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1 Introduction

The microscopic counting of black hole entropy is one of the greatest accomplishments of
string theory. This was first achieved for five-dimensional black holes in asymptotically flat
spacetime in the seminal work [1]. For black holes in asymptotically locally AdS spacetimes
this has only been recently achieved, starting with certain magnetic black holes in 4d
in [2], extended in various ways in [3–7], for magnetic black holes in 6d in [8–13], and for
spinning black holes in 5d in [14–19]. These calculations rely on holography, exploiting
the properties of the asymptotic SCFT dual and the powerful supersymmetric localization
techniques developed in the past decade. See [20] for a comprehensive review of these
developments and a more complete list of references.

In this paper we continue this program and consider a well-known black hole solution
— the four-dimensional Kerr-Newman black hole in AdS. The general solution was first
found in the late-1960’s by Carter [21]. Here we study a BPS limit of this background
such that it can be viewed as a supersymmetric solution of 4d minimal N = 2 gauged
supergravity preserving two real supercharges [22, 23]. This supersymmetric black hole has

– 1 –



J
H
E
P
1
2
(
2
0
1
9
)
0
5
4

a nontrivial entropy and carries both angular momentum and electric charge. Its mass is
related to these charges by the usual BPS relation.

To account for the microscopic origin of the black hole entropy in string or M-theory
one must first embed the solution into 10d or 11d supergravity. There are infinitely many
ways of doing so, specified by a choice of internal manifold and the fluxes on it. This is
because 4d N = 2 minimal gauged supergravity arises as a consistent truncation of 10d
or 11d supergravity on certain internal manifolds, M6 or M7, respectively. The precise
microscopic interpretation of the black hole in string or M-theory depends on the D- or M-
brane realization of the supergravity solution, which in turn also determines the 3d N = 2

SCFT living at the asymptotic boundary. The general expectation is that the entropy of the
black hole is captured by the degeneracy of states in the 3d SCFT which preserve the same
amount of supersymmetry as the black hole and carry the same charges. This is encoded in
the superconformal index IS2 , or S2 × S1 partition function, of the theory [24, 25]. By the
state-operator correspondence the superconformal index can also be seen as counting local
operators of the conformal theory in flat space. Since minimal1 4d gauged supergravity
contains only the gravity multiplet, which is dual to the energy-momentum multiplet in
the 3d SCFT, the microstate degeneracy must be captured by the degeneracy of operators
with a given superconformal R-charge and angular momentum, irrespective of their charge
under other potential flavor symmetries in the field theory.

We refer to this supergravity solution as a “universal spinning black hole,” following
an analogous discussion for static magnetic black holes in AdS4 [4] and, more generally, for
static black p-brane solutions in various dimensions [26, 27]. As we discuss in detail, this
universality amounts to an interesting consequence for the behavior of the superconformal
index of any 3d N = 2 SCFT with a weakly coupled gravity dual in the large N limit.
Namely, in a regime in which the universal spinning black hole solution is the dominant
contribution to the index, it follows that to leading order in N ,

log IS2(ϕ, ω) ≈ i
FS3

π

ϕ2

ω
, (1.1)

where ω and ϕ are fugacities for rotations of the S2 and for the superconformal U(1)R
R-symmetry, respectively. The round-sphere free energy, FS3 , appearing here is eval-
uated at the superconformal values of the R-charges, which can be determined by F-
extremization [28]. We note that this expression is reminiscent of the Cardy formula for 2d
CFTs, where FS3 here plays the role of the 2d central charge. If the theory has global flavor
symmetries one can refine the index by including fugacities and magnetic fluxes through
the S2 for these symmetries [29]. As mentioned above, however, our focus here is on the
universal case for which all flavor parameters are turned off.2 A discrete refinement of
the index, which is relevant in our discussion, is related to a choice of spin structure on

1Here “minimal” has the same meaning as in [26], i.e., the gauged supergravity theory with a fixed
number of supercharges that contains only the gravity multiplet.

2The flavor symmetry in the field theory is realized by gauge fields sitting outside the 4d gravity multiplet
which are not included in the universal field content of the minimal supergravity theory. The generalized
index with flavor fugacities and magnetic fluxes should account for the entropy of black holes with additional
electric and magnetic charges.
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S2×S1 [30]. We show that to account for the black hole degeneracy one must choose anti-
periodic boundary conditions for fermions around the S1, which implies the relation among
fugacities ω − 2ϕ ± 2πi = 0. This is analogous to a recent analysis for supersymmetric
rotating black holes in AdS5 [15].

On general grounds, the superconformal index takes the form

IS2(ϕ, ω) =
∑
Q,J

Ω(Q, J) eϕQ eωJ , (1.2)

where the sum is over states in the Hilbert space of the theory quantized on S2 preserv-
ing two supercharges, with R-charge Q and angular momentum J (see appendix B). The
coefficients Ω(Q, J) count the degeneracy of such states, which can be extracted from the
index by the inverse transform. Schematically,

Ω(Q, J) =

∫
C

dϕ

2πi

dω

2πi
IS2(ϕ, ω) e−ωJ e−ϕQ ≈ elog IS2 (ϕ, ω)−ϕQ−ωJ

∣∣∣
s.p.

, (1.3)

where C is a suitable contour and (· · · )|s.p. stands for evaluating the function in the saddle-
point values, which dominate the integral in the large charge limit where the supergravity
approximation is valid.3 As discussed in more detail below, this procedure leads to a
complex Ω(Q, J). However, regularity of the black hole imposes an additional constraint
J = J(Q) in which case Ω(Q, J) becomes real and to leading order in N reproduces the
macroscopic entropy:

SBH = log Ω(Q, J(Q)) . (1.4)

Thus, counting the number of microstates of the universal spinning black hole, irrespec-
tive of its particular uplift to string or M-theory, amounts to establishing (1.1) for generic
3d N = 2 SCFTs with a weakly coupled gravity dual in the large N limit. For 3d SCFTs
with a gauge theory description in the UV, both sides of (1.1) can be computed via super-
symmetric localization. Thus, a direct check of this relation is in principle possible for these
theories. However, the superconformal index is a rather complicated object and it may not
be straightforward to evaluate it in the large N limit and establish this general behavior.
We note that the large N behavior of the superconformal index of the ABJM theory was
studied in the presence of general flavor fugacities in [31]. When the results of [31] are
specialized to the universal setup we study here one recovers the relation in (1.1).

