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1 Introduction

In this paper, we study φ4 theory defined over R×Qp, where Qp denotes the p-adic numbers

for a prime number p which we fix once and for all. The action we start with is

S =
1

2

∫
R
dω

∫
Qp
dk φ̃(−ω,−k)

(
ω2 + |k|2zp + r

)
φ̃(ω, k) +

λ

4!

∫
R
dτ

∫
Qp
dxφ(τ, x)4 . (1.1)

The field φ(τ, x) is real-valued. The parameter z is real-valued as well and is understood

to be a dynamical scaling exponent.1 We employ a Fourier transform

φ(τ, x) =

∫
R
dω

∫
Qp
dk e−2πiωτχ(kx)φ̃(ω, k)

φ̃(ω, k) =

∫
R
dτ

∫
Qp
dx e2πiωτχ(−kx)φ(τ, x) ,

(1.2)

where χ(y) = e2πi{y} and {y} is the fractional part of y ∈ Qp, meaning the unique rational

number in the interval [0, 1) such that y − {y} is a p-adic integer. We will speak of real

1An alternative notation would be to write ω2 + |k|σp instead of ω2 + |k|2zp in (1.1) and reserve z for the

dynamical scaling exponent of the full quantum theory. Our approach is for z to be defined at the level of

the microscopic or classical theory, and when it differs from the infrared dynamical scaling exponent, we

denote the latter by zIR.
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quantities like τ and ω as Archimedean, whereas p-adic quantities like x and k will be

termed ultrametric.2 We refer to (1.1) as mixed field theory because it is defined over a

space which is Archimedean in one direction and ultrametric in another. In (1.1), we write

the kinetic term in Fourier space because the ultrametric part is non-local in position space.

There are several obvious generalizations of (1.1). We could replace Euclidean time

τ ∈ R by a larger Archimedean space or spacetime, for example Rd or Rd−1,1. We could

replace Qp by a more general ultrametric space, for example some extension of Qp, or

a compact space like Zp (the p-adic integers) or P1(Qp). We could pass to the O(N)

model by replacing φ with a vector φi valued in RN , and then specify a particular O(N)

tensor structure for the φ4 interaction. We could consider including higher powers of φ and

tuning couplings so as to arrive at multi-critical points. Many aspects of our analysis can

be straightforwardly adapted to these generalizations, so the current work should be seen

as focusing primarily on the simplest example.

Broadly, our motivations are two-fold. First, quantum systems might in principle be

realized in the lab whose behavior near a critical point could plausibly be described by

the mixed field theory (1.1). We have in mind especially the schemes of [1, 2], in which

non-local couplings are set up in a chain or array of quantum spins.3 Other authors have

been interested in renormalization group (RG) treatments of hierarchical versions of the

transverse Ising Model; a recent work along these lines is [3].

Second, we want to entertain the possibility of p-adic extra dimensions. While earlier

authors, notably Volovich, have advocated a sort of covariance over all possible choice of

number fields in the formulations of physical theories (see for example [4, 5]), our approach

here is instead to accept R3,1 at face value as the description of the usual dimensions of

spacetime, but to suppose that there could be an extra dimension which is compact and

ultrametric — for example, Zp for some particular p.

Our findings can be separated into classical and quantum results. On the classical

side, we find:

• Setting λ = 0, the tree-level propagator for φ has oscillatory behavior in position

space even when the argument is purely Archimedean. For r = 0 and p not too

large, this oscillatory behavior enters as a small correction to an overall power law,

suppressed by a factor e
− π2

z log p . This factor can be extremely small without fine-tuning

parameters of the theory: we give an example where the suppression of oscillatory

effects is by 16 orders of magnitude. All this is set forth in section 3.

• If the ultrametric domain Qp is reduced to the compact set Zp, then, as we show

in section 4, there is a hierarchy of consistent truncations to purely Archimedean

effective theories, based on retaining modes whose ultrametric momenta are bounded

by some cutoff. The result holds not only for λ 6= 0, but for any smooth potential

V (φ), assuming φ = 0 is a solution to the full classical field equations.

2In general, an Archimedean norm is a positive definite norm for which if 0 < |a| < |b|, then |na| > |b| for

some n ∈ Z. In contrast, an ultrametric norm is a positive definite norm for which |a+ b| ≤ max{|a|, |b|}.
3We thank G. Bentsen, E. Davis, and M. Schleier-Smith for ongoing discussions regarding the experi-

mental possibilities.
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On the quantum side, we find:

• By power counting, as explained in section 2, the φ4 interaction is irrelevant for

z < 1/3 and relevant for z > 1/3. We concentrate our analysis on the critical

(i.e. massless) theory close to z = 1/3.

• There is evidence from one-loop computations of a Wilson-Fisher fixed point of the

renormalization group when z is slightly larger than 1/3. We present the one-loop

analysis of the Wilson-Fisher fixed point in section 6 after an analysis of loop diagrams

in section 5. Section 6.1 exhibits a computation of the anomalous dimension of r at

the fixed point.

• Based on a two-loop computation, presented in section 5.3, we argue in section 6.2

that z itself is renormalized: that is, starting with (1.1) at the microscopic level,

with z slightly larger than 1/3, the scaling parameter which enters infrared Green’s

functions at the Wilson-Fisher fixed point is not |τ |/|x|zp but rather |τ |/|x|zIRp for a

value zIR slightly different from z.

• Quantum corrections to Green’s functions can have oscillatory dependence on exter-

nal frequencies ω, as we argue in section 6.3 for the case of a two-loop correction to

the two-point function with z = 1/3. This oscillatory behavior is suppressed by the

same factor e
− 3π2

log p that is seen in the position space form of the tree-level Green’s

function.

2 Power counting

Power counting in ultrametric theories is well understood: see for example [6]. The key

point is that when we scale k → pk, the norm and the integration measure scale oppositely:

|k|p → 1
p |k|p and dk → 1

pdk. We regard this scaling as a step toward the infrared. We

see from the kinetic term of (1.1) that we must accompany k → pk with ω → 1
pzω and

r → 1
p2z r. In general, we associate to a quantity X an engineering dimension [X] if upon

a scaling k → pk we have X → p−[X]X. Then the natural assignments that make S

dimensionless consistent with (1.1)–(1.2) are

X k |k|p dk x |x|p dx ω dω S φ φ̃ r λ

[X] −1 1 1 1 −1 −1 z z 0 1−z
2 −3z+1

2 2z 3z − 1
(2.1)

We refer to these assignments as engineering dimensions because they describe scalings of

the classical action without reference to loop corrections. We see in particular that λ has a

positive dimension, meaning that φ4 is a relevant perturbation of the Gaussian fixed point

theory, precisely when z > 1/3 — whereas r is always relevant in the same sense, since we

require z > 0.

