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exploiting correlations. We use these improvements to study uncertainties and PDF sen-
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1 Introduction

The production of bosons, either singly or in pairs, provides the bread and butter for

LHC analyses that perform precision tests of the Standard Model (SM). Consequently,

they also serve as probes of physics beyond the Standard Model (BSM), as well as arenas

in which to perform resilient extractions of fundamental parameters of the SM and non-

perturbative inputs such as parton density functions (PDFs). For this to be the case it is

essential that the fixed-order calculations, upon which these analyses rely, are pushed to

as high order in the perturbative expansion as possible. After many years of effort, QCD

corrections have reached the level of NNLO and electroweak effects are commonly available
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at NLO. Broadly speaking, these push the perturbative truncation uncertainty of these

fixed order predictions to the percent level. At the same time, uncertainties related to

the determination of PDFs and αs have been reduced to the same level. To make further

progress it is therefore imperative to have robust tools that can systematically compute

predictions at this level of precision, whilst maintaining sensitivity to possible differences

between theoretical inputs such as the choice of renormalization scale or PDF set.

Although by now many calculations have been performed at NNLO in QCD, far fewer

have resulted in public codes.1 Most of these are restricted to a single process, although

some codes do offer additional specialized features such as the inclusion of electroweak

corrections or resummation. A notable exception is MATRIX [17], which in its current

release features fixed order NNLO implementations of single boson processes and a subset

of diboson processes. Related, but more complicated, final states that also include the

presence of an additional hard jet have also been computed at NNLO but are only available

as private codes, see for example ref. [18] and references therein.

MCFM is a publicly available code, with version 1.0 released in 2001 focusing on

NLO corrections to vector boson pair production processes [19]. Since then the code

has been continuously maintained with updated and new processes at NLO and beyond.

In 2015 multi-threading capability using OpenMP was added [20], enabling multi-core

desktop systems to compute the most complicated NLO processes. In 2016 an initial set

of color singlet NNLO processes was included [21] together with MPI capability, allowing

full use of cluster systems. MCFM is now capable of computing W±, Z, H as well as γγ,

W±H, ZH and Zγ production processes at NNLO, as well as hundreds of processes at

NLO. Some processes include NLO electroweak corrections [22], while others account for

contributions from BSM sources and anomalous couplings, as well as NLO corrections for

the SMEFT [23]. All leptonic decay channels of Z and W± are included as well as the

Higgs boson decays into γγ, W+W−, ZZ, Zγ, τ+τ− and bb.

With its flexibility, ease of use and performance, MCFM has been an indispensable

ingredient in hundreds of experimental studies for the comparison of theory predictions and

nature. However, the utility of the code is not confined to just the hands of experimentalists.

One of the goals of MCFM was always to provide a collection of analytic results to serve

as a platform for further work, where others can extend, modify, or reuse parts without

significant help from the authors. In the past, elements of the MCFM code have been used

extensively for this purpose. For example, codes such as DYNNLO [1], DYRes [24, 25],

HNNLO [2–4], HRES [4, 26] as well as most recently MCFM-RE [27] are all based on

the MCFM framework. Other public codes benefit from various parts of MCFM and its

efficient implementation of amplitudes.2

This paper describes an update of the parton level code MCFM that includes sig-

nificant improvements in its usability, reliability, maintainability and performance. For

example, the integration has been rewritten to adaptively reach a specified precision goal.

1Fully differential codes for various boson and diboson processes are for example DYNNLO [1],

HNNLO [2–4], SusHi [5, 6], ggHiggs [7], FehiPro [8, 9], proVBFH(H) [10, 11], 2γNNLO [12], FEWZ [13–15]

and GENEVA [16].
2See e.g. refs. [28–31] for its use in other codes, and https://inspirehep.net/search?ln=en&p=find+

fulltext+MCFM for many more examples.
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To establish trust in our results at the per mille level, we perform a detailed study of the

performance of the Vegas [32] integration algorithm in our code. In particular, we focus

on the convergence of the integral and the reliability of its error estimates.

With improvements in the jettiness slicing cutoff (τcut) dependence we improve and

update previous benchmark results. We furthermore introduce the automatic sampling of

additional τcut values fully differentially, making use of the correlations to decrease numer-

ical uncertainties by orders of magnitude. The τcut dependence and its automatic fitting

to the known asymptotic behavior can be used to reliably assess systematic τcut errors.

For the first time, multiple PDF sets can be used at the same time for the evaluation

of PDF uncertainties in the same correlated way. We demonstrate the calculation of PDF

set differences and uncertainties at NLO and NNLO for differential distributions with sub

per mille level numerical accuracies. We then compare PDF uncertainties obtained using

lower order matrix elements for a broad range of processes to understand the level of

precision that may be expected when estimating PDF uncertainties at NNLO through this

procedure. Making use of correlations, we can furthermore study the differences between

any number of PDF sets in our improved setup at the sub per mille level.

In section 2 we introduce the new and improved features of MCFM-9.0, and support

them with technical data, details and benchmarks. In section 3 we study the performance

of the Vegas integration routine, comparing the use of a newly introduced low-discrepancy

sequence with that of a pseudo-random number sequence. We focus on issues regarding

the estimation of numerical integration uncertainties, comparing against approaches in

the literature and suggesting improvements. In section 4 we report on the performance

gains resulting from using the boosted definition of the jettiness slicing variable and the

inclusion of power corrections differentially at NNLO. We also present our fully differential

automatic τcut extrapolation based on the theoretical asymptotic τcut dependence and

discuss its use and limitations. In section 5 we study PDF uncertainties at NNLO using

six PDF sets simultaneously for all NNLO processes in MCFM and compare it against the

use of lower order matrix elements. The correlated multi-PDF-set integration allows for

per mille comparisons between different PDF sets, which are also covered for the Higgs

transverse momentum distribution at large values. In section 6 we comment on issues in

precision studies in W and Z-boson physics, where current experimental data now requires

per mille level theory predictions. We compare benchmark results in the literature with

our predictions. Our conclusions are summarized in section 7.

2 New and improved features in MCFM

A number of features have been introduced to simplify the operation of the MCFM code.

In this section we summarize the most important new and modified features. In passing, we

note that this version represents an overhaul of many key components of the code and, for

the sake of clarity, we have removed a number of features introduced in previous versions

that had been largely unused.3 This version aims to be compliant with Fortran 2008 and

3These include the ntuple interface, as well as the option to write output to LHEF files. These can easily

be added back at a later time, according to user demand. In the meantime older versions of MCFM can

still be downloaded to make use of these features.
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fully supports GCC versions newer than 7 and Intel compilers newer than 19. Benchmark

comparisons of compiler versions and optimization flags are described in appendix A. A

technical description of the new features presented in this section and their configuration

within MCFM is also given in appendix A.

