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1 Introduction and summary

It is a widely accepted conjecture that classical solutions of open superstring field theory1

(OSFT) formulated on a given consistent open superstring background (boundary SCFT),

should correspond to new consistent open superstring backgrounds. Depending on the

background, there are a variety of types of classical solutions to consider. This paper of-

fers a detailed look at a special class of classical solutions, called marginal deformations

which exist for continuous ranges of parameters and generally appear whenever the GSO-

projected boundary spectrum of the background at hand contains operators with conformal

dimension 1/2 in the matter sector. Restrictions, imposed on the marginal couplings by

the requirement that the deformation corresponds to a consistent solution of the classical

equations of motion of the OSFT, will prove to offer a direct probe into the structure of the

moduli space of the given open superstring background. Deriving manageable expressions

for such constraints on marginal couplings, while keeping the setup as general as possi-

ble, is the main goal of this paper. As a concrete example of such a background, let us

consider the system of superimposed stacks of D(−1) and D3 branes in type IIB super-

string. Here one can identify matter marginal operators associated both with the modes

of open strings localized on the D(−1) and the D3 brane stacks, as well as the modes

of open strings stretched between the two stacks. We will see that imposing consistency

of a classical solution of the OSFT equations of motion, which excites the vevs of these

operators, yields the ADHM constraints on the moduli of N = 4 SYM instantons [17].

The consistent open superstring backgrounds provided by exactly marginal deformations

in this system should therefore be generally identified with finite-size instantons living on

the D3 worldvolume [18, 19]. The discussion in this paper will, however, demonstrate that

our results are applicable to a much wider variety of backgrounds.

While it is well-known that there is an algorithmic way of writing down the classical

equations of motion order by order in the deformation parameter, non-trivial conditions

for the existence of a solution arise at each order. Namely, we have to require that the

obstruction to inverting the BRST operator at each order in the deformation parameter

vanishes. These obstructions can be identified as obstructions to exact marginality of the

deformation at each order. We will first present conditions which the deformation needs to

satisfy at first order in order for the obstruction appearing at second order to be absent.

We will argue that these conditions are automatically satisfied whenever the background

which we start with has at least N = (2, 0) supersymmetry in two non-compact target

dimensions. On the other hand, a non-trivial constraint will be obtained by requiring

that the obstruction at the third order vanishes (as first observed by [20]). While this

obstruction can be in general evaluated using the techniques of [21], we will see that

substantial simplifications will arise in situations where all marginal operators V1/2 in the

NS sector decompose as V+
1/2 + V−1/2 into states with charge ±1 under the U(1) R-current

1Over the past three decades, several constructions of open superstring field theory in both NS and R

sector appeared in the literature (see [1–6], as well as [7–13] for some recent developments). In this paper

we will focus on the NS sector of the A∞ open superstring field theory [6] and the Berkovits (WZW-like)

open superstring field theory [5]. These were recently shown to be related by a field redefinition [14–16].

– 1 –
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of a global N = 2 worldsheet superconformal algebra [22, 23]. Again, this will be argued

to always be the case whenever our background has at least N = (2, 0) supersymmetry

in two non-compact target dimensions. We will show that in such cases, the third-order

obstruction localizes on the boundary of the worldsheet moduli space and that it vanishes

if and only if the auxiliary fields (as introduced in [23, 24])

H±1 = lim
z→0

[
V±1

2

(z)V±1
2

(−z)

]
, (1.1a)

H0 = lim
z→0

[
2z

(
V−1

2

(z)V+
1
2

(−z)− V+
1
2

(z)V−1
2

(−z)

)]
, (1.1b)

are set to zero. Noting that (1.1) give rise to algebraic (quadratic) constraints on the

marginal couplings, we observe that this procedure provides a general, yet very simple

prescription for extracting the geometry of the moduli space for any background where the

worldsheet SCFT description is known and where our assumptions are valid. Borrowing

the terminology of [24], we shall call the constraints H±1 = H0 = 0 the generalized ADHM

equations. Also note that these conditions were identified by [23, 24] as the flatness condi-

tions for the quartic effective potential as derived in the context of both Berkovits and A∞
OSFT. We can therefore conclude that (at least in the cases with the above-described en-

hanced N = 2 worldsheet superconformal symmetry) the notion of exactness of a marginal

deformation up to third order coincides with the notion of flatness of the quartic potential

of classical effective action.

We will first derive (1.1) starting with the classical equations of motion of the A∞ open

superstring field theory. We will also show that the localization property of the third-order

obstruction persists if we deform the theory by adding stubs: we will see that the additional

terms arising due to non-associativity of the star product with stubs exactly compensate the

addition of fundamental bosonic 4-string vertex, thus avoiding the need to integrate over the

corresponding bosonic moduli. This provides a strong indication that obstructions arising

at third order for marginal deformations of closed string backgrounds with an enhanced

worldsheet superconformal symmetry will be amenable to a similar localization procedure

(in the context an NS heterotic string field theory or an NSNS type II closed superstring

theory; see also the Conclusions section of [24] for a discussion). We also show that the

third-order obstruction derived in the Berkovits open superstring field theory is identical

to the one derived in the A∞ theory provided that one assumes that the obstruction at

second order vanishes.

We will then go on to demonstrate the utility of the generalized ADHM equations

H±1 = H0 = 0 for deriving constraints on moduli in several cases of relevant backgrounds.

Starting with the superposition of a stack of D(−1) branes with a stack of (euclidean)

D3 branes, we show that the usual ADHM equations [17, 25] (see [26] for a review) are

reproduced upon substituting the boundary marginal vertex operators appearing in the

system into (1.1). In particular, we will see that the vanishing of H±1 implies vanishing of

the complex hyper-Kähler moment map µC [27] (that is, the D-term of the corresponding

4d N = 2 low-energy effective action of the brane configuration) while the vanishing of

H0 implies vanishing of the real hyper-Kähler moment map µR (the F-term). This shows

– 2 –
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that at least up to the third order in the marginal deformation parameter, it is possible

to construct solutions to the classical equations of motion of open superstring field theory

which correspond to non-trivial objects such as finite-size instantons. Put in different words,

we show (up to third order in the deformation parameter) that finite-size instantons give rise

to consistent open superstring backgrounds. Using the example of the D(−1)/D3 system,

we also check that evaluating the third-order obstruction directly (by introducing Schwinger

parametrization for the propagator in the spirit of [21]) yields the same constraints on the

marginal couplings as setting the localized auxiliary fields (1.1) to zero. We will then

consider examples of more complicated backgrounds. Starting with the D(−1)/D3 system

sitting at an unresolved C2/Zn singularity, we recover the complex and real hyper-Kähler

moment maps which first appeared in [28] and were further discussed in the string theory

context by [29]. Finally, by considering general systems of D(−1), D3 and D7 branes

containing stretched string sectors with four Neumann-Dirichlet directions, we manage to

reproduce some of the results of [30, 31] for the equations governing the moduli spaces of

crossed and folded instantons at zero B-field. Note that our discussion will involve moduli

for all marginal boundary fields which are present in the theory for the given background

(including e.g. strings stretched between two D3 brane stacks spanning different complex

2-planes).

The paper is organized as follows. In section 2 we begin with a general discussion

of marginal deformations in the A∞ formulation of open superstring field theory: we will

first focus on deriving conditions which need to be satisfied in order for the second-order

obstruction to vanish (subsection 2.1), then discuss the structure of the obstruction arising

at the third order (subsection 2.2) and finally briefly describe the changes which need to be

put in place when we render the bosonic 2-product non-associative by adding stubs to the

Witten star product (subsection 2.3). We will briefly repeat this discussion in section 3 in

the context of the Berkovits (WZW-like) formulation of open superstring theory, showing

that give the deformation is chosen to make the second-order obstruction vanishing, then

the third-order obstructions arising in the two theories are equivalent. In section 4 we

will exhibit three methods for obtaining explicit expressions for the third-order obstruction

written directly in terms of the marginal NS boundary fields V1/2. The first two methods

(subsections 4.1 and 4.2) will assume presence of a global N = 2 superconformal symmetry

of the worldsheet theory and will yield a simple algebraic expression for the third-order

obstruction. The third method (subsection 4.3), while being available for more general

backgrounds, will only yield expressions containing integral over a Schwinger parameter.

In section 5 we consider three examples of open superstring backgrounds (D(−1)/D3 sys-

tem in flat space in subsection 5.1, D(−1)/D3 system at C2/Zn orbifold singularity in

subsection 5.2 and spiked instantons at zero B-field in subsection 5.3) where we apply our

results to compute algebraic constraints on moduli. Finally, in section 6 we point out the

main contributions of this paper, put them into the context of recent developments and

offer a brief discussion of possible future directions. We provide three appendices where we

collect our conventions for spinors in 4d (appendix A), our conventions for the A∞ formu-

lation of open superstring field theory (appendix B) and also some OPE and correlation

functions to be used in the paper (appendix C).

– 3 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
8

2 Analysis of the third-order obstruction in A∞ OSFT

In this section we will analyse in detail the structure of the obstruction to marginal defor-

mations in the A∞ OSFT [6] (both with and without stubs) which arises at third order in

the deformation parameter. We collect our conventions for A∞ OSFT in appendix B. As

the discussion which is to follow is somewhat technical, let us now briefly summarize the

main points. Considering a marignal deformation Ψ(λ) whose leading order Ψ1 is given by a

h=1/2 zero-momentum NS Grassmann-odd state V1/2 as Ψ1 =cV1/2e
−φ, we will first show

that the deformation is unobstructed at second order if and only if the projector condition

P0M2(Ψ1,Ψ1) = 0 (2.1)

holds. Here P0 projects on the kernel of the zero-mode of the total worldsheet stress-

energy tensor (see subsection 2.1 for details) and M2 is the 2-product of the A∞ OSFT.

The projector condition (2.1) holds both in the case with and without stubs. In the case

without stubs, we will denote by m2 the bare 2-string product, which can be defined in

terms of the usual Witten’s star product as m2(A,B) = (−1)d(A)A ∗ B (where d(A) de-

notes the degree of A). Adding stubs of length w, the bare 2-string product gets deformed

to M0
2 (A,B) = (−1)d(A)e−wL0 [(e−wL0A) ∗ (e−wL0B)]. Evaluating the obstruction at third

order against arbitrary test state e, we will then obtain expressions

O = −ωS
[
X2e,m2

[
b0
L0
P 0m2(Ψ1,Ψ1),Ψ1

]]
+

− ωS
[
X2e,m2

[
Ψ1,

b0
L0
P 0m2(Ψ1,Ψ1)

]]
+O3 (2.2a)

=
1

2
ωS

[
b2(Ψ1, Xe),

b0
L0
P 0b2(Ψ1, XΨ1)

]
+

1

6
ωL[b2(Xe, ξΨ1), b2(ξΨ1,Ψ1)] , (2.2b)

in the case without stubs (see subsection 2.2), and analogous expressions

O = −ωS
[
X2e,M

(0)
2

[
b0
L0
P 0M

(0)
2 (Ψ1,Ψ1),Ψ1

]]
+

− ωS
[
X2e,M

(0)
2

[
Ψ1,

b0
L0
P 0M

(0)
2 (Ψ1,Ψ1)

]]
+

+ ωS

[
X2e,M

(0)
3 (Ψ1,Ψ1,Ψ1)

]
+O3 (2.3a)

=
1

2
ωS

[
B

(0)
2 (Ψ1, Xe),

b0
L0
P 0B

(0)
2 (Ψ1, XΨ1)

]
+

+
1

6

{
ωL

[
B

(0)
2 (Xe, ξΨ1), B

(0)
2 (ξΨ1,Ψ1)

]
+ ωS

[
Xe,B

(0)
3 (XΨ1,Ψ1,Ψ1)

]}
, (2.3b)

in the case with stubs (see subsection 2.3). Here O3 cancels the anomalous terms arising in

the evaluation of star products due to the non-primary nature of the state X2e (where X is

the PCO) and b2 denotes the degree-graded commutator based on m2 (analogously for the

products B
(0)
2 and M

(0)
2 deformed by adding stubs). Finally, M

(0)
3 is the bosonic 3-product

arising in the presence of stubs and B
(0)
3 is its degree-graded symmetrization. We will refer

– 4 –
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to (2.2a) and (2.3a) as the X2-form of the obstruction (due to the appearance of X2e) and

to (2.2b) and (2.3b) as the Berkovits-like form (due to its similarity to the quartic vertex

of classical effective action derived in Berkovits OSFT — see [23, 24]). Evaluating these

expressions for O (that is, deriving explicit expressions for O in terms of V1/2 and the test

state, with the ghost structure stripped away) using various methods will be the subject

of section 4.

2.1 Marginal deformations in the A∞ OSFT

The purpose of this subsection will be to set the scene for the detailed analysis of the

obstruction to exact marginality which arises at third order in the deformation parameter.

In subsection 2.1.1 we will discuss the range of validity of the projector condition (2.1).

In particular, we will use the results of [32, 33] to argue that it holds for all h = 1/2 NS

states whenever the initial open superstring background conserves at least two spacetime

supercharges with the same chirality in two non-compact dimensions. We will then show in

subsection 2.1.2 that the projector condition (2.1) guarantees vanishing of the obstruction

at second order and we will derive an expression for the third-order obstruction, which will

be used as a starting point for the manipulations in subsection 2.2.

2.1.1 Projector condition

Let us denote by P0 the projector on kerL0. Defining P 0 ≡ 1 − P0 we have P0P0 = P0,

P 0P 0 = P 0, P0P 0 = P 0P0 = 0 together with

Q
b0
L0
P 0 +

b0
L0
P 0Q = P 0 . (2.4)

Let us now consider any two NS states2 V = cV1/2e
−φ, W = cW1/2e

−φ, where V 1
2
, W 1

2

are h = 1/2 Grassmann-odd matter primaries. Note that this always needs to be the case

if V is to be identified with the leading order term Ψ1 in the open superstring field theory

marginal deformation, because the string field Ψ needs to be Grassmann-odd. This is

automatic in the case of the GSO(+) projection (which we will focus on in the following),

while in the case of the GSO(−) projection this would necessitate inclusion of internal

Chan-Paton factors. Let us also define V1 = G− 1
2
V 1

2
, W1 = G− 1

2
W 1

2
and denote by

{V 1
2
W 1

2
}n coefficient of (2z)−n in the OPE of V 1

2
(+z) and W 1

2
(−z) (that is, {V 1

2
W 1

2
}1 is

proportional to the identity). Here Gr are the Laurent modes of the N = 1 worldsheet

matter supercurrent G(z). Let us now consider the following two assumptions:

1. {V 1
2
W 1

2
}0 has pole of order at most 1 in the OPE with G(z), that is

G+ 1
2
{V 1

2
W 1

2
}0 = 0 , (2.5)

2. the OPE of V1 with W 1
2
, and, V 1

2
with W1 do not have poles of integral order, that is

{V1W 1
2
}1 = {V 1

2
W1}1 = 0 . (2.6)

2We will assume that the matter part of the NS sector only contains states with non-negative conformal

weight and that matter vacuum is the unique state with h = 0. This is true for superstring compactifications

at zero momentum. The matter part will be allowed to carry Chan-Paton factors.

– 5 –
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First, we note that using the formula (6.206) of [34] (the generalized Wick theorem)

we have G+1/2{V1/2W1/2}0 = {V1W1/2}1, so that it follows that Assumption 2 implies

Assumption 1. Also, if Assumption 1 holds for any two h = 1/2 NS states, then Assump-

tion 2 is implied.3 Given the two assumptions, we will now show that we have properties

P0m2(XV,W ) + P0m2(V,XW ) = 0 , (2.8a)

P0Xm2(V,W ) = 0 , (2.8b)

which together imply the projector condition

P0M2(V,W ) =
1

3
[P0Xm2(V,W ) + P0m2(XV,W ) + P0m2(V,XW )] = 0 . (2.9)

To see this, note that using formula (3.9) of [35], we obtain

P0m2(XV,W ) = +ηc{V 1
2
W 1

2
}1 − c∂c{V1W 1

2
}1e−φ , (2.10a)

P0m2(V,XW ) = −ηc{V 1
2
W 1

2
}1 − c∂c{V 1

2
W1}1e−φ , (2.10b)

where used that XV = cV1 − eφηV1/2 (and similarly for XW ). This establishes (2.8a)

provided that Assumption 2 holds. We also have

P0Xm2(V,W ) = P0Qξm2(V,W ) = Qξc∂c{V 1
2
W 1

2
}0e−2φ , (2.11)

where the only contribution comes from the supercurrent term, that is

P0Xm2(V,W ) =

∮
dz

2πi
ηeφG(z)ξc∂c{V 1

2
W 1

2
}0e−2φ = −c∂cG+ 1

2
{V 1

2
W 1

2
}0e−φ , (2.12)

which, however, vanishes, as long as Assumption 1 holds (i.e. that the OPE of G with

{V 1
2
W 1

2
}0 does not contain higher-than-simple poles). This establishes (2.8b) and there-

fore (2.9). Alternatively, it is possible to prove (2.8) by showing that the expressions on

the l.h.s. evaluate to zero against an arbitrary test state e: since we are working at zero

momentum, we can conclude that the states P0m2(XV,W ), P0m2(V,XW ), P0Xm2(V,W )

(which all have ghost number +2, picture number −1 and conformal weight 0) can each

be expanded as B̃cη + c∂cṼ1/2e
−φ, where B̃ is some number and Ṽ1/2 is some h = 1/2

zero-momentum matter operator (as manifested by the above-derived expressions). That

is, the expressions on the l.h.s. of (2.8) vanish if and only if they vanish when evaluated

in the BPZ product against the dual basis of test states eg = cṼ1/2e
−φ (gluon-like vertex)

3If Assumption 2 was to fail, there would need to be a h = 1/2 NS state Y1/2 ≡ {V1W1/2}1 6= 0. That

is 〈(G−1/2V1/2)(z1)W1/2(z2)(Y1/2)†(z3)〉 6= 0, where (Y1/2)† is the conjugate of Y1/2. But this correlator is

non-zero if only if the two-point function 〈(G−1/2V1/2)(z1){W1/2(Y1/2)†}0(z2)〉 is non-zero. However, this

vanishes if Assumption 1 holds for any two h = 1/2 states in the NS sector because then we have〈
G− 1

2
V 1

2

∣∣{W 1
2
(Y 1

2
)†}0

〉
=

〈
V 1

2

∣∣G+ 1
2
{W 1

2
(Y 1

2
)†}0

〉
= 0 . (2.7)

It therefore follows that if we adopt Assumption 1 for any two states in the theory, then Assumption 2

follows, as claimed.

– 6 –
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or eNL = c∂c∂ξe−2φ (Nakanishi-Lautrup vertex) at ghost number +1, picture number −1

and h = 0. We would therefore need to show that

ωS
[
e, P0m2(XV,W ) + P0m2(V,XW )

]
= 0 , (2.13a)

ωS
[
e, P0Xm2(V,W )

]
= 0 , (2.13b)

for both e = eg and e = eNS. Furthermore, noting that P0M2(V,W ) is actually proportional

to c∂cṼ1/2e
−φ only (see (2.10) and (2.12)), we can conclude that

P0M2(V,W ) = 0 ⇐⇒ ωS(eg, P0M2(V,W )) = 0 (2.14)

for any two states V = cV1/2e
−φ, W = cW1/2e

−φ which are present in the theory.

Finally, let us briefly discuss additional constraints imposed on the boundary (i.e.

chiral) worldsheet theory in the cases when our background conserves some number of

spacetime supercharges. For compactifications4 down to four spacetime dimensions, it was

argued long ago [32] that requiring N = 1 spacetime supersymmetry necessitates that

the local RNS N = 1 worldsheet superconformal symmetry enhances to a global N = 2

superconformal symmetry. For compactifications to dimensions higher than four, it auto-

matically follows that spacetime supersymmetry implies extended worldsheet superconfor-

mal symmetry, as one can always dimensionally reduce back to four dimensions. Results

for compactifications to dimensions lower than four, which appeared only recently [33]

(for the heterotic worldsheet), seem to suggest that the boundary worldsheet theory has

a global N = 2 superconformal symmetry as long as the background conserves at least

two spacetime supercharges with the same chirality in two non-compact dimensions (i.e.

N = (2, 0) supersymmetry in 2d — we are going to discuss a concrete example of this

minimal setting in subsection 5.3). Furthermore, recalling the unitarity bound h > |q|/2
for two-dimensional N = 2 superconformal theories (where q denotes the charge under the

U(1) R-current J) and noting that the GSO projection is by the construction of [32, 33]

implemented by projecting onto states with q ∈ 2Z + 1, we conclude that the matter pri-

maries V1/2 with h = 1/2 can be all chosen to carry charges either q = +1 or q = −1

under J . Matter primaries V±1/2 with (h, q) = (1/2,±1) belong to the (anti-)chiral ring of

the theory and they satisfy

G±(z)V∓1
2

(0) =
1

z
V∓1 (0) + reg. , (2.15a)

G±(z)V±1
2

(0) = reg. , (2.15b)

where V±1 are (h, q) = (1, 0) matter fields. We also have

G±(z)V±1 (0) =
1

z2
V±1

2

(0) +
1

z
∂V±1

2

(0) + reg. , (2.16a)

G±(z)V∓1 (0) = reg. (2.16b)

4Here, the notion of “compactification” is taken to include also the brane configuration. That is, we

consider spacetime supersymmetries of the theory living on the component of the worldvolume common to

all branes constituting our configuration.
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Using these properties, we will now show that Assumptions 1 and 2 hold for any two

h = 1/2 fields in the matter sector. We first note that for any states V±1/2 and W±1/2 in the

(anti-)chiral ring, we have (using the generalized Wick theorem)

G+
+ 1

2

{V+
1
2

W±1
2

}0 = 0 , (2.17a)

G−
+ 1

2

{V−1
2

W±1
2

}0 = 0 . (2.17b)

Using similar ideas to those which we have employed above when discussing the relation

between Assumptions 1 and 2, we can show that it follows from (2.17) that5

{V∓1 W
±
1
2

}1 = 0 (2.18)

But then, (2.18) and the generalized Wick theorem give that

G+
+ 1

2

{V−1
2

W+
1
2

}0 = 0 , (2.19a)

G−
+ 1

2

{V+
1
2

W−1
2

}0 = 0 . (2.19b)

Finally, (2.19) then implies

{V±1 W
±
1
2

}1 = 0, (2.20)

which in turn gives that

G+
+ 1

2

{V−1
2

W−1
2

}0 = 0 , (2.21a)

G−
+ 1

2

{V+
1
2

W+
1
2

}0 = 0 . (2.21b)

We have therefore shown that Assumptions 1 and 2 (and therefore the projector condi-

tions (2.8) and (2.9)) hold for all states in a theory with N = 2 global worldsheet super-

conformal symmetry where all h = 1/2 states can be chosen to carry R-charge q = ±1. As

per the discussion above, this should always be the case when the background preserves at

least N = (2, 0) supersymmetry in two non-compact dimensions.

