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1 Introduction

A huge variety of conformal field theories (CFTs) can be engineered as a description of

a fixed point of an RG flow. Defining an RG flow involves choosing a UV CFT and a

deformation breaking the conformal symmetry. Different starting points and deformations

can lead to the same IR fixed point CFT. An interesting question in trying to understand

the space of possible conformal theories, is to understand such equivalence classes of flows.

In recent years, a large amount of four dimensional supersymmetric conformal field

theories have been engineered as a low energy description of six dimensional theories,

with two dimensions being a compact Riemann surface [1–11]. One can think of such a

– 1 –



J
H
E
P
1
2
(
2
0
1
9
)
1
0
8

54 4
"

- . . - -3¥ . . - -

aifhiitae
. . . . -30€ . - - -

g-di yd

( ¥0

GD #
Csis

,

FA l

" - -
-

"

,
C

'

:S.

.
F

's

fi if\ RGA l

x V

4DT
( O ¥0

Figure 1. A diagram representing different RG flows we are considering. Flow RGA describes a

compactification of a 6d model to an effective 4d theory followed by turning on a vacuum expectation

value for an operator in 4d. Flow RGB is defined by first turning on a vacuum expectation value

for a 6d operator and then compactifying the IR model to 4d. The question we will discuss in what

follows is given one of the two flows, RGA or RGB , how to identify the other one.

construction as yet another construction of an RG flow leading to a CFT. In this case the

UV CFT is a six dimensional theory and the relevant deformation is the geometry itself.

Below the energy scale set by the size of the compact part of the geometry we obtain an

effective four dimensional model which might flow to an interesting CFT. To engineer a

theory in four dimensions in this manner we have several choices. One of them is the choice

of theory in six dimensions (see [12] for a review of 6d SCFTs) and another is a collection

of choices related to the compactification. Once a theory in four dimensions is engineered,

further deformations can be preformed by either turning on relevant interactions or vacuum

expectation values (vevs). The same model again might be reached starting from different

choices in six dimensions and different flows (see figure 1 for illustration). A very interesting

question is then to understand such equivalence classes of flows in this restricted but very

rich set of theories.

We will consider in this paper two types of sequences of flows. We will denote the first

as 6d → 4d → 4d, and it starts from a 6d SCFT, first compactified to a four dimensional

model followed by another purely 4d flow triggered by a vev to a four dimensional operator.

This flow is labeled by a choice of compactification data and the 4d operator, RGA =

((Σg,s,F)A,O4d). Here Σg,s is the choice of the compactification surface, which we take to

be a genus g Riemann surface with s punctures, and F is the choice of flux for the global

symmetry in six dimensions. We denote the second flow by 6d → 6d → 4d, and it also

starts from a 6d SCFT, but first flows to a different 6d SCFT by a vev to a 6d operator

followed by a geometric flow through compactification to 4d. Such a flow is labeled by a

choice of 6d operator and the compactification geometry, RGB = ((Σg′,s′ ,F ′)B,O6d). A

natural question we will consider is which choices of RGA and RGB lead to the same fixed

point in four dimensions.
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We will develop such a dictionary in the particular case where the six dimensional

models are residing on M5 branes probing a Zk singularity denoted by T (SU(k), N), and

the 6d flows are flows between these models. Such models and their compactifications were

extensively studied recently [3, 13, 14] and we have a rich enough set of tools to study the

flows between them. In particular, we will discover that by choosing naively similar vevs

in six and four dimensions, the compactification geometry leading to equivalent models in

the two flows does not have to be the same, and in fact it often differs by the number of

punctures. The difference in the number of punctures, in particular, depends on details of

the flux. We will employ several computational tools to arrive at our conclusions.

One such tool is a simple limit of the supersymmetric index which we have at our

disposal for the particular theories of interest [15]. This limit generalizes the Coulomb

branch limit of the N = 2 index [16] to N = 1 models obtained from compactifications

of SCFTs residing on M5 branes probing A-type orbifold singularities. Such a limit of

the index captures very limited but non trivial information about the CFTs on one hand,

and can be computed for almost arbitrary compactification choices on the other hand. For

the particular cases of compactifications of T (SU(2), 2) and compactification on tori of

T (SU(k), N), we will be able to make use of the full index. Another set of tools is given

by ’t Hooft anomaly matching both for 4d and 6d flows.

The outline of the paper is as follows. In section 2 we will discuss the generalities

of the six dimensional models and their possible flows. In section 3 we will discuss the

two sequences of flows 6d → 6d → 4d and 6d → 4d → 4d and explain how to settle

their apparent discrepancy. In section 4 we will derive results regarding the 6d flow from

T (SU(k), N) to T (SU(k − 1), N). In section 5 we consider the Coulomb limit of the index

and in section 6 the full index in the cases it is known. In section 7 we will study the flows

at the level of the 4d anomaly polynomial. Several appendices complement the bulk of the

manuscript with additional technical details.

2 6d SCFTs operators and flows

The 6d models we will use in this manuscript are ones described by the IR behavior of a

stack of M5-branes probing a C2/Zk singularity. The models are denoted by T (SU(k), N),

where k comes from the singularity, and N is the number of probing M5-branes. These

models and many other 6d SCFTs can be found in [13, 17]. The SCFT points of these

models are found when all the M5-branes lay on top of one another (figure 2 left). At this

point effective strings living on the M5-branes become tensionless and the theory has no

scale. These effective strings are M2-branes sharing one spatial direction and time with

the M5-branes, and stretch in another orthogonal direction between different M5-branes.

The SCFT point is strongly coupled and very little is known about it; therefore, we use the

tensor branch description of the theory. In this description all the M5-branes are separated

along the line of the singularity and we can find a quiver description of the theory (figure 2

right). In the field theory we give a vacuum expectation value to the scalars of the tensor

multiplets to find the tensor branch description. The tensor branch allows us to understand

the quiver description of the theory. From the quiver we can read off the global symmetry

– 3 –
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Figure 2. An M-theory brane construction of M5 branes on top of a C2/Zk singularity occupying

directions 7, 8, 9, 10. The M5-branes spread in directions 0, 1, 2, 3, 4, 5. On the left: The SCFT

point is found when all the M5-branes lay on top of one another. On the right: The M5-branes are

separated along direction 6 giving the tensor branch description that can be interpreted as a quiver

description of SU(k) nodes connected with bifundamental hypermultiplets.

of the theory, and the matter, gauge and tensor multiplets that build it. In the SCFT

point the symmetry may be enhanced or restricted. Most importantly, ’t Hooft anomalies

can be calculated on the tensor branch using the techniques of [14], and are expected to

remain unchanged in the SCFT point. This will prove very useful when dealing with the

theories described above.

The flavor symmetries of these models on the tensor branch are SU(k)β×SU(k)γ×U(1).

The SU(k) symmetries come from the half infinite segments with symmetry SU(k). The

U(1) is the symmetry acting identically on all the bifundamental hypermultiplets. Naively,

there are N U(1) groups, each acting on a different hypermuliplet, however, ABJ type

gauge-flavor anomalies break all of them save for the diagonal combination. In some specific

cases this symmetry is enhanced. When N = 2 the symmetry is enhanced to SU(2k) ⊃
SU(k)β × SU(k)γ × U(1)t, which is also visible in the tensor branch quiver. When k = 2

the U(1)t symmetry is enhanced to SU(2)t symmetry, and when both N = k = 2 the flavor

symmetry is enhanced to SO(7). In the tensor branch quiver description this enhancement

is due to the SU(2)×SU(2) bifundamental being a real representation, and so rotated with

an SU(2) group rather than a U(1). Nevertheless, the symmetry of the SCFT in these cases

is smaller than that expected from the quiver. One reason for this is that the anomalies

that break the N U(1) groups to the diagonal do not exist for the SU(2) case so naively

each bifundamental hyper can be rotated separately. The reduction of the global symmetry

at the SCFT point was first suggested in [18] for the N = k = 2 case, and based on it one

can also argue the symmetry reduction in the N > 2 cases [19].

Using the quiver description (see figure 3), we can look at the different gauge invariant

operators we have. One important operator we will extensively discuss in this paper is the

one winding from one end of the quiver to the other (see figure 3 in red). This operator

transforms in the fundamental (antifundamental) representation of SU(k)β and antifunda-

mental (fundamental) representation of SU(k)γ and has charge ±N under U(1)t (here we

have normalized U(1)t so that each bifundamental has charge ±1). Another type of opera-

tor is the mesonic operator winding from one end to the neighboring gauge node and back

to the same end (see figure 3 in blue). These operators transform in the bifundamental

representation (adjoint ⊕ singlet) of the same SU(k) and have zero charge under U(1)t.

The last type of operators are the baryons (see figure 3 in green), with charge ±k under

– 4 –
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Figure 3. A quiver description of the theory T (SU(k), N) in six dimension on the tensor branch.

Squares and circles represent SU(k) flavor and gauge symmetries, respectively. The arrows represent

half hypermultiplets in the bifundamental representation of the two adjacent symmetries. We

present the three types of gauge invariant operators of the theory. In Red: We have the operators

winding from one end of the quiver to the other. In blue: We have the mesonic operators winding

from one end to the adjacent gauge node and back. In green: We have the baryonic operators, k

contractions of the same half hypermultiplet.

U(1)t only. In the SCFT point there are only two such operators (with ±k U(1)t chrages),

since all baryons with the same charge are identified with one another [20].

Another useful way to look at the T (SU(k), N) class of 6d theories, is by looking

at the type IIA superstring theory brane construction of it arising from the reduction of

the M-theory description we discussed before (see top of figure 4). This construction will

prove very useful when giving vacuum expectation values (vev) to the above operators,

since it allows to easily find the resulting IR theory at the end of the RG flow. We should

also note that RG flows between SCFTs, including the particular class of theories we

consider, were previously studied in [21–24]. We find that giving a vev to the end to end

operators gets us to class T (SU(k′), N) with k′ < k (see figure 4 red arrow). Giving a

vev to the mesonic operator leads to class T (SU(k), µL, µR, N), where µL and µR specify

a homomorphism µL/R : su(2) → su(k) that can be represented by a Young tableaux (see

figure 4 blue arrow).1

We will focus here on the compactifications of T (SU(k), N) models to four dimensions.

We will only study flows triggered by vevs to operators winding the quiver from end to

end in the tensor branch description. The resulting four dimensional models depend on

several choices of the compactification, including, fluxes for U(1) subgroups of the flavor

symmetry, and choice of Riemann surface genus and punctures. When compactifying

T (SU(k), N) models the resulting 4d class of theories is named class Sk, and it has been

studied comprehensively in the last few years [3, 6, 15, 25–30]. The map between the

choices of fluxes and surfaces in 6d and 4d theories in this class was discussed in [6, 25].

In any case of flux compactification from 6d models to 4d, the flavor symmetry of the 6d

theory will be partially broken in the 4d model according to the given flux.

3 The tale of the two flows

We start by considering the flow triggered by giving a vev to end to end operators. In 6d a

natural choice is to give a vev to one such operator, let us denote it O6d. We expect such a

1We ignore the process of giving a vev to the baryonic operator, as it is not relevant for this paper.
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Figure 4. Type IIA brane constructions for theories of T (SU(k), N) (on the top of both sides) and

their possible flows initiated by vevs to different operators. The ⊗ indicate NS5-branes occupying

directions 0, . . . , 5, The black lines signify D6-branes in directions 0, . . . , 6, and the red lines denote

D8-branes in directions 0, . . . , 5, 7, 8, 9. On the left: The blue arrow signifies the flow generated

by giving a vev to mesonic operators. In this case we first go on the partial Higgs branch sending

several D6’s to infinity. Finally we are left with several decoupled D8-branes and a quiver we can

read from the brane picture after arranging branes using the Hanany-Witten effect. The flavor

symmetry of the resulting theory can be denoted by two Young tableaux as shown bellow the brane

construction. On the right: The red arrow symbols the flow initiated by giving a vev to the end to

end operator. In this case we remain with a decoupled D6-brane and a quiver of T (SU(k − 1), N).

vev to generate a flow from T (SU(k), N) to T (SU(k− 1), N). Compactifying the resulting

theory on a Riemann surface with fluxes, (Σg′,s′ ,F ′), will lead to a 4d class Sk−1 theory.

We expect one can reach the same theory by first compactifying the 6d theory T (SU(k), N)

on a Riemann surface with some fluxes, (Σg,s,F), to a class Sk theory, and then give a

vev to some 4d operator which we denote by O4d. Given (Σg,s,F) and O4d we want to

understand what are the corresponding (Σg′,s′ ,F ′) and O6d. The question of finding a

dictionary between the two types of flows, 6d → 6d → 4d and 6d → 4d → 4d, is a one of

order of limits. A useful way to think about the problem is to start from T (SU(k), N) and

turn on both deformation, the geometric one (Σg′,s′ ,F ′) and the vev for some O6d. The

flow is then parametrized by the two scales, one set by the vev and another by the size

of geometry. Taking one of these much larger than the other we should be able to derive

(Σg,s,F) and O4d.

The easier part is understanding what O4d is. As the vev for O6d breaks some sym-

metry of the six dimensional theory, a natural candidate for the corresponding vev in four

dimensions is the operator O4d which has exactly the same charges under all the symme-

tries as O6d. We will see in the following sections that in concrete cases it is very easy

to find such a candidate. A less obvious question is how to determine (Σg,s,F) and that

is what we will mainly do in this section. The complication comes from the fact that we

turn on flux supported on the Riemann surface. What we will argue here, and later show

in explicit field theory computations, is that the presence of flux has an effect of changing

the number of minimal punctures2 between the two surfaces Σg,s and Σg′,s′ . That is g = g′

2See appendix A for class Sk puncture conventions.
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but s 6= s′. The reason for this is that the presence of flux forbids us from turning on a

constant vev on the surface, instead the vev should be taken to depend on the position

along the compactified directions. Let us discuss this issue in detail.

We first consider the 6d → 6d part of the flow generated by a constant vev to O6d in

flat 6d space. From the low-energy tensor branch theory, this flow was triggered by vevs to

scalar fields in the hypermultiplets, and is part of the Higgs branch of the initial 6d SCFT.

In flat space this is a moduli of the theory, that is, it is a possible vacuum as the energy

does not change. This is true in flat space and we next want to consider what happens

when the 6d SCFT is compactified on a 2d surface with fluxes.

We immediately encounter the following problem. While a constant vev to a scalar

in the hypermultiplet is a vacuum solution in flat space, it is generally not so once we

compactify with fluxes, as the ordinary derivative is replaced with a covariant derivative

and so a constant vev should change the kinetic energy.3 However, we may still hope that

some modification of the vev, such that it will have some profile on the 2d surface, may

still be a vacuum. We shall next explore this by restricting to the special case of genus one

where we can map this problem to that of 5d theories connected by domain walls.