MCFM is distributed in a fully self-contained form, where all amplitudes are bundled

as optimized explicit expressions, making use of the included QCDLoop [33, 34] distribution

for the evaluation of one-loop scalar integrals. Expressions for multi-loop integrals in terms

of harmonic polylogarithms are evaluated with TDHPL [35]. While a number of PDF sets

are included through a native interface, the LHAPDF library [36] can also be linked. This

enables using PDF uncertainties and a larger number of PDF sets. Through LHAPDF

one also gains the flexibility of easily interchanging grid interpolation routines. While we

do not enforce citations for using MCFM or results obtained with MCFM (MCFM is now

released under the GPL-3.0 license), we encourage citing at least the papers printed at the

beginning of a run. In practice, the results in MCFM depend on a deep tree of results

(for instance, for the calculation of the matrix elements) and we hope that users use the

appropriate citation depth to acknowledge research appropriately.

Already with MCFM-8.0 inclusive cross sections can be computed precisely at NNLO

on a modern multi-core desktop computer in a few hours. Achieving sub percent level preci-

sion also in tails of distributions requires more computing resources. Furthermore, adding

features like automatic scale variation or automatic computation of PDF uncertainties

increases required computational resources. Apart from buying more computers, improve-

ments in various parts of the theory predictions and the code, both which are covered in

this study, can be made to make these computations feasible on smaller sized clusters.

2.1 User interface

For this version we have first introduced a new, more flexible input file format. The options

from the input file can now be over-ridden via command line arguments as well, which can

be useful for batch parameter run scripts. Second, we have re-implemented the Vegas

algorithm [37] and the surrounding integration routines, including a new alternative to the

pseudo-random numbers used in previous versions of code. By default, we now use the

Sobol low discrepancy sequence [38–42] that is described in detail in section 3.1.

With the new integration routines all parts of a NLO or NNLO calculation are now

chosen adaptively based on the largest absolute numerical uncertainty. A precision goal

can be set in the input file as well as a χ2/iteration goal and a precision goal for the

warmup run. If the goals for the warmup are not reached, the warmup repeats with

twice the number of calls. Our new version also allows the integration to be resumed

from any point from a previous run, using snapshots that save the whole integration state

automatically. This allows the precision goal to be reduced in a future run without starting

the whole integration from scratch. Further configuration options have been introduced to

control the stages of the integration that can provide benefits over the default settings in

certain situations, such as when calculating PDF uncertainties, as described in detail in

appendix A.
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MCFM allows to easily specify the most common kinematical cuts in the input file

and automatically fills a pre-defined set of histograms. The cuts from the input file can

be modified and augmented in a prepared subroutine for user cuts. Additionally, a re-

weighting function has been introduced that multiplies all events in the integration. This

feature can be used as a manual importance sampling technique to give tails of distributions

a larger weight so they are integrated with the same relative precision as numerically larger

contributions. For example in transverse momentum distributions one can reweight with an

exponential function of the transverse momentum to approximately flatten the distribution

and obtain an equal relative precision in all bins. Last, histograms of arbitrary kinematical

variables can easily be added for full flexibility.

We have implemented a new suite of histogram routines that allows for any number of

histograms with any number of bins, each of which is dynamically allocated. Furthermore,

everything is also handled in a fully multi-threaded approach within the integration. For

each OMP thread temporary histograms are allocated and filled that are then reduced to a

single one after each integration iteration. These histograms are also written out at every

intermediate stage of the integration, and are updated appropriately when an integration

run is resumed with a new precision goal. This allows the user to inspect the results already

during the integration and gives the possibility to interactively stop the integration as soon

as the results are satisfactory.

2.2 Correlated calculations with multiple scales, PDF sets and τcut values

When integrating multiple functions at once one can make use of the correlations between

the integrands, and straight away obtain significantly lower integration uncertainties on

the differences and ratios between the different integrands. Generally one expects the dif-

ference between two perfectly correlated integrands to be computed with the same relative

uncertainty as that of either integral. In practice, we find that the absolute numerical un-

certainty computed for the difference between an integral and the central value turns out

to be roughly an order of magnitude lower than the numerical uncertainty on the central

value itself. This idea had already been employed in previous versions of MCFM for the

calculation of renormalization and factorization scale uncertainties. In this version we ex-

tend the treatment to the calculation of NLO and NNLO predictions with different values

of the 0-jettiness cutoff τcut, and to calculations with different PDF sets and members.

PDF uncertainties and PDF set differences. Apart from FEWZ [13], no (public)

code is known to the authors that computes PDF uncertainties automatically while taking

into account correlations between PDF set members. Indeed, studies commonly avoid the

expensive calculation of fixed order NNLO results convoluted with different PDF sets for

central values and PDF uncertainties, for example [43, 44]. Instead, relative PDF uncer-

tainties or differences between sets are calculated using fixed order NLO matrix elements

convoluted with NNLO PDFs. Other alternatives include frameworks like fastNLO [45]

and applGRID [28], which were developed to accelerate PDF fits and to reduce the burden

of computing PDF uncertainties.
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In MCFM-8.1 PDF uncertainties could successfully be computed inclusively at NLO.

In MCFM-9.0 we enable studying calculations of PDF uncertainties differentially at NNLO

on smaller sized clusters with just a few hundred cores in total.4 This is achieved through a

fully parallelized OMP+MPI interface to LHAPDF that is based on the new object oriented

treatment of PDFs in LHAPDF 6. This interface thereby avoids the limitation to have

at most one simultaneous call to the library from the OMP threads. We also added the

capability to handle any number of PDF sets, with or without PDF uncertainties, limited

only by the available system memory. Studying precise differences between PDF sets, at

the sub per mille level, can then be performed with only little computational overhead

compared to using just one central value.

Note that to enable PDF uncertainties, MCFM has to be compiled with LHAPDF [36]

support. Any sets available for LHAPDF can be used, and the uncertainties are esti-

mated according to the provided LHAPDF uncertainty routines for replica and Hessian

sets. In addition, as a further improvement to previous versions, we also allow for sets

with additional members that use different values of αs(mZ), so that combined PDF + αs
uncertainties can be computed at the same time.

To demonstrate this procedure at work, in figure 1 we show normalized e+ rapidity

distributions in W+ production. This calculation has been performed at NNLO, using six

NNLO PDF sets simultaneously and with PDF uncertainties for all of them, so calls to 371

PDF members for each phase space point. The normalization is with respect to the central

value of the PDF4LHC [46] set PDF4LHC15 nnlo 30 to show the differences between this set

and the other sets. Cuts and parameters are standard as in MCFM-8.0 and 9.0, introduced

later in section 5. Only the positron rapidity y has been constrained to 2.0 < y < 4.5. It is

clear that this feature allows precision studies of differences between predictions of various

PDF sets and their uncertainty bands.

We hope that our fast multi-set implementation in MCFM, that can inxpensively study

0.1% differences between PDF sets and their associated uncertainties, will help facilitate

further theoretical work in these directions. For instance, differences such as those shown in

figure 1 and section 5 can be explored and criticism of the PDF4LHC paradigm [47] can be

supported or refuted directly at the level of NNLO kinematical predictions. Furthermore,

recent work that incorporates theory uncertainties more rigorously in PDF fits [48] can

again be studied directly and efficiently with MCFM-9.0.