2.1.2 Marginal deformations in A∞ OSFT at second and third order

Writing down the A∞ OSFT action up to quartic order, we obtain

SA∞ [Ψ] =
1

2
ωS(Ψ, QΨ) +

1

3
ωS(Ψ,M2(Ψ,Ψ)) +

1

4
ωS(Ψ,M3(Ψ,Ψ,Ψ)) + . . . , (2.22)

so that varying this action with respect to Ψ, we get the equations of motion

QΨ +M2(Ψ,Ψ) +M3(Ψ,Ψ,Ψ) + . . . = 0 . (2.23)

5For instance, if Y+
1/2 ≡ {V

−
1 W

+
1/2}1 6= 0, then 〈(G+

−1/2V
−
1/2)(z1)W+

1/2(z2)(Y+
1/2)†(z3)〉 6= 0 which would

mean that G+
+1/2{W

+
1/2(Y1/2)†}0 6= 0, contradicting (2.17).
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Note that Ψ carries picture number −1 and ghost number +1. We want to construct a

continuous family of classical solutions Ψ(λ), such that Ψ(0) = 0 and such that the lead-

ing term in λ is given by a Q-closed state Ψ1 = cV 1
2
e−φ where V 1

2
is a zero-momentum

Grassmann-odd h = 1/2 matter primary. Writing the classical solution Ψ(λ) as a pertur-

bative expansion

Ψ(λ) =

∞∑
k=1

λkΨk = λΨ1 + λ2Ψ2 + λ3Ψ3 + . . . , (2.24)

and substituting (2.24) into (2.23), we obtain, order by order in λ,

0 = QΨ1 , (2.25a)

0 = QΨ2 +M2(Ψ1,Ψ1) , (2.25b)

0 = QΨ3 +M2(Ψ1,Ψ2) +M2(Ψ2,Ψ1) +M3(Ψ1,Ψ1,Ψ1) . (2.25c)

...

At second order, we have to satisfy the equation (2.25b). This is clearly integrable because

QM2(Ψ1,Ψ1) = −M2(QΨ1,Ψ1)−M2(Ψ1, QΨ1) = 0 . (2.26)

A putative solution in Siegel gauge reads

Ψ2 = − b0
L0
P 0M2(Ψ1,Ψ1) + ψ2 , (2.27)

where ψ2 is a ghost number +1, picture number −1 string field with η0ψ2 = 0. However,

in order for (2.27) to actually solve (2.25b), we need

QΨ2 =

(
b0
L0
Q− P 0

)
P 0M2(Ψ1,Ψ1) +Qψ2 = −P 0M2(Ψ1,Ψ1) +Qψ2 (2.28)

to be equal to −M2(Ψ1,Ψ1). That is, we need the second order obstruction

O2 = P0M2(Ψ1,Ψ1) +Qψ2 , (2.29)

to vanish. Put in different words, in order for the solution (2.27) to be consistent, we need

P0M2(Ψ1,Ψ1) to vanish up to Q-exact terms. But since P0M2(Ψ1,Ψ1) is a zero-momentum

state in kerL0 at ghost number +2 and picture number −1, it has to be equal to a linear

combination of c∂cṼ1/2e
−φ and ηc = Q(1

2c∂c∂ξe
−2φ), where Ṽ1/2 is an arbitrary NS state

with h = 1/2. Consistency therefore requires that P0M2(Ψ1,Ψ1) does not contain the state

c∂cṼ1/2e
−φ, so that it is necessary and sufficient to check that6

ωS(eg, P0M2(Ψ1,Ψ1)) = 0 , (2.30)

6Note that we can actually always set ψ2 = cV̂ 1
2
e−φ where V̂1/2 is some h = 1/2 state in the NS sector

(so that Qψ2 = 0) because as per our discussion in subsection 2.1.1, the state P0M2(Ψ1,Ψ1) can never

contain ηc.
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where eg is a zero-momentum test state in kerL0 at ghost number +1 and picture number

−1 of the form eg = cṼ1/2e
−φ. Thus, recalling (2.14), we can conclude that the necessary

and sufficient condition for the vanishing of O2 is actually P0M2(Ψ1,Ψ1) = 0 (which is a

special case of the projector condition (2.9) with V = W = Ψ1).

Assuming from now on that P0M2(Ψ1,Ψ1) = 0 and proceeding to the third order, we

need to solve the equation (2.25c) for Ψ3. We have integrability condition

QM2(Ψ1,Ψ2) +QM2(Ψ2,Ψ1) +QM3(Ψ1,Ψ1,Ψ1) = 0 , (2.31)

which is satisfied provided that Ψ2 solves the equation of motion at second order. Indeed,

we have

QM2(Ψ1,Ψ2) +QM2(Ψ2,Ψ1) +QM3(Ψ1,Ψ1,Ψ1) (2.32a)

= −M2(QΨ1,Ψ2)−M2(Ψ1, QΨ2)−M2(QΨ2,Ψ1)−M2(Ψ2, QΨ1)+

+QM3(Ψ1,Ψ1,Ψ1) (2.32b)

= M2(Ψ1,M2(Ψ1,Ψ1)) +M2(M2(Ψ1,Ψ1),Ψ1) +QM3(Ψ1,Ψ1,Ψ1) (2.32c)

= 0 , (2.32d)

where in the second equality we have assumed that Ψ1 is a consistent solution of (2.25b)

and the third equality follows by one of the A∞ relations

[Q,M3] +
1

2
[M2,M2] = 0 . (2.33)

A putative solution of (2.25c) can be written as

Ψ3 = − b0
L0
P 0[M2(Ψ2,Ψ1) +M2(Ψ1,Ψ2) +M3(Ψ1,Ψ1,Ψ1)] + ψ3 , (2.34)

where ψ3 is a ghost number +1, picture number −1 string field with η0ψ3 = 0. Again, this

only solves the equation (2.25c) provided that

QΨ3 =

(
b0
L0
Q− P 0

)
P 0[M2(Ψ2,Ψ1) +M2(Ψ1,Ψ2) +M3(Ψ1,Ψ1,Ψ1)] +Qψ3 (2.35)

is equal to −M2(Ψ2,Ψ1)−M2(Ψ1,Ψ2)−M3(Ψ1,Ψ1,Ψ1), that is, provided that the third-

order obstruction

O3 = P0

{
M2

[
b0
L0
P 0M2(Ψ1,Ψ1),Ψ1

]
+

+M2

[
Ψ1,

b0
L0
P 0M2(Ψ1,Ψ1)

]
−M3(Ψ1,Ψ1,Ψ1)

}
−Qψ3 (2.36)

vanishes.7 Again, we therefore need to ensure that the projector part Oproj
3 = P0{. . .} of

O3 vanishes up to Q-exact terms. Since Oproj
3 ∈ kerL0 at ghost number +2 and picture

7Note that in general ψ2 also enters O3 and, in some cases, it may be possible that it can be fine-

tuned so as to make O3 vanish. However, in most cases of interest, the projector condition (2.9) will give

P0M2(ψ2,Ψ1) = P0M2(Ψ1, ψ2) = 0 so that ψ2 does not contribute to O3.
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number −1, the only states which it can be proportional to (and which are not Q-exact)

are of the form c∂cṼ1/2e
−φ. The necessary and sufficient condition for the obstruction to

vanish is therefore

O ≡ −ωS(eg, O
proj
3 ) = ωL(eg, ξO

proj
3 ) = 0 . (2.37)

From now on, let us drop the lower index on eg, as for the rest of the paper we will

work only with the test state e ≡ cṼ1/2e
−φ. Also note that upon identifying e = Ψ1, the

expression ωL(e, ξOproj
3 ) becomes proportional to the quartic part of the classical effective

action of [23, 24]. More precisely, we obtain

O = −4S
(4)
eff . (2.38)

The necessity of existence of such a relation was already proven in [24] where it is also noted

that this relation implies that all marginal deformations which are unobstructed at third

order automatically give rise to flat directions of the quartic effective action. In fact, we

shall see in section 4 that under certain assumptions, the converse appears to be true as well.

2.2 Simplifying the third-order obstruction

We will now expose algebraic manipulations whose aim will be to simplify O into a com-

putable form. Although we have checked that it is in principle possible to proceed by

generalizing the calculations of [24] and keep all intermediate expressions manifestly in

the small Hilbert space, we found it much more economic to perform the computations

in the large Hilbert space. Bearing in mind that our main goal is to provide a practical

expression for the obstruction, we will therefore adopt a pragmatic approach and expose

here a relatively short path the main results which leads through the large Hilbert space.

In subsection 2.2.1, we will derive the X2-form (2.2a) for O, while in subsection 2.2.2, we

will derive the Berkovits-like form (2.2b).

2.2.1 X2 form

Proceeding along the lines of [20], we will first show that O can be rewritten as

O = −ωS
[
X2e,m2

[
b0
L0
P 0m2(Ψ1,Ψ1),Ψ1

]]
+

− ωS
[
X2e,m2

[
Ψ1,

b0
L0
P 0m2(Ψ1,Ψ1)

]]
+O3 , (2.39)

where O3 (to be defined below) consists only of terms which are localized on the boundary

of the worldsheet moduli space and which are zero up to contributions which cancel the

anomalous terms which appear due to the non-primary nature of the state X2e.
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Quartic vertex. Focusing on the quartic vertex term O(4) ≡ −ωL[e, ξM3(Ψ1,Ψ1,Ψ1)]

first, we obtain

O(4) = −1

2

{
ωL
[
e, ξM2(M2(Ψ1,Ψ1),Ψ1

]
− ξM2 [M2(Ψ1,Ψ1),Ψ1)] +

+ ωL
[
e, ξM2[Ψ1,M2(Ψ1,Ψ1)

]
− ξM2 [Ψ1,M2(Ψ1,Ψ1)]] +

+ ωL
[
e,XM3(Ψ1,Ψ1,Ψ1)

]}
, (2.40)

where we have used that Qe = 0.

Cubic vertex. The cubic vertex terms

O(3)
1 ≡ ωL

[
e, ξM2

[
b0
L0
P 0M2(Ψ1,Ψ1),Ψ1

]]
, (2.41a)

O(3)
2 ≡ ωL

[
e, ξM2

[
Ψ1,

b0
L0
P 0M2(Ψ1,Ψ1)

]]
, (2.41b)

yield

O(3)
1 =

1

2

{
ωL

[
e,XM2

[
b0
L0
P 0M2(Ψ1,Ψ1),Ψ1

]]
− ωL

[
e, ξM2 (M2(Ψ1,Ψ1),Ψ1)

]
+

+ ωL

[
e,XM2

[
b0
L0
P 0M2(Ψ1,Ψ1),Ψ1

]]
+ ωL

[
e, ξM2

(
M2(Ψ1,Ψ1),Ψ1

)]
+

− ωL
[
e, ξM2

(
P0M2(Ψ1,Ψ1),Ψ1

)]}
, (2.42a)

O(3)
2 =

1

2

{
ωL

[
e,XM2

[
Ψ1,

b0
L0
P 0M2(Ψ1,Ψ1)

]]
− ωL

[
e, ξM2 (Ψ1,M2(Ψ1,Ψ1))

]
+

+ ωL

[
e,XM2

[
Ψ1,

b0
L0
P 0M2(Ψ1,Ψ1)

]]
+ ωL

[
e, ξM2

(
Ψ1,M2(Ψ1,Ψ1)

)]
+

− ωL
[
e, ξM2

(
Ψ1, P0M2(Ψ1,Ψ1)

)]}
. (2.42b)

Here we note that the second and fourth terms in (2.42a) and (2.42b) cancel with the first

four terms in (2.40). Also, note that we have

ωL

[
e,XM2

[
b0
L0
P 0M2(Ψ1,Ψ1),Ψ1

]]
= ωL

[
e,Xξm2

[
b0
L0
P 0M2(Ψ1,Ψ1),Ψ1

]]
, (2.43)

because the difference of the second insertions on the l.h.s. and the r.h.s. would lie in the

small Hilbert space. We then have

ωL

[
e,XM2

[
b0
L0
P 0M2(Ψ1,Ψ1),Ψ1

]]
=

= ωL

[
e,X2ξm2

[
b0
L0
P 0m2(Ψ1,Ψ1),Ψ1

]]
+

+ ωL
[
e,Xξm2

(
M2(Ψ1,Ψ1),Ψ1

)]
− ωL

[
e,Xξm2

(
P0M2(Ψ1,Ψ1),Ψ1

)]
, (2.44)
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together with

ωL

[
e,XM2

[
b0
L0
P 0M2(Ψ1,Ψ1),Ψ1

]]
=

= ωL

[
e,X2ξm2

[
b0
L0
P 0m2(Ψ1,Ψ1),Ψ1

]]
+

− ωL
[
e,XξM2 (m2(Ψ1,Ψ1),Ψ1)

]
+ ωL

[
e,XξM2 (P0m2(Ψ1,Ψ1),Ψ1)

]
. (2.45)

Altogether we obtain

O = O(3)
1 +O(3)

2 +O(4) = O1 +O2 +O3 , (2.46)

where we define

O1 =
1

2

{
− ωL

[
e,XM3(Ψ1,Ψ1,Ψ1)

]
+

+ ωL
[
e,Xξm2[M2(Ψ1,Ψ1),Ψ1]

]
− ωL

[
e,XξM2[m2(Ψ1,Ψ1),Ψ1]

]
+ ωL

[
e,Xξm2[Ψ1,M2(Ψ1,Ψ1)]

]
− ωL

[
e,XξM2[Ψ1,m2(Ψ1,Ψ1)]

]}
, (2.47a)

O2 = ωL

[
e,X2ξm2

[
b0
L0
P 0m2(Ψ1,Ψ1),Ψ1

]]
+

+ ωL

[
e,X2ξm2

[
Ψ1,

b0
L0
P 0m2(Ψ1,Ψ1)

]]
, (2.47b)

O3 =
1

2

{
− ωL

[
e,Xξm2[P0M2(Ψ1,Ψ1),Ψ1]

]
+ ωL

[
e,XξM2[P0m2(Ψ1,Ψ1),Ψ1]

]
+

− ωL
[
e, ξM2[P0M2(Ψ1,Ψ1),Ψ1]

]
− ωL

[
e,Xξm2[Ψ1, P0M2(Ψ1,Ψ1)]

]
+ ωL

[
e,XξM2[Ψ1, P0m2(Ψ1,Ψ1)]

]
+

− ωL
[
e, ξM2[Ψ1, P0M2(Ψ1,Ψ1)]

]}
. (2.47c)

First, O1 clearly vanishes: to see this, we note that m3 = [η,M3], so that

ωL
[
e,XM3(Ψ1,Ψ1,Ψ1)

]
= ωL [e,Xξm3(Ψ1,Ψ1,Ψ1)] (2.48)

and then we use m3 = [m2,M2]. Second, O2 consists of terms containing single prop-

agator. Finally, O3 contains only terms with P0 and it is therefore completely localised

on the boundary of the worldsheet moduli space. Using the cyclic property (B.18) of m2

and (B.20), it can be rewritten as

O3 =
1

6

{
4ωL

[
P0M2(Ψ1,Ψ1),m2(Ψ1, Xξe) +m2(Xξe,Ψ1)

]
+

+ ωL
[
P0M2(Ψ1,Ψ1),m2(XΨ1, ξe) +m2(ξe,XΨ1)

]
+

+ ωL [ξP0m2(Ψ1,Ψ1),m2(Ψ1, Xξe) +m2(Xξe,Ψ1)] +

+ ωL [P0m2(Ψ1,Ψ1),m2(ξΨ1, Xξe)−m2(Xξe, ξΨ1)] +

+ ωL [ξP0Xm2(Ψ1,Ψ1),m2(Ψ1, ξe) +m2(ξe,Ψ1)]

}
. (2.49)
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First, note that the last line in (2.49) can be dropped even without assuming the con-

dition (2.8b) because the matter part of P0Xm2(Ψ1,Ψ1) can only be proportional to

G+ 1
2
{V 1

2
V 1

2
}0, which is a h = 1/2 state, so that it gives zero when inserted in the symplectic

form against

P0ξm2(Ψ1, ξe) + P0ξm2(ξe,Ψ1) (2.50)

which, by (C.4), is proportional to identity in the matter sector. The rest of the expres-

sion (2.49) can be evaluated as well and turns out to give zero up to terms which arise due

to anomalous transformation properties of the non-primary state ξXe (see [20] for details).

Below these will be shown to cancel with anomalous contributions to O2.

2.2.2 Berkovits-like form

We will now show that the X2-form (2.39) can be recast in the Berkovits-like form

O =
1

2
ωS

[
b2(Ψ1, Xe),

b0
L0
P 0b2(Ψ1, XΨ1)

]
+

1

6
ωL[b2(Xe, ξΨ1), b2(ξΨ1,Ψ1)] , (2.51)

where we have defined b2(A,B) ≡ m2(A,B) + (−1)d(A)d(B)m2(B,A). Note that only pri-

mary insertions appear in (2.51). We will show in section 3 that exactly the same expression

is obtained by analyzing the third-order obstruction which arises in the Berkovits open su-

perstring field theory provided that we assume that the deformation is unobstructed at

second order.

O3 terms. Let us start with analyzing O3. To this end, note that it is possible show that

−ωL [P0b2(Ψ1,Ψ1), ξb2(XΨ1, ξe)] = −ωL [P0b2(Ψ1,Ψ1), ξb2(ξΨ1, Xe)] . (2.52)

Indeed, we have

−ωL [P0b2(Ψ1,Ψ1), ξb2(XΨ1, ξe)] = −ωL [P0ξb2(Ψ1,Ψ1), Qb2(ξΨ1, ξe)] +

+ ωL [P0ξb2(Ψ1,Ψ1), b2(ξΨ1, Xe)] (2.53a)

= +ωL [P0Xb2(Ψ1,Ψ1), b2(ξΨ1, ξe)] +

− ωL [P0b2(Ψ1,Ψ1), ξb2(ξΨ1, Xe)] (2.53b)

= −ωL [P0b2(Ψ1,Ψ1), ξb2(ξΨ1, Xe)] , (2.53c)

where in order to write down the last equality, we have used (C.6) to note that

b2(ξΨ1, ξe) = m2(ξΨ1, ξe)−m2(ξe, ξΨ1) (2.54)

is proportional to identity in the matter sector so that it gives zero in the symplectic form

against P0Xb2(Ψ1,Ψ1) which is proportional to a h = 1/2 state in the matter sector.8 We

therefore end up with

O3 = − 1

12

{
5ωL [P0b2(Ψ1,Ψ1), ξb2(Ψ1, Xξe)] + ωL [P0b2(Ψ1,Ψ1), ξb2(ξΨ1, Xe)] +

− ωL [P0b2(Ψ1,Ψ1), b2(ξΨ1, Xξe)]

}
. (2.55)

8P0Xb2(Ψ1,Ψ1) itself vanishes if we assume the projector condition (2.8b).
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Although it is straightforward to explicitly evaluate (2.55), we do not need to do so at this

point, as we will soon show that it is exactly cancelled by a P0 term which we pick up

when we move one of the PCOs in O2.

O2 terms. Next, let us analyze O2. Reabsorbing ξ, we obtain

O2 =
1

2
ωS

[
b2(Ψ1, X

2e),
b0
L0
P 0b2(Ψ1,Ψ1)

]
. (2.56)

In order to avoid the appearance of non-primary fields during the explicit evaluation

of (2.56) (these would arise due to the X2e insertion), let us move one of the two PCOs

sitting on e inside the P 0b2(Ψ1,Ψ1) part of (2.56). We end up with

O2 =
1

2
ωS

[
b2(Ψ1, Xe),

b0
L0
P 0b2(Ψ1, XΨ1)

]
+

1

2
ωL
[
b2(Ψ1, ξXe), P 0b2(Ψ1, ξΨ1)

]
, (2.57)

with the P0 part of the second term in (2.57) satisfying

−1

2
ωL [b2(Ψ1, ξXe), P0b2(Ψ1, ξΨ1)] = +

1

2
ωL [P0b2(Ψ1,Ψ1), ξb2(Ψ1, ξXe)] , (2.58)

where we have used (C.4). Note, however, that this (localised) contribution will precisely

cancel with O3: introducing the string field

Ξ ≡ ξb2(Ψ1, Xξe)− ξb2(ξΨ1, Xe) + b2(ξΨ1, Xξe) , (2.59)

and using (2.55), it can be shown that

ωL
[
P0b2(Ψ1,Ψ1),Ξ

]
= −12

(
O3 +

1

2
ωL [P0b2(Ψ1,Ψ1), ξb2(Ψ1, ξXe)]

)
. (2.60a)

However, it can be also shown that ηΞ = 0, which in turn gives that ωL[P0b2(Ψ1,Ψ1),Ξ] = 0

and therefore

O3 +
1

2
ωL [P0b2(Ψ1,Ψ1), ξb2(Ψ1, ξXe)] = 0 , (2.61)

that is, O3 is completely canceled by the P0 part of the second term in (2.57). Finally, in

order to rid ourselves of the non-primary insertion ξXe in the identity part of the second

term in (2.57), we can use the super-Jacobi identity and the fact that the string field

b2 [Ψ1, b2(ξXe, ξΨ1)]− b2 [ξΨ1, b2(ξXe,Ψ1)] + b2 [ξΨ1, b2(Xe, ξΨ1)] , (2.62)

lies in the small Hilbert space to show that

1

2
ωL [b2(Ψ1, ξXe), b2(Ψ1, ξΨ1)]] = +

1

6
ωL [b2(Xe, ξΨ1), b2(ξΨ1,Ψ1)] . (2.63)

Putting our results together, we therefore recover the Berkovits-like expression (2.51) for

the obstruction. For the sake of the discussion which is to follow in section 4, we introduce

the notation

Oprop =
1

2
ωS

[
b2(Ψ1, Xe),

b0
L0
P 0b2(Ψ1, XΨ1)

]
, (2.64a)

O′ = 1

6
ωL [b2(Xe, ξΨ1), b2(ξΨ1,Ψ1)] , (2.64b)
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so that O = Oprop +O′. We can also check the validity of the intermediate manipulations

we have performed so far by comparing (2.51) with the Berkovits-like form of the quartic

part of the classical effective action of [23, 24]. Indeed, we again recover the relation (2.38).