To gain nontrivial evidence for the validity of (1.1) in a large class of SCFTs we study
3d theories of class R obtained by twisted compactification of the 6d (2, 0) AN−1 theory on
a hyperbolic three manifold Σ3. Although these theories generically do not have Lagrangian
descriptions in 3d one can exploit the 6d origin of the theory by using the 3d-3d correspon-
dence relating the superconformal index of the theory to certain topological invariants of
Σ3. See [32–37] and [38] for a review. Using large N results for these invariants derived
in [39] we are able to establish the relation in (1.1) for this class of theories. This leads, in

3To be more precise, in this procedure one must take into account the constraint among fugacities which
can be done by including an integration over a Lagrange multiplier,

∫
dλ
2πi

eλ(ω−2ϕ±2πi), as discussed in
section 2.2.

– 3 –



J
H
E
P
1
2
(
2
0
1
9
)
0
5
4

particular, to a microscopic counting of the entropy of the corresponding supersymmetric
universal spinning black hole arising from M5-branes wrapped on Σ3.

The paper is organized as follows. In section 2 we review the Kerr-Newman-AdS
black hole paying particular attention to its thermodynamics and its supersymmetric and
extremal limits. In section 3 we discuss several distinct explicit uplifts of this solution to
string and M-theory. In section 4 we discuss the microscopic counting of the black hole
entropy for the uplift to M-theory arising from M5-branes wrapping a hyperbolic three
manifold. We conclude in section 5 with a discussion of some open problems. The two
appendices contain some details on the superconformal index as well as the Killing spinors
preserved by the black hole solution.

2 A universal spinning black hole in AdS4

Consider four-dimensional minimal N = 2 gauged supergravity, with bosonic field content
the graviton and a U(1) graviphoton. The bosonic action is given by

I =
1

16πG(4)

∫
d4x
√
−g
(
R+ 6− 1

4
F 2

)
, (2.1)

with G(4) the four-dimensional Newton constant. The equations of motion are

Rµν + 3gµν −
1

2

(
FµσFν

σ − 1

4
gµνFρσF

ρσ

)
= 0 ,

∂µF
µν = 0 .

(2.2)

We have fixed the value of the cosmological constant so that the AdS4 solution has radius
LAdS4 = 1.

The equations of motion (2.2) admit a spinning, electrically charged black hole solu-
tion [21] (see also [22, 23]). In Lorentzian, mostly plus signature it is given by4

ds2
4 = −∆r

W

(
dt− a sin2 θ

Ξ
dφ

)2

+W

(
dr2

∆r
+
dθ2

∆θ

)
+

∆θ sin2 θ

W

(
adt− (r̃2 + a2)

Ξ
dφ

)2

,

A =
2mr̃ sinh 2δ

W

(
dt− a sin2 θ

Ξ
dφ

)
+ αdt ,

(2.3)

where we have defined

r̃ = r + 2m sinh2 δ , ∆r = r2 + a2 − 2mr + r̃2(r̃2 + a2) ,

∆θ = 1− a2 cos2 θ , W = r̃2 + a2 cos2 θ , Ξ = 1− a2 .
(2.4)

The solution is specified by the three integration constants, (a, δ,m) and α. The parameter
α does not affect the metric, being a pure gauge transformation of the gauge field, but

4Here we follow the conventions of [40] and set, in the notation there, δ1 = δ2 ≡ δ to truncate to
four-dimensional minimal N = 2 gauged supergravity.
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is nonetheless important as it fixes the spin structure of the asymptotic boundary, as we
discuss below. The solution describes an AdS black hole with an outer and an inner horizon,
provided m is larger than a critical value and a2 < 1 (see, e.g., [41]). Without loss of
generality we can assume a ≥ 0, δ ≥ 0,m ≥ 0.5 The physical quantities characterizing the
black hole are its energy E, electric charge Q, and angular momentum J , given by6

E =
m

G(4)Ξ2
cosh 2δ , Q =

m

G(4)Ξ
sinh 2δ , J =

ma

G(4)Ξ2
cosh 2δ . (2.5)

Since supergravity is reliable at weak gravitational coupling, for generic values of the param-
eters a, δ,m, the charges (2.5) are large in the classical supergravity regime. The Bekenstein-
Hawking entropy is given by the area of the outer horizon and reads

S =
Area
4G(4)

=
π(r̃2 + a2)

G(4)Ξ

∣∣∣
r=r+

, (2.6)

where r+ denotes the location of the outer horizon and is given by the largest real positive
root of the quartic polynomial equation ∆r = 0.

The metric can be analytically continued to Euclidean signature by introducing the
Euclidean time τ = it and continuing a to purely imaginary values. Demanding regularity
of the Euclidean metric at the horizon implies the identifications [41]

(τ, φ) ∼ (τ + β, φ− iβΩH) , (2.7)

where β ≡ T−1 is the inverse temperature of the black hole and ΩH is the angular velocity
of the horizon, given by

T =
1

4π(r̃2 + a2)

d∆r

dr

∣∣∣
r=r+

, ΩH =
aΞ

r̃2 + a2

∣∣∣
r=r+

. (2.8)

To derive (2.7) and (2.8) it is useful to analytically continue the metric in (2.3) after first
rewriting it as

ds2
4 = −W∆r∆θ

Σ
dt2 +W

(
dr2

∆r
+
dθ2

∆θ

)
+

Σ sin2 θ

WΞ2

(
dφ− aΞ

Σ
(∆θ(r̃

2 + a2)−∆r)dt

)2

,

(2.9)

where
Σ = (r̃2 + a2)2∆θ −∆ra

2 sin2 θ . (2.10)

The thermodynamics of this black hole was discussed in some detail in [41] and more
recently in [42–44]. One can define chemical potentials for the angular momentum and the
gauge field, which are given by

Ω =
a(1 + r̃2)

r̃2 + a2

∣∣∣
r=r+

, Φ =
mr̃ sinh 2δ

r̃2 + a2

∣∣∣
r=r+

, (2.11)

5The sign of a can be absorbed by the coordinate redefinition, φ → −φ, the sign of δ can be absorbed
by sending A→ −A in the action, and the sign of m can be absorbed by redefining the radial coordinate,
r → −r.