Multi-τcut integration and automatic asymptotic fitting. For 0-jettiness calcula-

tions, either at NLO or NNLO, we now allow an array of τcut values to be specified in addi-

tion to the nominal value of τcut. The Vegas integration grid is still adjusted according to

the nominal value, and the remaining values are sampled on the fly with little computational

overhead. This means that values smaller than the nominal value of τcut are only computed

with relatively large uncertainties, although this may still yield useful information. In con-

trast, any values larger than the nominal one are computed with approximately the same

4The per-mille level differential computations with uncertainties from six PDF sets simultaneously in

this paper were performed on a cluster using at most 16 nodes, where the nodes have AMD and Intel CPUs

from 2010, for details see appendix A.
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Figure 1. NNLO e+ rapidity distributions for W+ production in the forward region, computed

with uncertainties from a variety of PDF sets, normalized to the central PDF4LHC prediction.

precision as the nominal value, and are therefore highly reliable. If no values of additional

values of τcut are specified, the code automatically chooses further values, see section 4.

In all cases an automatic fit to the known asymptotic behavior is performed for the total

cross section as well as for all histograms differentially. The histograms for the nominal and

individual τcut values are written separately from the histogram with just the fitted correc-

tions. With this procedure one can quickly and easily check the τcut dependence of the result

and estimate the effect of a non-zero value of τcut. See section 4 for details on this procedure.

All τcut dependence plots in this paper are computed with the multi-τcut feature and

its automatic fitting. For example figure 2 displays the hardest photon pT spectrum in

diphoton production at NNLO using the fully automatic differential fit for two runs with

nominal τcut values of 10−3 GeV and 10−4 GeV. The latter choice is our default and is

expected to result in systematic cutoff effects of less than one percent. In both cases

the fit significantly improves the fixed τcut predictions, and for τcut = 10−4 GeV it allows

one to estimate that indeed the residual dependence is at most 1%, while for the choice

of τcut = 10−3 GeV the effects are up to 4.5%. The fitted results agree with each other

at around the one half percent level (up to numerical noise), so allow one to choose a

nominal τcut one order of magnitude larger. For practical applications the purpose of the

additionally sampled τcut values and the fit is that no separate runs with different nominal

τcut values have to be run. In order to make use of the fit its quality — separately reported

by MCFM — must be inspected according to section 4.
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Figure 2. The transverse momentum distribution of the hardest photon in diphoton production,

computed at NNLO. Results are shown for τcut = 10−3 GeV (blue) and τcut = 10−4 GeV (red), as

well as the results obtained using automatic fitting (darker blue and red). All results are normalized

to the fit from τcut = 10−4 GeV.

3 Integration performance and uncertainty estimation

The numerical integration procedure in this version of MCFM has been overhauled and

extended, with the aim of providing a platform with which to perform detailed high-

precision studies of the most complicated NNLO processes. In this section we describe a

number of the new features and benchmark their performance.

First we study our implementation of the Sobol low discrepancy sequence as an alter-

native to the MT19937 pseudo random number generator. Although Cuba [49], a popular

integration library, has used the Sobol sequence as default for a long time already, to our

knowledge no systematic study of its impact in Monte Carlo generators has been performed

so far. We therefore describe a series of benchmarks quantifying the behavior of the Sobol

low discrepancy sequence in MCFM and compare the performance of both sequences.

Second, we investigate the reliability of the result of the integration, including the un-

certainty estimate. Modern complicated NLO and NNLO calculations are computationally

intensive and typically require of the order of many CPU months. Since one does not want

to wait months and years to run a NNLO calculation on a single core, parallelization is

a straight-forward, easy and highly-efficient approach for Monte Carlo integrations. An

outstanding feature of MCFM is its parallelization in both OMP and MPI on multi-core

machines and for cluster setups. With this version the integration is also fully resumable.

Complications arise when the Vegas integration is not parallelized, and one tries to com-

bine many independent integrations with low statistics where uncertainties are typically

underestimated. In order to prevent such problems, various approaches have been taken in

the literature that go beyond a näıve combination. We study approaches performed in the
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literature, suggest improvements, and furthermore compare these with the fully parallelized

Vegas integration in MCFM that outright avoids such complications.

3.1 Low discrepancy sequence integration

If an integrand has a so-called bounded variation, implying certain smoothness properties,

see for example the pioneering publications for the Koksma-Hlawka inequality [50, 51], the

Monte Carlo integration error has a bound that is proportional to this bounded variation.

The bounded variation is just a property of the integrand and the discrepancy of the se-

quence that defines the points being sampled. Since it is a fixed property, one can try to

construct sequences that have a lower discrepancy than true or pseudo random numbers to

improve the Monte Carlo integration. In this sense the asymptotic discrepancy of zero for

equidistributed numbers is optimal. The problem for the rectangle rule with points xi= i/N

for example, where N is the total number of calls, is that it has a fixed length and any

increase of the number of calls to get an improved estimate leads to a recomputation that

is not statistically independent. However, sequences have been constructed that keep the

benefits of random numbers (statistically independent estimates) with the additional bene-

fit of a lower discrepancy and additional uniformity properties in higher dimensions. Their

discrepancies are generally bounded by ∼ (logN)d/N , where N is the number of integrand

evaluations and d the dimensionality. This is to be compared with true random numbers,

where the asymptotic uncertainty in a Monte Carlo integration decreases only as 1/
√
N .

In practice, it is unclear whether a bounded variation for our integrands exists or how

large it is. Therefore, it is also unclear if one can benefit from using a low discrepancy

sequence instead of pseudo random numbers. To test this, we use our implementation of the

Sobol sequence that is based on the code sobseq [52], extended to 64 bits with a maximum

sequence length of 263 instead of 231 ' 2.15 · 109. The extension to 64 bits is important

because the 32-bit limit can quickly be saturated in NNLO calculations, and even in very

precise NLO calculations. We use the initialization numbers from refs. [53–55].

To test the performance of the sequence, compared to the usual pseudo random num-

bers, we run benchmarks for the NNLO Higgs production double real emission calculation.

We focus on the real emission since these contributions are usually the most computation-

ally intensive ingredients in higher order calculations. The cuts are standard, and described

later in section 5, but do not matter for the discussion here. The jettiness slicing cutoff

τcut is set to 0.002 GeV, corresponding to a systematic precision goal of 0.2% for the full

cross section with MCFM-8.0 and � 0.1% with MCFM-9.0.5 The dipole subtraction α

parameter restricting the dipole phase space is set to 1.0 [56, 57], which corresponds to

the original unrestricted formulation. To achieve a 0.2% precision goal also numerically

the double real emission has to be computed with an uncertainty better than 4 (fb) or a

relative precision of 10−4.

Figure 3 shows the results of a comparison between the Sobol and one seeded MT19937

sequence, as a function of the accumulated number of Vegas calls. For this study we have

multiplied the number of calls per iteration by 1.4 after every five iterations up to 500 · 106

5For the default dynamic choice of τcut as in section 4 this corresponds to τcut/mBorn = 1.6 × 10−5.
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Figure 3. The dependence of the integral for the NNLO Higgs production double real emission

contribution (for α = 1 and τcut = 0.002 GeV) on the accumulated number of calls. The red data

corresponds to using the Sobol sequence and blue to a MT19937 sequence. Each point represents

a new estimate from a new iteration.

calls per iteration, and from that point on we multiply by 1.4 after every single iteration.6

By using this factor, after two iterations (or two batches of iterations) the number of calls

per iteration has been (approximately) doubled. This exponential increase allows successive

Vegas iterations to make sufficient progress in reducing the uncertainty estimate. From the

figure, the approach to the horizontal line — that represents the final average obtained

using both sequences (31552 with an uncertainty of ±2.5) — is equally good with both

sequences. However, we note that for a smaller number of calls (not displayed in the

figure) the unwritten rule to multiply Monte Carlo integration uncertainties by a factor of

two is useful to see that the two are equivalent. We note that for the largest number of

accumulated calls shown here, the number of calls per iteration reached 20 · 109 and one

might benefit from increasing the number of Vegas grid subdivisions beyond their default

value of 100.