We shall first quickly review the approach used in [4, 5, 7] to tackle these types of

compactifications. The starting point is to compactify the theory on one of the circles of

the torus so that it flows to a 5d theory, potentially with a flavor holonomy. Without flux,

it is known that for many cases, with a suitable choice of holonomy, the theory flows to a

5d gauge theory. This is just a generalization of the well known relation between the (2, 0)

theory and 5d maximally supersymmetric Yang-Mills theory to less supersymmetric cases.

Specifically for the cases we consider here, which can be thought of as Zk orbifolds of the

A type (2, 0) theory; the 5d gauge theory is just a circular quiver of k SU(N) groups which

is the known Zk orbifold of an SU(N) super Yang-Mills theory. In this case though, one

also needs flavor holonomies breaking the SU(k)2 global symmetry to its Cartan. We will

not need any more details about the 5d gauge theory besides its existence.

All of this is true when there is no flux, but next we want to consider the generalization

once flux is included. We can take the flux into account by using an holonomy that varies

along the compact 5d direction. Specifically we can consider an holonomy that has the

profile of a sum of theta functions along the compact 5d direction, that is the other circle

of the torus (see figure 5). This should generate a flux in the form of a sum of delta

functions along the compact 5d direction. In the regions where the flux is constant we

expect to still get a 5d gauge theory depending on the chosen holonomy; however, as the

holonomy changes, we have slightly different 5d gauge theories in different regions of the

compact 5d direction. These regions connect to one another in points where the flux is

located, and at these points there should be a 4d domain wall interpolating between the

3The flow is ultimately performed at the 6d SCFT point, where the gauge theory description is inade-

quate. The flow is then better understood as a vev to a gauge invarint field. We are here using the tensor

branch description as a way to understand the problem, though we expect the same issue to occur for the

SCFT, as the gauge invariant may be charged under symmetries involving flux. It should be noted that

the Higgs branch structure differs between the SCFT and the tensor branch gauge theory so some caution

is advised here [20]. This does not seem to effect the flow we consider here.
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Figure 5. Top: An illustration of the 6d theory on a torus is shown in the upper picture. Beneath

it we see a magnification of a cylinder out of the torus, where the circle represent the compactified

direction taken to reduce the 6d theory to 5d. Bottom: The compactification of the cylinder as part

of the 5d theory. The compact 5d direction is the longitudinal direction. We denote in colors the

localized flux in various locations along the compact 5d direction. These locations are described by

4d domain walls.

two theories (see figure 5). Thus, the result of this analysis is that when considering the

5d compactification of theories with flux, the flux is manifested as domain walls between

different 5d gauge theories that are low energy descriptions of the 6d SCFT compactified

on a circle.4

Now let us consider the problem of giving a vev to a scalar field. As we previously

mentioned in the presence of flux this is no longer a vacuum. However, we have now

learned that we can think of this system as having the flux concentrated on codimension

two defects in the 6d spacetime filling the four non-compact direction.5 This implies that

the field strength is zero almost everywhere on the Riemann surface, except at a finite

number of points. At places where the field strength is zero, a scalar field profile that is

equivalent to a constant up to a gauge transformation should be a vacuum, so the only

issue is the behavior at the few points where the flux is located. It seems reasonable then

that in the presence of flux we can still give a vev to a scalar that is mostly constant, up

to a gauge transformation, with the exception of a few points with explicit dependence

not removable by a gauge transformation. We would like to argue that it is this explicit

dependence that leads to the appearance of minimal punctures.

4The compactified 6d SCFT generally only flows to a 5d gauge theory for special values of the holonomies.

As a result this construction will only hold for cases where all the holonomies in the constant sections are

of this type, and also only for fluxes that can be generated in this way. It is unclear if any flux can be

realized using this construction. Nevertheless, for the cases we consider here, class Sk theories exhibiting

the full 6d global symmetry, it is thought that all cases can be generated using this construction [5].
5Here we take the connection to also have a delta function profile along the direction that we use to

compactify from 6d to 5d.

– 8 –



J
H
E
P
1
2
(
2
0
1
9
)
1
0
8

Before moving on to discuss the relation with minimal punctures, we first would like

to address an issue. The previous discussion was rooted in a special choice of flux as

concentrated on points on the 2d compactification surface. However, it is possible to

choose more general fluxes without this property, so one may wonder if what we observed

is an artifact of this choice. We would like to further consider this. First, we note that

our construction share many similarities with vortex solutions in 3d gauge theories. In

the simplest cases, the vortices are solutions of a system of scalar and vector fields were

the vector field strength is concentrated in a finite region in space, while the scalar fields

approach a constant, up to a gauge transformation, far away from that region, deviating

from that as one goes in. We suspect that the configuration that we suggest, for more

general fluxes, would just be a lift of these vortex solutions in 3d, and so are not unusual

in physics. The specific case we consider here is just the limit where the vortex size goes to

zero. In supersymmetric theories this is expected to describe the massless vortices that are

thought to play an important role in many superconformal 3d theories, and so in particular

can also preserve 4 supercharges.

We discussed till now flux configurations where the flux is concentrated on points on

the 2d compactification surface. One can wonder whether the specific form of the gauge

field with a given value of flux can affect our conclusions. We expect that this is not the

case and that the same conclusions hold if we smear the flux over the surface. A somewhat

analogous claim is the fact that the 4d theories obtained in the compactifications from

6d depend only on complex structure moduli and not on the details of the metric on the

Riemann surface, see e.g. [31]. On the other hand, we do expect that more than the

total value of flux, other parameters associated with the connection may contribute in four

dimensions. For example, it has been argued in many cases, see e.g. [2, 4, 6–8, 32], that flat

connections reduce to exactly marginal couplings in four dimensions.6 We do wish to note

that the results we will show in the following section are qualitatively consistent with the

expectations from this analysis, providing some confidence that the detailed distribution

of the flux is not important for the expectations derived here.

We now wish to return to the topic of why the flux leads to the appearance of minimal

punctures. As we previously explained, we shall consider the parameter region, where the

flux can be described as concentrated at points on the surface. We then expect that the

vev should take the form of a covariant constant everywhere save at the location of the

flux where it has some space dependence, leading to a codimension 2 defect. In figure 6

we show the difference between a constant vev and a position dependent vev to the end to

end operator on the tensor branch. This is shown as a brane construction similar to the

one shown in figure 4. The difference is shown when one extracts one end to end D6 brane

outside of the stack, and D4-branes stretch between the extracted D6-brane and the stack

of remaining D6-branes.

6Although we do not discuss what would be the exact mechanism for this, we do expect that the

location of the localized flux on the surface can be mapped into the problem of analyzing the admissible

flat connections. The basic idea behind this is that, in general, one can argue that dimensionally reducing

conserved current operators in 6d one can obtain marginal operators in 4d and the problem of analyzing

the dimensional reduction is tightly tied to the question of flat connections. See [33, 34] for details.

– 9 –
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Figure 6. Type IIA brane construction. NS5-, D6- and D4-branes are represented by ⊗, solid

lines and dashed lines, respectively, and fill directions 012345 (NS5’s), 0123456 (D6’s) and 01237

(D4’s). Top: The brane construction matching the quiver in figure 3 that can also be described

by a stack of N M5-branes probing an Ak−1 singularity, and denoted by T (SU(k), N). Middle: A

baryonic Higgs branch of the former theory flowing in the IR to T (SU(k − 1), N). Bottom: We

include additional D4-branes corresponding to a position dependent Higgs branch vev.

These stretched D4-branes describe a vev with a spacetime dependence at special

points [35]. We again note that in brane systems describing supersymmetric 3d gauge

theories, like the ones used in [36], the BPS vortices are described as D1 strings stretched

between D3-branes [37]. In these systems, the 3d gauge theory lives on the D3-branes,

stretched between NS5-branes, and the ending D1 string has the effect of inserting magnetic

flux to the D3-branes worldvolume theory, and so describes vortices. We also seek a brane

description where one insert a flux on a codimension 2 defect, and performing three T-

dualities on the 3d brane system gives our proposed configuration.

So we are lead to consider the brane configuration at the bottom of figure 6 as the

one appropriate for our case. We want to determine what is the effect of the additional

D4-branes. Let us first consider the case where the end point of the flow is a theory in

class S. In that case we can first lift the configuration to M-theory, where it lifts to N

M5-branes intersecting the additional M5-branes which are the lifts of the D4-branes. We

next compactify this system on one of the circles of the torus, which is contained in the

N M5-branes on which the (2, 0) theory lives, but is orthogonal to the other M5-branes.

This should lead us to a system of N circular D4-branes intersected by NS5-branes. This

is just the brane configuration describing the class S theory associated with a torus with

minimal punctures described by the NS5-branes [1]. The addition of D6-branes just adds a

C2/Zk orbifold to the M-theory picture which then go to the same orbifold in the type IIA

picture. The resulting picture is then the same with the additional NS5-branes mapping

to minimal punctures.
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This leads us to conclude that when we give a vev to a 6d SCFT compactified on

a torus with flux we expect to flow to a 4d theory associated with a compactification of

the 6d SCFT at the end of the flow, but on a torus with additional minimal punctures.

We expect the number of these minimal punctures to be proportional to the flux felt by

the operator to which we are giving a vev, in particular, we expect no additional minimal

punctures when the flux vanishes. This matches the formula for added minimal punctures

we find in section 5, which reduces for g = 1 to

m−n = c(k)
n − b(k)

n +Nek . (3.1)

In this formula, m−n is the number of additional negative minimal punctures (see appendix A

for puncture definitions) associated to the residual U(1)εn symmetry that remains from the

breaking of U(1)βn × U(1)γn in class Sk. The vev we give breaks one combination of the

U(1)βn ×U(1)γn and U(1)εn is the other combination that remains unbroken. b
(k)
n , c

(k)
n and

ek are the fluxes under the class Sk symmetries U(1)βn × U(1)γn × U(1)t, respectively.7

Recall that here we are giving a vev to 4d operators corresponding to 6d operators charged

in the bifundamental of SU(k)β × SU(k)γ and with charge N under U(1)t, and so the

number of minimal punctures vanishes when the flux felt by the operator vanishes.

We next want to consider the case of Riemann surfaces of generic genus. We suspect

our previous argument for flavor symmetry fluxes to hold also in this case. The reason is

that it is possible to take a pair of pants decomposition where all the flux is along a long

thin tube connected to the rest of the surface (see top part of figure 7). We then expect the

previous analysis to still apply to the long thin tube. Deforming to a specific pair of pants

decomposition is again mapped to going to a special point on the conformal manifold, and

there is the subtlety that the flow might be non-generic at that special limit, similarly

to the previously discussed issue with the dependence on the exact flux configuration.

Nevertheless, we shall see that the qualitative results we obtain are consistent with the

results obtained from the Coulomb index in section 5.

We now need to consider the effect of the curvature of the Riemann surface. Naively, as

we are dealing with vevs to scalar fields, the curvature should not have any effect. However,

the curvature leads to a breaking of supersymmetry unless we preform a twist, that is we

couple the Cartan of the 6d SU(2)R symmetry to a background gauge field proportional

to the curvature of the Riemann surface. This breaks the SU(2)R symmetry to its Cartan,

which becomes an R-symmetry in 4d and shall be denoted as U(1)6d
R . The scalar fields we

give a vev to are charged under the SU(2)R symmetry and so are affected by the twist.

As a result we expect the constant to again no longer be a solution because of the non-

trivial R-symmetry connection. We can again tackle this problem in a similar manner to

the flavor fluxes, as it is ultimately just a flux in a global symmetry. We again consider

a pair of pants decomposition where the Riemann surface degenerate into a collection of

tori connected via thin long tubes. In that case again the surface looks approximately like

a flat surface except at the points where the tubes connect to the tori, and we can think

7Recall, that when compactifying the 6d theory with general flux the global symmetry SU(k)β×SU(k)γ×
U(1)t is generally broken to the maximal torus symmetry of U(1)k−1

β ×U(1)k−1
γ ×U(1)t.
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Figure 7. Illustrations of a general genus Riemann surface with localized fluxes denoted by colored

points in different pair of pants decomposition schemes. Top: On the left a Riemann surface of a

generic genus with some fluxes localized on it. On the right a pair of pants decomposition of the

same surface where all the flux is along a long thin tube. Bottom: The same Riemann surface pair

of pants decomposition as several tori connected by thin tubes. The metric is non flat only near the

connection points of the tubes to the tori and the flux is chosen to be localized on the same points.

of the flux as concentrated along these points (see bottom part of figure 7). As a result

we expect the previous picture to still hold but now we need to also take into account the

R-symmetry flux. We note that the full formula for added minimal punctures we derive in

section 5 is given by

m−n = c(k)
n − b(k)

n +Nek +N(g − 1) , (3.2)

and is consistent with this as the operator is the top component of an N + 1 dimensional

SU(2)R multiplet and the twisting is such that it feels a flux of N(g − 1).

The rest of the changes then have the following interpretation. We expect the fluxes

for the unbroken γ and β symmetries to change only though the effect of breaking the

other γ and β symmetries, as these are not independent and are constrained to sum to

zero. Indeed we will show this is consistent with the result

b
(k−`)
i = b

(k)
i+` +

1

k − `
∑̀
n=1

b(k)
n i = 1, . . . , k − `

c
(k−`)
j = c

(k)
j+` +

1

k − `
∑̀
n=1

c(k)
n j = 1, . . . , k − ` , (3.3)

derived in section 5, where we consider a flow from class Sk to Sk−`. The fluxes are just

mapped to the previous one up to an overall shift, depending on the flux of the broken

symmetries, that ensures that the sum of all the fluxes is zero.

The U(1)t and U(1)6d
R fluxes are a bit trickier, as the operator we are giving a vev to

is charged under both of them. In general the vev should break the U(1) that the operator

is charged under and so the flux under it should be lost, which should lead to a change

in flux. As a result, we expect that when the operator sees no flux there will also be no

change in fluxes as we do not lose any flux. Indeed, in that case the number of additional

punctures is zero and so the Riemann surface remains the same, which means that the
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U(1)6d
R flux remains unchanged. Also, we find the change of the U(1)t flux to be given by

ek−` =
k

k − `
ek +

`

k − `
(g − 1)− m−tot

2 (k − `)
, (3.4)

where m−tot is the total number of additional minimal punctures. As a result when m−tot

vanishes the change in flux can be attributed entirely to the redefinition of U(1)t between

the two 6d SCFTs expected from 6d analysis we give in section 4.