6Note we define Q with a factor of 4 difference compared to [40].
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respectively. With this at hand it can be shown that the black hole obeys the first law of
thermodynamics,

dE = T dS + Ω dJ + Φ dQ . (2.12)

2.1 Asymptotics

Let us first note that setting m = δ = a = 0 the gauge field is pure gauge and after the
change of coordinates r = sinh ρ the Euclidean metric reduces to

ds2
4 = cosh2 ρ dτ2 + dρ2 + sinh2 ρ (dθ2 + sin2 θ dφ2) . (2.13)

This is the metric of the unit radius global AdS4 with an R×S2 asymptotic boundary, which
one can compactify to S1 × S2. Alternatively, one can make a conformal transformation
of the metric to have a Euclidean AdS4 solution with an S3 boundary. The regularized
on-shell action of this Euclidean solution, IS3 , is identified with the S3 free energy, FS3 , of
the holographically dual CFT which takes the simple form [45]

FS3 =
π

2G(4)
. (2.14)

For arbitrary value of the parameters (a, δ,m) the asymptotic boundary is S1 × S2

locally but not globally, as a consequence of imposing regularity of the Euclidean black hole
solution close to the horizon. To see this it is convenient to make a change of coordinates
from (r, θ, φ) to (r̂, θ̂ , φ̂) by writing, as in [46],

r̂ cos θ̂ = r cos θ , r̂2 =
1

Ξ

[
r2∆θ + a2 sin2 θ

]
, φ = φ̂+ iaτ . (2.15)

Then, in the limit r̂ →∞ the metric and gauge field asymptote to

ds2
4 ≈

dr̂2

r̂2
+ r̂2ds2

bdry , ds2
bdry = dτ2 + dθ̂2 + sin2 θ̂ dφ̂2 ,

A ≈ −iαdτ ,

(2.16)

where the boundary metric ds2
bdry is the canonical metric on locally S1 × S2. Note that in

terms of the new angular variable φ̂ the identification (2.7) becomes

(τ, φ̂) ∼ (τ + β, φ̂− iβΩ) . (2.17)

Alternatively, one can define φ̃ = φ̂+ iΩτ so that

ds2
bdry = dτ2 + dθ̂2 + sin2 θ̂ (dφ̃− iΩdτ)2 , (2.18)

describing a fibration of S2 over S1. In these coordinates going around the Euclidean time
circle is described by the identification (τ, φ̃) ∼ (τ + β, φ̃) while going around the angular
coordinate (τ, φ̃) ∼ (τ, φ̃+ 2π).
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2.2 Supersymmetry and extremality

The black hole solution reviewed above admits two important limits; the supersymmetric
limit and the extremal limit [22, 23]. The BPS limit is defined by first imposing supersym-
metry and then imposing extremality. The supersymmetric limit is achieved by requiring

e4δ = 1 +
2

a
⇒ E = J +Q , (2.19)

leaving two independent parameters and thus two independent physical quantities, which we
take to be Q and J . Note that since in Euclidean signature a is taken to purely imaginary,
this requires a complex δ. One can show that supersymmetry implies a constraint among
the chemical potentials Ω,Φ [44]:

β(1 + Ω− 2Φ) = ±2πi (2.20)

or, after defining
ω ≡ β(Ω− 1) , ϕ ≡ β(Φ− 1) , (2.21)

the constraint is
ω − 2ϕ = ±2πi . (2.22)

The choice of sign arises since, after imposing the supersymmetric constraint in (2.19),
the metric function ∆r in (2.4) does not generically have real zeros but rather two sets of
complex conjugate zeroes. One can then choose either one of these roots to play the role
of r+ in (2.11). The upper sign in (2.22) corresponds to choosing one of the complex roots
and the lower sign to choosing its complex conjugate. From now on we choose the lower
sign in (2.22).

As we show in appendix A the constraint (2.22) determines the spin structure on the
S1×S2 asymptotic boundary, forcing the spinors generating the preserved supersymmetry
to be anti-periodic when going around the Euclidean time circle, rather then the more
standard periodic condition. This is analogous to the case of supersymmetric spinning
black holes in AdS5 discussed in [15].

In the supersymmetric limit,

ω =
2πi(a− 1)

1 + a+ 2ir̃

∣∣∣
r=r+

, ϕ =
2πi(a+ ir̃)

1 + a+ 2ir̃

∣∣∣
r=r+

. (2.23)

Another quantity of physical interest is the Euclidean on-shell action, IE , for the su-
persymmetric Euclidean saddle-points obtained in the limit (2.19). After appropriate holo-
graphic renormalization IE can be written as a function of the chemical potentials ϕ, ω as7

IE = − i

2G(4)

ϕ2

ω
. (2.24)

7This follows from the results in [44], setting δ1 = δ2 to truncate to the minimal theory and reinstating
G(4), which was set to 1 there.

– 7 –



J
H
E
P
1
2
(
2
0
1
9
)
0
5
4

Note that in general this is a complex function. It was shown in [44] that for the Euclidean
supersymmetric solutions this on-shell action obeys the following quantum statistical
relation

S = −IE − ωJ − ϕQ . (2.25)

An interesting property of the function (2.24) is that it serves as an “entropy function”
for the BPS black hole [43, 44]. More precisely, one should consider ϕ, ω,Q, J as independent
parameters and define the auxiliary function

Sλ(Q, J ;ϕ, ω) ≡ −IE − ωJ − ϕQ+ λ(ω − 2ϕ+ 2πi) . (2.26)

Then, extremizing Sλ with respect to ω, ϕ and λ gives the equations

∂IE
∂ω

= −J + λ ,
∂IE
∂ϕ

= −Q− 2λ , ω − 2ϕ+ 2πi = 0 . (2.27)

One can easily check that the values (2.23) are solutions to these equations and thus are
extrema of Sλ. Furthermore, the extremal value of Sλ coincides with the supersymmetric
entropy S, which is automatic by virtue of (2.25).

According to the AdS/CFT dictionary, IE should be compared to the supersymmetric
partition function, ZS2

ω×S1 , of the 3d N = 2 SCFT living at the S2
ω × S1 asymptotic

boundary:
IS2(ω) = ZS2

ω×S1 ≈ e−IE . (2.28)

This relation is valid to leading order in the large N limit and we have included the label ω
to indicate that the S2 is fibered over the S1 and the field theory partition function has to
be evaluated with fugacities ω and ϕ obeying the relation (2.22). This partition function
is also referred to as the superconformal index.

Combining the relations (2.14) and (2.24) with (2.28) the supergravity calculations
above lead to the following prediction for the large N limit of the superconformal index of
all 3d N = 2 SCFTs with weakly coupled supergravity duals:

log IS2(ω) = i
FS3

π

ϕ2

ω
. (2.29)

Similar universal relations between partition functions on different manifolds can be shown
for the holographic duals of supersymmetric magnetic black holes in AdS4 [4], as well as
for theories in other dimensions [26, 27].

Note that until now we have only imposed the supersymmetric limit (2.19). We em-
phasize that when this limit is imposed the zeroes of the metric function ∆r are generically
not real and thus the Lorentzian solution has a naked singularity and causal pathologies.
There is a special value of the parameters, however, for which the supersymmetric solu-
tion is extremal, i.e., has vanishing temperature, and is a regular black hole in Lorentzian
signature. To obtain this supersymmetric and extremal black hole one must set

m = a(1 + a)
√

2 + a ⇒ J =
Q

2

(√
1 + 4G2

(4)Q
2 − 1

)
, (2.30)
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leaving only one independent physical parameter, which we take to be the charge Q. The
Bekenstein-Hawking entropy of the BPS black hole is real and given by

SBPS
BH =

π

2G(4)

(√
1 + 4G2

(4)Q
2 − 1

)
. (2.31)

To account for the entropy of the BPS black hole microscopically it is sufficient to establish
the more general relation (2.29) in field theory. As shown above, performing a Legendre
transform and imposing the extremal relation (2.30) will automatically reproduce the en-
tropy (2.31). In section 4 we show how this can be done for a class of 3d SCFTs arising
from M5-branes.