As an alternative measure of performance, in figure 4 we directly show the dependence

of the integration uncertainty on the number of accumulated calls. The dashed line repre-

sents the reported uncertainty estimate from the Vegas routine, while the points and solid

lines indicate the “true” error, the distance between the reported integral and the true

(final Vegas) value of 31552. Again, both sequences perform equally well from this point

of view.

In conclusion, we find that the Sobol sequence and the MT19937 pseudo random se-

quence perform equally well in practice, at least for the benchmarks performed here for one

sequence evaluation each. Additional samples could be constructed by using alternative

seeds for the MT19937 sequence and by skipping points, or using different initialization

numbers, for the Sobol sequence. Theoretically one should benefit from a more even sam-

6For the first five warmup iterations the Vegas grid adjustment parameter was set to 1.5, afterwards to

0.8, discarding the warmup estimate but keeping the grid. The number of grid subdivisions was kept at the

default of 100.
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Figure 4. The dependence of the estimated uncertainty of the NNLO Higgs production double real

emission contribution (for α = 1 and τcut = 0.002 GeV) on the accumulated number of calls. The

red data corresponds to using the Sobol sequence and blue to the MT19937 sequence. Each point

represents a new estimate from a new iteration. The dashed line represents the uncertainty from the

Vegas routine, while the points and solid line represent the “true” error, assuming that the average

from the last reported numbers of sequences is the most precise with an uncertainty of ±2.5.

pling from the Sobol sequence but we have not been able to identify conclusive evidence for

this. Nevertheless, we expect that this could be the case for some calculations, particularly

ones targetting high-precision kinematical distributions. With this in mind, and given the

fact that it performs at least as well as the MT19937 pseudo random sequence, we use the

Sobol sequence as default in MCFM-9.0.

3.2 Parallelization and integration uncertainty estimation

In many calculations beyond leading order, and in particular at NNLO, it is important

to control numerical uncertainties. Small differences between contributions that should

exactly cancel can easily lead to incorrect results and misinterpreted conclusions. To avoid

such issues it is essential to have good control of the uncertainties on the numerical inte-

gration. In MCFM we have chosen to use OMP and MPI to produce a highly parallelized

code, allowing us to reach high levels of precision in a fast and convenient manner. In this

subsection we compare with possible alternative approaches, and describe and benchmark

the procedure for controlling integration uncertainties.

To assess the benefit of our parallelized code we can contrast it with a possible al-

ternative. A degree of parallelization can be achieved by simply performing many runs

with lower Monte Carlo statistics, limited by reasonably-achievable run-times. A näıvely

weighted combination is not recommended since the uncertainties of individual runs cannot

be trusted for low statistics. We demonstrate this in the following paragraph, then discuss

alternative statistical methods for the case when many low statistics runs have to be com-

bined. We again choose the NNLO Higgs production double real emission component with

τcut = 0.002 GeV and α = 1.0 as a representative example for a complicated integration.
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Figure 5. The dependence of the integral for the NNLO Higgs production double real emission

contribution (for α = 1 and τcut = 0.002 GeV) on the accumulated number of calls. The black points

correspond to our default setup, while the others (labelled by “’lim”) are obtained by limiting the

calls per iteration to 106.

Näıvely weighted combination of low statistics runs. Our low statistics runs cor-

respond to running the integration for about 4500 iterations, limiting the calls per iteration

to 10 million calls each for the Sobol and MT19937 sequences. This is demonstrated in

figure 5, where the curves “lim.” have been obtained with the call limit applied. Two

runs for the MT19937 sequence with different seeds are displayed and one run with the

Sobol sequence. For comparison the Sobol run of the previous subsection with a steady

increase of the number of calls per iteration is also shown. In this scenario the limited

Sobol sequence (orange) vastly outperforms the MT19937 sequences (blue and purple) in

the region of a low number of total calls, still giving reliable error estimates. However,

even though individual iteration uncertainties are . 1%, in the final stages both sequences

underestimate the true error.

When we directly consider the dependence of the integration error on the number of

calls, in similar fashion as figure 4, we obtain the results shown in figure 6. It becomes

clear that when limiting the number of calls the estimated error is severely underestimated

for the MT19937 sequences, in comparison with the true error. The limited Sobol sequence

performs somewhat better in this case. Nevertheless, all limited sequences lead to sig-

nificantly underestimated errors and systematically biased results in the final integration

stages. This procedure essentially corresponds to a näıvely weighted combination of many

low statistics runs and its outcome is more than clear: the integral estimates lock in at the

wrong value with underestimated errors.

Although the absolute effects of numerical precision appear small here, to match the

expected systematic cutoff effect for the Higgs NNLO cross section (0.2% uncertainty in

MCFM-8.0) they must be controlled at the same level. This study demonstrates that,

indeed, limiting the number of calls per iteration is insufficient to achieve the desired

precision. For this reason we believe that it is important for the integration procedure to
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Figure 6. The dependence of the estimated uncertainty of the NNLO Higgs production double real

emission contribution (for α = 1 and τcut = 0.002 GeV) on the accumulated number of calls. Each

point represents a new estimate from a new iteration. The dashed line represents the uncertainty

from the Vegas routine, while the points and solid line represent the “true” uncertainty, assuming

an estimate of 31552± 2.5 from the previous section.

not only be highly parallelized, but also resumable in order that the number of integration

points can be continually increased as required.

Weighted combination of “pseudoruns”. An example of a statistical combination

that avoids the weighted combination of runs with underestimated uncertainties is pro-

vided in ref. [58], in the context of a NNLO calculation of Z+jet production using the

code NNLOJET. The prescription for validating and testing the combination of results is

presented in detail there; here we replicate this methodology in MCFM and compare it

with our usual, fully parallelized, approach.

The study described in ref. [58] proceeds as follows. After a warmup run to produce

a Vegas grid, this grid is used as the basis for thousands of subsequent low-statistics runs.

From these, a sample of k individual runs can be combined in an unweighted average to

form a “pseudorun” with an associated variance. Pseudoruns can then be combined in a

statistical manner, using a weighted average, to obtain the final result. The dependence of

this result on the size of the pseudoruns, i.e. on k, is then used to assess the validity of the

computed quantity. For small k (k & 1) it can be very easy to obtain an incorrect result

for the integral since each pseudorun may lack sufficient statistics — but the final reported

error is small, due to the large number of pseudoruns. Conversely, for large k the estimate

of the integral is more reliable, but the uncertainty estimate is much larger. The method is

based on identifying a region of k for which results agree within the computed uncertainties.

Although this appears reasonable, in principle it requires a careful case-by-case study of

each observable to justify the choice of k.