2.3 A∞ OSFT with stubs

Let us now consider A∞ OSFT with stubs.9 We will show that apart from deforming the

star product m2 into a non-associative product M
(0)
2 , adding stubs introduces additional

term into both the X2-form (subsection 2.3.2) and the Berkovits-like form (subsection 2.3.3)

as a consequence of the appearance of the bosonic 3-product M
(0)
3 . See subsection 2.3.1

for our conventions for A∞ OSFT with stubs.

2.3.1 Preliminaries

Here we largely follow the notation of [36]. Denoting the picture by a superscript in the

round brackets, we define the bosonic products M
(0)
1 = Q,

M
(0)
2 (A,B) = (−1)d(A)e−wL0 [(e−wL0A) ∗ (e−wL0B)] (2.65)

and higher products M
(0)
3 , . . . so as to cover the missing regions of the bosonic moduli space.

The superstring products are then defined similarly to the case without stubs by suitably

distributing PCO charges among the insertions. For instance, the superstring 2-product

then reads

M
(1)
2 (A,B) =

1

3

[
XM

(0)
2 (A,B) +M

(0)
2 (XA,B) +M

(0)
2 (A,XB)

]
. (2.66)

In the spirit of the case without stubs, we introduce the gauge 2-product µ
(1)
2 , so that

when acting on the states in the small Hilbert space, the superstring 2-product can be

computed as

M
(1)
2 = [Q,µ

(1)
2 ] , (2.67a)

µ
(1)
2 (A,B) =

1

3

[
ξM

(0)
2 (A,B)−M (0)

2 (ξA,B)− (−1)d(A)M
(0)
2 (A, ξB)

]
. (2.67b)

We also have the property that M
(0)
2 = [η, µ

(1)
2 ]. The superstring 3-product can be defined

in terms of the following tower of products

M
(2)
3 =

1

2

(
[Q,µ

(2)
3 ] + [M

(1)
2 , µ

(1)
2 ]
)
, (2.68a)

µ
(2)
3 (A,B,C) =

1

4

[
ξM

(1)
3 (A,B,C)−M (1)

3 (ξA,B,C)

−(−1)d(A)M
(1)
3 (A, ξB,C)− (−1)d(A)+d(B)M

(1)
3 (A,B, ξC)

]
, (2.68b)

M
(1)
3 = [Q,µ

(1)
3 ] + [M

(0)
2 , µ

(1)
2 ] , (2.68c)

µ
(1)
3 (A,B,C) =

1

2

[
ξM

(0)
3 (A,B,C)−M (0)

3 (ξA,B,C)

−(−1)d(A)M
(0)
3 (A, ξB,C)− (−1)d(A)+d(B)M

(0)
3 (A,B, ξC)]

]
, (2.68d)

9I thank Ashoke Sen for this suggestion.
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with the properties M
(1)
3 = [η, µ

(2)
3 ] and 2M

(0)
3 = [η, µ

(1)
3 ]. The equation of motion is written

in terms of the multi-superstring products M
(n−1)
n , which satisfy a cyclic A∞ algebra, as

∞∑
n=1

M (n−1)
n (Ψn) = QΨ +M

(1)
2 (Ψ,Ψ) +M

(2)
3 (Ψ,Ψ,Ψ) + . . . = 0 . (2.69)

It is straightforward to check that the relations (2.9), (2.8) and (C.5) continue to be satisfied

under the same assumptions as before if we replace m2 by M
(0)
2 (this is due to the presence

of the projector P0 and the fact that the insertions have L0 = 0). It is also easy to see that

we again have that the second-order obstruction to exact marginality vanishes if and only

if the projector condition P0M
(1)
2 (Ψ1,Ψ1) = 0 holds, which we shall from now on assume.

2.3.2 Third-order obstruction with stubs: X2 form

It is straightforward to check that the computation goes through mostly along the lines

of the case without stubs with only a couple of minor changes wherever we encounter M3

or make use the associativity of m2. The integrability of the equation of motion at third

order in λ follows again straightforwardly by using the fact that [Q,M
(1)
2 ] = 0, the fact

that Ψ2 solves the equation of motion at second order and also the A∞ relation

[Q,M
(2)
3 ] +

1

2
[M

(1)
2 ,M

(1)
2 ] = 0 . (2.70)

In order for a consistent solution to exist, we need the obstruction

Oproj
3 = P0

{
M

(1)
2

[
b0
L0
M

(1)
2 (Ψ1,Ψ1),Ψ1

]
+

+M
(1)
2

[
Ψ1,

b0
L0
M

(1)
2 (Ψ1,Ψ1)

]
−M (2)

3 (Ψ1,Ψ1,Ψ1)

}
, (2.71)

to be vanishing up to Q-exact terms. Going through identical steps as in the case with-

out stubs, we can show that it is necessary and sufficient to require vanishing of O ≡
−ωS(e,Oproj

3 ) = O1 +O2 +O3, where e = cṼ1/2e
−φ and O1, O2, O3 will now be described.

First, we have

O1 =
1

2

{
−ωL

[
e,Xµ

(2)
3 (Ψ1,Ψ1,Ψ1)

]
+

+ωL

[
e,XξM

(0)
2 [µ

(1)
2 (Ψ1,Ψ1),Ψ1]

]
−ωL

[
e,Xξµ

(1)
2 [M

(0)
2 (Ψ1,Ψ1),Ψ1]

]
+ωL

[
e,XξM

(0)
2 [Ψ1,µ

(1)
2 (Ψ1,Ψ1)]

]
−ωL

[
e,Xξµ

(1)
2 [Ψ1,M

(0)
2 (Ψ1,Ψ1)]

]}
, (2.72)

where we note that the string field Xµ
(2)
3 (Ψ1,Ψ1,Ψ1)−XξM (1)

3 (Ψ1,Ψ1,Ψ1) lies in the small

Hilbert space and therefore −ωL[e,Xµ
(2)
3 (Ψ1,Ψ1,Ψ1)] = −ωL[e,XξM

(1)
3 (Ψ1,Ψ1,Ψ1)] so

that we can use the relation M
(1)
3 = [Q,µ

(1)
3 ] + [M

(0)
2 , µ

(1)
2 ] (see [36]) to write

O1 = −1

2
ωL

[
e,XξQµ

(1)
3 (Ψ1,Ψ1,Ψ1)

]
. (2.73)
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Finally, using the relation [η, µ
(1)
3 ] = 2M

(0)
3 , we conclude that

O1 = ωS

[
X2e,M

(0)
3 (Ψ1,Ψ1,Ψ1)

]
. (2.74)

Note that this is different compared to the case without stubs where we had O1 vanishing.

As for the remaining two contributions to O, we again obtain

O2 = ωL

[
e,X2ξM

(0)
2

[
b0
L0
P 0M

(0)
2 (Ψ1,Ψ1),Ψ1

]]
+

+ ωL

[
e,X2ξM

(0)
2

[
Ψ1,

b0
L0
P 0M

(0)
2 (Ψ1,Ψ1)

]]
, (2.75)

together with

O3 =
1

6

{
+ 4ωL

[
P0µ

(1)
2 (Ψ1,Ψ1),M

(0)
2 (Ψ1, Xξe) +M

(0)
2 (Xξe,Ψ1)

]
+

+ ωL

[
P0µ

(1)
2 (Ψ1,Ψ1),M

(0)
2 (XΨ1, ξe) +M

(0)
2 (ξe,XΨ1)

]
+

+ ωL

[
ξP0M

(0)
2 (Ψ1,Ψ1),M

(0)
2 (Ψ1, Xξe) +M

(0)
2 (Xξe,Ψ1)

]
+

+ ωL

[
P0M

(0)
2 (Ψ1,Ψ1),M

(0)
2 (ξΨ1, Xξe)−M (0)

2 (Xξe, ξΨ1)
]}

. (2.76)

Altogether, the X2 form of the obstruction in the case with stubs therefore reads

O = −ωS
[
X2e,M

(0)
2 [

b0
L0
P 0M

(0)
2 (Ψ1,Ψ1),Ψ1]

]
+

− ωS
[
X2e,M

(0)
2 [Ψ1,

b0
L0
P 0M

(0)
2 (Ψ1,Ψ1)]

]
+

+ ωS

[
X2e,M

(0)
3 (Ψ1,Ψ1,Ψ1)

]
+O3 . (2.77)

2.3.3 Third-order obstruction with stubs: Berkovits-like form

We will now show that the obstruction can be rewritten in terms of the product B
(0)
2

(see (2.79) for definition) as

O =
1

2
ωS

[
B

(0)
2 (Ψ1, Xe),

b0
L0
P 0B

(0)
2 (Ψ1, XΨ1)

]
+

+
1

6

{
ωL

[
B

(0)
2 (Xe, ξΨ1), B

(0)
2 (ξΨ1,Ψ1)

]
+ ωS

[
Xe,B

(0)
3 (XΨ1,Ψ1,Ψ1)

]}
, (2.78)

so that all insertions are primary.

Non-associative commutator algebra. Let us define the degree-graded commutator

based on the Witten star product with stubs as

B
(0)
2 (A,B) ≡M (0)

2 (A,B) + (−1)d(A)d(B)M
(0)
2 (B,A) . (2.79)

Denoting

[A,B]st ≡ e−wL0 [(e−wL0A) ∗ (e−wL0B)]− (−1)|A||B|e−wL0 [(e−wL0B) ∗ (e−wL0A)] , (2.80)
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we therefore have B
(0)
2 (A,B) = (−1)d(A)[A,B]st. Clearly we have

B
(0)
2 (A,B) = (−1)d(A)d(B)B

(0)
2 (B,A) (2.81)

and it can be shown that cyclicity of the symplectic form w.r.t. M
(0)
2 implies

ω(B
(0)
2 (A,B), C) = (−1)d(A)+1ω(A,B

(0)
2 (B,C)) . (2.82)

We also have the generalized super-Jacobi identity

(−1)d(A)(d(C)+1)B
(0)
2

[
A,B

(0)
2 (B,C)

]
+ (−1)d(B)(d(A)+1)B

(0)
2

[
B,B

(0)
2 (C,A)

]
+ (−1)d(C)(d(B)+1)B

(0)
2

[
C,B

(0)
2 (A,B)

]
= −(−1)d(A)d(C)[Q,B

(0)
3 ](A,B,C) (2.83)

where we have defined

B
(0)
3 (A,B,C) ≡M (0)

3 (A,B,C) + (−1)d(A)(d(B)+d(C))M
(0)
3 (B,C,A)+

+ (−1)d(C)(d(A)+d(B))M
(0)
3 (C,A,B)+

+ (−1)d(A)d(B)M
(0)
3 (B,A,C) + (−1)d(B)d(C)M

(0)
3 (A,C,B)

+ (−1)d(A)(d(B)+d(C))+d(B)d(C)M
(0)
3 (C,B,A) . (2.84)

In particular, we obtain

B
(0)
2

[
ξΨ1, B

(0)
2 (Ψ1,Ψ1)

]
− 2B

(0)
2

[
Ψ1, B

(0)
2 (Ψ1, ξΨ1)

]
= [Q,B

(0)
3 ](Ψ1, ξΨ1,Ψ1) , (2.85)

where

1

2
[Q,B

(0)
3 ](Ψ1, ξΨ1,Ψ1) = QM

(0)
3 (Ψ1, ξΨ1,Ψ1) +QM

(0)
3 (ξΨ1,Ψ1,Ψ1)+

+QM
(0)
3 (Ψ1,Ψ1, ξΨ1) +

1

2
B

(0)
3 (XΨ1,Ψ1,Ψ1) . (2.86)

O3 terms. It is straightforward to see that we obtain

O3 = − 1

12

{
5ωL

[
P0B

(0)
2 (Ψ1,Ψ1), ξB

(0)
2 (Ψ1, Xξe)

]
+

+ ωL

[
P0B

(0)
2 (Ψ1,Ψ1), ξB

(0)
2 (ξΨ1, Xe)

]
+

− ωL
[
P0B

(0)
2 (Ψ1,Ψ1), B

(0)
2 (ξΨ1, Xξe)

]}
. (2.87)

O2 terms. First, using cyclicity of the simplectic form and the definition of B
(0)
2 , we

obtain

O2 =
1

2
ωS

[
B

(0)
2 (Ψ1, X

2e),
b0
L0
P 0B

(0)
2 (Ψ1,Ψ1)

]
, (2.88)
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which we again rewrite as

O2 =
1

2
ωS

[
B

(0)
2 (Ψ1, Xe),

b0
L0
P 0B

(0)
2 (Ψ1, XΨ1)

]
+

+
1

2
ωL

[
B

(0)
2 (Ψ1, ξXe), P 0B

(0)
2 (Ψ1, ξΨ1)

]
. (2.89)

It is easily checked that the P0 part of the second term in (2.89) again cancels O3. As for

the identity part, defining the string field

Υ ≡ B(0)
2

[
Ψ1, B

(0)
2 (ξXe, ξΨ1)

]
−B(0)

2

[
ξΨ1, B

(0)
2 (ξXe,Ψ1)

]
+

+B
(0)
2

[
ξΨ1, B

(0)
2 (Xe, ξΨ1)

]
, (2.90)

which satisfies ηΥ = 0, so that ωL(Ψ1,Υ) = 0, we can use the generalized super-Jacobi

identity (2.85) and cyclicity of the symplectic form to show that

1

2
ωL

[
B

(0)
2 (Ψ1, ξXe), B

(0)
2 (Ψ1, ξΨ1)]

]
= −ωS

[
X2e,M

(0)
3 (Ψ1,Ψ1,Ψ1)

]
+

+
1

6

{
ωL

[
B

(0)
2 (Xe, ξΨ1), B

(0)
2 (ξΨ1,Ψ1)

]
+ ωS

[
Xe,B

(0)
3 (XΨ1,Ψ1,Ψ1)

]}
. (2.91)

Substituting back into (2.89), we recover the Berkovits-like form (2.78).

3 Equivalence of the A∞ and Berkovits obstructions at third order

Here we show that the third-order obstruction arising from the reduced Berkovits open su-

perstring field theory (i.e. ξ0Φ = 0) is identical to the one derived in the A∞ OSFT without

stubs. After setting up the stage by reviewing the machinery of marginal deformations in

the Berkovits theory in subsection 3.1, we will evaluate the third-order obstruction against

arbitrary test states in 3.2, recovering the Berkovits-like form (2.2b) for the obstruction

which we derived in the context of A∞ OSFT in the previous section.

3.1 Marginal deformations in Berkovits open superstring field theory

Expanding the Berkovits action up to quartic order, we obtain

SBer[Φ] = −1

2
TrL[ηΦQΦ] +

1

6
TrL[ηΦ[Φ, QΦ]]− 1

24
TrL[ηΦ[Φ, [Φ, QΦ]]] + . . . (3.1)

The equation of motion which we obtain by varying this action reads

QηΦ +
1

2
[ηΦ, QΦ] +

1

12
([ηΦ, [QΦ,Φ]] + [Φ, [Φ, QηΦ]] + [QΦ, [Φ, ηΦ]]) + . . . = 0 . (3.2)

We partially fix gauge as ξ0Φ = 0, meaning that we can write Φ = ξ0Ψ where Ψ is in

picture −1 with η0Ψ = 0. Again, we want to find a continuous family Ψ(λ) =
∑∞

k=1 λ
kΨk
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of classical solutions with Ψ1 = cV1/2e
−φ. Order by order in λ, we obtain conditions

0 = QΨ1 , (3.3a)

0 = QΨ2 +
1

2
[Ψ1, XΨ1] , (3.3b)

0 = QΨ3 +
1

2
[Ψ1, QξΨ2] +

1

2
[Ψ2, XΨ1] +

1

12
([Ψ1, [XΨ1, ξΨ1]] + [XΨ1, [ξΨ1,Ψ1]]) . (3.3c)

...

The equation arising at second order in λ is clearly integrable because Q[Ψ1, XΨ1] = 0. A

putative solution for Ψ2 then reads

Ψ2 = −1

2

b0
L0
P 0[Ψ1, XΨ1] + ψ2 . (3.4)

In order for (3.4) to actually solve the equation of motion at O(λ2), we need

QΨ2 =
1

2

(
b0
L0
Q− P 0

)
P 0[Ψ1, XΨ1] +Qψ2 (3.5)

to be equal to −1
2 [Ψ1, XΨ1], that is, we need the second order obstruction

OBer
2 =

1

2
P0[Ψ1, XΨ1] +Qψ2 (3.6)

to vanish. Analogously to the A∞ case, one can show that the necessary and sufficient con-

dition for OBer
2 to vanish is P0[Ψ1, XΨ1] = 0 with Qψ2 = 0 (so that again, we need to take

ψ2 to be of the form cV̂1/2e
−φ). Proceeding to the third order, integrability requires that

1

2
Q[Ψ1, QξΨ2] +

1

2
Q[Ψ2, XΨ1] +

1

12
(Q[Ψ1, [XΨ1, ξΨ1]] +Q[XΨ1, [ξΨ1,Ψ1]]) = 0 . (3.7)

Assuming that Ψ2 solves the second order equation of motion, (3.7) can be straightfor-

wardly shown to hold as a consequence of the super-Jacobi identity

2[XΨ1, [Ψ1, XΨ1]] + [Ψ1, [XΨ1, XΨ1]] = 0 . (3.8)

A putative solution for Ψ3 then reads

Ψ3 = − b0
L0
P 0

{
1

2
[Ψ1, QξΨ2] +

1

2
[Ψ2, XΨ1] +

+
1

12
([Ψ1, [XΨ1, ξΨ1]] + [XΨ1, [ξΨ1,Ψ1]])

}
+ ψ3 (3.9)

and the corresponding obstruction can be readily seen to be equal to10

OBer
3 = P0

{
1

4

[
Ψ1, Qξ

b0
L0
P 0[Ψ1, XΨ1]

]
+

1

4

[
b0
L0
P 0[Ψ1, XΨ1], XΨ1

]
+

− 1

12
([Ψ1, [XΨ1, ξΨ1]] + [XΨ1, [ξΨ1,Ψ1]])

}
−Qψ3 . (3.10)

10Similarly to the A∞ case, we ignore any potential contributions of ψ2 to OBer
3 because in most cases of

interest we will have P0[Ψ1, Xψ2] + P0[ψ2, XΨ1] = 0 by the projector condition (2.8).
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Recalling our discussion of the A∞ case, it is clear that necessary and sufficient condition

for the vanishing of OBer
3 is that

OBer ≡ −TrS [egO
Ber,proj
3 ] = 0 , (3.11)

where OBer,proj
3 = P0{. . .} is the projector part of (3.10) and eg = cṼ1/2e

−φ.

3.2 Simplifying the third-order obstruction

Evaluating OBer,proj
3 against all possible test states of the form e = cṼ1/2e

−φ (again, we

drop the lower index ‘g’ from e), we have

OBer = −1

4
TrS

[
[e,XΨ1]

b0
L0
P 0[Ψ1, XΨ1]

]
− 1

4
TrS

[
[Ψ1, Xe]

b0
L0
P 0[Ψ1, XΨ1]

]
+

+
1

12
TrL [ξe[Ψ1, [XΨ1, ξΨ1]]] +

1

12
TrL [ξe[XΨ1, [ξΨ1,Ψ1]]] . (3.12)

Finally, to make contact with the A∞ obstruction derived in section 2.2, we can first use

the vanishing of the second-order obstruction (i.e. that P0[Ψ1, XΨ1] = 0) to establish that

1

4
TrS

[
[e,XΨ1]

b0
L0
P 0[Ψ1, XΨ1]

]
= −1

4
TrL [[ξe, ξΨ1][Ψ1, XΨ1]] +

+
1

4
TrS

[
[Ψ1, Xe]

b0
L0
P 0[Ψ1, XΨ1]

]
(3.13a)

so that the expression (3.12) for OBer can be rewritten as

OBer = −1

2
TrS

[
[Ψ1, Xe]

b0
L0
P 0[Ψ1, XΨ1]

]
+

1

4
TrL [[ξe, ξΨ1][Ψ1, XΨ1]]

+
1

12
TrL[ξe[Ψ1, [XΨ1, ξΨ1]]] +

1

12
TrL[ξe[XΨ1, [ξΨ1,Ψ1]]] (3.14a)

= −1

2
TrS

[
[Ψ1, Xe]

b0
L0
P 0[Ψ1, XΨ1]

]
− 1

6
TrL[[Xe, ξΨ1][ξΨ1,Ψ1]] , (3.14b)

where, in the second step, we used a super-Jacobi identity. That is

OBer =
1

2
ωS

[
b2(Ψ1, Xe),

b0
L0
P 0b2(Ψ1, XΨ1)

]
+

1

6
ωL[b2(Xe, ξΨ1), b2(ξΨ1,Ψ1)] . (3.15)

Since (3.15) is identical with (2.51), we have shown that the third-order obstructions arising

in the A∞ and Berkovits open superstring field theories are equal when evaluated against

a test state cṼ1/2e
−φ. Note that strictly speaking this is only true provided that the

obstruction at second order in both theories was already arranged to vanish.