As compared to ordinary φ4 theory on Rd, we see from the assignments (2.1) that

increasing z is like decreasing d; that z = 1/3 is like the upper critical dimension d = 4,

where φ4 becomes marginal; and that z = 1 is like the lower critical dimension, where
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Figure 1. Conjectured pattern of critical points of (1.1).

the dimension of φ goes to 0. Thus, at least naively, we are expecting critical points as

indicated in figure 1. We added in a conjectured branch of multi-critical points based on

the fact that for z > 1/2, both φ4 and φ6 are relevant deformations of the Gaussian fixed

point. For 0 < z < 1/3, our expectation based on power counting is that the Gaussian

critical point is the only one available.

3 The propagator

From (1.1) with r = λ = 0, we can directly read off the momentum space Green’s function:

G̃(ω, k) =
1

ω2 + |k|2zp
. (3.1)

We require λ = 0 for now so as to avoid loop corrections, and we require r = 0 so as to

consider the critical Gaussian theory. Fourier transforming the real and p-adic components,

we obtain the position space Green’s function:

G(τ, x) ≡ 〈φ(τ, x)φ(0, 0)〉 =

∫
R
dω

∫
Qp
dk

e−2πiωτχ(kx)

ω2 + |k|2zp
. (3.2)

Based on the dimensional analysis of the previous section, we expect to find the scaling form

G(τ, x) =
1

|x|1−zp
g(ξ) where ξ ≡ 2π|τ |

|x|zp
. (3.3)

The “aspect ratio” ξ is dimensionless in the sense [ξ] = 0: that is, upon scaling x → x/p

and τ → pzτ , we find that ξ is unchanged. The factor of 2π in the definition of ξ is for later

convenience. Our plan in this section is first to verify the scaling form (3.3) and explicitly

compute g(ξ), and then to consider limits of small and large ξ.

The ω integral in (3.2) can be carried out straightforwardly, with the result

G(τ, x) =

∫
Qp
dk χ(kx)

π

|k|zp
e−2π|τ ||k|zp . (3.4)

To carry out the integral over Qp, we use the fact that the non-zero p-adic numbers split

into a disjoint union of scaled copies of the p-adic units:

Q×p =
⊔
v∈Z

pvUp . (3.5)

– 4 –
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Here Up is the set of all y ∈ Qp with |y|p = 1. To handle the integration over each copy of

Up, we use a standard result in p-adic Fourier analysis:

∫
pvUp

dy χ(y) =


p−v/ζp(1) if v ≥ 0

−1 if v = −1

0 if v < −1

(3.6)

where we define

ζp(s) ≡
1

1− p−s
. (3.7)

The upshot is that (3.4) indeed reduces to the scaling form (3.3), with

g(ξ) ≡ − π
pz
e−p

zξ +
π

ζp(1)

∞∑
v=0

pv(z−1)e−p
−vzξ

= − π
pz
e−p

zξ +
π

ζp(1)
ξ
z−1
z

∞∑
v=0

f

(
v − 1

z
logp ξ

)
,

(3.8)

where we define

f(v) ≡ pv(z−1)e−p
−vz

. (3.9)

Consider the limit ξ � 1. We call this a highly ultrametric aspect ratio because the

separation between points is mostly in the x direction. In this limit, we can ignore the

factors e−p
zξ and e−p

−vzξ in (3.8), and a straightforward computation leads to

G(τ, x) ≈ π/Γp(z)

|x|1−zp
when

2π|τ |
|x|zp

� 1 , (3.10)

where we define

Γp(z) ≡ ζp(z)

ζp(1− z)
. (3.11)

Now consider the opposite limit, ξ � 1. We call this a highly Archimedean aspect

ratio. In this limit, we can extend the sum over v in (3.8) to all the integers, because f(v)

becomes small very quickly when v goes to −∞. Now we employ Poisson resummation:∑
v∈Z

f

(
v − 1

z
logp ξ

)
=
∑
ṽ∈Z

ξ
− 2πi
z log p

ṽ
f̃(ṽ) , (3.12)

where we define f̃(ṽ) as the Fourier transform of f(v),

f̃(ṽ) ≡
∫
R
dv e−2πivṽf(v) =

1

z log p
ΓEuler

(
2πiṽ

z log p
+

1

z
− 1

)
. (3.13)

Noting that ξ
− 2πi
z log p = |2πτ |−

2πi
z log p because ξ differs from |τ | only by a factor of |x|zp=p−v(x)z

where v(x) ∈ Z is the p-adic valuation of x, we arrive at the approximation

G(τ,x)≈ π/ζp(1)

z logp

1

(2π|τ |)
1
z
−1

∑
ṽ∈Z

(2π|τ |)−
2πiṽ
z logpΓEuler

(
2πiṽ

z logp
+

1

z
−1

)
when

2π|τ |
|x|zp

� 1 .

(3.14)
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In the limiting case where x = 0, the approximate equality in (3.14) becomes exact. When

we compare (3.14) with the scaling form G(τ, x) = |τ |1−
1
z g̃(ξ) expected based on the

engineering dimensions (2.1), it seems surprising that the infinite sum in (3.14) should

depend directly on τ with no x dependence. In fact, because the possible values of |x|p
are integer powers of p, we can replace 2π|τ | by ξ inside the infinite sum in (3.14) without

changing the value of any of the terms; in other words (for x not exactly 0) the form (3.14)

does agree with the expected scaling form.

A more illuminating way to understand the occurrence of complex powers of |τ |
in (3.14) is to note that we only have discrete scale invariance under x→ x/p and τ → pzτ .

Absent any other considerations, this discrete scale invariance allows the two point function

G(τ, 0) at purely Archimedean separation to have a power law form |τ |α, but α can only

be fixed up to additions of an integer multiple of 2πi
z log p .

Despite the occurrence of complex powers of |τ | in (3.14), the Green’s function (3.14)

at purely Archimedean separations is often well approximated by the ṽ = 0 term. In fact,

G(τ, 0) =
π/ζp(1)

z log p

ΓEuler

(
1
z − 1

)
(2π|τ |)

1
z
−1

h(τ) where h(τ) = 1 +O

(
e
− π2

z log p

)
. (3.15)

The function h(τ) is periodic in log |τ |: up to an overall factor, it is the infinite sum

in (3.14). Related oscillatory behavior was observed in [7]. To understand the striking

suppression factor e
− π2

z log p , we note that the Stirling approximation yields∣∣∣∣ΓEuler

(
2πiṽ

z log p
+

1

z
− 1

)∣∣∣∣ ≈ √2π

(
2π

z log p
|ṽ|
) 1
z
− 3

2

e
− π2

z log p
|ṽ|
. (3.16)

Thus each successive term in the infinite sum in (3.14) is suppressed by a factor on order

e
− π2

z log p . It is worth noting that a highly suppressed amplitude of oscillation of h(τ) can be

arranged without fine-tuning parameters. For example,

sup
τ
|h(τ)− 1| ≈

∣∣∣∣ΓEuler

(
2 +

6πi

log 2

)∣∣∣∣ ≈ 10−16 when z = 1/3 and p = 2 . (3.17)

On the other hand, this same relative amplitude supτ |h(τ)− 1| rises to 0.5 when p reaches

1.75 × 105 if we hold z = 1/3. The relative amplitude can never exceed 1, because one

can show, starting from the first line of (3.8), that G(τ, x) is always positive, provided

z ∈ (0, 1).