We replicate this method for the calculation of the double real emission contribution

to NNLO Higgs production, where in our study of the previous subsection we generated

about 4500 iterations with 10 million calls each for the Sobol sequence and one seed of the
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Figure 7. Study similar to ref. [58]: we recombine our data of about 4500 iterations with 10 million

calls each into unweighted pseudoruns, computing the uncertainty using the sample variance. These

pseudoruns are then combined into the integral estimate through a weighted sum. The true result,

computed from a separate, longer run, is indicated by the black line with dashed uncertainties.

MT19937 sequence. From these we can then combine runs into pseudoruns as described

above. Our results are shown in figure 7, as a function of the number of runs combined (k).

This displays the features noted above, at both small and large values of k, as well as a

relatively stable central plateau. The true result for the integral, obtained in the previous

subsection, is also displayed. We see that, while the value of the integral is in reasonable

agreement for a wide range of k, it is not clear exactly what value to use. Moreover, it is

not clear which value of the uncertainty to trust. From figure 7 it is clear that even if a

prescription for picking the integral value and its uncertainty can be given, any reasonable

uncertainty estimate is significantly larger than the uncertainty estimate of ±2.5 from the

integration in MCFM with the same number of calls.

Bootstrap. To improve upon the method for combining runs into pseudoruns, and to

extract a reliable uncertainty, one can use the well-established Bootstrap and Jackknife

techniques.7 One starts with N estimates of the integral (data points) forming a set,

where N should be sufficiently large. Generally, N should be at least at the order of 10,

and in our situation below N ∼ 4500. Within the bootstrap method one then constructs

replica sets and obtains statistical properties from the replicas sets. For example, instead

of obtaining one unweighted integral average from the original set, with k replica sets one

obtains k unweighted integral averages.

To construct each replica set one randomly picks N times from the N original data

points so that each point of the original set could occur multiple times in the resulting

replica set. This corresponds to taking a combination with repetition in the language of

combinatorics, or random sampling with replacement. In total, the procedure is repeated

k times, so one obtains k combinations with repetition of the original set, and each one

7We use the bootstrap functions implemented in the GNU R boot package [59–61].
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Figure 8. Distribution of the cross section averages from 50, 000 bootstrap replicas.

of the k newly resampled sets has N data points. The number of bootstrap replica sets k

should be at least of the order of 1000–10000 and we have chosen k = 50000.

From the bootstrap replica sets one can then obtain unweighted averages of the data

points as estimates for the integral. The generated distribution from the k averages is Gaus-

sian if N and k are sufficiently large. Bootstrap confidence intervals can be constructed by

looking at the percentiles of the distribution or using more sophisticated methods [59, 60].

In practice, when N is not asymptotically large, one or a few outliers can cause a non-

Gaussian distribution. In that case the bootstrap results are not accurate and can be

sensitive to changes in the data points.

Such single outliers can be identified with the jackknife-after-bootstrap method [61].

Within jackknife resampling one leaves out one specific data point of the N data points

and computes the integral average using the leftover points. In total N − 1 resamplings

are obtained, generating a distribution from which percentiles can be obtained. For the

jackknife after bootstrap method the k bootstrapped replica sets are taken, and for each

data point x out of N , the sets with x removed are taken and analyzed with the jackknife

technique. One can then directly analyze the influence each data point x has on the

bootstrapped results. While a detailed description of the jackknife-after-bootstrap method

is beyond the scope of this paper, it is a standard procedure. We refer to ref. [61] and the

software package in ref. [59] for details of the method, and provide some details for our

illustrative example below in appendix B.

The distribution of the cross section obtained from a bootstrap with 50, 000 replica

sets from the full ∼ 4500 MT19937 integral estimates is shown in figure 8. We immedi-

ately see that this resampled distribution is not Gaussian so that the interpretation of an

uncertainty on the average based on percentiles, 31521 ± 49, is not clear. However, this

multi-peaked structure is caused by just a few outliers that can be easily identified using

the jackknife-after-bootstrap technique described above, and illustrated in more detail in
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Figure 9. Distribution of the cross section averages from bootstrap replica, after removing the

worst outlier from the full set in figure 8.

figures 32 and 33 in appendix B. Using such a procedure we can identify a single outlier

of 192155± 223717, whose uncertainty is not properly taken into account in this method,

and remove it. After doing so we observe the distribution of cross section averages shown

in figure 9, that displays a very good Gaussian shape. The resulting estimate of the cross

section and uncertainty is 31568 ± 17, where the error is now expected to be Gaussian

and reliable. Removing the worst three outliers gives a further modest improvement, with

an estimate of 31559 ± 13. With the ∼ 4500 integral estimates obtained with the Sobol

sequence, we obtain a Gaussian distribution outright and an estimate of 31570 ± 28. Re-

moving the worst four outliers in the same way we obtain an estimate of 31572 ± 15. The

uncertainty could be reduced further to 10 by removing 10 outliers, but in the end the

sample size should be increased.

We conclude that the bootstrap technique is a more robust way to obtain an average

and uncertainty when limited to a large sample size with a limited number of calls per

sample. For example, it allows for a systematic identification and removal of outliers and

it can be used to obtain Gaussian confidence intervals of various degrees. Furthermore, it

can be automatized straightforwardly and gives enough indicators to estimate the quality

of the results. In fact, we have successfully implemented and tested such an approach in

MCFM as an alternative to the default Vegas integration uncertainties.

However, this procedure requires a large number of iterations or independent runs.

Moreover, a completely parallelized — and resumable — approach allows these issues to

be avoided, or at least postponed, since a large number of integration points can be more

easily achieved. By continually increasing the number of points used in each Vegas sweep,

the code can ensure that the grid adjusts sufficiently to the phase space by monitoring

the χ2/iteration. This avoids the code “locking in” to an incorrect value for the integral,

with a significantly underestimated uncertainty. Compared to the other approaches, the
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few iterations but larger statistics integration results in trustworthy uncertainties that are

generally significantly smaller.

4 Updated NNLO benchmarks and τcut-dependence

The technique employed in MCFM for the calculation of NNLO processes involves a tech-

nical jettiness-slicing parameter τcut [62, 63], that needs to be chosen small enough to

eliminate the dependence on it. In practice one can not choose τcut arbitrarily small be-

cause it induces large cancellations between different components that need to be integrated

separately. The dependence on τcut also does not need to be uniform over the whole phase

space. So in kinematical distributions the τcut dependence and its induced systematic error

can be different in each bin. This also holds for cross sections with different cuts, of course.

We ship MCFM with presets for τcut corresponding to conservatively-estimated systematic

cutoff effects of less than one percent for total inclusive cross sections.

In this section we first demonstrate order of magnitude improvements through the

use of a boosted definition of 0-jettiness and the inclusion of power corrections. We then

introduce automatized methods that allow an assessment of whether the cutoff effects are

indeed as small as suggested, especially in kinematical distributions in the presence of

thresholds.