3 Uplifts and universality

The label “universal” for the BPS black hole reviewed above refers to the fact that it can be
embedded into string or M-theory in infinitely many ways. This is reflected in the choice
of internal manifold and fluxes used in the uplift to 10d or 11d. One unifying feature of
these uplifts is that the internal manifold has at least one U(1) isometry, dual to the U(1)R
R-symmetry of the 3d N = 2 SCFT. The precise information about the internal manifold
and the fluxes on it determines the details of 3d SCFT dual. For any such realization of
the black hole in string or M-theory equation (2.29) holds and thus it provides a universal
relation between the superconformal index and the S3 partition function of any 3d N = 2

SCFT with a weakly coupled supergravity dual. Next, we discuss a number of explicit
examples of such uplifts to string or M-theory.

3.1 Wrapped M5-branes

We begin by uplifting to M-theory on M7 = S4 × Σ3 where the S4 is nontrivially fibered
over a three-manifold Σ3. To ensure the regularity of the solution Σ3 has to be the three-
dimensional hyperboloid with the constant curvature metric. One can also quotient the
hyperboloid to produce a compact hyperbolic manifold. The uplift to eleven-dimensional
supergravity can be performed using the results in [47]. The metric reads

ds2
11 = 2

1
6 (1 + sin2 ν)

1
3

(
ds2

4 +
1√
2
ds2

Σ3
+

1

2

[
dν2 +

sin2 ν

1 + sin2 ν
(dψ −A)2

]

+
cos2 ν

1 + sin2 ν

3∑
a=1

(
dµ̃a + ω̄abµ̃b

)2
)
,

(3.1)

where ds2
4 is the black hole metric and A is the gauge field in (2.3).8 Here we have split the

constrained coordinates µi=1,...,5 on S4 according to SO(3)× SO(2) ⊂ SO(5),

µa = cos(ν) µ̃a , a = 1, 2, 3 ,

µα = sin(ν) µ̃α , α = 4, 5 ,
(3.2)

8To match the conventions of [47] to ours we need to set g2 =
√
2 and rescale the gauge field as

gAthere
(1) = Ahere.
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with
∑5

i=1(µi)2 =
∑3

a=1(µ̃a)2 =
∑5

α=4(µ̃α)2 = 1 and use the explicit parametrization

µ̃1 = cos ξ1 , µ̃2 = sin ξ1 cos ξ2 , µ̃3 = sin ξ1 sin ξ2 ,

µ̃4 = cosψ , µ̃5 = sinψ ,
(3.3)

with coordinate ranges 0 ≤ ν ≤ π/2, 0 ≤ ψ < 2π, 0 ≤ ξ1 ≤ π, and 0 ≤ ξ2 < 2π. The metric
on the hyperbolic manifold ds2

Σ3
is normalized such that R̂ab = −g2ĝab. The four-form is

given by

2
3
4G4 =

(5+sin2 ν)(
1+sin2 ν

)2 εabcεαβDµb∧Dµc∧(1

4
µaDµα∧Dµβ+

1

6
µαDµβ∧Dµa

)
+

εabc

(1+sin2 ν)

[
εαβDω̄

ab∧
(
Dµc∧Dµαµβ+

1

4
Dµα∧Dµβµc

)
+2−

3
5F∧Dµa∧Dµbµc

]
−2−

1
4 (∗4F )∧ēa∧Dµa+2−

2
5 ∗7 [(∗4F )∧ēa]µa , (3.4)

where we have defined

Dµa = dµa + ω̄abµb , Dµα = dµα +Aεαβµβ , (3.5)

here ēa and ω̄ab are, respectively, the vielbein and spin connection for ds2
Σ3

and F = dA. If
we restrict the four-form flux to the directions along the four-sphere we find

2
3
4G4

∣∣∣
S4

= − d
(

cos3 ν

1 + sin2 ν

)
∧ dψ ∧ dvol(S2) , (3.6)

with dvol(S2) = sin ξ2 dξ1 ∧ dξ2. This expression is useful for flux quantization which leads
to the same result as for the uplift of the AdS4 vacuum solution. This can be used to
compute the free energy of the dual 3d N = 2 SCFT which gives (see for example [39])

FS3 =
π

2G(4)
=

Vol(Σ3)N3

3π
. (3.7)

This eleven-dimensional solution corresponds to the backreaction of N M5-branes wrap-
ping the three-cycle Σ3 ⊂ T ∗Σ3 and spinning in the remaining R3. The wrapping on Σ3

topologically twists the worldvolume theory on the worldvolume of the M5-branes, which
amounts to turning on a background value for the SO(3) ⊂ SO(5)R R-symmetry of the
theory along Σ3 to cancel its spin connection. This is manifested in the solution by the
terms proportional to the spin connection ω̄ab in (3.5) and in the first two terms in the
second line of (3.4). Note that setting A = 0 and replacing ds2

4 by the AdS4 metric reduces
to the static wrapped M5-branes solution in [48], see also [39].

The boundary 3d SCFT is then the theory obtained by twisted compactification of the
6d (2, 0) AN−1 theory on Σ3. This class of theories is often denoted TN [Σ3] and referred to
as theories of class R. Thus, we refer to the solution (3.1)–(3.4) as a “spinning black hole
of class R.” The on-shell action, or entropy function, for this black hole can be computed
from (2.29) and reads

IE(TN [Σ3]) ≈ N3

12iπ2ω
(ω + 2πi)2 Vol(Σ3) , (3.8)
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where we have imposed the constraint on ϕ in the last equation in (2.27). Giving a micro-
scopic account of the entropy of this black hole amounts to reproducing (3.8) from a field
theory computation. We address this problem in section 4.

3.2 M2-branes

A large class of three-dimensional N = 2 SCFTs arise on the worldvolume of M2-branes
probing a conical CY four-fold. The prototypical example in this class is the ABJM theory
which admits many generalizations in the form of N = 2 Chern-Simons matter theories.
The holographic dual of these SCFTs is given by an AdS4 × SE7 Freund-Rubin solution
of 11d supergravity, where SE7 is the Sasaki-Einstein manifold that serves as the base of
the conical CY four-fold. There are other generalizations of this construction in which
there are internal fluxes on the internal manifold and the AdS4 factor of the metric is
warped, see for example [49] and [50]. In [51] and [52, 53] it was shown that both of these
classes of compactifications of M-theory admit a truncation to 4d N = 2 minimal gauged
supergravity. This implies that the black hole of section 2 can be embedded in M-theory
and interpreted as the backreaction of spinning M2-branes.