4 Consistent truncation

Consistent truncation is a phenomenon in compactification of gravitational theories (see

for example [8]), whereby one can find consistent, non-linear equations of motion satisfied

by a finite number of non-zero Kaluza-Klein modes. A solution to these truncated equa-

tions of motion can be lifted back up to the original, higher dimensional theory. It has

been argued that known consistent truncations arise as a result of a generalized Scherk-

Schwarz mechanism [9]. Here we introduce a seemingly distinct mechanism whose essential

– 6 –
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ingredient is the assumption of ultrametricity in the compact direction. We have no pro-

posals in this paper for how to formulate gravitational theories over a direct product of

Archimedean and ultrametric directions, so we will work instead with non-linear scalar

field theory throughout.

As a warmup, consider first the action for a classical, real-valued scalar field φ defined

over R× S1:

S =

∫
R
dτ

∫
S1

dx

[
− 1

8π2
φ(∂2

τ + ∂2
x)φ+

λn
n
φn
]
. (4.1)

We could entertain a more general potential V (φ) in place of λn
n φ

n — for example, polyno-

mial in φ, or analytic in some neighborhood of φ = 0. It is always assumed however that

φ = 0 is a solution of the classical equation of motion, which is

1

4π2
(∂2
τ + ∂2

x)φ = V ′(φ) . (4.2)

We could also generalize (4.1)–(4.2) by replacing Euclidean time τ ∈ R by Minkowski space

R3,1, and the arguments to follow would be essentially unaffected. If we assume that the

S1 has circumference 1 and expand

φ(τ, x) =
∑
k∈Z

φk(τ)e−2πikx , (4.3)

then unless V (φ) is purely quadratic, the only way to satisfy the equations of motion (4.2)

while setting all but finitely many of the Kaluza-Klein modes φk(τ) to 0 is to set all of

them to zero except the mode φ0(τ) with no dependence at all on the x direction. Then

from (4.2) we obtain immediately

1

4π2
∂2
τφ

2
0 = V ′(φ0) . (4.4)

In short, the only consistent truncation of (4.2) when the x direction is compactified on a

circle is the trivial truncation (4.4).

Now consider a real field φ defined over R× Zp. Fourier transforms can be written as

φ(τ, x) =
∑

k∈Qp/Zp

φk(τ)χ(kx)

φk(τ) =

∫
Zp
dxχ(−kx)φ(τ, x) ,

(4.5)

where Qp/Zp is understood as a quotient of additive groups. An element k ∈ Qp/Zp is a

coset k = k′ + Zp, and it is easy to see that χ(k′x) for x ∈ Zp is independent of the choice

of k′. A canonical and unique choice is to make k′ its own fractional part. Thus we can

understand the sum in the first line of (4.5) as a sum over all rational numbers in [0, 1)

whose denominator is a power of p.

The action we consider for scalar field theory on R× Zp is

S =
1

2

∫
R
dτ

∑
k∈Qp/Zp

φ−k(τ)

(
− 1

4π2
∂2
τ + |k|2zp

)
φk(τ) +

∫
R
dτ

∫
Zp
dx

λn
n
φ(τ, x)n , (4.6)

– 7 –
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and the equations of motion are

Dφ(τ, x) = λnφ(τ, x)n−1 , (4.7)

where

D ≡ 1

4π2
∂2
τ −D2z

x (4.8)

and we define the Vladimirov derivative Dα
x of a function f(x) =

∑
k∈Qp/Zp χ(kx)f̃k as

Dα
xf(x) ≡

∑
k∈Qp/Zp

|k|αpχ(kx)f̃k . (4.9)

As before, our arguments generalize readily to polynomial V (φ) provided φ = 0 is a solution

of the equations of motion, and to more interesting non-compact Archimedean spaces

like R3,1.

The claim is that we may consistently truncate the classical equation of motion (4.7)

to soft modes:

Dφs(τ, x) = λnφs(τ, x)n−1 , (4.10)

where φs involves ultrametric Fourier modes whose norms are bounded by any cutoff we

please. Explicitly, we take a cutoff

Λ = pM , (4.11)

and then the requirement we place on φs is that it is a sum of soft modes, which are finite

in number:
φs(τ, x) =

∑
k∈Qp/Zp
|k|p≤Λ

φk(τ)χ(kx) .
(4.12)

The truncated equation of motion (4.10) can be written without reference to x as a set of

coupled non-linear equations for the finite number of Kaluza-Klein modes φk(τ) that we

kept. The Kaluza-Klein mass of each mode is evidently |k|2zp . The equations (4.7) and (4.10)

have precisely the same form, so another way to phrase our claim is that the coupled

equations for the soft modes φk(τ) close on themselves instead of coupling to hard modes.

Since the linear operator D maps soft modes to soft modes and hard to hard, what

we have to show is that hard modes aren’t sourced by the right hand side of (4.10): that

is, any positive power of a linear combination of soft modes is still a linear combination of

soft modes. This is easy to see by induction once we know that the product of any two

soft modes is still soft. Such a product is

χ(k1x)χ(k2x) = χ((k1 + k2)x) (4.13)

where |k1|p ≤ Λ and |k2|p ≤ Λ. Ultrametricity then indeed guarantees that |k1 + k2|p ≤ Λ.

A point that distinguishes this ultrametric consistent truncation from the usual story

in Archimedean gravitational theories is that there is a whole hierarchy of consistent trun-

cations, where one retains all ultrametric momentum k up to any prespecified maximum

norm Λ, and sets all harder modes to zero.

