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Abstract: Following arXiv:1907.04737, we continue our investigation of the relation

between the renormalizability (with finitely many couplings) and integrability in 2d σ-

models. We focus on the “λ-model,” an integrable model associated to a group or symmetric

space and containing as special limits a (gauged) WZW model and an “interpolating model”

for non-abelian duality. The parameters are the WZ level k and the coupling λ, and the

fields are g, valued in a group G, and a 2d vector A± in the corresponding algebra. We

formulate the λ-model as a σ-model on an extended G×G×G configuration space (g, h, h̄),

defining h and h̄ by A+ = h∂+h
−1, A− = h̄∂−h̄

−1. Our central observation is that the

model on this extended configuration space is renormalizable without any deformation,

with only λ running. This is in contrast to the standard σ-model found by integrating

out A±, whose 2-loop renormalizability is only obtained after the addition of specific finite

local counterterms, resulting in a quantum deformation of the target space geometry. We

compute the 2-loop β-function of the λ-model for general group and symmetric spaces, and

illustrate our results on the examples of SU(2)/U(1) and SU(2). Similar conclusions apply

in the non-abelian dual limit implying that non-abelian duality commutes with the RG

flow. We also find the 2-loop β-function of a “squashed” principal chiral model.
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1 Introduction

Certain 2d σ-models have the special property of renormalizablility, meaning they have only

finitely many couplings running under RG flow. This property is expected to be closely

connected with integrability [1–3]: the conservation of infinitely many hidden symmetry

charges should reduce the RG flow in the infinite-dimensional space of σ-model couplings to

a finite-dimensional one. Having previously been observed [1–6] only at the 1-loop (Ricci

flow) level, it is important to study this reduction at higher loop orders to confirm its

relation with integrability.

This question of higher loop orders was addressed recently in [7], where we showed that,

starting from 2 loops, renormalizability requires a specific deformation of the classical target

space geometry, which may be interpreted as the result of adding finite local counterterms.

In [7] we focused on the simplest examples of bosonic integrable σ-models with 2-

dimensional target spaces. Here we shall consider more general examples with higher-

dimensional target spaces and including B-field couplings. We shall concentrate on a par-

ticular class of integrable models: the λ-deformation based on a group G or a symmetric
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space G/H (related to the coset σ-model) [8, 9] with Lagrangian1

L= k
(
LPCM(g)+LWZ(g)

+Tr
[
J+A−−A+K−+g−1A+gA−−A+A−−(λ−1−1)A+PA−

])
, (1.1)

LPCM =−1

2
Tr[J+J−] , dBWZ =

1

6
Tr[J∧J∧J ] , J = g−1dg , K = dg g−1 , (1.2)

P =

{
1 , group space G

PG/H , symmetric space G/H ,
(1.3)

where g ∈ G, A± ∈ Lie(G) and PG/H is the projector onto the orthogonal complement of

Lie(H) in Lie(G). Instead of λ it is often convenient to use the parameters γ or κ defined as

γ = λ−1 − 1 , κ =
1− λ
1 + λ

. (1.4)

This “λ-model” is special due to its close connection to the (gauged) WZW model

LG(g) = LPCM(g) + LWZ(g) ,

LG/H(g,A) = LPCM(g) + LWZ(g) + Tr
[
J+A− −A+K− + g−1A+gA− −A+A−

]
.

(1.5)

For example, the λ-model for a group G is a deformation of the G/G gauged WZW model

LG/G(g,A) by the term γA+A−. This model is a particular H = G case of the one

considered in [10–12]

L = k
[
LG/H(g,A)− γTr(A+A−)

]
, g ∈ G , A± ∈ Lie(H) . (1.6)

This “γ-model” (1.6) interpolates between two conformal theories: G/H gauged WZW

model (γ = 0) and G/H chiral gauged WZW model (γ = −1) [13].

Let us note also that there is a Z2 transformation [14, 15] (see also [12, 16])2

k → −k , λ→ λ−1 , i.e. κ→ −κ , (1.7)

g → g−1 , A+ → A+ − (1− λ−1)PA+ , A− → gA−g
−1 −K− , (1.8)

that maps the Lagrangian (1.2) to itself. The preservation of this symmetry at the quantum

level may require a particular choice of regularization scheme (see below). Since the λ →
0 (or γ → ∞) limit of the λ-model yields a (gauged) WZW model, we expect this to

correspond to a fixed point of the RG flow. The transformation (1.7), (1.8) then implies

that the same should apply to the limit λ → ∞ (or γ → −1). Indeed, in the group space

case the λ → ∞ limit of (1.2) is conformal: it is the G/G chiral gauged WZW model,

which, on integrating out A±, gives the G WZW model at level −k. Similarly, in the coset

case we find in this limit the G/H gauged WZW model at level −k.

1Our notation and conventions are summarized in Appendix A. In particular, we use hermitian generators

T a of the Lie algebra so that if g = ev ∈ G then v = i Tav
a ∈ Lie(G) is anti-hermitian. The action is defined

as S = 1
4π

∫
d2σL so that L has extra factor of 2 compared to the “conventional” normalization.

2Such a symmetry was discussed in a similar σ-model context in [12] (see footnotes 3 and 6 there).
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Integrating out the 2d gauge field A± in (1.2), i.e. reducing the model to the standard

(or “physical”) configuration space, one finds a σ-model with parameters k and λ. The limit

λ → 0 yields the G/H gauged WZW model (or G WZW model in the group space case)

with level k. As in the examples in [7], we shall find that to preserve renormalizability of

this model at the 2-loop level with only the coupling λ running, one must make a non-trivial

modification of the classical target space geometry.

At the same time, our central observation will be that, before integrating out A±, the

λ-model is renormalizable without any deformation. Changing the variables from A± to

h, h̄ ∈ G as A+ = h∂+h
−1, A− = h̄∂+h̄

−1 gives a σ-model on the extended or “tripled”

(G×G×G) configuration space (g, h, h̄). It may be interpreted as the sum of a decoupled

G WZW model and a deformation of the G × G WZW model by a particular left-right

current interaction term. In the group space case, the form of the resulting action is then

protected under the RG flow by the underlying chiral gauge symmetries together with the

global symmetries.

For the coset G/H, the λ-model is formally defined for any choice of H (with depen-

dence on the choice of H only through the projector P in (1.2)). However, it is known to be

integrable if G/H is a symmetric space [8, 9].3 We shall find evidence that the model is also

renormalizable if G/H is a symmetric space, which is a further indication of a connection

between integrability and renormalizability.4

The λ-model (1.2) admits a special limit λ→ 1, k →∞ with h ≡ 2k(1− λ) fixed

λ = 1− 1

2
hk−1 +O(k−2) , k →∞ , (1.9)

g = exp

(
−1

2
hk−1v

)
= 1− 1

2
hk−1v +O(k−2) , v ∈ Lie(G) ,

resulting in the following first-order Lagrangian [8]

L =
1

2
h Tr

[
v
(
∂+A− − ∂−A+ + [A+, A−]

)
−A+PA−

]
. (1.10)

This is an interpolating model for non-abelian duality: integrating out v in (1.10) gives

the principal chiral model (PCM) on group G, or the G/H symmetric space σ-model,

with coupling ∼ h−1, while integrating out A± gives the corresponding non-abelian dual

(NAD) model. The renormalizability of the λ-model in the extended configuration space

also applies in this limit: although the NAD of a group or symmetric space σ-model re-

quires a non-trivial deformation at the 2-loop level [7], the interpolating model remains

renormalizable without deformation. We conclude that, staying at the level of the inter-

polating model, non-abelian duality commutes with the RG flow beyond the 1-loop level

(thus resolving problems discussed in [17–20]).

3In this case it is also related to the standard symmetric space σ-model (which is both integrable and

renormalizable) in the NAD limit (1.9).
4For example, for more general cosets the symmetries may not be sufficient to rule out other possible

current-current counterterms not present in the classical action.
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To study the 2-loop renormalizability of the above models we will be using the explicit

expression for the β-function of the general bosonic σ-model

S ≡ 1

4π

∫
d2σL = − 1

4π

∫
d2σ

(
ηrsGµν(x) + εrsBµν(x)

)
∂rx

µ∂sx
ν

=
1

4π

∫
d2σ

(
Gµν(x) + Bµν(x)

)
∂+x

µ∂−x
ν .

(1.11)

In terms of the curvature R̂µνρσ of the generalized connection Γ̂µνρ = Γµνρ(G)− 1
2Hµ

νρ the

2-loop RG equation can be written as [21–26]

d(Gµν + Bµν)

dt
+ LX(G + B)µν + (dY )µν = β(1)

µν + β(2)
µν + . . .

= R̂µν +
1

2

[
R̂ρστ νR̂µρστ −

1

2
R̂στρνR̂µρστ +

1

2
R̂ρµνσ(H2)ρσ

]
+ . . . .

(1.12)

Here t is log of the RG mass scale, LX is the Lie derivative with respect to the vector X,

corresponding to RG-dependent diffeomorphisms, and dY is an exact two-form, which is a

total derivative when pulled back to the worldsheet. This 2-loop β-function is given in a

particular “minimal” subtraction scheme [23, 24].5

Let us now comment on the motivation behind the present work. In addition to

understanding non-abelian duality beyond the 1-loop level, investigating the λ-model and

its quantum corrections is of more general interest in the context of integrable deformations

of superstring actions in special AdS-type backgrounds. Integrability has been a powerful

tool in the proposed solution of the spectral problem for string theory in on AdS5×S5 dual

to the large-N maximally supersymmetric YM theory [27, 28]. This motivates the study

of further similar models, potentially leading to new exact solutions of strings in curved

spaces and dual gauge theories. By now there are many examples, including those based

on lower-dimensional AdS spaces [29, 30], as well as deformed backgrounds, such as the

well-studied β-deformation [31–33].

The λ-deformation of the AdS5 × S5 superstring [34] belongs to a more general class

of integrable deformations not obtained by T-duality. It is a deformation of the non-

abelian dual model of the undeformed superstring model and is closely related to the

η-deformation [35], which is a deformation of the superstring action itself. The latter

generalises the bosonic η-model of [36, 37]. More precisely, the λ-model and η-model are

related by the Poisson-Lie duality [38, 39] (which is a generalisation of non-abelian duality)

and a particular analytic continuation [15, 40–43]. While both models describe a string

propagating in a type II supergravity background [44, 45], much remains to be understood

about their structure. Probing the quantum properties of the bosonic η-model and λ-model

(even though they are not themselves scale-invariant theories suitable for defining string

models) can provide valuable insights into their superstring counterparts. For example,

5Alternative “minimal” schemes are related to this one by (G+B)µν → (G+B)µν +a1Rµν +a2(H2)µν +

a3R̂µν . Since β
(1)
µν = R̂µν it follows that shifts by R̂µν will leave β

(2)
µν invariant. On the other hand, shifts

by Rµν and (H2)µν do modify β
(2)
µν , and hence, in the case of non-trivial B-field, the 2-loop RG equation is

no longer scheme-independent [23, 24]. One other scheme that will be useful in our discussion of T-duality

in section 3 is related to the minimal one in (1.12) by (G + B)µν → (G + B)µν + 1
4
(H2)µν .
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the relation via the Poisson-Lie duality was first understood in the bosonic case. It is thus

natural to first explore the question of quantum corrections by studying the bosonic models.