Here we show the explicit black hole solution realized as a deformation of the AdS4×SE7

vacua of 11d supergravity. The 11d metric is

ds2
11 =

1

4
ds2

4 + ds2
6 +

(
dψ + σ +

1

4
A

)2

, (3.9)

and the 4-form flux is
G4 =

3

8
vol4 −

1

4
∗4 F ∧ J . (3.10)

Here ds2
4 is the black hole metric in (2.3), vol4 is its associated volume form, A is the gauge

field in (2.3) and F = dA. The metric ds2
6 is locally Kähler-Einstein and serves as the base

for the SE7 manifold with Reeb vector ∂ψ. The Kähler 2-form on ds2
6 is J and dσ = 2J .

The quantization condition of the four-form flux is the same as for the uplift of the AdS4

vacuum. The free energy of the dual 3d N = 2 SCFT is given in terms of the volume of
SE7 by the well-known relation

FS3 = N3/2

√
2π6

27Vol(SE7)
, (3.11)

where N is the number of M2-branes. Using (2.29) we arrive at the following expression
for the large N superconformal index of the same SCFT:

log IS2 =
i

π

ϕ2

ω
N3/2

√
2π6

27Vol(SE7)
. (3.12)

Deriving this expression with QFT methods would be very interesting and lead to a micro-
scopic account of the entropy of this family of black holes.

Perhaps the simplest example in this class of solutions is given by taking SE7 = S7/Zk
in which case the boundary 3d SCFT is the ABJM theory [54]. This theory has a global
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symmetry group with a Cartan subalgebra U(1)4. In the bulk supergravity this results in
a more general class of black hole solutions with multiple electric charges. The entropy
function for this class of black holes was identified in [43] and a recent derivation from field
theory was presented in [31]. If one sets the fugacities ∆1,2,3,4 for the U(1)4 symmetry to
be equal one recovers the universal black hole of section 2 and the results in [43] and [31]
agree with (2.29).

3.3 D2-branes

Another way to engineer AdS4 vacua with explicit 3d N = 2 field theory duals is to use
D2-branes in massive IIA string theory, see [55, 56]. As shown recently in [57], building
on the results in [4], this class of solutions again admits a truncation to minimal gauged
supergravity in four dimensions. Using these results we can find an explicit realization of
the black hole in section 2 in massive IIA supergravity. The metric is

ds2
10 =m

1
12 2−

5
8 (3+cos2α)

1
2 (5+cos2α)

1
8

[
1

3
ds2

4+
1

2
dα2+

2sin2α

3+cos2α
ds2

KE4
+

3sin2α

5+cos2α
η̂2

]
,

(3.13)
where

η̂ = dψ + σ +
1

3
A , (3.14)

and dσ = 2J , where J is the Kähler form on the four-dimensional space ds2
KE4

which
admits a local Kähler-Einstein metric. The range of the angles α and ψ is 0 ≤ α ≤ π and
0 ≤ ψ ≤ 2π. The dilaton and NS-NS 3-form are

eφ =
2

1
4

m
5
6

(5 + cos 2α)
3
4

3 + cos 2α
,

H3 =
8

m
1
3

sin3 α

(3 + cos 2α)2
J ∧ dα+

1

2
√

3m
1
3

sinα dα ∧ ∗4F .
(3.15)

The RR fluxes are given by

F0 =m,

m−
2
3F2 =− 4sin2αcosα

(3+cos2α)(5+cos2α)
J− 3(3−cos2α)

(5+cos2α)2
sinα dα∧η̂

+
cosα

5+cos2α
F− 1

2
√

3
cosα∗4F , (3.16)

m−
1
3F4 =

2(7+3cos2α)

(3+cos2α)2
sin4α volKE4 +

3(9+cos2α)sin3αcosα

(3+cos2α)(5+cos2α)
J∧dα∧η̂+

1√
3
vol4 ,

− 1

8
sin2α

(
2sin2α

3+cos2α
J+dα∧η̂

)
∧F− 1

4
√

3

(
4sin2α

3+cos2α
J+

3sin2α

5+cos2α
dα∧η̂

)
∧∗4F .

The solution is interpreted as the backreaction of spinning D2-branes in massive IIA string
theory. The boundary 3d SCFT is then the IR limit of the D2-brane world-volume theory.
The simplest example in this class is the GJV theory [55]. A generalization can be con-
structed by a certain “descent” procedure from 4d N = 1 quivers gauge theories [56]. This
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leads to the following relation between the free energy of the 3d theory and the conformal
anomaly of the 4d SCFT

FS3 =
2

5
3 3

1
6π

5
(nN)

1
3 (a4d)

2
3 , (3.17)

where a4d is the a-anomaly coefficient of the parent 4d theory and the relation is valid
in the planar limit. Note that the free energy of these theories scales as N5/3 which is
characteristic for D2-branes in massive IIA string theory. The map between field theory
and supergravity quantities is provided by the quantization condition

N =
1

(2π`s)5

16

3
vol(Y5) , n = 2π`sm. (3.18)

Here Y5 is a five-manifold with a Sasaki-Einstein metric

ds2
Y5 = ds2

KE4
+ (dψ + σ)2 , (3.19)

determining the AdS5 IIB dual of the parent 4d theory.
Using (2.29) and (3.17) we obtain a simple formula for the leading order in N super-

conformal index for this large class of Chern-Simons matter theories:

log IS2 = i
ϕ2

ω

2
5
3 3

1
6

5
(nN)

1
3 (a4d)

2
3 . (3.20)

Reproducing this index by field theory methods is an interesting open problem.

