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Abstract: We present the calculation of the Feynman path integral in real time for

tunneling in quantum mechanics and field theory, including the first quantum corrections.

For this purpose, we use the well-known fact that Euclidean saddle points in terms of real

fields can be analytically continued to complex saddles of the action in Minkowski space.

We also use Picard-Lefschetz theory in order to determine the middle-dimensional steepest-

descent surface in the complex field space, constructed from Lefschetz thimbles, on which

the path integral is to be performed. As an alternative to extracting the decay rate from the

imaginary part of the ground-state energy of the false vacuum, we use the optical theorem in

order to derive it from the real-time amplitude for forward scattering. While this amplitude

may in principle be obtained by analytic continuation of its Euclidean counterpart, we work

out in detail how it can be computed to one-loop order at the level of the path integral,

i.e. evaluating the Gaußian integrals of fluctuations about the relevant complex saddle

points. To that effect, we show how the eigenvalues and eigenfunctions on a thimble can

be obtained by analytic continuation of the Euclidean eigensystem, and we determine the

path-integral measure on thimbles. This way, using real-time methods, we recover the

one-loop result by Callan and Coleman for the decay rate. We finally demonstrate our

real-time methods explicitly, including the construction of the eigensystem of the complex

saddle, on the archetypical example of tunneling in a quasi-degenerate quartic potential.
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1 Introduction

Tunneling is one of the signature phenomena of quantum theory. The most prominent

example realized in nuclear physics is alpha decay, but there are also important technical

applications such as the tunneling microscope. Vacuum transitions [1–3] through tunneling

play an important role in particle physics models and for their cosmological implications.

Metastable vacua can decay through the nucleation of classical, expanding bubbles, and

gravitational waves are produced in their collisions [4–7]. There are close analogies between

vacuum tunneling and first-order phase transitions at finite temperature [8–12]. In exten-

sions of the Standard Model where electroweak symmetry breaking in the early universe

occurs through such a first-order transition, bubbles may turn out to be pivotal for gener-

ating the cosmic matter-antimatter asymmetry [13–15] (for a recent review, see ref. [16]).

To recall the basic theoretical aspects, we note that quantum-mechanical tunneling

occurs in potentials of the form shown in figure 1. We assume that a particle initially

occupies the ground state around the local minimum at x+, which we refer to as the false

vacuum (in view of the generalization to field theory, while this term may not be the most

fitting choice in quantum mechanics). It is separated from the true vacuum at x− by a local

maximum which we assume here without loss of generality to be located at x = 0. Through

quantum tunneling, the particle can hop from the false vacuum over the barrier to the region

around the true vacuum x−, which is energetically forbidden in classical physics. We also

indicate the escape point p beyond which the motion of the particle can be described

by a classically allowed trajectory. The theoretical description of vacuum transitions had

first been given in the context of statistical physics at finite temperature [8, 9], which was

extended to zero-temperature quantum field theory in refs. [1–3] (see also ref. [17]).

Following Callan and Coleman, the tunneling rate can be calculated from a Euclidean

transition amplitude [2, 3]. We review here the basic picture, while in appendix A, a

detailed review of the evaluation of the Euclidean path integral is provided. We begin with

the following Euclidean transition amplitude:

ZE [T ] ≡ 〈xf |e−HT |xi〉 =

∫
Dx e−SE [x] , (1.1)

where T and SE are the Euclidean time and Euclidean action, xi and xf are the initial

and final positions, respectively. The expression in the middle can be expanded using a

complete set of energy eigenstates:

〈xf |e−HT |xi〉 =
∑
n

e−EnT 〈xf |n〉〈n|xi〉 . (1.2)

– 1 –
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Figure 1. The classical potential V (x) in a theory with a false vacuum.

For large T , the lowest-lying state dominates and hence the above Euclidean transition

amplitude contains the information of the lowest-energy and its wave function. In the case

of quantum tunneling, xi and xf are chosen to be the metastable minimum x+.

One can evaluate eq. (1.1) through the method of steepest descent, on which the tech-

nical details are presented in appendix A. We first need to find out all the stationary points.

Note that in the Euclidean equations of motion the potential appears flipped upside down.

This allows for a solution starting at x+ in the infinite past τ → −∞, reaching the turn-

ing point p at some time τ0, eventually bouncing back to x+ for τ → ∞. The soliton

thus obtained is called the bounce which, among the stationary points, is of particular

importance for tunneling. In order to relate this solution to the decay rate, one needs

to analyze the fluctuations about the bounce [3]. In particular, there is one mode with

a negative eigenvalue because of the metastability of the false vacuum as well as a Gold-

stone zero mode because of the spontaneous breakdown of time-translation invariance. In

quantum field theory, tunneling proceeds via the nucleation of bubbles containing the true

vacuum within the false-vacuum phase. Since the bounce of least action is hyperspheri-

cally symmetric, the particular dynamics depends only on the hyperradial coordinate. The

discussion therefore proceeds in analogy with the one for quantum mechanics, up to the

effect of the additional hyperspherical excitations about the bounce or the bubble.

Next, we need to integrate the fluctuations about the stationary points. Since the

fluctuation operator (the generalization of the Hessian matrix) evaluated at the bounce

contains a negative eigenvalue, it is shown in ref. [3] that performing the Gaußian func-

tional integral around the bounce (as well as multi-bounce stationary points) leads to an

imaginary part in the Euclidean transition amplitude (1.1). This then implies an imagi-

nary part also for the ground-state energy via eq. (1.2), which can be interpreted as the

decay rate. However, eq. (1.1) is apparently real (and so is its quantum field theoretical

generalization with a path integral defined in terms of real fields). When carrying out the

steepest descent evaluation of the path integral thoroughly, constructing the integration

contours using Picard-Lefschetz theory [18–21], one finds canceling imaginary contributions

from two different steepest-descent contours passing through the bounces, which connect

them to the false-vacuum solution in one case and a new stationary point called shot in

– 2 –
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the other [22] (see appendix A). An imaginary part can only arise when restricting the

fluctuations to the steepest-descent contour that passes through the false vacuum and the

bounce but not the shot, which is analogous to imposing boundary conditions connected

with the false vacuum.1 The extraction of the imaginary part as carried out in ref. [3]

proceeds along somewhat different lines, considering deformations of the potential, which

leads to the same integration contour in the vicinity of the bounce stationary point as

Picard-Lefschetz theory does. Notably, the correct contour leads to a factor of 1/2 in front

of the decay rate, different from what one would expect from the näıve steepest descent

evaluation of the fluctuation integral about the bounce. The construction of the integra-

tion contour from the flow equations of Picard-Lefschetz theory (which define the relevant

steepest-descent directions) may appear somewhat simpler than the argument based on the

analytic continuation to another theory with a deformed potential. Moreover, in section 3,

we show that one can use the flow equations to compute the path integral for arbitrary

complex times interpolating between the Minkowski and the Euclidean cases.

Apart from the above issues, computing the eigenvalue of the Hamiltonian for the

ground state of the false vacuum using the Euclidean path integral does not shed light on

how tunneling proceeds in the real-time formulation of the path integral. For quantum-

mechanical cases, one way to recognize the role of instantons in real-time quantum tunneling

is to compare their form with that of the solution to the static Schrödinger Equation that

can be obtained in the Wentzel-Kramers-Brillouin (WKB) expansion, cf. appendix C. The

connection between Euclidean instantons and tunneling in the WKB approximation has

been further studied in quantum mechanics and field theory in refs. [24, 25]. This, however,

still tells us little about the real-time picture of the tunneling process in a functional

approach. Therefore, it would be interesting to relate the decay rate to amplitudes that

are calculated in real time, i.e. in Minkowski space:

ZM [T ] ≡ 〈xf |e−iHT |xi〉 =

∫
Dx eiSM [x]. (1.3)

The obstacle is, of course, that the Euclidean instantons do in general not have a corre-

spondence in real configurations in Minkowski spacetime. And thus we generally have no

real classical solutions that could dominate the quantum tunneling process. It is there-

fore very difficult to evaluate the Minkowski transition amplitude. Recently, however, it

has been understood that one can analytically continue the path integral over real paths

to one over complex paths when applying Picard-Lefschetz theory [18–21]. Therefore, we

may attempt to find a deformed but equivalent integration contour that contains complex

stationary points which can be identified as Minkowski correspondences of the Euclidean

instantons. Then the expansion of the Minkowski path integral around these complex sad-

dle points2 will give the dominant contributions to the Minkowski transition amplitude and

should generate the same results as those obtained from an expansion around instantons

1The importance of boundary conditions connected with the false vacuum, and how this leads to complex

false-vacuum effective actions, was also pointed out in ref. [23].
2When the paths are complexified, all the stationary points are saddle points due to the complex

structure.
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in the Euclidean path integral. Based on these new developments, some progress in under-

standing quantum tunneling in the real-time formalism has been reported in refs. [26, 27].

However, an understanding of how to carry out the integration along the complexified field

paths in Minkowski spacetime has yet been missing. It is thus the aim of this paper to

develop the formalism to accomplish this task. In this respect, it should be noted that,

when using Picard-Lefschetz theory to construct integration contours defined by flow equa-

tions, there is no straightforward analytic continuation relating the Euclidean contours to

the Minkowski ones, because the flow equations are not holomorphic. For this reason,

performing the path integral in Minkowski space-time is a nontrivial endeavour.

Complex saddle points now have become a very useful concept in the study of series

expansions around the perturbative vacuum [28]. Even when complex saddles are not on

the integration contour, they could still encode very important information about physi-

cal observables as a consequence of resurgence [29–31]. Resurgence theory states that the

expansion around the perturbative vacuum encodes the information of all nonperturbative

saddles. For additional applications of Picard-Lefschetz theory in quantum field theories

and quantum mechanics, see refs. [32–39] and references therein. In this work, we shall

discuss complex saddles which lie on the (deformed) integration contour and directly de-

scribe the nonperturbative phenomenon of quantum tunneling. The idea that such complex

saddles may recover the results obtained from the instanton techniques was suggested in

ref. [26] for the double-well model. Here, we work out this proposition in a much more

detailed and concrete way for the general case, including the integration of fluctuations

around the complex saddles. In particular, we transfer the original problem of solving the

gradient flow equations which define the deformed integration contour — constructed in

terms of steepest-descent surfaces attached to saddle points, or Lefschetz thimbles — to

one of solving proper eigenequations; this allows us to successfully carry out the path inte-

gral on the integration contour which passes through the relevant complex saddle points.

Using the real-time transition amplitude that we have derived in this way, we shall further

show that, under plausible assumptions, the particle tunneling rate and the false-vacuum

decay rate can be derived from an optical theorem for tunneling based on the unitarity of

the evolution operator. Apart from the potential applications of the techniques that we

have developed in order to perform path integrals on Lefschetz thimbles associated with

complex saddles, the derivation of the decay rate in the real-time formalism could also shed

new insights on the dynamics of the vacuum transition. Obtaining the decay rate from an

optical theorem for metastable vacua suggests that after the decay, there is in principle a

superposition of all possible nucleated configurations rather than a unique classical criti-

cal bubble. We leave the possible consequences of this picture and the derivation of the

quantum state after tunneling to future work.

The organization of this paper is as follows. We begin our discussion with the con-

struction of an optical theorem for false-vacuum decay in section 2. Thus, the decay rate

of the metastable vacuum can be related to the real-time false-vacuum to false-vacuum

transition amplitude (that we also refer to as forward scattering amplitude, in reference to

particle collisions, that the optical theorem is typically applied to), which we will compute

from the Minkowski path integral in the subsequent parts of this work. In section 3, we
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apply Picard-Lefschetz theory to the Minkowski path integral, and we discuss a particu-

larly important complex saddle point — the complex bounce. We transfer the problem of

solving the gradient flow equations related to the complex bounce to an eigenproblem in

the proper sense for the Minkowski fluctuation operator evaluated at the complex bounce.

The determinant of this operator enters into the formula for the decay rate. Based on our

expression for the functional determinant, we prove in section 4 that it is indeed related

to its Euclidean counterpart by an inverse Wick rotation. In particular, this implies that

it picks up an extra factor of i due to the integration over the collective coordinate per-

taining to time-translation invariance. Our proof is based on the explicit continuation of

the Euclidean eigensystem of the quadratic fluctuation operator to the Minkowski case,

where discrete modes and the continuum spectrum have to be distinguished. Furthermore,

when calculating the logarithmic determinant, contributions that are finite have to be sep-

arated from those that are proportional to the volume of spacetime in order to establish

the correct behaviour under analytic continuation. As concrete examples, we discuss in

section 5 a trivial vacuum state and the archetypical scenario of tunneling between quasi-

degenerate vacua in a quartic potential. Given the analytic continuation, we finally recover

the Callan-Coleman result for the decay rate from the real-time amplitude and the optical

theorem in section 6, and we conclude this paper in section 7. We collect several technical

details in the appendices. In appendix A, the Gaußian approximation to the Euclidean

path integral using Picard-Lefschetz theory is reviewed, and in appendix B, we summarize

various methods of calculating the one-loop functional determinant. These results can be

compared with the decay rate inferred in appendix C using the WKB approximation from

the imaginary part of the zero-point energy of the false vacuum, or, more directly, from

the probability current that flows toward the global ground state. This way, we provide

a comprehensive survey of the computation of the first quantum corrections to tunneling,

to which we can relate our results from the functional approach in real time. Throughout

this article (save appendix C) we set ~ = c = 1.

2 Optical theorem for the decay of the false vacuum

In the approach by Callan and Coleman, the decay rate of the false vacuum is attributed

to a complex energy. In appendix A, Picard-Lefschetz theory is used in order to explain

how the imaginary part can emerge from a purely real Euclidean path integral. This

analysis, however, while successfully predicting the decay rate and the evolution of the

emerging classical bubbles, does not tell us much about the dynamical picture of tunneling

in Minkowski spacetime. Therefore, we aim to formulate false-vacuum decay based on the

Minkowski path integral. The computation of the tunneling amplitude in Minkowski space

has been developed in refs. [26, 27, 40]. In the present paper, we go beyond the previous

works by calculating the determinant of fluctuations around the complex saddle points,

and also by relating these real-time results more directly to the decay rate of the false

vacuum. In order to achieve the latter, the rate shall here be obtained from the unitarity

of the evolution operator U . To prepare for that, we first recall the optical theorem in

quantum field theory. The latter is most commonly used in the derivation of decay rates

– 5 –
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and cross sections for perturbative reactions in quantum field theory, while we aim here

for an application to processes based on nonperturbative, solitonic solutions.

2.1 The optical theorem in scattering theory

The optical theorem in scattering theory relies on the unitarity of the S-matrix, S†S = 1.

Inserting S = 1 + iM to S†S = 1, we have3

−i(M −M †) = M †M. (2.1)

We can take the matrix element of this equation between particle states, say |p1p2〉 and

|k1k2〉 for a two-by-two scattering for concreteness and simplicity. To evaluate the right-

hand side, we insert a complete and normalized set of intermediate states {qn}:

〈p1p2|M †M |k1k2〉 =
∑
n

〈p1p2|M †|{qn}〉〈{qn}|M |k1k2〉. (2.2)

Thus, eq. (2.1) yields

−i
[
〈p1p2|M |k1k2〉 − 〈p1p2|M †|k1k2〉

]
=
∑
n

〈p1p2|M †|{qn}〉〈{qn}|M |k1k2〉. (2.3)

Further, letting the initial and final states be the same, i.e. taking pi = ki, we obtain

−i
[
〈k1k2|M |k1k2〉 − 〈k1k2|M †|k1k2〉

]
=
∑
n

〈k1k2|M †|{qn}〉〈{qn}|M |k1k2〉. (2.4)

Therefore the imaginary part of the M -matrix corresponds to the decay probability of the

initial state into all possible intermediate states.

2.2 Optical theorem for false-vacuum decay

A crucial ingredient to the optical theorem as discussed above is the unitarity of the S-

matrix. For the case of vacuum decay, we consider a finite (but still large) time interval

T (i.e. [−T/2, T/2]). Further, the unstable false-vacuum state is not a true asymptotic

state of the free theory. In place of the S-matrix,4 we therefore need to use the unitary

time-evolution operator U(T ) in order to compute amplitudes of the form

〈F|U(T )|I〉, where U(T ) = e−iHT (2.5)

H is a Hermitian Hamiltonian. Since U(T ) is still unitary, the above argument leading to

the optical theorem (2.4) can still be applied.

Based on this, we now construct an optical theorem for false-vacuum decay. For this

purpose, we need to specify a false-vacuum state. While the true-vacuum state is stationary

with a node-free wave-function, that is the eigenfunction for the lowest eigenvalue of the

3To avoid mix up of notations, we use M instead of T to denote the so-called “T -matrix” because we

reserve T for the real-time period in the amplitudes.
4Note that defining the S-matrix in terms of its action on free states rather than scattering states requires

in particular a different treatment involving Møller operators.

– 6 –



J
H
E
P
1
2
(
2
0
1
9
)
0
9
5

Hamiltonian, it is less straightforward to exactly specify the false vacuum. Nonetheless,

the existence of the false-vacuum state is implied in the approach by Callan and Coleman

to vacuum decay [3] because the pertaining complex eigenvalue is found.

For the present purpose, we therefore proceed with the approximate description of the

false-vacuum state |FV〉 through a wave function which is ground-state-like and node-free

in the region of the potential well around x+ (see figure 1). Further, rather than being

stationary, it should feature a time-dependent amplitude due to the probability current

leaking into the region beyond the potential barrier in conjunction with the total conser-

vation of probability. This setup describes the configuration of interest, a particle that

approximately resides in a local ground state at x+, that is a metastable configuration

however. While we believe that these assumptions are plausible to this end, in section 2.3

and in appendix C, we show that a state of this form indeed exists. Of course, the false-

vacuum state |FV〉 should be considered as an unstable resonant state. Corresponding

states appear in the evaluation of matrix elements in scattering theory, where unstable

external particles are put on the mass shell, a procedure that is applied e.g. in the com-

putation of production cross sections for unstable particles, of their decay rate or in the

case of the narrow-width approximation to processes with intermediate states on the mass

shell, cf. e.g. the discussion of production cross sections for the Higgs boson in ref. [41].

We then consider the following element of U(T ):

〈FV|U(T )|FV〉 = 〈FV|e−iHT |FV〉. (2.6)

Inserting U(T ) = exp(iσ)1 + iM(T ) into U(T )†U(T ) = 1 for the matrix element above,

we have

−i
[
〈FV|e−iσM(T )|FV〉 − 〈FV|eiσM(T )†|FV〉

]
=
∑
n

〈FV|M(T )†|{qn}〉〈{qn}|M(T )|FV〉,

(2.7)

where the |{qn}〉 are a complete set of operators in the Heisenberg picture, e.g. eigenstates

of position operators in the case of quantum-mechanical particle tunneling, or analogous

eigenstates of field operators in quantum field theory. The phase exp(iσ) is unobservable

and related to the normalization of the energy of the false-vacuum state. It will be identified

more specifically in section 4.4. The left-hand side of eq. (2.7) is simply the imaginary part

of the amplitude,

2 Im〈FV|e−iσM(T )|FV〉 =
∑
n

〈FV|M(T )†|{qn}〉〈{qn}|M(T )|FV〉. (2.8)

When dividing by the normalization 〈FV|FV〉, the right-hand side is the total probability

for the false vacuum to decay into arbitrary states within the time T .

2.3 Boundary conditions on the path integral, Lefschetz thimbles and the

false-vacuum state

We are close to our goal when we can find out the imaginary part in eq. (2.8). As will

be motivated next, computing 〈FV|M(T )|FV〉 with path-integral methods requires imple-

menting appropriate constraints in order to pick the false-vacuum state rather than the

true vacuum.

– 7 –
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We may start by recalling that, in their seminal work, Callan and Coleman set to

extract the false-vacuum decay rate from the transition amplitude between eigenstates

|x+〉 of the position operators in the Schrödinger picture, with eigenvalues given by the

location x+ of the false vacuum. Using the spectral resolution of the identity in terms of

projectors onto eigenstates |n〉 of the Hamiltonian with eigenvalues En, one can write〈
x+

∣∣∣e−iHT ∣∣∣x+

〉
=
∑
n

e−iEnT |〈x+|n〉|2 . (2.9)

When a real value of T is approached from the lower complex half-plane (as corresponds to

rotating from Euclidean to Minkowski time), one can make the replacement T → T (1− iε),
which leads to

lim
T→∞

〈
x+

∣∣∣e−iHT (1−iε)
∣∣∣x+

〉
= e−iE0T (1−iε) |〈x+|0〉|2 , (2.10)

where E0 is the eigenvalue with the lowest real part.