It is also worth emphasizing that the bosonic models are of interest in their own right

in the context of investigation of general integrable 2d theories. The η-model has played

an important role in generalizing the duality between the deformed O(3) and O(4) sigma

models and massive integrable QFTs [1–3] to higher-rank groups [4–6]. While the dual

theories are quantum-exact, the σ-model side of the duality is only understood so far

to leading order in the loop expansion. Therefore, after finding quantum corrections to

integrable σ-models consistent with renormalizability, studying their compatibility with

this duality may be a useful way to further explore the conjectured relationship between

integrability and renormalizability.

The rest of the paper is organized as follows. In section 2 we consider the λ-model on

the extended configuration space (g,A+, A−). We argue that it should be renormalizable

with only the parameter λ running and compute the 2-loop β-function of the λ-model based

on general groups and symmetric spaces. As a consequence, the same renormalizability

conclusion holds for the model (1.10) interpolating between the PCM and its NAD, with

the same 2-loop β-function for h as in the PCM (and the same in the symmetric space case).

In section 3 we study the renormalization of the λ-model defined by the standard σ-

model action, after integrating out A±. In this case its invariance under the 2-loop RG

flow requires a specific deformation of the classical geometry. While in the SU(2)/U(1)

case the required counterterm is simple [7], in the SU(2) case, the corresponding quantum-

corrected σ-model action has a rather intricate structure. We also consider a particular

limit of the SU(2) λ-model where it becomes T-dual to a σ-model for a squashed 3-sphere,

explaining the consistency of the quantum deformation of the original λ-model with the

known quantum correction to the T-duality transformation rule. We also discuss the 2-loop

β-function for the NAD of the SU(2) PCM.

Some concluding remarks are made in section 4. In appendix A we summarize our no-

tation and group-theory conventions. In appendix B we compute the 2-loop β-function

for a two-coupling “squashed” principal chiral model that interpolates between the G

group space PCM and the G/H coset σ-model, determining also the 2-loop β-function

for the latter.

2 Renormalizability of λ-model: extended configuration space

In this section we shall study renormalization of the λ-model on the extended configuration

space. It is first useful to draw an analogy with the γ-model [10, 11] defined in (1.6) (where

G and H ⊂ G are simple Lie groups) that interpolates between the gauged WZW (gWZW)

and chiral gauged WZW (cWZW) theories. Changing variables (A+, A−)→ (h, h̄) as

A+ = h ∂+h
−1 , A− = h̄ ∂−h̄

−1 , h, h̄ ∈ H , (2.1)

– 5 –
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and using the Polyakov-Wiegmann identity [46], we can rewrite the Lagrangian in (1.6) as

a combination of WZW models (cf. (1.5))

L = k
(
LG/H(g,A)− γTr[A+A−]

)
= k

(
LG(h−1gh̄)− LH(h−1h̄)− γ

[
LH(h−1h̄)− LH(h−1)− LH(h̄)

])
.

(2.2)

The change of variables in (2.1) results in a Jacobian contributing to the action as [46, 47]

∆L = −2cH

(
LH(h−1h̄) + qTr[A+A−]

)
= −2cH

(
LH(h−1) + LH(h̄) + (q− 1)Tr[∂+hh

−1 ∂−h̄ h̄
−1]
)
, (2.3)

where cH = c2(H) is the dual Coxeter number of H and an arbitrary coefficient q

parametrizes the ambiguity of adding a local counterterm Tr[A+A−]. Combining (2.3)

and the classical Lagrangian (2.2) gives

L = kLG(h−1gh̄)−(k+2cH )LH(h−1h̄)−(kγ+2qcH )
[
LH(h−1h̄)−LH(h−1)−LH(h̄)

]
. (2.4)

In the special cases γ = 0 (gWZW model) and γ = −1 (cWZW model), we can choose q

such that (2.4) is a sum of WZW models [10, 11]

gWZW : γ= 0, q = 0, L= kLG(h−1gh̄)−(k+2cH )LH(h−1h̄) , (2.5)

cWZW : γ=−1, q =−1, L= kLG(h−1gh̄)−(k+2cH )
[
LH(h−1)+LH(h̄)

]
. (2.6)

Since the arguments {g̃ = h−1gh̄, h̃ = h−1h̄} in (2.5) or {g̃ = h−1gh̄, h−1, h̄} in (2.6) may

be treated as independent fields, it follows that these two models are conformally invariant.

For general values of γ, choosing q = −1 as in the cWZW case (2.6), we may

rewrite (2.4) as

L = kLG(g̃) + L′(ĥ, h̄) , g̃ ≡ h−1gh̄ ∈ G , ĥ ≡ h−1 ∈ H , (2.7)

L′ = −(k + 2cH )
[
LH(ĥ) + LH(h̄)

]
+ k(1 + γ)Tr[ĥ−1∂+ĥ ∂−h̄h̄

−1] . (2.8)

This model is defined on the extended configuration space (g̃, ĥ, h̄) ∈ G × H × H. The

first G WZW term (which is conformal on its own) decouples and then we are left with

the “truncated” model L′ on H ×H which is simply a sum of two group H WZW models

perturbed by the product of the left and right currents. Like the chiral gauged WZW

model (2.6) the Lagrangian L′ in (2.8) is invariant under the chiral gauge symmetry ĥ →
u(σ−) ĥ, h̄ → h̄ w(σ+), u, w ∈ H as well as the global H symmetry ĥ → ĥv0, h̄ →
v−1

0 h̄, v0 ∈ H. As we shall argue for the λ-model, these two symmetries imply that the

γ-model is also renormalizable with only one coupling γ running.

Let us note that the γ-model (1.6), (2.2) admits also a generalization similar to the

coset case of the λ-model in (1.2): with γA+A− term replaced by γA+PA−, where P is the

projector onto the H/F coset part of the algebra of H (with F ⊂ H ⊂ G). When H/F is a

symmetric space this model should again be renormalizable on the extended configuration

space (g̃, ĥ, h̄) ∈ G×H ×H due to chiral gauge symmetry.

– 6 –
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2.1 Group space

Let us now apply similar arguments to the λ-model for the group G, which is given by (1.2)

with P = 1. Taking H = G in (2.1), so that now h, h̄ ∈ G, we obtain (2.4) with H = G and

cH → cG = c2(G). It will represent the λ-model as a σ-model on a “tripled” configuration

space (g̃ = h−1gh̄, h−1, h̄) ∈ G × G × G. Since the q-dependent term in (2.3) is simply

equivalent to a finite quantum (order 1/k) redefinition γ → γ+
2c
G
k q of the parameter γ, we

are free to fix q to a specific value, q = −1, as in the cWZW case (2.6) and in (2.7), (2.8).

This gives the following analog of (2.7)

L = kLG(g̃)− k(1 + γ)LG(h−1h̄) + (kγ − 2cG)
[
LG(h−1) + LG(h̄)

]
= kLG(g̃)− (k + 2cG)

[
LG(h−1) + LG(h̄)

]
− k(1 + γ)Tr[∂+hh

−1 ∂−h̄h̄
−1] . (2.9)

We thus obtain the same tripled theory as (2.7), (2.8), now with H → G: the first term

is the G WZW model for g̃, which decouples from the (ĥ, h̄) theory described by the

“truncated” Lagrangian

L′(ĥ, h̄) =−k̃
(
LG(ĥ)+LG(h̄)−λ̃Tr[ĥ−1∂+ĥ∂−h̄h̄

−1]
)
, ĥ≡h−1, h̄∈G, (2.10)

k̃≡ k+2cG , λ̃≡ k

k+2cG
(1+γ) =

k

k̃
λ−1 =λ−1+O(k−1) . (2.11)

L′ may be interpreted as the Lagrangian for the two WZW models for the two groups G

with the same level −(k+2cG) perturbed by a product of the left current of one group and

the right current of the other.6

Our central observation is that the model (2.10) is renormalizable with only the cou-

pling λ (or λ̃) running with the RG scale (k should not run as it appears as the coefficient

of the WZ term). Indeed, the structure of (2.10) is protected by the same chiral gauge

symmetry present in the cWZW model (2.6) and in the γ-model (2.8),

ĥ→ u(σ−) ĥ , h̄→ h̄ w(σ+) , u, w ∈ G . (2.12)

This symmetry, together with the global G symmetry

ĥ→ ĥg0 , h̄→ g−1
0 h̄ , g0 ∈ G , (2.13)

prohibits the appearance of other current-current interaction terms under the RG flow.7

It is then straightforward to compute the β-function for λ in the large k perturbation

theory, which we will do in section 2.3. The two fixed points of the RG flow for (2.10) will

be λ̃ =∞, 0, corresponding to λ = 0,∞ respectively.8

6Similar models were discussed in the past, e.g., in [48–50]. A generalization of this model was also

considered in [51–54], where it was interpreted as a special case of a “doubly λ-deformed” σ-model. Our

path-integral relation between the λ-model (1.2) and the truncated model (2.10) should be equivalent (at

least at the classical and 1-loop level) to the canonical equivalence between the doubly λ-deformed model

and two copies of the λ-model found in [53] (upon setting one of the two λ-parameters to zero). The leading

order in 1/k (1-loop) renormalization of similar models was studied earlier in [55, 56].
7The presence of this symmetry is also a manifestation of the integrability of the original λ-model.
8Note that for general values of q in (2.3), (2.4) one gets k̃λ̃ = kλ−1 + 2(1 + q)cG in (2.11). Finite

redefinitions of parameters like k → k̃ and λ → λ̃ in (2.11) are not important for the discussion of renor-

malization in 1/k perturbation theory, simply reflecting the freedom of scheme choice. They may, however,

correct the 1-loop fixed points λ = 0,∞ of the RG flow.
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2.2 Coset space

Next, let us consider the λ-model for the coset G/H, i.e. setting P = PG/H in (1.2).

Repeating the same steps, i.e. using (2.1) to introduce h, h̄ ∈ G, including the contribution

from the Jacobian (2.3), setting g̃ = h−1gh̄ and ĥ = h−1, we get

L = kLG(g̃)− (k + 2cG)LG(ĥh̄) + kγTr[ĥ−1∂+ĥP∂−h̄h̄
−1] + 2qcGTr[ĥ−1∂+ĥ ∂−h̄h̄

−1] .