– 8 –
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5 Loop integrals

Having studied mixed field theories with compact and non-compact p-adic dimensions at

tree-level in the preceding sections, we now turn to loop corrections, restricting our treat-

ment to φ4 theory over R × Qp as specified by (1.1). Our main goal is a renormalization

group analysis of the Wilson-Fisher fixed points close to z = 1/3. The RG transforma-

tions we will find describe how the theory changes under a discrete scale transformation

ω → ω/pz, k → pk: see (6.3) and (6.6). In preparation, we consider in this section the

loop integrations involved in evaluating the three one-particle-irreducible (1PI) Feynman

diagrams shown in figure 2. The corresponding loop integrals are

I
(1)
2 (r,Λ) ≡

∫
dω1

∫ Λ

dk1
1

ω2
1 + |k1|2/3p + r

I4(ω, k, r,Λ) ≡
∫
dω1dω2

∫ Λ

dk1dk2
δ (ω − ω1 − ω2) δ (k − k1 − k2)

(ω2
1 + |k1|2/3p + r)(ω2

2 + |k2|2/3p + r)

I
(2)
2 (ω, k, r,Λ) ≡

∫
dω1dω2dω3

∫ Λ

dk1dk2dk3

δ
(
ω −

∑3
i=1 ωi

)
δ
(
k −

∑3
i=1 ki

)
∏3
i=1(ω2

i + |ki|2/3p + r)
,

(5.1)

where the superscripted Λ on the ultrametric integrals indicates that we require all internal

momenta to satisfy |ki|p ≤ Λ, and Λ = pM as in (4.11). Because we have only one

Archimedean direction, no divergences arise from the integrations over ωi. Thus all the

integrals in (5.1) are explicitly finite. Because the ωi and ki integrations are of an entirely

different nature, the anisotropic cut-off does not break any symmetry that would affect

the universality class of the theory, just as the same holds true for the anisotropic cut-

off employed in the study of the respective renormalization of the temporal and spatial

derivative terms in Lifshitz scalar theory in [10, 11].4

For purposes of a renormalization group analysis, we are interested in divergences that

arise as Λ becomes large. As we will explain in the sections 5.1, 5.2, and 5.3,

I
(1)
2 = a2/3Λ2/3 +A0r log Λ2/3 + (finite as Λ→∞)

I4 = b0 log Λ2/3 + (finite as Λ→∞)

I
(2)
2 = c2/3Λ2/3 + (C0r + C ′0ω

2) log Λ2/3 + (finite as Λ→∞) ,

(5.2)

for some coefficients a2/3, A0, b0, c2/3, C0, and C ′0, all of which are independent of ω, k, and

r. For the convenience of the reader who is not interested in the details of the computation,

we tabulate here the coefficients that we will need for the renormalization group analysis

in section 6:

A0 b0 C ′0

− 3π

4ζp(1) logp

3π

4ζp(1) logp
− 9π2

2ζp(1) logp

(
1− 2

p

81
+

1

8ζp(1)

∞∑
v=1

p−2v/3(
1+ 1

2p
−v/3

)3
)

(5.3)

The other coefficients in (5.2) can be computed by means similar to the ones we will exhibit.

4We note that Lifshitz scalar theories in Archimedean spacetimes have a long history, dating back as

least as far as [12].
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ω, k
I

(1)
2 (r,Λ)

ω, k
I4(ω, k, r,Λ)

ω, k
I

(2)
2 (ω, k, r,Λ)

Figure 2. Loop corrections to two- and four-point functions. Total momentum (ω, k) flows into

each diagram from the left.

5.1 The bubble diagram

Integrating first over ω1, we obtain

I
(1)
2 = π

∫ Λ

dk1
1√

|k1|2/3p + r

= π

∫ Λ

r3/2

dk1

[
1

|k1|1/3p

− r

2|k1|p

]
+ (finite)

= π
ζp(2/3)

ζp(1)
Λ2/3 − 3π

4ζp(1) log p
r log

Λ2/3

r
+ (finite) ,

(5.4)

where
∫ Λ
r3/2 dk1 means that the range of integration is r3/2 ≤ |k1|p ≤ Λ, and we use +(finite)

to denote any dropped terms which remain finite as Λ→∞. In the second equality of (5.4)

we evaluate the integrals by splitting the integration domain into momentum shells; then

the integrals become geometric series. Thus we have verified the value for A0 quoted in (5.3)

and checked along the way that the divergence structure of I
(1)
2 is as claimed in (5.2).

5.2 The four-point diagram

Power counting using the rules of section 2 allows us to check that the leading divergence

in I4 is logarithmic in Λ, as claimed in (5.2). The coefficient b0 cannot depend on ω2 or r

because when we expand the integrand of I4 in a power series in these quantities, all terms

but the first (i.e. the one that is independent of ω2 and r) lead to convergent integrals. A

power series in k doesn’t make sense for a real-valued function, but a much more powerful

argument is available from ultrametricity: after a u-substitution k1 → k1 − k, we can see

that the integrand for I4 agrees perfectly with its k = 0 form except when |k1|p ≤ |k|p.
This immediately implies that any ultraviolet divergences are independent of k and is an

example of the general phenomenon of ultrametric non-renormalization; cf. [13].

Because b0 is independent of ω, k, and r, we can set ω = k = r = 0 in the integrand.

As before, it is useful to restrict the region of ultrametric integration to r3/2 ≤ |ki|p ≤ Λ.

We arrive at

I4 =

∫
dω1

∫ Λ

r3/2

dk1
1(

ω2
1 + |k1|2/3p

)2 + (finite) =
π

2

∫ Λ

r2/3

dk1

|k1|p
+ (finite)

=
3π

4ζp(1) log p
log

Λ2/3

r
+ (finite) ,

(5.5)

thus checking the value for b0 quoted in (5.3) as well as the overall divergence structure of

I4 claimed in (5.2).
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5.3 The underground diagram

Power counting allows us to check that the leading divergence in I
(2)
2 scales as Λ2/3, as

claimed in (5.2). After a u-substitution k1 → k1 − k, we can see that the integrand for

I
(2)
2 agrees perfectly with its k = 0 form except when |k1|p ≤ |k|p. If we restrict the

domain of integration of k1 to |k1|p ≤ |k|p, then power counting shows that the integral

converges. Thus there can be no k dependence in any ultraviolet divergence of I
(2)
2 , and we

can hereafter set k = 0. Expanding the integrand in a power series in ω2 and r leads to the

three divergent terms shown in (5.2), followed by convergent integrals. We are interested

only in the term C ′0ω
2 log Λ2/3. Therefore we can set r = 0 in the integrand, while still

restricting the region of ultrametric integration to r3/2 ≤ |ki|p ≤ Λ. But we cannot set

ω = 0 at this stage. We introduce Schwinger parameters ui, i ∈ {1, 2, 3} in order to write

1

ω2
i + |ki|2/3p

=

∫ ∞
0

dui e
−ui(ω2

i+|ki|
2/3
p ) , (5.6)

and then the ωi integrations in I
(2)
2 can be performed straightforwardly in terms of Gaussian

integrals. Subsequently passing to Feynman parameters xi = ui/U where U =
∑

i ui, one

finds that

I
(2)
2 = π

∫ Λ

r3/2

dk1dk2dk3

∫ 1

0
dx1dx2dx3

δ (1−
∑

i xi)√
x1x2x3

∑
i 1/xi

δ (
∑

i ki)(
ω2∑
i 1/xi

+
∑

i xi|ki|
2/3
p

)2

+ (finite) .