If |0〉 could be identified with the false-vacuum state, one would expect its energy E0

to be complex, which would allow one to extract the decay rate as Γ = 2 |ImE0|. However,

as noted by Callan and Coleman (working directly in Euclidean space), the complex energy

of an unstable state cannot be an eigenvalue corresponding to a finite-norm eigenstate of

the Hamiltonian. In fact, a finite-norm unstable state cannot be an eigenstate and thus

cannot have a well-defined energy; considering a complex-energy eigenvalue implies an ap-

proximation in which the false vacuum is treated as a non-normalizable state. Nonetheless,

Callan and Coleman show that a deformation of the contour of the path integration leads

to a finite result for the transition amplitude which can be understood as arising from a

complex value of E0 in the right-hand side of eq. (2.10). From this, they obtain a nonzero

decay rate, with the result matching the usual quantum-mechanical estimates of tunneling

probabilities. There seems to be a contradiction because the false-vacuum state is not a

normalizable energy eigenstate and thus does not take part in the spectral resolution of

the identity in terms of the finite-norm states |n〉. One would need another choice of a

complete basis including the false vacuum. If the latter is treated as having finite norm

and thus not being a true eigenstate, it would mix with other states under the action of the

Hamiltonian. A similar problem would be expected when approximating |FV〉 as a non-

normalizable eigenstate with a complex energy (when acting on infinite-norm states, the

Hamiltonian has not the usual Hermiticity properties). In any case, even if these overlaps

could be neglected, in the T → ∞ limit one would always pick the contribution from the

lowest eigenvalue — the true vacuum — as opposed to the false vacuum. In summary, one

then expects the transition amplitude of eq. (2.10) to be proportional to the true-vacuum

transition amplitude:

lim
T→∞

〈
x+

∣∣∣e−iHT (1−iε)
∣∣∣x+

〉
∼ lim

T→∞

〈
TV
∣∣∣e−iHT (1−iε)

∣∣∣TV
〉
. (2.11)

This matter has been understood recently through the application of Picard-Lefschetz

theory to approximations of the path integral [22], as we review in appendix A. In essence,
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Callan and Coleman’s calculation captures the integration over a subset of the field fluc-

tuations of the path integral, which are those that remain close to the false-vacuum con-

figuration at almost all times (i.e. for T → ∞ all but finite times). When restricting to

these local fluctuations, one expects that the lowest energy state accessible to the system is

the false vacuum so that the constrained path integral will be related to the false-vacuum

transition-amplitude rather than that of the true vacuum. The restriction to a subset of

field fluctuations can be made more precise with Picard-Lefschetz theory, in which the

integration contour of the path integral is deformed into a sum of complex steepest-descent

paths constructed from downward flows from saddle points, or Lefschetz thimbles. Each

downward flow can be interpreted as describing the local dynamics about a saddle, while

summing over all the contours should capture the full path integral and hence the dynamics

of the true vacuum. By restricting the path integral to certain combinations of Lefschetz

thimbles (or subsets thereof) connected with the false vacuum [22], contributions from the

global extremum of the action at the true vacuum are excluded. In particular, it is thus

avoided that these dominate the amplitude as in eq. (2.11), so that we may write

〈FV|e−iHT |FV〉 = N 2〈x+|e−iHT (1−iε)|x+〉c.L.t. for large T, (2.12)

where we indicate that the path integral is constrained to be evaluated on a set of Lefschetz

thimbles by the subscript c.L.t. We will specify the particular choice the Lefschetz thimbles

that isolates the relevant contributions to false-vacuum decay in section 3.2. Once the false

vacuum to false vacuum transition amplitude (2.12) is computed, we can use it to obtain

the decay rate via the optical-theorem relation (2.8) as we will show in section 6. That

derivation of the decay rate does not make use of the interpretation of the false-vacuum

state as an eigenstate with complex energy. On the other hand, we can still follow Callan

and Coleman and relate the amplitude to the decay rate as

Γ = −2 ImE0 = −2 Im

(
lim
T→∞

i

T (1− iε)
log
〈
x+

∣∣∣e−iHT (1−iε)
∣∣∣x+

〉
c.L.t.

)
, (2.13)

or we may employ the Euclidean version of this relation as in their original work. In

the remainder of this paper, we drop the subscript c.L.t. and imply that all amplitudes

are evaluated on thimbles constituting contours of path integration that contain the false

vacuum but omit the true one.

In principle, the selection of contributions from certain saddle points only can be

understood in terms of boundary conditions for the path integral. In the context of effective

actions — of relevance to tunneling because the false-vacuum transition-amplitude can be

connected to an effective action evaluated at an extremum [23, 42, 43] — these issues have

been discussed in refs. [23, 44]. To understand the role of boundary conditions, we may go

back to the false-vacuum transition-amplitude and consider the spectral resolution of the

identity in terms of eigenstates |x, t〉 of the Heisenberg-picture position operators:

〈FV|e−iHT |FV〉=
∫

dxdy

〈
FV

∣∣∣∣x, T2
〉〈

x,
T

2

∣∣∣∣e−iHT ∣∣∣∣y,−T2
〉〈

y,−T
2

∣∣∣∣FV

〉
≈ N 2

〈
x+|e−iHT |x+

〉
.

(2.14)
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In this equation, we have used the fact that the false-vacuum wave-functions 〈x, t|FV〉 are

dominated by their contribution near x = x+, independently of time as they correspond to a

quasi-stationary state: we assume T to be large, but below the time in which the probability

density around x+ no longer dominates over its value close to the true vacuum. The right-

hand side of eq. (2.14) is equivalent to a path integral with boundary conditions fixed by the

false vacuum localized at x+, demanding that x(t) should approach the constant value x+

for |t| = T/2. The fact that such boundary values are to be considered independently of T

further implies the boundary condition ẋ→ 0. The added requirement can be understood

as the reason behind the restriction to particular Lefschetz thimbles in eq. (2.12). As will

be discussed in section 3.1, the discarded steepest descent contours are those for which the

boundary condition ẋ(t) → 0 is not met. As saddle points, they involve the shot and the

true vacuum and are thus not capturing the transition amplitude from the quasi-stationary

state |FV〉 onto itself.

For the discussion in this section, we have made some assumptions about the state

|FV〉 and its wave function that yet need to be justified. In particular, we have assumed

that the wave function takes an approximately Gaußian shape about the location x+ of

the false vacuum (provided the potential is quadratic to leading order at this point), and a

probability current leaking into the region of the true vacuum that also leads to a decaying

amplitude as imposed by probability conservation. The previous features are confirmed

quantitatively by finding false-vacuum solutions for the wave function using the WKB

method to solve the time-independent Schrödinger equation, as we carry out in appendix C.

Since the complex energy-eigenvalue of the WKB solution agrees with the one inferred

per eqs. (2.12) and (2.13) from the path-integral approach and since there is only one

unstable mode in the fluctuation operator, the WKB result indeed approximates the wave

function of the state |FV〉. Of course, the WKB solution with complex energy cannot be

normalizable because of its divergent amplitude when taking time to −∞. (Otherwise, with

the Hamiltonian being Hermitian, there would be real values for the energy.) Therefore,

it can only be an approximation to physical situations in which a particle is placed in the

local ground state close to x+ at some point in the finite past. Furthermore, the WKB

approximation will not be applicable once the wave function develops as sizable reflux from

the true-vacuum back to the false-vacuum region, cf. the numerical example in ref. [22].

It will turn out that in observable quantities, the normalizations of |FV〉 cancel such that

this does not lead to a practical issue.

3 Complex saddle points in the path integral with complex time and the

Minkowski case

One notoriously subtle point about the Callan-Coleman theory of tunneling [2, 3] is due to

the perturbative expansion around a saddle point of the Euclidean action which is not an

extremum. Rather, it exhibits one negative, unstable mode that is of crucial relevance for

tunneling but also requires careful treatment of the path integral by appropriate methods.

As an alternative to the original approach, it has been pointed out in refs. [22, 27] that

Picard-Lefschetz theory as reviewed in refs. [20, 21] is particularly suitable to address this
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issue. In order to keep the present work self-contained, in appendix A we review the

application of this method to the Euclidean path integral describing tunneling processes.

In the following, we carry out some developments such as to apply Picard-Lefschetz theory

to Minkowski path integrals, as well as to those with a general complexified time coordinate

that interpolates between the Minkowski and Euclidean cases. Perturbation theory is then

based on the expansion about saddle points that can be found in terms of complex rather

than purely real field configurations [26, 40]. We discuss the complex saddles in quantum

mechanics in section 3.1, while section 3.2 summarizes the properties of their associated

thimbles and the integration on them. Technical details on the flow equations that define

the thimbles and on the definition of the integral measure are given in section 3.3. A

generalization of the results to the case of quantum field theory is given in section 3.4.

3.1 Complex saddles

Given certain boundary conditions, the equations of motion in Minkowski space or for

a generalized, complexified time variable may not have solutions in terms of real field

configurations. However, it is possible to obtain solutions from complex field configurations.

As we discuss in the present section, this is precisely the situation of relevance for quantum

tunneling. The solutions then correspond to complex saddle points of the action, and

pertaining to these are Lefschetz thimbles generated by the downward gradient flows, in

analogy with the discussion of the Euclidean case in appendix A. Throughout this article,

“flow” will refer to a one-dimensional steepest descent path in complexified field space which

passes through one (or more) saddle points. In the general case, the thimbles that collect

the flows can be seen as complex integration contours that start and end in convergence

regions in which the integrand becomes exponentially suppressed. They can be viewed

as cycles in a relative homology, and thus we will use “cycle” in the following for any

integration path that links regions of convergence. In general, a deformed integration

contour of the path integral (which leaves the result of the integration unchanged) can be

expressed as a linear combination of thimbles with integer coefficients. In case that the

downward flows from the saddle points end up linking several of these saddles, individual

thimbles might not be valid integration cycles, but one can still construct cycles from

combinations of thimbles or subsets of thimbles, and the deformed integration contour will

again be a linear combination of cycles. This will be the case for the tunneling problem.

In order to find out the relevant saddle points and the corresponding Lefschetz thimbles,

we begin with the transition amplitude in complexified time, with a time contour rotated

as in figure 2:

Uθ(x+, T/2;x+,−T/2) ≡ 〈x+|e−iHTe
−iθ |x+〉 =

∫
Dx(t) eiSθ[x(t)] ≡ Zθ[T ], (3.1)

where

Sθ[x] = e−iθ
∫ T/2

−T/2
dt

[
1

2

(
dx

dt

)2

· e2iθ − V (x)

]
, (3.2)

and where θ ∈ [ε, π/2], with ε being a positive infinitesimal. The Euclidean and Minkowski

transition amplitudes and path integrals are recovered for θ = π/2 and θ = ε, respectively.
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Re t

Im t

θ

Figure 2. Time contour rotated by an arbitrary angle θ.

All the paths in the path integral in eq. (3.1) are understood to observe the Dirichlet

boundary conditions x(±T/2) = x+, where x+ is the location of the metastable minimum.

The stable minimum is at x− and in between these vacua, at x = 0, there is a local

maximum of the potential, cf. figure 1.

The saddle points are given by the solutions to the equation of motion

e2iθ · d2x(t)

dt2
+ V ′(x) = 0 (3.3)

subject to the above Dirichlet conditions. When we work in real paths and take the limit

θ → 0+ and T →∞, we can deduce from the potential that we may have two solutions; the

first one is the trivial false-vacuum solution xF (t) ≡ x+, and the second one is similar to the

so-called shot configuration in Euclidean case [22, 45] (cf. appendix A), with the particle

starting in the false vacuum with nonzero velocity and arriving at the top of the potential

barrier at t = 0. The expansion around it cannot describe quantum tunneling, where the

initial energy is the one of the false-vacuum ground state. Furthermore, as discussed at

the end of section 2, the computation of the false-vacuum transition-amplitude by path

integral methods requires imposing the boundary condition ẋ(t)→ 0 for large times, which

is not satisfied by the latter solution. To extract the information about false-vacuum

decay, one therefore needs to complexify the paths x(t) to z(t) and find nontrivial saddle

points whose neighbouring configurations capture quantum fluctuations of the false-vacuum

state. As will be seen, these complex saddle points are related to the Euclidean bounce

configurations [2] and correspond to fields bouncing back and forth from the false vacuum

any number of times.

Indeed, in the limit T →∞, the complex solutions to eq. (3.3), denoted as xθa(t), can

be found from substituting τ → ie−iθt into the Euclidean solutions xa(τ),

xθa(t) = xa(τ = ie−iθt), (3.4)

where a = F,Bn, S labels the saddles which are the false vacuum, the multi-bounces and

the shot (cf. appendix A). Comparing with the Euclidean equation of motion eq. (A.3),

we see that xθa(t) solves eq. (3.3). As noted by Callan and Coleman [3], the effect of

fluctuations around multi-bounce configurations can be recovered from the results for the

single bounce. The same arguments can be used here, and thus in the following, we will

mostly restrict the discussion to the single bounce, referring to it simply as the bounce.
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While allowing for general values of θ, we are ultimately interested in Minkowski

spacetime that corresponds to θ = ε. Apparently, when applying eq. (3.4) to the trivial

false-vacuum solution xF (τ), we still obtain an identical trajectory xθF (t) ≡ x+ = const.

For the additional Euclidean saddles that are subject to above Dirichlet conditions, i.e. the

bounce and the shot, xθa(t) is a holomorphic function at infinity with ε ≤ θ ≤ π/2, such

that these still converge to x+ as t→ ±∞, thus satisfying the same boundary conditions.

In ref. [26], it is shown explicitly that this is indeed the case for the kink solution to the

quantum-mechanics problem given by the potential (5.8) for g = 0. The bounce solution

in field theory, as an instanton, actually takes the form of the kink solution in the thin-wall

limit where the vacua become quasi-degenerate (see e.g. refs. [43, 46, 47]). We also recall

that in the quantum-mechanics case, the bounce can be viewed as a kink-antikink pair in

the quasi-degenerate limit. In general, when applying eq. (3.4) to the Euclidean bounce,

we therefore obtain a complex saddle point xθB(t) that observes the Dirichlet conditions

above, and we refer to it as the complex bounce.

Remarkably, the complex bounce gives the same exponential suppression of the tun-

neling amplitude as in the Euclidean formalism, as first noted for the kink instanton in

ref. [26]. To see this, we write the action (3.2) as

Sθ[z] = e−iθ
∫ T/2

−T/2
dt

(
1

2

[(
dz

dt

)
eiθ ± i

√
2V (z)

]2

∓ i
(

dz

dt
eiθ
√

2V (z)

))
. (3.5)

The complex bounce xθB is simply the solution of(
dz

dt

)
eiθ + i

√
2V (z) = 0, for −T/2 ≤ t ≤ 0, (3.6a)(

dz

dt

)
eiθ − i

√
2V (z) = 0, for 0 ≤ t ≤ T/2, (3.6b)

which solve the second-order equation of motion (3.3). For θ = π/2, eqs. (3.6) and (3.3)

are equivalent to the equation of motion of the Euclidean bounce [2]. Substituting eq. (3.6)

into eq. (3.5), we obtain

I[xθB] := iSθ[x
θ
B] = −ie−iθ

∫ T/2

−T/2
dt 2V (xθB(t)) = −SE [xB]. (3.7)

Now, the potential V is polynomial at the tree level and hence holomorphic. Also, xθB(t)

is analytic because it is the continuation of the Euclidean bounce xB(τ). Then starting

from the expression of iSθ above and rotating the integration contour via t → −ieiθτ
(note τ ∈ R), one gets minus the Euclidean bounce action, −SE [xB]. Note here, since

at t = ±∞, the complex bounce always converges to the false vacuum x+ at which the

potential is zero, the integral (3.7) at the infinite boundaries does not contribute when we

deform the contour from t to −ieiθτ .

We thus note that the bounce action is independent of θ provided the false vacuum is

normalized to lie at zero energy. If we were to assign a finite energy to the false vacuum,

then an extra contribution proportional to the volume of spacetime would arise. The latter
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is proportional to the phase ie−iθ because of the temporal integration measure ie−iθdt. In

section 4.4, we will recover further θ-dependent contributions arising from the one-loop

integration of the fluctuations around the bounce. Some of these contributions correspond

to corrections to the Coleman-Weinberg potential and are thus again proportional to the

spacetime volume. These volume- and θ-dependent factors are however unphysical, and,

as will be seen in section 6, they do not contribute to decay rates as they are related to

the normalization of the false-vacuum state.

3.2 Complexified path integral and Gaußian approximation

The parameter θ in xθa(t) leads to a continuous deformation of the trajectories starting

from the original Euclidean saddle points xa(τ). We similarly expect that the thimbles for

varying θ will be a continuous deformation of the Euclidean ones. However, in contrast to

the case of the saddle points, this continuous deformation will not be related to a straight-

forward analytic continuation because, as will be seen below, the equations defining the

thimbles are not holomorphic. This makes the integration along the deformed thimbles

nontrivial. In appendix A it is argued that in Euclidean space, despite the presence of

the three types of saddle points with their associated thimbles (false-vacuum, bounces,

and shot), it is more convenient to define two relevant integration cycles. This is a con-

sequence of the fact that some of the different saddles are connected by one-dimensional

steepest-descent flows, and, as mentioned earlier, in such cases there is no direct relation

between cycles and thimbles. The relevant cycles are JFB — constructed from the thim-

bles associated with the false vacuum and the bounces — and JSB, which combines the

thimbles of the shot and the bounces. For arbitrary θ we expect then deformed integration

cycles J θFB and J θSB. Although we cannot prove that the saddle points remain connected

when we deform the Euclidean JFB to general values of θ, we may note that the necessary

condition [20] ImI[xθF ] = ImI[xθBn ] = 0 for the critical points F and Bn to be connected by

this flow is satisfied because of eq. (3.7), which implies that all the saddles have a real value

of the functional I = iSθ.
5 A schematic representation of the special flows that connect

different saddles is given in figure 3.

While we have noted in eq. (3.7) that the action is invariant under the continuation

in the variable θ, we shall now show explicitly that when evaluating the path integral

on the deformed cycles, even though the latter are not obtained by analytic continuation

of their Euclidean counterparts, at the end of the day one obtains expressions that are

straightforwardly related by analytic continuation of the time interval such that the results

for arbitrary θ can be obtained from those in terms of the Euclidean interval T by the

continuation T → ie−iθT . As will be seen later in section 6, this gives rise to the same NLO

(next-to-leading order, i.e. one-loop here) result for the decay rate as from the Euclidean

path integral.

As a starting point, from eq. (2.12) generalized to arbitrary θ using eq. (3.1) we propose

〈FV|e−iHTe−iθ |FV〉 = N 2

∫
J θFB
Dz eiSθ[z] ≡ N 2ZθFB[T ] . (3.8)

5Had we not fixed V (x+) = 0, we would have iSθ[x
θ
F ] 6= 0. But then iSθ[x

θ
Bn

] would be shifted by the

same amount, leading to no physical consequences after normalization.
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B

F S

J θ,ρ
FB

J θ,ρ
SB

ρ
Re

Figure 3. Left: schematic representation of the special one-dimensional complex flows, associated

with the negative mode for the bounce, that connect different saddles. The false vacuum, single

bounce and shot saddle points are denoted by F,B, S denote, respectively; J θ,ρFB (in blue) and J θ,ρSB

(in dashed red) are the one-dimensional flows that connect the false vacuum and the bounce, and

the shot and the bounce, respectively. The circle represents infinity. The path integral acquires

opposite imaginary parts from the vertical segments of the flows. Right: schematic illustration of

the value of the function Re(I[z]) along the flows J θ,ρFB and J θ,ρSB , with the same notation and colour

code as before. The flow J θ,ρFB branches out at the bounce. Note that at each saddle point, there are

infinitely many additional flows that do not link different saddles, that we do not show in the plot.

That is, we specify the integration cycle J θFB as the relevant set of Lefschetz thimbles for

arbitrary θ, with the Minkowski limit corresponding to θ = ε. The cycle J θSB is discarded

because the boundary conditions associated with the shot, with nonzero ẋ at large times,

do not capture the dynamics of the pseudo-stationary false-vacuum state, as discussed

at the end of section 2. The cycle J εFB is obtained from the deformation of JFB via a

continuous change of θ from θ = π/2 to ε, where J θFB is generated by the downward flow

from xθF (t) ≡ x+ and xθB(t) when substituting I[z] = iSθ[z] into eq. (A.5), giving

∂z(t;u)

∂u
= ei(θ−π/2)

(
∂2z(t;u)

∂t2
· e−2iθ + V ′(z(t;u))

)
, (3.9)

where z(t;u→ −∞) = xθa with a = F,B. Note that, as emphasized several times, the flow

equation is not holomorphic, so that we cannot generate solutions for Minkowski space by

analytic continuation of the Euclidean ones.

We aim for a perturbative evaluation of the path integral around the saddles, which

requires solving the flow equations in their neighbourhood. As J θFB passes through the

false-vacuum and (multi-)bounce saddles, we expect that we can evaluate the path integral

ZθFB as a sum of Gaußian contributions near the saddles:

ZθFB ≈ ZθF,Gaußian +
∑
n

ZθBn,Gaußian. (3.10)

Since the multi-bounces correspond to infinitely separated bounces, the integral of their

fluctuations factorizes, and one can use the Euclidean arguments of ref. [3] to express ZθFB
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in terms of the single-bounce contribution ZθB,Gaußian:6

ZθFB ≈ ZθF,Gaußian exp

(
ZθB,Gaußian

ZθF,Gaußian

)
. (3.11)

Thus, we just need to estimate ZθF,Gaußian and ZθB,Gaußian by obtaining the downward flows

near the corresponding saddle points, and carrying out the integration of fluctuations.

Expanding z(t;u) = xθa(t) + ∆za(t;u) with a = F,B, we obtain the linearized flow

equation

∂∆za(t;u)

∂u
= ei(θ−π/2)

(
e−2iθ · ∂

2

∂t2
+ V ′′(xθa(t))

)
∆za(t;u), (3.12)

subject to the boundary conditions

∆za(t;u→ −∞) = 0. (3.13)

The ∆za span the thimble at the saddle points. Therefore, the saddle point expansion of

the path integral is

Zθa = eI[xθa]

×
∫
D∆za e

ie−iθ
∫ T/2
−T/2 dt

[
− 1

2
∆za(t)

(
e2iθ· d

2

dt2
+V ′′(xθa(t))

)
∆za(t)− 1

3!
(g+λxθa(t))∆z3a(t)− 1

4!
λ∆z4a(t)

]
.

(3.14)

To obtain ∆za(t), we write [27]

∆za =
∑
n

√
−ieiθ/2gan(u)χan(t), (3.15)

with gan(u) ∈ R. Substituting this separation ansatz into eq. (3.12), we obtain the flow

eigenequation

Mθ∗
a χan(t) ≡

(
e−2iθ · d2

dt2
+ V ′′(xθa(t))

)
χan(t) = κanχ

a
n(t) (3.16)

and

κang
a
n(u) =

dgan(u)

du
. (3.17)

Equation (3.16) can be combined with its complex conjugate such as to form an eigen-

value equation with a Hermitian operator, cf. section 3.3. Therefore, we can impose the

orthonormality relation ∫ T/2

−T/2
dt χam(t)χan(t) = δmn. (3.18)

6The same exponentiation arguments were applied for effective actions evaluated at Minkowski saddles

in ref. [23].
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Repeating further the analysis of appendix A, we find gan(u) = aan exp(κanu) with aan ∈ R
and κan ∈ R+ as required by eq. (3.13). Using the above orthonormalization and eq. (3.16),

one can check that the quadratic term in the exponential of the integrand of the path

integral becomes negative definite (except for the zero mode), such that we are dealing

with a Wiener integration. From the decomposition (3.15), we define the path integral

measure as

D∆za = δaJa
∏
n

dgan√
2π

. (3.19)

The factor δa that will be specified below accounts for the fact that the integration cycle

J θFB does not include the entirety of all the downward flows starting form the bounce saddle

points. As we will discuss below, the false-vacuum and (multi-)bounce saddle points are

joined by flows that branch out at the bounce saddles, and the integration contour only

picks half of these branches.