(2.14)

Classically (i.e. for large k) this model has the expected H gauge symmetry

ĥ→ ĥf , h̄→ f−1h̄ , f = f(σ+, σ−) ∈ H . (2.15)

To preserve this gauge symmetry in (2.14) let us choose (as in the gWZW case (2.5)) q = 0,

thus obtaining

L = kLG(g̃)− (k + 2cG)LG(ĥh̄) + kγTr[ĥ−1∂+ĥ P ∂−h̄h̄
−1] ,

= kLG(g̃)− (k + 2cG)
[
LG(ĥ) + LG(h̄)

]
+ Tr[ĥ−1∂+ĥ (k + 2cG + kγP ) ∂−h̄h̄

−1] .
(2.16)

As in (2.9) the WZW term for the field g̃ decouples, leaving us with

L′(ĥ, h̄) =−k̃
(
LG(ĥh̄)−(λ̃−1)Tr[ĥ−1∂+ĥP ∂−h̄h̄

−1]
)

(2.17)

=−k̃
(
LG(ĥ)+LG(h̄)−Tr[ĥ−1∂+ĥ(1−P )∂−h̄h̄

−1]−λ̃Tr[ĥ−1∂+ĥP∂−h̄h̄
−1]
)
,

k̃≡ k+2cG , λ̃≡ 1+
kγ

k+2cG
=
k

k̃
λ−1+

2cG
k̃

=λ−1+O(k−1) . (2.18)

L′ represents the G×G WZW model deformed by the product of the left and right currents

projected to the subgroup PH = 1−P and the coset PG/H = P . While it is again invariant

under the chiral transformations (2.12), here it is not immediately clear that this theory

is renormalizable with only one coupling running: in principle, different gauge-invariant

projections of the product of currents may appear as independent counterterms. When

G/H is an irreducible symmetric space (which also implies the integrability of the λ-

model), the coset part of the algebra of G transforms in an irreducible representation of

Lie(H). Thus the model is renormalizable with only λ running since new current-current

interaction terms are prohibited by symmetries.9 We shall see this explicitly at the 2-loop

level in section 2.4 below.

In this case the two expected fixed points of the RG flow for (2.17), λ̃−1 = 0 and

λ̃−1 =∞, now correspond to λ = 0 and λ = − k
2c
G

due to the shift in (2.18). That is, one

of the 1-loop fixed points, λ =∞, is corrected.

9If the coset directions G/H transform in an irreducible representation of Lie(H) that is reducible over

C, i.e. decomposes into two complex conjugate representations, then there can be additional real gauge-

invariant terms that respect the chiral symmetry. An example would be iTr[ĥ−1∂+ĥ(P+ − P−)∂−h̄h̄
−1]

where P = P+ + P− and P± are projectors onto the conjugate representations. Such a term should not

be generated under the RG flow as it is not invariant under ĥ ↔ h̄−1 plus parity, which is a symmetry

of (2.17). More generally, we expect any new terms to be excluded by symmetries.
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2.3 2-loop β-function of λ-model for group G

Let us now compute the 2-loop β-function for the model (2.10) in the case that G is a com-

pact simple group, explicitly demonstrating its renormalizability with only one parameter

λ running (the 1-loop β-function for this G × G model was computed in [52, 54]).10 We

shall use large k perturbation theory with λ arbitrary.

Let us introduce the basis {T a} for Lie(G) (see appendix A for conventions). In a

slight abuse of notation, we shall use the indices a and ā for the two G-valued fields ĥ and

h̄ in (2.10) respectively (with the tangent space index for G × G denoted as A = {a, ā}).
As in [54] we introduce the vielbein

EA =
(
ea, eā

)
=

(√
1− λ̃2 Ja, K ā + λ̃Ja

)
, (2.19)

Ja ≡ Tr
[
T aĥ−1dĥ

]
, K ā ≡ Tr

[
T adh̄h̄−1

]
, (2.20)

where Ja and Ka are the currents that appear in the deformation term in (2.10). Up to per-

mutations, the non-zero components of the metric and H-tensor of the G×G model (2.10)

are (cf. (1.11))11

Gab = Gāb̄ =
k̃

2
δab , (2.21)

Habc = − k̃
2

√
1− λ̃2(1 + 2λ̃)

(1 + λ̃)2
fabc , Hāb̄c̄ = − k̃

2
fabc , Hābc = − k̃

2

λ̃

1 + λ̃
fabc . (2.22)

Our aim is to compute the corresponding β-function in (1.12). Let us formally define the

torsion as TA = 1
2HA

BCE
B ∧EC where the tangent space index is raised with the inverse

of the metric (2.21). Then from the Cartan structure equation dEA + ω̂AB ∧EB = TA, we

obtain the torsionful spin connection ω̂AB = ω̂ABCE
C with non-zero components

(λ̃−1 + 1)ω̂ab = ω̂āb̄ = fabc

(
− λ̃√

1− λ̃2
ec + ec̄

)
. (2.23)

The non-zero components of the curvature, R̂AB = dω̂AB+ω̂AC∧ω̂CB = 1
2R̂

A
BCDE

C∧ED,

are then found to be

(λ̃−2 − 1)R̂abde = −
√
λ̃−2 − 1R̂abdē = R̂abd̄ē =

λ̃

(1 + λ̃)2
fabcf

c
de . (2.24)

Plugging (2.24) into (1.12) one obtains

(β(1)
µν + β(2)

µν ) dxµ ⊗ dxν =
dimG∑
a=ā=1

[
2cG λ̃

2

(1 + λ̃)2
+

4c2
G

k̃

λ̃4(1− 2λ̃)

(1 + λ̃)5(1− λ̃)

]
Ja ⊗K ā . (2.25)

10On the standard configuration space the 1-loop β-function of the λ-model for group space G or sym-

metric space G/H can be extracted from [12] and was also explicitly computed in [57, 58].
11Note that in our conventions (with hermitian generators T a, see Appendix A) the vielbein defined in

(2.19) and the components HABC ∼ fABC in (2.22) are imaginary but the 3-form H = 1
6
HABCE

A∧EB∧EC

is real.
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Here ⊗ indicates that the product is not symmetrized. We conclude that only the λ̃-

dependent term in (2.10) gets renormalized, i.e. the 2-loop RG equation (1.12) is solved

with Xµ = Yµ = 0 and

d

dt
k̃ = 0 ,

d

dt
λ̃ =

2cG
k̃

[
λ̃2

(1 + λ̃)2
+

2cG
k̃

λ̃4(1− 2λ̃)

(1 + λ̃)5(1− λ̃)

]
. (2.26)

Here the 1-loop term agrees with [57, 58] (recall that λ̃ = λ−1 + . . . and k̃ = k + . . .,

cf. (2.18)). Note also that, while the Lagrangian (2.10) is linear in λ̃, the non-polynomiality

of (2.26) in λ̃ is a direct consequence of the exactness of the σ-model β-function (1.12) in

the metric G.

The level k is thus RG-invariant as it should be and, as expected, λ̃ = ∞, 0 are fixed

points of the RG flow. Expressing k̃ and λ̃ in (2.11) in terms of k and the coupling κ

using (1.4), we find

d

dt
k = 0 ,

d

dt
κ =

cG
4k

(
1− κ2

)2 [
1 +

cG(1− κ)2(1− 10κ− 3κ2)

8kκ

]
. (2.27)

At the fixed point κ = 1 (equivalent to λ = 0 or λ̃ = ∞), the λ-model reduces to the

G WZW model with level k. The other fixed point κ = −1 (equivalent to λ = ∞ or

λ̃ = 0) is the G/G cWZW model, which reduces to the G WZW model with level −k after

integrating out the gauge field.12,13

Note that the 2-loop term in (2.27) is scheme-dependent: it can be changed by redefin-

ing κ by a 1/k term (or shifting k by a finite term).14 Even though k is not running, we

effectively have a 2-coupling theory (with 1/k playing the role of a loop-counting parameter)

so only the 1-loop term in the β-function (2.27) is scheme-independent.

In a general scheme, the symmetry k → −k, λ→ λ−1 (1.7) of the 1-loop RG equation

in (2.26), (2.27) is not manifest at the 2-loop level. To preserve it requires a particular

formulation of the quantum theory, i.e. a specific definition of the couplings, or choice of

scheme. For example, if we redefine the parameters as(
k̃, λ̃
)
→
(
k, λ̄
)
, k̃ = k + cG , λ̃ = λ̄

[
1 + cGk−1 1− λ̄

1 + λ̄

]
, (2.28)

then the RG equation for λ̄ resulting from (2.26) is

d

dt
λ̄ =

2cG
k

λ̄2(
1 + λ̄

)2 [1− 2cG
k

λ̄2

(1 + λ̄)2

λ̄+ λ̄−1 − 1

1− λ̄2

]
, (2.29)

which is invariant under the following quantum version of (1.7)

k→ −k , λ̄→ λ̄−1 . (2.30)

12To compare, for the PCM model plus WZ term L = hLPCM + kLWZ (which becomes the WZW model

for κ ≡ h
k

= 1) the 2-loop RG equation for κ [23, 24, 59, 60] is d
dt
κ =

c
G
k

(1− κ−2)
[
1 +

c
G

2k κ (1− 3κ−2)
]
.

13Taking κ = 0 or λ = 1 with finite k (in contrast to the NAD limit (1.9)) gives the G/G gWZW model

in which one can fix a gauge so that the remaining degrees of freedom correspond to the Cartan torus.
14For example, the 2-loop term in (2.26) will depend on the parameter q in (2.3), (2.4), cf. footnote 8.
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Note that here k = k + cG is the same as the shifted level of the WZW theory. It is also

worth observing that (2.28) is not the only redefinition that restores the symmetry (1.7).

Indeed, even restricting to those that preserve the existence of the fixed points and the

NAD limit discussed below, there are many.

In the NAD limit (1.9) (i.e. κ = 1
4hk−1, k → ∞) the 2-loop RG equation (2.27)

becomes
d

dt
h = cG +

1

2
c2
G

h−1 . (2.31)

Here the 2-loop term is scheme-independent since this is now a 1-coupling theory. As

verified in appendix B, the β-function (2.31) matches the standard expression (see, e.g., [21,

61, 62] and footnote 12) for the 2-loop β-function of the PCM on a compact simple group

G (with the coupling h = 2g−2). As in the SU(2)/U(1) example discussed in [7], this

demonstrates that the NAD of the PCM has the same 2-loop β-function as the PCM itself,

extending the previous conclusions [63, 64] on the 1-loop quantum equivalence of models

related by the non-abelian duality to the 2-loop level.

2.4 2-loop β-function of λ-model for symmetric space G/H

We now turn to the case of the λ-model based on the compact irreducible symmetric space

G/H, explicitly demonstrating its renormalizability by computing the 2-loop β-function

for the model (2.17). The computation runs analogously to the group space case discussed

in section 2.3. We decompose the basis {T a} of Lie(G) according to the Z2 grading of the

Lie algebra with {Tα} spanning Lie(H) and {T i} its complement (cf. appendix A).15 The

tangent space index for G × G now splits as A = {a; ā} = {α, i; ᾱ, ı̄}, with the unbarred

and barred indices corresponding to the two G-valued fields ĥ and h̄.