Finally let us also mention that the flows will produce a variety of decoupled free fields

in the IR which must be matched between the different flows. We will discuss this in the

next section.

4 The 6d flow from T (SU(k), N) to T (SU(k − 1), N)

In this section we will consider the flow from T (SU(k), N) to T (SU(k − 1), N) generated

by giving a constant vev to the aforementioned end to end operators. Here we will first

study the flow at the level of the anomaly polynomial. First, it is convenient to consider

what we expect of this flow from field theory, where we shall employ the low-energy tensor

branch gauge theory. In that description, this flow is generated via a vev to the gauge

invariant made from the scalar fields in all the bifundamental hypermultiplets, including

the ones at the edges, which are gauge-global symmetry bifundamentals. We recall here

that T (SU(k), N) has an SU(k) × SU(k) × U(1)t global symmetry, in addition to the

superconformal symmetry containing the SU(2)R R-symmetry. Under these symmetries,

this gauge invariant is in the bifundamental of SU(k)β×SU(k)γ , has charge N under U(1)t,

and is in the N + 1 of SU(2)R.

We next wish to give a non-generic vev to this scalar field such that the SU(k)β ×
SU(k)γ ×U(1) global symmetry is broken to SU(k− 1)β × SU(k− 1)γ ×U(1). For that we

first consider breaking each SU(k) to SU(k − 1)×U(1) such that

kSU(k)β → εβ(k− 1SU(k)β ) +
1

εk−1
β

, kSU(k)γ →
1

εγ
(k− 1SU(k)γ ) + εk−1

γ , (4.1)

where we have introduced the fugacities εβ and εγ for the U(1) commutants of SU(k − 1)

in SU(k) for both SU(k)β and SU(k)γ , respectively.8

We can next implement this decomposition on the gauge invariant that we built. We

then find that there is a single SU(k−1)×SU(k−1) invariant in the decomposition, and we

can think of this breaking as generated by a vev to this component. More specifically, as this

field is in a non-trivial representation of SU(2)R we need to choose a specific component.

This should break SU(2)R to its Cartan denoted by U(1)6d
R , which will remain a global

symmetry of the theory throughout the flow, though the superconformal symmetry is

broken. As we are ultimately interested in supersymmetric theories also in 4d, where U(1)6d
R

is mapped to an R-symmetry, it is convenient to work with BPS components, which are

8Here and throughout this paper we use fugacities to denote charges under U(1) global symmetries. For

example denoting an operator charges in terms of fugacities aQ1
1 aQ2

2 · . . . · a
QN
N means that the operator has

charges Qi under U(1)ai , for i = 1, 2, . . . , N .
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usually those with highest R-charge. Therefore, we shall pick the component with U(1)6d
R

charge N , where we have normalized U(1)6d
R such that the doublet has charges ±1. Thus, in

field theory terms we are giving a vev to a scalar field with charges (εγ/εβ)k−1 tNrN , where

we use the fugacities t and r for U(1)t and U(1)6d
R respectively. This translates to setting

U(1)εγ = −N
k

U(1)ε −
N

2(k − 1)

(
U(1)6d

R + U(1)t

)
,

U(1)εβ = −N
k

U(1)ε +
N

2(k − 1)

(
U(1)6d

R + U(1)t

)
. (4.2)

At the end of the flow we expect to get the T (SU(k − 1), N) SCFT with several free

hypers. This means that there must also be an SU(2)R at the end of the flow. However,

its Cartan may not be just U(1)6d
R as it can potentially mix with other U(1) symmetries.

To determine the mapping we compare the charges of the scalar fields in the bifundamen-

tal hypermultiplets. Let us consider a single bifundamental between two adjacent gauge

groups. In the T (SU(k), N) SCFT it is an SU(2)R doublet with charge +1 under U(1)t
and in the bifundamental of the two adjacent SU(k) gauge symmetries. We are giving a vev

to a single component of each bifundamental, which causes all gauge groups to be Higgsed

down to SU(k − 1).

We can next decompose the two SU(k) groups of the bifundamental to SU(k−1) using

similar decompositions as in (4.1). The field we are giving a vev to is then charged as

(ε1/ε2)k−1tr, where we use ε1 and ε2 for the fugacities of the U(1) commutant of SU(k− 1)

in SU(k) for the two gauge groups. The vev then forces the identification (ε2/ε1)k−1 = tr.

Additionally there is also an SU(k − 1) × SU(k − 1) bifundamental in the decomposition.

Its U(1) charges are ε2
ε1
t(r + 1

r ). After the identification forced by the vev, however, these

become t
k
k−1 r

1
k−1 (r+ 1

r ). This should map to the bifundamental in T (SU(k − 1), N), which

has charges t′(r′ + 1
r′ ), where we have used t′ and r′ for the fugacities of U(1)t and the

Cartan of SU(2)R of T (SU(k − 1), N). Matching the two we see that the symmetries are

related as:

U(1)
T (SU(k−1),N)
t =

k

k − 1
U(1)

T (SU(k),N)
t +

1

k − 1
U(1)

6d, T (SU(k),N)
R ,

U(1)
6d, T (SU(k−1),N)
R = U(1)

6d, T (SU(k),N)
R . (4.3)

With the above understandings we can set the vev and initiate the flow on the level of

the 6d anomaly polynomial. The anomaly polynomial for T (SU(k), N) [14] is given by

I
T (SU(k),N)
8 =

(N − 1)
(
k2(N2 +N − 1) + 2

)
24

c2
2(R)− (k2 − 2)(N − 1)

48
c2(R)p1(T )

+
(
k

24
p1(T )− k(N − 1)

2
c2(R)− kN

2
c2

1(t)
)

(c2(β)k + c2(γ)k)

− k

6
(c4(β)k + c4(γ)k) +

(
k

12
+

1

2
− 1

2N

) (
c2

2(β)k + c2
2(γ)k

)
+

1

N
c2(β)kc2(γ)k +

k

2
c1(t) (c3(β)k + c3(γ)k)

+
k2N(N2 − 1)

12
c2(R)c2

1(t)− Nk2

48
p1(T )c2

1(t) +
N3k2c41(t)

24

+
(7k2 + 30N − 30)

5760
p2

1(T )− (k2 + 30N − 30)

1440
p2(T ) , (4.4)
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where c2(R) is the second Chern class in the doublet of SU(2)R and cn(x)r is the n-th Chern

class in the representation r of the symmetry associated to x. β, γ and t are associated to

the symmetries SU(k)β , SU(k)γ and U(1)t, respectively. p1(T ) and p2(T ) are the first and

second Pontryagin classes of the tangent bundle.

We next need to decompose the SU(k) symmetries to SU(k − 1) using (4.1). This is

implemented in the anomaly polynomial by the assignments

c2(SU(k)β)k = c2(SU(k−1)β)k−1−
k(k−1)

2
c2

1(U(1)εβ ),

c3(SU(k)β)k = c3(SU(k−1)β)k−1−2c1(U(1)εβ )c2(SU(k−1)β)k−1

− k(k−1)(k−2)

3
c3

1(U(1)εβ ),

c4(SU(k)β)k = c4(SU(k−1)β)k−1−
(k2−k−6)

2
c2

1(U(1)εβ )c2(SU(k−1)β)k−1

−3c1(U(1)εβ )c3(SU(k−1)β)k−1−
k(k−1)(k−2)(k−3)

8
c4

1(U(1)εβ ) , (4.5)

where cn(SU(k)β) ≡ cn(β). There are similar assignments under the exchange β → γ, but

with c1(U(1)εβ )→ −c1(U(1)εγ ) due to the different definitions of the symmetries in (4.1).

In addition, we will also break SU(2)R to its Cartan by taking c2(R) = −c1(R′)2. Finally,

we will initiate the flow by giving the aforementioned vev translating to the assignments

in (4.2). Under all these assignments (4.4) transforms to

I
T (SU(k),N),Flow
8 = I

T (SU(k−1),N)
8

(
c1(t)→ k

k − 1
c1(t) +

1

k − 1
c1(R′), c2(R)→ −c1(R′)2

)
+ I free hyper

8 + Iβ free hypers
8 + Iγ free hypers

8 , (4.6)

where the last three terms have the form of an anomaly polynomial of free hypermulti-

plets. Specifically, I free hyper
8 can be identified with the anomaly polynomial of a free half-

hypermultiplet in the doublet of SU(2)R. Iβ free hypers
8 can be identified with the anomaly

polynomial of k − 1 free hypers in the fundamental of SU(k − 1)β , charge k under U(1)εβ
and charge −1 under U(1)6d

R . Similarly, Iγ free hypers
8 can be identified with the anomaly

polynomial of k− 1 free hypers in the fundamental of SU(k− 1)γ , charge −k under U(1)εγ
and charge −1 under U(1)6d

R . These charges will be trivially shifted by the identifications

of (4.2).

From the above result we expect the matching decoupled free chiral multiplets in 4d

to be with the following charges9

FCβ =

k−1∑
i=1

β−Ni εkβ =

k−1∑
i=1

β−Ni ε−N
(r
t

) Nk
2(k−1)

,

FCγ =
k−1∑
j=1

γNj ε
−k
γ =

k−1∑
i=1

γNj ε
N
(r
t

) Nk
2(k−1)

, (4.7)

9We chose the free chirals to be in the anti-fundamental of SU(k−1)β and the fundamental of SU(k−1)γ ,

as this choice matches the results we will find in section 5 for 4d. This stems from the identification of the

6d SCFT symmetries, as defined here, and the conventions of class Sk, as set out in [3].

– 15 –



J
H
E
P
1
2
(
2
0
1
9
)
1
0
8

where we used the definition U(1)4d
t = −U(1)6d

t . In addition, βi and γj are the Cartan of

SU(k− 1)β and SU(k− 1)γ , respectively, as we break them when we compactify to 4d and

give flux to these global symmetry. These Cartan charges uphold the relations
∏k−1
i=1 βi = 1

and
∏k−1
j=1 γj = 1. The second equality signs are due to the relations in (4.2). We would

like to write the charges in terms of the T (SU(k − 1), N) theory t- and R- charges, and

also move to the R-charge conventions used in 4d as t → t − r4d and r6d → r4d. We find

that the expected free chiral fields take the form

FCβ =
k−1∑
i=1

β−Ni ε−N
(

2r

t

)N/2
, FCγ =

k−1∑
i=1

γNj ε
N

(
2r

t

)N/2
. (4.8)

Using this flow from T (SU(k), N) to T (SU(k − 1), N), one can easily generalize to

flow to T (SU(k − `), N). For instance equation (4.3) can be generalized to that case giving:

U(1)
T (SU(k−`),N)
t =

k

k − `
U(1)

T (SU(k),N)
t +

`

k − `
U(1)

T (SU(k),N)
R ,

U(1)
T (SU(k−`),N)
R = U(1)

T (SU(k),N)
R . (4.9)

This is then the relation between these symmetries for the two theories. As for the expected

charges of the decoupled free fields in 4d we find it generalizes to

FCβ,n =

k−∑̀
i=1

β−Ni ε−Nn

(
2r

t

)N/2
,

FCγ,n =

k−∑̀
i=1

γNj ε
N
n

(
2r

t

)N/2
, (4.10)

where
∏k−`
i=1 βi = 1 and

∏k−`
j=1 γj = 1. In addition we may expect in this general case

free chirals charged under two of the εn-s only, related to strings attached to two of the

D6-branes removed from the stack in the brane picture.

5 The Coulomb branch limit

Armed with the knowledge of known 6d operators and the resulting flows generated from

giving vevs to these operators; we can try to map them to the matching 4d theories and

operator vevs. These map to 4d baryonic operators that exist in some of the 4d theories

depending on the Riemann surface and fluxes.10 These operators are explicitly added in the

process of gluing two punctured Riemann surfaces by the so called Φ-gluing, see appendix A

for puncture and gluing types. The aforementioned operators are illustrated in figure 8.

The operators we give a vev to are captured by a specific limit of the superconformal

index of class Sk theories [15], which generalizes the Coulomb index of class S models [16].

For N = 2 models the Coulomb limit only captures operators from the Coulomb branch,

which for Lagrangian theories are of the form Trφk with φ being the adjoint chiral in

the vector multiplet. Specifically, for class S such operators are added when gluing two

10In the case of a punctured Riemann surface it also depends on the puncture properties.
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Figure 8. The fields added in Φ gluing. The baryonic operators TNβ−N
i γNj introduced in the

gluing are the ones we give vacuum expectation value to. Not all operators exist in every model,

and the spectrum depends on the fluxes (and also puncture properties in case there are ones). We

therefore expect the flows to depend non trivially on the fluxes. T indicates an R-charge 2 and

U(1)t charge −1 (this is related to the U(1)t symmetry originating from the symmetries of the

6d theory).

punctures as they belong to the N = 2 vector multiplet. For N = 1 the notion of the

Coulomb branch is not as natural as the one for N = 2, but for the specific case of class Sk
it was found in [15] that there is a limit of the superconformal index that counts operators

that are added when gluing two punctures, see figure 8. This limit of the index is obtained

by taking the limit of p, q, t → 0 while keeping T ≡ pq
t constant, where t is the fugacity

associated with the U(1)t symmetry coming from 6d, and p and q are superconformal

fugacities defined in appendix B. Additionally for k = 1 (no singularity) this limit is the

same as the class S Coulomb limit.

The operators we are interested to give a vev to, are some of the operators contributing

to the Coulomb limit described above (see figure 8). Therefore, we can use the Coulomb

limit formula as a simple tool to help us map the flows from Sk to class Sk′ with k′ < k,

and to identify the new fluxes. Additionally, we can use the explicit Lagrangians known in

class Sk to find on the level of the superconformal index the mapping of the flows in some

specific examples. We will also initiate the flow on the known class Sk anomaly polynomial

to verify further our results.

We will concentrate on deriving results and mapping the flows from the Coulomb index

in this section. To that end we start by recalling the result found in [15], the Coulomb

limit formula for class Sk on a Riemann surface without punctures was given as

IN,kg,(bi,cj ,e)
= PE

 k∑
i,j=1

(−bi + cj +Ne+ (N − 1) (g − 1))β−Ni γNj T
N


× PE

[
N−1∑
`=1

(`ke+ (`k − 1) (g − 1))T `k

]
, (5.1)
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with N the number of probing M5-branes, k related to the Ak−1 singularity and g the genus

of the Riemann surface. Here each T ≡ pq
t adds 2 to the R-charge and −1 to the U(1)t

charge, and (bi, cj , e) are, as defined before, the fluxes for (βi, γj , t), the residual (Cartan

subalgebra) U(1) internal symmetries remaining from the 6d SU(k)β × SU(k)γ × U(1)t
flavor symmetry. PE[. . .] is the plethystic exponent, see appendix B for definition. We

will mostly deal with closed Riemann surfaces not including punctures to keep the main

results simple and not clutter them with the large amount of obstructions that punctures

create. Some comments and results with punctures are available in appendix C.