Improved τcut dependence. To improve the performance of the jettiness-slicing

method, by default this version of the code uses a version of 0-jettiness that incorpo-

rates the boost of the Born system [64, 65]. This was introduced already with the NNLO

Zγ implementation [66] in MCFM-8.1, but here we benchmark the improvement in all of

the NNLO calculations included in the code. As a further benefit, we have also imple-

mented the leading power corrections presented in refs. [65, 67] for all appropriate NNLO

processes. The combination of these two provides a substantial reduction in computational

time required for a given nominal accuracy. As a result, in this section we update the

benchmark results for color-singlet processes presented in ref. [21] and extend that exercise

to the γγ [68] and Zγ [66] processes. This allows us to improve the preset τcut values for

our precision goals in the code accordingly.

We make use of a further feature in this version of the code that allows τcut to be

defined on an event-by-event basis. This has the benefit of elucidating the nature of the

power corrections more cleanly, as well as avoiding potential numerical issues related to

very small values of τcut in events with very high-energy partons. This dynamic choice of

τcut is defined by,

τcut = ε×m, (4.1)

where m is the invariant mass of the Born system, e.g. m(`−`+), m(γγ) or m(Zγ).

Automatic fitting of the τcut dependence. With this version of MCFM an array of

additional τcut values can be specified that is sampled in addition to the nominal choice.

Using these additional points a fit based on the leading power behavior of the cross sections’

τcut dependence is automatically performed. When no additional τcut values are chosen an

automatic choice is made and this will be discussed in section 4.2.
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Since we use correlated τcut values, it is advantageous to just fit the correction with

respect to the nominal value with a small uncertainty. Our weighted fit is then performed

using the Minpack package [69–71]. We weight by the (small) uncertainties from the

correlated τcut sampling and thus take into account the different uncertainties between

larger and smaller values of τcut.

In our results we take into account the numerical integration uncertainty from the

nominal value just as if one τcut value was chosen. The additional τcut values are sampled

as differences to the nominal value. Since they are highly correlated to the nominal value,

their uncertainties are in practice an order of magnitude smaller. From the uncertainty-

weighted fit we obtain an uncertainty estimate of the fitted asymptotic τcut → 0 value.

Further below we introduce a prescription to evaluate the goodness of fit and reliability of

these results. In the final results one can then combine the result for the nominal value of

τcut with the fitted corrections. The uncertainty of that value is then the combination of

the numerical integration uncertainty of the nominal value and the fit uncertainty, which

we both separately output in MCFM.

At NLO the leading power τcut dependence of the cross section starts with τcut log(τcut).

We use the following form for fitting, including an additional linear term:

σ(τcut)
NLO = σ0 + c1 · τcut · log(τcut/m) + c2 · τcut , (4.2)

where m is the invariant mass of the Born system as in eq. (4.1). At NNLO the dependence

starts with τcut log3(τcut) and we include the subleading term τcut log2(τcut) as well as an

optional linear term:

σ(τcut)
NNLO = σ0 + c1 · τcut · log3(τcut/m) + c2 · τcut · log2(τcut/m) + c4 · τcut . (4.3)

From the fit we extract a reduced χ2 per degree of freedom value that should be small

compared to one for a good fit. The linear subleading term with coefficient c4 is included

if the fit without the linear term has a χ2/d.o.f. of more than one and the inclusion of

the linear term improves the χ2. We note that while the inclusion of power corrections

in principle removes the leading coefficient c1 at each order, we still include it in order to

remain valid for processes where such corrections are not known, as well as to be robust

against the effect of cuts.

Our fitting procedure can easily be extended to successively include a tower of sub-

leading terms. Such a fit could be relevant for theory applications, for instance to examine

residual subleading corrections at extremely high precision [65]. In practice, to obtain the

most reliable results at the highest level of precision it is better to choose a smaller value

of τcut, closer to the asymptotic behavior, rather than using very high numerical precision

far from the asymptotic region.

4.1 Inclusive τcut benchmarks

We first show results for the processes for which the effect of leading power corrections

is known — namely gg → H, W , Z, ZH and WH production — in figure 10. For this

inclusive study all the settings and parameters are chosen according to ref. [21]. The ratio
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of the MCFM calculations to the known NNLO results, for the correction itself and for

the total rate, are shown as a function of the 0-jettiness variable τcut. In each case the

dependence on τcut is shown using the unboosted definition of 0-jettiness as in MCFM-8.0

(corresponding exactly to the results in ref. [21]), with the boosted definition implemented

in this version, and after the further addition of the leading power corrections.

In all cases the improvement from v8.0 to this version is dramatic. Equivalent residual

cutoff effects are obtained for τcut values that are around two orders of magnitude larger.

The improvement from using the boosted definition is most dramatic for W and Z pro-

duction, for which a significant portion of the inclusive cross-section results from events at

large rapidities where the unboosted definition performs poorly.

We now turn to the remaining processes, γγ and Zγ production, for which the leading

power corrections are unknown due to their t-channel nature [66]. However, we can still

examine the improvement due to the use of the boosted definition of 0-jettiness. For

this study we use the setup of the validation section of ref. [68] for the γγ process and the

validation cuts for the Z → νν̄ decay specified in ref. [66] for the Zγ process. The results of

this study are shown in figure 11. Here the improvement from using the boosted definition

is relatively mild due to the fact that the Born system tends to be quite centrally produced.

We now summarize our findings by specifying the default values of the dynamic τcut
values that are used in the code. Previous version of MCFM included presets for 1% and

0.2% cutoff effects for the total inclusive cross sections. In this version we devise a different

scheme that improves the quality and allows for an automatic inclusive and differential τcut
fitting with automatically chosen τcut values to assess the τcut uncertainty. Our process-

dependent preset τcut values are overall chosen to first satisfy better than 1% cutoff effects

in the total inclusive cross section. While a one percent error on the total cross section

can be considered small for many processes with larger theory uncertainties, this is not a

sufficient criterion that allows for an automatic reliable estimation of systematic τcut errors.

In MCFM the NLO component is independent of the value of τcut and only the NNLO

corrections are computed with jettiness subtractions that include a τcut dependence. Since

the size of the NNLO corrections varies widely between different processes, this means that

the NNLO coefficient itself must be probed in the asymptotic regime described by eq. (4.3),

independent of the size of the contribution to the total cross section.

To elaborate further, we put an emphasis on probing the asymptotic τcut regime for

the NNLO coefficient itself for the following reason. In the case when the NNLO coefficient

is small or even zero one would not have to calculate it very precisely and a failed fit

resulting from working in the non-asymptotic regime would be harmless. However in this

regime no conclusions about the behavior of the τcut-dependence can be drawn, so one has

to reach and check the asymptotic behavior at least once. It is conceivable that one is

far from the asymptotic regime, so that the shape of the power corrections is unknown,

but that the NNLO coefficient with the given choice of (large) τcut is accidentally small.