3.4 Wrapped D4-brane and (p, q)-fivebranes

Another interesting class of 3d SCFTs are those obtained by twisted compactification of 5d
SCFTs. Five-dimensional SCFTs can be constructed in string theory from a system of D4-
D8-O8 branes in massive type IIA string theory [58, 59], studied holographically in [60, 61].
Alternatively one can utilize (p, q)-fivebrane webs in type IIB string theory [62–64], which
was studied holographically in [65, 66]. Upon a twisted compactification on a Riemann
surface Σg of genus g one obtains a 3d N = 2 theory whose S3 partition function can be
computed via the localization results of [8] where a universal relation to the free energy on
S5 was derived; we comment on this further in section 5. These 3d N = 2 SCFTs admit
a bulk description in terms of warped AdS4 vacua of massive IIA or IIB supergravity, see
for example [26] and [67]. We conjecture that these supergravity compactifications should
admit a consistent truncation to minimal 4d gauged supergravity. More specifically, we
expect a truncation of massive IIA on M6 = S4 ×w Σg>1 where the S4 is fibered over the
Riemann surface and a truncation of IIB supergravity on M6 = S2×w Σ×w Σg, where Σ is
a Riemann surface with disc topology and the S2 is fibered over Σg. Unfortunately these
truncations have not been established in the literature. Nevertheless, our results suggest
that they should exist and thus the universal black hole in section 2 can be embedded in
these AdS4 vacua. Establishing the universal formula (2.29) for these 3d SCFTs would then
account for the entropy of the corresponding black holes. This is certainly an interesting
and nontrivial problem beyond the scope of this work.
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4 Microscopic entropy and class R

In this section, we study the universal spinning black hole in AdS4 from a holographic
perspective. We focus on the uplift to M-theory, discussed in section 3.1, on a manifold
M7 which is a fibration of a squashed S4 over Σ3. In this case the entropy of the black
hole should be accounted for by the superconformal index of 3d N = 2 theories of class
R. We exploit the 3d-3d correspondence which relates the index to the partition function
of complex Chern-Simons theory on Σ3 and show that this is indeed the case. Similar
results for the uplift of supersymmetric magnetic black holes without angular momenta
were obtained in [68–70].

4.1 The 3d-3d correspondence

Consider the 6d (2, 0) AN−1 theory arising on the worldvolume of N M5-branes. The
theory can be placed on R3 ×M3 with M3 a generic three-manifold while preserving four
supercharges. This is achieved by performing a topological twist using the SO(3) ⊂ SO(5)R
R-symmetry to cancel the spin connection on M3. Taking M3 to be compact at low ene-
gies one obtains a 3d N = 2 SCFT of class R denoted by TN [M3] [32–34]. The 3d-3d
correspondence [32–37] maps the supersymmetric partition function of TN [M3] on a curved
background B to topological invariants of M3, see [71] for a review and further references.
For B = S3

b /Zk≥1 and for B = S2
ω × S1 the corresponding topological invariant is given

by a complex Chern-Simons (CS) partition function on M3.9 More precisely we have the
following relation between partition functions

ZB(TN [M3])
3d-3d

= ZCS
N (~, ~̃;M3) , (4.1)

where the path integral for the Chern-Simons theory is defined as

ZCS
N (~, ~̃;M3) =

∫
DADĀ e

i
2~SCS[A;M3]+ i

2~̃
SCS[Ā;M3] , (4.2)

where SCS[A;M3] =
∫
M3

Tr
(
A dA+ 2

3A
3
)
is the usual Chern-Simons action, with A, Ā

complex connections, valued in the Lie algebra of the group SL(N,C) and ~, ~̃ are two
complex parameters, usually written as

4π

~
= k + is ,

4π

~̃
= k − is . (4.3)

It follows from standard arguments of real CS theory that k ∈ Z while s is constrained only
by unitarity to be either real or purely imaginary [75]. The choice of B in the l.h.s. of (4.1)
is encoded in the r.h.s. in the values of ~, ~̃. For the superconformal index of interest here
we have B = S2

ω × S1. This corresponds to setting ~ = iω and ~̃ = −iω (i.e. k = 0 and
s = −4π

ω ). From now on we set k = 0 so we have

ZS2
ω×S1(TN [M3]) = ZCS

N (iω,−iω;M3) =

∫
DADĀ e

i
ω

ImSCS[A;M3] . (4.4)

9Topologically twisted indices in the 3d-3d correspondence context were studied in [72–74].
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Note the parameter ω in the CS theory has been identified with the rotational chemi-
cal potential in the superconformal index, which by the AdS/CFT correspondence is also
identified with the potential in the supergravity theory as defined in (2.21).

To compare the field theory calculation to the result from supergravity (3.8) we must
evaluate the CS partition function at large N . Without any other simplifying assumptions
this is a nontrivial task. Note, however, that if ω is analytically continued to imaginary
values one can define a semi-classical limit, |ω| → 0, of the CS theory which translates
into a Cardy-like limit of the superconformal index of TN [M3]. In this regime the path
integral (4.4) can be evaluated at the perturbative level by expanding around saddles of
the CS action, which are given by flat connections, A(α), with the dominant contribution
determined by the value of ImSCS[A(α);M3].

Guided by the supergravity solution in section 3.1 we are interested in the case where
M3 is a smooth quotient of the three-dimensional hyperboloid, Σ3 = H3/Γ. In this case
the vielbein, e, and the spin connection, w, of Σ3 can be rewritten as flat connections for
SL(2,C) by taking the complex combinations w± ie. One can then use these two geometric
connections to construct flat connections of SL(N,C), explicitly given by

A
(geom)
N = ρN · (w + ie) , A

(geom)
N = ρN · (w − ie) , (4.5)

where ρN is the N -dimensional irreducible representation of SL(2,C). An important prop-
erty of these geometric flat connections is that

Im
(
SCS

[
A(geom)
N ; Σ3

])
≤ Im

(
SCS

[
A(α)
N ; Σ3

])
≤ Im

(
SCS

[
A(geom)
N ; Σ3

])
, (4.6)

where the lower and upper inequalities are saturated only for A(α)
N = A(geom)

N and A(geom)
N ,

respectively, and thus dominate the saddle-point approximation.10 Let us approach the
origin from below, ω → i0−. Then, the flat connection A(geom)

N is the dominant saddle and
by a standard semi-classical approximation the partition functions takes the form11

ZCS
N (iω,−iω; Σ3)

ω→i0−−−−−→ exp

{
2i

ω
Im
(
S

(geom)
0 + ωS

(geom)
1 + ω2S

(geom)
2 + . . .

)}
, (4.7)

where the first coefficient is given by the value of the classical action, S
(geom)
0 =

1
2SCS

[
A(geom)
N ; Σ3

]
, the coefficient S(geom)

1 is a 1-loop correction, etc.12 In principle, these
coefficients can be computed via higher loop Feynman diagrams, although this may not be
very efficient. To compare with supergravity we must evaluate (4.7) in the large N limit.

10A subtle point is that to fully capture the superconformal theory TN [M3] one should also include
reducible flat connections [76]. Here, as in [68–70], we assume that for the purposes of holography, to
leading order in N , it is sufficient to consider only irreducible connections. Our results below give further
evidence for this assumption.

11Approaching the origin from above, ω → i0+, the dominant saddle is instead the flat connection A(geom)
N .