When we give a vacuum expectation value to an operator we set its scalar component

to some value that relates to some energy scale. This value is not charged under any

global symmetry (including R-symmetry), forcing to identify some of the symmetries that

the operator is charged under with one another. In the superconformal index language

the symmetries appear as fugacities which are charges under the Cartan subalgebra of

each symmetry. When we give a vev to some operator we simply set the combination of

fugacities it is charged under to be 1. For example in what follows we will give vevs to

operators with charge −N under one of the U(1)βi symmetries, charge N under one of

the U(1)γj symmetries, charge −N under U(1)t and R-charge 2N under the conventional

R-charge used in the Coulomb limit formula.11 In fugacities this vev translates to setting(
β−1
i γj

(pq
t

))N
= 1.

The general formula for the Coulomb limit of the superconformal index is valid for

all theories of class Sk (modulo some restrictions on the flux, see [15]). Some of these, at

the moment, lack a simple Lagrangian definition, whereas for others such a description is

known. For theories with no known Lagrangian what physically happens during the flow is

hard to analyze, whereas for Lagrangian models we can easily follow the flow. Thus, we can

only understand the flow process for Lagrangian theories that have the required operators,

and we give some account for many such examples in section 6. In some of these Lagrangian

cases we generate the flow by triggering vevs to baryonic operators composed of fields with

charges β−1
i γj

(pq
t

)
, which are the ones added in Φ-gluing, see figure 8. Considering any

specific theory, including non-Lagrangian ones, one can easily see in the formula for the

Coulomb index that the required operators exist by checking if the coefficient of β−Ni γNj T
N

in the plethystic exponent is greater than zero. The flow triggered by the aforementioned

vevs then may include Higgsing of some of the gauge symmetries and also fields becoming

massive depending on the specifics of the UV theory.

In this section we will first map flows that break all the βi and γj internal symmetries,

as these flows leave us with a simple result in class S allowing an easy mapping of fluxes

and free fields. After this, we will consider vevs partially breaking the βi and γj internal

symmetries, resulting in class Sk−` with no additional punctures. As before we will find

the mapping of fluxes and free fields for this case. Finally, we will consider vevs breaking

some of the pairs U(1)βi × U(1)γi to a residual U(1)εi . As we discussed before, in the

general case this will result in class Sk−` theories with additional minimal punctures. We

will find the number of additional punctures and map fluxes and free fields in this case

11This is not necessarily the conformal R-charge.
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as well. We will show that the result of the flow with additional minimal punctures can

be related to the former result without minimal punctures by simply closing the minimal

punctures. This sequence of results should allow to track our logic and mappings as we

move from the simplest result with a minimal number of mapping parameters to the most

complicated one.

5.1 Flows from class Sk to class S1

Starting from the simplest operator vevs, we first wish to break all internal symmetries

excluding U(1)t (β’s and γ’s only). This should lead us to class S1 which is the same

as class S up to free fields.12 The triggering of the vevs is implemented in the index by

setting
(
β−1
i γj

(pq
t

))N
= 1 with i = 1, . . . , k − 1 and j = 1, . . . , k. These vevs translate

to the assignments βi = pq
t , γj = 1. Placing the above assignment in the Coulomb limit

appearing in (5.1) we find,

IN,k(flow)
g,(bi,cj ,ek) = PE [(kbk +Nk(k − 1)ek + (N − 1) (g − 1) k(k − 1))]

× PE
[
(−kbk +Nkek + (N − 1) (g − 1) k)T kN

]
× PE

[
N−1∑
`=1

(`kek + (`k − 1) (g − 1))T `k

]
. (5.2)

We next want to compare the above formula to the Coulomb limit formula of class

S1, but first we want to shift the charges under the U(1)t to match the expected powers

of T contributing to the limit in class S1. This is achieved by redefining charges such that

T → T 1/k. The limit transforms accordingly to

IN,k(flow)
g,(bi,cj ,ek) = PE

[
(−kbk +Nkek + (N − 1) (g − 1) k)TN

]
×PE

[
N−1∑
`=1

(`kek + (`k − 1) (g − 1))T `

]
. (5.3)

Here we stripped the divergence that appeared in the first line. Comparing to the Coulomb

limit of class S1

IN,k=1
g,(e1) = PE

[
(Ne1 + (N − 1) (g − 1))TN

]
×PE

[
N−1∑
`=1

(`e1 + (`− 1) (g − 1))T `

]
. (5.4)

We can match all coefficients of T ` with ` = 1, . . . , N − 1 by setting the flux of the S1

theory to be

e1 = kek + (k − 1) (g − 1) . (5.5)

12We use class S1 and not class S in order to make the generalization of the results more obvious later

on, when we discuss flows from class Sk to Sk′ with k > k′.
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The coefficients of TN don’t match for this value, but we will show that this mismatch

corresponds to free chiral multiplets of R-charge 2N and U(1)t charge −N that decouple in

the flow. The comparison allows to find the number of decoupled chiral multiplets, given by

nFC = −kbk − (k − 1) (g − 1) . (5.6)

In case the number of decoupled free chirals is negative it means in the simplest sense, that

one needs to decouple fields with opposite charges and (2 − QR) R-charge, where in this

case QR = 2N is the original R-charge of the free chiral fields.

Other vev choices that break all the internal symmetries (except U(1)t), can be easily

mapped to this specific choice by replacing bk with either bi or cj matching the vevs.

5.2 Flows from class Sk to class Sk−`

After understanding the Coulomb limit flow followed by the simple vevs breaking all the β

and γ internal symmetries, we wish to understand the flow generated by vevs that partially

break the internal symmetries. For this purpose we choose baryon vevs
(
β−1
n γm

(pq
t

))N
=

1 and
(
β−1
n γk

(pq
t

))N
= 1, meaning we set βn = pq

t γk, γm = γk, with n,m = 1, . . . , `.

In addition we make the identification of the new internal symmetries such that βi =

β̃i−`
(pq
t

)−`/(k−`)
γ
−`/(k−`)
k and γj = γ̃j−`γ

−`/(k−`)
k , with i, j = `+ 1, . . . , k. Specifically, the

assignments required are

βn =
pq

t
γ̃

(k−`)/k
k−` , βi = β̃i−`

(pq
t

)−`/(k−`)
γ̃
−`/k
k−` n = 1, . . . , `, i = `+ 1, . . . , k

γm = γ̃
(k−`)/k
k−` , γj = γ̃j−`γ̃

−`/k
k−` m = 1, . . . , `, j = `+ 1, . . . , k .

(5.7)

Using these assignments in the Coulomb limit (5.1), it transforms to

IN,k(flow)
g,(bi,cj ,e)

=PE

[
`

(∑̀
n=1

(
−b(k)

n +c(k)
n

)
+N`ek+(N−1)`(g−1)

)]

×PE

[(
−
∑̀
n=1

b(k)
n +`c

(k)
k +N`ek+(N−1)`(g−1)

)]

×PE

∑̀
n=1

k−1∑
j=`+1

(
−b(k)

n +c
(k)
j +Nek+(N−1)(g−1)

)
γ̃−Nk−`γ̃

N
j−`


×PE

[
k∑

i=`+1

∑̀
m=1

(
−b(k)

i +c(k)
m +Nek+(N−1)(g−1)

)
β̃−Ni−` γ̃

N
k−`T

Nk/(k−`)

]

×PE

 k∑
i=`+1

k∑
j=`+1

(
−b(k)

i +c
(k)
j +Nek+(N−1)(g−1)

)
β̃−Ni−` γ̃

N
j−`T

Nk/(k−`)


×PE

[
N−1∑
n=1

(knek+(kn−1)(g−1))T kn

]
. (5.8)

– 20 –



J
H
E
P
1
2
(
2
0
1
9
)
1
0
8

As before we need to redefine the t- and R-charges, in this case such that T → T (k−`)/k.

The result is

IN,k(flow)
g,(bi,cj ,e)

= PE

k−`−1∑
j=1

(
−
∑̀
n=1

b(k)
n + `

(
c

(k)
j+` +Nek + (N − 1) (g − 1)

))
γ̃−Nk−`γ̃

N
j


× PE

[
k−∑̀
i=1

(∑̀
m=1

c(k)
m + `

(
−b(k)

i+` +Nek + (N − 1) (g − 1)
))

β̃−Ni γ̃Nk−`T
N

]

× PE

k−∑̀
i=1

k−∑̀
j=1

(
−b(k)

i+` + c
(k)
j+` +Nek + (N − 1) (g − 1)

)
β̃−Ni γ̃Nj T

N


× PE

[
N−1∑
n=1

(knek + (kn− 1) (g − 1))T (k−`)n

]
, (5.9)

where as before we stripped the divergence. We can now compare the above result to the

Coulomb limit formula of class Sk−`

IN,k−`g,(bi,cj ,e)
= PE

 k−∑̀
i,j=1

(
−b(k−`)i + c

(k−`)
j +Nek−` + (N − 1) (g − 1)

)
β−Ni γNj T

N


× PE

[
N−1∑
n=1

((k − `)nek−` + ((k − `)n− 1) (g − 1))T (k−`)n

]
. (5.10)

We can match all the coefficients of T (k−`)n by setting the t-flux of the Sk−` theory

to be

ek−` =
k

k − `
ek +

`

k − `
(g − 1) . (5.11)

Comparing the coefficients of β−Ni γNj T
N for i = 1, . . . , k − ` and j = 1, . . . , k − ` − 1 we

find the β- and γ-fluxes of the Sk−` theory need to be set to

b
(k−`)
i = b

(k)
i+` +

1

k − `
∑̀
n=1

b(k)
n , i = 1, . . . , k − `

c
(k−`)
j = c

(k)
j+` +

1

k − `

(∑̀
i=1

b
(k)
i −N`ek −N` (g − 1)

)
, j = 1, . . . , k − `− 1 . (5.12)

In this case there will be additional free fields that decouple in the flow, associated

with the unmatched coefficients between the two Coulomb limits. The first is the residual
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coefficient of β̃−Ni γ̃Nk−`T
N where i = 1, . . . , k − `. Those fields have −N β̃i charge, N γ̃k−`

charge, 2N R-charge, and −N t-charge. The number of such free chiral multiplets

nFC,i

(
β̃−Ni γ̃Nk−`T

N
)

=
∑̀
n=1

b(k)
n − `b

(k)
i+1 + ` (g − 1) . (5.13)

The second free field emerging from the coefficient of γ̃Nj γ̃
−N
k−`, where j = 1, . . . , k − ` − 1,

with 2N γ̃j-charge and N charge units for all the other γ̃-s (This is due to the relation

γ̃k−` =
∏k−`−1
j=1 γ̃−1

j ). These free chiral fields are numerated by

nFC,j

(
γ̃Nj γ̃

−N
k−`

)
= −

∑̀
n=1

b(k)
n + `

(
c

(k)
j+` +Nek + (N − 1) (g − 1)

)
. (5.14)

Many of these results were chosen in a manner that match the direct results from La-

grangian theories flows, and the anomaly polynomial flows we will present in the following

sections. Meaning, these results cannot be determined fully by the Coulomb limit compar-

isons. One simple check we can make is by taking ` = k − 1; this restores the former case

of breaking the β and γ symmetries completely. In addition, as before one may use other

vevs to eliminate partially the internal symmetries and reach class Sk−`, but all of these

can be trivially mapped to the case studied above.

5.3 Flows from class Sk to class Sk−` with extra punctures

Finally, we will employ the Coulomb index to find the mapping of fluxes and new minimal

punctures in the case we give vevs that break some of the U(1)βi × U(1)γj symmetries

to diagonal U(1) symmetries. The initial Coulomb limit will be of puncture-less Riemann

surfaces, while class Sk−` Coulomb limit will be of Riemann surfaces with negative minimal

punctures. For the conventions of punctures in class Sk see appendix A.

The vevs are chosen in a rather general form breaking ` pairs of U(1)βn × U(1)γn
to ` U(1) factors. The vevs are

(
β−1
n γn

(pq
t

))N
= 1 with n = 1, . . . , `, translating to

the assignments

βn =
(pq
t

)1/2
ε−1
n

∏̀
r=1

ε1/kr , βi = β̃i−`

(pq
t

)−`/2(k−`) ∏̀
r=1

ε1/kr n = 1, . . . , `

γn =
(pq
t

)−1/2
ε−1
n

∏̀
r=1

ε1/kr , γi = γ̃i−`

(pq
t

)`/2(k−`) ∏̀
r=1

ε1/kr i = `+ 1, . . . , k , (5.15)

where εn is the fugacity matching the residual U(1)εn from the breaking of U(1)βn×U(1)γn
by the vevs. Also, we have mixed the U(1) factors in a specific manner to make the minimal

punctures more apparent.
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Using the above assignments in the Coulomb limit formula (5.1), reproduced here

IN,kg,(bi,cj ,e)
= PE

 k∑
i,j=1

(−bi + cj +Nek + (N − 1) (g − 1))β−Ni γNj T
N


× PE

[
N−1∑
n=1

(knek + (kn− 1) (g − 1))T kn

]
, (5.16)

it transforms as

IN,k(flow)
g,(bi,cj ,e)

= PE

[∑̀
n=1

(
−b(k)

n + c(k)
n

)
+N`ek + (N − 1) ` (g − 1)

]

× PE

∑̀
n 6=m

(
−b(k)

n + c(k)
m +Nek + (N − 1) (g − 1)

)
εNn ε
−N
m


× PE

∑̀
n=1

k∑
j=`+1

(
−b(k)

n + c
(k)
j +Nek + (N − 1) (g − 1)

)
γ̃Nj−`ε

N
n T

Nk/2(k−`)


× PE

[
k∑

i=`+1

∑̀
m=1

(
−b(k)

i + c(k)
m +Nek + (N − 1) (g − 1)

)
β̃−Ni−` ε

−N
m TNk/2(k−`)

]

× PE

 k∑
i,j=`+1

(
−b(k)

i + c
(k)
j +Nek + (N − 1) (g − 1)

)
β̃−Ni−` γ̃

N
j−`T

Nk/(k−`)


× PE

[
N−1∑
n=1

(knek + (kn− 1) (g − 1))T kn

]
. (5.17)

Redefining the t- and R-charges s.t. T → T (k−`)/k results in

IN,k(flow)
g,(bi,cj ,e)