Here we use the vielbein

EA =
(
ei, eı̄, eα, eᾱ

)
=

(√
1− λ̃2J i, K ı̄ + λ̃J i, Jα +Kᾱ, Jα −Kᾱ

)
. (2.32)

Up to permutations, the non-zero components of the metric and H-tensor are

Gij = Gı̄̄ =
k̃

2
δij , Gαβ =

k̃

2
δαβ , (2.33)

Hαβγ = − k̃
2
fαβγ , Hαij = − k̃

2
fαij , Hαı̄̄ = − k̃

2
fαı̄̄ . (2.34)

The H gauge symmetry of the model (2.17) is manifested in the vanishing of ᾱ-components

of the metric and the H-tensor.

As discussed in appendix B for the coset σ-model (see above eq. (B.15)), there are

various approaches that can be used to treat the H gauge symmetry. For example, we may

take (ĥ, h̄) ∈ G×G to be parametrized by the 2 dimG−dimH physical degrees of freedom

and understand eᾱ = Jα−Kᾱ as expanded in the vielbein (ei, eı̄, eα). Alternatively, we can

lift the degeneracy of the metric by setting Gᾱβ̄ = ε k̃2δαβ , then project out the ᾱ directions

and finally set the regulator ε to zero.

15In addition to the identities in appendix A here we have fαβi = fijk = 0 from the Z2 grading of Lie(G)

(see (A.4)).
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Using either of these methods to compute the torsionful spin connection and the cor-

responding curvature, the non-zero curvature components are given by

(λ̃−2 − 1)R̂ijkl = −
√
λ̃−2 − 1R̂ijkl̄ = R̂ijk̄l̄ = f ijαf

α
kl . (2.35)

Plugging this into the RG equation (1.12), one obtains

(β(1)
µν + β(2)

µν ) dxµ ⊗ dxν =
dimG−dimH∑

i=ı̄=1

[
cG λ̃+

cG
k̃

λ̃(cH − (2cG − cH )λ̃2)

1− λ̃2

]
J i ⊗K ı̄ . (2.36)

Here cH is defined in terms of the index of the representation of H in which the coset

directions transform, as described in appendix A. In the case that G and H are simple, cH
is proportional to the dual Coxeter number of H.

We conclude that only the λ̃-dependent term in (2.17) gets renormalized, i.e. the 2-loop

RG equation (1.12) is solved with Xµ = Yµ = 0 and

d

dt
k̃ = 0 ,

d

dt
λ̃ =

cG λ̃

k̃

[
1 +

1

k̃

cH − (2cG − cH )λ̃2

1− λ̃2

]
. (2.37)

The 1-loop term agrees with [57, 58]. The level k is RG-invariant, and, as expected,

λ̃ = ∞, 0 are fixed points. Expressing k̃ and λ̃ in (2.18) in terms of k and the coupling κ

using (1.4) we find

d

dt
k = 0 ,

d

dt
κ =

cG
2k

[
(1− κ2) +

cG(1− κ)2(1 + 4κ− κ2)− cH (1− κ4)

2kκ

]
. (2.38)

The fixed point κ = 1 corresponds to λ = 0 (λ̃ = ∞), that is when the λ-model reduces

to the G/H gWZW model. The other fixed point, which corresponds to the G/H gWZW

model with level −k, is corrected and is given by κ = −(1 +
4c
G
k ) (cf. (2.18)).

As in the group space case (2.27) the 2-loop term in the β-function (2.37) is, in general,

scheme-dependent. Again, we find that the symmetry under k → −k, λ → λ−1 in (1.7),

present at the 1-loop order is not there in the 2-loop term of (2.37). However, after

introducing the shifted level k = k̃ − cG = k + cG as in (2.28), the 2-loop RG equation for

λ̃ (2.37) becomes

d

dt
λ̃ =

cG λ̃

k

[
1− 1

k
(cG − cH )

1 + λ̃2

1− λ̃2

]
, (2.39)

which is manifestly invariant under k → −k, λ̃ → λ̃−1, a quantum version of the symme-

try (1.7) of the original couplings (cf. (2.30)).

In the NAD limit (1.9) we get from (2.38)

d

dt
h = 2cG + 4cG(cG − cH )h−1 , (2.40)

with the 2-loop coefficient being scheme-independent in this 1-coupling limit as in the

group space case (2.31). As verified in appendix B, (2.40) matches the expression for the

2-loop β-function of the G/H symmetric space σ-model (reproducing in particular cases

the results in [62, 65–67]). This demonstrates that the symmetric space σ-model and its

non-abelian dual have the same 2-loop β-function.
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2.5 Low-dimensional examples: λ-models for SU(2) and SU(2)/U(1)

Let us first study the simplest case of the model (2.10), i.e. with G = SU(2). Parametrizing

ĥ = exp(iφσ3) exp(iθσ1) exp(iψσ3) , h̄ = exp(iφ̄σ3) exp(iθ̄σ1) exp(iψ̄σ3) , (2.41)

where σa are the standard Pauli matrices, we find the following 6-dimensional metric and

B-field (G ≡ Gµνdx
µdxν , B ≡ 1

2Bµνdx
µ ∧ dxν)

G = G0+G1 , B = B0+B1 ,

G0 =−k̃(dθ2+dφ2+dψ2+2cos2θdφdψ+dθ̄2+dφ̄2+dψ̄2+2cos2θ̄dφ̄dψ̄) ,

B0 =−k̃(cos2θdφ∧dψ+cos2θ̄dφ̄∧dψ̄) ,

G1 =−2k̃λ̃
[
cos2(ψ+φ̄)(dθdθ̄−sin2θ sin2θ̄dφdψ̄)+(dψ+cos2θdφ)(dφ̄+cos2θ̄dψ̄)

+sin2(ψ+φ̄)(sin2θdφdθ̄+sin2θ̄dθdψ̄)
]
,

B1 =−k̃λ̃
[
cos2(ψ+φ̄)(dθ∧dθ̄−sin2θ sin2θ̄dφ∧dψ̄)+(dψ+cos2θdφ)∧(dφ̄+cos2θ̄dψ̄)

+sin2(ψ+φ̄)(sin2θdφ∧dθ̄+sin2θ̄dθ∧dψ̄)
]
. (2.42)

One can check explicitly that this metric and B-field solve the 2-loop RG equation (1.12)

with vanishing Xµ and Yµ, and the couplings running as in (2.26) (with the dual Coxeter

number of G = SU(2) given by cG = 2).

Next, let us consider the λ-model (2.17) for the symmetric space G/H = SU(2)/U(1).

Using the parametrization for ĥ and h̄ given in eq. (2.41), we find that the correspond-

ing target space background depends on ψ and φ̄ only through χ = ψ + φ̄, which is a

manifestation of the U(1) gauge symmetry. The resulting 5-d metric and B-field are

G = G0 + G1 , B = B0 + B1 ,

G0 = −k̃(dθ2 + dφ2 + dθ̄2 + dψ̄2) , B0 = 0 ,

G1 = −2k̃λ̃
[

cos 2χ(dθdθ̄ − sin 2θ sin 2θ̄dφdψ̄) + sin 2χ(sin 2θdφdθ̄ + sin 2θ̄dθdψ̄)
]

+ k̃dχ2 − 2k̃(dχ+ cos 2θdφ)(dχ+ cos 2θ̄dψ̄) ,

B1 = −k̃λ̃
[

cos 2χ(dθ ∧ dθ̄ − sin 2θ sin 2θ̄dφ ∧ dψ̄) + sin 2χ(sin 2θdφ ∧ dθ̄ + sin 2θ̄dθ ∧ dψ̄)
]

− k̃(dχ+ cos 2θdφ) ∧ (dχ+ cos 2θ̄dψ̄) . (2.43)

Again one can check explicitly that this metric and B-field solve the 2-loop RG equa-

tion (1.12) with vanishing Xµ and Yµ, and the couplings running as in (2.37) (with the

dual Coxeter number for G = SU(2) given by cG = 2 and cH = 0 for H = U(1)).

3 Renormalization of λ-model: standard configuration space

In section 2 we demonstrated the 2-loop renormalizability of the λ-model (1.2) for general

groups G and symmetric spaces G/H. It is then natural to ask what this implies for the

model on the standard or physical configuration space, i.e. the σ-model found by integrating

out A± in (1.2). Doing so classically gives the following Lagrangian

L = k
(
LPCM(g) + LWZ(g) + Tr[J+M

−1K−]
)
, M = Adg −I + (1− λ−1)P . (3.1)
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Similarly, for the NAD model (1.10) we find

L = −1

2
h Tr

[
∂+vM−1 ∂−v

]
, M = adv + P . (3.2)

The integration over A± may also give rise to quantum counterterms required to preserve

the renormalizability of (3.1) at 2 loops [7]. It is natural to expect that, since the term

quadratic in A± in the Lagrangian (1.2) has the form Tr[A+MA−], these corrections may

depend on the matrix M in (3.1), but determining their form in general appears to be non-

trivial. Here we will focus on the examples of the λ-model for the SU(2)/U(1) symmetric

space and SU(2) group space.

3.1 SU(2)/U(1)

The λ-model for SU(2)/U(1) is related by analytic continuation to that of SU(1, 1)/U(1),

which was studied in detail in [7]. Here we briefly summarize certain key points of the dis-

cussion there. Fixing the U(1) gauge symmetry by choosing the following parametrization

of the coset element

g = exp(iασ3) exp(iβσ2) , cosα =
√
p2 + q2 , tanβ =

p

q
, (3.3)

the σ-model (3.1) yields the following classical metric (the B-field is trivial in 2d target

space and κ is defined in (1.4))

G0 =
k

1− p2 − q2
(κ dp2 + κ−1dq2) . (3.4)

The observation in [7] was that this metric should be modified by a particular quantum

correction from the determinant [68] resulting from integrating over A±

δG = −1

2

(
d log detM

)2
= −1

2

[
d log(1− p2 − q2)

]2
. (3.5)

The 1-loop corrected background G = G0 + δG then solves the 2-loop RG equa-

tion (1.12) with

d

dt
k = 0 +

1

k

(1− κ2)2

κ2
,

d

dt
κ =

1

k
(1− κ2) , (3.6)

and

Xp =− p

kκ

[
1−κ

k
+
κ−1p2+κq2

k (1−p2−q2)

]
, Xq =−qκ

k

[
1− 1

kκ
+
κ−1p2+κq2

k(1−p2−q2)

]
, Yp,q = 0.