The Jacobian Ja appears here because the path integral is originally defined in terms

of field fluctuations in real directions, whereas the
√
−ieiθ/2χan(t) are in general complex.

One may view the gan as real parameters for the integration on the thimble but also the

direction of integration in the complex field space must be accounted for, which is achieved

by the factor of Ja that we derive in section 3.3. Note the zero mode will be handled

separately and Ja we defined does not include the possible phase from the zero mode. At

the Gaußian level, the path integral (3.14) gives (where the zero mode is omitted, which

we indicate with a prime)

Z ′θa,Gaußian = eI[xθa]δaJa
∏
n 6=1

1√
κan
. (3.20)

Here we are using Callan’s and Coleman’s notation, in which the negative mode around

the bounce is assigned a subscript “0”, and the zero mode a subscript “1”.

Regarding the evaluation of eq. (3.20), one might attempt to obtain the solutions to

eq. (3.16) and κan from the analytical continuation τ → ie−iθt, T → ie−iθT of the Euclidean

flow eigenequation (A.16). But this is impossible due to the complex conjugates appearing

in the flow eigenequation. However, as we show in section 3.3, the infinite product of the

flow eigenvalues can be expressed as∏
n 6=1

κan =

∣∣∣∣det′
(
e2iθ · d2

dt2
+ V ′′(xθa(t))

)∣∣∣∣ , (3.21)

and the Jacobian Ja is related to the phase of the above determinant (see section 3.3),

Ja =

∏
n 6=1

√
−ieiθ/2

 exp

(
−1

2
Arg det′

(
e2iθ · d2

dt2
+ V ′′(xθa(t))

))
. (3.22)

Thanks to eq. (3.21), we can reduce the problem of solving the flow eigenequation to

that of solving the proper eigenvalue problem

Mθ
af

a
n(t) =

(
e2iθ · d2

dt2
+ V ′′(xθa(t))

)
fan(t) = λanf

a
n(t). (3.23)
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We use the term proper eigenvalue equation to emphasize that in contrast to the flow

eigenequation (3.16), no complex conjugation of the eigenvector appears here. Now given

this standard form of an eigenequation, it turns out that there is no obstacle in the way of

analytic continuation so that the determinant in eq. (3.21) can be related to its Euclidean

counterpart. This is shown in section 4 in which we explain how to construct the analytical

continuation of the eigenmodes and eigenvalues from the Euclidean solutions to arbitrary

values of θ, and we apply this procedure to the specific example of the kink solution in the

archetypical double-well potential (5.6) in section 5. We therefore obtain

Ja
∏
n 6=1

1√
κan

=

∏
n 6=1

√
−ieiθ/2

[(det′(−∂2
τ + V ′′(xa))

)∣∣
T →ie−iθT

]−1/2
. (3.24)

We next need to handle the zero mode in the flow equation around the complex bounce,

which is given by

χB1 (t) =
1

√
−ieiθ/2

√
SE [xB]

dxB(τ)

dτ

∣∣∣∣
τ→ie−iθt

= −ieiθ 1
√
−ieiθ/2

√
SE [xB]

dxθB(t)

dt
. (3.25)

Using eqs. (3.6), (3.7), one can verify that∫ T/2

−T/2
dt χB1 (t)χB1 (t) = 1. (3.26)

From the path integral measure defined in terms of the gBn , using the decomposition (3.15)

we can relate the change in coordinate gB1 associated with the zero mode to an infinitesimal

time translation of the bounce, t→ t+ dt0:

√
−ieiθ/2χB1 (t) dgB1 = d∆zB =

dxθB
dt

dt0 ⇒
√
−ieiθ/2√

2π
dgB1 →

√
−ieiθ/2

√
SE [xB]

2π
(ie−iθdt).

(3.27)

The integration over the zero mode then gives a factor

√
−ieiθ/2

√
SE [xB]

2π
(ie−iθT ). (3.28)

Before putting everything together, we need to identify the fractions δa introduced

in the measure of eq. (3.19). As argued earlier, J θFB along which we approximate ZθFB
links the false-vacuum saddle point a = F with the bounce saddles a = Bn. Near the

false vacuum, all steepest-descent directions are part of J θFB, so that δF = 1. However,

the same is not true for the (multi-)bounces. Let us consider first the single bounce. In

section 4, we show that the discrete eigenvalues of eq. (3.23) remain invariant under the

analytic continuation. Therefore, just as in the Euclidean case, there is one negative mode

χB0 about the complex bounce B. It is expected that there is a flow J θ,ρFB in J θFB that links

F and B, approaching B along the direction of the negative mode. The latter is thus a

direction of steepest ascent relative to B, while the flow must continue down to a steepest
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descent direction. These two “in” and “out” directions are related by a relative factor

of i for the flow eigenmodes corresponding to the negative mode of eq. (3.23), as can be

seen by inspection of eq. (3.16), according to which a multiplication of the eigenfunctions

by a factor of i implies a sign change of the eigenvalue. Thus, the flow J θ,ρFB approaches

B from a steepest ascent direction, and leaves along one of the two possible steepest-

descent directions associated with iχB0 (the two directions corresponding to either positive

or negative coefficients gB0 in the expansion of eq. (3.15)). The picture is illustrated in

figure 3. The flow associated with the false vacuum thus branches out at B, and J θ,ρFB

picks only one branch, which is the one that gives the correct sign for the imaginary part

of ZθFB, which determines the decay rate as a consequence of the optical theorem, as

discussed in section 2. The fact that only one branch of the steepest-descent flow from

the bounce is relevant implies δB = 1/2. Returning to the multi-bounce, in this case, we

expect n negative modes for an n-bounce, corresponding to each of the single bounces.

Generalizing the discussion for the single bounce, the expectation is that the downward

flow from F should reach the multi-bounce Bn along with their n steepest ascent directions.

At Bn the flow is expected to divide into 2n steepest-descent branches (corresponding to

two imaginary directions per negative mode), with the flow J θ,ρFBn
in the integration cycle

picking only half of them. Hence one expects a factor of δBn = (1/2)n for the Gaußian

integration near Bn, which is already accounted for by the exponentiation formula (3.11),

as is clear when expanding it in terms of ZθB with δB = 1/2 and identifying the Bn
contributions as those proportional to (ZθB)n.

Finally putting the pieces together, from eqs. (3.11), (3.20), (3.24), and using the

zero-mode factor for ZθB,Gaußian given in eq. (3.28), one arrives at

ZθFB[T ]

ZθF [T ]
≈ exp

(
ZθB,Gaußian[T ]

ZθF,Gaußian[T ]

)

= exp

(
ie−iθT

2

√
SE [xB]

2π
e−SE [xB ]

(
det′[e2iθ∂2

t + V ′′(xθB)]

det[e2iθ∂2
t + V ′′(xθF )]

)−1/2
)

= exp

(
T
2

√
SE [xB]

2π
e−SE [xB ]

(
det′[−∂2

τ + V ′′(xB)]

det[−∂2
τ + V ′′(xF )]

)−1/2
)∣∣∣∣∣
T →ie−iθT

.

(3.29)

Comparing with the Euclidean formula in the second line of eq. (A.28), it follows that the

result for arbitrary θ is given by the straightforward analytic continuation of the Euclidean

time interval T to its rotated counterpart T . This is in keeping with the expectations

coming from the fact that one can formally write the partition functions ZθFB as in eq. (3.8),

which formally implies

ZθFB[T ] = ZEFB[T ]
∣∣
T →ie−iθT . (3.30)

Although we postpone a more detailed discussion of the tunneling rate until section 6, it

should be noted that according to the optical theorem discussed in section 2 — see eq. (2.8)

— a nonzero decay rate requires an imaginary part in the transition amplitude M . The

latter is proportional to −iZεFB — as follows from identifying 〈FV|1 + iM |FV〉 = ZεFB.
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This means that ZεFB has to contain a real part, which in turn actually requires the

quotient of determinants in (3.29) to be a negative real number, as it is in the Euclidean

case θ = π/2 due to the presence of a discrete negative eigenvalue. Since the result for

arbitrary θ is related to the Euclidean one by analytic continuation T → ie−iθT , a negative

real value for the quotient of determinants for arbitrary θ requires the quotient to become

T -independent in the large T limit. As will be seen in section 4, this is indeed the case

since with appropriate regularizations T only appears in contributions from the continuum

spectrum which are common for the bounce and the false-vacuum saddle points. The

discrete spectrum of the operators is preserved under rotations of the time contour, and

thus there is always a negative mode which ensures that the quotient of determinants is a

negative real number. Using this in equation (3.29) finally gives

ZθFB[T ]

ZθF [T ]
≈ exp

(
ZθB,Gaußian[T ]

ZθF,Gaußian[T ]

)

= exp

(
−e−iθT

2

√
SE [xB]

2π
e−SE [xB ]

∣∣∣∣det′[e2iθ∂2
t + V ′′(xθB)]

det[e2iθ∂2
t + V ′′(xθF )]

∣∣∣∣−1/2
)

= exp

(
iT
2

√
SE [xB]

2π
e−SE [xB ]

∣∣∣∣det′[−∂2
τ + V ′′(xB)]

det[−∂2
τ + V ′′(xF )]

∣∣∣∣−1/2
)∣∣∣∣∣
T →ie−iθT

.

(3.31)

3.3 Flow equations and Jacobian

In this section, we show how to relate the flow eigenequations to the proper eigenvalue

equations in order to derive the Jacobian induced when the path integral is performed on

a Lefschetz thimble. This is necessary because we choose to parametrize the path integral

by real numbers gan, while the flow eigenfunctions span the thimble in complex directions

in general.

We start by considering the linearized flow equation about the saddle za

∂∆za(t;u)

∂u
= −ieiθMθ

a
∗

∆za(t;u), (3.32)

where

Mθ
a = ieiθ

∫
dt′

δ2I[z]

δz(t′)δz(t)

∣∣∣∣
za

≡ ieiθ δ
2I
δz2

∣∣∣∣
za(t)

= e−2iθ · d2

dt2
+ V ′′(xθa(t)). (3.33)

Following the analysis of appendix A, we make the separation ansatz (see section 3.2)

∆za(t;u) =
∑
n

√
−ieiθ/2gan(u)χan(t) =

∑
n

√
−ieiθ/2aan exp(κanu)χan(t), (3.34)

where aan ∈ R and κan ∈ R+. The last property ensures that the steepest-descent flow

reaches the saddle-point only at the limiting value u → −∞. When there is a zero mode

with κan = 0, it needs to be handled separately, as it is carried out for the mode pertaining

to time translations in section 3.2. We therefore restrict the following discussion to the

nonzero modes.
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For the flow eigenmodes χan, we then obtain the flow eigenequation

Mθ
a
∗
χan(t) = κanχ

a
n(t) (3.35)

with Dirichlet boundary conditions χan(t = ±T/2) = 0. This equation can be combined

with its complex conjugate as(
0 Mθ

a
∗

Mθ
a 0

)(
χan(t)

χan(t)

)
= κan

(
χan(t)

χan(t)

)
. (3.36)

The operator on the left-hand side is Hermitian, such that we can impose orthonormaliza-

tion as in eq. (3.18). Furthermore, the Hermiticity property implies that the κn are real,

as was assumed earlier. We use {fan(t)} to denote the eigenfunctions with corresponding

eigenvalues λan satisfying

Mθ
a f

a
n(t) = λanf

a
n(t). (3.37)

Substituting z(t;u) = za(t) +
∑

n

√
−ieiθ/2gan(u)χan(t) into I[z] and making use of the

complex conjugate of eq. (3.35) and eq. (3.18), one obtains up to O(∆z2)

I[z] = I[za]−
ie−iθ

2

∫
dt∆za(t;u)Mθ

a ∆za(t;u) = I[za]−
1

2

∑
n

κan (gan(u))2. (3.38)

Now, the goal is to compute the saddle point approximation to the path integral on

the thimble Ja

Za =

∫
D∆za e

I[z] = eI[za]

∫
D∆za e

− ie
−iθ
2

∫
dt ∆za(t)Mθ

a∆za(t)+···. (3.39)

The decomposition (3.34) leads us to work with the path integral measure (cf. eq. (3.19))

D∆za = Ja
∏
n

dgan√
2π
, (3.40)

where Ja is the Jacobian. We have dropped here the argument u of the gan because they

now assume the role of integration variables. Then, in Gaußian approximation, we obtain

(in case the mode n = 1 is not a zero mode, it should not be removed from the product,

and the prime can be ignored)

Z ′a = Ja
∏
n 6=1

∫
dgan√

2π
e−

1
2

∑
n κ

a
n(gan)2 = Ja

∏
n 6=1

1√
κan
. (3.41)

To relate the infinite product of the flow eigenvalues to the determinant of Mθ
a, we

first note that eq. (3.36) is associated with another equation:(
0 Mθ

a
∗

Mθ
a 0

)(
iχan(t)

−iχan(t)

)
= −κan

(
iχan(t)

−iχan(t)

)
. (3.42)
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Therefore, κan and −κan are eigenvalues for the operator on the left-hand side of eq. (3.36).

It follows that

∏
n 6=1

[
−(κan)2

]
= det′

(
0 Mθ

a
∗

Mθ
a 0

)
, (3.43)

which gives
∏
n 6=1(κan)2 = |det′(Mθ

a
∗Mθ

a)| for the particular block structure. We therefore

arrive at

∏
n 6=1

κan = |det′(Mθ
a)| =

∣∣∣∣∣∣
∏
n 6=1

λan

∣∣∣∣∣∣ , (3.44)

where we recall κan 6=1 > 0.

In order to work out the Jacobian Ja, we first pick an arbitrary, complete orthonormal

basis of real functions {ϕn(t)} such that∫
dt ϕm(t)ϕn(t) =: (ϕm, ϕn) = δmn, (3.45)

where we have also defined a shorthand notation for the real inner product. We carry out

the following analysis for discrete modes, as it would apply for finite T . Taking T → ∞
will lead in general to spectra that have a continuum part, which is the case of interest.

We therefore need to assume that the present arguments remain valid in that limit. The

real basis allows us to decompose ∆za into its components as

∆za,n := (ϕn,∆za) =
∑
m

(ϕn,
√
−ieiθ/2gamχam) =:

∑
m

Rnmg
a
m, (3.46)

where we have used the decomposition (3.34) into the flow eigenmodes χam. It follows that

∆za(t) =
∑
n

∆za,nϕn(t) (3.47)

and, consequently, infinitesimally

d∆za,n := (ϕn, d∆za) =
∑
m

(ϕn,
√
−ieiθ/2dgamχ

a
m) =

∑
m

Rnmdgam. (3.48)

Note how the operator R maps the real coefficients gam in the decomposition (3.34) onto

the complex ∆za,n that parameterize the thimble Ja in terms of the real basis {ϕn(t)}.
Given these constructions, as an alternative to the measure (3.40), we may now express

the path integral (3.39) in the component form

Z ′a =

∫
Ja

∏
n 6=1

(
d∆za,n√

2π

)
eI[z], (3.49)

where we omit the n = 1 term if it is a zero mode. Through eq. (3.46), the latter is given

as a hypersurface parametrized in terms of the real parameters gan. Note that here, in the
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given linearized expansion around the saddle, this hypersurface is thus approximated by a

hyperplane. We can therefore express the path integral as

Z ′a =

∫
Ja

∏
n 6=1

dgan√
2π

 det′R eI[z], (3.50)

where eq. (3.48) gives us the Jacobian

Ja = det′R (3.51)

for the transformation from the {za,n} to the {gan}. The prime indicates that the Jacobian

Ja defined does not include the contribution from the zero mode which is isolated.

Next, we multiply the complex conjugate of eq. (3.35) by χm from the left, such that

(χm,Mθ
aχn) = κnδmn (no sum over n), (3.52)

where we have used eq. (3.18). Inserting complete sets in the ϕ-basis leads to

(ie−iθ)(
√
−ieiθ/2χm, ϕi)(ϕi,Mθ

aϕj)(ϕj ,
√
−ieiθ/2χn) = κnδmn (no sum over n), (3.53)

or, using the definition of R in eq. (3.46),

(ie−iθ)(RT )miMθ
a,ijRjn = κnδmn (no sum over n), (3.54)

whereMθ
a,ij are the components ofMθ

a in the ϕ-basis. Promoting this component equation

to one for matrices, taking the determinant on both sides and using eq. (3.44) yields

(det′R)2det′(ie−iθMθ
a) =

∏
n 6=1

κan = |det′Mθ
a| (3.55)

and, eventually,

Ja = det′R =

∏
n 6=1

√
−ieiθ/2

√ |det′Mθ
a|

det′Mθ
a

. (3.56)

We therefore conclude that the Jacobian Ja is proportional to the phase of 1/
√

(det′Mθ
a).

This together with relation (3.44) is particularly useful because we can transfer the orig-

inal flow eigenproblem to the proper eigenproblem. And the proper eigenequation (3.37)

can be conveniently analytically continued between the Euclidean formalism and the

Minkowski formalism as we will show in section 4.

3.4 Generalization to quantum field theory

The previous treatment of the quantum-mechanical path integral can be easily generalized

to quantum field theory, as summarized next. Assuming for simplicity a theory involving

a real scalar field φ with a false vacuum at φ = φ+ and a true vacuum at φ = φ−, the
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relevant transition amplitude for a rotated time contour (the quantum field theoretical

generalization of (3.1)) is given by

Zθ[T ] = Uθ(φ+, T/2;φ+,−T/2) ≡ 〈φ+|e−iHTe
iθ |φ+〉 =

∫
Dφ eiSθ[φ], (3.57)

where the action now is

Sθ[φ] = e−iθ
∫ T/2

−T/2
dt

∫
d3x

[
1

2

(
∂φ

∂t

)2

· e2iθ − 1

2
(∇φ)2 − V (φ)

]
. (3.58)

As before, the classical action for a rotated time contour admits complex saddle-point

solutions with Dirichlet boundary conditions related to the false vacuum, which for θ = π/2

reproduce the Euclidean bounce. The equation for the saddle points is

e2iθ ∂
2φ

∂t2
−∇2φ+ V ′(φ) = 0. (3.59)

Given a Euclidean solution φa(τ,x) solving the above for θ = π/2, one can construct

solutions for arbitrary θ through analytic continuation,

φθa(t,x) = φa(τ = ie−iθt,x). (3.60)

As long as θ ≥ 0+, the rotated solutions satisfy the same Dirichlet boundary conditions as

the Euclidean one. Moreover, with an appropriate normalization of the potential ensuring

V (φ+) = 0, the values of the action at the complex saddle points tending to φ+ for t→ ±∞
coincide with their Euclidean counterparts, as follows from applying the Cauchy theorem

to Sθ and relating the contour of the time integration to the Euclidean one (as was argued

for the quantum-mechanical case below eq. (3.7)).

Using Picard-Lefschetz theory, the path integral can be again approximated by a sum

of integrations over some Lefschetz thimbles (or subspaces thereof) passing through the

saddle points. The results of the previous sections carry over to the field theoretical case,

with the main differences coming from the fact that the fluctuation operators appearing in

the flow equations involve now spatial derivatives. In particular, denoting the spacetime

coordinates as x, one has that the linearized flow equations near a saddle point φθa(x) —

with φ along the flow written as φ(x;u) = φθa(x) + ∆φa(x;u) — take now a form analogous

to eq. (3.32),

∂

∂u
∆φa(x;u) = −ieiθMθ

a
∗

∆φa(x;u), (3.61)

where the fluctuation operator Mθ
a is now given by

Mθ
a = e2iθ ∂

2

∂t2
−∇2 + V ′′(φθa). (3.62)

The ansatz

∆φa(x;u) =
∑
n

√
−ieiθ/2gan(u)χan(x) (3.63)
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allows again to express the path integration on the thimble in terms of the (primed if there

are zero modes) determinant of Mθ
a; the derivation goes as in section 3.3. As there are no

zero modes for the false-vacuum saddle point, this gives directly

ZθF =

(∏
n

√
−ieiθ/2

)
(det Mθ

F )−1/2 = (det ie−iθMθ
F )−1/2, (3.64)

where we have used the fact that the Euclidean action evaluated at the constant false-

vacuum saddle point is zero, given the choice of normalization of the potential V (φ+) = 0.

For the bounce saddle point, one has to deal separately with the zero-mode integration.