= PE

∑̀
n 6=m

(
−b(k)

n + c(k)
m +Nek + (N − 1) (g − 1)

)
εNn ε
−N
m


× PE

∑̀
n=1

k−∑̀
j=1

(
−b(k)

n + c
(k)
j+` +Nek + (N − 1) (g − 1)

)
γ̃Nj ε

N
n T

N/2


× PE

[
k−∑̀
i=1

∑̀
n=1

(
−b(k)

i+` + c(k)
n +Nek + (N − 1) (g − 1)

)
β̃−Ni ε−Nn TN/2

]

× PE

 k−∑̀
i,j=1

(
−b(k)

i+` + c
(k)
j+` +Nek + (N − 1) (g − 1)

)
β̃−Ni γ̃Nj T

N


× PE

[
N−1∑
n=1

(knek + (kn− 1) (g − 1))T (k−`)n

]
, (5.18)

where we removed the divergence.
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This result needs to be compared with the Coulomb limit formula of class Sk−` of a

Riemann surface with m−n negative minimal punctures charged under U(1)εn where n =

1, . . . , `

IN,k−`
g,m−n ,(bi,cj ,e)

=PE

 k−∑̀
i,j=1

(
−b(k−`)i +c

(k−`)
j +N

(
ek−`+

m−tot

2(k−`)

))
β−Ni γNj T

N


×PE

 k−∑̀
i,j=1

(
(N−1)(g−1)−m

−
tot

k−`

)
β−Ni γNj T

N


×PE

[
N−1∑
n=1

(
(k−`)n

(
ek−`+

m−tot

2(k−`)

)
+((k−`)n−1)(g−1)

)
T (k−`)n

]

×PE

[
k−∑̀
i=1

∑̀
n=1

(
m−n
)(
β−Ni ε−Nn +γNi ε

N
n

)
TN/2

]
, (5.19)

where again m−n is the number of negative minimal punctures associated to the symme-

try U(1)εn , and m−tot is the total number of negative minimal punctures. Matching the

coefficients of T (k−`)n we find the t-flux of the resulting Sk−` theory is

ek−` =
k

k − `
ek +

`

k − `
(g − 1)− m−tot

2 (k − `)
. (5.20)

This result reduces to the one we found with the initial set of vevs we used in equation (5.11)

when we close all the minimal punctures.13

Next, we can compare the coefficients of β−Ni γNj T
N for i, j = 1, . . . , k−`. The resulting

β- and γ-fluxes of the IR theory

b
(k−`)
i = b

(k)
i+` +

1

k − `
∑̀
n=1

b(k)
n i = 1, . . . , k − `

c
(k−`)
j = c

(k)
j+` +

1

k − `
∑̀
n=1

c(k)
n j = 1, . . . , k − ` , (5.21)

where the symmetry between the β-s and γ-s was required from the symmetry of the given

vevs. These formulas show that the residual flux from the ` broken U(1)βn-s and U(1)γm-s

is divided equally between the (k − `) remaining U(1)βi-s and U(1)γj -s in a manner that

preserves the required relations
∏
i βi = 1 and

∏
j γi = 1.

The results we found for the β- and γ-fluxes need to be consistent with the results we

found with our initial set of vevs when we close all the minimal punctures with appropriate

vevs. From this consistency requirement we can find the number of additional minimal

punctures, since it should be equal to the difference between the γk flux found in the

above formula (5.21) and the one found with the initial set of vevs in (5.12) up to a

13Recall that each closing of a negative minimal puncture in class Sk shifts the t-flux by + 1
2k

.
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normalization.14 This results in the number of new (negative) minimal punctures being

m−tot =
∑̀
n=1

c(k)
n −

∑̀
n=1

b(k)
n +N`ek +N` (g − 1) . (5.22)

One can consider the vevs we gave as a series of vevs each decreasing k by 1. This allows us

to calculate the number of minimal punctures of each kind from the above formula alone.

The resulting number of additional minimal punctures relating to each U(1)εn is

m−n = c(k)
n − b(k)

n +Nek +N (g − 1) . (5.23)

To match the two Coulomb branch formulas completely one needs to remove some free

chiral fields that decouple during the flow as we had before. We find decoupled free chirals

from the residual coefficients of β̃−Ni ε−Nn TN/2 and γ̃Nj ε
N
n T

N/2 with i, j = 1, . . . , k − ` and

n = 1, . . . , `. These fields have −N β̃i and N γ̃j charge, respectively, −N and +N εn
charge, respectively. In addition they have N R-charge, and −N/2 t-charge numerated by

nFC

(
β̃−Ni ε−Nn TN/2

)
= −b(k)

i+` + b(k)
n − (g − 1)

nFC

(
γ̃Nj ε

N
n T

N/2
)

= c
(k)
j+` − c

(k)
n − (g − 1) . (5.24)

These are the same free chiral fields shown in equation (4.10) that were expected from the

6d flow. Here we see that in the 4d flow the number of these free chirals is effected by the

flux used in the compactification.

Additional decoupled free chirals come from the coefficient of εNn ε
−N
m with n 6= m =

1, . . . , `, and charges +N and −N for εn and εm. The number of such free chirals

nFC
(
εNn ε
−N
m

)
= −b(k)

n + c(k)
m +Nek + (N − 1) (g − 1) . (5.25)

These free chirals will not arise in the case we give a vev to only one operator. In fact they

will not appear at all if one sequentially give vev to one operator at a time and decouples

its free fields before going to the next.

14Remember that closing of a negative minimal puncture of class Sk with vev containing γk shifts the γk
flux by + k−1

k
.
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6 Full index computation

In this section we will focus on explicit examples of theories in class Sk that have a known

Lagrangian description, allowing us to write for them a closed form superconformal index.

We will initiate the flow on the level of the index and try to identify the resulting index in

class Sk′ . We give the relevant index definitions in appendix B.

6.1 Flows from S2 to S1 with N = 2

In the case of classes S2 and S1 with N = 2 we know the Lagrangians of all theories. This

enables to do explicit index calculations to further support the results from the Coulomb

limit formula. In addition, these calculation will enable to further establish the claim on the

free chiral multiplets that decouple during the flow. We will consider flows from theories

described by a genus g = 0, 1, 2 Riemann surface and some flux that will contain all poles

matching the vacuum expectation values (vevs) that appear above (5.2). We will use these

index flows to verify the results of both the case with additional minimal punctures and

the one without. In all cases we will start from giving a vev to only one baryonic operator

given by (
β−1γ

(pq
t

))2
= 1 . (6.1)

This translates to the assignments β =
(pq
t

)1/2
ε−1/2 and γ =

(pq
t

)−1/2
ε−1/2, leaving us

with additional minimal punctures of fugacity ε. The resulting indices from this flow will

allow us to verify the results of subsection 5.3. The second baryonic operator vev used in

subsection 5.1 is (
β−1γ−1

(pq
t

))2
= 1 , (6.2)

and it breaks all the β and γ internal symmetries completely. Plugging the assignments of

the former vev together with the identifications of the new t- and R- charges involved in

the flow, we find it translates to (
ε

√
pq

t

)2

= 1 . (6.3)

This is exactly the vev that one gives to a baryonic operator charged under a U(1) symmetry

associated to a negative minimal puncture with fugacity ε in order to close the puncture.

We will use this second flow to verify the results of subsection 5.1.

Spheres (g = 0). To generate the index of theories described by a sphere one can simply

take a free trinion15 with t-flux tubes glued to it (see appandix of [25]), and close all the

punctures.

15A free trinion is a theory described by compactification on a sphere with two maximal punctures and

one minimal puncture.
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The first example is of an N = k = 2 sphere with t-flux e = 1 and additional β-flux of

b = −1 and γ-flux of c = −1

IN=2,k=2
g=0,m−=0,(e=1,b=−1,c=−1)

= Γe
(
pqβ−4

)
Γe
(
pqγ−4

)
Γe

((
β−1γ

)±2
)

Γe

((pq
t

)2 (
β−1γ

)±2
)

× Γe

(((pq
t

)2
β−2γ−2

)±1
)

Γe

((pq
t

)2
β−2γ−2

)2

. (6.4)

Both required poles appear, and we can initiate the flow by giving the first vev. In this case

it’s trivial because the above index describes a WZ model. Thus, simply some of the fields

become massive and decouple in the IR. After the required t- and R-charge redefinition(pq
t

)
→
(pq
t

)1/2
we find

IN=2,k=2,flow 1
g=0,m−=0,(e=1,b=−1,c=−1)

= Γe

((pq
t

)2
)

Γe

((pq
t

)±1
)

Γe

(pq
t
ε2
)3

Γe

(pq
t
ε−2
)−1

= Γe

(pq
t
ε2
)3

Γe

(pq
t
ε−2
)−1
IN=2,k=1
g=0,m−=0,(e=1)

, (6.5)

where IN=2,k=1
g=0,m−=0,(e=1)

is the matching S1 index, with the expected number of minimal

punctures m− = −1− (−1) + 2 · 1 + 2(0− 1) = 0 and t-flux e = 2 · 1 + (2− 1)(0− 1)− 0 = 1

predicted by (5.23) and (5.20). In addition we find the expected free chirals contribution

is as predicted in (5.24), nFC
(
ε−2T

)
= −1− 1− (0− 1) = −1 and nFC

(
ε2T
)

= −(−1)−
(−1)− (0− 1) = 3.

Next, we give a vev to the second operator setting ε =
(pq
t

)−1/2
. This only effects the

free chirals since we got no extra minimal punctures, and we get

IN=2,k=2,flow 2
g=0,m−=0,(e=1,b=−1,c=−1)

= Γe

((pq
t

)±1
)

= Γe

((pq
t

)2
)−1

IN=2,k=1
(e=1) , (6.6)

where we find the expected free chirals contribution predicted in (5.6) nFC = −2 · 1− (2−
1)(0− 1) = −1. The rest of the parameters of the result match in the same way as before.

The second example is of a sphere with t-flux e = 2 and vanishing β- and γ-flux

IN=2,k=2
(e=2,b=0,c=0) = Γe

((pq
t

)2
)2

Γe

((pq
t

)2
(βγ)±2

)
× Γe

((pq
t

)2 (
βγ−1

)±2
)2

It−tube
({

pq

t
,
γ

β

}
,

{
γ

β
,
pq

t

})
, (6.7)

where

It−tube (v, c) = Γe

(
t
(
γβ−1v2

)±1
v±1

1

)
Γe
(
pqγ−2β−2

)
Γe

((pq
t

)2
)

Γe

((pq
t

)2 (
γβ−1

)±2
)

× Γe

((pq
t

)2
(γβ)2

)
κ

∮
dz

4πiz

Γe

(
pq
tγβ

(
βγ−1v−1

2

)±1
z±1
)

Γe (z±2)
Γe
(
γβz±1v±1

1

)
× Iorbifold

{βγ−1, pq
t },c,

√
zv2,
√
v2/z

. (6.8)
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The orbifold theory is the theory of two free trinions Φ-glued together (See appendix A),

with index

Iorbifold
z,c,a,b = κ2

∮
dw1

4πiw1

∮
dw2

4πiw2

Γe

(
pq
t (βγ)±1w±1

1 w±1
2

)
Γe
(
w±2

1

)
Γe
(
w±2

2

)
Γe

(
t
1
2βa−1w±1

1 z±1
1

)
Γe

(
t
1
2 γ−1aw±1

1 z±1
2

)
Γe

(
t
1
2 γaw±1

2 z±1
1

)
×Γe

(
t
1
2β−1a−1w±1

2 z±1
2

)
Γe

(
t
1
2 γbw±1

1 c±1
1

)
Γe

(
t
1
2β−1b−1w±1

1 c±1
2

)
×Γe

(
t
1
2βb−1w±1

2 c±1
1

)
Γe

(
t
1
2 γ−1bw±1

2 c±1
2

)
. (6.9)

The vev we give in (6.1) generates an RG-flow going from the UV theory in high energies

to the IR theory in low energies. Going to lower energies than the energy scale associated

with the vev, the vacuum becomes none invariant under the gauge symmetry, effectively

breaking it. This procedure is known as the Higgs mechanism, and we will refer to gauge

symmetries broken in such a manner as “Higgsed”. In the above example one of the three

SU(2) gauge symmetries is Higgsed during the flow, and one of the gauge symmetries is

left with three flavors; thus, described in the IR by quadratic gauge invariant composites.

additionally, several fields become massive and decouple, resulting in

IN=2,k=2,flow 1
g=0,m−=0(e=2,b=0,c=0)

= Γe

(pq
t

)2
Γe

(pq
t
ε±2
)3

Γe

((pq
t

)2
)2

× κ
∮

dw2

4πiw2

Γe
(pq
t

)2
Γe
(pq
t w
±2
2

)
Γe
(
w±2

2

) Γe

(
t
√
pq
ε±1w±1

2

)2

= Γe

(pq
t
ε±2
)
IN=2,k=1
g=0,m−=2,(e=2)

(6.10)

where again we find the expected number of additional minimal punctures m− = 0 −
0 + 2 · 2 + 2(0 − 1) = 2, t-flux e = 2 · 2 + (2 − 1)(0 − 1) − 2/2 = 2 and free chirals

nFC
(
ε−2T

)
= −(0− 1) = 1 and nFC

(
ε2T
)

= −(0− 1) = 1.

Now, as before we give a vev to the second operator setting ε =
(pq
t

)−1/2
. This closes

all the minimal punctures, and we remain with

IN=2,k=2,flow 2
g=0,m−=0,(e=2,b=0,c=0)

= Γe

(pq
t

)4
Γe

((pq
t

)2
)5

× κ
∮

dw

4πiw

Γe
(pq
t w
±2
)

Γe (w±2)
Γe

(
t3/2

pq
w±1

)2

Γe

(
t1/2w±1

)2

= Γe

((pq
t

)2
)
IN=2,k=1

(e=3) , (6.11)

where the result parameters are as expected e = 2 · 2 + (2 − 1)(0 − 1) = 3 and nFC =

−2 · 0− (2− 1)(0− 1) = 1.
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Tori (g = 1). The first torus theory we consider has t-flux e = 0, with β- and γ-flux

b = −1 and c = 0, chosen such that the index contains the required poles

IN=2,k=2
g=1,m−=0,(e=0,b=−1,c=0)

= κ2

∮
du1

4πiu1

∮
du2

4πiu2

Γe

(
pq
t

(
βγ−1

)±1
u±1

1 u±1
2

)
Γe
(
u±2

1

)
Γe
(
u±2

2

) Γe
(
pqβ−4

)2
× Γe

(
u±1

1 u±1
1 β2

)
Γe
(
tu±1

2 u±1
1 γβ−1

)
Γe
(
tu±1

1 u±1
2 γβ−1

)
× Γe

(
u±1

2 u±1
2 β2

) Γe

(
tu±1

2 u±1
1 (γβ)−1

)
Γe
(
tu±1

2 u±1
1 (γβ)

) . (6.12)

The flow leads to a Higgsing of one of the SU(2) gauge symmetries, the remaining index is

thus

IN=2,k=2,flow 1
g=1,m−=0,(e=0,b=−1,c=0)

= Γe

(pq
t
ε−2
)−2

κ

∮
du

4πiu

Γe
(
tu±1u±1

)
Γe (u±2)

Γe

(√
pq

t
u±1u±1ε±1

)
= Γe

(pq
t
ε−2
)−2
IN=2,k=1
g=1,m−=1,(e=−1/2)

(6.13)

with expected additional minimal punctures, flux and free chirals.