(3.7)

In this analysis the symmetry (1.7) of the 1-loop RG equation in (3.6) survives at the 2-loop

level. Indeed, while the leading 1-loop terms in (3.6) agree with the RG equations (2.38)

found from the analysis on the extended configuration space, they deviate at the 2-loop

order. Since the 2-loop terms in a two-coupling theory are generally scheme-dependent, we
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can, in fact, match the two β-function expressions by redefining the parameters in (3.4)

as follows16

k → k − (1− κ)2

κ
, κ→ κ+

4(1− κ)

k
. (3.8)

Note that in the κ→ 1 limit the level k remains unmodified, in agreement with this limit

corresponding to the SU(2)/U(1) gWZW model.

3.2 SU(2)

Let us now return to the λ-model for the group SU(2). Parametrizing the group element as

g = exp
[
− i arcsinα

(
cosβ σ2 + sinβ(cos γ σ3 − sin γ σ1)

)]
, (3.9)

we obtain from (3.1) the following 3d classical σ-model metric and B-field [8]17

G0 = k

[
dα2

κ (1− α2)
+
κα2

∆

(
dβ2 + sin2 βdγ2

)]
, ∆ ≡ κ2 +

(
1− κ2

)
α2 ,

B0 = k

(
arcsinα− κ2α

√
1− α2

∆

)
sinβ dβ ∧ dγ ,

H0 = dB0 =
kα2

√
1− α2∆2

[
2κ2 + (1− κ2)∆

]
sinβ dα ∧ dβ ∧ dγ .

(3.10)

It is possible to ensure the 2-loop renormalizability of the model by adding to this classical

background special quantum counterterms. The resulting 1-loop (1/k) corrected back-

ground is

G = G0 +
2
(
1− κ2

)2
α4

κ2 (1− α2) ∆2
dα2 ,

B =
k

k
B0 − 2

(
arctan

α

κ
√

1− α2
− κα

√
1− α2

∆

)
sinβ dβ ∧ dγ ,

H =
k

k
H0 −

4κα2

√
1− α2∆2

sinβ dα ∧ dβ ∧ dγ , k ≡ k +
4 +

(
1 + κ2

)2
4κ

.

(3.11)

This corrected background (3.11) solves the 2-loop RG equation (1.12) with

d

dt
k = 0 +

(
1− κ2

)3 (
5 + 3κ2

)
8kκ2

,
d

dt
κ =

(
1− κ2

)2
2k

[
1−

(
1− κ2

)2
kκ

]
, (3.12)

and the only non-zero component of Xµ being (Yµ = 0)

Xα =
α
(
1− α2

) (
1− κ2

)
k∆

[
κ+

2α2κ2(1− κ2)− (3− 2κ2 + κ4)∆2

k∆2

]
. (3.13)

16The most general redefinition achieving this is (C1 and C2 are free constants) k → k − (1−κ)2

κ
+ 2C1

and κ→ κ+ 4
k

[
(1− κ)

(
1− (1 + κ)C2

)
− 2C1(1− κ2) arctanhκ

]
.

17The WZ term in kLWZ(g) contributes k(arcsinα− α
√

1− α2) to the B-field.
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Again, in this analysis the symmetry (1.7) of the 1-loop RG equation in (3.6) survives at

the 2-loop level and, while the 1-loop β-functions for k and κ match those found in the

extended configuration space approach, i.e. (2.27) with cG = 2, the matching of the 2-loop

terms is only achieved after the following redefinition18

k → k − 4 + (1 + κ2)2

4κ
+ 2 , κ→ κ− (1− κ)2(1 + κ)

k
. (3.14)

As in (3.8), the level k is not modified in the WZW limit κ→ 1.

Note that the coupling k defined in (3.11) does not run at 2-loop order, d
dtk = 0.

This is consistent with the fact that k does not run in the extended configuration space

approach and the particular shift (3.14) required to recover (2.27) from (3.12). This RG

invariant k is the coefficient of arcsinα (present in B0 in (3.10)) in the 1-loop corrected

background (3.11). Choosing it to be integer-valued removes the global ambiguities arising

from the arcsinα term. Furthermore, given that under a large transformation19

δ(arcsinα) = signκ δ(arctan
α

κ
√

1− α2
) , (3.15)

and that the coefficient of arctan α
κ
√

1−α2
in (3.11) is integer-valued, this term does not lead

to any additional ambiguities. The quantization of the flux

1

4π2

∫
H0 = k ,

1

4π2

∫
H = k− 2 , (3.16)

also supports the identification of k as integer-valued.

In the case of the SU(2)/U(1) λ-model it was possible to write the 1-loop corrections

in a simple way (3.5) in terms of the matrix M as defined in (3.1). Let us try to do

the same for the 1-loop corrections (3.11) to the SU(2) λ-model. Since the SU(2)/U(1)

counterterm (3.5) took the form ∆L = 1
2(∂ log detM)2 = 1

2(Tr[M−1∂M ])2, we may consider

counterterms (with coefficients ci) built out of the quantity M−1∂M . In addition, we may

also include counterterms (with coefficients di) proportional to the terms present in the

classical Lagrangian (3.1) (and its image under parity). As a result, we are led to the

following ansatz

∆L = c1(∂+ log detM)(∂− log detM) + c2LPCM(M) + c3LWZ(M)

+ d1LPCM(g) + d2LWZ(g) + d3Tr[J+M
−1K−] + d4Tr[J−M

−1K+] .
(3.17)

We find that this matches the required 1-loop corrected background (3.11) provided the

constants ci and di take the following values

c1 = − 3 + κ

2(1− κ)
, c2 = −2(1 + κ)

1− κ
, c3 = 1 , (3.18)

d1 = 0 , d2 = k− k − 2 , d3 =
1

2

[
k− k + (1 + κ−1)

]
, d4 = −1

2

[
k− k − 3(1 + κ−1)

]
.

18The most general redefinition achieving this is (C1 and C2 are free constants) k → k− 4+(1+κ2)2

4κ
+ 2C1

and κ→ κ− 1
k

[
(1− κ)2(1 + κ)(1 + (1 + κ)C2) + (C1 − 1)(1− κ2)((1− κ2) arctanhκ+ κ)

]
.

19Note that arctan α

κ
√

1−α2
= signκ arcsin α√

∆
and α = α√

∆
for α = 0,±1.
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Combining the quantum counterterms (3.17) with the classical Lagrangian (3.1) allows us

to represent the σ-model corresponding to the 1-loop corrected geometry (3.11) in the form

L = kLPCM(g) + (k− 2)LWZ(g)

+
1

2
Tr
[(

k + k + (1 + κ−1)
)
J+M

−1K− −
(
k− k − 3(1 + κ−1)

)
J−M

−1K+

]
− 3 + κ

2(1− κ)
(∂+ log detM)(∂− log detM)− 2(1 + κ)

1− κ
LPCM(M) + LWZ(M) .

(3.19)

Note that in the WZW limit κ→ 1 when the RG invariant k in (3.11) reduces to the usual

shift of the level

k
∣∣
κ=1

= k + 2 , (3.20)

the other corrections to the metric and B-field in (3.11) vanish, so that the expression

in (3.19) indeed reduces to the standard WZW Lagrangian k
[
LPCM(g) + LWZ(g)

]
.20

3.2.1 SU(2) × U(1) invariant limit: abelian T-duality to squashed 3-sphere

Let us consider the formal limit

α→ sin(α+ iζ) , ζ →∞ , (3.21)

in which the 1-loop corrected background (3.11) becomes21

G =

(
k

κ
+

2

κ2

)
dα2 +

kκ

1− κ2
(dβ2 + sin2 βdγ2) , (3.22)

B =

[
k +

4 +
(
1 + κ2

)2
4κ

]
α sinβdβ ∧ dγ , H =

[
k +

4 + (1 + κ2)2

4κ

]
sinβdα ∧ dβ ∧ dγ .

The resulting metric and H-tensor have SU(2)×U(1) symmetry (while, as usual, the B-field

cannot be written in a way that is manifestly invariant). The background (3.22) solves the

2-loop RG flow equations (1.12) with the parameters running as in (3.12) and Xµ = Yµ = 0.

Focusing on the classical part of (3.22) by taking k large, we may shift the B-field by

a closed 2-form in order to make translations in α a manifest symmetry

G = k

[
1

κ
dα2 +

κ

1− κ2
(dβ2 + sin2 βdγ2)

]
, B = k cosβdα ∧ dγ . (3.23)

Applying T-duality in the α direction we find the metric of the squashed 3-sphere (which

also has the interpretation of the η-deformation of the SU(2) PCM, cf. [69])

G̃ = k

[
κ(dα̃− cosβdγ)2 +

κ

1− κ2
(dβ2 + sin2 βdγ2)

]
. (3.24)

20While the coefficients 3+κ
2(1−κ)

and 2(1+κ)
1−κ blow up in the limit κ → 1, the corresponding M -dependent

expressions vanish faster. Note also that arcsinα = arctan α√
1−α2

.

21We have dropped trivial (i.e. closed 2-form) contributions to the B-field such that only the arcsin α→
α+ iζ ∼ α term in (3.11) gives a relevant contribution in this limit.

– 17 –



J
H
E
P
1
2
(
2
0
1
9
)
1
4
6

To extend this relation to the quantum level, let us use the 1-loop corrected form of the

T-duality transformation given in [70] (see also [71, 72]) in an alternative scheme related

to ours by

(G + B)µν → (G + B)µν +
1

4
H2
µν . (3.25)

Starting with the background (3.22) and implementing this scheme change gives

G =

(
k

κ
+

2

κ2
+

(
1− κ2

)2
2κ2

)
dα2 +

(
kκ

1− κ2
+

1− κ2

2

)(
dβ2 + sin2 βdγ2

)
,

B =

(
k +

4 +
(
1 + κ2

)2
4κ

)
cosβdα ∧ dγ .

(3.26)

This is a special case of a general ansatz

G = eϕ(dα+ Vmdx
m)2 + G′mndx

mdxn , G′mn = Gmn − eϕVmVn ,

B = Wmdx
m ∧ dα+

1

2
Bmndx

m ∧ dxn , xm = {β, γ} ,
(3.27)

where ϕ is a constant, Vm = 0 and Bmn = 0. Then the 1-loop corrected T-duality trans-

formation rules simplify to (Wmn ≡ ∂mWn − ∂nWm)

ϕ̃ = −ϕ+
1

4
e−ϕWmnW

mn , Ṽm = Wm , G̃′mn = G′mn , W̃m = 0 , B̃mn = 0 ,

(3.28)

where the 1
4e
−ϕWmnW

mn term is the 1-loop (or α′ ∼ 1
k ) correction [70]. As a result, the

T-dual background is found to be

G̃ =

[
kκ+

1

2

(
1+κ2

)2]
(dα̃−cosβdγ)2+

[
kκ

1−κ2
+

1

2

(
1−κ2

)](
dβ2+sin2βdγ2

)
,

B̃ = 0 ,

(3.29)

where we have rescaled α̃.22 This background (3.29) indeed solves the 2-loop RG equa-

tions (1.12) with the parameters running as in (3.12) and X α̃,β,γ = Yα̃,β,γ = 0.