There are four zero modes in quantum field theory, related to the invariance of the theory

under temporal and spatial translations. The zero modes are related to derivatives of the

bounce solution with respect to its spacetime coordinates:

χB1,(µ) =
∂µφ

θ
B√∫

d4x(∂µφθB)2
⇒ ∆φ

(µ)
B =

√
−ieiθ/2gB1,(µ)

∂µφ
θ
B√∫

d4x(∂µφθB)2
, (3.65)

where there is no summation in µ = 0, . . . , 3. With the path integral measure defined

as before in terms of the gan (see eq. (3.40)), we can connect gB1,(µ) in eq. (3.65) with a

coordinate translation xµ → xµ + yµ, as in the quantum-mechanical example:

d∆φ
(µ)
B = dy(µ)∂µφ

θ
B ⇒

4∏
µ=1

√
−ieiθ/2 dg

(µ)
1√
2π

=

4∏
µ=1

dy(µ)

√∫
d4x(∂µφθB)2

2π
. (3.66)

Since the bounce is obtained from an analytic continuation of the Euclidean bounce, one

can relate the spacetime integrals above to their Euclidean counterparts by rotating the

time contour. Then one can apply Callan’s and Coleman’s arguments of ref. [3] for the

Euclidean bounce, which, relying on its O(4) invariance and the fact that its action is

stationary under dilatation transformations, imply

−e2iθ

∫
d4x (∂0φ

θ
B)2 =

∫
d4x (∂iφ

θ
B)2 = −ieiθSE [φθB], i = 1, 2, 3. (3.67)

Putting everything together, the path integration along the thimble corresponding to the

bounce saddle-point gives

ZθB =
ie−iθV (3)T

2
e−SE [φB ]

(
SE [φB]

2π

)2

(det′Mθ
B)−1/2

(∏
n

√
−ieiθ/2

)
, (3.68)

where V (3) is the three-dimensional volume factor arising from the integration of the spatial

zero modes, while the factor 1/2 arises as in the quantum-mechanical case from choosing

a particular steepest-descent path that passes through both the false-vacuum and bounce

saddle points, and which around the latter picks only one of the two steepest-descent

branches associated with the negative mode.
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The quantum field theoretical generalization of eq. (3.31) becomes now:

ZθFB[T ]

ZθF [T ]
≈ exp

(
−e−iθTV (3)

2

(
SE [φB]

2π

)2

e−SE [φB ]

∣∣∣∣det′Mθ
B

detMθ
F

∣∣∣∣−1/2
)

= exp

(
iT V (3)

2

(
SE [φB]

2π

)2

e−SE [φB ]

∣∣∣∣det′ME
B

detME
F

∣∣∣∣−1/2
)∣∣∣∣∣
T →ie−iθT

.

(3.69)

Again, the ratio of determinants will be shown to be independent of T , and the last line

shows that the result for arbitrary θ can be simply obtained from the Euclidean result by

analytic continuation of the Euclidean time interval T .

4 Analytic continuation of the fluctuation spectrum

We now work out how the solutions to the proper eigenvalue problem transform under

rotations of the time variable within the complex plane, i.e. changes of θ. As advertised

earlier, we will see that the determinants of fluctuations for arbitrary θ are related to

their Euclidean counterparts by the analytic continuation T → ie−iθT . Moreover, the

quotients of determinants over the bounce and false-vacuum saddle points appearing in

eqs. (3.29), (3.69) will be shown to be T -independent, as needed for θ-independent decay

rates. We present the arguments for the field-theoretical case, assuming a spatially homo-

geneous geometry for the vacuum transition. For tunneling problems, this corresponds to

the thin-wall limit, where the bubble wall is approximated as planar compared to its radial

profile. In section 4.5, we outline how the analytic continuation can also be applied to

tunneling transitions when the thin-wall limit does not apply and the spherical geometry

of the bubble has to be taken into account. The present discussion can be easily reduced

to the quantum-mechanics examples that are discussed in other parts of this work.

In order to derive the analytic continuation, we consider a fluctuation determinant in

a scalar theory around a background configuration φθa that extremizes the effective action

(after complexification in field space, if necessary) and interpolates between two vacuum

configurations. For a time contour analytically continued in the complex plane by a rotation

of the angle θ from the Euclidean case θ = π/2 in the clockwise direction, the eigenvalue

problem for the fluctuation operator is given by

Mθ
a∆φ

θ
{ι}(t,x) ≡

[
e2iθ ∂

2

∂t2
−∇2 + V ′′(φθa(t,x))

]
∆φθ{ι}(t,x) = λ∆φθ{ι}(t,x), (4.1)

where the background φθa satisfies[
e2iθ ∂

2

∂t2
−∇2 + V ′(φθa(t,x))

]
φθa = 0. (4.2)

The {ι} are labels that determine the eigenvalue λ = λ({ι}) and uniquely specify the

eigenstate, i.e. the eigenfunction. The labels are more or less directly related to properties

of the eigenfunctions, and below we identify these based on their asymptotic behavior.

Note that for θ → 0+, we recover the fluctuation equation in Minkowski space.
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4.1 Eigenmodes and eigenvalues

We proceed with identifying the eigenmodes from their form for large |t|, where the back-

ground field configuration φθa has the following asymptotic behaviour

φθa(t,x)→ φ±, as t→ ±∞. (4.3)

Here φ± denotes the vacua with V ′(φ±) = 0. The potential near the vacua is approximately

parabolic

V±(φ) =
m2
±

2
(φ− φ±)2, (4.4)

where m2
± are the effective masses of fluctuations around the vacua. We take φ+ to be

the initial vacuum. For the tunneling problem, we have φ− = φ+ since the bounce φθB
approaches the false vacuum both at t = ±∞. Thus we have m2

+ = m2
− ≡ m2. This is also

true for the kink soliton (in the time direction) when φ− 6= φ+ but still V ′′(φ−) = V ′′(φ+)

because of the Z2 symmetry between the two vacua in the double-well potential. Our

following analysis therefore applies to the bounce as well as to the kink soliton.

Inserting this into the equation of motion for the background (4.2) and assuming spatial

homogeneity, one can see that the extremal solution approaches the vacua φ± exponentially

fast, as long as θ > 0:

φθa(t,x)→ φ± + Ce∓(i cos θ+sin θ)mt for t→ ±∞. (4.5)

Within eq. (4.1) for the fluctuations, for large |t| the background will then sit at the vacua

up to exponentially suppressed corrections, such that we may replace V ′′(φθa) → m2, and

we are left with equations of the linear form[
e2iθ ∂

2

∂t2
−∇2 +m2

]
∆φθ{ι}(t,x) = λ∆φθ{ι}(t,x) for large |t|. (4.6)

We construct the asymptotic solutions ∆φθ{ι} in terms of an expansion in a complete and

orthonormal set of functions on three-dimensional space.7 Therefore, the labels {ι} have

to be chosen according to the symmetries of the background φθa. This is particularly simple

for the planar-wall geometry, while we discuss more general situations in section 4.5.

For the planar wall, we can work with eigenfunctions of the three-dimensional Laplacian

∇2. For these, we choose exponential functions exp(ik · x), which are eigenfunctions with

eigenvalue −k2, and thus, we use k as labels that characterize the spatial behaviour. Note

that because of the spatial translation symmetries in the planar-wall limit, k is a conserved

quantity over the evolution in Euclidean time. Thus for either the bounce or the kink

soliton, we will have the same asymptotic quantum numbers at t = ±∞. We can then

separate the eigenfunctions as

∆φθ{η,k}(t,x) ∼ ϕ{η,k}(t)eik·x, t→ ±∞, (4.7)

7One may as well turn this around, consider the differential operator for large |x| and construct solutions

from a complete set of functions of time t. However, we proceed as we do because we are ultimately interested

in the analytic dependence on the parameter θ.

– 27 –



J
H
E
P
1
2
(
2
0
1
9
)
0
9
5

where

e2iθ d2

dt2
ϕ{η,k}(t) = (λ− k2 −m2)ϕ{η,k}(t), (4.8)

and η is an additional label characterizing the asymptotic temporal behaviour. The asymp-

totic solutions are then of the form

∆φθ{η,k}(t,x) ∼ exp
[
±e−iθ

√
λ− k2 −m2 t

]
eik·x. (4.9)

For some of the values of λ, the full ∆φθ{ι}(t,x) as a solution to eq. (4.1) is a normaliz-

able eigenvector, either in the proper or improper sense. Solutions that are improperly

normalizable have an oscillatory asymptotic behaviour in the temporal direction. This

happens for λ such that e−iθ
√
λ− k2 −m2 is purely imaginary. Properly normalizable

solutions correspond to functions that decay at infinity in the time direction. This occurs

when e−iθ
√
λ− k2 −m2 has a real part. According to the node theorem, the spectrum of

properly normalizable solutions is discrete.

For either case, it is useful to characterize the asymptotic oscillation frequency, or,

respectively, the decay rate by real parameters that we introduce here as

e−iθ
√
λ− k2 −m2 = iκθ, κθ ∈ R, (for continuous λ, oscillating solution),√
λ− k2 −m2 = −iβ, β ∈ R+, (for discrete λ, decaying solution).

(4.10)

We can thus choose these parameters to take the place of η, such that we use {ι} = {κθ,k}
or, respectively, {ι} = {β,k} as the labels of the eigenstate. We will see shortly why there

is no necessity to add a subscript “θ” to β. An important aspect is that, given solutions

to the eigenvalue equations (not necessarily normalizable) for some value of θ, one can

obtain solutions for another value of θ by analytic continuation in the time variable. This

follows from the fact that both the background and fluctuation equations for arbitrary θ

can be obtained by analytic continuation from Euclidean time. Thus we may construct all

solutions by rotating from Euclidean time: τ → ie−iθt. A key concern is that solutions that

are (im)properly normalizable for one value of θ are not necessarily so for another value.

However, we show next that one can construct (im)properly normalizable solutions for

arbitrary θ by supplementing the analytic continuation of the time variable with complex

rotations of the parameters of the solutions. This analysis will also explain that the phases

in eq. (4.10) are indeed chosen such as to maintain the parameters κθ, β real for all values

of θ ∈ (0, π/2].

First, we show that Euclidean solutions which are temporally decaying will continue to

be so after analytic continuation, without modification of the parameters β. For θ = π/2,

the operator Mθ
a in eq. (4.1) is Hermitian. The eigenvalues are therefore real, and it is

possible to choose real eigenfunctions. A temporally decaying Euclidean solution therefore

should have the asymptotic form

∆φE{βE ,k}(τ,x) ∝ exp (∓βEτ) , τ → ±∞, βE ∈ R+. (4.11)
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(Here and in the following, we occasionally replace superscripts or subscripts θ = π/2 with

E. Note however that this does not apply to the action, where eq. (3.7) holds.) The

analytic continuation to arbitrary θ, obtained by substituting τ → ie−iθt gives

∆φθ{βE ,k}(τ,x) ∝ exp
(
∓ie−iθβEt

)
= exp(∓(sin θ)βEt) exp(∓i(cos θ)βEt), t→ ±∞.

(4.12)

As long as θ > 0, the rotated solution will still be temporally decaying. Therefore the

straightforward rotation of Euclidean decaying solutions in the temporal argument gives

acceptable eigenfunctions for a rotated time contour as well. And this means that the

real decay parameters βE remain unchanged and real for all values of θ, what explains the

phase choice in eq. (4.10), and we therefore suppress the subscript E or θ on β. Another

important consequence is that the discrete Euclidean eigenvalues λ, that are a function

of β as per eq. (4.10), are preserved under analytic continuation in time — in particular

the discrete zero8 and negative modes crucial in tunneling computations. To summarize

these results, given a discrete Euclidean mode with eigenvalue λ, its analytic continuation

to general values of θ is

∆φθ{β,k}(t,x) =
√
ie−iθ/2∆φE{β,k}(ie

−iθt,x), (4.13)

with the same eigenvalue λ. Below, when we discuss the scalar product, we will derive the

normalizing factor.

Second, as for temporally oscillating Euclidean solutions, these go as

∆φE{κE ,k}(τ,x) ∝ exp (iκEτ) , τ → ±∞, (4.14)

where κE ∈ R depends on the free parameters that define the Euclidean solutions. The

eigenvalue λ now is part of a continuum spectrum. For convenience, we work with complex

continuum eigenfunctions. Note however that sinceME is Hermitian, we could have chosen

also a real basis in terms of eigenfunctions that asymptotically behave like sine and cosine.

This remark will be of importance when we discuss the normalization and completeness

of the eigenmodes in sections 4.2 and 4.3. The analytic continuation of the continuum

mode (4.14) in the temporal variable only gives

∆φE{κE ,k}(ie
−iθt,x) ∝ exp

(
−e−iθκEt

)
, t→ ±∞. (4.15)

This is however not an acceptable eigenfunction, as it grows exponentially in one of the time

directions. However, we can also complexify the parameter of the asymptotic oscillations

of the original Euclidean solution, replacing κE → −ieiθκθ (recall that both κE and κθ are

defined to be real) and arrive at a new solution that is normalizable in the improper sense.

Further, since the eigenvalues are related to the exponents in the asymptotic solutions

through eq. (4.10), this implies that the continuum eigenvalues for arbitrary θ are obtained

8The zero mode will be traded for a collective coordinate and hence introduce a dependence on ie−iθT

as per eq. (3.28).
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from the Euclidean eigenvalues by the appropriate analytic continuation. In the Euclidean

case, one would have e.g.

λ ≡ λE(κE ,k) = κ2
E + k2 +m2, κE ,k ∈ R, (4.16)

while, upon the continuation given by eq. (4.10), the corresponding eigenvalue for arbitrary

θ is

λ ≡ λ(θ, κθ,k) = λE(−ieiθκθ,k) = −e2iθκ2
θ + k2 +m2, κθ,k ∈ R, (4.17)

i.e. it is different from the Euclidean one and depends on θ, in contrast to the discrete modes.

The analytically continued, improperly normalizable mode is obtained when making the

replacement τ → ie−iθt as well as κE → −ieiθκθ in the Euclidean solution as

∆φθ{κθ,k}(t,x) = ∆φE{−ieiθκθ,k}(ie
−iθt,x), (4.18)

where we have again stipulated a normalization that we will confirm below.

4.2 Normalization of the eigenmodes

In order to prepare for the calculation of the fluctuation determinant, we next need to

verify that the analytically continued modes constitute, just as the Euclidean eigensystem,

a complete orthonormal basis. First, we note that the continuation of the Euclidean differ-

ential operator in eq. (4.1) to arbitrary values of θ is not Hermitian. As a consequence, we

have found above that the continuum eigenvalues are generally complex, while the discrete

eigenvalues remain real. In either case, the eigenfunctions, which can be chosen real in

the Euclidean case (even though, for convenience, we have chosen a complex basis for the

continuum spectrum), become complex. Nonetheless, since the eigenfunctions are obtained

by analytic rotations of Euclidean ones, the real scalar product as in eq. (3.45) remains

invariant. In particular, different eigenfunctions remain orthogonal with respect to this

scalar product that does not involve complex conjugation.

For discrete eigenfunctions, we have shown thus far that

∆φθ{β,k}(t,x) =
√
N∆φE{β,k}(ie

−iθt,x),

where N accounts for possible differences in normalization. The scalar product of the

eigenfunctions is:∫
dt d3x ∆φθ{β,k}(t,x)∆φθ{β′,k′}(t,x) = N

∫
dt d3x ∆φE{β,k}(ie

−iθt,x)∆φE{β′,k′}(ie
−iθt,x).

(4.19)

Given the analytic time dependence of the Euclidean eigenfunctions, using the Cauchy

theorem, the integration contour can be rotated without changing the value of the integral.

(Note that the discrete eigenfunctions vanish for large values of complex time along the
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arcs that join the rotated axes.) A change of the contour by replacing t→ −ieiθτ therefore

gives9∫
dt d3x ∆φθ{β,k}(t,x)∆φθ{β′,k′}(t,x) = −ieiθN

∫
dτ d3x ∆φE{β,k}(τ,x)∆φE{β′,k′}(τ,x)

= −ieiθNδββ′(2π)3δ(k− k′), (4.20)

where we have used the standard orthonormality relation for the Euclidean eigenfunctions.

Thus, using

N = ie−iθ, (4.21)

which is the normalization appearing in eq. (4.13), we obtain orthogonal eigenfunctions

with the proper norm.

For the temporally oscillating solutions, we have to consider in addition the effect of

the analytic continuation of the parameter κ. We first note that we normalize the Euclidean

scalar product as∫
dτ d3x ∆̃φ

E

{κE ,k}(τ,x)∆φE{κ′E ,k′}
(τ,x) = 2πδ(κE − κ′E)(2π)3δ3(k− k′). (4.22)

Here, the tilde indicates the reciprocal eigenfunction, which is different from the eigen-

function in case we choose to work with a complex basis for convenience. Since ME is

Hermitian, such a complex basis can however be decomposed into a real basis. It is then

understood that the two real basis functions constituting a complex one are individually

continued analytically, both for the eigenfunction and its reciprocal. For a rotated time

contour, the corresponding eigenfunctions are obtained by analytic continuation of τ and

κE according to eq. (4.18). The inner product is a function of κθ, and it is fixed for the

Euclidean case θ = π/2 in eq. (4.22). In order to continue to general values of θ,∫
dt d3x ∆̃φ

θ

{κθ,k}(t,x)∆φθ{κ′θ,k′}
(t,x)

=

∫
dt d3x ∆̃φ

E

{−ieiθκθ,k}(ie
−iθt,x)∆φE{−ieiθκ′θ,k′}

(ie−iθt,x), (4.23)

we evaluate the right-hand side by shifting the integration contour through the replacement

t → −ieiθt such as to maintain the integration manifestly convergent. Then, the phase

that appears as a prefactor cancels the phase from the continuation of the δ-function, and

we obtain∫
dt d3x ∆̃φ

θ

{κθ,k}(t,x)∆φθ{κ′θ,k′}
(t,x)

= −ieiθ2πδ(−ieiθ(κθ − κ′θ))(2π)3δ3(k− k′) = 2πδ(κθ − κ′θ)(2π)3δ3(k− k′) (4.24)

as the generalization of eq. (4.22). The δ-function of a complex argument is understood

here as the analytic continuation of some real representation. This fixes the normalization

N ′ = 1 that has been implied in eq. (4.18). Note that when rotating the integration in

order to apply the Cauchy theorem, the contributions from the integration along the arcs

at infinite complex time are also expected to vanish in this case because of the oscillating

nature of the solution — as opposed to the exponential decay for the discrete eigenfunctions.

9Recall that τ and t are both defined to be real.
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4.3 Completeness of the eigenmodes

Consider the sum over projection operators

Iθ =

∫
d3k

(2π)3

∑
β

∆φθ{β,k}(x)∆φθ{β,k}(x
′) +

∫
dκθ
2π

d3k

(2π)3
∆̃φ

θ

{κθ,k}(x)∆φθ(κθ,k)(x
′). (4.25)

Using the relation to the Euclidean eigenfunctions with the appropriate normalization

obtained above, we have:

∆φθ{β,k}(t,x) =
√
ie−iθ∆φE{β,k}(ie

−iθt,x) (decaying, discrete), (4.26a)

∆φθ(κθ,k)(x) = ∆φE{−ieiθκθ,k}(ie
−iθt,x) (oscillating, continuum). (4.26b)

The above implies, after analytic continuation of the integral in κθ in eq. (4.25) to an

integral over ie−iθκE (where κE ∈ R),

Iθ = ie−iθ

(∫
d3k

(2π)3

∑
β

∆φE{β,k}(ie
−iθt,x)∆φE{β,k}(ie

−iθt′,x′)

+

∫
dκE
2π

d3k

(2π)3
∆̃φ

E

{κE ,k}(ie
−iθt,x)∆φE(κE ,k)(ie

−iθt,x)

)
.

The term in parentheses is the sum over projectors over the Euclidean eigenfunctions,

analytically continued in time. Assuming a complete Euclidean basis, this is nothing but

δ(ie−iθ(t− t′))δ3(x− x′). Thus,

Iθ = ie−iθδ(ie−iθ(t− t′))δ3(x− x′) = δ(t− t′)δ3(x− x′). (4.27)

In summary, the sum over the rotated projectors onto the rotated eigenfunctions is equal

to the identity operator, which shows that the rotated basis is complete.

4.4 Fluctuation determinant

Given the orthonormal eigenfunctions for arbitrary θ, the differential operator Mθ
a can be

expanded in a basis of orthogonal projectors:

Mθ
a(x, x

′) =

∫
d3k

(2π)3

∑
β

λ(β,k)∆φθ{β,k}(x)∆φθ{β,k}(x
′)

+

∫
dκθ
2π

d3k

(2π)3
λ(θ, κθ,k) ∆̃φ

θ

{κθ,k}(x)∆φθ{κθ,k}(x
′). (4.28)

In the continuum integral, we made explicit the dependence of the eigenvalues on θ. The

determinant can be calculated as

logdetMθ
a = tr logMθ

a =

∫
dtd3x

∑
β

∫
d3k

(2π)3
∆φθ{β,k}(t,x)∆φθ{β,k}(t,x) logλ(β,k)

+

∫
dtd3x

∫
dκθ
2π

d3k

(2π)3
∆̃φ

θ

{κθ,k}(t,x)∆φθ{κθ,k}(t,x) logλ(θ,κθ,k)

= tr
disc

logMθ
a+ tr

cont
logMθ

a, (4.29)

what we have decomposed into a discrete and a continuum piece.
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The contribution from the discrete modes can be readily evaluated using the orthonor-

mality relation (4.20) and replacing (2π)3δ3(k− k)→ V (3), as it is appropriate for planar

wave vectors, where V (3) is the volume of the three-dimensional space in which the vacuum

transition occurs. This leads to the sum over the logarithms of the discrete eigenvalues,

which matches the Euclidean result and remains independent of T :

tr
disc

logMθ
a = V (3)

∫
d3k

(2π)3

∑
β

log λ(β,k) = V (3)

∫
d3k

(2π)3

∑
β

log λE(β,k). (4.30)

In order to make proper sense of the continuum piece, we separate contributions that

can be attributed to the solitonic background φθa from those that belong to the vacuum

that is approached asymptotically. The latter give rise to a term that is proportional to

the volume of spacetime. Since in the vacuum one has constant V ′′(φ+) in eq. (4.1), the

temporal part of the vacuum modes with the decomposition (4.7) is just an exponential

function of time. From the orthonormality (4.22), we see that the vacuum modes (indicated

by an extra superscript F ) are

∆φF,θ{κθ,k} = exp(iκθt) exp(ik · x) , such that ∆̃φ
F,θ

{κθ,k}∆φ
F,θ
{κθ,k} ≡ 1. (4.31)

Note that for a given κθ, the eigenvalue for the vacuum mode as well as for the mode

around the background φθa is given by eq. (4.17). In view of eq. (4.31), it is useful to define

Bθ{κθ,k}(t,x) = ∆̃φ
θ

{κθ,k}∆φ
θ
{κθ,k} − 1 (4.32)

as the factor that isolates the solitonic background contribution from that of the vac-

uum in the integrand of eq. (4.29). In the ultraviolet, where κθ → ±∞, we expect that∣∣∣Bθ{κθ,k}(t,x)
∣∣∣ ∼ |1/κθ|n, where n is a positive integer in a gradient expansion. Explicitly,

we then decompose the continuum contribution into

tr
cont

logMθ
a =

∫
dt

∫
d3x

∫
dκθ
2π

∫
d3k

(2π)3
∆̃φ

θ

{κθ,k}(t,x)∆φθ{κθ,k}(t,x) log λ(θ, κθ,k)

= tr
cont,F

logMθ
a + tr

cont,B
logMθ

a, (4.33)

where λ are the continuum eigenvalues given by eq. (4.17).