(5.7)

In order to isolate the term C ′0ω
2 log Λ2/3, we consider the derivative

∂I
(2)
2

∂ω2
= C ′0 log Λ2/3 + (finite)

= −2π

∫ Λ

r3/2

dk1dk2dk3

∫ 1

0
dx1dx2dx3

δ (1−
∑

i xi)√
x1x2x3 (

∑
i 1/xi)

3

δ (
∑

i ki)(∑
i xi|ki|

2/3
p

)3

+ (finite)

= −π2

∫ Λ

r3/2

dk1dk2dk3
δ (
∑

i ki)

|k1k2k3|1/3p

(∑
i |ki|

1/3
p

)3 + (finite)

(5.8)

where in the third equality we used the identity∫ 1

0
dx1dx2dx3

δ (1−
∑

i xi)√
x1x2x3 (

∑
i 1/xi)

3

1

(
∑

i aixi)
3 =

π/2
√
a1a2a3(

√
a1 +

√
a2 +

√
a3)3

, (5.9)

valid for positive a1, a2, and a3.

The ultrametric integral remaining in the last line of (5.8) is immediately seen to be

logarithmically divergent; indeed, we can integrate over a common scale of the ki to obtain

∂I
(2)
2

∂ω2
= − 3π2

2 log p
log

Λ2/3

r
(Jeq + 3Jtall) + (finite) , (5.10)
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where

Jeq =
1

27

∫
Up
dk1dk2dk3 δ (

∑
i ki)

Jtall =
1

8

∫
pZp

dk1

∫
Up
dk2dk3

δ (
∑

i ki)

|k1|1/3p

(
1 + 1

2 |k1|1/3p

)3 .
(5.11)

To reach the form indicated on the right hand side of (5.10), we first note that the condition

k1+k2+k3 = 0 is the statement that the ki, thought of as vectors in Qp, form the (directed)

sides of a triangle. A well-known property of ultrametric norms is that all triangles are

either equilateral or tall isosceles, meaning that the base is shorter than the two equal

sides. That is, either |k1|p = |k2|p = |k3|p, or else |k1|p < |k2|p = |k3|p up to relabeling of

the ki. The integration region where the equilateral condition holds is disjoint from the

three isomorphic tall isosceles regions, and each of them is disjoint from the others. So

we can carry out the full integration in the last line of (5.8) by adding up the equilateral

contribution plus three times the tall isosceles contribution with |k1|p < |k2|p = |k3|p,
as in (5.10).

To compute Jem, we set

ki = ai + pni where ai ∈ F×p and ni ∈ Zp . (5.12)

Here we identify the finite field Fp with the set {0, 1, 2, . . . , p − 1}, and F×p comprises the

non-zero elements of this set. We use the replacements∫
Up
dki →

1

p

∑
ai∈F×p

∫
Zp
dni δ(k1 + k2 + k3)→ pδa1+a2+a3δ(n1 + n2 + n3) . (5.13)

Using (5.13) on the expression (5.11) for Jeq, we see immediately that

Jeq =
1

27p2

∑
a1,a2,a3∈F×p

δa1+a2+a3 =
1

27ζp(1)

(
1− 2

p

)
. (5.14)

Using the same parametrization (5.12) for k2 and k3 in the leads to the following evaluation

of Jtall:

Jtall =
1

8p

∑
a2,a3∈F×p

δa2+a3

∫
pZp

dk1

|k1|1/3
(
1+ 1

2 |k1|1/3
)3 =

1

8ζp(1)2

∞∑
v=1

p−2v/3(
1+ 1

2p
−v/3

)3 . (5.15)

Putting (5.8), (5.10), (5.14), and (5.15) together, we arrive at

C ′0 = − 9π2

2ζp(1) log p

(
1− 2

p

81
+

1

8ζp(1)

∞∑
v=1

p−2v/3(
1 + 1

2p
−v/3

)3
)
, (5.16)

which completes our verification of the coefficients tabulated in (5.3). It may be noted that

the sum over v in (5.16) can be performed explicitly in terms of q-polygamma functions,

defined as

ψ(n)
q (z) ≡ ∂nψq(z)

∂zn
where ψq(z) ≡ − log(1− q) + (log q)

∞∑
`=0

q`+z

1− q`+z
. (5.17)
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Specifically,

∞∑
v=1

p−2v/3(
1 + 1

2p
−v/3

)3 =
6

log p
−

18ψ
(1)

p1/3

(
3 log(−2)

log p + 1
)

(log p)2
−

54ψ
(2)

p1/3

(
3 log(−2)

log p + 1
)

(log p)3
. (5.18)

6 The Wilson-Fisher fixed point

With the divergent parts of the simplest loop diagrams in hand, we can proceed to an RG

analysis of the Wilson-Fisher fixed point for values of z slightly larger than 1/3, where the

operator φ4 is just barely relevant. We set

ε = z − 1

3
(6.1)

and work to the lowest non-trivial order in ε. In a Wilsonian picture, we start with a

theory constrained by a cutoff |k|p ≤ Λ, and we find the coupling λs of an effective theory

for modes with |k|p ≤ Λ/p by integrating out the modes with |k|p = Λ. More precisely, if

RΛ is the region where all internal momenta |ki|p ≤ Λ, then the modes we integrate out

correspond to the integration region which is the setwise complement RΛ\RΛ/p.

Standard analysis of the tree and one-loop diagrams for the four-point Green’s function

(identical to the textbook case of φ4 theory on R4) leads to

λs = λ− 3

2
λ2 [I4(Λ)− I4(Λ/p)] = λ− 3

2
λ2
[
Idiv

4 (Λ)− Idiv
4 (Λ/p)

]
= λ− λ2b0 log p , (6.2)

where in square brackets we have isolated the result of restricting the integral for I4 in (5.1)

to the region RΛ\RΛ/p. In the second equality we have replaced I4 by its divergent part

Idiv
4 on grounds that when evaluating the evolution of the coupling constant of the critical

theory, it doesn’t matter what ω, k, and r are, provided only that they are small compared

to Λ. Throughout, and in particular in the equation in (6.2), we use our analysis from

section 5 of loop integrals right at z = 1/3 even though our final aim is to set z = 1/3 + ε.

The reason this is permissible is that the critical point value of λ turns out to be O(ε),

and because we work only to the lowest non-trivial order in ε, we can evaluate our loop

integrals to zeroth order in ε.