Giving the second vev, we find that the SU(2) gauge is removed since all the remaining

multiplets that transform under it become massive. The resulting index of the IR theory is

IN=2,k=2,flow 2
g=1,m−=0,(e=0,b=−1,c=0)

= Γe

((pq
t

)2
)−2 κ

2
= Γe

((pq
t

)2
)−2

IN=2,k=1
g=1,m−=0,(e=0)

, (6.14)

with expected free chirals and flux. Notice that the remaining theory in class S is described

by a torus compactification with no flux, so it actually has N = 4 supersymmetry.

The second example is of the t-flux tube closed to a torus with t-flux e = 1 and

vanishing β- and γ-flux

IN=2,k=2
g=1,m−=0,(e=1,b=0,c=0)

= κ2

∮
dv1

4πiv1

∮
dv2

4πiv2

Γe

(
pq
t

(
βγ−1

)±1
v±1

1 v±1
2

)
Γe
(
v±2

1

)
Γe
(
v±2

2

) Γe
(
pqγ−2β−2

)
× Γe

(
t
(
γβ−1v2

)±1
v±1

1

)
Γe

((pq
t

)2
)

Γe

((pq
t

)2 (
γβ−1

)±2
)

× Γe

((pq
t

)2
(γβ)2

)
κ

∮
dz

4πiz

Γe

(
pq
tγβ

(
βγ−1v−1

2

)±1
z±1
)

Γe (z±2)

× Γe
(
γβz±1v±1

1

)
Iorbifold

{z1=βγ−1,z2= pq
t }{c1=v2,c2=v1},

√
zv2,
√
v2/z

.

(6.15)

In this case two SU(2) gauge symmetries are Higgsed in the flow making several fields

massive. Then, one SU(2) gauge symmetry remains with only three flavors, and can be
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described in the IR by gauge invariants. The index of the IR theory is

IN=2,k=2,flow 1
g=1,m−=0,(e=1,b=0,c=0)

= Γe

((pq
t

)2
ε±2

)2

κ

∮
dv1

4πiv1

Γe
(pq
t

)2
Γe
(pq
t v
±2
1

)
Γe
(
v±2

1

)
× κ

∮
dw1

4πiw1

Γe
(pq
t

)2
Γe
(pq
t w
±2
1

)
Γe
(
w±2

1

) Γe

(
t1/2ε±1w±1

1 v±1
1

)2

= IN=2,k=1
g=1,m−=2,(e=1)

(6.16)

with expected additional minimal punctures, flux and free chirals.

Initiating the second vev closes all minimal punctures and leaves us with the ex-

pected result

IN=2,k=2,flow 2
g=1,m−=0,(e=1,b=0,c=0)

= κ

∮
dv1

4πiv1

Γe
(pq
t

)2
Γe
(pq
t v
±2
1

)
Γe
(
v±2

1

) κ

∮
dw1

4πiw1

Γe
(pq
t

)2
Γe
(pq
t w
±2
1

)
Γe
(
w±2

1

)
× Γe

((pq
t

)2
)2

Γe

(
t1/2w±1

1

)3
Γe

(
t3/2

pq
w±1

1

)
Γe

(
t1/2w±1

1 v±2
1

)
= IN=2,k=1

(e=2) . (6.17)

Genus g = 2 Riemann surface. The final examples we give are for genus 2 Riemann

surfaces. These can be constructed by gluing the known indices of the interacting trinions

of class S2 with N = 2. The first example has no fluxes at all, given by

IN=2,k=2
g=2,m−=0,(e=0,b=0,c=0)

= Γe

(
pq
(
β−1γ

)±2
)
κ2

∮
du1

4πiu1

∮
du2

4πiu2

1

Γe
(
u±2

1

)
Γe
(
u±2

2

)
× κ2

∮
dc1

4πic1

∮
dc2

4πic2

1

Γe
(
c±2

1

)
Γe
(
c±2

2

)κ ∮ dy

4πiy

1

Γe (y±2)

× κ2

∮
dv1

4πiv1

∮
dv2

4πiv2

1

Γe
(
v±2

1

)
Γe
(
v±2

2

)κ ∮ dz

4πiz

1

Γe (z±2)

× Γe

(
pqγ

tβ

(
βγu−1

2

)±1
z±1

)
Γe

(
tβ

γ

(
βγu−1

2

)±1
y±1

)
× Γe

(
β

γ
z±1u±1

1

)
Γe

(
γ

β
y±1u±1

1

)
Iorbifold

c,v,
√
y/u2,(u2y)−1/2

(
t→ pq

t

)
× Iorbifold

c,v,
√
zu2,
√
u2/z

(
β → β−1, γ → γ−1

)
. (6.18)

The vev that Initiates the flow causes one of the SU(2) gauge symmetries (with fugacity

z) to be Higgsed. Another SU(2) gauge is left with only two flavors, which in the IR is

described by the quantum deformed moduli space identifying two other SU(2) gauge sym-

metries with one another. These processes give mass to several fields; thus, Higgsing two

SU(2) gauge symmetries of fugacities c1 and c2. In addition, two SU(2) gauge symmetries

of fugacities v1 and v2 are left with only three flavors; thus, described in the IR by quadratic
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gauge invariant composites. This complicated flow ends in the IR theory

IN=2,k=2,flow 1
g=2,m−=0,(e=0,b=0,c=0)

= κ2

∮
dz1

4πiz1

∮
dz2

4πiz2

Γe

(√
pq
t ε
±1z±1

1 z±1
2

)
Γe
(
z±2

1

)
Γe
(
z±2

2

) κ

∮
du2

4πiu2

×
Γe
(pq
t

)2
Γe
(pq
t u
±2
2

)
Γe
(
u±2

2

) κ2

∮
dy1

4πiy1

∮
dy2

4πiy2

Γe

(√
pq
t ε
±1y±1

1 y±1
2

)
Γe
(
y±2

1

)
Γe
(
y±2

2

)
× Γe

(pq
t
ε±2
)−1

Γe (t)2 Γe

(
t
1
2u±1

2 z±1
1 y±1

2

)
Γe

(
t
1
2u±1

2 z±1
2 y±1

1

)
= Γe

(pq
t
ε±2
)−1
IN=2,k=1
g=2,m−=2,(e=0)

, (6.19)

with expected minimal punctures, flux and free chirals.

Initiating the second vev closes all minimal punctures, and on the way Higgses two

SU(2) gauge symmetries. The remaining IR theory is

IN=2,k=2,flow 2
g=2,m−=0,(e=0,b=0,c=0)

=κ

∮
du2

4πiu2

Γe
(
pq
t
u±2
2

)
Γe
(
u±2
2

) κ∮ dv2
4πiv2

Γe
(
pq
t

)2
Γe
(
pq
t
v±2
2

)
Γe
(
v±2
2

)
×Γe

((
pq

t

)2
)−1

κ

∮
dz1

4πiz1

Γe
(
pq
t

)2
Γe
(
pq
t
z±2
1

)
Γe
(
z±2
1

) Γe

(
t1/2u±1

2 z±1
1 v±1

2

)2

= Γe

((
pq

t

)2
)−1

IN=2,k=1
g=2,m−=0,(e=1)

, (6.20)

again with expected free chirals and flux.

The second example is of t-flux e = 1, β-flux b = −1/2 and γ-flux c = 1/2

IN=2,k=2
g=2,m−=0,(e=1,b=−1/2,c=1/2)

= Γe
(
pqβ−2γ2

)2
κ2

∮
du1

4πiu1

∮
du2

4πiu2

Γe

(
pq
t (βγ)±1u±1

1 u±1
2

)
Γe
(
u±2

1

)
Γe
(
u±2

2

)
×κ2

∮
dc1

4πic1

∮
dc2

4πic2

Γe

(
pq
t

(
βγ−1

)±1
c±1

1 c±1
2

)
Γe
(
c±2

1

)
Γe
(
c±2

2

)
×κ2

∮
dv1

4πiv1

∮
dv2

4πiv2

Γe

(
pq
t

(
βγ−1

)±1
v±1

1 v±1
2

)
Γe
(
v±2

1

)
Γe
(
v±2

2

)
×κ
∮

dz

4πiz

Γe

(
pqγ
tβ

(
βγu−1

2

)±1
z±1
)

Γe (z±2)
Γe

(
t
(
βγu−1

2

)±1
u±1

1

)
×κ
∮

dz

4πiz

Γe

(
pqγ
tβ

(
βγu−1

1

)±1
y±1
)

Γe (y±2)
Γe

(
t
(
βγu−1

1

)±1
u±1

2

)
×Γe

(
β

γ
z±1u±1

1

)
Iorbifold

c,v,
√
zu2,
√
u2/z

(β→β−1,γ→ γ−1)

×Γe

(
β

γ
y±1u±1

2

)
Iorbifold

c̄,v̄,
√
yu1,
√
u1/y

(β→β−1,γ→ γ−1) , (6.21)

where the bars over the maximal puncture fugacities of the orbifold theory signals the

switching of the two SU(2) symmetries. This flow is simpler and after four SU(2) gauge
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symmetries are Higgsed and several fields become massive we are left with

IN=2,k=2,flow 1
g=2,m−=0,(e=1,b=−1/2,c=1/2)

=κ

∮
dc1

4πic1

Γe
(
pq
t

)2
Γe
(
pq
t
c±2
1

)
Γe
(
c±2
1

) κ

∮
dv1

4πiv1

Γe
(
pq
t

)2
Γe
(
pq
t
v±2
1

)
Γe
(
v±2
1

)
×κ2

∮
dz1

4πiz1

∮
dz2

4πiz2

Γe
(√

pq
t
ε±1z±1

1 z±1
2

)
Γe
(
z±2
1

)
Γe
(
z±2
2

) Γe

(
t
1
2 ε±1z±1

2 v±1
1

)
×κ2

∮
dy1

4πiy1

∮
dy2

4πiy2

Γe
(√

pq
t
ε±1y±1

1 y±1
2

)
Γe
(
y±2
1

)
Γe
(
y±2
2

) Γe

(
t
1
2 ε±1y±1

2 v±1
1

)
×κ2

∮
du1

4πiu1

∮
du2

4πiu2

Γe
(√

pq
t
ε±1u±1

1 u±1
2

)
Γe
(
u±2
1

)
Γe
(
u±2
2

)
×Γe (t)Γe

(
t
1
2u±1

2 z±1
1 c±1

1

)
Γe (t)Γe

(
t
1
2u±1

1 y±1
1 c±1

1

)
= Γe

(
pq

t
ε±2
)−2
IN=2,k=1
g=2,m−=5,(e=1/2)

, (6.22)

with the expected minimal puncture, flux and free chirals.

Initiating the second vev closes all minimal punctures, and Higgses three additional

SU(2) gauge symmetries. The remaining IR theory is

IN=2,k=2,flow 2
g=2,m−=0,(e=1,b=−1/2,c=1/2)

=κ

∮
du1

4πiu1

Γe
(
pq
t

)2
Γe
(
pq
t
u±2
1

)
Γe
(
u±2
1

) κ

∮
dc1

4πic1

Γe
(
pq
t

)2
Γe
(
pq
t
c±2
1

)
Γe
(
c±2
1

)
×κ
∮

dv1
4πiv1

Γe
(
pq
t

)2
Γe
(
pq
t
v±2
1

)
Γe
(
v±2
1

) κ

∮
dz1

4πiz1

Γe
(
pq
t

)2
Γe
(
pq
t
z±2
1

)
Γe
(
z±2
1

)
×κ
∮

dy1
4πiy1

Γe
(
pq
t
y±2
1

)
Γe
(
y±2
1

) Γe

(
t
√
pq
z±1

1 c±1
1

)
Γe

(
t1/2u±1

1 z±1
1 v±1

1

)
×Γe

(
t
√
pq
y±1

1 c±1
1

)
Γe

(
t1/2u±1

1 y±1
1 v±1

1

)
= Γe

((
pq

t

)2
)−2

IN=2,k=1
g=2(e=3) , (6.23)

with the expected free chirals and flux.

In appendix C, we show additional explicit flow examples of Lagrangian theories with

punctures in class S2 with N = 2.

6.2 Flows from Sk to S1 with general N

In the general case of class Sk and general N the only known punctureless Lagrangians are

of tori theories with zero t-flux (see [25]). These theories can be built by starting with a

chain of free trinions glued to a torus and closing all remaining minimal punctures. For

this model we will only focus on the case where we give vevs that break all the βi and γj
internal symmetries. In the other cases the results are as expected but too cluttered and

complicated to be presented. Therefore, as stated above we will only pursue the case of

maximal internal symmetries breaking, with baryon vevs taking the form(
β−1
i γj

(pq
t

))N
= 1 , (6.24)

with i = 1, . . . , k − 1 and j = 1, . . . , k translating to the assignments βi = pq
t , γj = 1.
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We choose an example of a torus that will contain all the required poles with fluxes

F =
(
e = 0, b = (bi 6=k = −1, bk = k − 1) , c = ~0

)
, and index

IN,k
g=1,(e=0,b=(bi 6=k=−1,bk=k−1),c=~0)

=
k−1∏
a=1

Γe
(
pqβNk β

−N
a

)k(κN−1

N !