The first term yields

tr
cont,F

logMθ
a =

∫
dt

∫
d3x

∫
dκθd

3k

(2π)4
log λ(θ, κθ,k)

=V (4)

∫
dκθd

3k

(2π)4
log λ(θ, κθ,k) = V (4)

∫
dκθd

3k

(2π)4
log(−e2iθκ2

θ + k2 +m2)

(4.34)

where V (4) ≡
∫

dt
∫

d3x is the real, four-dimensional volume of spacetime, and where we

recall that m2 is effective mass in the asymptotic vacuum:

m2 = V ′′(φ+) = V ′′(φ−). (4.35)
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We recall again that φ+ = φ− for the bounce, such that the above equation is trivially

satisfied. For the kink soliton, the effective mass at φ+ and φ− coincides because of the

Z2 symmetry between the two vacua. The contribution in eq. (4.34) is the same as the

logarithm of the determinant of the fluctuation operator for the vacuum. In expressions

involving ratios of determinants such as eqs. (3.29), (3.69), (A.28), (6.7) or (6.8) for the

Euclidean or Minkowskian amplitudes (in fact for normalized amplitudes for any value

of θ), these contributions will cancel out. Being proportional to the four-dimensional

volume V (4) ∝ T , they are not invariant under rotations of the time contour, so that

their cancellation is crucial for well-defined physical observables, as discussed at the end

of section 3.2. In case we calculate one amplitude without normalizing it by another,

the integral (4.34) must be regularized. A convenient method in the present context may

be Pauli-Villars regularization by a field with mass M because this leads to a vanishing

integrand when |κθ| → ∞. We could then proceed evaluating eq. (4.34) by rotating the

integration contour in κθ, such that

tr
cont,reg,F

logMθ
a = V (4)

∫
dκθd

3k

(2π)4
log

(
−e2iθκ2

θ + k2 +m2

−e2iθκ2
θ + k2 +M2

)
= V (4)ie−iθ

∫
dκθd

3k

(2π)4
log

(
κ2
θ + k2 +m2

κ2
θ + k2 +M2

)
≡ 2ie−iθV (4)VCW,E,reg. (4.36)

Here, we have applied the Cauchy theorem and the fact that the contribution from the

arcs at infinity of this regularized integral are vanishing. The quantity VCW,E,reg is the

regularized effective potential that one would obtain in Euclidean space, such that we

see that for the false-vacuum contribution the analytic continuation only incurs a phase

from the rotation of the infinite time interval, in accordance with an analytic continuation

of the Euclidean result by the substitution T → ie−iθT . Noticing that the continuum

eigenvalues are of the form (4.17), the piece (4.34) is nothing but the generalization to

arbitrary θ of the usual Coleman-Weinberg potential evaluated at the false vacuum. For

the problem of vacuum decay, this is expected because for large values of |t| and |x|, i.e.

almost everywhere in spacetime, the background sits at the false vacuum. Note also that

for θ = ε, expression (4.36) corresponds to −2iσ, where σ is the phase appearing in eq. (2.6)

for the false-vacuum amplitude.

The piece in eq. (4.33) that isolates the one-loop terms due to the solitonic background

in the effective action is given by

tr
cont,B

logMθ
a =

∫
dt

∫
d3x

∫
dκθ
2π

∫
d3k

(2π)3
Bθ{κθ,k}(t,x) log λ(θ, κθ,k)

=

∫
dt

∫
d3x

∫
dκθ
2π

∫
d3k

(2π)3
BE{−ieiθκθ,k}(ie

−iθt,x) log λ(θ, κθ,k)

= −ieiθ
∫

dt

∫
d3x

∫
dκθ
2π

∫
d3k

(2π)3
BE{−ieiθκθ,k}(t,x) log λE((−ieiθκθ,k)

=

∫
dt

∫
d3x

∫
dκE
2π

∫
d3k

(2π)3
BE{κθ,k}(t,x) log λE(κE ,k). (4.37)
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Here, we have again used the Cauchy theorem in order to rotate the contour of the κθ-

integration. Therefore, the contributions from the arcs at infinity must vanish. In field-

theoretical settings, this generally requires a regularization of the integral, as discussed

above. In the quantum-mechanical example of section 5.2, we find that BE{κθ,k} ∼ 1/κ2
θ

(cf. eq. (5.29)) such that the integrals over the arcs vanish without further ado. Since in

the planar-wall limit, the modes separate according to eq. (4.7), equation (4.32) further

simplifies to

Bθ{κθ,k} = ϕ̃{κθ,k}(t)ϕ{κθ,k}(t)− 1, (4.38)

i.e. this function is independent of x. We can therefore integrate over three-space and obtain

tr
cont,B

logMθ
a = V (3)

∫
dt

∫
dκE
2π

∫
d3k

(2π)3
BE{κθ,k}(t,x) log λE(κE ,k). (4.39)

This shows that the solitonic contributions to the determinant over the continuum modes

are the same as in Euclidean space, and independent of T . Together with the result (4.30)

from the discrete modes, this gives the contribution from the bounce to the effective action,

which is notably independent of T and θ, in accordance with the classical contribution (3.7).

The additional contribution of eq. (4.37) from the continuum modes is identical to the false-

vacuum result, and will cancel out when taking ratios of determinants. In summary, our

results imply

detMθ
a = detME

a

∣∣
T →ie−iθT ,

detMθ
B

detMθ
F

=
detME

B

detME
F

. (4.40)

As discussed at the end of sections 3.1 and 3.2, physical observables must be independent of

T and θ, which is achieved if the observables involve ratios as in eq. (4.40). In the tunneling

problem, such a ratio of determinants appears for ZθB[T ]/ZθF [T ], as given in eq. (3.69). As

we have just shown that the ratio is T -independent, we can now use the fact that the real

Euclidean determinant has a single discrete negative mode, so that we can write (denoting

∂2
E ≡ ∂2

τ +∇2)

ZθB[T ]

ZθF [T ]
=
−e−iθTV (3)

2

(
SE [φB]

2π

)2

e−SE [φB ]

∣∣∣∣det′[−∂2
E + V ′′(φB)]

det[−∂2
E + V ′′(φ+)]

∣∣∣∣−1/2

. (4.41)

This matches as expected the Euclidean result under analytic continuation T → ie−iθT ,

when assuming the determinants remain T -independent. However, the result is nontrivial

since, as we have seen, the determinants have a dependence on T that is usually hidden

by taking the limit T → ∞. Therefore, the explicit derivation of each piece contributing

to eq. (4.41) presented here corresponds to a more rigorous proof of this expression. As

a byproduct, we have gained explicit insight into the fluctuation spectrum on the Lef-

schetz thimble for saddle points in complex and real time, and we have clarified how the

contributions from the continuum spectrum are related to the usual Coleman-Weinberg

potential.
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4.5 Spherical geometry

Thus far, in section 4 we have developed the arguments for the analytic continuation of

the fluctuation modes in the planar-wall limit. In this setting, temporal and spatial depen-

dencies of the eigenfunctions naturally separate, what facilitates the analytic continuation

into the plane of complex time. Bubbles are, after all, spherical, such that it is in order at

least to outline how to carry out the analytic continuation for the important cases where

the planar-wall limit does not apply.

First, we still choose labels {ι} for the eigenfunctions, such that one of them charac-

terizes the asymptotic behaviour in the time direction (decaying or oscillating), i.e. it can

be identified with β or κE in the previous discussion. Further, the ∆φE{ι}(x) must again

constitute a complete and orthonormal set of Euclidean eigenfunctions. Note that only for

the planar-wall geometry we can use {κE ,k} for this purpose. For a spherical geometry,

we may therefore choose the hyperspherical angular momenta {j, l1, l2} (in the notation

of e.g. ref. [43]) in addition to κE or β. (In that case, κE and β characterize the radial

oscillations or the decay of the modes about the Euclidean bubble.) In case this procedure

were to be applied to a concrete problem, the Euclidean modes, that are initially expressed

in hyperspherical coordinates, would have to be written such as to exhibit the explicit de-

pendence on τ . It may then be further advantageous to transform the ∆φE{ι}(x) to a basis

where the time-dependent factor manifestly separates.

Second, the modes ∆φE{ι}(x) are to be continued according to the above procedure, i.e.

the discrete modes by an analytic continuation in the time variable τ → ie−iθt only and the

continuum modes by a simultaneous continuation in time and the parameter κE → −ieiθκE .

Because of the aforementioned complications due to the change from hyperspheri-

cal coordinates to those with an explicit time variable, we have chosen above to con-

sider the planar-wall limit, where the discussion is simpler but nonetheless shows the key

points about the analytic continuation. Furthermore, the archetypical example in a quasi-

degenerate, quartic potential [3] is of the thin-wall type and it is the only one known to us

where the Euclidean eigenvalue problem can be fully solved analytically (cf. ref. [48] for an

extensive discussion of the Fubini-Lipatov instanton, which is perhaps the simplest example

with spherical geometry and where only the Green’s function but not the spectrum is known

analytically). For these reasons, we also use the archetypical model in order to exemplify

the analytic continuation of the modes and the spectrum in the upcoming section.

5 Examples for the analytic continuation of the fluctuation spectrum

5.1 Effective action evaluated at a constant vacuum configuration

Consider the case where the background φθa is constant, such that the eigenmodes are

identical with their asymptotic forms shown in section 4. This means that they are simple

plane waves and the spectrum is continuous. In Euclidean space in four dimensions, the

eigenfunctions are

∆φE{κE ,k}(τ,x) = eik̂·x̂, (5.1)
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where x̂ = (τ,x) is the Euclidean position four-vector and k̂ = (κE ,k). The reciprocal

eigenfunctions are simply obtained by substituting k̂ with −k̂, so that the orthonormality

relation is ∫
d4x̂ ∆̃φ

E

{κE ,k}(τ,x)∆φE{κ′E ,k′}
(τ,x) = (2π)4δ4(k̂ − k̂′). (5.2)

The eigenvalues are given by δmnk̂
mk̂n+m2 ≡ k̂2 +m2, and the logarithmic determinant is

log detME
F = V

(4)
E

∫
d4k̂

(2π)4
log(k̂2 +m2) =

∫
d4x̂ VCW, (5.3)

where V
(4)
E ≡

∫
dτ
∫

d3x. That is, it is given by the spacetime integral of the Coleman-

Weinberg potential evaluated at the vacuum.

In Minkowski space the eigenfunctions are also improperly normalizable plane waves.

In Lorentzian notation xµ = (t,x), kµ = (k0,k), these are:

∆φθ=0
{k} (x) = eik·x. (5.4)

Note how the solutions can be obtained from the Euclidean ones in eq. (5.1) by replacing

τ → ie−iθt, κE → −ieiθk0, with θ = 0. Again, the above Minkowski solutions are nor-

malized as in eq. (5.2) and are eigenfunctions of Mθ=0
F with eigenvalues −k2 + m2. The

determinant is then

log detMθ=0
F =V (4)ie−iθ

∫
d4k

(2π)4
log(−k2 +m2), (5.5)

which, upon regularization of the ultraviolet divergences, can be obtained from the Eu-

clidean result by analytic continuation of κE → −ieiθk0 for θ = 0.

5.2 Fluctuation spectrum about an instanton in the double-well potential and

a quantum-mechanical kink

We will apply some of the general developments of this work to the perhaps simplest

example of quantum-mechanical tunneling, i.e. the archetypical model from ref. [3] based

on a quartic potential

V (x) = −1

2
µ2 x2 +

g

3!
x3 +

λ

4!
x4 + V0, (5.6)

where µ, g, λ > 0 and V0 is a constant to ensure V (x+) = 0 as shown in figure 1. In the

limit g → 0 the vacua become quasi-degenerate. This leaves us in the so-called thin-wall

limit [2], where, in the field theoretical case, the size of the bubble wall is small compared

to its radius. In the quantum-mechanical case, the quasi-degenerate limit implies that the

bounce approximately corresponds to a pair of a kink and an anti-kink. The kink solution is

well-known analytically (see eq. (5.9)), as it is also true for the fluctuation spectrum about

it (section 5.2). This setup is therefore suitable to illustrate the more general aspects of

vacuum decay in real time on a case that is analytically tractable.
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The kink in the quantum-mechanical quartic potential as well as the bounce in the

archetypical example are described by the same background. It follows from the Euclidean

equation of motion (i.e. eq. (4.2) for θ = π/2 and vanishing spatial gradients)[
− d2

dτ2
+ V ′(φa)

]
φa = 0 (5.7)

with the potential

V (φ) = −1

2
µ2φ2 +

λ

4!
φ4. (5.8)

The solution asymptotically approaching the two minima is the kink

φ̄ = v tanh γ(τ − τ0), (5.9)

where γ = µ/
√

2. It can be considered as a Euclidean saddle point in quantum mechanics,

cf. the potential (5.6). In field theory, τ corresponds to the radial coordinate of a solitonic

bubble with a thin wall [2], and it describes bubble nucleation.

Compared to the quantum-mechanical problem, the thin-wall limit for tunneling in

field theory requires the integration over the space of fluctuations parallel to the wall (i.e.

the k-modes in section 4). This leads to ultraviolet divergences that can however be renor-

malized [43]. To keep this issue aside and to concentrate on the analytic continuation, we

consider in this section the quantum-mechanical kink. In either case, quantum mechanics

or field theory, one may also derive analytic expressions for Green’s functions about the

kink that allow for as systematic perturbation expansion [43, 49, 50].

Writing u = tanh γ(τ − τ0), the eigenvalue equation[
− d2

dτ2
+ V ′′(φ̄)

]
∆φE{κE ,k}(τ) = λ∆φE{κE ,k}(τ) (5.10)

becomes[
d

du
(1− u2)

d

du
− $2

1− u2
+ 6

]
∆φE{κE ,k}(τ) = 0, $2 = 4 + (k2 − λ)/γ2. (5.11)

The solutions are the associated Legendre functions of second degree and order $:

∆φE{κE ,k}(τ) =
√
NE($)P$2 (u), (5.12)

with NE($) a normalization constant.

First, one may note that the effective mass of the scalar field in the true vacuum,

approached by the kink at τ = ±∞, is given by

m2
± = 4γ2≡ m2. (5.13)

Further, there are two discrete eigenvalues corresponding to $ = 1 (with a positive

eigenvalue λ = 3γ2) and $ = 2 (giving a zero mode, associated with time transla-

tions) [43, 48, 51]. (For the thin-wall problem, there are two discrete modes for each k.)
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There is no negative mode because the kink is not a true bounce or tunneling solution

(which should tend to the false vacuum both at τ → ±∞, while the kink only does so only

at positive infinity). Further, there is a continuum of modes for imaginary values of $.

To relate this spectrum to the discussion of the asymptotic behaviour of the modes in

section 4, we use that for $ 6= 1, we may express the Legendre functions through Jacobi

polynomials as

P$2 (u) =
1

cosπ$2

(
u+ 1

u− 1

)$
2

(3−$)$P
−$,$
2 (u), |u| < 1, $ 6= 1. (5.14)

The asymptotic expansions for τ → ±∞ — corresponding to u = ±1 — are

P$2 (τ) ∼ 1

2 cosπ$2
(−1)

$
2 eγ$τ (3−$)$(1−$)(2−$), τ →∞,

P$2 (τ) ∼ 1

2 cosπ$2
(−1)

$
2 eγ$τ (3−$)$(1 +$)(2 +$), τ → −∞.

(5.15)

For $ = 1, one has P 1
2 (u) = −3u

√
1− u2, which gives

P 1
2 (τ) ∼ −6e−γτ , τ →∞,
P 1

2 (τ) ∼ 6eγτ , τ → −∞.
(5.16)

Based on this, we recover for $ = 1, 2 a suppressed behaviour at both ends, in accordance

with the fact that we are dealing with discrete modes. There are no other values of $

for which we obtain a decaying behaviour for both τ = ±∞, which confirms that there

are only two discrete modes. Furthermore, the continuum spectrum can only come from

oscillating solutions, which demand complex $:

$ =
iκE
γ

=
2iκE
m

,κE ∈ R. (5.17)

In this case the continuum eigenvalues are

λ = γ2(4−$2) = m2 + κ2
E , (5.18)

where we have used eq. (5.13). This is in accordance with our general result for the

Euclidean eigenvalues in the continuum, eq. (4.16) for k = 0. The continuum eigenfunctions

are then given by

∆φEκE (u) = NE(κE)P$2 (u)|$= 2i
m
κE
, (5.19)

where NE is a normalization constant. The reciprocal eigenfunctions are obtained by

simply changing the sign of κE , as follows from the identity∫ 1

−1

du

1− u2
P iξ2 (u)P−iξ

′

2 (u) =
2 sinhπξ

ξ
δ(ξ − ξ′), (5.20)
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which implies that our eigenfunctions (5.19) satisfy∫ ∞
−∞

dτ∆φE,−κE φ(τ)∆φE,+
κ′E

φ(τ) =
m2

2κ
N 2
E(κE) sinh

2κEπ

m
δ(κE − κ′E)

!
= 2πδ(κE − κ′E).

(5.21)

Imposing the normalization (4.22) in the last equality fixes

NE(κE) =

√
4πκE

m2 sinh 2πκE
m

. (5.22)

Now, for a rotated time contour, we can rewrite the equation for the fluctuations in

terms of a variable

uθ = tanh[γie−iθ(t− t0)] . (5.23)

The resulting equation is identical to eq. (5.11), after substituting u with uθ. Thus its

solutions will be the associated Legendre functions evaluated at uθ. This is equivalent

to the analytic continuation of the Euclidean solutions with the substitution τ → ie−iθt.

The asymptotic expansions can then be obtained from eqs. (5.15) and (5.16) by the same

analytic continuation, giving for $ 6= 1

P$2 (ie−iθt)∼ 1

2cosπ$2
(−1)

$
2 eγ$ sinθteiγ$ cosθt(3−$)$(1−$)(2−$), t→∞,

P$2 (ie−iθt)∼ 1

2cosπ$2
(−1)

$
2 eγ$ sinθteiγ$ cosθt(3−$)$(1+$)(2+$), t→−∞,

(5.24)

and for $ = 1

P 1
2 (ie−iθt) ∼ −6e−γ sin θte−iγ cos θt, t→∞,
P 1

2 (ie−iθt) ∼ 6eγ sin θteiγ cos θt, t→ −∞.
(5.25)

Again, for $ = 1, 2 the solutions decay at infinite time for θ > 0 and therefore are legit-

imately discrete modes. For asymptotically oscillatory solutions, we need the phase of $

to be given by

e−iθγ$ = κθ, κθ ∈ R,⇒ $ =
eiθκθ
γ

=
2eiθκθ
m

. (5.26)

These values of $ can be obtained from the corresponding Euclidean ones in eq. (5.17)

by an analytic continuation κE → −ieiθκθ, as expected from our general arguments. The

normalized continuum eigenfunctions follow from eq. (4.18) as

∆φκθθ (t) = NE(−ieiθκθ)P$2 (ie−iθt). (5.27)

The continuum eigenvalues can be obtained by applying the same substitution to eq. (4.16),

which gives a result agreeing with eq. (4.17).
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5.3 Functional determinant of the kink

Using the eigensystem discussed above, we now calculate the fluctuation determinant of the

kink for general θ following the procedure explained in section 4.4. First, the two discrete

modes associated with $ = 1, 2 have the eigenvalues λ = 3γ2, 0, respectively. The zero

eigenvalue is dealt with by a volume integration as in eq. (3.27). We are hence left with

tr′
disc

logMθ
K = log 3γ2 = log

3

2
µ2, (5.28)

the prime indicates that we have omitted the zero eigenvalue. We note that according to

our general arguments, the discrete eigenvalues are independent of θ.

The vacuum contribution to the fluctuation determinant is given by the Coleman-

Weinberg form. It cancels when normalizing with the determinant of the solution

xθF (t) = x+ = const. and therefore requires no further evaluation in the present context.

Substituting the continuum eigenfunctions (5.27) into eq. (4.32), we obtain the factor

Bθκθ(t,x) =
3(u2

θ − 1)(1 + 3u2
θ −$2)

(1−$2)(4−$2)
(5.29)

that appears in the integrand of the bounce contribution to the fluctuation determinant

and where $ is given by eq. (5.26). Now from eq. (4.37), we know that the part of the

determinant arising from this factor is independent of θ such that it is then simplest to

evaluate it in Euclidean time θ = π/2. The temporal integration in eq. (4.37) then yields

1

γ

1∫
−1

du

1− u2

3(u2 − 1)(1 + 3u2 −$2)

(1−$2)(4−$2)
= −6

γ

2−$2

(1−$2)(4−$2)
(5.30)

and the trace over the eigenvalues

tr
cont,B

logMθ
K =

∞∫
−∞

dκE
2π

(
−6

γ

2−$2

(1−$2)(4−$2)

)
log
(
γ2(4−$2)

)
= −2

(
log µ2 + log 6

)
,

(5.31)

where the Euclidean $ is given in eq. (5.17).

