)− δadU c

(4) b (w)

z − w
. (A.2)

B Character analysis

In this appendix, we discuss the character of the matrix-extended W1+∞ algebra, as well as

the decomposition into the sub W1+∞ algebras. This analysis is similar to what appeared

in [19, 20].

B.1 The full vacuum character

The matrix-extended algebra contains m2 higher spin fields of every integer spin. Hence,

its (generic) vacuum character is given by

χvac(z1, . . . , zm; τ) =
∞∏
s=1

∞∏
n=s

m∏
i,j=1

1

1− yiy−1j qn
=
∞∏
n=1

m∏
i,j=1

1

(1− yiy−1j qn)n
, (B.1)

where yi = e2πizi are chemical potentials associated to the m commuting û(1) currents in

the algebra, and q = e2πiτ as usual. This is a flavored version of the MacMahon function.
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x1 x2

x3

Figure 4. Example state in the vacuum representation. This state has conformal weight h = 25,

which equals the number of boxes.

x1 x2

x3

Figure 5. Example state in the representation (( , •) , (•, •) , (•, •)) (where • means trivial asymp-

totics). This state has conformal weight h = 16 + 3
2λ1 + 5

2 , see (B.5).

B.2 Characters of W1+∞

Next, we recall some simple facts about W1+∞ characters. They are best thought of in

terms of plane partitions, using the isomorphism of W1+∞ with the affine Yangian [15, 17,

19–21, 33, 47]. In the Yangian picture, characters can be read off from counting certain

plane partitions. For instance, the vacuum character is simply given by all the plane

partitions with trivial asymptotics along the three axes. An example state of this form

is displayed in figure 4. Non-trivial representations can have asymptotics along the three

coordinate axes, which are captured by Young diagrams. Conjugation of W1+∞ forces one

to consider also representations involving anti-boxes. Thus, the asymptotics along every

axis is specified by a pair of Young diagrams (µ, µ) of boxes and anti-boxes, respectively.
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We shall be particularly interested in representations, which have only non-trivial

asymptotics along one of the coordinate axes, which we conventionally take to be the x1-

axis. An example state in the representation with asymptotics ( , •) along the x1-axis

is displayed in figure 5. Characters with this type of asymptotics are particularly easy to

determine [15, 48] and it is useful to factor the character into a vacuum contribution and

a ‘wedge’-character:

χ((µ,µ),(•,•),(•,•))(τ) = χwedge
µ (τ)χwedge

µ (τ)
∞∏
n=1

1

(1− qn)n
, (B.2)

where χwedge
µ (τ) is given by

χwedge
µ (τ) = qh1+∞(µ)

∏
(i,j)∈µ

1

1− qh(i,j)
. (B.3)

Here, (i, j) runs over all boxes in the Young diagrams µ and h(i, j) denotes the correspond-

ing hook length. The ground state conformal weight is given by [15]

h1+∞(µ) = − λ1
2λ2

∑
j

µ2j −
λ1
2λ3

∑
j

(µT)2j +
λ1
2

∑
j

µj . (B.4)

We denoted by µj the height of the j-th column and by (µT)j the length of the j-th row.

We also made use of the λ-parameters in (2.8). The same formulae hold for anti-boxes and

the contribution to the conformal dimensions of boxes and anti-boxes add. For instance,

for the diagram ( , •), we have

χwedge

( , •)
(τ) =

q
3
2
λ1+

5
2

(1− q)2(1− q3)
. (B.5)

B.3 Gluing fields

We observe from (3.36) that λ`2 = −λ`+1
1 , which means that this is the direction in which

the two sub W1+∞ algebras are glued together. In the following, we focus again mostly

on the case of m = 2, where there is only one gluing. In this case, matter fields sit in

representations ((•, •), (µ, µ), (•, •)) and ((ν, ν), (•, •), (•, •)) with respect to the twoW1+∞
subalgebras. We have the identity