On symmetry grounds, the σ-model for the squashed 3-sphere (3.24) is renormalizable

to all loop orders (without the need for counterterms of different form) [20] (see also

appendix B). Indeed, this is consistent with (3.29) as the coupling redefinition

k = k̂ − 3 + κ̂4

2κ̂
, κ = κ̂+

1− κ̂2

k̂
, (3.30)

gives simply (cf. (3.24))

G̃ = k̂
[
κ̂(dα̃− cosβdγ)2 +

κ̂

1− κ̂2
(dβ2 + sin2 βdγ2)

]
. (3.31)

We thus find another example (in addition to the one discussed in [7]) of how the required

loop corrections to the T-duality transformation rules naturally appear from the deforma-

tion under the RG flow of more general integrable models. Similar higher-loop corrections

are expected for non-abelian (and also Poisson-Lie) duality.

22As the dual B-field is vanishing, undoing the scheme change (3.25) has no effect.
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3.2.2 Non-abelian dual of SU(2) PCM

In the case of the SU(2) λ-model in the coordinates (3.10), the NAD limit (1.9) amounts to

α→ κα , κ→ 1

4
hk−1 , k →∞ , (3.32)

where h and the new coordinate α are fixed. In this limit the 1-loop-corrected back-

ground (3.11) becomes

G =

[
h

4
+

2α4

(1 + α2)2

]
dα2 +

h

4

α2

(1 + α2)

(
dβ2 + sin2 βdγ2

)
,

B =

[
h + 5

4

α3

(1 + α2)
+

2α

1 + α2
− 2 arctanα

]
sinβdβ ∧ dγ ,

H =

[
h + 5

4

α2(3 + α2)

4(1 + α2)2
− 4α2

(1 + α2)2

]
sinβdα ∧ dβ ∧ dγ . (3.33)

It solves the 2-loop RG equations (1.12) with

d

dt
h = 2 + 2h−1 , (3.34)

Xα =
2α

h(1 + α2)

[
(1− α2)− 4(5 + 5α2 + 3α4 + α6)

h(1 + α2)2

]
, Xβ,γ = Yα,β,γ = 0 . (3.35)

The RG equation (3.34) for h follows also by taking the limit (3.32) in (3.12). It matches

the 2-loop running of the coupling in the SU(2) PCM (cf. (B.11)). The limit of the dif-

feomorphism vector Xα (3.13) gives (3.35) after taking into account an extra contribution

due to the RG-dependent rescaling of α in (3.32).

We can also take the NAD limit (1.9) in the corrected Lagrangian (3.19), thus getting

L = −
(

1

2
h +

9

4

)
Tr
[
∂+vM−1∂−v

]
− 7

4
Tr
[
∂−vM−1∂+v

]
− 3

2
(∂+ log detM) (∂− log detM)− 2 PCM(M) + WZ(M) .

(3.36)

Setting

v = − i
2
α
[

cosβ σ2 + sinβ(cos γ σ3 − sin γ σ1)
]
, (3.37)

we recover the expected σ-model with couplings given by (3.33).

Taking the further limit of infinite shift of α, i.e.

α→ α+ ` , `→∞ , (3.38)

in (3.33), we find

G =
h + 8

4
dα2 +

h

4

(
dβ2 + sin2 βdγ2

)
, B =

h + 5

4
cosβ dα ∧ dγ , (3.39)

where we have dropped a trivial (closed 2-form) contribution to the B-field in order to make

the shift-symmetry of α manifest. The resulting background is thus R× S2 supported by

– 19 –



J
H
E
P
1
2
(
2
0
1
9
)
1
4
6

a constant H-tensor. Changing scheme as in (3.25), T-dualising in α using the rules in

eq. (3.28) and rescaling α̃ we find23

G̃ =
h + 2

4

(
dβ2 + dα̃2 + dγ2 − 2 cosβ dα̃dγ

)
= (h + 2)

(
dθ2 + sin2 θ dψ2 + cos2 θ dχ2

)
,

(3.40)

i.e. the SU(2) PCM with the S3 radius-squared equal to h + 2.24 Here α̃ = ψ + χ, γ =

ψ − χ and β = 2θ. Let us also note that in the limit α → εα, h → ε−2h, ε → 0, the

background (3.33) becomes flat with vanishing H.

4 Concluding remarks

As we have seen above, formulating the λ-model on extended (G × G × G) configuration

space “linearizes” the RG flow, i.e. makes its renormalizability manifest without the need

for extra local counterterms apart from running of the coupling λ. The same is true in the

limit (1.9) that gives the interpolating model for non-abelian duality.25 Using this relation

we demonstrated that the PCM and symmetric space σ-model have the same 2-loop β-

functions as their non-abelian duals, thereby extending their quantum equivalence to the

2-loop level.

One open problem is how to interpret the local counterterms required for 2-loop renor-

malizability of the λ-model defined on the standard configuration space (3.1) starting from

the manifestly renormalizable theory on the extended configuration space (2.2). In the

simplest example of SU(2)/U(1) model the origin of the counterterm (3.5) can be traced to

the determinant resulting from integrating out the 2d gauge field [7]. However, in the SU(2)

model with 3d target space the derivation and structure of the rather intricate counterterms

in (3.19) and (3.36) are not immediately clear.

Another interesting question is to understand how integrability implies renormalizabil-

ity and if renormalizable σ-models should always be integrable.26 Whether this relation-

ship should be with classical or quantum integrability is also of interest. Indeed, there are

23Note that, since we now have a 1-coupling theory, the 2-loop β-function (3.34) is scheme-independent

and the shift of h here is not in contradiction with the results above. Indeed, sending h → h+2 leaves (3.34)

invariant to 2 loops.
24Note that in the case when S3 is interpreted as a coset SO(4)/SO(3) the coupling of the symmetric

space σ-model is given by h = 2R2 (cf. footnote 36).
25A similar approach may also be useful for clarifying the higher-loop deformation in abelian T-duality.

In this case the model on the “tripled” configuration space can be found from the interpolating model for

abelian T-duality. For example, consider the metric G = dy2 + a(y)dx2 and its classical dual G̃ = dy2 +

a−1(y)dx̃2 with the interpolating model given by L = (∂ry)2 +a(y)(Ar)
2 + x̃εrsFrs such that y is a spectator

coordinate. If we integrate out x̃ to give Ar = ∂rx we recover the original model for x. If we integrate out Ar
we find the T-dual model for x̃. If instead we set A1 = ∂1x and integrate out A0 we get the “doubled” model

of [73] for x and x̃ (equivalent to the “axial” gauge choice in the appendix of [74]). The “tripled” model for

(x, x̃, x̄) is obtained by setting Ar = ∂rx+εrs∂
sx̄: L = (∂ry)2 +a(y)[(∂rx)2−(∂rx̄)2 +2εrs∂rx∂sx̄]+∂rx̃∂

rx̄.

This may be interpreted as a σ-model on 4-dimensional target space with pp-wave metric and B-field.
26Here we consider only σ-models without potential terms. Adding potentials one can certainly arrange

to have renormalizability in perturbation theory without having integrability. So, in general, integrability

may imply renormalizability but not vice versa.
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well-known cases in which the classical integrability is anomalous, e.g. the bosonic CPN

model [75, 76] (see also [77, 78]). However, this does not appear to be reflected in the 2-loop

renormalizability. For the CPN model it has been conjectured that quantum integrability

can be restored by including an additional free field [79] in the classical limit (related mod-

els have also appeared in [80, 81]). The precise way in which this occurs and how it can be

understood in the “tripled” configuration space remain to be understood. An alternative is

to consider the supersymmetric CPN σ-model in which there is no anomaly [82]. It could

also prove insightful to redo the analysis in this paper for such models.

A potentially useful application of our results is to the η-model of [36, 37] and Poisson-

Lie duality. Up to analytic continuation, the η-model and λ-model are related by limits

and T-duality [15, 43] or by Poisson-Lie duality [15, 40–43]. These connections may be

used to investigate both the renormalizability of the η-model and higher-loop corrections

to non-abelian and Poisson-Lie duality. In our analysis of the λ-model we have computed

the 2-loop β-function of the models (2.10) and (2.17). It would be interesting to extend

this to the more general “doubly λ-deformed” models constructed in [51–54].

Another obvious generalization is to σ-models on supergroups and supercosets (see,

e.g., [29, 58, 83, 84]) where a generalization of our 2-loop β-function expressions would,

e.g., check the 2-loop finiteness of the model of [34].
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A Notation and conventions

Our conventions for the non-zero components of the 2d Minkowski metric ηrs and the

Levi-Civita symbol εrs are, respectively, η00 = −η11 = −1 and ε01 = −ε10 = 1. The 2d

light-cone coordinates are defined as σ± = 1
2(σ0 ± σ1) so that ∂± = ∂0 ± ∂1. For n-forms

we define components in the standard way: H(n) = 1
n!Hi1···indx

i1 ∧ · · · ∧ dxin .

For an irreducible finite-dimensional representation of the compact simple Lie group

G we normalize the generators {T a} and the invariant bilinear form such that27

[T a, T b] = fabcT
c , Tr(T aT b) = δab , fabcfabd = −2cGδcd , cG ≡ c2(G) , (A.1)

where c2(G) is the dual Coxeter number of the group G and indices are raised and lowered

with δab and its inverse. This implies that Tr is related to the usual matrix trace, tr, by

Tr =
1

2χG,R
tr , (A.2)

27This means that we have hermitian generators and imaginary structure constants.
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where χG,R is the index of the representation.28 It then follows that

fa
defbe

ffcdf = cGfabc . (A.3)

In the coset case, G/H is assumed to be a compact irreducible symmetric space.

Introducing the orthogonal splitting {T a} = {Tα, T i}, where {Tα} are the generators of

H, we have Tr(TαT i) = 0 and the non-zero commutation relations are given by

[Tα, T β ] = fαβγT
γ , [Tα, T i] = fαijT

j , [T i, T j ] = f ijαT
α . (A.4)

In the computation of the 2-loop RG flow we make use of the identities

fαijf
βj
i = 2χ

H,G/H
δαβ , fαkifαkj =−cGδij ,

fαmlfβklfαkifβmj =−1

2
fαmlf

βl
mfα

k
ifβkj = cG(cG−cH )δij , cH ≡ cG−χH,G/H ,

(A.5)

where χ
H,G/H

is the index of the representation of Lie(H) in which the coset directions

transform, i.e. of the matrices (fα)ij = fαij . When both G and H are simple we have that

cH ≡
χ
G,R

χ
H,R

c2(H) where c2(H) is the dual Coxeter number of the group H and χH,R is the

index of the representation {Tα} of Lie(H). For more general subgroups H the constant cH
takes a more complicated form. In the case of type II symmetric spaces, i.e. H×H

H , we have

cG = c2(H) and cH = 1
2c2(H). Finally, the expressions for the dual non-compact irreducible

Riemannian symmetric space can be found by the formal substitution k → −k.29

B 2-loop β-function of squashed PCM and G/H coset σ-models

Let G and H ⊂ G be compact simple Lie groups and G/H be a compact irreducible

symmetric space. Below we shall consider the renormalisation of the “squashed” PCM

model with action S = 1
4π

∫
d2σL where30

L = −1

2
h
(
J i+J

i
− + εJα+J

α
−
)

= −1

2

(
hJ i+J

i
− + h̃Jα+J

α
−
)
, (B.1)

Ja± = (Jα±, J
i
±) = Tr(T ag−1∂±g) , h̃ ≡ h ε . (B.2)

28We use a somewhat unconventional normalization of the generators and thus the structure constants

(by a factor of
√

2) compared to the standard relations tr(T ′aT ′b) = χG,Rδ
ab and f ′abcf

′
abd = −cGδcd.