)k(k−1) k∏
a+b 6=k

N−1∏
i=1

∮
dv

(i)
a,b

2πiv
(i)
a,b

×

∏k
a+b 6=k,k−1

∏N
i,j=1 Γe

(
pq
t β
−1
a+bγa+1v

(i)
a,b

(
v

(j)
a+1,b

)−1
)

∏k
a+b 6=k

∏N
i 6=j Γe

(
v

(i)
a,b

(
v

(j)
a,b

)−1
)

×
k∏
a=1

N∏
i,j=1

Γe

(
pq

t
β−1
k−1γa+1v

(i)
a,k−a−1

(
v

(j)
a+1,k−a

)−1
)

×
k∏
a=1

N∏
i,j=1

Γe

(
βk−1β

−1
k

(
v

(i)
a,k−1−a

)−1
v

(j)
a,k−a+1

)

×
k∏

a+b 6=k,k−1

N∏
i,j=1

Γe

(
βa+bβ

−1
k

(
v

(i)
a,b

)−1
v

(j)
a,b+1

)

×
k∏
a=1

N∏
i,j=1

Γe

(
tγ−1
a+1βkv

(i)
a+1,k−a

(
v

(j)
a,k−a+1

)−1
)

×
k∏

a+b 6=k,k−1

N∏
i,j=1

Γe

(
tγ−1
a+1βkv

(i)
a+1,b

(
v

(j)
a,b+1

)−1
)
, (6.25)

where v
(i)
a,b are the fugacities of the k(k − 1) SU(N) gauge symmetries, with a, b = 1, . . . , k

going over the different gauge factors, and i = 1, . . . , N running over the N fugacities of

each gauge group (with product of all equal 1). In addition, a and b are defined cyclically,

meaning we always consider a → (a − 1 mod k) + 1, such that they are always given by

an integer number between 1 and k. The flow is pretty straight forward, with k2 − k − 1

of the gauge SU(N) symmetries Higgsed and subsequently many fields becoming massive.

The last SU(N) gauge symmetry is removed since all remaining multiplets are massive and

decouple in the IR. Finally we use the charge redefinition
(pq
t

)
→
(pq
t

)1/k
and find

IN,k,flow

g=1,(e=0,b=(bi 6=k=−1,bk=k−1),c=~0)
= Γe

((pq
t

)N)−k(k−1)(κN−1

N !

)
= Γe

((pq
t

)N)−k(k−1)

IN,k=1
g=1,(e=0) (6.26)

We find the expected flux from equation (5.5) is e1 = k · 0 + (k − 1)(1 − 1) = 0 and the

expected free chirals from equation (5.6) nFC = −k(k−1)− (k−1)(0−0) = −k(k−1). In

addition as was found before in the case of zero t-flux torus; the IR theory has enhanced

supersymmetry of N = 4.
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7 4d anomaly polynomial flow

In this section we will analyze the flow on the four dimensional anomaly polynomial.

Since this anomaly polynomial can be inferred directly from the six dimensional anomaly

polynomial only on a closed Riemann surface with no punctures, we will consider the flow

generated by baryon vevs
(
β−1
n γm

(pq
t

))N
= 1 and

(
β−1
n γk

(pq
t

))N
= 1, with n,m = 1, . . . , `.

This will allow for easy comparison as we do not generate any new minimal punctures in

this flow.

Starting from the anomaly polynomial 8-form of the 6d theory described by N M5-

branes probing a C2/Zk singularity, one can compactify it on a closed Riemann surface

and find the 4d anomaly polynomial 6-form. This was done in [25], and we reproduce the

result here in our conventions

I6 =− (k2−2)(N−1)

2
(2g−2)c1(R′)−k2NN (k)

e c1(t)

+
(N−1)(k2(N2+N−1)+2)

12
(2g−2)c1(R′)3+

k2N(N2−1)

6
N (k)
e c1(R′)2c1(t)

− k2N(N2−1)

12
(2g−2)c1(R′)c1(t)2− k2N3

6
N (k)
e c1(t)3

+
1

2

(
−kN(N−1)c1(R′)2+kN2c1(t)2

) k∑
i=1

(
N

(k)
bi
c1(βi)+N (k)

ci c1(γi)
)

− kN2(N−1)

4
(2g−2)c1(R′)

k∑
i=1

(
c1(βi)

2+c1(γi)
2
)
+kN

k∑
i=1

(
N

(k)
bi
c1(βi)+N (k)

ci c1(γi)
)

− kN2

2

k∑
i=1

((
NN (k)

e −N
(k)
bi

)
c1(t)c1(βi)

2+
(
NN (k)

e +N (k)
ci

)
c1(t)c1(γi)

2
)

+
N2(N−1)

2

( k∑
i=1

c1(βi)
2

) k∑
j=1

N
(k)
bj
c1(βj)

+

(
k∑
i=1

c1(γi)
2

) k∑
j=1

N (k)
cj c1(γj)


+
kN3

6

k∑
i=1

((
N

(k)
bi
−N (k)

e

)
c1(βi)

3+
(
N (k)
ci +N (k)

e

)
c1(γi)

3
)

+
N2

2

( k∑
i=1

c1(βi)
2

) k∑
j=1

N (k)
cj c1(γj)

+

(
k∑
i=1

c1(γi)
2

) k∑
j=1

N
(k)
bj
c1(βj)

 , (7.1)

where c1(X) is the first Chern class of U(1)X , and N
(k)
e , N

(k)
bi
, N

(k)
cj are the same as

e(k), b
(k)
i , c

(k)
j from before, meaning the t- βi- and γj-flux (the change in notation was done

to avoid confusion). R′ is the R-symmetry arising naturally from 6d, which is different

from the 4d R-symmetry we used before, and both are not necessarily the conformal R-

symmetry. The relation between the two is via QR′ = QR +Qt, where QX is the charge of

a field under U(1)X .

We can use the vevs we discussed before (5.7) to initiate the flow from class Sk to

Sk−` with no additional punctures on the level of the anomaly polynomial as another

independent check of our results. This is done through several stages, first we need to
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change to the R-symmetry conventions we use in 4d. This is done by the assignments

c1 (t) = c1 (t)− c1 (R) , c1

(
R′
)

= c1 (R) . (7.2)

The next stage is to give vevs using the following assignments

c1 (βn) = 2c1 (R)− c1 (t) +
k − `
k

c1 (γ̃k−`) , n = 1, . . . , `

c1 (βi) = c1

(
β̃i−`

)
− `

k − `
(2c1 (R)− c1 (t))− `

k
c1 (γ̃k−`) , i = `+ 1, . . . , k

c1 (γm) =
k − `
k

c1 (γ̃k−`) , m = 1, . . . , `

c1 (γj) = c1 (γ̃j−`)−
`

k
c1 (γ̃k−`) , j = `+ 1, . . . , k . (7.3)

Followed by the conventional t-charge and R-charge redefinition, produced by

c1 (t) =
k − `
k

c1 (t) +
2`

k
c1 (R) . (7.4)

Before moving back to the 6d R-symmetry conventions, we need to remove the free chiral

fields that decouple in the flow. Therefore, the free chiral fields contribution to the anomaly

polynomial 6-form need to be deducted. The contribution is

IFC6 =
k−∑̀
i=1

(∑̀
n=1

N
(k)
bn
− `N (k)

bi+`
+ ` (g − 1)

)

×
(

1

6

(
−Nc1

(
β̃i

)
+Nc1 (γ̃k−`) + (2N − 1)c1 (R)−Nc1 (t)

)
3

+
(
−Nc1

(
β̃i

)
+Nc1 (γ̃k−`) + (2N − 1)c1 (R)−Nc1 (t)

))
+
k−`−1∑
i=1

(
−
∑̀
n=1

N
(k)
bn

+ `
(
N (k)
cj+`

+NN (k)
e + (N − 1) (g − 1)

))

×
(

1

6
(Nc1 (γ̃i)−Nc1 (γ̃k−`)− c1 (R)) 3 + (Nc1 (γ̃i)−Nc1 (γ̃k−`)− c1 (R))

)
+

(∑̀
i=1

(
− (`+ 1)N

(k)
bi

+ `N (k)
ci

)
+ `N (k)

ck
+ ` (`+ 1)

(
NN (k)

e + (N − 1) (g − 1)
))

×
(

1

6
(−c1 (R))3 − c1 (R)

)
, (7.5)

where the last two lines are the contribution from the divergence related to Higgs bosons

that we need to remove as well.

Finally we return to the 6d R-symmetry conventions by the assignments

c1 (t) = c1 (t) + c1

(
R′
)
, c1 (R) = c1

(
R′
)
, (7.6)
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and the resulting anomaly polynomial 6-form is

Iflow
6 = − ((k − `)2 − 2)(N − 1)

2
(2g − 2)c1(R′)− (k − `)2NN (k−`)

e c1(t)

+
(N − 1)((k − `)2 (N2 +N − 1) + 2)

12
(2g − 2)c1(R′)3

+
(k − `)2N(N2 − 1)

6
N (k−`)
e c1(R′)2c1(t)

− (k − `)2N(N2 − 1)

12
(2g − 2)c1(R′)c1(t)2 − (k − `)2N3

6
N (k−`)
e c1(t)3

+
k − `

2

(
N(N − 1)c1(R′)2 +N2c1(t)2

) k−∑̀
i=1

(
N

(k−`)
bi

c1

(
β̃i

)
+N (k−`)

ci c1 (γ̃i)
)

− (k − `)N2(N − 1)

4
(2g − 2)c1(R′)

k−∑̀
i=1

(
c1

(
β̃i

)2
+ c1 (γ̃i)

2

)

+ (k − `)N
k−∑̀
i=1

(
N

(k)
bi
c1

(
β̃i

)
+N (k)

ci c1 (γ̃i)
)

− (k − `)N2

2

k−∑̀
i=1

(
NN (k−`)

e −N (k−`)
bi

)
c1(t)c1

(
β̃i

)2

− (k − `)N2

2

k−∑̀
i=1

(
NN (k−`)

e +N (k−`)
ci

)
c1(t)c1 (γ̃i)

2

+
N2(N − 1)

2

(
k−∑̀
i=1

c1

(
β̃i

)2
)k−∑̀

j=1

N
(k−`)
bj

c1

(
β̃j

)
+

N2(N − 1)

2

(
k−∑̀
i=1

c1 (γ̃i)
2

)k−∑̀
j=1

N (k−`)
cj c1 (γ̃j)


+

(k − `)N3

6

k−∑̀
i=1

((
N

(k−`)
bi

−N (k−`)
e

)
c1

(
β̃i

)3
+
(
N (k−`)
ci +N (k−`)

e

)
c1 (γ̃i)

3

)

+
N2

2

(
k−∑̀
i=1

c1

(
β̃i

)2
)k−∑̀

j=1

N (k−`)
cj c1 (γ̃j)


+

N2

2

(
k−∑̀
i=1

c1 (γ̃i)
2

)k−∑̀
j=1

N
(k−`)
bj

c1

(
β̃j

) , (7.7)

where the fluxes are as we expected

N (k−`)
e =

k

k − `
N (k)
e +

`

k − `
(g − 1)

N
(k−`)
bi

= N
(k)
bi+`

+
1

k − `
∑̀
n=1

N
(k)
bn

N (k−`)
cj = N (k)

cj+`
+

1

k − `

(∑̀
i=1

N
(k)
bi
−N`N (k)

e −N` (g − 1)

)
. (7.8)
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This is a highly non trivial test for our predictions from the Coulomb limit formula given

in (5.11) and (5.12), especially due to the nonlinear anomalies matching.

8 Discussion

In this paper we have studied RG flows starting with the 6d T (SU(k), N) (1, 0) SCFT and

ending in a AN−1 type class Sk′ theory. We compared two ways to generate such a flow,

the 6d → 6d → 4d and the 6d → 4d → 4d. The former defined by first giving a 6d vev

to the so called end to end operator generating an RG flow to T (SU(k′), N) with k′ < k,

and then compactifying to the class Sk′ theory. The latter defined by first compactifying

to class Sk theory and then generating a flow by a 4d vev to the same class Sk′ theory.

We found that the two flow sequences can match when we choose both the 6d and

4d vevs to be constant, with the 4d vev given to an operator which is a natural reduction

of the 6d operator that the 6d vev is given to. We found that in the general case the

matching will be done with compactifications on Riemann surfaces differing by the number

of punctures. We have argued that the number of punctures in the two sequences is

different, since a proper way to define the flow is by turning on both deformations, vev

and compact geometry, simultaneously. Due to the flux, this leads to a non constant value

for the vev. We have also derived how the fluxes on the Riemann surface match between

the two flows. The matching of the two types of flows was tested with a variety of tools.

These include the 6d and 4d anomaly polynomials, class Sk Coulomb index, and the full

superconformal index.

On one hand our results can be viewed as a farther test of the map between geomet-

ric engineering of 4d theories starting with a compactification of 6d SCFT and concrete

four dimensional constructions. On the other hand, the fact that 6d flows involving vevs

and compact geometry when flux is turned on can be connected to compactifications with

punctures might have more general applications. For example, although some compactifi-

cations with flux and number of punctures less or equal to two are understood starting with

a wider class of 6d theories (see e.g. [5]), understanding of surfaces with higher number

of punctures is lacking. Thus flows generating punctures might turn out to be of use for

these classes of theories, expanding our understanding of the geometric constructions of

four dimensional SCFTs.
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Figure 9. A generalized quiver description of class Sk free trinion. The squares represent flavor

SU(N) symmetries and there are k of them on each side of each diagram winding in a manner

that connects the upper and lower parts of each diagram. The arrows represent chiral multiplets

in the bifundamental representation of the two corresponding SU(N) flavor symmetries. On the

left: The free trinion theory with 4d R-charge conventions giving all shown chiral fields R-charge 0.

The internal symmetries U(1)kβ × U(1)kγ × U(1)t coming from the 6d global symmetries SU(N)β ×
SU(N)γ × U(1)t are denoted accordingly by their fugacities. In addition the fugacity α is related

to the U(1) flavor symmetry associated to the free trinion minimal puncture. On the right: The

negative free trinion with β, γ and t charges flipped and R-charge shifted by QR → 2Qt−QR. This

procedure flips the sign of all puncture. The color of maximal punctures is related to the coupling

of β and γ charges on the chiral fields. In the cases above we define the left punctures as having

color 1 and the right as having color 2.

A Class Sk puncture conventions

In this appendix we will shortly review the puncture conventions of class Sk. For a more

extensive description one may look at [3]. To that end we must first discuss the basic

building block of class Sk, the free trinion. This trinion is described by a sphere with two

maximal punctures each associated with an SU(N)k flavor symmetry, and one minimal

puncture associated to a U(1) flavor symmetry. The free trinion model can be described

in a generalized quiver description as shown on the left side of figure 9.

Maximal punctures have a few properties separating them from one another. One such

property is the color depending on the pairing of βi-s and γj-s of the chiral fields charged

under couples of SU(N)-s of the puncture. In addition, one can consider the sign property

of both the minimal and maximal punctures. In the case of the free trinion as shown on the

left of figure 9 all punctures are of positive sign, but by flipping the charges as shown on the

right of figure 9 one can get the negative free trinion with all punctures being of negative

sign. One can also flip the sign of a maximal puncture by adding bifundamental chiral

multiplets transforming under pairs of SU(N) symmetries of the same puncture. Such
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chirals need to be coupled through the superpotential to the mesonic operators associated

to the maximal puncture. These chirals are the same ones added in the process of Φ-gluing.