In terms of dimensionless couplings λ̄ = λ/Λ3ε and λ̄s = λs/(Λ/p)
3ε, (6.2) can be

rewritten as

λ̄s = p3ε
[
λ̄− λ̄2b0 log p

]
= λ̄+ 3ελ̄ log p− λ̄2b0 log p , (6.3)

where we again discard terms that are beyond the lowest non-trivial order in ε. The fixed

point condition is λ̄s = λ̄, which immediately implies λ̄ = λ̄∗ where

λ̄∗ =
3ε

b0
=

4ζp(1) log p

π
ε . (6.4)

This is the Wilson-Fisher fixed point for mixed φ4 theory.
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6.1 The anomalous dimension for the mass term

Through a similarly standard analysis up to one loop for the two-point Green’s function,

one finds

rs = r +
λ

2

[
I

(1)
2 (Λ)− I(1)

2 (Λ/p)
]

= r +
λ

2

[
I

(1),div
2 (Λ)− I(1),div

2 (Λ/p)
]

= r +
λ

2

(
a2/3

Λ2/3

ζp(2/3)
+

2

3
A0r log p

)
,

(6.5)

or, in terms of dimensionless variables r̄ = r/Λ2z and r̄s = r/(Λ/p)2z,

r̄s = p2z

[
r̄ +

λ̄

2

(
a2/3

ζp(2/3)
+

2

3
A0r̄ log p

)]
= p2z+γr

[
r̄ +

λ̄

2

a2/3

ζp(2/3)

]
. (6.6)

where the anomalous dimension of r is

γr =
λ̄

3
A0 , (6.7)

and we are again working to lowest non-trivial order in ε, understanding that λ ∼ O(ε).

When λ̄ = λ̄∗, we see that

γr =
A0

b0
ε = −ε . (6.8)

The value of a2/3 enters into determining the value r̄∗ of r̄ at the Wilson-Fisher fixed point,

but it doesn’t actually matter for determining the anomalous dimension γr, because γr has

to do with the multiplicative scaling of a deviation of r from the fixed point value r̄∗.

A convenient shortcut to the result (6.7) is to note that the one-particle irreducible

(1PI) two-point function is

Γ(2)(ω, k) = ω2 + |k|2zp + r +
λ

2
I

(1)
2 (Λ)

= ω2 + |k|2zp + r +
λ

2

[
a2/3Λ2/3 +A0r log

Λ2/3

r

]
+ (finite)

= ω2 + |k|2zp + r1−λ
2
A0 +

λ

2

[
a2/3Λ2/3 +A0r log Λ2/3

]
+ (finite) .

(6.9)

In the third equality of (6.9), we are relying on the smallness of λ to promote the r log r

term to a modification of the power of r. The second term in square brackets in the last line

of (6.9) modifies the overall normalization of the mass term, and the first term in square

brackets contributes to the critical value of r where the infrared theory becomes massless.

By setting the dimensions of r1−λ
2
A0 and |k|2zp equal, we see that(

1− λ

2
A0

)
∆r = 2z , (6.10)

and upon setting ∆r = 2z + γr, we recover (6.7) to leading order in ε.
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6.2 A renormalized dynamical scaling exponent

We can use a similar shortcut to the one explained in (6.9)–(6.10) to treat the effects of

the underground diagram and derive a loop correction to the dynamical scaling exponent

z. Including the underground diagram, the 1PI two-point function is

Γ(2)(ω, k) = ω2 + |k|2zp −
λ2

6
I

(2)
2 (Λ) + (ω-independent) + (finite) . (6.11)

There are contributions to Γ(2)(ω, k) from other diagrams that include divergent terms,

but these divergences have no dependence on ω2; a case in point is precisely the mass

renormalization as treated in (6.9). In contrast, I
(2)
2 (Λ) has a divergent term with non-

trivial dependence on ω:

I
(2),div
2 (Λ) = C ′0ω

2 log
Λ2/3

ω2
+ (finite) . (6.12)

In (6.12) we have artfully rendered the argument of the logarithm dimensionless with a

factor of ω2. This is the only sensible thing to do when studying the critical theory, because

the mass is effectively zero at the critical point. In short,

Γ(2)(ω, k) = ω2 +
λ2

6
C ′0ω

2 logω2 + |k|2zp −
λ2

6
C ′0ω

2 log Λ2/3 + (ω-independent) + (finite)

=
(
ω2
)z/zIR + |k|2zp −

λ2

6
C ′0ω

2 log Λ2/3 + (ω-independent) + (finite) , (6.13)

where we have introduced an infrared dynamical scaling exponent

zIR = z

(
1− λ2

6
C ′0

)
. (6.14)

Evaluated at the Wilson-Fisher fixed point,

zIR = z − ε2

2

C ′0
b20

= z + 4ε2ζp(1) log p

(
1− 2

p

81
+

1

8ζp(1)

∞∑
v=1

p−2v/3(
1 + 1

2p
−v/3

)3
)
. (6.15)

The renormalized dynamical exponent has many consequences. For example, ∆ω = zIR

implies ∆τ = −zIR, where we always insist on ∆|k|p = −∆|x|p = 1 for reference. The field

φ has infrared dimension

∆φ =
1 + zIR − 2z

2
, (6.16)

and in place of (3.3) we must have an infrared scaling form

Ĝ(τ, x) =
1

|x|2∆φ
p

ĝ(ξ̂) where ξ̂ =
2π|τ |
|x|zIRp

. (6.17)
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6.3 Position space treatment of the underground diagram

While the analysis of section 5.3 seems to be the most efficient way to get hold of the

coefficient C ′0 of the ω2 log Λ2/3

ω2 term in I
(2)
2 (Λ) (for z = 1/3), we would like to understand

more completely the ω dependence of this loop integral, because it contributes directly to

the full 1PI two-point function Γ(2)(ω, k). To be precise, what we will add in this section

is a partial understanding of finite terms in Γ(2)(ω, k) which are oscillatory functions of

|ω|, similar to the oscillatory behavior in the tree level Green’s function G(τ, x) treated in

section 3. Throughout, we will work exactly at z = 1/3 and r = 0, understanding that the

analysis can easily be extended to the Wilson-Fisher fixed point with z = 1/3 + ε. Because

we are after finite terms, we remove the momentum cutoff Λ and impose ad hoc regulators

as needed. Our methodology is based in position space, along the lines of [14].