In total, we arrive at the result

tr′ logMθ
K = tr

disc

′ logMθ
K + tr

cont,B
logMθ

K + tr
cont,F

logMθ
K

= − log µ2 − log 24 + ie−iθT

∫
cont

dκE
2π

log λE(κE ,k). (5.32)

Note that the last term is the same as the false-vacuum contribution, such that we have

tr′ logMθ
K − tr logMθ

F = − log 24µ2. (5.33)

In appendix B, we compare this calculation with a number of additional methods for

computing the functional determinant.
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6 The decay rate from the Minkowski path integral

Recalling eqs. (2.6), (3.8), one can relate the partition function ZεFB[T ] on the integration

cycle through the false vacuum with the transition matrix M of the time-evolution operator

U(T ) = exp(iσ)1 + iM(T ):

N 2ZεFB[T ] = eiσ〈FV|FV〉+ 〈FV|iM(T )|FV〉. (6.1)

Using expression (3.11), we may expand ZεFB[T ] for small ZεB,Gaußian[T ]/ZεF,Gaußian[T ]

such that

N 2ZεF,Gaußian[T ] +N 2ZεB,Gaußian[T ] ≈ eiσ〈FV|FV〉+ 〈FV|iM(T )|FV〉. (6.2)

Since the wave function for |FV〉 is dominated by a contribution corresponding to a local

ground state at the metastable minimum of the potential, the amplitude N 2ZεF,Gaußian[T ]

is in the Gaußian approximation related with 〈FV|FV〉 by a pure phase. Recall that we

have isolated this phase in section 4.4. Thus, we may identify

N 2 ZεF,Gaußian[T ] = eiσ〈FV|FV〉, (6.3)

so that eq. (6.2) gives

〈FV|ie−iσM(T )|FV〉
〈FV|FV〉

=
ZεB,Gaußian[T ]

ZεF,Gaußian[T ]
. (6.4)

In accordance to the optical theorem of eq. (2.8), the total decay probability is given by

pFV→ all[T ] = 2 Im
〈FV|e−iσM(T )|FV〉

〈FV|FV〉
= −2 Re

(
ZεB,Gaussian[T ]

ZεF,Gaussian[T ]

)
. (6.5)

As we have shown in sections 3 and 4, at NLO, this amplitude can simply be obtained

from the Euclidean result through the replacement T → iT , and taking into account that

the ratio of fluctuation determinants becomes T -independent (the regulator ε can be taken

all the way to zero here). In the quantum-mechanical case we can use the result (3.31),

while for quantum field theory we may use eq. (3.69); the result is

pFV→ all[T ] =

 T

√
SE [xB ]

2π

∣∣∣det′[−∂2τ+V ′′(xB)]
det[−∂2τ+V ′′(x+)]

∣∣∣−1/2
e−SE [xB ], QM

TV (3)
(
SE [φB ]

2π

)2 ∣∣∣det′[−∂2τ−∇2+V ′′(φB)]
det[−∂2τ−∇2+V ′′(φ+)]

∣∣∣−1/2
e−SE [φB ], QFT

. (6.6)

From this we find the quantum-mechanical decay rate ΓQM and the field-theoretical decay

rate per unit volume ΓQFTV ,

ΓQM =

√
SE [xB]

2π

∣∣∣∣det′[−∂2
τ + V ′′(xB)]

det[−∂2
τ + V ′′(x+)]

∣∣∣∣−1/2

e−SE [xB ], (6.7)

ΓQFTV =

(
SE [φB]

2π

)2 ∣∣∣∣det′[−∂2
τ −∇2 + V ′′(φB)]

det[−∂2
τ −∇2 + V ′′(φ+)]

∣∣∣∣−1/2

e−SE [φB ], (6.8)
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which match the classic result obtained in Euclidean space by Callan and Coleman [2, 3].

Note that in Callan’s and Coleman’s derivation of the decay rate, based on identifying

the imaginary part of the energy density in the false-vacuum state (see appendix A),

the sum over multi-bounce saddle points becomes crucial. This is not the case when

calculating the probability of decay through the optical theorem, as the expansion in small

ZεB,Gaußian[T ]/ZεF,Gaußian[T ] which led to (6.2) from eqs. (3.11), (2.6) and (3.8) is equivalent

to only considering the single bounce contribution to the false-vacuum partition function.

We emphasize that in order to apply the optical theorem (2.8), it is necessary that

the Minkowskian ratio ZεB,Gaußian[T ]/ZεF,Gaußian[T ] is real. Arguably, this follows from the

simple analytic continuation of the Euclidean prefactor iT → −T . Nonetheless, this näıve

substitution is only justified when ignoring the T -dependence of the classical action and

the ratio of determinants; a T → ∞ limit is implicit here and we have proved this result

in detail at the level of the classical action and of the fluctuation spectrum at a complex

saddle point on the pertaining Lefschetz thimble. This way, it is also further clarified in

what sense an instanton describes tunneling in real time.

In eq. (6.6) we obtain a probability which is linear in time, while the usual decay

behaviour takes the form of an exponential law p=(1 − exp(−ΓT )), as one can derive

in the Callan-Coleman formalism. There is, however, no contradiction. The reason for

our approximation using the optical theorem being linear in T is that we have accounted

only for the single bounce when expanding ZεFB[T ] for small ZεB,Gaußian[T ]/ZεF,Gaußian[T ].

Accordingly, one should also expand exp(−ΓT )≈1 − ΓT such that we have p≈ΓT which

matches our result. Alternatively, we may obtain the exponential decay law by following

the argument by Callan and Coleman [3] based on multi-bounces. The intuitive picture

is the following: the particle, initially trapped in the false vacuum, can penetrate into the

barrier region between the turning point p (see figure 1 and x+ due to its quantum nature.

Every single complex bounce describes a collision of the particle with the outer boundary

of the barrier region. And the probability in eq. (6.6) is the escape probability for the

particle to penetrate outside of the barrier for one single collision. Namely, the surviving

probability is 1− p which is the first order expansion of e−p. During the history, collisions

happen again and again, which leads to an exponential survival probability e−Γ T . The

strict derivation of this statement can be carried out by repeating the argument in ref. [3]

which will be omitted here.

7 Discussions and conclusions

In this paper, we have applied Picard-Lefschetz theory to false-vacuum decay in real time

and more generally in rotated complex time characterized by a phase angle θ. One mo-

tivation is the use of the real-time amplitude in an optical theorem for tunneling, that

leads us to the decay rate through a route that is alternative to calculating the imaginary

part of the ground-state energy at the false vacuum, or solving for wave functions in the

WKB approximation. Using these different methods in explicit computations of the decay

rate for the archetypical example of a quasi-degenerate double-well potential to one-loop

accuracy, we illustrate in what way these approaches are related. The interpretation of the
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real-time false-vacuum to false-vacuum amplitude in terms of the optical theorem provides

a new relation between the functional techniques of calculating decay rates to real-time dy-

namics. Alternative descriptions in real-time are of course given by the well-known picture

of tunneling through a wave function that penetrates the barrier, that is accounted in the

present paper by the WKB construction in appendix C, or by a distribution of classical

paths [52] that only leads to approximate results however [53].

While in ref. [26] it has been observed that the complex saddle point obtained by

Wick rotation of the Euclidean instanton may recover the instanton physics in real time,

we focus here on the complex bounce in the vacuum decay problem [40]. Even though it

is not difficult to see that the classical action is invariant under the rotation, proving the

equivalence between the Euclidean path integral around the real bounce and the Minkowski

integral around its complex continuation is much more difficult than one may expect.

Ultimately, this is due to the fact that, even though the Euclidean and Minkowski saddle

points can be related through analytic continuation, this is not true for their associated

steepest descent integration contours, because the flow equations that define them are not

holomorphic. In order to prove the equivalence of the path integrals we have made several

theoretical developments in this work. First, we have transferred the flow eigenproblem

to an eigenproblem in the proper sense, building on the developments in ref. [27]. Based

on this relation, we have expressed at the Gaußian level the path integral on a Lefschetz

thimble through the determinant of the quadratic fluctuation operator continued to rotated

time. We have then investigated the continuation of the fluctuation spectrum, i.e. of

the eigenmodes and the eigenvalues, under rotation of time. It turns out that discrete

and continuum modes behave in a crucially different way and require careful distinction.

Eventually, we have proved that the fluctuation functional determinant around the complex

bounce can be obtained from the Euclidean one around the normal bounce via a Wick

rotation of the time interval, T → ie−iθT . Arriving at this result has been less obvious

than one would näıvely expect. In particular, we have made a spectral decomposition of

the logarithmic determinant and separated the finite contribution, which is independent of

T , from a part proportional to the volume of spacetime and hence to T . We have observed

that the latter piece, which only receives contributions from the continuum spectrum, turns

out to be equal to the logarithmic determinant in the asymptotic false vacuum, which is

itself related to the usual Coleman-Weinberg potential. This T -dependent contribution is

then canceled when normalizing the functional determinant by the false-vacuum result. In

effect, in the result of the normalized path integral of the fluctuations about the bounce

saddle point, the Wick rotation only affects the integration over the collective coordinate

associated with the spontaneous breakdown of time-translation invariance. This gives a

real-time vacuum to vacuum transition amplitude from which one can recover the decay

rate using the optical theorem. The result matches the one derived by Callan and Coleman

in Euclidean spacetime from considering the imaginary part of the ground-state energy; an

interesting difference between the two derivations is that the one using the optical theorem

does not rely on summing over multi-bounce configurations.

To check and illustrate our developments, we have considered the spectrum of fluctua-

tions in the kink background and its analytic continuation under rotations of time. We have
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further computed the functional determinant for the kink in terms of the spectrum, and

have compared it with the results from additional methods based on the Gel’fand-Yaglom

theorem and on the resolvent of the fluctuation operator. For completeness, we have also

reviewed the derivation of the decay rate using the WKB method and shown agreement

between all these rather different approaches.

Our work may have applications in the following directions. The transformation be-

tween the flow eigenproblem and the proper eigenproblem may turn out to be important

in applying Picard-Lefschetz theory to additional problems, where a real-time description

may be of interest, e.g. for QCD instantons. Real-time techniques may also be the only

way of addressing vacuum transitions in backgrounds that cannot be Euclideanized, such

as nonequilibrium systems or curved spacetimes [54]. The present work may serve as the

basis for treating such problems to one-loop accuracy and beyond. Also, by the optical

theorem, the decay of the false vacuum is described as the sum of all the possible transi-

tions from the false vacuum to the nucleated field configurations, among which the critical

bubble should give the dominant contribution. The precise shape of the probability dis-

tribution of the nucleated configurations and its possible phenomenological consequences

will be investigated in future work.
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A Review of the evaluation of the path integral for quantum-mechanical

tunneling in Euclidean time

A.1 Euclidean path integral

In this appendix we review how the path integral is evaluated in the theory of false-

vacuum decay due to Callan and Coleman [2, 3]. For simplicity, we focus on the case

of quantum mechanics; this serves us to introduce the notation used in this work and

to provide reference formulae. Furthermore, it allows us to contrast the calculation in

Euclidean time with the alternative approach where one remains in Minkowski space, the

main subject of the present paper. For this purpose, we also find it useful to recapitulate

how the imaginary energy of the false vacuum can emerge and be understood from the

evaluation of the path integral based on Picard-Lefschetz theory [22].
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We consider the archetypical model from ref. [3] of quantum-mechanical tunneling in

a quartic potential. In Minkowski spacetime, the action is

SM =

∫
dtLM =

∫
dt

[
1

2

(
dx

dt

)2

− V (x)

]
, (A.1)

where the potential V (x) is given in eq. (5.6). Though we work in quantum mechanics, we

still call x(t) field and the ground (resonant) states around x− and x+ the true vacuum

and false vacuum, respectively.

Instead of working with the transition amplitude in Minkowski space that would di-

rectly lead to the tunneling rate, Callan and Coleman consider the Euclidean amplitude

D(x+, T /2;x+,−T /2) = 〈x+|e−HT |x+〉 =

∫
Dx(τ) e−SE [x(τ)] ≡ ZE [T ] , (A.2)

where we define the Euclidean Lagrangian LE = 1
2

(
dx
dτ

)2
+V (x) that appears in the action

SE =
∫

dτ LE . All trajectories contributing to the path integral have the boundary condi-

tions x(−T /2) = x(T /2) = x+. Note that in the Euclidean Lagrangian, the potential ap-

pears upside down compared to the original one. As shown in eq. (1.2), for large T , eq. (A.2)

shall give us the information on the lowest-lying energy eigenvalue and its wave function.

We can evaluate the path integral (A.2) using the method of steepest descent. The

stationary configurations are given by the equation of motion

d2x(τ)

dτ2
− V ′(x(τ)) = 0 (A.3)

subject to the Dirichlet boundary conditions x(−T /2) = x(T /2) = x+. Here, the prime

denotes a derivative with respect to x. When we work with real paths x(τ), this equation

describes the motion of a classical particle released at the local maximum x+ of the potential

−V (x) at −T /2, and returning to x+ at T /2. In the limit T → ∞, we have three types of

solutions:10 the trivial false-vacuum solution xF (τ) ≡ x+, the bounces xBn(τ),11 — which

bounce back and forth from the false vacuum n times, with zero initial velocity — and a

third one called the shot in refs. [22, 45], xS(τ). The false vacuum and the single bounce

(B1 ≡ B and xB1(τ) ≡ xB(τ)) are well-known from ref. [2]. To understand the shot, note

that the particle may be released from x+ with a nonvanishing initial velocity in such a

way that it arrives at the higher maximum x− with asymptotically vanishing velocity and

eventually rolls back to x+. The requirement that the particle must stop exactly at x−
instead of some intermediate point originates from the condition T → ∞ for the motion

from x− back to x+.

10Even though we have taken the limit T → ∞ in order to obtain simple expressions for the saddle

points, at some other instances in this work, in order to understand the analytic continuation between the

Euclidean and Minkowskian configurations, we shall take the view that T is large but finite. That is, we

formally keep the dependence on T in the quantities that are to be continued analytically. Similar strategies

have been employed in the literature [3].
11The effect of multi-bounces can be accounted for by exponentiating the single-bounce contribution to

the path integral [3, 23, 55], as discussed further below in the text.
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Now we can expand the path integral in eq. (A.2) around these three types of saddle

points. Writing x(τ) = xa(τ) + ∆xa(τ), where a = F,Bn, S, we obtain then

〈x+|e−HT |x+〉

≈
∑
a

(
e−S[xa]

∫
D∆xa e

−
∫ T /2
−T /2 dτ

[
∆xa(τ)

(
− 1

2
d2

dτ2
+ 1

2
V ′′(xa(τ))

)
∆xa(τ)+ 1

3!
(g+λxa(τ))∆x3a(τ)+ λ

4!
∆x4a(τ)

])
≡ZEF +

∑
n

ZEBn+ZS (A.4)

It turns out that the bounce fluctuation operator (−∂2
τ +V ′′(xB)) contains a negative eigen-

value, denoted by λB0 < 0. Similar negative eigenvalues are present for the multi-bounce

fluctuation operators. (With the multi-bounce given by infinitely separated bounces, there

are negative modes corresponding to each of the single bounces, i.e., there are n negative

modes associated with the saddle point xBn .) Therefore, a näıve Gaußian integration in

the perturbative expansion of the second line yields an ill-defined result. However, this is

not a problem of the underlying theory but is due to an incorrect application of the method

of steepest descent. The directions associated with the negative eigenvalues are in fact not

of steepest descent but rather of steepest ascent.

A.2 Contour integration in field space and flow equations

In order to make appropriate use of the method of steepest descent, we need to complex-

ify the paths x(τ) to z(τ) and then perform the path integral on a middle-dimensional

contour.12 For multiple-dimensional integrals as well as their generalization to path inte-

grals this approach is known as Picard-Lefschetz theory (see e.g., refs. [20, 21]). To frame

this discussion within a general context, we denote the holomorphic function appearing

in the exponential of the integrand as −SE [z] ≡ I[z] and we define the Morse function

h[z] = Re(I[z]). The saddle points satisfy the equation of motion δI[z] = 0 subject to the

boundary conditions of interest. For a saddle point za of I[z], one can find a downward

flow (the steepest descent path) according to the gradient flow equation [20]

∂z(τ ;u)

∂u
= −

(
δI[z(τ ;u)]

δz(τ ;u)

)
,
∂z(τ ;u)

∂u
= −δI[z(τ ;u)]

δz(τ ;u)
, (A.5)

where u ∈ R and the boundary condition is z(τ ;u = −∞) = za(τ). One can easily check

that

∂h

∂u
=

1

2

(
δI
δz
· ∂z
∂u

+
δI
δz
· ∂z
∂u

)
= −

∣∣∣∣∂z(τ ;u)

∂u

∣∣∣∣2 ≤ 0. (A.6)

That is, the real part of I[z] is decreasing when we move away from the saddle point along

the contour given by z(τ ;u). Further, one can show that ∂ImI[z(τ ;u)]/∂u = 0, meaning

that the phase is constant on that contour. All the steepest descent flows generated from

a saddle point za constitute the so-called Lefschetz thimble, denoted by Ja [20].

12Specifically, this means that we integrate over a manifold whose dimensionality is one half of the

complexified (infinite-dimensional) field space.
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Substituting the Euclidean action into eq. (A.5), we have

∂z(τ ;u)

∂u
= −∂

2z(τ ;u)

∂τ2
+ V ′(z(τ ;u)). (A.7)

Expanding z(τ ;u) around the saddle point z(τ ;u) = za(τ) + ∆za(τ ;u), one obtains

∂∆za(τ ;u)

∂u
=

(
− ∂2

∂τ2
+ V ′′(za(τ))

)
∆za(τ ;u), (A.8)

subject to the boundary condition ∆za(τ ;u = −∞) = 0. In our case, we denote the

Lefschetz thimble associated with xF , xBn , and xS as JF , JBn , and JS . Every thimble

defines a complex integration contour in field space which gives a convergent path integral,

as ensured by the decrease of the Morse function along the flow. Generically, we are looking

for a deformation of the original integration contour over the real fields. If the saddle points

are not connected by the flows, i.e., the thimbles end at convergent regions at infinity, this

deformed contour C can be expressed as

C =
∑
a∈Σ

na Ja (A.9)

where Σ is the moduli space of all the Lefschetz thimbles. The intersection numbers na
in eq. (A.9) can be either zero or positive integer numbers, and one has an independent

perturbative series for each thimble Ja near its corresponding saddle-point, with partition

function

ZEa = eI[za]

∫
D∆zae

1
2

∫
dτ1dτ2 ∆za(τ1)· δ2I[z]

δz(τ1)δz(τ2)

∣∣∣∣
za

·∆za(τ2)+...

. (A.10)

One could view every Lefschetz thimble that contributes to the contour C as a single

perturbation theory. Those saddle points then generate the vacua of the theory.

Two saddle points za1 , za2 may be connected with each other by the flows when

ImI[za1 ] = ImI[za2 ], as will happen in our quantum tunneling problem. In this case some

thimbles do not end up at convergent regions at infinity, but rather at other saddle points.

Then eq. (A.9) may not be strictly valid; nevertheless, one can still define a basis of paths

ending in convergent regions by combining thimbles or subspaces thereof, and the deformed

integration contour will be given by a linear combination of these paths. In this case, the

expansion around one saddle point may not be independent of another and one of the

saddle points could describe the nonperturbative phenomena relating to different vacua.

The contour C is not unique. Suppose we consider a general integral
∫

Ωn
dω where

Ωn is a n-dimensional contour in a 2n-dimensional manifold and dω is a holomorphic

differential n-form. Then any two contours Ω1
n, Ω2

n that differ by an exact manifold Ω3
n,

i.e., Ω3
n = ∂Ωn+1 for some n + 1−dimensional manifold Ωn+1 with ∂ here denoting the

boundary operator, give identical integration result because of the Cauchy theorem. This

defines an equivalence relation. To ensure convergence, the integration contour is either

compact or its infinite ends lie in the “convergent regions” where h[z] is sufficiently small

such that the integral is convergent. In this sense, we say that all the contours that ensure
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τ

x+-x(τ)

p

Figure 4. A series of symmetric quantum paths from x+ to itself: x̂(τ ; ρ), parameterized by ρ.

We take the τ -axis — the trivial false-vacuum solution — as the base point x̂(τ ; 0). The path with

its maximum marked by p, indicating the turning point, is the bounce x̂(τ ; b), for some number

b. The paths above the bounce x̂(τ ; ρ > b) are the quantum paths with escape point beyond the

turning point p, containing the shot at some point ρ = s > b which we do not show.

a convergent integration are closed and are called integration cycles. Together with their

equivalence relations, all the integration cycles give a relative homology group. In our

situation, we are just looking for a contour that is homologous to the original one; the

thimbles associated with the saddle points (or, when there are flows linking saddle points,

the cycles obtained from combinations of subspaces of thimbles), provide a convenient basis

of integration cycles.

Determining all the saddle points and the integers na is difficult in general. Fortunately,

it is not necessary to do such a complicated analysis for the tunneling problem. Let us

ignore the multi-bounce saddle-points for the moment, such that one just has the false

vacuum, the (single) bounce and the shot. On the original middle-dimensional contour

of real field configurations, all directions except for the one associated with the negative

eigenvalue λB0 at the bounce generate the actual paths of the steepest descent. Along

this special direction, the three saddle points are actually related with each other.13 To

see this, we consider a family of paths x̂(τ ; ρ) with ρ ∈ R as represented in figure 4. The

dependence of the Euclidean action on these paths is shown in figure 5. When varying ρ, the

trivial false-vacuum solution and the shot are situated at the local and the global minimum,

respectively. The bounce is at the local maximum, giving a negative second order derivative

(the negative eigenvalue λB0 ) of the action with respect to ρ. Thus along the parameter ρ,

a steepest ascent path (recall h[z] = −SE [z]) is generated starting from the bounce.