∞∏
n=1

1

(1− qn)2n
=
∑
µ, µ

χwedge
µ (τ)χwedge

µ (τ) χwedge
µ (τ)χwedge

µ (τ) , (B.6)

where the first two wedge characters belong to the first W1+∞ algebra and the second

two wedge characters are wedge characters of the second W1+∞ algebra. Thus, the gluing

matter transforms in the representation11⊕
µ, µ

((•, •), (µ, µ), (•, •))⊗ ((µ, µ), (•, •), (•, •)) (B.7)

11Note that we conjugated the representation of the secondW1+∞ with respect to the first. This operation

is invisible for the character, but is forced to be so since the gluing matter should be oppositely charged

with respect to the two u(1)’s.
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with respect to the two W1+∞ subalgebras. Note that this is essentially identical to [20],

except that the second Young diagram is not transposed. Thus, the gluing fields in the

matrix-extended algebra run over all representations with non-trivial same asymptotics in

direction 2 of the first W1+∞ algebra and direction 1 of the second algebra.

C Null-vectors for higher m

In this appendix, we collect our data for the null-vectors for higher m in the matrix-

extended algebra.

Level 2

1

0

0

0

0

nκ− 1

spin [2,2]

0

3

2

1

0

n− 1

spin [1,1]

0

0

1

2

3

nκ+ κ+ 3

spin [1,1]

0

1

1

1

1

nκ+ 1

spin [1,1]

Level 3

2

0

0

0

0

nκ− 2

spin [3,3]

0

6

4

2

0

n− 2

spin [1,1]

0

0

2

4

6

nκ+ 2κ+ 6

spin [1,1]

0

2

2

2

2

nκ+ 2

spin [0,0]

Level 4

3

0

0

0

0

nκ− 3

spin [4,4]

1

3

2

1

0

nκ− κ− 1

spin [2,2]

1

0

1

2

3

nκ+ κ+ 2

spin [2,2]

0

9

6

3

0

n− 3

spin [1,1]

0

0

3

6

9

nκ+ 3κ+ 9

spin [1,1]

0

1

2

3

4

nκ+ κ+ 4

spin [1,1]

0

4

3

2

1

nκ− κ+ 1

spin [1,1]

Level 5

4

0

0

0

0

nκ− 4

spin [5,5]

0

12

8

4

0

n− 4

spin [1,1]

0

0

4

8

12

nκ+ 4κ+ 12

spin [1,1]

Level 6

5

0

0

0

0

nκ− 5

spin [6,6]

2

3

2

1

0

nκ− κ− 2

spin [3,3]

2

0

1

2

3

nκ+ κ+ 1

spin [3,3]

1

6

4

2

0

nκ− 2κ− 1

spin [2,2]

1

0

2

4

6

nκ+ 2κ+ 5

spin [2,2]

0

7

5

3

1

nκ− 2κ+ 1

spin [1,1]

0

1

3

5

7

nκ+ 2κ+ 7

spin [1,1]

0

15

10

5

0

n− 5

spin [1,1]

0

0

5

10

15

nκ+ 5κ+ 15

spin [1,1]

0

3

3

3

3

nκ+ 3

spin [1,1]

0

5

4

3

2

nκ+ κ+ 5

spin [0,0]

0

2

3

4

5

nκ− κ+ 2

spin [0,0]

Table 2. Truncations for m = 3.
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Level 2

1

0

0

0

0

0

nκ− 1

spin [2,0,2]

0

4

3

2

1

0

n− 1

spin [1,0,1]

0

0

1

2

3

4

nκ+ κ+ 4

spin [1,0,1]

0

1

1

1

1

1

nκ+ 1

spin [1,0,1]

Level 3

2

0

0

0

0

0

nκ− 2

spin [3,0,3]

0

8

6

4

2

0

n− 2

spin [1,0,1]

0

0

2

4

6

8

nκ+ 2κ+ 8

spin [1,0,1]

0

2

2

2

2

2

nκ+ 2

spin [1,0,1]