4 Evaluation of the obstruction

Here we will present three ways of evaluating the obstruction at third order. Here, by

“evaluating” the obstruction, we will mean deriving an explicit expression for O in terms
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of V1/2 and Ṽ1/2 which would be suitable for practical applications. The first two methods

will rely on the presence of a global N = 2 worldsheet superconformal symmetry for

the given background with only ±1 R-charge marginal fields appearing in the boundary

spectrum: in subsection 4.1 we will use the Berkovits-like form (2.2b) as our starting point,

while in subsection 4.2 we will start from the X2-form (2.2a). Both methods will lead to

the same result

O = −〈H̃+
1 |H

−
1 〉 − 〈H̃

−
1 |H

+
1 〉 −

1

2
〈H̃0|H0〉 , (4.1)

where the auxilliary fields H±1 , H0 and H̃±1 , H̃0 will be defined in terms of V±1/2 and Ṽ±1/2
in (4.22) and (4.23). Note that no integration over worldsheet moduli appears in (4.1)

— the result localised on the boundary of the worldsheet moduli space. Upon identifying

e = Ψ1, the expression (4.1) for the obstruction becomes proportional to the localized

quartic part of the classical effective action, in accordance with the prediction of [24].

Also, for both methods, we will show that the final result is unaffected by adding stubs:

that is, adding the bosonic 4-string vertex M
(0)
3 , which inherently comes with integration

over a bosonic modulus, does not seem to spoil the localization property of the third-order

obstruction. Finally, in subsection 4.3, we will present a method for evaluating O directly

along the lines of [21] — this will work also for more general setups.

As we have hinted at above, the core of the first two methods will be the recipe

of [22–24], that is, we will assume that we can decompose the string fields Ψ1 and e into

eigenstates of the R-current J of an N = 2 worldsheet superconformal algebra {T, J,G±}
with R-charge ±1. In particular, we will assume that the theory contains only such NS

marginal operators V , which satisfy V = V + + V −, where V ± carry charge ± under the

R-current. Writing V ± = cV±1/2e
−φ, we have

XV ± = cV±1 − e
φηV±1/2 , (4.2)

where we assume

G±(z)V∓1
2

(0) =
1

z
V∓1 (0) + reg. , (4.3a)

G±(z)V±1
2

(0) = reg. (4.3b)

While the h = 1
2 matter fields are charged under J , their h = 1 counterparts are neutral

J0V±1
2

= ±V±1
2

, (4.4a)

J0V±1 = 0 . (4.4b)

Note that as per our discussion at the end of subsection 2.1.1, these assumptions hold

automatically if we assume that the background at hand conserves at least two spacetime

supercharges with the same chirality in two non-compact dimensions.

Finally, we note that first two methods for evaluating O will allow also for slightly

more general setups then we described above.11 Namely, we will be allowed to assume

11We would like to thank Luca Mattiello and Ivo Sachs for a useful discussion on this point.
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that the worldsheet theory may contain also NS marginal fields in the matter sector with

charge zero under the localising R-current: while we will always deform our theory by a

subsector of marginal operators which can be decomposed as V + + V −, the obstruction

has to be always computed against all possible test states. And these we will allow to

include also marginal operators with zero R-charge. That is, we will allow for test states

e = e+ + e− + e0, where e± = cṼ±1/2e
−φ together with e0 = cṼ0

1/2e
−φ. We then have

G±(z)Ṽ∓1
2

(0) =
1

z
Ṽ∓1 (0) + reg. , (4.5a)

G(z)Ṽ0
1
2

(0) =
1

z
Ṽ0

1(0) + reg. , (4.5b)

G±(z)Ṽ±1
2

(0) = reg. , (4.5c)

where we note that

Ṽ0
1 = G+

− 1
2

Ṽ0
1
2

+G−− 1
2

Ṽ0
1
2

≡ (Ṽ0
1)+ + (Ṽ0

1)− , (4.6)

where (Ṽ0
1)± carry charge ±1 under J . We also have Xe0 = cṼ0

1 − eφηṼ0
1/2.

4.1 Localization: Berkovits-like form

We will now show that starting with the Berkovits-like form (2.51) of the obstruction

O = Oprop +O′ and exploiting the virtues of the N = 2 R-charge decomposition of Ψ1, one

can write down an expression for O which does not contain integration over the worldsheet

moduli. We will first show (subsection 4.1.1) that the propagator term of the Berkovits-like

form decomposes into a localized part Oloc and a contact part, which will be then shown

(subsection 4.1.2) to exactly cancel with O′. Finally, in subsection 4.1.3 we will evaluate the

OPE in Oloc to derive the result (4.1) which is suitable for applications. In subsection 4.1.4,

we will shortly discuss that adding stubs, while introducing an additional term into the

Berkovits-like form (see (2.78)), it leaves the final result (4.1) unchanged as the appearance

of the bosonic 3-product M
(0)
3 is exactly compensated by the associator of M

(0)
2 .

4.1.1 Propagator term

Focusing on the propagator term of (2.51) first, we use the R-charge conservation and

c-ghost saturation to write

Oprop = O±± +O±∓ , (4.7)

where we have defined

O±± =
1

2
ωS

[
b2(Ψ−1 , XΨ−1 ),

b0
L0
P 0b2(Ψ+

1 , Xe)

]
+

+
1

2
ωS

[
b2(Ψ+

1 , XΨ+
1 ),

b0
L0
P 0b2(Ψ−1 , Xe)

]
, (4.8a)

O±∓ =
1

2
ωS

[
b2(Ψ−1 , XΨ+

1 ),
b0
L0
P 0b2(Ψ+

1 , Xe)

]
+

+
1

2
ωS

[
b2(Ψ+

1 , XΨ−1 ),
b0
L0
P 0b2(Ψ−1 , Xe)

]
. (4.8b)
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Here we have used the fact that Xe± and XΨ±1 are R-neutral in the above correlators,

because the Siegel gauge propagator provides a b-ghost, so that we need to take the c-ghost

parts for all insertions. For the same reason, we have that

ωS

[
b2(Ψ±1 , XΨ1),

b0
L0
P 0b2(Ψ±1 , Xe)

]
= 0 . (4.9)

Also, note that any potential R-neutral part e0 of e can never contribute to the propagator

term, because c-ghost saturation tells us that Xe0 carries charge ±1. We will now remove

the propagators by moving the PCO which does not sit on the test state e onto a Ψ±1
insertion with R-charge different from the remaining two. This can be done by first going

to the large Hilbert space by placing ξ on the insertion where we want the PCO to be

moved, then writing XΨ±1 = QξΨ±1 and finally moving Q onto the insertion with ξ. In

particular, starting with O±±, we get

O±± = +
1

2
ωL
[
b2(Ψ−1 , ξΨ

−
1 ), P 0b2(ξΨ+

1 , Xe)
]

+

+
1

2
ωL
[
b2(Ψ+

1 , ξΨ
+
1 ), P 0b2(ξΨ−1 , Xe)

]
+

+
1

2
ωS

[
b2(Ψ−1 ,Ψ

−
1 ),

b0
L0
P 0b2(XΨ+

1 , Xe)

]
+

+
1

2
ωS

[
b2(Ψ+

1 ,Ψ
+
1 ),

b0
L0
P 0b2(XΨ−1 , Xe)

]
, (4.10)

where the last two terms vanish by the R-charge conservation. We therefore end up with

O±± = +
1

2
ωL
[
b2(Ψ−1 , ξΨ

−
1 ), P 0b2(ξΨ+

1 , Xe)
]

+

+
1

2
ωL
[
b2(Ψ+

1 , ξΨ
+
1 ), P 0b2(ξΨ−1 , Xe)

]
. (4.11)

Similarly for O±∓2 , where we get

O±∓ = +
1

2
ωS

[
b2(XΨ−1 ,Ψ

+
1 ),

b0
L0
P 0b2(Ψ+

1 , Xe)

]
+

+
1

2
ωS

[
b2(XΨ+

1 ,Ψ
−
1 ),

b0
L0
P 0b2(Ψ−1 , Xe)

]
+

1

2
ωL
[
b2(ξΨ−1 , ξΨ

+
1 ), P 0b2(Ψ+

1 , Xe)
]

+

+
1

2
ωL
[
b2(ξΨ+

1 , ξΨ
−
1 ), P 0b2(Ψ−1 , Xe)

]
, (4.12)

with the first two terms vanishing by R-charge conservation, that is

O±∓ = +
1

2
ωL
[
b2(ξΨ−1 , ξΨ

+
1 ), P 0b2(Ψ+

1 , Xe)
]

+

+
1

2
ωL
[
b2(ξΨ+

1 , ξΨ
−
1 ), P 0b2(Ψ−1 , Xe)

]
. (4.13)
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Finally, we note that the O′ contribution to (2.51) decomposes into the R-charge eigen-

states as

O′ = 1

6

{
ωL
[
b2(Xe, ξΨ+

1 ), b2(ξΨ−1 ,Ψ
−
1 )
]

+ ωL
[
b2(Xe, ξΨ−1 ), b2(ξΨ+

1 ,Ψ
+
1 )
]

+

+ ωL
[
b2(Xe, ξΨ−1 ), b2(ξΨ+

1 ,Ψ
−
1 )
]

+ ωL
[
b2(Xe, ξΨ+

1 ), b2(ξΨ−1 ,Ψ
+
1 )
]

+

+ ωL
[
b2(Xe, ξΨ−1 ), b2(ξΨ−1 ,Ψ

+
1 )
]

+ ωL
[
b2(Xe, ξΨ+

1 ), b2(ξΨ+
1 ,Ψ

−
1 )
]}

. (4.14)

Again, we note that c-ghost saturation requires that we take the eφη part of Xe. For e±,

the corresponding correlators are generally non-zero because the eφη part of Xe± carries

R-charge ±1. On the other hand the eφη part of Xe0 is always R-neutral so that it always

give zero and can be ignored. Summarizing our results up to this point, we have shown

that O can be written as a sum of localized and contact terms

O = Oloc +Ocon , (4.15)

where

Oloc = − 1

2

{
ωL
[
b2(Ψ−1 , ξΨ

−
1 ), P0b2(ξΨ+

1 , Xe
+)
]

+

+ ωL
[
b2(Ψ+

1 , ξΨ
+
1 ), P0b2(ξΨ−1 , Xe

−)
]

+ ωL
[
b2(ξΨ−1 , ξΨ

+
1 ), P0b2(Ψ+

1 , Xe
−)
]

+

+ ωL
[
b2(ξΨ+

1 , ξΨ
−
1 ), P0b2(Ψ−1 , Xe

+)
]}

, (4.16a)

Ocon =
1

6

{
ωL
[
b2(Xe, ξΨ+

1 ), b2(ξΨ−1 ,Ψ
−
1 )
]

+ ωL
[
b2(Xe, ξΨ−1 ), b2(ξΨ+

1 ,Ψ
+
1 )
]

+

+ ωL
[
b2(Xe, ξΨ−1 ), b2(ξΨ+

1 ,Ψ
−
1 )
]

+ ωL
[
b2(Xe, ξΨ+

1 ), b2(ξΨ−1 ,Ψ
+
1 )
]

+

+ ωL
[
b2(Xe, ξΨ−1 ), b2(ξΨ−1 ,Ψ

+
1 )
]

+ ωL
[
b2(Xe, ξΨ+

1 ), b2(ξΨ+
1 ,Ψ

−
1 )
]

+

+ 3ωL
[
b2(Ψ−1 , ξΨ

−
1 ), b2(ξΨ+

1 , Xe)
]

+

+ 3ωL
[
b2(Ψ+

1 , ξΨ
+
1 ), b2(ξΨ−1 , Xe)

]
+ 3ωL

[
b2(ξΨ−1 , ξΨ

+
1 ), b2(Ψ+

1 , Xe)
]

+

+ 3ωL
[
b2(ξΨ+

1 , ξΨ
−
1 ), b2(Ψ−1 , Xe)

]}
. (4.16b)

We will now show that Ocon = 0 while Oloc is generally non-zero. Requiring that Oloc (and

therefore the whole obstruction) vanishes will yield a non-trivial constraint on V 1
2
.

4.1.2 Cancellation of contact terms

Let us first use cyclicity to absorb all terms shown in (4.16b) inside one simplectic form

taken against Xe. We obtain

Ocon = ωL(Xe, Y + + Y −) , (4.17)
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where we define

Y ± = −1

6

{
b2
[
ξΨ∓1 , b2(ξΨ±1 ,Ψ

±
1 )
]

+ b2
[
ξΨ±1 , b2(ξΨ∓1 ,Ψ

±
1 )
]

+

+ b2
[
ξΨ±1 , b2(ξΨ±1 ,Ψ

∓
1 )
]
− 3b2

[
ξΨ∓1 , b2(Ψ±1 , ξΨ

±
1 )
]

+

+ 3b2
[
Ψ±1 , b2(ξΨ∓1 , ξΨ

±
1 )
]}

. (4.18)

Let us now show that ηY ± = 0. We have

ηY ± =
1

6

{
b2
[
Ψ∓1 , b2(ξΨ±1 ,Ψ

±
1 )
]

+ b2
[
Ψ±1 , b2(ξΨ∓1 ,Ψ

±
1 )
]

+

+ b2
[
Ψ±1 , b2(ξΨ±1 ,Ψ

∓
1 )
]
− 3b2

[
Ψ∓1 , b2(Ψ±1 , ξΨ

±
1 )
]

+

− 3b2
[
Ψ±1 , b2(Ψ∓1 , ξΨ

±
1 )
]

+ b2
[
ξΨ∓1 , b2(Ψ±1 ,Ψ

±
1 )
]

+ b2
[
ξΨ±1 , b2(Ψ∓1 ,Ψ

±
1 )
]

+

+ b2
[
ξΨ±1 , b2(Ψ±1 ,Ψ

∓
1 )
]
− 3b2

[
ξΨ∓1 , b2(Ψ±1 ,Ψ

±
1 )
]

+

+ 3b2
[
Ψ±1 , b2(ξΨ∓1 ,Ψ

±
1 )
]}

= − 1

3

{
b2
[
Ψ∓1 , b2(Ψ±1 , ξΨ

±
1 )
]

+ b2
[
Ψ±1 , b2(ξΨ±1 ,Ψ

∓
1 )
]

+

− b2
[
ξΨ±1 , b2(Ψ∓1 ,Ψ

±
1 )
]

+ b2
[
ξΨ∓1 , b2(Ψ±1 ,Ψ

±
1 )
]

+

− 2b2
[
Ψ±1 , b2(ξΨ∓1 ,Ψ

±
1 )
]}

,

where the last equality is easily seen to vanish due to the super-Jacobi identity. It follows

that ωL(Xe, Y ±) = 0 and therefore Ocon = 0.

4.1.3 Evaluation of localized terms

Let us finally evaluate the localized terms. For our convenience, we will do so in the large

Hilbert space. We have

Oloc = − 1

2

{
ωL
[
b2(Ψ+

1 , Xe
−)− b2(Ψ−1 , Xe

+), P0b2(ξΨ−1 , ξΨ
+
1 )
]

+ ωL
[
b2(ξΨ−1 ,Ψ

−
1 ), P0b2(ξΨ+

1 , Xe
+)
]

+

+ ωL
[
b2(ξΨ+

1 ,Ψ
+
1 ), P0b2(ξΨ−1 , Xe

−)
]}

. (4.20)

It is then straightforward to compute that

P0b2(ξΨ−1 , ξΨ
+
1 ) = −ξ∂ξc∂cH0e

−2φ , (4.21a)

P0[b2(Ψ+
1 , Xe

−)− b2(Ψ−1 , Xe
+)] = ηc H̃0 + . . . , (4.21b)

P0b2(ξΨ±1 ,Ψ
±
1 ) = −2ξc∂cH±1 e

−2φ , (4.21c)

P0b2(ξΨ±1 , Xe
±) = c H̃±1 + . . . , (4.21d)
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where we have denoted

lim
z→0

[
V±1

2

(z)V±1
2

(−z)

]
= H±1 , (4.22a)

lim
z→0

[
2z

(
V−1

2

(z)V+
1
2

(−z)− V+
1
2

(z)V−1
2

(−z)

)]
= H0 , (4.22b)

and

lim
z→0

[
V±1

2

(z)Ṽ±1
2

(−z)+Ṽ±1
2

(z)V±1
2

(−z)

]
= H̃±1 , (4.23a)

lim
z→0

[
2z

(
V−1

2

(z)Ṽ+
1
2

(−z)−Ṽ+
1
2

(z)V−1
2

(−z)−V+
1
2

(z)Ṽ−1
2

(−z)+Ṽ−1
2

(z)V+
1
2

(−z)

)]
= H̃0 . (4.23b)

Using (C.10) we finally obtain

O = Oloc = −〈H̃+
1 |H

−
1 〉 − 〈H̃

−
1 |H

+
1 〉 −

1

2
〈H̃0|H0〉 . (4.24)

Note that the overlaps in (4.24) may potentially include a Chan-Paton trace. As the test

state e can be chosen arbitrarily, (4.24) makes it clear that the necessary and sufficient

conditions for the third-order obstruction to vanish are

H±1 = 0 , (4.25a)

H0 = 0 . (4.25b)

These are what [24] call the generalized ADHM equations. At the same time, they should

be viewed as only necessary conditions in order for the deformation to be exactly marginal

to all orders as one cannot exclude possible corrections potentially arising at higher orders

in the deformation parameter. Also note that setting e = Ψ1, we have H̃±1 = 2H±1 and

H̃0 = 2H0 so that the obstruction becomes proportional to the localized quartic effective

action of [23, 24]

O
∣∣
e=Ψ1

= −4

(
〈H+

1 |H
−
1 〉+

1

4
〈H0|H0〉

)
= −4S

(4)
eff . (4.26)

This serves as a check of consistency of our manipulations, as we have shown that the

relation (2.38), which we have noted at the beginning (and which is originally due to [24]),

continued to hold throughout our analysis. Ref. [23] also notes that the generalized ADHM

equations H±1 = H0 = 0 are the flatness conditions for the quartic effective potential (as it is

clear from the form of (4.26)). While it is clear from (4.26) that any marginal deformation

which has vanishing third-order obstruction has to give rise to a flat direction of S
(4)
eff (this

was noted already by [24]), we observe that our analysis therefore also shows that provided

that the third-order obstruction is given by the expression (4.24) (that is, provided that

the worldsheet theory admits an extended global N = 2 superconformal algebra with all

marginal operators carrying R-charge ±1), then any flat direction of the quartic effective

action gives rise to a marginal deformation which is exact up to third order in λ. This is a

non-trivial result because vanishing of the obstructions to exact marginality against all pos-

sible test states could in principle be more restrictive than flatness of the effective potential.
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4.1.4 Adding stubs

In the case with stubs, the computation goes along similar lines as in the case without

stubs (replacing b2 by B0
2), except for the fact that there is the additional fundamental

4-vertex term

Ofund =
1

6
ωS

[
Xe,B

(0)
3 (XΨ1,Ψ1,Ψ1)

]
. (4.27)

We also have to use the generalized super-Jacobi identity (2.83) when manipulating the

identity part of the P 0 terms picked when moving one of the PCOs during the localization

procedure. We will now show that these two modifications exactly compensate each other.

Let us therefore write

O = Oloc +Ocon +Ofund . (4.28)

For Oloc we again obtain

Oloc = − 1

2

{
ωL

[
B

(0)
2 (Ψ+

1 , Xe
−)−B(0)

2 (Ψ−1 , Xe
+), P0B

(0)
2 (ξΨ−1 , ξΨ

+
1 )
]

+ ωL

[
B

(0)
2 (ξΨ−1 ,Ψ

−
1 ), P0B

(0)
2 (ξΨ+

1 , Xe
+)
]

+

+ ωL

[
B

(0)
2 (ξΨ+

1 ,Ψ
+
1 ), P0B

(0)
2 (ξΨ−1 , Xe

−)
]}

, (4.29)

which evaluates to the same expression (4.24) as we have found in the case without stubs.

For Ocon, we obtain

Ocon = ωL(Xe, Y + + Y −) , (4.30)

where

Y ± = −1

6

{
B

(0)
2

[
ξΨ∓1 , B

(0)
2 (ξΨ±1 ,Ψ

±
1 )
]

+B
(0)
2

[
ξΨ±1 , B

(0)
2 (ξΨ∓1 ,Ψ

±
1 )
]

+

+B
(0)
2

[
ξΨ±1 , B

(0)
2 (ξΨ±1 ,Ψ

∓
1 )
]

+

− 3B
(0)
2

[
ξΨ∓1 , B

(0)
2 (Ψ±1 , ξΨ

±
1 )
]

+ 3B
(0)
2

[
Ψ±1 , B

(0)
2 (ξΨ∓1 , ξΨ

±
1 )
]}

. (4.31)

This time, however, we obtain a non-zero answer when acting with η on Y + +Y −, because

B
(0)
2 does not associate. In fact, we have

ηY ± = − 1

3

{
ηQξB

(0)
3 (Ψ∓1 ,Ψ

±
1 , ξΨ

±
1 )− ηQξB(0)

3 (ξΨ∓1 ,Ψ
±
1 ,Ψ

±
1 )

− ηξB(0)
3 (Ψ∓1 ,Ψ

±
1 , XΨ±1 ) + ηξB

(0)
3 (XΨ∓1 ,Ψ

±
1 ,Ψ

±
1 )

}
, (4.32a)

≡ ηD± (4.32b)
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where we have used the generalized super-Jacobi identity (2.83) and also inserted

1 = ηξ0 + ξ0η to write the result as manifestly η-exact with

D± = −1

3

{
QξB

(0)
3 (Ψ∓1 ,Ψ

±
1 , ξΨ

±
1 )−QξB(0)

3 (ξΨ∓1 ,Ψ
±
1 ,Ψ

±
1 )

− ξB(0)
3 (Ψ∓1 ,Ψ

±
1 , XΨ±1 ) + ξB

(0)
3 (XΨ∓1 ,Ψ

±
1 ,Ψ

±
1 )

}
. (4.33)

That is, the difference between Y ± and D± will necessarily lie in the small Hilbert space

so that we can replace Y ± with D± inside (4.30). This means that we can write

Ocon = − 1

3

{
ωS

[
Xe,B

(0)
3 (Ψ+

1 ,Ψ
−
1 , XΨ−1 )

]
− ωS

[
Xe,B

(0)
3 (XΨ+

1 ,Ψ
−
1 ,Ψ

−
1 )
]

+

+ ωS

[
Xe,B

(0)
3 (Ψ−1 ,Ψ

+
1 , XΨ+

1 )
]
− ωS

[
Xe,B

(0)
3 (XΨ−1 ,Ψ

+
1 ,Ψ

+
1 )
]}

. (4.34)

Here we note that B
(0)
3 provides a b-ghost, so that the c-ghost part of Xe and XΨ±1

is selected. However, recalling that the c-ghost part of Xe and XΨ1 is R-neutral, we

conclude that the second and the fourth term in (4.34) are zero by R-charge conservation.