We find the missed direction of steepest descent when we allow the variable ρ to be

complex and deform the one-dimensional path as follows. The variable ρ starts from minus

13The relation between xF and the bounce xB was observed by Callan and Coleman in their original

work [3], where they did not discuss the shot however. The full relation between these three saddles is

noted in ref. [22] modeled by a toy one-dimensional integral. In that work, it is also pointed out that it is

in fact the shot that is essential to understand how an imaginary part for the false-vacuum ground-state

energy can emerge from a Euclidean path integral, that is purely real by construction. We will get back to

this point later.
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b s
ρ

S[ρ]

Figure 5. The dependence of the Euclidean action SE [x̂(τ ; ρ)] on the parameter ρ. The saddle

points (marked with dots) are xF (τ), the bounce xB(τ) and the shot xS(τ) from the left to the

right, respectively.

infinity and flows along the real axis towards the point ρ = b where it turns upward14

into the imaginary direction all the way to b + i∞. That is, the first path is given by

J ρFB : −∞ → b → b + i∞, as illustrated in figure 3. After that, the path flows in the

imaginary direction from b + i∞ back to the point ρ = b and then rushes along the real

axis to the shot ρ = s, ending finally at positive infinity on the real axis. That is, we have

a second path J ρSB : b + i∞ → b → ∞. By this construction, we are still passing through

the original three real saddle points but with a one-dimensional subset of the contour

deformed from the real axis to Cρ ≡ J ρFB + J ρSB. Compared with the original contour,

Cρ contains, in addition, the segment b → b + i∞ → b and is therefore equivalent to the

original one. In the language of steepest-descent flows, the above analysis shows that there

is a flow passing through both the false vacuum and the bounce; the flow branches out at

the bounce into the two steepest-descent directions going upwards and downwards in the

imaginary ρ direction, while the deformation of the integration contour only picks one of

the branches, given by the flow J ρFB (see figure 3). A similar situation arises with the flow

passing through the bounce and the shot, and the flow J ρSB picking one of the branches.

We expect that the bounce does not give a single perturbative sector but rather de-

scribes the nonperturbative phenomena between the false vacuum and the shot (which

actually corresponds to the true vacuum). The integral from the one-dimensional contour

Cρ can be decomposed into

ZEρ = ZEFB(ρ) + ZESB(ρ) ≡
∫
J ρFB

dρ eI[ρ] +

∫
J ρSB

dρ eI[ρ]. (A.11)

Both ZEFB(ρ) and ZESB(ρ) contain an imaginary part but with opposite sign, leading to a

purely real and also finite result, as expected from the reality of the Euclidean action.

Regarding the multi-bounce saddles, we expect a similar situation in which the down-

ward flows from the false vacuum and the shot reach a given multi-bounce saddle along with

14The path can turn either upward or downward. We take the upward direction in order to have a positive

imaginary part in the false-vacuum energy.
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the field directions associated with its negative modes. At every multi-bounce saddle, these

special flows of the false vacuum and shot meet and branch out in the imaginary directions

associated with the negative modes, and the deformation of the integration contour that

passes through either the false vacuum or the shot picks only half of the branches.

We will denote as JFB the integration cycle passing through the false vacuum and

multi-bounces, i.e. JFB ∼ JF +
∑

n JBn , but picking only half of the branches of the

special one-dimensional flows linking F and Bn, as commented above. In the analogous

way, we define the cycle JSB. Note that, despite the abuse of notation, JFB or JSB shall

not be understood as one thimble, but rather integration cycles constructed from several

thimbles. We denote the path integral on JFB as ZEFB and accordingly for ZESB.

In ref. [3], only the contribution ZEFB is picked out in order to derive the Euclidean

transition amplitude 〈x+|e−HT |x+〉, leading to an imaginary part of the energy of the false-

vacuum state. In the context of the present discussion, this can be explained as follows.

Energy, as an eigenvalue of the Hermitian Hamiltonian, must be a real number. Indeed,

the dominant purely real part in the full amplitude 〈x+|e−HT |x+〉, residing in ZESB, gives

the energy of the true ground state and the corresponding wave function. A complex

energy can only emerge when restricting to an open subsystem. In this sense, we may

think of ZEFB and ZESB as the theories describing two different subsystems or sectors —

the false vacuum and the true vacuum — separately. The imaginary parts from both ZEFB
and ZESB indicate that both the false vacuum and the true vacuum are open systems.15

Since the whole system is closed, the imaginary parts must cancel between these two

open subsystems. Note that when taking this point of view, the so-called procedure of

potential deformation used in ref. [3] is sidestepped. The factor 1/2 introduced in the

former reference when extracting the imaginary part of the Gaußian integral around the

single-bounce saddle appears naturally when we restrict to the subsystem represented by

JFB because, as discussed above, this integration cycle only includes half of the branches of

the special one-dimensional flows that link the false-vacuum and bounce saddles. Indeed,

the contribution to the partition function ZEFB can be approximated by a sum of Gaußian

contributions around each of the saddles:

ZEFB ≈ ZEF, Gaußian +
∑
n

ZEBn, Gaußian. (A.12)

For the above Gaußian contributions, the integration domains must be appropriately con-

strained in accordance with the fact that ZEFB does not include all the branches of the

special flows that connect the false-vacuum and bounce saddle points, as discussed earlier.

As for each saddle Bn, there are n branching special flows, and as the Gaußian integrand

is the same along the chosen and discarded branches, ZEBn,Gaußian is given by (1/2)n times

the full Gaußian integration. Using the fact that for T → ∞ the multi-bounces are made

of infinitely separated bounces, it can be seen that the path integral of their fluctuations

factorizes (the factorial factor comes from integrating the positions of every single bounce

15In the context of quantum mechanics, the notion of an “open system” may easily be understood since

the false vacuum or true vacuum may be defined only for subregions in space — the left well or the right

well. In quantum field theory, “subsystems” should be understood in the sense of regions in field space.
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in xBn), which ends up giving [3]

ZEFB ≈ ZEF, Gaußian exp

(
ZEB, Gaußian

ZEF, Gaußian

)
, (A.13)

with ZEB, Gaußian denoting the contribution of fluctuations about a single bounce, equaling

to 1/2 of the unrestricted Gaußian integration. In practice, we will include this factor of

1/2 in the definition of the integration measure for the path integration of the fluctuations

around the bounce.

In section 3, we introduce an additional point of view on why we need to exclude the

perturbative expansion about the shot in order to isolate the imaginary part. That is, we

consider the Minkowski amplitude for the transition from false-vacuum to false-vacuum and

relate it to the decay rate via the optical theorem. The integration cycle that passes through

the shot contributes instead to the true-vacuum to true-vacuum transition amplitude.

The contributions ZEF,Gaußian and ZEB,Gaußian (and hence ZEFB) can be readily evaluated

because only the deformation of the one-dimensional contour Cρ needs a particular care.

However, along the lines of ref. [27], we shall give a general analysis on how to evaluate

ZEFB from the point of view of the flow equation. This can be done by solving the linearized

flow equation (A.8) around each of the relevant saddle points xa(τ) with a = F,B. We

make the separation ∆za(τ ;u) =
∑

n g
a
n(u)χan(τ) where gan(u) ∈ R and the subscript “n”

denotes a specific direction, such that eq. (A.8) becomes

(−∂2
τ + V ′′(xa(τ)))χan(τ)gan(u) = χan(τ)

dgan(u)

du
. (A.14)

Eq. (A.14) leads to

(−∂2
τ + V ′′(xa(τ)))χan(τ)/χan(τ) = κan =

1

gan(u)

dgan(u)

du
, (A.15)

where κan ∈ R. The first equation following from this separation is

(−∂2
τ + V ′′(xa(τ)))χan(τ) = κanχ

a
n(τ) (A.16)

with Dirichlet boundary conditions χan(τ = ±T /2) = 0. We refer eq. (A.16) as the flow

eigenequation to distinguish from the proper eigenequation and κan, χan(τ) as the flow

eigenvalue and flow eigenfunction, respectively. The complex conjugate of eq. (A.16) is(
−∂2

τ + V ′′(xa(τ))
)
χan(τ) = κanχ

a
n(τ). (A.17)

Combining both eqs. (A.16) and (A.17) by taking the direct product, we note that (χan, χ
a
n)

satisfy an eigenvalue equation with a Hermitian operator, such that we can impose the

normalization ∫ T /2
−T /2

dτ χam(τ)χan(τ) = δmn (A.18)

on the flow eigenfunctions.
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One important property for eq. (A.16) is that κan is always paired with −κan, which

is associated with the flow eigenfunction iχan(τ) as can be checked easily. The additional

equation from separating eq. (A.14) is gan(u) = aan exp(κanu), where aan ∈ R. Recalling the

boundary condition gan(u = −∞) = 0, we have κan > 0, i.e. close to the saddles, where the

linearized flow equations apply, the directions on the thimble are those with positive flow

eigenvalues.16

Now, since in the calculation based on the Euclidean action, xa(τ) is real, we see from

eqs. (A.16) and (A.17) that χan(τ) and χan(τ) are the flow eigenfunctions associated with the

same flow eigenvalue. Thus one has χan(τ) = ±χan(τ), assuming there is no degeneracy for

the nonzero modes as it is the case in general. Therefore, eq. (A.16) has purely real or purely

imaginary flow-eigenfunctions, and it reduces to the eigenequation in the proper sense

(−∂2
τ + V ′′(xa(τ)))fan(τ) = λanf

a
n(τ). (A.19)

For λan > 0, we simply have χan(τ) = fan(τ) and κan = λan. For the negative mode fB0 (τ),17

we have χB0 (τ) = ifB0 (τ) in order to have positive κB0 .

Now let us look at the integrand exp(I[z]) in the path integral by substituting

z(τ ;u) = za(τ) +
∑

n g
a
n(u)χan(τ) into I[z]. One has up to O(∆z2)

I[z] = I[za]−
1

2

∫
dτ ∆za(τ ;u) (−∂2

τ + V ′′(xa(τ))) ∆za(τ ;u)

= I[za]−
1

2

∑
n

κan (gan(u))2, (A.20)

where in the second equality, we have used eq. (A.17) and the orthonormality relation (A.18).

Since gan(u) are real and κan are real and positive, the last line in eq. (A.20) tells us that the

saddle-point approximation to the path integral on the Lefschetz thimble Ja is a Wiener

integration at the Gaußian level, and is thus convergent.

A.3 Integration measure and Gaußian integration

From ∆za(τ ;u) =
∑

n g
a
n(u)χan(τ), we define the measure of the path integral around a

given saddle point as

D∆za = Ja
∏
n

1√
2π

dgan, (A.21)

where Ja is the Jacobian due to the transformation from the original real basis to the new

basis {χan(τ)}. At the Gaußian level, we have (again, the zero mode will be considered

separately)

Ja
∏
n

∫
dgan

1√
2π

e−
1
2

∑
n κ

a
n(gan)2 = Ja

∏
n

1√
κan

= Ja| det(−∂2
τ + V ′′(xa))|−1/2. (A.22)

16It is possible to have a zero mode in the limit T → ∞ which has to be handled separately.
17Following Callan’s and Coleman’s notation, we use the subscript “0” to denote the negative mode and

“1” to denote the zero mode.
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Without the deformation of the contour, the path integral measure is defined from the

decomposition of ∆za(τ ;u) into the real eigenfunctions of −∂2
τ + V ′′(xa), ∆za(τ ;u) =∑

n c
a
nf

a
n(τ), as

D∆za =
∏
n

1√
2π

dcan. (A.23)

Since for the saddle point xF , the basis {χFn (τ)} is the same as {fFn (τ)}, we have JF = 1.

For the bounce, since χB0 (τ) = ifB0 (τ), we have dcB0 = idgB0 as can be seen from ∆zB,0(τ) =

gB0 χ
B
0 (τ) = cB0 f

B
0 (τ). Since for the other modes, χBn 6=0 are the same as fBn 6=0, we finally

arrive at JB = i. Thus the Jacobian can be identified as the exponential of minus half of

the phase of the determinant of −∂2
τ + V ′′(xa). This claim as well as the second equality

of eq. (A.22) are actually quite general and we give the proof in section 3.3.

Recall that the bounce is connected with the false vacuum via the flow J ρFB, leading

the integral over gB0 cut by half in ZEB,Gaußian (see again figure 3). We thus account for this

fact by adding a factor 1/2 to the path integral measure

D∆zB → D̃∆zB =
1

2

∏
n

JB√
2π

dgBn . (A.24)

We finally can use eq. (A.13), with

ZEB,Gaußian = e−SE [xB ]

∫
D̃∆zB e

−
∫ T /2
−T /2 dτ

[
∆zB

(
− 1

2
d2

dτ2
+ 1

2
V ′′(xB)

)
∆zB

]
. (A.25)

Now let us consider the zero mode χB1 (τ) = fB1 (τ) which appears in the limit T → ∞,

corresponding to the spontaneous symmetry breaking of the time-translation symmetry by

the bounce solution,

fB1 (τ) = SE [xB]−1/2 dxB(τ)

dτ
. (A.26)

This zero mode can be traded for an integral over the collective coordinate of the bounce

as can be seen from

d∆zB =
dxB(τ)

dτ
dτ = SE [xB]1/2 fB1 (τ)dτ = fB1 (τ)dc1. (A.27)

Thus 1/
√

2π dc1 can be traded for (SE [xB]/2π)1/2dτ and the integration over the zero

mode gives us T (SE [xB]/2π)1/2. After the Gaußian integration of (A.25) with the proper

treatment of the zero mode, we obtain from eq. (A.13) at NLO,

ZEFB
ZEF

≈ exp

(
ZEB,Gaußian

ZEF,Gaußian

)

= exp

(
T
2

√
SE [xB]

2π
e−SE [xB ]

(
det′[−∂2

τ + V ′′(xB)]

det[−∂2
τ + V ′′(xF )]

)−1/2
)

= exp

(
iT
2

√
SE [xB]

2π
e−SE [xB ]

∣∣∣∣det′[−∂2
τ + V ′′(xB)]

det[−∂2
τ + V ′′(xF )]

∣∣∣∣−1/2
)
,

(A.28)
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where det′ indicates that the zero eigenvalue is to be omitted when computing the deter-

minant. The decay rate of the false vacuum is then obtained from the imaginary part of

the false-vacuum energy after using ZEFB/Z
E
F ∼ e−E0T , which yields a decay rate

Γ = −2ImE0 =
2

T

∣∣∣∣Im log

(
ZEFB
ZEF

)∣∣∣∣ =
2

T

∣∣∣∣∣Im ZEB,Gaußian

ZEF,Gaußian

∣∣∣∣∣ . (A.29)

Substituting eq. (A.28) into eq. (A.29) gives the formula (6.7) for the decay rate.

B Different methods of evaluating the functional determinant

In this appendix, we review two additional ways of obtaining the functional determinant

of differential operators, the Gel’fand-Yaglom method and the calculation based on the

resolvent generalizing the Green’s function. We compare these with the method used in the

main text, i.e. the direct integration over the eigenvalues, see section 5.3. As for the result

for the decay rate, these methods should also be compared with the WKB approximation

presented in appendix C. We provide the discussion for the Euclidean fluctuation operators

since the functional determinants in the Minkowski formalism or for general complex time

can be obtained by analytic continuation of the Euclidean results, as we have shown in

the main text. In appendix B.3, we take the archetypical model of particle tunneling

in a quasi-degenerate quartic potential as an application and compare the results from

the two methods discussed in this appendix with the direct evaluation of the logarithmic

determinant from eq. (5.33).

All of these methods of calculating determinants, that we work out here for

quantum-mechanical tunneling, can also be applied to false-vacuum decay because the

O(4)-symmetry of the background allows the decomposition of a four-dimensional partial

differential operator into a hyperradial operator and the Laplace-Beltrami operator.

The angular spectrum can be exactly solved. Thus, the evaluation of the determinant

of a four-dimensional hyperspherically symmetric partial differential operator can be

essentially reduced to evaluating the determinant of a hyperradial ordinary differential

operator. In appendix B.4, we make some remarks on the advantages and disadvantages

of the various methods of calculating functional determinants about solitons that can be

found in this paper.

To briefly summarize how all these approaches fit into the calculations for false-vacuum

decay or tunneling, we note that the decay rate can be either obtained from the imaginary

part of the ground-state energy of the false vacuum, from the outgoing flux or from the

imaginary part of the false-vacuum to false-vacuum (forward scattering) amplitude via the

optical theorem. The WKB method can be used to compute either the ground-state energy

or the flux (cf. appendix C), whereas the functional determinant leads to the ground-state

energy (cf. appendix A) or the false-vacuum to false-vacuum amplitude. The determinant

can be calculated either by direct integration over the spectrum (cf. section 5.3), by us-

ing the Gel’fand Yaglom theorem (cf. appendix B.1) or integration of the resolvent (cf.

appendix B.2).
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B.1 Gel’fand Yaglom method

The Gel’fand-Yaglom method is based on a powerful theorem of the same name [56]. It

is widely employed in calculations for tunneling in theoretical as well as phenomenological

models, see e.g. refs. [57–60]. In this section, we closely follow ref. [17].

B.1.1 Gel’fand-Yaglom theorem

Consider the equation

(−∂2
τ +W (τ))ψ(τ) = λψ(τ), (B.1)

where W (τ) is a bounded function of τ ∈ [−T /2, T /2]. The functions ψλ(τ) are the

solutions of eq. (B.1) satisfying the boundary conditions

ψλ(−T /2) = 0, ∂τψλ(τ)|τ=−T /2 = 1. (B.2)

The determinant of the operator −∂2
τ +W (τ) is defined as

det(−∂2
τ +W (τ)) =

∏
n

λn, (B.3)

where the λn satisfy

(−∂2
τ +W (τ))ψλn(τ) = λn ψλn(τ), (B.4)

with boundary conditions ψλn(−T /2) = ψλn(T /2) = 0.

The Gel’fand-Yaglom theorem states that

det[−∂2
τ +W (1)(τ)− λ]

det[−∂2
τ +W (2)(τ)− λ]

=
ψ

(1)
λ (T /2)

ψ
(2)
λ (T /2)

. (B.5)

Applying the above formula to the case λ = 0 and taking the limit T → ∞, we obtain

the ratio of determinants that appears e.g. through eq. (A.28) in the formula for the decay

rate (A.29).

B.1.2 Evaluating the ratio of the functional determinants

The ratio of functional determinants in the expression for the tunneling rate now can be

readily evaluated. We first consider the fluctuation operator at the false vacuum where

W (1)(τ) = V ′′(x+) ≡ m2. The solution to eq. (B.1) with the boundary conditions (B.2) is

ψ
(1)
0 (τ) =

1

m
sinh[m(τ + T /2)], (B.6)

and thus, ψ
(1)
0 (T /2) = emT /2m for large T .

Next, we look at fluctuations about the bounce, where W (2)(τ) = V ′′(xB(τ)). We

have to evaluate the primed determinant, i.e. the zero eigenvalue associated with time

translations is to be taken out. Following Coleman, we can do this by evaluating the full

determinant on a finite interval [−T /2, T /2], dividing it by its smallest, nonnegative, finite
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eigenvalue near zero, λ0 (to be distinguished from the negative eigenvalue λB0 ), and even-

tually letting T go to infinity. The function ψ
(2)
0 (τ) can be constructed from an arbitrary

basis of solutions. Actually, it is sufficient to know its asymptotic behavior at ±T /2 in

order to apply the formula (B.5). Consider therefore the equation

[−∂2
τ + V ′′(xB(τ))]ψ(τ) = 0. (B.7)

One of the basis solutions can be chosen to be

x1(τ) = B−1/2 dxB(τ)

dτ
→ ± A√

m
e−m|τ |, as τ → ±∞, (B.8)

where A is determined by the asymptotic behaviour of x1(τ) (cf. eq. (B.11)). Note that

ψ
(2)
0 (τ) cannot be x1(τ) because x1(τ) does not satisfy the particular boundary conditions

given below eq. (B.4).

We also note here that for the classical bounce, there is the constant of motion

1

2

(
dxB(τ)

dτ

)2

− V (xB(τ)) = 0. (B.9)

Therefore, dxB(τ)/dτ =
√

2V (xB(τ)), which leads to

τ =

∫ x

xp

dx
1√

2V (x)
. (B.10)

Using the asymptotic behaviour from eq. (B.8), one obtains

mτ ≡ m
∫ x

xp

dx
1√

2V (x)
= − log

[
B−1/2m3/2A−1 (x+ − x)

]
+O(x+ − x). (B.11)

This equation will be used in appendix C.

Next, we consider another independent solution to eq. (B.7) that we denote as x2(τ).

One can choose the normalization for x2(τ) such that

x1 ∂τx2 − x2 ∂τx1 = 2A2. (B.12)

Therefore, we can deduce its asymptotic behaviour

x2(τ)→ A√
m
em|τ |, as τ → ±∞. (B.13)

According to the boundary conditions (B.2), one can construct ψ
(2)
0 (τ) as

ψ
(2)
0 (τ) = − 1

2
√
mA

(
emT /2 x1(τ) + e−mT /2 x2(τ)

)
, (B.14)

leading to ψ
(2)
0 (T /2) = −1/m.

Now let us subtract the smallest positive eigenvalue λ0. Since λ0 is small, we can

expand ψλ0(τ) = ψ
(2)
0 (τ) + δψλ0(τ) in the eigenequation. Hence, one has

(−∂2
τ + V ′′(xB(τ))) δψλ0(τ) = λ0 ψ

(2)
0 (τ), (B.15)
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which is solved by

ψλ0(τ) = ψ
(2)
0 (τ)− λ0

2A2

∫ τ

−T /2
dτ ′ [x2(τ)x1(τ ′)− x1(τ)x2(τ ′)]ψ

(2)
0 (τ ′), (B.16)

such that

ψλ0(T /2) = − 1

m
+

λ0

4mA2

∫ T /2
−T /2

dτ ′ [emT x2
1(τ ′)− e−mT x2

2(τ ′)]. (B.17)

Since x1(τ) is normalized, we arrive at

ψλ0(T /2)≈ − 1

m
+

λ0

4mA2
emT . (B.18)

By requiring the boundary condition ψλ0(T /2) = 0, we obtain λ0 = 4A2/emT . In total,

we have

det′[−∂2
τ + V ′′(xB)]

det[−∂2
τ + V ′′(x+)]

=
ψ

(2)
0 (T /2)

λ0 ψ
(1)
0 (T /2)

= − 1

2A2
. (B.19)

Note that this is a negative number, indicating the existence of a negative eigenvalue in the

eigenspectrum of the operator −∂2
τ + V ′′(xB(τ)). Had we used a kink solution x̄(τ) (see

appendix B.3) instead of the bounce xB(τ), the asymptotic behaviour in eq. (B.8) would

be different and lead to a positive result in eq. (B.19) [17]. Substituting the above result

into eqs. (A.28), (A.29), we have

Γ =

√
B

π~
e−B/~A, (B.20)

where we have inserted ~ explicitly in view of the comparison with the WKB method in

appendix C.