At the same time the true result from the asymptotic regime could mean a sizable NNLO

contribution. To ensure that no accidentally small NNLO corrections occur, one thus has

to determine or probe the asymptotic regime at least once. Of course such a case would be

detected by a bad fit and could be ignored by the user when it is known that the NNLO
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Figure 10. The ratio of the NNLO correction (left) and total NNLO (right), calculated using

jettiness slicing, to the known result. The ratios are plotted as a function of the jettiness resolution

parameter, normalized to the mass of the Born system. The results using the previous (unboosted)

definition of 0-jettiness, as implemented in MCFM v8.0, are shown in magenta. Results using the

boosted definition of 0-jettiness are shown in blue, while results after the further addition of power

corrections are shown in red. For reference, horizontal lines are shown in the total NNLO plots that

represent accuracies of 1% and 2 per mille.
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Figure 11. The ratio of the NNLO correction (left) and total NNLO (right), calculated using

jettiness slicing, to the asymptotic result. The ratios are plotted as a function of the 0-jettiness

resolution parameter scaled to the invariant mass of the Born system, cf. eq. (4.1). The results

using the previous (unboosted) definition of 0-jettiness, as implemented in MCFM v8.0, are shown

in magenta while results using the boosted definition of 0-jettiness are shown in blue. For reference,

horizontal lines are shown in the total NNLO plots representing accuracies of 1% and 2 per mille.

coefficient is small, as discussed below. To ensure precise results in general and make use of

the automatic fitting we therefore use a small enough τcut value that the NNLO coefficient

itself is probed in the asymptotic regime.

For example in Drell-Yan production the NNLO coefficient is less than one percent

of the total cross section, while for Higgs production it is about 25%. Our goal is to

automatically include a sufficient range of larger τcut values in the fit to improve results

and allow for a systematic assessment of τcut dependence and uncertainties. By default,

when enabling a fit, in addition to the nominal value τcut we use an array of additional

values κ × τcut with κ ∈ {2, 4, 8, 20, 40}. Therefore, we further require that τcut values as

large as 40 times the nominal choice, used for the fitting of the NNLO coefficient, are still

in the asymptotic regime and thus described by eq. (4.3).

Our settings are given in table 1. With these criteria we obtain τcut presets that

always give precision better than 1%, yet are orders of magnitude larger than the presets

in MCFM-8.0 due to the boosted definition and power corrections. To achieve an even

smaller systematic error one can choose values of τcut according to figures 10 and 11 above.

4.2 Differential τcut extrapolation and assessment of τcut uncertainty

While the results in the previous section were highly inclusive, and we believe that in most

circumstances the presets of less than one percent τcut-dependence also apply to the most

typically-used cuts and distributions, modern applications and benchmark comparisons re-

quire true per mille precision differentially. Then a very careful assessment of the numerical
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Process τcut/mBorn σNNLO precision

H 4× 10−3 0.7%

Z 6× 10−3 0.4%

W 6× 10−3 0.4%

ZH 3× 10−3 0.2%

WH 3× 10−3 0.2%

γγ 10−4 0.8%

Zγ 3× 10−4 0.8%

Table 1. Default τcut values for each process, together with the expected level of precision when

computing the total cross section with that value. As indicated, all τcut values are specified relative

to the invariant mass of the Born system as in eq. (4.1).

uncertainties and τcut dependence has to be performed. We addressed the former case in

section 3. Here we address the latter.

In the previous section the fitted inclusive results were obtained using a wide range

of τcut values to study and display the asymptotic behavior. In practice, a good fit can

improve results by an order of magnitude compared to using just the smallest value of τcut.

Here we benchmark such improvements fully differentially and discuss the reliability of the

fit. With such a fit one can then also estimate how large the true residual τcut dependence

is and whether it matches the expected uncertainty estimate of the presets in table 1. A

successful fit depends on the process, the smallest value of τcut chosen, the kinematical

cuts applied, and the precision of the input data. However, even a failed fit still delivers

valuable information that can be used to further assess the quality of the prediction. Here

we discuss both cases, describe the output of the MCFM τcut fitting procedure and provide

guidance on how to obtain such improvements and assess the systematic τcut error.

To our knowledge this is the first (public) code that allows the user to automatically and

systematically evaluate the reliability of the slicing calculation and assess true per mille

level precision also for kinematical distributions. To perform such analyses in previous

versions of MCFM required many more orders of magnitude of computational resources.

Nevertheless, some manual inspection is required to be certain about the systematic τcut
uncertainties. This is because any procedure with hard-coded reliability thresholds will

eventually fail for some combination of processes and kinematic cuts. So instead of hard-

coding fixed warnings we instead outline a systematic procedure that can always be applied

to assess the reliability of the results.

Both for the inclusive cross section and fully differentially for the output histograms

of the fitted corrections we include gauges for a good fit. The first gauge is the maximum

relative numerical uncertainty on the additionally sampled τcut corrections, describing the

quality, or rather uncertainty of the fit’s input data. Second, we output the reduced χ2 of

the standard-deviation-weighted fitting, as a direct measure of the fit quality. These two

numbers are in addition to the fitted correction itself and its corresponding uncertainty. A
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more detailed technical description of the MCFM output files is provided in appendix A.

All of these data points should be used to establish a chain of trust as described in the

following three steps.

1. The associated uncertainties of the additionally sampled τcut corrections, as direct

input to the fit, have to be reliable for the subsequent steps and the fit to be meaning-

ful. If the uncertainties of the additional τcut corrections are severely underestimated,

one might be led to the wrong conclusion through a fit that appears to work reliably

but which is flawed from the outset.

To estimate this, we include the maximum relative numerical uncertainty on the

sampled τcut corrections as information with the fit. While a χ2/iteration could

be a useful quantity to consider for that purpose, we do not store the necessary

information to compute it fully differentially. Instead, we generally simply find that

relative uncertainties of the integrals are underestimated when they are still large.

So while a 10% uncertainty on a result indicates only questionable precision, once

percent-level precision is reached we deem results generally reliable. In practice one

can also check whether the smoothness of differential distribution agrees with the

reported uncertainties.

2. Assuming from the first step that the additional τcut corrections and their uncertain-

ties are reliably estimated, the input data to the fitting procedure can be trusted.

For the uncertainty-weighted fit we report the χ2 per degree of freedom (reduced

χ2), which should generally be close to one, or smaller, for the fit to be reliable. A

large χ2 value means that the fitting formula does not work well. This can either

be caused by data that is so precise that additional subleading terms in τcut need to

be included in the fitting form, or that additional terms should be included because

the τcut-dependence is so large that it has not yet reached the asymptotic regime

of eqs. (4.2) and (4.3). In practice, for phenomenology the first case is not relevant

when “only” per-mille level precision is required, but additional terms can easily be

added if required.8

This leaves the second case for usual applications, where the large χ2 value of the

fit then means that the τcut dependence is large and the default τcut setting for the

total inclusive cross section can likely not be trusted in the considered kinematic

region. The values of τcut being probed are not asymptotic and are not described

by eq. (4.3). This does not necessarily mean that the full NNLO result has a large

τcut dependence, as only the NNLO coefficient is computed using the jettiness slicing

with τcut dependence. In the case of W or Z production the NNLO coefficients are

generally tiny, so larger values of τcut can be chosen. Nevertheless, one should always

ensure that one remains in the asymptotic regime to obtain a reliable estimate of τcut
corrections.

8Also, instead of improving the fit with more precise data, one might rather choose a set of smaller τcut
to begin with. Nevertheless, one can of course easily adjust the fitting function in the code of MCFM-9.0

for theory applications.
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3. When finally the reduced χ2 is small or close to 1, after possibly decreasing the

nominal and smallest value of τcut, the fitted correction and its uncertainty can be

trusted. When the uncertainty on the fitted correction is small compared to the fitted

correction, the fit can often improve results with a 1% cutoff error to the per-mille

level. We recommend applying the fitted correction when this chain of trust has

been established. When the uncertainty on the fitted correction is large, and after

the previous steps it can nevertheless be trusted, it still gives an estimate of the

maximum τcut dependence that can be expected.