Using the symmetry of the B
(0)
3 product, we therefore end up with

Ocon = −1

3
ωS

[
Xe,B

(0)
3 (XΨ−1 ,Ψ

+
1 ,Ψ

−
1 )
]
− 1

3
ωS

[
Xe,B

(0)
3 (XΨ+

1 ,Ψ
−
1 ,Ψ

+
1 )
]
. (4.35)

However, decomposing the fundamental bosonic 4-vertex term Ofund into R-charge eigen-

states, we obtain

Ofund = +
1

6
ωS

[
Xe,B

(0)
3 (XΨ+

1 ,Ψ
+
1 ,Ψ

−
1 )
]

+
1

6
ωS

[
Xe,B

(0)
3 (XΨ+

1 ,Ψ
−
1 ,Ψ

+
1 )
]

+

+
1

6
ωS

[
Xe,B

(0)
3 (XΨ−1 ,Ψ

+
1 ,Ψ

−
1 )
]

+
1

6
ωS

[
Xe,B

(0)
3 (XΨ−1 ,Ψ

−
1 ,Ψ

+
1 )
]

= +
1

3
ωS

[
Xe,B

(0)
3 (XΨ+

1 ,Ψ
−
1 ,Ψ

+
1 )
]

+
1

3
ωS

[
Xe,B

(0)
3 (XΨ−1 ,Ψ

+
1 ,Ψ

−
1 )
]
, (4.36)

where in the last step we have again made us of the symmetry of B
(0)
3 . We therefore

obtain that Ocon +Ofund = 0. Altogether, we conclude that the obstruction is again given

by (4.24).

4.2 Localization: X2 form

Here we will localize the obstruction starting from the X2 form (2.39) (see also [20]). Below

(subsection 4.2.1) we also show what changes need to be made when working with stubs.

It is clear that the only terms in X2e which will contribute into the obstruction are those

containing a single c ghost insertion. It is straightforward to show that these are precisely

X2e=
1

2
c∂2(eφṼ 1

2
)− 1

2
(∂2c)eφṼ 1

2
+c : ∂ξη : eφṼ 1

2
+ceφ :GṼ1 :−1

2
ceφ∂2Ṽ 1

2
+. . . (4.37)

It is therefore clear that we can write X2e = (X2e)+ + (X2e)−, where the two states

(X2e)±=
1

2
c∂2(eφṼ±1

2

)− 1

2
(∂2c)eφṼ±1

2

+c : ∂ξη : eφṼ±1
2

+ceφ :G±Ṽ1 :−1

2
ceφ∂2Ṽ±1

2

(4.38)
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carry charge ±1 under the localising R-current. This means that the X2 propagator term

in (2.39) can be rewritten as

− ωS
[
X2e,m2

[
b0
L0
P 0m2(Ψ+

1 ,Ψ
+
1 ),Ψ−1

]]
− ωS

[
X2e,m2

[
Ψ+

1 ,
b0
L0
P 0m2(Ψ+

1 ,Ψ
−
1 )

]]
− ωS

[
X2e,m2

[
b0
L0
P 0m2(Ψ+

1 ,Ψ
−
1 ),Ψ+

1

]]
− ωS

[
X2e,m2

[
Ψ+

1 ,
b0
L0
P 0m2(Ψ−1 ,Ψ

+
1 )

]]
− ωS

[
X2e,m2

[
b0
L0
P 0m2(Ψ−1 ,Ψ

+
1 ),Ψ+

1

]]
− ωS

[
X2e,m2

[
Ψ−1 ,

b0
L0
P 0m2(Ψ+

1 ,Ψ
+
1 )

]]
− ωS

[
X2e,m2

[
b0
L0
P 0m2(Ψ−1 ,Ψ

−
1 ),Ψ+

1

]]
− ωS

[
X2e,m2

[
Ψ−1 ,

b0
L0
P 0m2(Ψ−1 ,Ψ

+
1 )

]]
− ωS

[
X2e,m2

[
b0
L0
P 0m2(Ψ−1 ,Ψ

+
1 ),Ψ−1

]]
− ωS

[
X2e,m2

[
Ψ−1 ,

b0
L0
P 0m2(Ψ+

1 ,Ψ
−
1 )

]]
− ωS

[
X2e,m2

[
b0
L0
P 0m2(Ψ+

1 ,Ψ
−
1 ),Ψ−1

]]
− ωS

[
X2e,m2

[
Ψ+

1 ,
b0
L0
P 0m2(Ψ−1 ,Ψ

−
1 )

]]
.

In each of the above terms, we will now move one of the PCOs from the test state on the

insertion with opposite R-charge than the remaining two. That is, we will first go to the

large Hilbert space by placing ξ on the insertion where we want to move the PCO, then

write X2e = QξXe and finally move Q onto the insertion with ξ. We obtain

+ωL
[
ξXe,m2

[
P 0m2(Ψ+

1 ,Ψ
+
1 ), ξΨ−1

]]
+ωL

[
ξXe,m2

[
Ψ+

1 , P 0m2(Ψ+
1 , ξΨ

−
1 )
]]

+ωL
[
ξXe,m2

[
P 0m2(Ψ+

1 , ξΨ
−
1 ),Ψ+

1

]]
+ωL

[
ξXe,m2

[
Ψ+

1 , P 0m2(ξΨ−1 ,Ψ
+
1 )
]]

+ωL
[
ξXe,m2

[
P 0m2(ξΨ−1 ,Ψ

+
1 ),Ψ+

1

]]
−ωL

[
ξXe,m2

[
ξΨ−1 , P 0m2(Ψ+

1 ,Ψ
+
1 )
]]

+ωL
[
ξXe,m2

[
P 0m2(Ψ−1 ,Ψ

−
1 ), ξΨ+

1

]]
+ωL

[
ξXe,m2

[
Ψ−1 , P 0m2(Ψ−1 , ξΨ

+
1 )
]]

+ωL
[
ξXe,m2

[
P 0m2(Ψ−1 , ξΨ

+
1 ),Ψ−1

]]
+ωL

[
ξXe,m2

[
Ψ−1 , P 0m2(ξΨ+

1 ,Ψ
−
1 )
]]

+ωL
[
ξXe,m2

[
P 0m2(ξΨ+

1 ,Ψ
−
1 ),Ψ−1

]]
−ωL

[
ξXe,m2

[
ξΨ+

1 , P 0m2(Ψ−1 ,Ψ
−
1 )
]]

+ωL

[
ξXe,m2

[
b0
L0
P 0m2(Ψ+

1 ,Ψ
+
1 ), XΨ−1

]]
+ωL

[
ξXe,m2

[
Ψ+

1 ,
b0
L0
P 0m2(Ψ+

1 , XΨ−1 )

]]
+ωL

[
ξXe,m2

[
b0
L0
P 0m2(Ψ+

1 , XΨ−1 ),Ψ+
1

]]
+ωL

[
ξXe,m2

[
Ψ+

1 ,
b0
L0
P 0m2(XΨ−1 ,Ψ

+
1 )

]]
+ωL

[
ξXe,m2

[
b0
L0
P 0m2(XΨ−1 ,Ψ

+
1 ),Ψ+

1

]]
+ωL

[
ξXe,m2

[
XΨ−1 ,

b0
L0
P 0m2(Ψ+

1 ,Ψ
+
1 )

]]
+ωL

[
ξXe,m2

[
b0
L0
P 0m2(Ψ−1 ,Ψ

−
1 ), XΨ+

1

]]
+ωL

[
ξXe,m2

[
Ψ−1 ,

b0
L0
P 0m2(Ψ−1 , XΨ+

1 )

]]
+ωL

[
ξXe,m2

[
b0
L0
P 0m2(Ψ−1 , XΨ+

1 ),Ψ−1

]]
+ωL

[
ξXe,m2

[
Ψ−1 ,

b0
L0
P 0m2(XΨ+

1 ,Ψ
−
1 )

]]
+ωL

[
ξXe,m2

[
b0
L0
P 0m2(XΨ+

1 ,Ψ
−
1 ),Ψ−1

]]
+ωL

[
ξXe,m2

[
XΨ+

1 ,
b0
L0
P 0m2(Ψ−1 ,Ψ

−
1 )

]]
(4.39)

We note that all propagator terms now vanish due to R-charge conservation (we are forced

to take the c-ghost part in both Xe and XΨ±1 , which is R-neutral) and the identity parts
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of the P 0 = 1− P0 terms cancel by associativity of m2. We are therefore left with

− ωL
[
P0m2(Ψ+

1 ,Ψ
+
1 ),m2(ξΨ−1 , ξXe

−)
]

+ ωL
[
P0m2(Ψ+

1 , ξΨ
−
1 ),m2(ξXe−,Ψ+

1 )
]

+ ωL
[
P0m2(Ψ+

1 , ξΨ
−
1 ),m2(Ψ+

1 , ξXe
−)
]

+ ωL
[
P0m2(ξΨ−1 ,Ψ

+
1 ),m2(ξXe−,Ψ+

1 )
]

+ ωL
[
P0m2(ξΨ−1 ,Ψ

+
1 ),m2(Ψ+

1 , ξXe
−)
]

+ ωL
[
P0m2(Ψ+

1 ,Ψ
+
1 ),m2(ξXe−, ξΨ−1 )

]
− ωL

[
P0m2(Ψ−1 ,Ψ

−
1 ),m2(ξΨ+

1 , ξXe
+)
]

+ ωL
[
P0m2(Ψ−1 , ξΨ

+
1 ),m2(ξXe+,Ψ−1 )

]
+ ωL

[
P0m2(Ψ−1 , ξΨ

+
1 ),m2(Ψ−1 , ξXe

+)
]

+ ωL
[
P0m2(ξΨ+

1 ,Ψ
−
1 ),m2(ξXe+,Ψ−1 )

]
+ ωL

[
P0m2(ξΨ+

1 ,Ψ
−
1 ),m2(Ψ−1 , ξXe

+)
]

+ ωL
[
P0m2(Ψ−1 ,Ψ

−
1 ),m2(ξXe+, ξΨ+

1 )
]
,

which can be rewritten in terms of the b2 product as

− 1

2
ωL
[
b2(ξΨ−1 , ξXe

−), P0b2(Ψ+
1 ,Ψ

+
1 )
]
− ωL

[
b2(Ψ+

1 , ξXe
−), P0b2(Ψ+

1 , ξΨ
−
1 )
]

− 1

2
ωL
[
b2(ξΨ+

1 , ξXe
+), P0b2(Ψ−1 ,Ψ

−
1 )
]
− ωL

[
b2(Ψ−1 , ξXe

+), P0b2(Ψ−1 , ξΨ
+
1 )
]
. (4.40)

We are now ready to evaluate the obstruction. We will treat all insertions as if they were

primary, because contributions coming from the anomalous transformation properties can

be shown to exactly cancel with O3 (see [20] for details). It can then be shown that

P0b2(Ψ±1 ,Ψ
±
1 ) = +2c∂cH±1 e

−2φ , (4.41a)

P0b2(Ψ±1 , ξΨ
∓
1 ) = −ξc∂cH1e

−2φ ∓ (1/2)∂ξc∂cH0e
−2φ (4.41b)

where the auxiliary fields H±1 , H0 are as in (4.22) and we define

lim
z→0

[
V−1

2

(z)V+
1
2

(−z) + V+
1
2

(z)V−1
2

(−z)

]
= H1 . (4.42a)

Keeping only the contributions containing exactly one c-ghost and neglecting anomalous

terms in the OPEs, we further have

−P0b2(Ψ+
1 , ξXe

−) + P0b2(Ψ−1 , ξXe
+) = c :ξη : H̃0 , (4.43a)

P0b2(ξΨ±1 , ξXe
±) = ξcH̃±1 , (4.43b)

where the test-state auxiliary fields H̃±1 , H̃0 are as in (4.23). Using these results, it is then

straightforward to establish that we recover expression (4.24), that is

O = −〈H̃+
1 |H

−
1 〉 − 〈H̃

−
1 |H

+
1 〉 −

1

2
〈H̃0|H0〉 . (4.44)

4.2.1 Adding stubs

Two modifications of the above procedure are needed when working with stubs. First, as

opposed to the case without stubs, the following terms in (4.39)

+ ωL

[
ξXe−,M

(0)
2

[
M

(0)
2 (Ψ+

1 ,Ψ
+
1 ), ξΨ−1

]]
+ ωL

[
ξXe−,M

(0)
2

[
Ψ+

1 ,M
(0)
2 (Ψ+

1 , ξΨ
−
1 )
]]

+ ωL

[
ξXe−,M

(0)
2

[
M

(0)
2 (Ψ+

1 , ξΨ
−
1 ),Ψ+

1

]]
+ ωL

[
ξXe−,M

(0)
2

[
Ψ+

1 ,M
(0)
2 (ξΨ−1 ,Ψ

+
1 )
]]

+ ωL

[
ξXe−,M

(0)
2

[
M

(0)
2 (ξΨ−1 ,Ψ

+
1 ),Ψ+

1

]]
− ωL

[
ξXe−,M

(0)
2

[
ξΨ−1 ,M

(0)
2 (Ψ+

1 ,Ψ
+
1 )
]]

+ ωL

[
ξXe+,M

(0)
2

[
M

(0)
2 (Ψ−1 ,Ψ

−
1 ), ξΨ+

1

]]
+ ωL

[
ξXe+,M

(0)
2

[
Ψ−1 ,M

(0)
2 (Ψ−1 , ξΨ

+
1 )
]]

+ ωL

[
ξXe+,M

(0)
2

[
M

(0)
2 (Ψ−1 , ξΨ

+
1 ), V −

]]
+ ωL

[
ξXe+,M

(0)
2

[
Ψ−1 ,M

(0)
2 (ξΨ+

1 ,Ψ
−
1 )
]]

+ ωL

[
ξXe+,M

(0)
2

[
M

(0)
2 (ξΨ+

1 ,Ψ
−
1 ),Ψ−1

]]
− ωL

[
ξXe+,M

(0)
2

[
ξΨ+

1 ,M
(0)
2 (Ψ−1 ,Ψ

−
1 )
]]
,
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which arise when moving one of the PCOs in the propagator term, do not vanish, be-

cause the product M
(0)
2 does not associate. Instead, using the A∞ relation [Q,M

(0)
3 ] +

1
2 [M

(0)
2 ,M

(0)
2 ] = 0, these yield

− ωS
[
X2e−,M

(0)
3 (Ψ+

1 ,Ψ
+
1 ,Ψ

−
1 )
]

+ ωS

[
Xe−,M

(0)
3 (Ψ+

1 ,Ψ
+
1 , XΨ−1 )

]
− ωS

[
X2e−,M

(0)
3 (Ψ+

1 ,Ψ
−
1 ,Ψ

+
1 )
]

+ ωS

[
Xe−,M

(0)
3 (Ψ+

1 , XΨ−1 ,Ψ
+
1 )
]

− ωS
[
X2e−,M

(0)
3 (Ψ−1 ,Ψ

+
1 ,Ψ

+
1 )
]

+ ωS

[
Xe−,M

(0)
3 (XΨ−1 ,Ψ

+
1 ,Ψ

+
1 )
]

− ωS
[
X2e+,M

(0)
3 (Ψ−1 ,Ψ

−
1 ,Ψ

+
1 )
]

+ ωS

[
Xe+,M

(0)
3 (Ψ−1 ,Ψ

−
1 , XΨ+

1 )
]

− ωS
[
X2e+,M

(0)
3 (Ψ−1 ,Ψ

+
1 ,Ψ

−
1 )
]

+ ωS

[
Xe+,M

(0)
3 (Ψ−1 , XΨ+

1 ,Ψ
−
1 )
]

− ωS
[
X2e+,M

(0)
3 (Ψ+

1 ,Ψ
−
1 ,Ψ

−
1 )
]

+ ωS

[
Xe+,M

(0)
3 (XΨ+

1 ,Ψ
−
1 ,Ψ

−
1 )
]
. (4.45)

Note that M
(0)
3 provides a b-ghost so that we are forced to take c-ghost terms in X2e±, Xe±

and also XΨ±1 . Since the c-ghost terms in Xe± and XΨ±1 are R-neutral, the corresponding

terms (second column of (4.45)) will vanish by R-charge conservation. Also, recall that the

c-ghost terms in X2e± carry R-charge ±1 so that these will not in general vanish. This is,

however, where the second modification comes into play: remember that the X2 form of

O with stubs contains, compared to the case without stubs, the term

ω2

[
X2e,M

(0)
3 (Ψ1,Ψ1,Ψ1)

]
, (4.46)

which, after the R-charge decomposition, precisely cancels with the X2 terms in (4.45). As

the rest of the computation goes unchanged, we recover the result (4.44).

4.3 Direct evaluation

Here we will use the strategy of [21] to evaluate the Berkovits-like form (2.51) of the

obstruction. While this will not put as strict requirements on the background as in the

case of the previous two methods which were based on the N = 2 R-charge decomposition

technique, we will not be able to express the obstruction as explicitly as we were able to in

subsections 4.1 and 4.2. We will first deal with the propagator term Oprop in subsection Let

us define a ≡
√

2−1. We will not consider stubs in this section. Proceeding along the lines

of [21], we can show that by introducing Schwinger parametrization for the Siegel-gauge

propagator, it is possible to express Oprop as

Oprop = −1

2

∫ ∞
0

dt
〈
(cV 1

2
e−φ(−a−1)cṼ1(+a−1) + cṼ1(−a−1)cV 1

2
e−φ(+a−1))×

× b0e−tL0(cV 1
2
e−φ(+a)cV1(−a) + cV1(+a)cV 1

2
e−φ(−a))

〉
S

(4.47a)

= −1

2

∫ ∞
0

dt
〈
c(−a−1)c(+a−1)b0c(e

−ta)c(−e−ta)
〉
S
×

×
〈
(V 1

2
e−φ(−a−1)Ṽ1(+a−1) + Ṽ1(−a−1)V 1

2
e−φ(+a−1))×

× (V 1
2
e−φ(+e−ta)V1(−e−ta) + V1(+e−ta)V 1

2
e−φ(−e−ta))

〉
S
. (4.47b)
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Using the result〈
c(−a−1)c(+a−1)b0c(e

−ta)c(−e−ta)
〉

= −4e−t(a2e−2t − a−2) , (4.48)

we eventually obtain

Oprop = 2

∫ ∞
0

dt e−t(a2e−2t − a−2)×

×
[

+ (a−1 + ae−t)−1
〈
V 1

2
(−a−1)Ṽ1(+a−1)V 1

2
(+e−ta)V1(−e−ta)

〉
+

− (a−1 − ae−t)−1
〈
Ṽ1(−a−1)V 1

2
(+a−1)V 1

2
(+e−ta)V1(−e−ta)

〉
+

+ (a−1 − ae−t)−1
〈
V 1

2
(−a−1)Ṽ1(+a−1)V1(+e−ta)V 1

2
(−e−ta)

〉
+

− (a−1 + ae−t)−1
〈
Ṽ1(−a−1)V 1

2
(+a−1)V1(+e−ta)V 1

2
(−e−ta)

〉]
. (4.49)

For the contact term, we obtain

O′ = −1

6

〈
(ηeφṼ 1

2
(−a−1)ξcV 1

2
e−φ(+a−1)− ξcV 1

2
e−φ(−a−1)ηeφṼ 1

2
(+a−1))×

× (ξcV 1
2
e−φ(+a)cV 1

2
e−φ(−a)− cV 1

2
e−φ(a)ξcV 1

2
e−φ(−a))

〉
L

(4.50a)

= +2
〈
Ṽ 1

2
(−a−1)V 1

2
(+a−1)V 1

2
(+a)V 1

2
(−a)

〉
+

+ 2
〈
V 1

2
(−a−1)Ṽ 1

2
(+a−1)V 1

2
(+a)V 1

2
(−a)

〉
. (4.50b)

5 Examples

In this section we present a number of examples demonstrating the utility of the gen-

eralized ADHM equations H±1 = H0 = 0 in deriving algebraic constraints on moduli of

various brane configurations. These will include the D(−1)/D3 brane system both in flat

space (subsection 5.1) and sitting at an orbifold singularity (subsection 5.2), as well as a

couple of more complicated brane configurations, some of which were discussed previously

by [30, 31, 37] (subsection 5.3). In the case of the simple D(−1)/D3 brane system, we will

explicitly verify validity of the localization technique by obtaining identical results using

the direct evaluation method as outlined in subsection 4.3.