The final answer is the same and the limit is well defined.
12Here we have included a logω term in the ellipses in (4.7). This term will not be important in the large

N limit.
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4.2 Large N

As summarized in [39] the classical and one-loop contributions in (4.7), S(geom)
0,1 , and their

conjugates, can be computed directly. The two-loop coefficient is more involved. In the large
N limit, however, its value can be conjectured with input from holography by comparing the
on-shell action for the AdS4(b) solution to the free energy of the 3d SCFT on the squashed
S3
b . This leads to the following results [39]:

Im
[
S

(geom)
0

]
= −Im

[
S

(geom)
0

]
≈ −1

6
Vol(Σ3)N3 ,

Re
[
S

(geom)
1

]
= Re

[
S

(geom)
1

]
≈ − 1

6π
Vol(Σ3)N3 ,

Im
[
S

(geom)
2

]
= −Im

[
S

(geom)
2

]
≈ 1

24π2
Vol(Σ3)N3 ,

(4.8)

to leading order in N and all S(α)
n≥3 are subleading. Note that the result for S(geom)

2 , as

well as the vanishing of S(α)
n≥3, in the large N limit are conjectured results. Nevertheless,

there is convincing evidence that these conjectures are true [39]. Plugging the results
in (4.8) into (4.7) and using the 3d-3d correspondence relation in (4.4), we find the following
expression for the superconformal index of the theory TN [M3] in the large N limit

log ZS2
ω×S1(TN [Σ3]) ≈ − N3

12iπ2ω
(ω + 2πi)2 Vol(Σ3) . (4.9)

This is the main result of our analysis for theories of class R. Due to the holographic
dictionary (2.28) this should match (minus) the on-shell action of the spinning black hole.
Indeed, comparing to (3.8) we find precise agreement. As discussed around (1.2)–(1.4), to
account for the entropy of the black hole one has to analytically continue ω to the complex
plane and Legendre transform to an ensemble with fixed charge Q and angular momentum
J = J(Q). Implementing this procedure for the superconformal index in (4.9) automatically
reproduces the Bekenstein-Hawking entropy in (2.31) with the appropriate quantized value
of Newton’s constant from (3.7).

There is an important subtlety in the calculation above. In the supergravity construc-
tion it was assumed that the hyperbolic manifold Σ3 on which the M5-branes are wrapped
is compact and admits a smooth metric. On the other hand the large N results for theories
of class R in [39] are derived for three-manifolds which are knot complements and thus
have some defects. Given that we find a nontrivial agreement between the supergravity and
the large N field theory calculations it is natural to conjecture that the contribution from
the singularities of the metric on Σ3 will be subleading in the 1/N expansion. This was
also assumed in similar holographic calculations in [39, 68–70]. It is certainly desirable to
understand this issue better.

We note that (4.9) was derived in the Cardy-like limit, |ω| → 0, and large N while (3.8)
is valid more generally for any ω and large N . It is important to keep in mind that in a
given charge sector there may be more BPS states than the black hole discussed above.
These other states, such as multi-center black holes if they exist, would also contribute to
the index. The match shown above indicates that at least at the perturbative level in |ω|,
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and in the large N limit, the (single-center) black hole solution dominates and thus the
index correctly captures its entropy. It would be interesting to study corrections beyond
the Cardy-like and large N limits and the corresponding supergravity interpretation of such
corrections.

5 Outlook

The most pressing question stemming from our work is to establish the 3d Cardy-like
formula (1.1) by pure field theory methods. This may be possible, for instance, for 3d
N = 2 Chern-Simons quiver gauge theories along the lines of a similar universal relation
discussed in [4] for the topologically twisted index. As discussed above, one should bear
in mind that (1.1) holds provided the black hole is the dominant contribution to the index
and we have given an example where this holds for large N . It would therefore be very
interesting to study corrections to the superconformal index beyond the Cardy-like and
large N limits. Corrections in the 1/N expansion have been studied for twisted partition
functions of class R in [69]. We should also emphasize that in section 4 we have used a
number of results on the large N limit of the 3d-3d correspondence discussed in [39, 68].
Some of these results are rigorously derived but others are still a conjecture. Understanding
the results in [39, 68–70] more rigorously is certainly interesting, especially in the context
of holography.

An interesting class of 3d N = 2 theories, which is much less explored, is obtained
by twisted compactification of 5d SCFTs on a Riemann surface Σg, and whose various
partition functions are accessible via supersymmetric localization [8, 9]. In particular, the
S3 partition function was computed in [8], and one can show that for g > 1 and large N
there is a universal relation, FS3 = −8

9(g − 1)FS5 , with FS5 the free energy on the round
five-sphere, as predicted by supergravity [26]. Combining this with (2.29) leads to the
following prediction for the partition function of the 5d SCFT on S1 × S2

ω × Σg>1 in large
N limit:

logZS1×S2
ω×Σg>1

≈ 8

9
(g− 1)

FS5

iπ

ϕ2

ω
. (5.1)

It would be interesting to establish this relation in field theory by directly computing the
partition function of 5d N = 1 gauge theories on S1×S2

ω×Σg>1, with a partial topological
twist on Σg>1.

As emphasized in [26] the universality argument holds for any solution to minimal
gauged supergravity in arbitrary dimension. In particular, uplifting the supersymmetric
spinning black hole in AdS6 of [77] to 10d or 11d predicts interesting Cardy-like formulas
for the corresponding 5d SCFTs at large N . The on-shell action for this black hole was
recently evaluated in [44], showing that it reproduces the entropy function introduced in [43].
Universality then predicts that, in the regime in which the black hole is the dominant
contribution, the index of 5d SCFTs with a weakly coupled gravity dual is given by13

logZS1×S4
ω1,ω2

≈ − i

π
FS5

ϕ3

ω1ω2
, (5.2)

13Here we have used the holographic relation FS5 = − π2

3G(6)
for AdS6 vacua.
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where ϕ and ω1,2 are fugacities for the R-symmetry and the two rotations of S4, respectively,
subject to the constraint ω1 + ω2 − 3ϕ = ±2πi. In the case of 5d SCFTs arising from D4-
D8-O8 branes in massive type IIA string theory this formula was established by localization
methods in [78] in the Cardy-like limit |ω1,2| � 0. We claim here that (5.2) holds for any
SCFT with a weakly coupled gravity dual, for instance those arising from (p, q)-fivebranes
in IIB string theory. It would be interesting to establish this by pure field theory methods
and determine the precise regime of dominance of the universal black hole solution.