We begin with the observation that the loop integral I
(2)
2 (ω, k) (without a momentum

cutoff) becomes simple in position space:

I
(2)
2 (ω, k) =

∫
R
dτ

∫
Qp
dx e2πiωτχ(−kx)G(τ, x)3 , (6.18)

where, as in (3.2),

G(τ, x) =

∫
R
dω

∫
Qp
dk

e−2πiωτχ(kx)

ω2 + |k|2zp
. (6.19)

Due to the complexity of Fourier transforms over R×Qp, we are unable to give a complete

account of (6.18). However, the analysis simplifies somewhat when k = 0, because then ω

is the only dimensionful parameter present. Then we claim

I
(2)
2 (ω, 0) = c0ω

2 logω2 +
∑
ṽ 6=0

cṽ|ω|2+ 6πiṽ
log p , (6.20)

where ṽ ∈ Z. (A pure ω2 term without the logarithm is present in (6.20), but its coefficient

depends on the regularization scheme, so we do not attempt to compute it.) The main

technical goal of this section is to provide explicit expressions for the coefficients cṽ, which

are determined solely in terms of p and ṽ. Comparing with (6.12), we see that c0 = −C ′0,

and a non-trivial check on our work in this section is that we can check this equality

numerically, even though our explicit expression for c0 is quite complicated compared to

the one we gave in (5.16).

Before getting down to detailed calculations, let’s explain why the form (6.20) is plau-

sible. Dimensional analysis shows that [I
(2)
2 ] = 2/3 when z = 1/3, so powers |ω|2+ 6πiṽ

log p

are the ones that should contribute: these are precisely the powers of |ω| which scale by a

factor of p−2/3 when ω → p−1/3ω. The logarithmic divergence of I
(2)
2 slightly invalidates

this dimensional reasoning, but the result is only to modify the ω2 term to ω2 logω2 as

shown in (6.20).

To verify the form (6.20) and compute the coefficients cṽ, a useful first step is to carry

out the ultrametric Fourier transform at k = 0 by defining

F (τ) =

∫
Qp
dxG(τ, x)3

(6.21)
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so that

I
(2)
2 (ω, 0) =

∫
R
dτ e2πiωτF (τ) . (6.22)

The same dimensional reasoning used in the previous paragraph suffices to show that we

can expand

F (τ) =
∑
ṽ∈Z

c̃ṽ|τ |−3− 6πiṽ
log p

(6.23)

for some coefficients ṽ. Only, this time there is no failure of dimensional reasoning because

the integral in (6.21) is convergent provided τ 6= 0.

We recognize |τ |3F (τ) as a function which is periodic in log |τ |, with period 1
3 log p.

Thus (6.23) is essentially a Fourier series, and we can extract the coefficients c̃ṽ from Fourier

integrals:

c̃ṽ =
3

log p

∫ p1/3

1
dτ τ

2+ 6πiṽ
log pF (τ) =

3

log p

∫ p1/3

1
dτ τ

2+ 6πiṽ
log p

∫
Qp
dxG(τ, x)3

=
3

log p

∑
v∈Z

∫
p−vUp

dx

∫ p1/3

1
dτ τ

2+ 6πiṽ
log pG(τ, x)3 .

(6.24)

In the second line of (6.24) we divided the integral over Qp into integrals over shells

p−vUp. A key point, verified as usual by dimensional analysis starting from (2.1), is that

G(pv/3τ, p−vx) = p−2v/3G(τ, x), so on replacing x → p−vx and τ → pv/3τ in the last line

of (6.24), the Jacobian factor p4v/3 from the measure dxdτ just cancels against a factor of

p−4v/3 from the transformation of τ
2+ 6πiṽ

log pG(τ, x)3. Thus

c̃ṽ =
3

log p

∑
v∈Z

∫
Up
dx

∫ p(1−v)/3

p−v/3
dτ τ

2+ 6πiṽ
log pG(τ, x)3 =

3

ζp(1) log p

∫ ∞
0

dτ τ
2+ 6πiṽ

log pG(τ, 1)3 .

(6.25)

To obtain the second equality in (6.25), we noticed that the intervals of τ integration neatly

fit together to cover all of R. We also remembered that G(τ, x) depends on x only through

its p-adic norm |x|p, so it is constant (at fixed τ) as x runs over Up. Referring to (3.3)

and (3.8), we arrive at

G(τ, 1) =
π

ζp(1)

∞∑
v=−1

hvp
−2v/3e−2πp−v/3τ , (6.26)

where

hv =


1 if v ≥ 0

1

1− p
if v = −1 .

(6.27)

Plugging (6.26) into (6.25), we arrive at

c̃ṽ =
3π3

ζp(1)4 logp

∞∑
v1,v2,v3=−1

hv1hv2hv3p
−2(v1+v2+v3)/3

∫ ∞
0
dτ τ

2+ 6πiṽ
logp e−2π(p−v1/3+p−v2/3+p−v3/3)τ

=
3π3

ζp(1)4 logp
ΓEuler

(
3+

6πiṽ

logp

) ∞∑
v1,v2,v3=−1

hv1hv2hv3p
−2(v1+v2+v3)/3[

2π(p−v1/3+p−v2/3+p−v3/3)
]3+ 6πiṽ

logp

. (6.28)
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With the coefficients c̃ṽ in hand, we now perform the real Fourier transform (6.22)

term by term in the expansion (6.23) in order to get (6.20). We start with the general

identity ∫
R
dτ e2πiωτ |τ |s =

Γ∞(1 + s)

|ω|1+s
+ (regulator terms) , (6.29)

where we have defined

Γ∞(s) =
ζ∞(s)

ζ∞(1− s)
and ζ∞(s) = π−s/2ΓEuler(s/2) . (6.30)

Because we are interested in finite parts of I
(2)
2 , we will not concern ourselves with the

regulator terms.5 Expanding (6.29) around s = −3 and discarding a regulator term that

diverges as 1/(s+ 3), we find ∫
R
dτ

e2πiωτ

|τ |3
= 2π2ω2 logω2 . (6.31)

Using (6.29) and (6.31), we obtain immediately

c0 = 2π2c̃0

cṽ =
cṽ

Γ∞

(
3 + 6πiṽ

log p

) for ṽ 6= 0 . (6.32)

The equality c0 = −C ′0, remarked upon following (6.20), reduces to

∞∑
v1,v2,v3=−1

hv1hv2hv3p
−2(v1+v2+v3)/3

(p−v1/3 + p−v2/3 + p−v3/3)3
= 3ζp(1)3

(
1− 2

p

81
+

1

8ζp(1)

∞∑
v=1

p−2v/3(
1 + 1

2p
−v/3

)3
)
.

(6.33)

It is easy to check numerically that (6.33) is satisfied to good accuracy for a specified p, and

we did so for the first 10 primes. But it has nothing particularly to do with prime numbers:

both sides of (6.33) are easily seen to be power series in p−1/3 with rational coefficients,

and we checked that the first 20 terms agree. We do not have a general proof for (6.33).