5.1 N = 4 SYM instantons

We will now apply our results on the system of superposed k D(−1) branes and N euclidean

D3 branes which was in this context discussed by [18, 19, 38, 39] and others and, most

recently, by [20, 23, 24]. We will complexify our target coordinates as Xr± = (X2r−1 ±
iX2r)/

√
2, where r = 1, . . . , 5. The stack of D3 branes will be taken to span the complex

coordinates X1±, X2± (see table 1). These we may take to be toroidally compactified

without changing the content of the discussion below. Such brane configuration preserves

in total 8 spacetime supercharges, which give rise to N = (1, 0) supersymmetry in the six

dimensions X5, X6, X7, X8, X9, X0 (that is N = 2 in 4d and N = (4, 4) in 2d). Based on

our discussion at the end of subsection 2.1.1, we therefore expect to be able to extend the

N = 1 worldsheet superconformal algebra to an N = 2 SCA with R-current J with respect
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X0

D(−1) • • • • • • • • • •

D3 × × × × • • • • • •

Table 1. N = 4 SYM instantons.

to which will all boundary marginal fields carry charges ±1. Focusing on the marginal

operators along the Dirichlet-Neumann directions X1, X2, X3, X4, we will take

V 1
2
≡

(
Aµψ

µ wα∆Sα

w̄α∆̄Sα aµψ
µ

)
, Ṽ 1

2
≡

(
Bµψ

µ vα∆Sα

v̄α∆̄Sα bµψ
µ

)
. (5.1)

The Chan-Paton sectors explicitly displayed in (5.1) therefore describe the strings localized

on the D3 branes (upper-left corner), strings localized on the D(−1) branes (lower-right

corner) and the strings stretched between the two brane stacks. Moreover, each of the

four entries in (5.1) is itself a matrix as we assume that the stacks of the two kinds of

branes may consist of multiple branes. The µ = 1, . . . , 4 indices therefore run over the

four (euclidean) D3 directions, ψµ are the h = 1/2 worldsheet fermions and, A are N ×N
matrix-valued SO(4) vectors, aµ are k × k matrix-valued SO(4) vectors, wα are N × k

matrix-valued SO(4) spinors (where α ∈ {+,−} is the chiral Weyl spinor index) and w̄α
are k × N matrix-valued SO(4) spinors. Also, ∆, ∆̄ are the h = 1/4 bosonic twist fields,

Sα are the h = 1/4 fermionic spin fields, implementing the change of boundary conditions

on ∂Xµ and ψµ, respectively.

Note that if we were to consider D(−1) branes instead of D(−1) branes, the stretched

string modes would give rise to states wα̇∆Sα̇, w̄α̇∆̄Sα̇ instead of wα∆Sα, w̄α∆̄Sα, where

α̇ ∈ {+̇, −̇} is the anti-chiral Weyl spinor index. See appendix A for our conventions on 4d

euclidean spinors and appendix C for some OPE and correlators of spin and twist fields.

Also, imposing reality condition on the string field, we obtain reality conditions

(Aµ)† = Aµ , (aµ)† = aµ , (w̄α)† = wα , (5.2)

on the polarizations of V1/2, where the last condition is equivalent to the reality condition

(3.4) of [29].12 We take the localising R-current to be

J = J1 + J2 =

2∑
r=1

:ψr−ψr+ : = −i
2∑
r=1

∂hr , (5.3)

of the free field N = 2 worldsheet superconformal algebra with c = 6 along the four

Dirichlet-Neumann directions (together with the stress-energy tensor T = T1 + T2 and

charged supercurrents G± = G±1 + G±2 ),13 where we have bosonized the two complex

12For the anti-chiral stretched worldsheet fermions, the corresponding reality condition can be easily

checked to read (w̄α̇)† = wα̇.
13Note that had we started with D(−1) branes instead of D(−1) branes, we would have to take J1 − J2

as our localizing R-current (and correspondingly G±1 +G∓2 as the two charged supercurrents).
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worldsheet fermions along the D3 worldvolume as

ψr± = e±ihr , (5.4)

where

ψr± =
1√
2

(ψ2r−1 ± iψ2r) . (5.5)

We then have Ψ1 = Ψ+
1 + Ψ−1 , e = e+ + e− where

Ψ±1 = cV±1
2

e−φ = c

(
Ar±ψ

r± w±∆S(± 1
2
,± 1

2
)

w̄±∆̄S(± 1
2
,± 1

2
) ar±ψ

r±

)
e−φ , (5.6a)

e± = cṼ±1
2

e−φ = c

(
Br±ψ

r± v±∆S(± 1
2
,± 1

2
)

v̄±∆̄S(± 1
2
,± 1

2
) br±ψ

r±

)
e−φ , (5.6b)

where we have explicitely indicated the (J1, J2) charges of the stretched spin-fields and we

have denoted

Ar± =
1√
2

(A2r−1 ∓ iA2r) , (5.7a)

Br± =
1√
2

(B2r−1 ∓ iB2r) (5.7b)

together with

ar± =
1√
2

(a2r−1 ∓ ia2r) , (5.8a)

br± =
1√
2

(b2r−1 ∓ ib2r) . (5.8b)

The reality conditions (5.2) then give (Ar±)† = Ar∓, (ar±)† = ar∓ together with (w̄+)† =

w− and (w̄−)† = −w+, so that we can work only with Ar+, ar+, w+ and w̄+.

5.1.1 Substituting into the localized obstruction

Let us first evaluate the obstruction using the form (4.24) which was a consequence of

the N = 2 decomposition technique. Substituting into (4.22) and using the OPE from

appendix C, we obtain (displaying only those Chan-Paton sectors of the auxiliary fields,

which are non-zero)

(H+
1 )D3,D3 =

(
[A1+, A2+]− w+w̄+

)
:ψ1+ψ2+ : , (5.9a)

(H−1 )D3,D3 =
(
[A1−, A2−]− w−w̄−

)
:ψ1−ψ2− : , (5.9b)

(H0)D3,D3 = [Ar−, Ar+] + w+w̄− + w−w̄+ , (5.9c)

and

(H+
1 )

D(−1),D(−1)
=
(
[a1+, a2+] + w̄+w+

)
:ψ1+ψ2+ : , (5.10a)

(H−1 )
D(−1),D(−1)

=
(
[a1−, a2−] + w̄−w−

)
:ψ1−ψ2− : , (5.10b)

(H0)
D(−1),D(−1)

= [ar−, ar+]− w̄+w− − w̄−w+ . (5.10c)
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Note that the reality conditions (5.2) on Ar±, wα, w̄α imply that (H±1 )† = H∓1 and

(H0)† = H0. Analogously, for the test state auxiliary fields, we obtain

(H̃+
1 )D3,D3 =

(
[A1+, B2+]− w+v̄+ + [B1+, A2+]− v+w̄+

)
:ψ1+ψ2+ : , (5.11a)

(H̃−1 )D3,D3 =
(
[A1−, B2−]− w−v̄− + [B1−, A2−]− v−w̄−

)
:ψ1−ψ2− : , (5.11b)

(H̃0)D3,D3 = [Ar−, Br+] + w+v̄− + w−v̄+ + [Br−, Ar+] + v+w̄− + v−w̄+ , (5.11c)

and

(H̃+
1 )

D(−1),D(−1)
=
(
[a1+, b2+] + w̄+v+ + [b1+, a2+] + v̄+w+

)
:ψ1+ψ2+ : , (5.12a)

(H̃−1 )
D(−1),D(−1)

=
(
[a1−, b2−] + w̄−v− + [b1−, a2−] + v̄−w−

)
:ψ1−ψ2− : , (5.12b)

(H̃0)
D(−1),D(−1)

= [ar−, br+]−w̄+v−−w̄−v++[br−, ar+]−v̄+w−−v̄−w+ . (5.12c)

Note that the charged the auxilliary fields H±1 precisely encode the complex hyper-Kähler

moment maps for the instanton moduli space, while the coefficient inside the neutral aux-

illiary field H0 encodes the real hyper-Kähler moment maps. Or, put in different words, we

see that the 〈H+
1 |H

−
1 〉 term in the quartic part of the classical effective action (see (4.26))

can be identified with the F-term of the corresponding 4d N = 2 low-energy effective ac-

tion, while the 〈H0|H0〉 gives the D-term. That is, the necessary conditions H±1 = H0 = 0

for the exact marginality of the deformation in fact read (cf. equations (8.2) and (8.3)

of [29])

µC ≡ [a1+, a2+] + w̄+w+ = 0 , (5.13a)

µ̃C ≡ [A1+, A2+]− w+w̄+ = 0 , (5.13b)

and

µR ≡ [(ar+)†, ar+] + (w+)†w+ − w̄+(w̄+)† = 0 , (5.14a)

µ̃R ≡ [(Ar+)†, Ar+]− w+(w+)† + (w̄+)†w̄+ = 0 . (5.14b)

Note that the relative sign in front of the second term of (5.13a) and (5.13b) can be elimi-

nated by relabeling Ar+ → iAr+ (remember that Ar+ can be any complex matrix) without

changing the signs inside (5.14). The moduli space of the brane configuration is then ob-

tained by solving (5.13) and (5.14) modulo the zero-momentum gauge transformations. It

was also noticed in [19, 23] that the auxiliary fields can be re-expressed as

H±1 = ∓ i
4
ηµν∓ Tµν :ψ1±ψ2± : , (5.15a)

H0 = − i
2
ηµν3 Tµν , (5.15b)

and

H̃±1 = ∓ i
2
ηµν∓ T̃µν : ψ1±ψ2± : , (5.16a)

H̃0 = −iηµν3 T̃µν , (5.16b)
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where the ladder t’Hooft symbols are defined as ηµν± ≡ η
µν
1 ± iη

µν
2 and we denote

Tµν =

(
[Aµ, Aν ]− 1

2wα(σµν)αβw̄β 0

0 [aµ, aν ] + 1
2 w̄α(σµν)αβwβ

)
, (5.17)

T̃µν =

(
[Aµ, Bν ]− 1

4wα(σµν)αβ v̄β− 1
4vα(σµν)αβw̄β 0

0 [aµ, bν ]+ 1
4 w̄α(σµν)αβvβ+ 1

4 v̄α(σµν)αβwβ

)
.

(5.18)

We therefore obtain

O = +
1

4
tr[T̃µνη

µν
a ηρσaTρσ] = +

1

2
tr[T̃µνT

µν ] +
1

4
εµνρσtr[T̃µνTρσ] . (5.19)

Eq. (4.24) says that the obstruction vanishes if and only if H±1 = H0 = 0, i.e. if ηµνa Tµν = 0,

that is if and only if

ηµνa

(
[Aµ, Aν ]− 1

2
wα(σµν)αβw̄β

)
= 0 , (5.20a)

ηµνa

(
[aµ, aν ] +

1

2
w̄α(σµν)αβwβ

)
= 0 . (5.20b)

These are precisely the flatness conditions (6.16) and (6.17) of [24] for the quartic effective

potential. A particular solution

wαi = ρ

(
1 0

0 1

)
, (5.21a)

w̄ i
α = ρ

(
1 0

0 1

)
, (5.21b)

Aµ =
ρ√
2
σµ , (5.21c)

of (5.20) for the SU(2) gauge group with k = 1 was found in [24], which corresponds to

a blown-up instanton with size ρ. Upon substituting the polarizations (5.21) into Ψ1, we

therefore obtain that Ψ(λ) = λΨ1 +λ2Ψ2 +λ3Ψ3 +O(λ4) (where Ψ2 and Ψ3 are determined

in terms of Ψ1 by (2.27) and (2.34), respectively) is a solution of the classical equations

of motion of the A∞ OSFT which is consistent up to third order in λ. Thus, we can

conclude that our findings represent evidence that finite-size instantons provide consistent

open superstring backgrounds.

5.1.2 Direct evaluation

We will now show that identical results for O are obtained by using the formulae (4.50b)

and (4.49). As we shall see, the way the intermediate results recombine into (5.19) turns

out to be somewhat non-trivial. This should therefore serve as a convincing check of the

validity of the N = 2 localization method. See appendix C for the various twist and spin

field correlators and OPEs which we are going to use. Let us first focus on terms coming
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from the (33)(33)(33)(33) correlators (that is, the Chan-Paton sectors localized on the D3

brane stack). Note taht this is a calculation which has already been done by [21]. We have

Oprop ⊃ −2

∫ ∞
0

dt e−t(a2e−2t − a−2)(a−1 + e−ta)−4tr[AµBνA
µAν ]+

− 2

∫ ∞
0

dt e−t(a2e−2t − a−2)(a−1 − e−ta)−4tr[BµAνA
νAµ]+

− 2

∫ ∞
0

dt e−t(a2e−2t − a−2)(a−1 − e−ta)−4tr[AµBνA
νAµ]+

− 2

∫ ∞
0

dt e−t(a2e−2t − a−2)(a−1 + e−ta)−4tr[BµAνA
µAν ] (5.22a)

= +
1

4
tr[AµBνA

µAν ] +
1

2
tr[BµAνA

νAµ]+

+
1

2
tr[AµBνA

νAµ] +
1

4
tr[BµAνA

µAν ] , (5.22b)

where we have used the integrals∫ ∞
0

dt e−t(a2e−2t − a−2)(a−1 − ae−t)−4 = −1

4
, (5.23a)∫ ∞

0
dt e−t(a2e−2t − a−2)(a−1 + ae−t)−4 = −1

8
. (5.23b)

We can also show that

O′ ⊃ −tr[AµBνA
νAµ]− tr[BµAνA

νAµ]

+
1

4
tr[BµAνA

µAν ] +
1

4
tr[AµBνA

µAν ] . (5.24)

Finally, putting (5.22b) and (5.24) together, we find that

Oprop +O′ ⊃ +
1

2
tr[[Aµ, Bν ][Aµ, Aν ]] , (5.25)

which is precisely the (33)(33)(33)(33) contribution to (5.19). By an identical computation,

we obtain the (11)(11)(11)(11) contribution (that is, contribution from the Chan-Paton

sectors localized on the D(−1) brane stack) to Oprop +O′

Oprop +O′ ⊃ +
1

2
tr[[aµ, bν ][aµ, aν ]] , (5.26)

which reproduces the corresponding term in (5.19). Next, let us consider the contributions

of the type (33)(31)(11)(13). Using that (εσµσ̄ν)αβ + (εσν σ̄µ)βα = 2δµνεαβ and various

integrals of the type (5.23), we obtain the corresponding contributions to both Oprop and

O′ vanish. As for the (33)(33)(31)(13) and (11)(11)(13)(31) terms, let us only focus on

contributions proportional to tr[AµBνwαw̄β ] — the remaining 7 contributions will follow

using very similar calculation. Evaluating the corresponding correlators using formulae

from appendix C, we first obtain

O′ ⊃+
√

2

[
δµνεαβ − 1

4
(εσµσ̄ν)αβ

]
tr[AµBνwαw̄β ] . (5.27)
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Computing the corresponding contribution to Oprop again involves various integrals of the

type (5.23). One eventually obtains

Oprop ⊃− tr[AµBνwαw̄β ]

{(
2−
√

2

8

)
(εσµσ̄ν)αβ +

(√
2− 1

4

)
(εσν σ̄µ)αβ+

+

√
2

8
(εσµσ̄ν)αβ +

√
2

2
εαβδµν

}
, (5.28)

where the four terms inside of the curly brackets precisely correspond to the four terms con-

stituting (4.49). It is then straigtforward to show that (5.28) combines with (5.27) to give

Oprop +O′ ⊃− 1

2
(εσµν)αβtr[AµBνwαw̄β ] , (5.29)

which is indeed the correct contribution to (5.19). Finally, we consider the (31)(13)(31)(13)

and (13)(31)(13)(31) contributions to Oprop +O′. We obtain

Oprop +O′ ⊃ −1

2
tr[vαw̄βwγw̄δ + wαv̄βwγw̄δ](ε

αβεγδ − εαδεβγ)

− 1

2
tr[v̄αwβw̄γwδ + w̄αvβw̄γwδ](ε

αβεγδ − εαδεβγ)

− 1

2
tr[v̄αwβw̄γwδ + w̄αvβw̄γwδ]ε

αδεβγ

− 1

2
tr[vαw̄βwγw̄δ + wαv̄βwγw̄δ]ε

αδεβγ , (5.30)

where the first two terms in (5.30) were supplied by O′ while the rest of the expression

comes from Oprop. Using the cyclic properties of the trace, we have

1

2
tr[vαw̄βwγw̄δ + wαv̄βwγw̄δ]ε

αδεβγ = −1

2
tr[w̄αvβw̄γwδ + v̄αwβw̄γwδ]ε

αβεγδ , (5.31a)

1

2
tr[vαw̄βwγw̄δ + wαv̄βwγw̄δ]ε

αβεγδ = −1

2
tr[w̄αvβw̄γwδ + v̄αwβw̄γwδ]ε

αδεβγ , (5.31b)

so that (5.30) can be rewritten as

Oprop +O′ ⊃− 1

2
tr[v̄αwβw̄γwδ + w̄αvβw̄γwδ](ε

αβεγδ − εαδεβγ) . (5.32)

But at the same time, we note that the (31)(13)(31)(13) and (13)(31)(13)(31) contributions

to (5.19) can be written as

+
1

16
tr[wαv̄βwγw̄δ + vαw̄βwγw̄δ]

[
(σµν)αβ(σµν)γδ +

1

2
εµνρσ(σµν)αβ(σρσ)γδ

]
+

+
1

16
tr[w̄αvβw̄γwδ + v̄αwβw̄γwδ]

[
(σµν)αβ(σµν)γδ +

1

2
εµνρσ(σµν)αβ(σρσ)γδ

]
. (5.33)

We can also show that

(σµν)αβ(σµν)γδ = 4(εαγεβδ + εαδεβγ) , (5.34a)

εµνρσ(σµν)αβ(σρσ)γδ = 8(εαγεβδ + εαδεβγ) , (5.34b)
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so that, using cyclicity of the trace, one can show that (5.33) is indeed equal to (5.32).

+
1

2
tr[w̄αvβw̄γwδ + v̄αwβw̄γwδ](ε

αδεβγ − εαβεγδ) . (5.35)

We have therefore shown that in the case of the D(−1)/D3 system, one obtains identical

results for the obstruction whether one uses the localization method or evaluates (2.51)

directly.

5.2 Instantons on unresolved ALE spaces

Here we will consider blowing up D-instantons inside D3 branes which are placed inside

ALE spaces in their orbifold limit [28, 29, 40, 41]. For the sake of concreteness, we will focus

on the A-series of the ADE classification of the orbifold singularities, but our results are

straightforwardly extendable to D-type and E-type ALE spaces as well (see [40]). In their

singular limit, the An−1-type ALE spaces coincide with the C2/Zn supersymmetric orbifold

where n = 1, 2, . . . We will consider the C2 to extend along the directions X1, X2, X3, X4.

Defining the complexified coordinates Xr± = (X2r−1 ± iX2r)/
√

2, the Zn acts as

gX1±g−1 = ξ±X1± , (5.36a)

gX2±g−1 = ξ∓X2± , (5.36b)

where ξ = e2πi/n is the nth root of unity. We will consider placing k D(−1) branes at the

fixed point of the Zn action together with N euclidean D3 branes extending along the C2

directions: see table 2. Such background has the same spacetime supersymmetry as the

D(−1)/D3 system on the flat space, so we should again expect to be able to decompose

Ψ1 = Ψ+
1 + Ψ−1 . We will denote by kI and NI for I = 1, . . . , n the number of D(−1) branes

and D3 branes carrying the n distinct twisted RR-charges (that is k1 + k2 + . . . + kn = k

and N1 +N2 + . . .+Nn = N). The matter part of the most general marginal deformation

in the C2 directions is then written as

V±1
2

=

(
AIAI ,JBJr± ψr± wIAI ,JbJ± ∆S(± 1

2
,± 1

2
)

w̄IaI ,JBJ± ∆̄S(± 1
2
,± 1

2
) aIaI ,JbJr± ψr± ,

)
(5.37)

where I, J = 1, . . . , n and AI = 1, . . . , NI , aI = 1, . . . , kI are the fundamental U(NI) and

U(kI) indices. Invariance under the Zn action

γ(g)AIAI ,JBJ1± γ(g)−1 = ξI−J±1AIAI ,JBJ1± , (5.38a)

γ(g)AIAI ,JBJ2± γ(g)−1 = ξI−J∓1AIAI ,JBJ2± , (5.38b)

γ(g)aIaJ ,JbJ1± γ(g)−1 = ξI−J±1aIaI ,JbJ1± , (5.38c)

γ(g)aIaJ ,JbJ2± γ(g)−1 = ξI−J∓1aIaI ,JbJ2± , (5.38d)

γ(g)wIAI ,JbJα γ(g)−1 = ξI−JwIAI ,JbJα , (5.38e)

γ(g)w̄IaI ,JBJα γ(g)−1 = ξI−J w̄IaI ,JBJα , (5.38f)
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X0

D(−1) • • • • • • • • • •

D3 × × × × • • • • • •

C2/Zn × × × × • • • • • •

Table 2. Instantons on ALE spaces.

however, implies various selection rules on I, J . Keeping only the non-zero entries of V±1/2
we actually have (suppressing the U(NI) and U(kI) indices)

V±1
2

=

(
AI,I±1

1± ψ1± +AI,I∓1
2± ψ2± wI,I± ∆S(± 1

2
,± 1

2
)

w̄I,I± ∆̄S(± 1
2
,± 1

2
) aI,I±1

1± ψ1± + aI,I∓1
2± ψ2±

)
, (5.39)

that is, the (33) and (11) Chan-Paton sectors are block upper and lower diagonal for V+
1/2

and V−1/2 along X1, X2, respectively, and vice versa along X3, X4. The (31) and (13)

Chan-Paton sectors are block diagonal. Imposing reality condition on the string field (that

is (V±1/2)† = V∓1/2) imposes reality conditions

(AI,I±1
r± )† = AI±1,I

r∓ , (aI,I±1
r± )† = aI±1,I

r∓ , (w̄I,Iα )† = (wα)I,I . (5.40)

It is then straightforward to evaluate the auxiliary fields using formulae (4.22), which yields

(again, displaying the non-zero Chan-Paton sectors only)

(H+
1 )D3I ,D3J = δIJ

(
A1+
I,I+1A

2+
I+1,I −A

2+
I,I−1A

1+
I−1,I − w

I,I
+ w̄I,I+

)
:ψ1+ψ2+ : , (5.41a)

(H−1 )D3I ,D3J = δIJ

(
A1−
I,I−1A

2−
I−1,I −A

2−
I,I+1A

1−
I+1,I − w

I,I
− w̄I,I−

)
:ψ1−ψ2− : , (5.41b)

(H0)D3I ,D3J = δIJ

(
A1−
I,I−1A

1+
I−1,I −A

1+
I,I+1A

1−
I+1,I+

+A2−
I,I+1A

2+
I+1,I −A

2+
I,I−1A

2−
I−1,I + wI,I− w̄I,I+ + wI,I+ w̄I,I−

)
, (5.41c)

and

(H+
1 )

D(−1)I ,D(−1)J
= δIJ

(
a1+
I,I+1a

2+
I+1,I − a

2+
I,I−1a

1+
I−1,I + w̄I,I+ wI,I+

)
:ψ1+ψ2+ : , (5.42a)

(H−1 )
D(−1)I ,D(−1)J

= δIJ

(
a1−
I,I−1a

2−
I−1,I − a

2−
I,I+1a

1−
I+1,I + w̄I,I− wI,I−

)
:ψ1−ψ2− : , (5.42b)

(H0)
D(−1)I ,D(−1)J

= δIJ

(
a1−
I,I−1a

1+
I−1,I − a

1+
I,I+1a

1−
I+1,I+

+a2−
I,I+1a

2+
I+1,I − a

2+
I,I−1a

2−
I−1,I − w̄

I,I
− wI,I+ − w̄

I,I
+ wI,I−

)
. (5.42c)

One can also check that the reality conditions (5.40) imply (H±1 )† = H∓1 and (H0)† = H0.