Nevertheless, our normalizations are consistent with the standard values for the indices of representations.

For the fundamental representation we have χ
SU(N),fund

= χ
Sp(N),fund

= 1
2

and (for N ≥ 5) χ
SO(N),fund

= 1,

while for the adjoint representation the index is equal to the dual Coxeter number: χ
SU(N),adj

= c2(SU(N)) =

N , χ
Sp(N),adj

= c2(Sp(N)) = N + 1 and (for N ≥ 5) χ
SO(N),adj

= c2(SO(N)) = N − 2.
29In the classification of irreducible Riemannian symmetric spaces, excluding the special case of flat space,

every compact space has a corresponding non-compact space, often referred to as a duality. The simplest

example of this is the sphere and the hyperboloid. The non-compact irreducible Riemannian symmetric

spaces take the form G/H with H the maximal compact subgroup of G. Therefore, the coset directions

are all non-compact and for a positive-definite signature of the metric we replace k → −k compared to the

compact case.
30As in appendix A (cf. (A.4)) we denote the H and G/H algebra indices by α and i respectively, i.e. the

G algebra index is a = {α, i}. The overall minus sign is due to the conventions explained in appendix A,

in particular the choice to use hermitian generators T a satisfying (A.1). The coupling h is related to the

conventional PCM coupling g by h = 2
g2 . Indices in (B.1) and (B.4) are contracted with δij and δαβ .
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It interpolates between the PCM on the group G (ε = 1) and the G/H symmetric space

σ-model (ε→ 0). Also, in the limit

h→∞ , ε→ 0 , h̃ = fixed , (B.3)

when the coset part decouples, the model (B.1) reduces to the PCM on the group H with

the coupling h̃.

For ε 6= 0, the action (B.1) has global G×H symmetry: g → ugv, u ∈ G, v ∈ H. For

the symmetric space σ-model case of ε = 0, the global H symmetry is enhanced to a gauge

symmetry. Due to these symmetries31 the model (B.1) is renormalizable with only the

two couplings h and ε (or h̃) running. This will be explicitly verified below in the 2-loop

approximation (expanding in large h for fixed ε).

We define the target space vielbein Ea ≡ Eaµdx
µ = (J i, Jα) where Ja are 1-forms

corresponding to the currents in (B.1) (cf. (2.19), (2.32)), so that the corresponding metric

of the σ-model in (1.11) takes the form

Gµνdx
µdxν = −1

2
h
(
J iJ i + εJαJα

)
. (B.4)

The spin connection ωab is found to have the following components

ωαβ = −1

2
fαβγJ

γ , ωαi = −1

2
fαijJ

j , ωij = −
(

1− 1

2
ε

)
f ijαJ

α , (B.5)

and the non-zero components of the corresponding Riemann tensor are given by (up to

permutations and symmetries)

Rαβδε =
1

4
fαβcf

c
δε , Rαiγk =

1

4

(
f ikcf

c
αγ − εfαkcf ciγ

)
,

Rijβγ =
1

2
ε

(
1− 1

2
ε

)
f ijcf

c
βγ , Rijkl =

(
1− 3

4
ε

)
f ijcf

c
kl . (B.6)

In the PCM case of ε = 1, the curvature (B.6) reduces to the standard group space

expression

Rabde =
1

4
fabcf

c
de . (B.7)

For Bµν = 0 the 2-loop RG equation (1.12) becomes the familiar one [21]32

dGµν

dt
= Rµν +

1

2
R λρσ
µ Rνλρσ . (B.8)

31This follows from the assumption that H is simple andG/H is an irreducible symmetric space. Therefore

both {Tα} and {T i} transform in irreducible representations of Lie(H) and the two terms in (B.1) are the

only ones that respect the global G×H symmetry of the model. In principle, this argument applies to any

coset space G/H for which this irreducibility of representations holds. At the ε = 0 point we recover the

symmetric space or coset σ-model and the H gauge symmetry implies that just the irreducibility of {T i} is

sufficient for renormalizability. An additional subtlety can occur when the irreducible representations are

reducible over C. Then it may be possible to construct new terms respecting the symmetries invoked above

(cf. footnote 9). We expect any such new terms to be excluded by additional symmetries such as parity.
32Here we ignore the diffeomorphism term which is not allowed by the global G×H symmetry.
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Substituting in (B.6), one finds that the model (B.1) is 2-loop renormalizable with h and

ε running according to33

d

dt
h = (2− ε)cG +

1

2
cGh−1

[
cG(8− 12ε+ 5ε2)− cH (1− ε)(5− 4ε)

]
, (B.9)

d

dt
ε = −h−1(1− ε)

(
2cGε− (1 + ε)cH (B.10)

+
1

2
h−1

[
4c2

G
ε(2− ε)− cGcHε(11− 4ε)− c2

H
(ε−1 + 1− 5ε+ ε2)

])
.

Thus ε = 1 is a fixed line of (B.10), on which (B.9) reduces to the 2-loop β-function of the

PCM on the group G

d

dt
h = cG +

1

2
c2
G

h−1 . (B.11)

The same expression was found from the NAD limit of the λ-model in (2.31).

In the special case of the squashed 3-sphere or squashed SU(2) PCM (with H = U(1),

i.e. cG = 2, cH = 0) the expressions in (B.9), (B.10) agree with the 2-loop β-functions found

in [20]: the couplings λ and g used there are related to ours by cGh−1 = λ
4π , ε = 1 + g.

Written in terms of the couplings h and h̃ in (B.1) the equations (B.9), (B.10) take

the form

d

dt
h = 2cG+

1

2
cG(8cG−5cH−2h̃)h−1− 3

2
cG(4cG−3cH )h̃h−2+

1

2
cG(5cG−4cH )h̃2 h−3, (B.12)

d

dt
h̃ = cH +

1

2
c2
H

h̃−1+(cG−cH ) h̃h−2

[
3cH +h̃−3cH h̃h−1+

1

2
(cG+cH )h̃2h−2

]
. (B.13)

These two equations become the same and equal to (B.11) at the PCM fixed point h = h̃

(ε = 1). In the limit (B.3) when h−1 → 0 we get from (B.13) the correct 2-loop RG

equation for the coupling h̃ of the PCM on the group H (cf. (B.11))34

d

dt
h̃ = cH +

1

2
c2
H

h̃−1 . (B.14)

Let us now consider the coset space limit ε = 0 (or h̃ = 0). In the abelian H case

when cH = 0, we have ε = 0 solving (B.10) while (B.9) reduces to d
dth = 2cG + 4c2

G
h−1,

which agrees with the symmetric space σ-model β-function in (2.40), (B.16). However, for

non-abelian H with cH 6= 0, the ε→ 0 limit of (B.10) is singular. The limit of (B.9), while

giving the correct 1-loop part of the β-function for the G/H symmetric space σ-model

(see, e.g., [58]), fails to do so at the 2-loop order. Indeed this limit is subtle and should

be treated separately due to the H gauge symmetry that arises in the model (B.1) at the

point ε = 0.

This gauge symmetry is reflected in the degeneracy of the metric (B.4) in the ε → 0

limit. One option is to set ε = 0 and then use the standard gauge fixing procedure. For

33Note that these equations depend on h, cG and cH only through the ratios cGh−1 and
c
H
c
G

.
34Expressed in terms of the physical coupling h−1 eq. (B.12) is d

dt
h−1 = −2cGh−2 + . . . so h−1 = 0 is

(trivially) a fixed line.
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example, we may fix an analog of “axial” gauge N rJαr = fα(σ) where N r is a constant 2d

vector. Then averaging over f with exponential weight ∼ ufαfα will give an extra gauge-

fixing term u(N rJαr )2 in the coset σ-model action. The resulting on-shell effective action

and thus the on-shell UV divergences should not depend on the value of the gauge-fixing

parameter u or the choice of N r. As this procedure is somewhat cumbersome, we may try

to use a short-cut.

Indeed, observing that averaging over N r should effectively restore 2d Lorentz invari-

ance in gauge-invariant expressions we may simply add u(Jαr )2 or, equivalently, go back

to (B.1) with u = ε. This may be viewed as using ε� 1 as a regulator, breaking the gauge

invariance and lifting the degeneracy. Then after computing the Riemann tensor, we will

need to project out the components in the degenerate H (or α) directions and finally take

the ε→ 0 limit and compute the β-function.35 Projecting out the α components of (B.6)

and setting ε = 0 gives the standard expression for the symmetric space Riemann tensor

(see, e.g., [85–87])

Rijkl = f ijαf
α
kl . (B.15)

An alternative approach (equivalent to explicitly solving the gauge condition rather than

adding it to the action to lift the degeneracy) would be to take g to be parametrized by

the dimG − dimH physical degrees of freedom. The particular parametrization is not

important, but one could take, e.g., g = exp
(
iviT

i + ivα(vi)T
α
)
. Then we may expand

Jα in the vielbein Ei = J i, i.e. Jα = Fαi (g)Ei. Computing the spin correction and

the corresponding curvature, the latter does not depend on Fαi (g), as expected by gauge

invariance, and agrees with (B.15).

Plugging (B.15) into the RG equation (B.8) we then obtain the 2-loop β-function for

the symmetric space σ-model

d

dt
h = 2cG + 4cG(cG − cH )h−1 . (B.16)

This expression agrees with previous results found for particular cosets in [21, 62, 65–67].36

It also matches the result found from the NAD limit of the λ-model in (2.40). In contrast

to (B.9), (B.10), the expression for the β-function for h in (B.16) is valid for any compact

irreducible symmetric space (cf. footnote 31) with cG and cH defined in appendix A, i.e. G

and H need not be simple.37

35In a systematic gauge-fixing the analog of ε or the gauge-fixing parameter u should automatically

disappear from the on-shell divergences. Note also that this procedure is effectively equivalent to fixing a

“transverse” gauge in which the H-components of the quantum fields are set to zero so the curvature tensor

coefficients in the σ-model vertices are contracted with the propagators containing projectors to G/H. In

addition, the classical fields (in the background field method for computing divergences) have only G/H

components due to the classical gauge invariance in the ε = 0 limit.
36For example, in the case of the sphere SN−1 = SO(N)/SO(N−1), using the fundamental representation

of SO(N) and following the notation in appendix A we have cG = N−2, cH = N−3, χG,fund = χH,fund = 1.