B.2 Integration over the resolvent

The method for calculating the fluctuation determinants based on the resolvent has been

applied to tunneling problems in refs. [46, 61–64]. We consider the following eigenvalue

equations

G−1
1 ψ(1)

n (τ) ≡ (−∂2
τ +W (1)(τ))ψ(1)

n (τ) = λ(1)
n ψ(1)

n (τ), (B.21a)

G−1
2 ψ(1)

n (τ) ≡ (−∂2
τ +W (2)(τ))ψ(2)

n (τ) = λ(2)
n ψ(2)

n (τ), (B.21b)

and the pertaining ratio

Q ≡ log
det[−∂2

τ +W (1)(τ)]

det[−∂2
τ +W (2)(τ)]

=
∑
n

log
λ

(1)
n

λ
(2)
n

. (B.22)

In order to obtain an expression for the fluctuation determinant in terms of the Green’s

functions, we consider the operator

G−1
i (s) = G−1

i + s, (B.23)
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where i = 1, 2 and s ∈ R is an auxiliary parameter. Its inverse, satisfying

[G−1
i (τ) + s]Gi(s) = δ(τ − τ ′), (B.24)

is called the resolvent and is a generalization of the Green’s function that can be written

in the spectral decomposition as

Gi(τ, τ
′; s) =

∑
n

ψ
(i)
n (τ)ψ

(i)
n (τ ′)

λ
(i)
n + s

. (B.25)

Integrating Gi(τ, τ ; s) over τ , we obtain∫
dτ Gi(τ, τ ; s) =

∑
n

1

λ
(i)
n + s

(B.26)

by virtue of the orthonormality of the eigenfunctions.

Further, we integrate over s up to some large cutoff Λ, giving∫ Λ2

0
ds

∫
dτ Gi(τ, τ ; s) = −

∑
n

log
λ

(i)
n

λ
(i)
n + Λ

. (B.27)

Comparing this with eq. (B.22), we finally get

log
det[−∂2

τ +W (1)(τ)]

det[−∂2
τ +W (2)(τ)]

= lim
Λ→∞

−
∫ Λ

0
ds

∫
dτ
(
G1(τ, τ, s)−G2(τ, τ, s)

)
. (B.28)

B.3 Application to the kink background

In section 5.3, we have calculated the logarithmic determinant directly by integration over

the spectrum, that is known analytically for the kink operator. We now compare this

explicitly with what one gets from the Gel’fand-Yaglom as well as the resolvent method.

These answers for the kink soliton directly lead to the determinant of the bounce in the

archetypical thin-wall model that corresponds to a kink-antikink pair. The kink instanton

is given by

x̄(τ) = v tanh

(
µ√
2
τ

)
, (B.29)

which gives B ≡ SE [x̄] = 4
√

2µ3/λ. Here we have set the position of the kink centre to be

at τ0 = 0 for simplicity. Note that we still use B here, while being one half of the bounce

result, to denote the kink action.

The kink is different from the bounce solution in the degenerate limit of the double-

well model because the kink solution approaches different vacua at τ → ±∞, whereas the

bounce, being a kink-antikink pair, approaches the false vacuum in both limits. Therefore,

the function x1(τ), that appears in the calculation of appendix B.1.2 based on the Gel’fand-

Yaglom method, now has the following asymptotic behaviour

x1(τ) = B−1/2 dx̄(τ)

dτ
→ A√

m
e−m|τ |, as τ → ±∞, (B.30)
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where A = 2
√

3µ, m =
√

2µ. The normalization condition (B.12) then gives us

x2(τ)→ ± A√
m
em|τ |. (B.31)

These asymptotics introduce a relative minus sign in ψ
(2)
0 (τ) when compared to the corre-

sponding result (B.14) in the background of the bounce and hence in the formula (B.19).

Finally, we obtain

det′(−∂2
τ + V ′′(x̄))

det(−∂2
τ + V ′′(x+))

=
1

24µ2
, (B.32)

in agreement with what follows from the direct integration over the spectrum in eq. (5.33).

On the other hand, the ratio of functional determinants can be calculated via the

Green’s function method as in eq. (B.28),

log
det′(−∂2

τ + V ′′(x̄))

det(−∂2
τ + V ′′(x+))

= −
∫ ∞
−∞

dτ

∫ ∞
0

ds
(
G′(x̄; τ, τ, s)−G(x+; τ, τ, s)

)
. (B.33)

Again, the prime on the determinant indicates the omission of the zero mode. Correspond-

ingly, G′(x̄; τ, τ ′, s) stands for the resolvent from which the zero mode is subtracted.

We first solve for the resolvent in the kink background. Defining u ≡ tanh(µτ/
√

2),

eq. (B.24) turns into

(
d

du
(1− u2)

d

du
− $2

1− u2
+ 6

)
G(x̄;u, u′, s) = −

(√
2

µ

)
δ(u− u′), (B.34)

where $2 = 4 + 2s/µ2. This equation has been solved analytically in refs. [43, 48]. More-

over, since the spectrum of the kink is known, as discussed in section 5.2, the Green’s

function can be decomposed into contributions from the discrete and continuum spectrum,

respectively [48]. The part from the discrete spectrum is

Gd(x̄;u,u′,s) =

√
2

µ

(
−3

2

uu′

1−$2

√
1−u2

√
1−u′2− 3

4

1

4−$2
(1−u2)(1−u′2)

)
, (B.35)

where the second term is from the time-translational zero mode that needs to be subtracted.

The piece from the continuum spectrum is

Gc(x̄;u, u′, s) =

√
2

µ

{
3

2

uu′

1−$2

√
1− u2

√
1− u′2 +

3

4

1

4−$2
(1− u2)(1− u′2)

+

(
1

2$
θ(u− u′)

(
1− u
1 + u

)$
2
(

1 + u′

1− u′

)$
2 3u2 + 3u$ +$2 − 1

(1 +$)(2 +$)

3u′2 − 3u′$ +$2 − 1

(1−$)(2−$)

+ (u↔ u′)

)}
. (B.36)
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We are thus able to directly subtract the translational zero mode from the Green’s function.

In case the spectral decomposition is unknown, one can alternatively project out the zero-

mode contributions from the Green’s functions, as discussed e.g. in ref. [48]. Further, the

resolvent in the false vacuum is given by

G(x+;u, u′, s) =

√
2

µ

(
1

2$
θ(u− u′)

(
1− u
1 + u

)$
2
(

1 + u′

1− u′

)$
2

+ (u↔ u′)

)
. (B.37)

Taking the coincident limit of the resolvent, with the zero mode and the false-vacuum

part subtracted, we obtain

G′(x̄;u, u, s)−G(x+;u, u, s) ≡ Gd(x̄;u, u, s) +Gc(x̄;u, u, s) +

√
2

µ

(
3

4

1

4−$2
(1− u2)2

)
−G(x+;u, u, s)

= −
√

2

µ

3

4

(1− u2)(1 + 3u2 + 2u2$ −$2 + u2$2)

$(1−$)2(2 +$)
. (B.38)

Doing the integral in eq. (B.33), we get

−
∫ ∞
−∞

dτ

∫ ∞
0

ds
(
G′(x̄; τ, τ, s)−G(x+; τ, τ, s)

)
= − log(24µ2) + log Λ. (B.39)

The term log Λ appears because we have deleted the zero mode, such that one of the

logarithms of Λ is not cancelled, as can be seen from eqs. (B.27) and (B.28), and it is to be

discarded. Therefore, we finally arrive at the same result as in section 5.3. We thus obtain

agreement with eq. (5.33) from two additional methods.

B.4 Utility of the different approaches

In many cases, the functional determinant cannot be calculated analytically. In such situa-

tions, the numerical effort requested by implementing the Gel’fand-Yaglom or the resolvent

method appears to be comparable as both approaches amount to solving ordinary differen-

tial equations. The main advantage of the resolvent method therefore appears to be that

the Green’s function can readily be employed in order to compute e.g. corrections to the

bounce [43, 46, 47] and other one-loop resummed [48] or higher-order quantities [49, 50].

Both approaches avoid the direct solution for the spectrum that has been used in sec-

tion 5.3. While the spectrum may yield interesting insights into a particular problem,

solving for it numerically, in particular to a precision sufficient to compute a renormalized

determinant, appears to be substantially more difficult.

C Decay rate from the WKB method

In this appendix, we rederive the decay rate (B.20) from solving the static Schrödinger

equation using the WKB expansion. This derivation closely follows the calculation of the

ground-state energy in a symmetric double-well potential in ref. [17] but modifies it to be

applicable to vacuum decay.
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Inside the potential barrier, for xp < x < x+ (see figure 1), we have the following

WKB wave function

ψWKB(x) =
c1√
κ(x)

e
1
~
∫ x
xp

dx′ κ(x′)
+

c2√
κ(x)

e
− 1

~
∫ x
xp

dx′ κ(x′)
, (C.1)

where κ(x) =
√

2(V (x)− E). We are going to match this wave function with those near

the turning points xp and x+. Let us first consider the region around x+, where the

potential is V (x) ≈ m2(x+−x)2/2. We expect the wave function of the ground state to be

approximated by the solution to this harmonic-oscillator potential. For the false-vacuum

bound state, we consider the zero-point energy written as E = ~m (1/2 + ε), where ε

denotes a small correction. We expand next κ(x) as

κ(x) =
√

2V (x)

(
1− E

2V (x)

)
, (C.2)

and substitute this into eq. (C.1). Using∫ x

xp

dx′
√

2V (x′) =

∫ x+

xp

dx′
√

2V (x′) +

∫ x

x+

dx′
√

2V (x′)

=
B

2
− 1

2
m(x+ − x)2, (C.3)

we obtain

ψWKB(x) =
c1√

m(x+ − x)
e

1
~(B2 −

1
2
m(x+−x)2+Em−1 log(B−1/2m3/2A−1(x+−x)))

+
c2√

m(x+ − x)
e−

1
~(B2 −

1
2
m(x+−x)2+Em−1 log(B−1/2m3/2A−1(x+−x))), (C.4)

where we have used eq. (B.11). Substituting E = ~m (1/2 + ε) into the above expression,

we finally have

ψWKB(x) =

(
c1 e

B/2~B−1/4A−1/2m1/4e−
m
2~ (x+−x)2

+
c2

m5/4(x+ − x)
e−B/2~B1/4A1/2e

m
2~ (x+−x)2

)
× [1 +O(ε)]. (C.5)

To fix the coefficients, we need to match ψWKB(x) to the solutions of the Schrödinger

equation beyond the turning points. First, we consider the false-vacuum region that is

approximately described by the following equation

−~2

2
∂2
xψ(x) +

1

2
m2 (x− x+)2 ψ(x) = E ψ(x), (C.6)

where, for the purpose of matching, we look for approximate solutions valid for (x−x+)2 �
~/m. Since ε is a small number, we can solve this problem perturbatively around ε = 0.

For ε = 0, there are two solutions

ψ1(x) = m1/4e−m(x+−x)2/2~, (C.7)
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and

ψ2(x) =
1

m1/4(x+ − x)
em(x+−x)2/2~, (C.8)

where the latter is valid for (x− x+)2 � ~/m. The Wronskian for these solutions is

ψ1(x)∂xψ2(x)− ψ2(x)∂xψ1(x) = −2m

~
+O

(
1

(x− x+)2

)
. (C.9)

For nonvanishing ε, writing ψ(x) = ψ1(x) + δψ(x), the perturbation to the Schrödinger

equation (C.6) is

−~2

2
∂2
xδψ(x) +

1

2
m2(x− x+)2 δψ(x) = (~m)εψ1(x). (C.10)

The solution is given by

ψ(x) = ψ1(x)− ε
∫ ∞
x

dx′ ψ1(x′) [ψ1(x′)ψ2(x)− ψ2(x′)ψ1(x)], (C.11)

where ψ(x) vanishes for x → ∞. This automatically takes care of vanishing boundary

conditions for (x − x+) �
√

~/m. To match at (x+ − x) �
√
~/m, we can use the

following approximate relation∫ ∞
x

dx′ ψ2
1(x′) ≈

∫ ∞
−∞

dx′ ψ2
1(x′) =

√
π~ (C.12)

to obtain

ψ(x) = N

[
m1/4e−m(x+−x)2/2~ [1 +O(ε)]− ε

√
π~

m1/4(x+ − x)
em(x+−x)2/2~

]
, (C.13)

where we have included a normalization factor. Comparing eq. (C.13) with eq. (C.5),

we have

mε = −c2

c1

√
B

π~
e−B/~A. (C.14)

The ratio c2/c1 can be determined by matching around xp. In this region,

V (x) = V ′(xp)(x− xp), and we neglect the zero-point energy of the false vacuum, tak-

ing E = 0. Hence, we are dealing with the following Schrödinger equation:

−~2

2
∂2
xψ(x) + V ′(xp)(x− xp)ψ(x) = 0. (C.15)

Defining y = x− xp and y = (~2/(2V ′(xp)))1/3z, we have

∂2
zψ(z)− zψ(z) = 0. (C.16)
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The solutions to this equation are Airy functions with the well-known asymptotic forms

Ai(z)→ 1

2
√
π
z−1/4 exp

(
−2

3
z3/2

)
for z → +∞ , (C.17)

Ai(z)→ 1√
π
|z|−1/4 sin

(
2

3
|z|3/2 +

π

4

)
for z → −∞, (C.18)

and

Bi(z)→ 1√
π
z−1/4 exp

(
2

3
z3/2

)
for z → +∞ , (C.19)

Bi(z)→ 1√
π
|z|−1/4 cos

(
2

3
|z|3/2 +

π

4

)
for z → −∞. (C.20)

This gives the following matching formulæ: if for x > xp, we have

c1√
κ(x)

exp

[
1

~

∫ x

xp

dx′ κ(x′)

]
+

c2√
κ(x)

exp

[
−1

~

∫ x

xp

dx′ κ(x′)

]
, (C.21)

then the solution for x < xp takes the form

2 c2√
k(x)

sin

[
1

~

∫ xp

x
dx′ k(x′) +

π

4

]
+

c1√
k(x)

cos

[
1

~

∫ xp

x
dx′ k(x′) +

π

4

]
, (C.22)

where k(x) =
√
−2V (x) and we have used κ(x) ∼

√
z for z > 0 and k(x) ∼

√
|z| for z < 0.

In order to describe tunneling, the wave function beyond xp must be of the form of

a purely outgoing wave ∼ exp
(
− i

~
[∫ xp
x dx′ k(x′) + π

4

])
(note the outgoing wave moves

toward the negative x-direction). To satisfy this condition for x < xp, we set c1 = i 2c2.

This gives us

mε =
i

2

√
B

π~
e−B/~A, (C.23)

which is imaginary. Finally, we obtain the decay rate

Γ =
2

~
ImE =

√
B

π~
e−B/~A, (C.24)

in agreement with the result (B.20) derived from the path integral.

As an alternative to inferring the decay rate from the imaginary part of the zero-point

energy of the false vacuum, we can also obtain it as the ratio −j/P of the flux j that enters

the region around the true vacuum and the probability P to find the particle around the

false vacuum. The flux into the true-vacuum region is given by

j =
~
2i

(ψ∗(x)∂xψ(x)− ψ(x)∂xψ
∗(x)) = −|c1|2, (C.25)

where for ψ(x), we have substituted eq. (C.22) with c2 = −(i/2)c1. Note that the outgoing

flux is negative here because it goes toward the negative x-direction. For B/~ � 1,
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eq. (C.5) is dominated by the first contribution, i.e. the Gaußian piece. We thus obtain for

the probability

P = |c1|2eB/~B−1/2A−1

∫
dx e−

m
~ (x+−x)2 = |c1|2eB/~B−1/2A−1

√
π~
m
, (C.26)

and once again recover the decay rate as

Γ = − j
P

=

√
B

π~
e−B/~A. (C.27)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] I. Yu. Kobzarev, L.B. Okun and M.B. Voloshin, Bubbles in Metastable Vacuum, Sov. J. Nucl.

Phys. 20 (1975) 644 [INSPIRE].

[2] S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15

(1977) 2929 [Erratum ibid. D 16 (1977) 1248] [INSPIRE].

[3] C.G. Callan Jr. and S.R. Coleman, The Fate of the False Vacuum. 2. First Quantum

Corrections, Phys. Rev. D 16 (1977) 1762 [INSPIRE].

[4] E. Witten, Cosmic Separation of Phases, Phys. Rev. D 30 (1984) 272 [INSPIRE].

[5] A. Kosowsky, M.S. Turner and R. Watkins, Gravitational radiation from colliding vacuum

bubbles, Phys. Rev. D 45 (1992) 4514 [INSPIRE].

[6] C. Caprini, R. Durrer, T. Konstandin and G. Servant, General Properties of the

Gravitational Wave Spectrum from Phase Transitions, Phys. Rev. D 79 (2009) 083519

[arXiv:0901.1661] [INSPIRE].

[7] C. Caprini et al., Science with the space-based interferometer eLISA. II: Gravitational waves

from cosmological phase transitions, JCAP 04 (2016) 001 [arXiv:1512.06239] [INSPIRE].

[8] J.S. Langer, Theory of the condensation point, Annals Phys. 41 (1967) 108 [INSPIRE].

[9] J.S. Langer, Statistical theory of the decay of metastable states, Annals Phys. 54 (1969) 258

[INSPIRE].

[10] I. Affleck, Quantum Statistical Metastability, Phys. Rev. Lett. 46 (1981) 388 [INSPIRE].

[11] A.D. Linde, Fate of the False Vacuum at Finite Temperature: Theory and Applications,

Phys. Lett. 100B (1981) 37 [INSPIRE].

[12] A.D. Linde, Decay of the False Vacuum at Finite Temperature, Nucl. Phys. B 216 (1983)

421 [Erratum ibid. B 223 (1983) 544] [INSPIRE].

[13] V.A. Kuzmin, V.A. Rubakov and M.E. Shaposhnikov, On the Anomalous Electroweak

Baryon Number Nonconservation in the Early Universe, Phys. Lett. 155B (1985) 36

[INSPIRE].

[14] M.E. Shaposhnikov, Baryon Asymmetry of the Universe in Standard Electroweak Theory,

Nucl. Phys. B 287 (1987) 757 [INSPIRE].

– 65 –

https://creativecommons.org/licenses/by/4.0/
https://inspirehep.net/search?p=find+J+%22Sov.J.Nucl.Phys.,20,644%22
https://doi.org/10.1103/PhysRevD.15.2929
https://doi.org/10.1103/PhysRevD.15.2929
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D15,2929%22
https://doi.org/10.1103/PhysRevD.16.1762
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D16,1762%22
https://doi.org/10.1103/PhysRevD.30.272
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D30,272%22
https://doi.org/10.1103/PhysRevD.45.4514
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D45,4514%22
https://doi.org/10.1103/PhysRevD.79.083519
https://arxiv.org/abs/0901.1661
https://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1661
https://doi.org/10.1088/1475-7516/2016/04/001
https://arxiv.org/abs/1512.06239
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06239
https://doi.org/10.1016/0003-4916(67)90200-X
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,41,108%22
https://doi.org/10.1016/0003-4916(69)90153-5
https://inspirehep.net/search?p=find+J+%22AnnalsPhys.,54,258%22
https://doi.org/10.1103/PhysRevLett.46.388
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,46,388%22
https://doi.org/10.1016/0370-2693(81)90281-1
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B100,37%22
https://doi.org/10.1016/0550-3213(83)90293-6
https://doi.org/10.1016/0550-3213(83)90293-6
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B216,421%22
https://doi.org/10.1016/0370-2693(85)91028-7
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B155,36%22
https://doi.org/10.1016/0550-3213(87)90127-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B287,757%22


J
H
E
P
1
2
(
2
0
1
9
)
0
9
5

[15] D.E. Morrissey and M.J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012)

125003 [arXiv:1206.2942] [INSPIRE].

[16] B. Garbrecht, Why is there more matter than antimatter? Calculational methods for

leptogenesis and electroweak baryogenesis, arXiv:1812.02651 [INSPIRE].

[17] S.R. Coleman, Aspects of symmetry: selected Erice lectures, Cambridge University Press

(1988) [INSPIRE].

[18] F. Pham, Vanishing homologies and the n variable saddlepoint method, Proc. Symp. Pure

Math. 40 (1983) 319.

[19] M.V. Berry and C.J. Howls, Hyperasymptotics for integrals with saddles, Proc. Roy. Soc.

Lond A 434 (1991) 657.

[20] E. Witten, Analytic Continuation Of Chern-Simons Theory, AMS/IP Stud. Adv. Math. 50

(2011) 347 [arXiv:1001.2933] [INSPIRE].

[21] E. Witten, A New Look At The Path Integral Of Quantum Mechanics, arXiv:1009.6032

[INSPIRE].

[22] A. Andreassen, D. Farhi, W. Frost and M.D. Schwartz, Precision decay rate calculations in

quantum field theory, Phys. Rev. D 95 (2017) 085011 [arXiv:1604.06090] [INSPIRE].

[23] A.D. Plascencia and C. Tamarit, Convexity, gauge-dependence and tunneling rates, JHEP 10

(2016) 099 [arXiv:1510.07613] [INSPIRE].

[24] J.-L. Gervais and B. Sakita, WKB Wave Function for Systems with Many Degrees of

Freedom: A Unified View of Solitons and Instantons, Phys. Rev. D 16 (1977) 3507 [INSPIRE].

[25] K.M. Bitar and S.-J. Chang, Vacuum Tunneling of Gauge Theory in Minkowski Space, Phys.

Rev. D 17 (1978) 486 [INSPIRE].
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