Note that analgously to the N = 4 SYM instanton case, the charged and neutral auxiliary

fields H± and H0 encode the well-known forms for the complex and real hyper-Kähler

moment maps for the unresolved ALE background at hand, which were first written down

by Kronheimer and Nakajima. Equivalently, H±1 and H0 yield the D-term and the F-term,

respectively, of the corresponding 4d N = 2 low-energy effective action upon being inserted

– 42 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
8

into the localized classical effective action of [23, 24] (see also (4.26)). It is again easy to

read off the corresponding algebraic constraints on the moduli (cf. Introduction section

of [28], as well as eq. (8.6) of [29])

µCI ≡ a1+
I,I+1a

2+
I+1,I − a

2+
I,I−1a

1+
I−1,I + w̄I,I+ wI,I+ = 0 , (5.43a)

µ̃CI ≡ A1+
I,I+1A

2+
I+1,I −A

2+
I,I−1A

1+
I−1,I − w

I,I
+ w̄I,I+ = 0 , (5.43b)

and

µRI ≡ (a1+
I−1,I)

†a1+
I−1,I − a

1+
I,I+1(a1+

I,I+1)†+

+ (a2+
I+1,I)

†a2+
I+1,I − a

2+
I,I−1(a2+

I,I−1)† − w̄I,I+ (w̄I,I+ )† + (wI,I+ )†wI,I+ = 0 , (5.44a)

µ̃RI ≡ (A1+
I−1,I)

†A1+
I−1,I −A

1+
I,I+1(A1+

I,I+1)†+

+ (A2+
I+1,I)

†A2+
I+1,I −A

2+
I,I−1(A2+

I,I−1)† + (w̄I,I+ )†w̄I,I+ − w
I,I
+ (wI,I+ )† = 0 . (5.44b)

We can again relabel Ar+ → iAr+ so as to make the signs agree with [29]. We have there-

fore again reproduced previously known flatness conditions for the open string background

at hand.

5.3 Spiked instantons at zero B-field

Here14 we will consider a configuration of several stacks of (euclidean) D(−1), D3 and D7

branes (see table 3) which wrap a direct product of four complex planes with coordinates

Xr± = (X2r−1 ± iX2r)/
√

2 for r ∈ 4 ≡ {1, 2, 3, 4}. We will denote by D3a, where a ∈
6 ≡ {(12), (13), (14), (23), (24), (34)} a D3 brane stack spanning the complex 2-plane C2

indexed by a. Also denote by ā the conjugate of a in 6, that is e.g. (12) = (34). Such

a brane configuration (minus the D7 branes) will give rise to moduli spaces of spiked

instantons [30, 31, 37]. As we are only equipped to deal with the dynamics of massless

modes, we will require the NSNS B-field to be turned off everywhere. In order to preserve

some amount of spacetime supersymmetry, we will have to take some of the brane stacks

to consist of antibranes. One can show that there are only two inequivalent15 choices of

distributing the RR charges, both of which have N = (2, 0) supersymmetry in the two

non-compact dimensions X9, X0:

C1 : D(−1) , D3(12) , D3(13) , D3(14) , D3(23) , D3(24) , D3(34) , D7 , (5.45a)

C2 : D(−1) , D3(12) , D3(13) , D3(14) , D3(23) , D3(24) , D3(34) , D7 . (5.45b)

Therefore, recalling our discussion from subsection 2.1.1, we expect to be able to decompose

all marginal NS boundary fields into eigenstates carrying charges ±1 under a localising U(1)

R-current of a global N = 2 worldsheet superconformal algebra. Indeed, noting that the

fermionic NS twist fields surviving the GSO projection for strings stretched between the

D(−1) and D3(rs) branes, as well as between D7 and D3(rs) branes and also between D3(rs)

and D3(rt) branes (for s 6= t) are always chiral (that is, they can be bosonized with U(1)

14I thank Ondra Huĺık for this suggestion.
15In the sense that they cannot be mapped to each other by T-dualities.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X0

D(−1) • • • • • • • • • •

D3(12) × × × × • • • • • •

D3(13) × × • • × × • • • •

D3(14) × × • • • • × × • •

D3(23) • • × × × × • • • •

D3(24) • • × × • • × × • •

D3(34) • • • • × × × × • •

D7 × × × × × × × × • •

Table 3. Brane configuration corresponding to general spiked instantons.

charges ±(1/2, 1/2) under the U(1) currents (Jr, Js) = (:ψr−ψr+ : , :ψs−ψs+ :) where ψr±
and ψs± span the four Neumann-Dirichlet directions at hand), it is easy to see that for C1,

all marginal NS boundary fields carry charges ±1 under the localizing R-current

J1 + J2 + J3 + J4 , (5.46)

of the free field N = 2 worldsheet superconformal algebra with c = 12 along the directions

X1, . . . , X8 (remember that Jr = −i∂hr = :ψr−ψr+ :, where hr is such that ψr± = e±ihr).

Analogously, for C2, all NS boundary fields carry charges ±1 with respect to the R-current

J1 − J2 − J3 − J4 . (5.47)

While it is straightforward to evaluate the generalized ADHM equations H±1 = H0 for both

C1 and C2, below we will only do so explicitly for simpler configurations which are termed

by [30, 31] as crossed and folded instantons. These two configurations will each conserve

four spacetime supercharges giving rise to N = (4, 0) and N = (2, 2) supersymmetry,

respectively, in the two non-compact dimensions X9, X0.

5.3.1 Crossed instanton scenario

Here we will keep only the D(−1), D3(12) and D3(34) brane stacks. There are three T-duality

inequivalent possibilities of distributing the RR charges:

CC1 : D(−1) , D3(12) , D3(34) , (5.48a)

CC2 : D(−1) , D3(12) , D3(34) , (5.48b)

CC3 : D(−1) , D3(12) , D3(34) . (5.48c)

All three configurations preserve N = (4, 0) supersymmetry in the two dimensions spanned

by X9, X0. First, note that there are no massless NS modes for the strings stretched

between the D3(12) and D3(34) branes. In the case of CC1, all massless NS stretched

fermions are chiral. For CC2, the massless NS fermions stretched between the D(−1) and

D3(12) branes are anti-chiral while those stretched between the D(−1) and D3(34) branes
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are chiral. Finally, for CC3 all massless NS stretched fermions are anti-chiral. In the three

respective cases, all boundary fields therefore carry charges ±1 with respect to the U(1)

currents

JC,1 = +J1 + J2 + J3 + J4 , (5.49a)

JC,2 = −J1 + J2 + J3 + J4 , (5.49b)

JC,3 = −J1 + J2 − J3 + J4 . (5.49c)

However, analyzing the generalized ADHM equations H±1 = H0 = 0 for each of the three

crossed-instanton configurations, one eventually finds that all of them give rise to the same

constraints on the moduli space. We will now therefore work these out for CC1, only

making brief comments along the way on how one should proceed had we started with

CC2 or CC3. Let us introduce the following notation for the matter part of the marginal

boundary fields which we will work with:

(V±1
2

)D3(rs),D3(rs) =
∑
u∈4

A
(rs)
u± ψ

u± , (5.50a)

(V±1
2

)
D(−1),D(−1)

=
∑
r∈4

ar±ψ
r± , (5.50b)

together with

(V±1
2

)
D3(rs),D(−1)

= w
(rs)
± ψ(rs)± , (5.51a)

(V±1
2

)
D(−1),D3(rs)

= w̄
(rs)
± ψ(r̃s̃)± , (5.51b)

where, as usual, the notation V±1/2 is taken to mean that the respective states carry charge

±1 under JC,1. We have also introduced the following notation for the boundary condition

changing operators

ψ(rs)α = ΣrΣsS(rs)α , (5.52a)

ψ(r̃s̃)α = Σ̄rΣ̄sS(rs)α , (5.52b)

with bosonic twist fields Σr = σ2r−1σ2r, Σ
r

= σ2r−1σ2r and S(rs)α the chiral components

of the 4d euclidean spin fields in the complex 2-plane (rs). Observe that in the case of CC2,

we would have a±ψ
1∓, A

(12)
± ψ1∓, A

(34)
± ψ1∓ (where we have arbitrarily relabelled a± → a∓

etc.) and w
(12)

±̇ ψ(12)±̇, w̄
(12)

±̇ ψ(1̃2̃)±̇ contributing into V±1/2 instead. Similar changes would

have to be in place for CC3. We have the reality conditions

(A
(12)
r± )† = A

(12)
r∓ , (A

(34)
r± )† = A

(34)
r∓ , (ar±)† = ar∓ , (5.53)

together with

(w̄(12)
α )† = w(12)α , (w̄(34)

α )† = w(34)α . (5.54)

– 45 –



J
H
E
P
1
2
(
2
0
1
9
)
1
1
8

For CC2 and CC3, we would have also (w̄
(12)
α̇ )† = w(12)α̇ and (w̄

(34)
α̇ )† = w(34)α̇, respectively.

The charged auxiliary fields then give constraints

[a1+, a2+] + w̄
(12)
+ w

(12)
+ = 0 , (5.55a)

[a1+, a3+] = 0 , (5.55b)

[a1+, a4+] = 0 , (5.55c)

[a2+, a3+] = 0 , (5.55d)

[a2+, a4+] = 0 , (5.55e)

[a3+, a4+] + w̄
(34)
+ w

(34)
+ = 0 , (5.55f)

together with

[A
(12)
1+ , A

(12)
2+ ]− w(12)

+ w̄
(12)
+ = 0 , (5.56a)

[A
(12)
3+ , A

(12)
4+ ] = 0 , (5.56b)

[A
(34)
3+ , A

(34)
4+ ]− w(34)

+ w̄
(34)
+ = 0 , (5.56c)

[A
(34)
1+ , A

(34)
2+ ] = 0 , (5.56d)

and

[A
(12)
1+ , A

(12)
3+ ] = 0 , (5.57a)

[A
(12)
1+ , A

(12)
4+ ] = 0 , (5.57b)

[A
(12)
2+ , A

(12)
3+ ] = 0 , (5.57c)

[A
(12)
2+ , A

(12)
4+ ] = 0 , (5.57d)

[A
(34)
1+ , A

(34)
3+ ] = 0 , (5.57e)

[A
(34)
2+ , A

(34)
3+ ] = 0 , (5.57f)

[A
(34)
1+ , A

(34)
4+ ] = 0 , (5.57g)

[A
(34)
2+ , A

(34)
4+ ] = 0 . (5.57h)

The diagonal part of the neutral auxiliary field then gives∑
r∈4

[(ar+)†, ar+]− w̄(12)
+ (w̄

(12)
+ )† + (w

(12)
+ )†w

(12)
+ +

−w̄(34)
+ (w̄

(34)
+ )† + (w

(34)
+ )†w

(34)
+ = 0 , (5.58a)

∑
r∈4

[(A
(12)
r+ )†, A

(12)
r+ ] + (w̄

(12)
+ )†w̄

(12)
+ − w(12)

+ (w
(12)
+ )† = 0 , (5.58b)

∑
r∈4

[(A
(34)
r+ )†, A

(34)
r+ ] + (w̄

(34)
+ )†w̄

(34)
+ − w(34)

+ (w
(34)
+ )† = 0 . (5.58c)

Finally, from the off-diagonal part of the charged auxiliary fields, we get

w
(12)
+ w̄

(34)
+ = w

(34)
+ w̄

(12)
+ = 0 , (5.59)
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together with

a3+w̄
(12)
+ − w̄(12)

+ A
(12)
3+ = 0 , (5.60a)

a4+w̄
(12)
+ − w̄(12)

+ A
(12)
4+ = 0 , (5.60b)

a1+w̄
(34)
+ − w̄(34)

+ A
(34)
1+ = 0 , (5.60c)

a2+w̄
(34)
+ − w̄(34)

+ A
(34)
2+ = 0 , (5.60d)

and

A
(12)
3+ w

(12)
+ − w(12)

+ a3+ = 0 , (5.61a)

A
(12)
4+ w

(12)
+ − w(12)

+ a4+ = 0 , (5.61b)

A
(34)
1+ w

(34)
+ − w(34)

+ a1+ = 0 , (5.61c)

A
(34)
2+ w

(34)
+ − w(34)

+ a2+ = 0 . (5.61d)

Identical equations would be obtained for CC2 except for the replacements

w
(12)
+ → w

(12)

+̇
and w̄

(12)
+ → w̄

(12)

+̇
. (5.62)

Similarly for CC3. Note that as observed by [30], it is impossible to find a single-instanton

solution of these constraints which would have non-zero vevs in both stretched sectors

((12) and (34)) simultaneously: equation (5.59) implies that any such solution would have

to have either w
(12)
+ = w

(34)
+ = 0 or w̄

(12)
+ = w̄

(34)
+ = 0. But then, equation (5.58a) fixes

the rest of the stretched moduli to be zero as well. In other words, it is only possible to

dissolve a single D-instanton into only one D3-brane stack at a time. Analysis of the above

constraints for a general number of D-instantons, as interesting as it may be, lies beyond

the scope of this paper.

5.3.2 Folded instanton scenario

Here we will keep only the D(−1), D3(12) and D3(13) brane stacks. There are two T-duality

inequivalent possibilities of distributing the RR charges:

FC1 : D(−1) , D3(12) , D3(13) , (5.63a)

FC2 : D(−1) , D3(12) , D3(13) , (5.63b)

both of which preserve N = 1 supersymmetry in the four dimensions spanned by X7, X8,

X9, X0, which gives rise to N = (2, 2) supersymmetry in the two dimensions spanned by

X9, X0. In the case of FC1, all massless NS stretched fermions are chiral. For FC2, the

massless NS fermions stretched between the D(−1) and D3(12), D(−1) and D3(13) branes

are anti-chiral, while the massless the NS fermions stretched between the D3(12) and D3(13)

branes are chiral. That is, in the two respective cases, all boundary fields carry charges ±1

with respect to the U(1) currents

JF,1 = +J1 + J2 + J3 , (5.64a)

JF,2 = −J1 + J2 + J3 . (5.64b)
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However, similarly to the crossed-instanton scenario, upon evaluating the auxilliary fields

H±1 , H0, we obtain structurally identical constraints for both FC1 and FC2. Let us therefore

focus on FC1 only. On top of the moduli introduced in the crossed instanton case, we denote

(V±1
2

)D3(12),D3(13) = W
(23)1
± ψ(23̃)± , (5.65a)

(V±1
2

)D3(13),D3(12) = W̄
(23)1
± ψ(2̃3)± , (5.65b)

where we introduce BCCOs

ψ(23̃)α = Σ2Σ̄3S(23)α , (5.66)

ψ(2̃3)α = Σ̄2Σ3S(23)α . (5.67)

We have reality conditions

(A
(12)
r± )† = A

(12)
r∓ , (A

(13)
r± )† = A

(13)
r∓ , (ar±)† = ar∓ , (5.68)

together with

(w̄(12)
α )† = w(12)α , (w̄(13)

α )† = w(13)α , (W̄ (23)1
α )† = W (23)1α . (5.69)

The constraints on moduli coming from the diagonal part of the charged auxilliary fields

then read

[a1+, a2+] + w̄
(12)
+ w

(12)
+ = 0 , (5.70a)

[a1+, a3+] + w̄
(13)
+ w

(13)
+ = 0 , (5.70b)

[a1+, a4+] = 0 , (5.70c)

[a2+, a3+] = 0 , (5.70d)

[a2+, a4+] = 0 , (5.70e)

[a3+, a4+] = 0 , (5.70f)

together with

[A
(12)
1+ , A

(12)
2+ ]− w(12)

+ w̄
(12)
+ = 0 , (5.71a)

[A
(12)
3+ , A

(12)
4+ ] = 0 , (5.71b)

[A
(13)
1+ , A

(13)
3+ ]− w(13)

+ w̄
(13)
+ = 0 , (5.71c)

[A
(13)
2+ , A

(13)
4+ ] = 0 , (5.71d)
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and

[A
(12)
1+ , A

(12)
3+ ] = 0 , (5.72a)

[A
(12)
1+ , A

(12)
4+ ] = 0 , (5.72b)

[A
(12)
2+ , A

(12)
3+ ]−W (23)1

+ W̄
(23)1
+ = 0 , (5.72c)

[A
(12)
2+ , A

(12)
4+ ] = 0 , (5.72d)

[A
(13)
1+ , A

(13)
2+ ] = 0 , (5.72e)

[A
(13)
1+ , A

(13)
4+ ] = 0 , (5.72f)

[A
(13)
2+ , A

(13)
3+ ] + W̄

(23)1
+ W

(23)1
+ = 0 , (5.72g)

[A
(13)
3+ , A

(13)
4+ ] = 0 . (5.72h)

The diagonal part of the neutral auxiliary field then gives∑
r∈4

[(ar+)†, ar+]− w̄(12)
+ (w̄

(12)
+ )† + (w

(12)
+ )†w

(12)
+ +

−w̄(13)
+ (w̄

(13)
+ )† + (w

(13)
+ )†w

(13)
+ = 0 , (5.73a)∑

r∈4

[(A
(12)
r+ )†, A

(12)
r+ ] + (w̄

(12)
+ )†w̄

(12)
+ − w(12)

+ (w
(12)
+ )†+

+(W̄
(23)1
+ )†W̄

(23)1
+ −W (23)1

+ (W
(23)1
+ )† = 0 , (5.73b)∑

r∈4

[(A
(13)
r+ )†, A

(13)
r+ ] + (w̄

(13)
+ )†w̄

(13)
+ − w(13)

+ (w
(13)
+ )†+

+(W
(23)1
+ )†W

(23)1
+ − W̄ (23)1

+ (W̄
(23)1
+ )† = 0 . (5.73c)

Before we write down the constraints coming from the non-diagonal part of the charged

auxilliary fields, we note that one first needs to fix possible phases (cocycles) c±r , c̃±r for

r = 1, 2, 3 arising in the OPE

ψ(23̃)±(z)ψ(13)±(0) ∼ c±3 ψ
(12)±ψ3±(0) , (5.74a)

ψ(1̃3̃)±(z)ψ(2̃3)±(0) ∼ c̃±3 ψ
(1̃2̃)±ψ3±(0) , (5.74b)

ψ(12)±(z)ψ(1̃3̃)±(0) ∼ c±1 ψ
(23̃)±ψ1±(0) , (5.74c)

ψ(13)±(z)ψ(1̃2̃)±(0) ∼ c̃±1 ψ
(2̃3)±ψ1±(0) , (5.74d)

ψ(1̃2̃)±(z)ψ(23̃)±(0) ∼ c±2 ψ
(1̃3̃)±ψ2±(0) , (5.74e)

ψ(2̃3)±(z)ψ(12)±(0) ∼ c̃±2 ψ
(13)±ψ2±(0) . (5.74f)

Associativity of the OPE requires that

c̃±2 c
±
3 = c±1 c

±
3 = c̃±1 c̃

±
2 = −c̃±1 c̃

±
3 = −c±2 c̃

±
3 = −c±1 c

±
2 = +1 . (5.75)

We will now see that the relations (5.75) can be used to eliminate all potential phase

ambiguities from the algebraic constraints on the moduli. Using the OPE (5.74), from the
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non-diagonal part of the charged auxiliary fields one obtains constraints

a3+w̄
(12)
+ − w̄(12)

+ A
(12)
3+ + c̃+

3 w̄
(13)
+ W̄

(23)1
+ = 0 , (5.76a)

a4+w̄
(12)
+ − w̄(12)

+ A
(12)
4+ = 0 , (5.76b)

a2+w̄
(13)
+ − w̄(13)

+ A
(13)
2+ + c+

2 w̄
(12)
+ W

(23)1
+ = 0 , (5.76c)

a4+w̄
(13)
+ − w̄(13)

+ A
(13)
4+ = 0 , (5.76d)

A
(12)
3+ w

(12)
+ − w(12)

+ a3+ + c+
3 W

(23)1
+ w

(13)
+ = 0 , (5.76e)

A
(12)
4+ w

(12)
+ − w(12)

+ a4+ = 0 , (5.76f)

A
(13)
2+ w

(13)
+ − w(13)

+ a2+ + c̃+
2 W̄

(23)1
+ w

(12)
+ = 0 , (5.76g)

A
(13)
4+ w

(13)
+ − w(13)

+ a4+ = 0 , (5.76h)

together with

A
(12)
1+ W

(23)1
+ −W (23)1

+ A
(13)
1+ + c+

1 w
(12)
+ w̄

(13)
+ = 0 , (5.77a)

A
(12)
4+ W

(23)1
+ −W (23)1

+ A
(13)
4+ = 0 , (5.77b)

A
(13)
1+ W̄

(23)1
+ − W̄ (23)1

+ A
(12)
1+ + c̃+

1 w
(13)
+ w̄

(12)
+ = 0 , (5.77c)

A
(13)
4+ W̄

(23)1
+ − W̄ (23)1

+ A
(12)
4+ = 0 . (5.77d)

Using the consistency relations (5.75) and replacing

(c̃+
3 )−1W

(23)1
+ →W

(23)1
+ , (5.78a)

c̃+
3 W̄

(23)1
+ → W̄

(23)1
+ , (5.78b)

(note that this rescaling does not have any effect on the previously derived constraints (5.70),

(5.71), (5.72) and (5.73)) we can rewrite these constraints as

a3+w̄
(12)
+ − w̄(12)

+ A
(12)
3+ + w̄

(13)
+ W̄

(23)1
+ = 0 , (5.79a)

a4+w̄
(12)
+ − w̄(12)

+ A
(12)
4+ = 0 , (5.79b)

a2+w̄
(13)
+ − w̄(13)

+ A
(13)
2+ − w̄

(12)
+ W

(23)1
+ = 0 , (5.79c)

a4+w̄
(13)
+ − w̄(13)

+ A
(13)
4+ = 0 , (5.79d)

A
(12)
3+ w

(12)
+ − w(12)

+ a3+ −W (23)1
+ w

(13)
+ = 0 , (5.79e)

A
(12)
4+ w

(12)
+ − w(12)

+ a4+ = 0 , (5.79f)

A
(13)
2+ w

(13)
+ − w(13)

+ a2+ − W̄ (23)1
+ w

(12)
+ = 0 , (5.79g)

A
(13)
4+ w

(13)
+ − w(13)

+ a4+ = 0 , (5.79h)

together with

A
(12)
1+ W

(23)1
+ −W (23)1

+ A
(13)
1+ + w

(12)
+ w̄

(13)
+ = 0 , (5.80a)

A
(12)
4+ W

(23)1
+ −W (23)1

+ A
(13)
4+ = 0 , (5.80b)

A
(13)
1+ W̄

(23)1
+ − W̄ (23)1

+ A
(12)
1+ − w

(13)
+ w̄

(12)
+ = 0 , (5.80c)

A
(13)
4+ W̄

(23)1
+ − W̄ (23)1

+ A
(12)
4+ = 0 , (5.80d)
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which are free of the cocycle factors. Note that setting W
(23)1
+ = W̄

(23)1
+ = 0 and keeping

only a single D-instaton, we can use analogous arguments as we did for the crossed scenario

to show that it is impossible to find a solution with both w
(12)
+ 6= 0 and w

(13)
+ 6= 0 simul-

taneously. This reproduces the result of [30]. That is, we can again only dissolve a single

D-instanton into one of the two D3 brane stacks at a time. However, it would be very in-

teresting to investigate whether a non-trivial solution can be found if we allow for non-zero

W
(23)1
+ , W̄

(23)1
+ , that is, if it is possible to dissolve all three brane stacks into each other.