Normalizing the Lagrangian as in (1.10), (1.11) we find that h = 2R2 where R is the radius of the sphere.

Therefore, from (B.16) we find the standard 2-loop RG equation for SN−1: d
dt
R2 = (N − 2) + (N − 2)R−2.

37Let us note for completeness that renormalizability of σ-models on some homogeneous cosets (not

necessarily symmetric spaces) was discussed, e.g., in [88–90].
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Let us note that since (B.1) is a two-coupling theory, the 2-loop (and higher) terms in

the β-functions (B.9), (B.10) are not, in general, invariant under scheme changes or redef-

initions of the couplings h and ε. However, they still contain some invariant information

as the limits ε = 1 (PCM on G), (B.3) (PCM on H) and ε = 0 (G/H coset space) lead to

one-coupling models whose 2-loop β-functions are invariant under coupling redefinitions.

We finish with a curious observation that the 2-loop β-functions (B.9), (B.10)

vanish if

ε = 2 , cG =
3

4
cH . (B.17)

Indeed, if there are such G and H that the relation cG = 3
4cH can be satisfied, then the

expressions in (B.9), (B.10) simplify to

d

dt
h = (2− ε) cG

[
1 +

1

6
cGh−1 (2 + ε)

]
, (B.18)

d

dt
ε =

2

3
h−1 (2− ε) (1− ε) cG

[
1 +

1

3
cGh−1

(
2ε−1 + 3− ε

)]
, (B.19)

and thus ε = 2 is a 2-loop fixed point. This suggests that the corresponding squashed PCM

with ε = 2 is an exact CFT for any value of h. Therefore, it is a particularly interesting

representation theory question as to whether there are solutions to the condition cG = 3
4cH .

For this it may be necessary to consider supergroups.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[67] E. Brézin, S. Hikami and J. Zinn-Justin, Generalized Nonlinear σ Models With Gauge

Invariance, Nucl. Phys. B 165 (1980) 528 [INSPIRE].

[68] A.S. Schwarz and A.A. Tseytlin, Dilaton shift under duality and torsion of elliptic complex,

Nucl. Phys. B 399 (1993) 691 [hep-th/9210015] [INSPIRE].

[69] I. Kawaguchi and K. Yoshida, Hidden Yangian symmetry in sigma model on squashed sphere,

JHEP 11 (2010) 032 [arXiv:1008.0776] [INSPIRE].

[70] N. Kaloper and K.A. Meissner, Duality beyond the first loop, Phys. Rev. D 56 (1997) 7940

[hep-th/9705193] [INSPIRE].

[71] S. Parsons, T duality and conformal invariance at two loops, Phys. Rev. D 61 (2000) 086002

[hep-th/9912105] [INSPIRE].

[72] I. Jack and S. Parsons, O(d, d) invariance at two loops and three loops, Phys. Rev. D 62

(2000) 026003 [hep-th/9911064] [INSPIRE].

[73] A.A. Tseytlin, Duality symmetric closed string theory and interacting chiral scalars, Nucl.

Phys. B 350 (1991) 395 [INSPIRE].

[74] M. Roček and A.A. Tseytlin, Partial breaking of global D = 4 supersymmetry, constrained

superfields, and three-brane actions, Phys. Rev. D 59 (1999) 106001 [hep-th/9811232]

[INSPIRE].

[75] E. Abdalla, M.C.B. Abdalla and M. Gomes, Anomaly in the Nonlocal Quantum Charge of

the CPn−1 Model, Phys. Rev. D 23 (1981) 1080.

[76] E. Abdalla, M. Forger and M. Gomes, On the Origin of Anomalies in the Quantum Nonlocal

Charge for the Generalized Nonlinear σ Models, Nucl. Phys. B 210 (1982) 181 [INSPIRE].

[77] J.M. Evans, D. Kagan and C.A.S. Young, Nonlocal charges and quantum integrability of

sigma models on the symmetric spaces SO(2n)/SO(n)× SO(n) and Sp(2n)/Sp(n)× Sp(n),

Phys. Lett. B 597 (2004) 112 [hep-th/0404003] [INSPIRE].

[78] J.M. Evans, D. Kagan, N.J. MacKay and C.A.S. Young, Quantum, higher-spin, local charges

in symmetric space sigma models, JHEP 01 (2005) 020 [hep-th/0408244] [INSPIRE].

[79] A.V. Litvinov, Integrable gl(n|n) Toda field theory and its sigma-model dual,

arXiv:1901.04799 [INSPIRE].

[80] D. Bykov, The worldsheet low-energy limit of the AdS4 × CP3 superstring, Nucl. Phys. B

838 (2010) 47 [arXiv:1003.2199] [INSPIRE].

[81] B. Basso and A. Rej, On the integrability of two-dimensional models with U(1)× SU(N)

symmetry, Nucl. Phys. B 866 (2013) 337 [arXiv:1207.0413] [INSPIRE].

[82] M. Gomes, E. Abdalla and M.C.B. Abdalla, On the Nonlocal Charge of the CP(N−1) Model

and Its Supersymmetric Extension to All Orders, Phys. Rev. D 27 (1983) 825 [INSPIRE].

[83] D. Kagan and C.A.S. Young, Conformal sigma-models on supercoset targets, Nucl. Phys. B

745 (2006) 109 [hep-th/0512250] [INSPIRE].

[84] A. Babichenko, Conformal invariance and quantum integrability of sigma models on

symmetric superspaces, Phys. Lett. B 648 (2007) 254 [hep-th/0611214] [INSPIRE].

[85] R. Gilmore, Lie Algebras and Some of Their Applications, Dover, (2005).

[86] A. Salam and J.A. Strathdee, On Kaluza-Klein Theory, Annals Phys. 141 (1982) 316

[INSPIRE].

– 30 –

https://doi.org/10.1016/0550-3213(80)90047-4
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B165,528%22
https://doi.org/10.1016/0550-3213(93)90514-P
https://arxiv.org/abs/hep-th/9210015
https://inspirehep.net/search?p=find+EPRINT+hep-th/9210015
https://doi.org/10.1007/JHEP11(2010)032
https://arxiv.org/abs/1008.0776
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.0776
https://doi.org/10.1103/PhysRevD.56.7940
https://arxiv.org/abs/hep-th/9705193
https://inspirehep.net/search?p=find+EPRINT+hep-th/9705193
https://doi.org/10.1103/PhysRevD.61.086002
https://arxiv.org/abs/hep-th/9912105
https://inspirehep.net/search?p=find+EPRINT+hep-th/9912105
https://doi.org/10.1103/PhysRevD.62.026003
https://doi.org/10.1103/PhysRevD.62.026003
https://arxiv.org/abs/hep-th/9911064
https://inspirehep.net/search?p=find+EPRINT+hep-th/9911064
https://doi.org/10.1016/0550-3213(91)90266-Z
https://doi.org/10.1016/0550-3213(91)90266-Z
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B350,395%22
https://doi.org/10.1103/PhysRevD.59.106001
https://arxiv.org/abs/hep-th/9811232
https://inspirehep.net/search?p=find+EPRINT+hep-th/9811232
http://doi.org/10.1103/PhysRevD.23.1800
https://doi.org/10.1016/0550-3213(82)90238-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B210,181%22
https://doi.org/10.1016/j.physletb.2004.04.042
https://arxiv.org/abs/hep-th/0404003
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404003
https://doi.org/10.1088/1126-6708/2005/01/020
https://arxiv.org/abs/hep-th/0408244
https://inspirehep.net/search?p=find+EPRINT+hep-th/0408244
https://arxiv.org/abs/1901.04799
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.04799
https://doi.org/10.1016/j.nuclphysb.2010.05.013
https://doi.org/10.1016/j.nuclphysb.2010.05.013
https://arxiv.org/abs/1003.2199
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2199
https://doi.org/10.1016/j.nuclphysb.2012.09.003
https://arxiv.org/abs/1207.0413
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0413
https://doi.org/10.1103/PhysRevD.27.825
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D27,825%22
https://doi.org/10.1016/j.nuclphysb.2006.02.027
https://doi.org/10.1016/j.nuclphysb.2006.02.027
https://arxiv.org/abs/hep-th/0512250
https://inspirehep.net/search?p=find+EPRINT+hep-th/0512250
https://doi.org/10.1016/j.physletb.2007.03.003
https://arxiv.org/abs/hep-th/0611214
https://inspirehep.net/search?p=find+EPRINT+hep-th/0611214
https://doi.org/10.1016/0003-4916(82)90291-3
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,141,316%22


J
H
E
P
1
2
(
2
0
1
9
)
1
4
6

[87] L. Castellani, On G/H geometry and its use in M theory compactifications, Annals Phys.

287 (2001) 1 [hep-th/9912277] [INSPIRE].

[88] G. Bonneau, G. Valent and F. Delduc, Renormalization Properties Of Bosonic Nonlinear

Sigma Models Built On Compact Homogeneous Kahler Manifolds, Phys. Lett. B 196 (1987)

456 [INSPIRE].

[89] C. Becchi, A. Blasi, G. Bonneau, R. Collina and F. Delduc, Renormalizability and Infrared

Finiteness of Nonlinear σ Models: A Regularization Independent Analysis for Compact Coset

Spaces, Commun. Math. Phys. 120 (1988) 121 [INSPIRE].

[90] A.V. Bratchikov, Renormalization properties of two-dimensional homogeneous symplectic

sigma models, Mod. Phys. Lett. A 7 (1992) 2229 [INSPIRE].

– 31 –

https://doi.org/10.1006/aphy.2000.6097
https://doi.org/10.1006/aphy.2000.6097
https://arxiv.org/abs/hep-th/9912277
https://inspirehep.net/search?p=find+EPRINT+hep-th/9912277
https://doi.org/10.1016/0370-2693(87)90801-X
https://doi.org/10.1016/0370-2693(87)90801-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B196,456%22
https://doi.org/10.1007/BF01223209
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,120,121%22
https://doi.org/10.1142/S0217732392001993
https://inspirehep.net/search?p=find+J+%22Mod.Phys.Lett.,A7,2229%22

	Introduction
	Renormalizability of lambda-model: extended configuration space
	Group space
	Coset space
	2-loop beta-function of lambda-model for group G
	2-loop beta-function of lambda-model for symmetric space G/H
	Low-dimensional examples: lambda-models for SU(2) and SU(2)/U(1)

	Renormalization of lambda-model: standard configuration space
	SU(2)/U(1)
	SU(2)
	SU(2) x U(1) invariant limit: abelian T-duality to squashed 3-sphere
	Non-abelian dual of SU(2) PCM


	Concluding remarks
	Notation and conventions
	2-loop beta-function of squashed PCM and G/H coset sigma-models