In general one can glue two maximal punctures. We consider two such gluings:

• Φ-gluing — Gluing two maximal punctures with the same sign and color. The gluing

procedure requires adding an N = 1 SU(N)k vector multiplet, as well as bifundamen-

tal chiral multiplets between each two SU(N) gauge groups along the gluing. These

bifundamentals are coupled through the superpotential to the mesonic operators as-

sociated to the maximal punctures glued.

• S-gluing — Gluing two maximal punctures with an opposite sign and same color.

The gluing requires only adding an N = 1 SU(N)k vector multiplet, and coupling

mesonic operators associated to both maximal punctures through the superpotential.

There are various other punctures besides minimal and maximal that can be found by

giving vev to operators charged under maximal punctures and partially closing them, but

these will not be needed for the scope of this manuscript. One deformation that will proof

useful is the closure of minimal punctures. This is achieved by giving a vev to a baryon

charged under the minimal puncture U(1) symmetry.

B N = 1 superconformal index

In this appendix we give a short introduction of the N = 1 superconformal index [38,

39], some related notations, and usful results. For more comprehensive explanations and

definitions see [40]. The index of an SCFT is defined as the Witten index of the theory

in radial quantization. The index in four dimensions is defined as a trace over the Hilbert

space of the theory quantized on S3

I (µi) = Tr(−1)F e−βδe−µiMi , (B.1)

where δ , 1
2

{
Q,Q†

}
, with Q one of the Poincaré supercharges, and Q† = S it’s conjugate

conformal supercharge,Mi are Q-closed conserved charges and µi their associated chemical

potentials. All the contributing states are with δ = 0 making the index independent on β,

since states with δ > 0 come in boson/fermion pairs with opposite contributions.

For N = 1, the supercharges are
{
Qα, Sα , Q†α, Q̃α̇, S̃ α̇ , Q̃†α̇

}
, with α = ± and

α̇ = ±̇ the respective SU(2)1 and SU(2)2 indices of the isometry group of S3 (Spin(4) =

SU(2)1×SU(2)2). Since different choices ofQ in the definition of the index lead to physically

equivalent indices, we simply choose Q = Q̃−̇. Under this choice the index trace formula

takes the form

I (p, q) = Tr(−1)F pj1+j2+ 1
2
rqj2−j1+ 1

2
r, (B.2)

where p and q are fugacities associated with the supersymmetry preserving squashing of the

S3 [41]. j1 and j2 are the Cartan generators of SU(2)1 and SU(2)2, and r is the generator

of the U(1)r R-symmetry.

The index is computed by listing all gauge invariant operators one can construct from

modes of the fields. The modes and operators are conventionally called “letters” and
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“words”, respectively. The single-letter index for a vector multiplet and a chiral multiplet

transforming in the R representation of the gauge×flavor group is

iV (p, q, U) =
2pq − p− q

(1− p)(1− q)
χadj (U) ,

iχ(r) (p, q, U, V ) =
(pq)

1
2
rχR (U, V )− (pq)

2−r
2 χR̄ (U, V )

(1− p)(1− q)
, (B.3)

where χR (U, V ) and χR̄ (U, V ) denote the characters of R and the conjugate representation

R̄, with U and V gauge and flavor group matrices, respectively.

With the single letter indices at hand, we can write the full index by listing all the

words and projecting them to gauge singlets by integrating over the Haar measure of the

gauge group. This takes the general form

I (p, q, V ) =

∫
[dU ]

∏
k

PE [ik (p, q, U, V )] , (B.4)

where k labels the different multiplets in the theory, and PE[ik] is the plethystic exponent

of the single-letter index of the k-th multiplet, responsible for listing all the words. The

plethystic exponent is defined by

PE [ik (p, q, U, V )] , exp

{ ∞∑
n=1

1

n
ik (pn, qn, Un, V n)

}
. (B.5)

Specializing to the case of SU(Nc) gauge group. The full contribution for a chiral

superfield in the fundamental representation of SU(Nc) with R-charge r can be written in

terms of elliptic gamma functions, as follows

PE [ik (p, q, U)] ≡
Nc∏
i=1

Γe

(
(pq)

1
2
rzi

)
,

Γe(z) , Γ (z; p, q) ≡
∞∏

n,m=0

1− pn+1qm+1/z

1− pnqmz
. (B.6)

Where {zi} with i = 1, . . . , Nc are the fugacities parameterizing the Cartan subalgebra of

SU(Nc), with
∏Nc
i=1 zi = 1. In addition, in many occasions we will use the shorten notation

Γe
(
uz±n

)
= Γe (uzn) Γe

(
uz−n

)
. (B.7)

In a similar manner we can write the full contribution of the vector multiplet in the

adjoint of SU(Nc), together with the matching Haar measure and projection to gauge

singlets as

κNc−1

Nc!

∮
TNc−1

Nc−1∏
i=1

dzi
2πizi

∏
k 6=`

1

Γe(zk/z`)
· · · , (B.8)

where the dots denote that it will be used in addition to the full matter multiplets trans-

forming in representations of the gauge group. The integration is a contour integration
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over the maximal torus of the gauge group. κ is is the index of U(1) free vector multiplet

defined as

κ , (p; p)(q; q), (B.9)

where

(a; b) ,
∞∏
n=0

(1− abn) (B.10)

is the q-Pochhammer symbol.

C Class Sk flows of theories with punctures

Before discussing the possible complications expected with punctures we refer the reader

to appendix A to read on the puncture conventions for class Sk. In the case of theories

described by a Riemann surface with punctures some complications are expected. For once,

the number of colors for maximal punctures will be lower; thus, one can expect some of

the maximal punctures will flow to maximal punctures of some color depending on the

chosen vevs, while other will flow to some unknown object and not to a maximal puncture.

This will require the initial UV theory to hold only some colors of maximal punctures and

not others.

In the case of intermediate punctures (between maximal and minimal) we can expect

some mapping between different intermediate punctures. For example in the extreme case

of flows from class S2 to class S with N = 2 maximal punctures flow to maximal punctures

of class S that are equivalent to minimal punctures. In addition, in the general case one

should expect the color mapping problem mentioned above for these intermediate punctures

as well.

The fluxes of the IR theory should get similar expressions only with some additional

contribution from punctures. The genus is expected to remain the same as we found

without punctures, and the number of punctures should remain the same for the vevs in

equation (5.7) that do not generate additional punctures. For the minimal vevs appearing

in (5.15) that do generate extra minimal punctures we can expect that their number will

additionally depend on the number and type of punctures in the UV theory.

Explicit index example. In this part we show an explicit example of a punctured theory

flow. This will be presented as before via index computations. The vevs we will use to

initiate the flow will be the baryon vev as before that for N = k = 2 is given by(
β−1γ

(pq
t

))2
= 1 . (C.1)

This translates to the assignments β =
(pq
t

)1/2
ε−1/2 and γ =

(pq
t

)−1/2
ε−1/2, leaving us

with additional minimal punctures of fugacity ε. The second baryonic operator vev we will

use is (
β−1γ−1

(pq
t

))2
= 1 , (C.2)
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and it will close all additional negative minimal puncture. After the initial flow it trans-

lates to (
ε

√
pq

t

)2

= 1 . (C.3)

The example we will examine is of the TA interacting trinion with flipped γ flux and

flipped maximal puncture colors flow. The index for TA appeared in the appendix of [6],

and flipping its γ flux and maximal puncture colors is given by simply exchanging γ → −γ

ITA(γ → −γ) = IN=2,k=2
g=0,m−=0,s1=3,s2=0,(e=1/2,b=−1/4,c=1/4)

= Γe

(
t

(
v2

βγ

)±1

v±1
1

)
Γe

(
pq
γ2

β2

)
κ

∮
dz

4πiz

Γe

(
pqγ
tβ

(
βγv−1

2

)±1
z±1
)

Γe (z±2)

× Γe
(
γ−1βz±1v±1

1

)
Iorbifold

c,w,
√
zv2,
√
v2/z

(γ → −γ) , (C.4)

where si are the number of punctures of color i. We remind the reader that the orbifold

theory is of two free trinions glued by Φ-gluing to a sphere of two maximal punctures of

color 2 and two minimal punctures. The index for the orbifold theory is reproduced here

for the readers convenience

Iorbifold
z,c,a,b = κ2

∮
dw1

4πiw1

∮
dw2

4πiw2

Γe

(
pq
t (βγ)±1w±1

1 w±1
2

)
Γe
(
w±2

1

)
Γe
(
w±2

2

)
× Γe

(
t
1
2βa−1w±1

1 z±1
1

)
Γe

(
t
1
2 γ−1aw±1

1 z±1
2

)
Γe

(
t
1
2 γaw±1

2 z±1
1

)
× Γe

(
t
1
2β−1a−1w±1

2 z±1
2

)
Γe

(
t
1
2 γbw±1

1 c±1
1

)
Γe

(
t
1
2β−1b−1w±1

1 c±1
2

)
× Γe

(
t
1
2βb−1w±1

2 c±1
1

)
Γe

(
t
1
2 γ−1bw±1

2 c±1
2

)
. (C.5)

This theory has the required pole to generate the initial flow, but lacks the second vev

that effectively closes the negative minimal punctures. In this flow two of the three SU(2)

gauge symmetries are Higgsed making several fields massive and decouple in the flow. The

index of the IR theory is

Iflow 1
TA

(
γ → γ−1

)
= κ

∮
dw1

4πiw1

Γe
(pq
t

)2
Γe
(pq
t w
±2
1

)
Γe
(
w±2

1

)
× Γe

(pq
t

)−1
Γe

(
t1/2v±1

2 w±1
1 c±1

2

)
Γe

(
t1/2ε±1w±1

1 v±1
2

)
= Γe

(pq
t
ε±2
)−1
IN=2,k=1
g=0,m−=1,s=3,(e=1)

= IN=2,classS
g=0,s=4,(e=1) , (C.6)

where s is the number of maximal punctures. The final result appears in two ways for

clarity of notation. The first is in the conventions of class S1 where for N = 2 minimal and

maximal punctures differ by free chirals only. The second is the usual class S conventions

where for N = 2 we only have one type of punctures. The theory with index IN=2,classS
g=0,s=4,(e=1)

can be interpreted as a Φ-gluing of two free trinions.
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Next, we can set the second vev any way if we assume that this theory is glued to

another with the required pole. In this case this translates to giving mass to some fields

and we find the resulting theory is given by

Iflow
TA

(
γ → γ−1

)
= κ

∮
dw1

4πiw1

Γe
(pq
t

)2
Γe
(pq
t w
±2
1

)
Γe
(
w±2

1

)
× Γe (t) Γe

(
t1/2v±1

2 w±1
1 c±1

2

)
Γe

(
t
√
pq
w±1

1 v±1
2

)
= IN=2,k=1

g=0,m−=0,s=3,(e=3/2)
. (C.7)

The theory with index IN=2,k=1
g=0,m−=0,s=3,(e=3/2)

can be interpreted as a Φ-gluing of the inter-

acting trinion with a t-flux tube.

We find that in flows that start from theories with punctures, the theory in the end of

the flow will depend on the number and properties of the punctures.

D Summary of conventions

In this appendix we summarize our various conventions regarding symmetries, fugacities

and fluxes used throughout this article. The 6d SCFTs that appear in this article generally

have an SU(k)β×SU(k)γ×U(1)t global symmetry, as well as the superconformal symmetry

containing the SU(2)R R-symmetry. The Cartan of these symmetries are generally inherited

from the 6d theory by the 4d theory which is the compactification product. The Cartans of

SU(k)β × SU(k)γ in 4d are denoted as U(1)βi ×U(1)γi for i = 1, 2 . . . , k, where two are not

independent, instead obeying
∑

U(1)βi =
∑

U(1)γi = 0. In fugacities, these are denoted

as βi and γi, obeying
∏
βi =

∏
γi = 1. In terms of the SU(k)β × SU(k)γ 6d symmetries,

these are defined such that:

kSU(k)β =

k∑
i=1

βNi , kSU(k)γ =

k∑
i=1

γNi . (D.1)

The U(1)t symmetry in 4d differs from the 6d U(1)t by a minus sign, such that U(1)6d
t =

−U(1)4d
t and we shall use the fugacity t for it. The flux we consider for U(1)t is for the 6d

symmetry always with no change of sign. This is chosen in order to follow the conventions

in the literature. Finally we have the Cartan of the 6d SU(2)R. This gives a useful, though

generically not the superconformal, R-symmetry in 4d. We shall generically denote it as

U(1)6d
R , and use the fugacity r for it. We in general don’t use it as the superconformal

symmetry in index calculations, where the combination U(1)6d
R − U(1)t is used instead.

We generally denote this combination simply as U(1)R, though it should be noted that

generically it too is not the superconformal R-symmetry. Nevertheless, whenever a pq

appear in a 4d index it is with respect to this R-symmetry. We shall also often employ the

combination T = pq
t .

When compactifying the theory on a Riemann surface we are free to turn on fluxes

in the 6d flavor symmetries. These fluxes will be denoted by the symbols (b
(k)
i , c

(k)
i , e(k)),
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where k is that of the 6d SCFT. These are defined such that:∫
Fβi
2π

= Nb
(k)
i ,

∫
Fγi
2π

= Nc
(k)
i ,

∫
Ft
2π

= e(k). (D.2)

Finally, the flux in U(1)6d
R must be proportional to the curvature of the Riemann surface

or supersymmetry would not be preserved. This forces:∫
FR6d

2π
= g − 1. (D.3)

In this article we shall on several occasions write anomaly polynomials for 4d and

6d theories, which are written in terms of characteristic classes. Our conventions for the

characteristic classes then are as follows. We shall use p1(T ) and p2(T ) for the first and

second Pontryagin classes of the tangent bundle respectively. For the Chern classes we

use the notation cn(x)r the n-th Chern class in the representation of dimension r of the

symmetry associated to x. For instance c2(β)k is the second Chern class in the fundamental

representation of SU(k)β . The only exceptions are c2(R) and the first Chern classes. For

c2(R) we shall continue to use the notation introduced in [14], where it stands for the

second Chern class in the doublet representation of SU(2)R. First Chern classes are always

evaluated with respect to the charge one bundle. For these we use c1(R) for the U(1)4d
R

first Chern class and c1(R′) for the U(1)6d
R one.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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