6 Discussion and outlook

The aim of this paper was to take up the line of development initiated by [23]. In the

context of the Berkovits formulation of open superstring field theory, the authors of [23]

(motivated by [22]) introduce the N = 2 R-charge decomposition technique and derive

the simple expression (4.26) for algebraic couplings of the quartic classical effective action,

noting that it localizes on the boundary of the worldsheet moduli space. In particular,

they apply these results in the case of the D(−1)/D3 system and show that their result

reproduces the ADHM equations as flatness conditions for the quartic effective potential.

Ref. [20] then goes on to investigate (within the framework of the A∞ formulation of

open superstring field theory) obstructions to exact marginality of deformations of the

D(−1)/D3 system by massless open string modes. They also compute open string gauge

field profiles for the finite-size SU(2) instanton and compare their result with the findings

of [19]. Finally, ref. [24] shows that it is possible to repeat the analysis of [23] using A∞
OSFT so that one manifestly stays in the small Hilbert space throughout the derivation.

They also derive relation (2.38) between the third-order obstruction and the quartic part of

the classical effective action and note that it implies that all marginal deformations which

are unobstructed at third order must correspond to flat directions of the quartic effective

action. The main contributions of the present paper can then be listed as follows:

1. We have shown that assuming that the background at hand supports a global N = 2

worldsheet superconformal symmetry such that all NS marginal fields have R-charge

±1 (this we argued to include backgrounds preserving at least N = (2, 0) in two

non-compact dimensions), then the flatness conditions H±1 = H0 = 0 of [23, 24]

(generalized ADHM equations) are in fact equivalent to the conditions which are

neccessary and sufficient for the vanishing of the obstruction to exact marginality at

third order in the deformation parameter λ. In particular, applying these results in

the case of the D(−1)/D3 system, we have confirmed that the solution of classical

equations of motion of open superstring field theory describing a finite-size instanton

is consistent up to third order in λ.

2. Apart from discussing the situation in the context of both the usual A∞ and Berkovits

formulation of open superstring field theory, we have investigated the changes which

arise in the context of A∞ OSFT deformed by adding stubs to the Witten star

product. Our findings show that even though this necessitates an addition of higher

fundamental products into the theory which involve integration over bosonic moduli,
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the final result remains unchanged and localized on the boundary of the moduli space.

As per the discussion of [24], this should open the way to generalizing these results

to a closed superstring setting.

3. We have discussed computation of the third-order obstruction (and therefore the

quartic part of the effective action) in more general cases where the above-mentioned

global N = 2 worldsheet superconformal symmetry is not present. This was based on

the method of [21] using a Schwinger parametrization of the Siegel gauge propagator.

4. We have further used the generalized ADHM equations H±1 = H0 = 0 to compute

algebraic constraints on the moduli in the case of two more complicated backgrounds:

the D(−1)/D3 system on the background of the C2/Zn orbifold and also the D-brane

confgurations giving rise to the crossed and folded instantons at zero B-field. Doing so

we have demonstrated that the generalized ADHM equations can be used for a quick

derivation of algebraic constraints on the moduli in a wide variety of backgrounds.

We have also noted that in two of our three examples, where the background had

N = 2 supersymmetry in 4d, the auxiliary fields H±1 were related to the F-term of

the low-energy effective action while the auxiliary field H0 was related to the D-term.

Finally, let us conclude by briefly discussing possible future directions. It would be

of great interest to investigate if there are additional contraints on the marginal couplings

appearing at higher orders in the deformation parameter. In particular, it is a priori not

clear whether consistency at higher orders produces corrections to the generalized ADHM

equations or whether, under certain assumptions, the vanishing of the third-order obstruc-

tion already implies exact marginality at all orders (for the D−1/D3 system, this was

already argue to be the case in [42] from a different point of view). One might also try to

obtain analogous constraints on the fermionic moduli (or, equivalently, fermionic sector of

the quartic effective action) using a formulation of open superstring field theory in the Ra-

mond sector [10, 11] (see also [43] which generalizes the computation of [21] to the Ramond

sector). Together with the bosonic constraints discussed in this paper, these findings would

provide information about the whole supermoduli space. These considerations would also

allow for a discussion of how spacetime supersymmetry manifests itself at the level of com-

plete effective actions [44]. It would be also interesting to see whether our results generalize

to the case of NS marginal deformations in heterotic string and NSNS and RR marginal de-

formations in closed type II superstring (see [45] for a related recent discussion of marginal

deformations in closed (super)string field theory). Ultimately one should be interested in

looking at moduli spaces of D-brane systems on marginally deformed classical closed string

backgrounds. This can be done by including the effects of non-dynamical background on-

shell closed string field (satisfying closed SFT equations of motion) into a classical open

superstring field theory action through open-closed disk vertices (see [46] for some related

recent progress). We hope to report on our progress in this direction soon [47]. Unob-

structed open string marginal deformations yield new consistent open string backgrounds.

As such, these need to be described by superconformal boundary states. It would be inter-

esting to recover these boundary states by computing suitable gauge invariant observables
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in open superstring field theory [48–50]. In the case of finite-size instantons, one should

expect that the corresponding boundary states will be highly non-trivial as they cannot

satisfy the usual linear gluing conditions on the free-field oscillators αµn, ψµr (all such cases

are already exhausted by the conventional Dp-branes). OSFT methods may therefore

yield valuable insights into the structure of these boundary states complementary to other

techniques (see e.g. [51]). We hope to report on our progress soon [47].
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A Spinors in 4d

We will consider the euclidean Clifford algebra in 4d {γµ, γν} = 2δµν . In terms of the Pauli

matrices

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
, (A.1)

we define

(σµ)αβ̇ = (+iτa,1)αβ̇ ,

(σ̄µ)α̇β = (−iτa,1)α̇β ,

so that σµσ̄ν + σν σ̄µ = 2δµν and

γµ =

(
0 σµ

σ̄µ 0

)
. (A.2)

Here α, β, . . . are the chiral 2d Weyl spinor indices with α, β, . . . ∈ {+,−}, while α̇, β̇, . . .

are the anti-chiral spinor indices with α̇, β̇, . . . ∈ {+̇, −̇}. Defining the charge-conjugation

matrix so that ε+− = ε−̇+̇ = ε+− = ε−̇+̇ = +1, we have

ψα = εαβψβ , ψα = ψβεβα , ψα̇ = εα̇β̇ψ
β̇ , ψα̇ = ψβ̇ε

β̇α̇ , (A.3)

together with

εαβεβγ = −δαγ , εα̇β̇εβ̇γ̇ = −δα̇γ̇ . (A.4)
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We further define

(σµν) β
α =

1

2
(σµσ̄ν − σν σ̄µ) ,

(σ̄µν)α̇
β̇

=
1

2
(σ̄µσν − σ̄νσµ) , (A.5)

which satisfy the (anti-)selfduality relations

1

2
εµνρσσ

ρσ = +σµν , (A.6)

1

2
εµνρσσ̄

ρσ = −σ̄µν . (A.7)

Finally, defining the (anti-)selfdual t’Hooft symbols

ηaµν = εaµν4 + δaµδν4 − δaνδµ4 , (A.8)

η̄aµν = εaµν4 − δaµδν4 + δaνδµ4 , (A.9)

we have

σµν = iτcηcµν , σ̄µν = iτcη̄cµν , (A.10)

together with

ηcµνηcρσ = δµρδνσ − δνρδµσ + εµνρσ , (A.11)

η̄cµν η̄cρσ = δµρδνσ − δνρδµσ − εµνρσ . (A.12)

B Conventions for the A∞ OSFT

We denote by ξ and X the ξ-ghost and PCO charges

ξ =

∮
|z|=1

dz

2πi

1

z
ξ(z) , X =

∮
|z|=1

dz

2πi

1

z
X(z) . (B.1)

Note that X = [Q, ξ]. We will work in the suspended Hilbert space. Let d(A) = |A| + 1

denote the degree of state A. We define

m2(A,B) ≡ (−1)d(A)A ∗B (B.2)

and denote

〈A,B〉 ≡ Tr(A ∗B) ≡ Tr(AB) (B.3)

the BPZ inner product. Also,

[A,B] ≡ AB − (−1)|A||B|BA (B.4)

will be used to denote the graded ∗-commutator of string fields A,B. The symplectic form

is then defined as

ω(A,B) ≡ (−1)d(A)〈A,B〉 . (B.5)
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Then we have

0 = Q2A , (B.6a)

0 = Qm2(A,B) +m2(QA,B) + (−1)d(A)m2(A,QB) , (B.6b)

together with

0 = Q2A , (B.7a)

0 = QM2(A,B) +M2(QA,B) + (−1)d(A)M2(A,QB) , (B.7b)

0 = M2(M2(A,B), C) + (−1)d(A)M2(A,M2(B,C)) +QM3(A,B,C)+ (B.7c)

+M3(QA,B,C) + (−1)d(A)M3(A,QB,C) + (−1)d(A)+d(B)M3(A,B,QC) , (B.7d)

where

M2(A,B) =
1

3
(Xm2(A,B) +m2(XA,B) +m2(A,XB)) . (B.8)

In the large Hilbert space, M2 is exact, i.e.

M2(A,B) = QM2(A,B)−M2(QA,B)− (−1)d(A)M2(A,QB) , (B.9)

(here A,B need to be in the small Hilbert space) where we define

M2(A,B) ≡ 1

3
(ξm2(A,B)−m2(ξA,B)− (−1)d(A)m2(A, ξB)) . (B.10)

The BPZ product on the small Hilbert space can be expressed in terms of the BPZ product

on the large Hilbert space as

〈A,B〉S = 〈ξA,B〉L = (−1)|A|〈A, ξB〉L . (B.11)

The corresponding relation for the symplectic form reads

ωS(A,B) = −ωL(ξA,B) = −(−1)d(A)ωL(A, ξB) . (B.12)

Further, we have

〈A,B〉 = (−1)|A||B|〈B,A〉
〈A,B ∗ C〉 = 〈A ∗B,C〉 (B.13a)

so that the cubic vertex m2 enjoys the following cyclic property

〈A,m2(B,C)〉 = (−1)d(A)(d(B)+d(C))〈B,m2(C,A)〉 (B.14a)

= (−1)d(C)(d(A)+d(B))〈C,m2(A,B)〉 . (B.14b)

We also note that we have

〈A,QB〉 = −(−1)|A|〈QA,B〉 , (B.15)
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together with

〈A, ξB〉L = (−1)|A|〈ξA,B〉L , (B.16a)

〈A,XB〉L = 〈XA,B〉L . (B.16b)

The corresponding relations for the symplectic form read

ω(A,B) = (−1)d(A)d(B)+1ω(B,A) (B.17a)

ω(A,B ∗ C) = (−1)d(B)+1ω(A ∗B,C) (B.17b)

ω(A,m2(B,C)) = (−1)d(A)+1ω(m2(A,B), C) (B.17c)

together with

ω(A,m2(B,C)) = (−1)d(A)+d(B)(−1)d(A)(d(B)+d(C))ω(B,m2(C,A)) (B.18a)

= (−1)d(A)+d(C)(−1)d(C)(d(A)+d(B))ω(C,m2(A,B)) (B.18b)

and

ω(A,QB) = −(−1)d(A)ω(QA,B) , (B.19)

together with

ωL(A, ξB) = (−1)d(A)ωL(ξA,B) , (B.20a)

ωL(A,XB) = ωL(XA,B) . (B.20b)

C Some useful OPE and correlators

We will work with the symmetric conventions where

c(z)c(−z) = −2z c∂c(0) +O(z3) , (C.1a)

ξ(z)ξ(−z) = −2z ξ∂ξ(0) +O(z3) , (C.1b)

e−φ(z)e−φ(−z) = (2z)−1e−2φ(0) +O(z) , (C.1c)

e+φ(z)e−φ(−z) = 2z + (2z)2∂φ+O(z3) . (C.1d)

Define V = cV 1
2
e−φ, W = cW 1

2
e−φ, where the h = 1/2 matter fields V 1

2
, W 1

2
satisfy

V 1
2
(+z)W 1

2
(−z) = (2z)−1{V 1

2
W 1

2
}1(0) + {V 1

2
W 1

2
}0(0) + . . . , (C.2)

where {V 1
2
W 1

2
}n denotes the coefficient of the pole of order n in the OPE of (that

is, {V 1
2
W 1

2
}1 is proportional to the identity). We also denote V1 = G−1/2V1/2,

W1 = G−1/2W1/2. Using the formula (3.9) of [35] and the OPE (C.1), one can first

show that

P0m2(V,W ) = c∂c{V 1
2
W 1

2
}0e−2φ , (C.3)
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where, in particular, we note the absence of {V 1
2
W 1

2
}1 on the r.h.s. of (C.3). Further,

we have

P0ξm2(V,W ) = +ξc∂c {V 1
2
W 1

2
}0e−2φ , (C.4a)

P0m2(ξV,W ) = −ξc∂c {V 1
2
W 1

2
}0e−2φ − (1/2)∂ξc∂c {V 1

2
W 1

2
}1e−2φ , (C.4b)

P0m2(V, ξW ) = −ξc∂c {V 1
2
W 1

2
}0e−2φ + (1/2)∂ξc∂c {V 1

2
W 1

2
}1e−2φ , (C.4c)

which give

P0M2(V,W ) ≡ 1

3
[P0ξm2(V,W )− P0m2(ξV,W )− P0m2(V, ξW )] = P0ξm2(V,W ) , (C.5)

where we have noted that d(V ) = −d(ξ) = +1. Finally, we also have

P0m2(ξV, ξW ) = −c∂cξ∂ξ{V 1
2
W 1

2
}1e−2φ , (C.6)

so that P0M2(V,W ) = ξP0m2(V,W ). Let us further denote

G(z)V 1
2
(−z) = (2z)−1V1(0) + . . . , (C.7)

so that using

Q =

∮
dz

2πi

[
c(Tm + Tξη + Tφ) + bc∂c+ ηeφG− η∂ηe2φb

]
, (C.8)

we have

Q(cV 1
2
e−φ) = 0 , (C.9a)

Q(c∂c∂ξe−2φ) = −2cη , (C.9b)

X(cV 1
2
e−φ) = cV1 − eφηV 1

2
, (C.9c)

X(c∂c∂ξe−2φ) = 2c∂φ− ∂c . (C.9d)

It will be also useful to note that〈
c∂cξe−2φ(z)c(w)

〉
L

= −(z − w)2 , (C.10a)〈
c∂cξ∂ξe−2φ(z)cη(w)

〉
L

= −1 , (C.10b)〈
η(z1)ξ(z2)ξ(z3)

〉
L

= z23(z12z13)−1 . (C.10c)

Setting α′ = 2, we also have

i∂Xµ(z)i∂Xν(w) = +δµν(z − w)−2 + . . . , (C.11a)

ψµ(z)ψν(w) = +δµν(z − w)−1 + . . . , (C.11b)

together with

Sα(z)Sβ(w) = +εαβ(z − w)−
1
2 + (1/4)(z − w)+ 1

2 (εσµν)αβ : ψµψν : (w) + . . . (C.12a)

Sα̇(z)Sβ̇(w) = −εα̇β̇(z − w)−
1
2 − (1/4)(z − w)+ 1

2 (σ̄µνε)α̇β̇ : ψµψν : (w) + . . . (C.12b)

Sα(z)Sβ̇(w) = +(1/
√

2)σµ
αβ̇
ψµ(w) + . . . , (C.12c)

ψµ(z)Sα(w) = +(1/
√

2)(z − w)−
1
2 (σµ)αβ̇Sβ̇(w) + . . . , (C.12d)
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and

∆̄(z)∆(w) = −∆(z)∆̄(w) = +(z − w)−
1
2 + . . . , (C.13a)

i∂Xµ(z)∆(w) = τµ(w)(z − w)−
1
2 + . . . , (C.13b)

i∂Xµ(z)τν(w) = (1/2)δµν∆(w)(z − w)−
3
2 + . . . , (C.13c)

τ̄µ(z)τν(w) = (1/2)(z − w)−
3
2 (C.13d)

It will also come in useful to note the following RNS and spin field correlators (see [52]

and [53]) 〈
ψµ(z1)ψν(z2)ψρ(z3)ψσ(z4)

〉
=
δµνδρσ

z12z34
− δµρδνσ

z13z24
+
δµσδνρ

z14z23
, (C.14a)〈

ψµ(z1)ψν(z2)i∂Xρ(z3)i∂Xσ(z4)
〉

=
δµνδρσ

z12z2
34

, (C.14b)

together with〈
ψµ(z1)ψν(z2)Sα(z3)Sβ(z4)

〉
=+

z34

(z13z14z23z24z34)1/2

[
δµνεαβ

z13z24

z12z34
− 1

2
(εσµσ̄ν)αβ

]
,

(C.15a)〈
ψµ(z1)ψν(z2)Sα̇(z3)Sβ̇(z4)

〉
=− z34

(z13z14z23z24z34)1/2

[
δµνεα̇β̇

z13z24

z12z34
− 1

2
(σ̄µσνε)α̇β̇

]
,

(C.15b)

and

〈
Sα(z1)Sβ(z2)Sγ(z3)Sδ(z4)

〉
=

(
z12z13z23z24

z13z24

) 1
2
(
εαβεγδ
z12z34

−
εαδεβγ
z14z23

)
, (C.15c)〈

Sα(z1)Sβ(z2)Sγ̇(z3)S δ̇(z4)
〉

= −εαβεγ̇δ̇(z12z34)−
1
2 , (C.15d)

and 〈
∆̄(z1)i∂Xµ(z2)i∂Xν(z3)∆(z4)

〉
=−1

2

δµν

z
1
2
14z

2
23

(√
z13z24

z12z34
+

√
z12z34

z13z24

)
, (C.16)

and 〈
ψµ(z1)Sα(z2)Sβ̇(z3)

〉
= +(1/

√
2)(σµ)αβ̇z

− 1
2

12 z
− 1

2
13 , (C.17a)〈

i∂Xµ(z1)∆̄(z2)τν(z3)
〉

= +(1/2)δµν z
− 1

2
12 z

− 3
2

13 . (C.17b)

Finally, we have 〈
∆̄Sα(z1)∆Sβ(z2)∆̄Sγ(z3)∆Sδ(z4)

〉
=
εαβεγδ

z12z34
− εαδεβγ

z14z23
, (C.18a)

〈
τ̄µS

α̇(z1)τνS
β̇(z2)∆̄Sγ(z3)∆Sδ(z4)

〉
= −δµν

2

εα̇β̇εγδ

z12z2
34

, (C.18b)

〈
∆̄Sα(z1)τµS

β̇(z2)∆̄Sγ(z3)τνS
δ̇(z4)

〉
= 0 . (C.18c)
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[51] M. Schnabl and J. Vošmera, Gepner-like boundary states on T 4, arXiv:1903.00487

[INSPIRE].
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