The oscillatory terms cṽ|ω|2+ 6πiṽ
log p in the expansion (6.20) for I

(2)
2 (ω, 0) are quite small

for modest values of p. This is similar to the situation we encountered in section 3 for the

free propagator G(τ, 0) at purely Archimedean separations. The main source of suppression

of the coefficients cṽ is the Euler gamma function that comes out of the integral performed

in the second equality in (6.28). A simple estimate for modest values of p is

cṽ
c0
∼

ΓEuler

(
3 + 6πiṽ

log p

)
Γ∞

(
3 + 6πiṽ

log p

) ∼ sec

(
3π2iṽ

log p

)
∼ e−

3π2

log p
|ṽ|
. (6.34)

We recognize in the last expression the same factor that we found in (3.16) using the

Stirling approximation.

5For completeness, let us give a short account of the regulator terms. They are absent when the integral

converges. When there is a UV divergence (i.e. a divergence at small τ), the regulator terms are nonnegative

integer powers of ω2 with divergent coefficients. When there is an IR divergence (i.e. at large τ), the regulator

terms are distributions with support at ω = 0, which may or may not have divergent coefficients.
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7 Conclusions

In some ways, our results on φ4 theory defined over R × Qp are simply what one would

expect for any continuum field theory in which the dynamics is anisotropic between time

and space. Familiar features include: power-counting as in (2.1), the scaling form (3.3)

for the Green’s function in terms of a dimensionless variable ξ ∼ |τ |/|x|zp, and the use of

the familiar one- and two-loop diagrams shown in figure 2 to argue perturbatively for the

existence of a Wilson-Fisher fixed point when the interaction φ4 is slightly relevant.

An important difference between R and Qp is that there is no local notion of a derivative

on Qp; more precisely, one cannot sensibly differentiate a function mapping Qp to the reals.

The closest one can come is the Vladimirov derivative, which in Fourier space amounts to

multiplying by |k|sp for some continuously adjustable real (or even complex) parameter s.

In the context of mixed field theory, the kernel ω2 + |k|2zp of the kinetic term in the classical

action gives immediate meaning to z as the dynamical critical exponent of the microscopic

theory and shows that it is an adjustable parameter. The adjustable exponent is similar to

what one sees in Archimedean theories with long-range interactions, as in [15–17]; however,

as far as we know, there is no analog in mixed field theory of the long-range to short-range

crossover observed in theories over Rd, as discussed recently in [18, 19]. Rather than

changing the dimension d of space, in our analysis it is natural to slide the parameter z

between 0 and 1, with z = 1/3 playing the role of an upper critical dimension where a branch

of Wilson-Fisher fixed points joins onto the line of Gaussian theories parametrized by z. As

we head toward z = 1 (the analog of a lower critical dimension), more and more interaction

terms φ2n become relevant as deformations of the massless Gaussian theory. (Just as in

ordinary φ4 theory we can exclude odd powers of φ by imposing a φ → −φ symmetry.)

The overall pattern of critical points is as indicated in figure 1. Because of ultrametric

non-renormalization, loop corrections to z at Wilson-Fisher fixed points manifest as shifts

in the power of ω entering into the 1PI two-point function: Γ(2)(ω, k) ∼
(
ω2
)z/zIR + |k|2zp ,

where zIR is the infrared dynamical scaling exponent.

The surprising features of field theory over R × Qp are connected to the fact that

Archimedean norms like |τ | and |ω| are continuously variable, whereas the p-adic norms

|x|p and |k|p take discrete values: integer powers of the chosen prime p. The most scale

invariance one can hope for is invariance under discrete transformations x → x/p and

τ → pzτ .6 A result of this weakened scale invariance is that we can have oscillatory

dependence of Green’s functions on Archimedean quantities. For example, when z = 1/3,

we find by dimensional analysis that the two-point Green’s function at purely Archimedean

separation is G(τ, 0) ∼ 1/τ2. But all that our discrete scale invariance really implies is that

τ2G(τ, 0) is periodic in log |τ |, with period 1
3 log p. In other words, τ2G(τ, 0) is a sum of

integer powers of |τ |
6πi
log p . Non-constant log-periodic behavior in τ2G(τ, 0) appears already

in the massless Gaussian theory, as explained in detail in section 3. Two-loop corrections

to the 1PI two-point function Γ(2)(ω, k) of the critical theory at z = 1/3 involve similar

log-periodic behavior in ω when k = 0, modified by the ω2 logω2 that loop-corrects the

6If the infrared theory has a renormalized dynamical critical exponent zIR 6= z, then the appropriate

scaling in the infrared is x→ x/p while τ → pzIRτ .
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dynamical scaling exponent. Specifically, as explained in section 6.3, ω−2Γ(2)(ω, 0) includes

all integer powers of |ω|
6πi
log p : precisely the powers which are invariant under ω → p−1/3ω.

More surprising than the presence of oscillatory terms permitted by the discrete scale

invariance that characterizes critical mixed field theories is the smallness of their coeffi-

cients. In both the classical and two-loop examples discussed in the previous paragraph,

we found by explicit calculation that oscillatory terms are suppressed by a factor e
− 3π2

log p .

This factor is extremely small for modest values of p. For general values of z, the analo-

gous factor is e
− π2

z log p . We would like to reach an understanding of how such a factor could

emerge from an instanton construction, hints of which might already be found in our use

of Poisson summation in (3.12).

Many generalizations of our constructions could be considered, as enumerated already

in section 1. Passing to the O(N) model is straightforward, and at least at the level

of fixed orders in perturbation theory, all our arguments go through unaltered, with ap-

propriate functions of N multiplying the contributions of the various loop diagrams. A

large N Hubbard-Stratonovich treatment of the critical O(N) model appears much more

challenging, because the requisite Fourier transforms, which lead to simple powers in the

purely Archimedean and purely ultrametric cases [6], instead lead in mixed field theory to

complicated scaling forms similar to the ones considered in sections 3 and 6.3.

Passing to a finite extension of Qp should be straightforward. For unramified exten-

sions, the main changes would be the replacement p → pn and some related alterations

in power counting. For ramified extensions, the norm of the uniformizer would affect how

coarse the scaling symmetry is in the Archimedean direction: for example, if
√
p is adjoined

to Qp and the action still contains ω2 + |k|2zp , then ω → p−z/2ω as k → √pk.

Our original phenomenological motivation suggests generalizing Archimedean

Euclidean time τ ∈ R to a four-vector in R3,1. A new feature would then be divergences

already in the Archimedean parts of loop integrals. A more careful treatment of how mo-

mentum cutoffs can be applied in Archimedean and/or ultrametric directions would be

called for, hopefully with the result that there is not much sensitivity to details of the

cutoff in the scaling properties of the infrared effective theories. Compact ultrametric di-

mensions are obviously another interesting avenue to explore further, with many mysteries

at the outset. Massless fields with spin might be treated in terms of appropriate multi-

plicative characters, as in [20], but gauge fields seem particularly difficult given the totally

disconnected topology of Qp.
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