Level 4

3

0

0

0

0

0

nκ− 3

spin [4,0,4]

1

4

3

2

1

0

nκ− κ− 1

spin [2,0,2]

1

0

1

2

3

4

nκ+ κ+ 3

spin [2,0,2]

0

12

9

6

3

0

n− 4

spin [1,0,1]

0

0

3

6

9

12

nκ+ 3κ+ 12

spin [1,0,1]

0

1

2

3

4

5

nκ+ κ+ 5

spin [1,0,1]

0

5

4

3

2

1

nκ− κ+ 1

spin [1,0,1]

0

3

3

3

3

3

nκ+ 3

spin [0,0,0]

Level 5

4

0

0

0

0

0

nκ− 4

spin [5,0,5]

0

16

12

8

4

0

n− 4

spin [1,0,1]

0

0

4

8

12

16

nκ+ 4κ+ 16

spin [1,0,1]

Level 6

5

0

0

0

0

0

nκ− 5

spin [6,0,6]

2

4

3

2

1

0

nκ− κ− 2

spin [3,0,3]

2

0

1

2

3

4

nκ+ κ+ 2

spin [3,0,3]

1

8

6

4

2

0

nκ− 2κ− 1

spin [2,0,2]

1

0

2

4

6

8

nκ+ 2κ+ 7

spin [2,0,2]

0

9

7

5

3

1

nκ− 2κ+ 1

spin [1,0,1]

0

1

3

5

7

9

nκ+ 2κ+ 9

spin [1,0,1]

0

20

15

10

5

0

n− 5

spin [1,0,1]

0

0

5

10

15

20

nκ+ 5κ+ 20

spin [1,0,1]

0

6

5

4

3

2

nκ− κ+ 2

spin [1,0,1]

0

2

3

4

5

6

nκ+ κ+ 6

spin [1,0,1]

Table 3. Truncations for m = 4.
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Level 2

1

0

0

0

0

0

0

nκ− 1

spin [2,0,0,2]

0

5

4

3

2

1

0

n− 1

spin [1,0,0,1]

0

0

1

2

3

4

5

nκ+ κ+ 5

spin [1,0,0,1]

0

1

1

1

1

1

1

nκ+ 1

spin [1,0,0,1]

Level 3

2

0

0

0

0

0

0

nκ− 2

spin [3,0,0,3]

0

8

6

4

2

0

-2

n− 2

spin [1,0,0,1]

0

0

2

4

6

8

10

nκ+ 2κ+ 10

spin [1,0,0,1]

0

2

2

2

2

2

2

nκ+ 2

spin [1,0,0,1]

Level 4

3

0

0

0

0

0

0

nκ− 3

spin [4,0,0,4]

1

5

4

3

2

1

0

nκ− κ− 1

spin [2,0,0,2]

1

0

1

2

3

4

5

nκ+ κ+ 4

spin [2,0,0,2]

0

15

12

9

6

3

0

n− 4

spin [1,0,0,1]

0

0

3

6

9

12

15

nκ+ 3κ+ 15

spin [1,0,0,1]

0

1

2

3

4

5

6

nκ+ κ+ 6

spin [1,0,0,1]

0

6

5

4

3

2

1

nκ− κ+ 1

spin [1,0,0,1]

0

3

3

3

3

3

3

nκ+ 3

spin [1,0,0,1]

Level 5

4

0

0

0

0

0

0

nκ− 4

spin [5,0,0,5]

0

20

16

12

8

4

0

n− 4

spin [1,0,0,1]

0

0

4

8

12

16

20

nκ+ 4κ+ 20

spin [1,0,0,1]

0

4

4

4

4

4

4

nκ+ 4

spin [0,0,0,0]

Table 4. Truncations for m = 5.
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[18] D. Gaiotto and M. Rapčák, Vertex algebras at the corner, JHEP 01 (2019) 160

[arXiv:1703.00982] [INSPIRE].
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