Finally, supersymmetric asymptotically AdS4 black holes with angular momentum and
both electric and magnetic charges have been recently constructed in [79, 80]. It would be
interesting to study the corresponding universal behavior of the entropy function for these
solutions, whose entropy should be captured by the 3d topologically twisted index, refined
by angular momentum.
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A Boundary Killing spinors

Three-dimensional backgrounds preserving supersymmetry can be constructed by coupling
the field theory to new-minimal supergravity. The bosonic content consists of the vielbein
eaµ, a gauge field Anm

µ , a conserved vector field V nm
µ , and a scalar H. We denote the two

complex supersymmetry generators of 3d N = 2 supersymmetry by ζ, ζ̃. Each is a doublet
of the SU(2) rotation group of S2 and carry U(1)R R-charges (1,−1), respectively. The
Killing spinor equations read [81]

(∇µ − iAnm
µ )ζ = −1

2
Hγµζ − iV nm

µ ζ − 1

2
εµνρV

ν
nmγ

ρζ ,

(∇µ + iAnm
µ )ζ̃ = −1

2
Hγµζ̃ + iV nm

µ ζ̃ +
1

2
εµνρV

ν
nmγ

ρζ̃ ,

(A.1)

where ∇µζ = ∂µζ + 1
4w

ab
µ γabζ, with wabµ the spin connection and γa are the Dirac gamma

matrices with flat indices. We work in the representation γa = (σ1, σ2, σ3) with σa the
Pauli matrices. In the conformal case H is set to zero and Anm

µ − 1
2V

nm
µ is pure gauge.

The combination Acs
µ ≡ Anm

µ − 3
2V

nm
µ remains and is identified with the R-symmetry gauge

field of conformal supergravity, which in holography is fixed by the boundary value of the
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bulk supergravity solution [82]. We are interested in solutions to these equations for the
asymptotic metric and gauge field (2.16). Thus we set Acs

µ = −iαδ3
µ and a consistent choice is

Anm
µ = Acs

µ −
3

2
iδ3
µ , V nm

µ = −i δ3
µ . (A.2)

The Killing spinor equations can then be written as

(∇µ − iAcs
µ )ζ =

1

2
γµγ3ζ , (∇µ + iAcs

µ )ζ̃ = −1

2
γµγ3ζ̃ , (A.3)

with solutions

ζ(1) = eτ(α+ 1
2

)e
iφ̂
2

(
cos θ̂2
sin θ̂

2

)
,

ζ̃(1) = e−τ(α+ 1
2

)e
iφ̂
2

(
cos θ̂2
− sin θ̂

2

)
,

ζ(2) = eτ(α+ 1
2

)e−
iφ̂
2

(
sin θ̂

2

− cos θ̂2

)
,

ζ̃(2) = e−τ(α+ 1
2

)e−
iφ̂
2

(
sin θ̂

2

cos θ̂2

)
.

(A.4)

We see from (2.17) that demanding regularity of the bulk solution at the horizon implies
the following transformations of the spinors at the boundary:

ζ(1) → e
β
2

(1+Ω+2α)ζ(1) ,

ζ̃(1) → e
β
2

(−1+Ω−2α)ζ̃(1) ,

ζ(2) → e
β
2

(1−Ω+2α)ζ(2) ,

ζ̃(2) → e
β
2

(−1−Ω−2α)ζ̃(2) .
(A.5)

With a suitable choice of the background R-symmetry gauge field it is possible to preserve
two supersymmetries of opposite R-charge. For instance, choosing α so that

β(1 + Ω + 2α) = 2πin , n ∈ Z , (A.6)

two of the spinors become periodic or anti-periodic, depending on whether n is even or odd:

ζ(1) → eiπn ζ(1) , ζ̃(2) → e−iπn ζ̃(2) . (A.7)

The remaining Killing spinors are generically neither periodic nor anti-periodic and the
corresponding supersymmetries are broken. At this point we make contact with the black
hole solution by setting α = −Φ, with Φ the chemical potential in the bulk supergravity
solution. Then, as a consequence of the bulk relation (2.20), the constraint (A.6) is satisfied
with n = ±1 and the two preserved Killing spinors are anti-periodic. For n = 0 instead the
spinors are periodic and the bulk solution is the AdS4 vacuum.

B Superconformal index

Consider a 3d N = 2 SCFT in Euclidean signature, radially quantized on S2 × R. We
denote the Poincaré supercharges by Q1,Q2, Q̃1, Q̃2. Their conjugates, Q†1,Q

†
2, Q̃

†
1, Q̃

†
2, are

identified with the superconformal charges. The global charges of these supersymmetries
are shown in table 1, where ∆ is the dilation operator, j3 is the Cartan of SU(2) and R is
the generator of U(1)R.
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Q1 Q2 Q̃1 Q̃2 Q†1 Q†2 Q̃†1 Q̃†2
∆ 1

2
1
2

1
2

1
2 −1

2 −1
2 −1

2 −1
2

R 1 1 −1 −1 −1 −1 1 1

j3 −1
2

1
2 −1

2
1
2

1
2 −1

2
1
2 −1

2

Table 1. Global charges of supersymmetry generators of the 3d N = 2 superconformal algebra.

One now chooses a supercharge, say Q1, and its conjugate Q†1. It follows from the
superconformal algebra that

{Q†1,Q1} = ∆−R− j3 . (B.1)

Note the combination ∆ + j3 commutes with Q1,Q†1. Then, one defines the index

IS2(ω) = Tr eiπR e
1
2
γ{Q†1,Q1}e

1
2
ω(∆+j3) , (B.2)

where the trace is evaluated over the Hilbert space of the theory quantized on S2. The eiπR

factor anticommutes withQ1 andQ†1 and thus acts as the more standard (−1)F , making this
quantity an index which receives only contributions from states annihilated by Q1 and Q†1.
Then, only states with ∆ = R+j3 contribute. In particular, the index is independent of the
parameter γ. Of course, one may choose another supercharge and define the corresponding
index but this will contain equivalent information. Using the anti-commutation relation
above we can write

IS2(ω) = Tr eR(iπ− γ
2

) e
1
2

∆(γ+ω)e
1
2
j3(ω−γ) . (B.3)

We may now use the freedom to choose γ to set γ = −ω, after which

IS2(ω) = Tr eϕR eωj3 =
∑
Q,J

Ω(Q, J) eϕQeωJ , ϕ ≡ iπ +
1

2
ω , (B.4)

where Ω(Q, J) is the degeneracy of states with R-charge Q and angular momentum J . This
can be seen as a path integral, ZS2

ω×S1 , over the background described above.
Note that defining the shifted fugacity ω̂ = ω − 2πi we can also write the index in

the form

IS2(ω̂) = Tr (−1)F e
1
2
ω̂R eω̂j3 = Tr (−1)F e

1
2
ω̂(∆+j3) , (B.5)

where we used e−2πi j3 = (−1)F , as a consequence of spin-statistics. This is the more
standard form of the index (see, e.g., [25]). For our purposes it is more convenient to work
with the fugacity ω and the form (B.4).

Open Access. This article is distributed under the terms of the Creative Commons
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