In the next subsection we give examples where results have been obtained with suffi-

cient numerical precision and goodness of fit to allow for order of magnitude improvements

and assessment of per mille level precision fully differentially. Performing this example

first at NLO allows us to compare against cutoff-independent results. We then proceed

to two examples where the automatic fitting fails. In the first example the input data is

unreliable (large maximum numerical uncertainty on the additionally sampled τcut values).

In the second example we consider a kinematical distribution at NNLO that contains both

a threshold region with large τcut dependence and a region that has no logarithmic τcut
dependence and is fully finite for τcut → 0. These examples are constructed to show that

with the above procedure and all the information given together with the fitted corrections,

the cutoff dependence can be studied without further runs even when the fit fails.

4.3 Examples of automatic differential τcut fitting

First we demonstrate our implementation on NLO results of diphoton production, where

we can compare with the cutoff-independent dipole subtraction [72] implementation. At

NNLO we can compare fitted results using larger values of τcut with small values of τcut that

can be considered accurate at the per-mille level. Cuts and parameters are as described

later in section 5, but do not matter for the discussion here.

In figure 12 we show the NLO coefficient for the transverse momentum distribution of

the hardest photon normalized to the result of the exact computation. In the left panel we

show results for τcut/mγγ values ranging between 0.01 and 0.08, and the fitted result using

four points τcut/mγγ = 0.02, 0.04, 0.08, 0.2. The nominal value 0.01 is not included in the

fit, since we just fit the τcut corrections to the nominal value in our procedure. The right

panel shows results with cutoffs smaller by a factor of ten. For the nominal τcut/mγγ = 0.01

panel the fitting improves the residual systematic uncertainties by over 15%, and its error

when compared to the exact result is at the level of at most 1.5%. The improvements when

choosing a lower τcut as in the right panel are smaller, but the fitted result again is within

1% of the cutoff-independent result, while τcut/mγγ = 0.001 deviates as much as 4%.

From this we conclude that the fit can improve even large values of τcut with sys-

tematic errors of 10% and more. Furthermore, and quite importantly, the fit makes the

τcut dependence uniform over the whole range. Without such a fitting procedure, to guar-

antee a systematic τcut error differentially, one has to carefully choose τcut according to

the worst region, which is at small pT . For the example above this would mean running

at τcut/mγγ = 10−4 instead of 0.01 to achieve the same uniform level of precision for the

NLO coefficient.
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Figure 12. The NLO coefficient of the transverse momentum distribution of the hardest photon in

diphoton production. The left panel shows the τcut dependence for τcut/mγγ ranging from 0.01 to

0.08, where the fitted result has been obtained by using four points τcut/mγγ = 0.02, 0.04, 0.08, 0.2,

not using the nominal value of 0.01. The right panel shows the corresponding results for cutoff

parameters a factor of ten smaller.

Similarly, we show in figure 13 the NLO coefficient for the diphoton rapidity distribu-

tion. While the τcut dependence is clearly more uniform in the beginning, the conclusions

drawn are the same.

For the total NLO result, but also the coefficient alone, we see that one can use the

fitted result as the most precise result (following the chain of trust to ensure its reliability)

and compare it with the result using the smallest and nominal τcut value. If the difference

is larger than the desired or expected systematic error one should consider the use of a

smaller nominal τcut value.

NNLO results. Corresponding to the NLO coefficient plot in figure 12, we show in

figure 14 the results for the NNLO coefficient. Since this time we do not have a cutoff-

independent result available we directly compare results obtained with two sets of τcut. The

first set ranges from the nominal value of τcut/mγγ = 0.001 through τcut/mγγ = 0.04, where

the five values τcut/mγγ = 0.002, 0.004, 0.008, 0.02, 0.04 have been used for the asymptotic

fit according to eq. (4.3). A second set of τcut values smaller by a factor of ten is also shown.

We first see that, as for the NLO coefficient, there is a non-uniform τcut dependence.

Second, both fits agree within 1%, such that we can trust that the fit results are accurate

within 1%. In both cases they significantly improve the prediction and make the τcut
dependence uniform. The improvement from the fit is dramatic especially in the first

bin, where for τcut/mγγ = 0.001 the systematic uncertainty without a fit is over 10%.
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Figure 13. NLO coefficient for the diphoton rapidity distribution. The left panel shows the

dependence for τcut/mγγ values ranging from 0.01 to 0.08, where the fitted result has been obtained

by using four points τcut/mγγ = 0.02, 0.04, 0.08, 0.2, not using the nominal value of 0.01. The right

panel shows the corresponding results for cutoff parameters a factor of ten smaller.

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16

40 60 80 100 120 140 160

pT
γ,hard

 [GeV]

N
N

L
O

 c
o
e
ff
ic

ie
n
t 

d
σ
(τ

c
u
t)

d
σ

fi
t

τcut = 0.001

τcut = 0.002

τcut = 0.004

fit 0.002−0.04

τcut = 0.0001

τcut = 0.0002

τcut = 0.0004

fit 0.0002−0.004

Figure 14. The NNLO coefficient of the transverse momentum distribution of the hardest photon

in diphoton production. All curves are normalized to the fitted result with the smaller set of five

τcut/mγγ values.
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Figure 15. The NNLO coefficient of the diphoton rapidity distribution. All curves are normalized

to the fitted result with the smaller set of five τcut/mγγ values.

Similar conclusions are drawn from the diphoton rapidity distribution NNLO coefficient

in figure 15.

Since in diphoton production the NNLO corrections are large, we show in figure 16

the full NNLO result with corresponding τcut dependence and fitted results. Our default

setting, with a residual cutoff dependence of 0.8%, is τcut/mγγ = 10−4. The figure shows

that, up to numerical artifacts, the same level of precision can be reached using the results

of a fit with τcut/mγγ ' 10−3. Nevertheless, we prefer to use the τcut values in table 1 as

our default settings. The additional asymptotic fitting can then be used to check that the

cutoff dependence is indeed at the percent level. In the case of a good fit it can also result

in a substantial improvement over that, with the added benefit of a uniform systematic

cutoff error.

We now consider another representative example, the calculation of the τ− rapidity

spectrum in the process pp → H → τ−τ+. We use the same setup as for our benchmark

calculation of the inclusive gg → H cross section. In figure 17 we compare the prediction

for this distribution, both in the NNLO coefficient and in the NNLO total, for two choices

of τcut — our default value (τcut/mH = 4 × 10−3) and one corresponding to an expected

0.2% accuracy in the inclusive cross section (τcut/mH = 4 × 10−4). We first see that the

residual τcut-dependence of these two choices of τcut agrees within the expectation from the

presets in table 1, although this is of course not guaranteed since the table is based only

on the inclusive cross section.

The figure also indicates the result of the fit that is automatically provided by MCFM

for the case of the default value of τcut. The shaded band corresponds to the fit uncertainty
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Figure 16. The full NNLO prediction for the transverse momentum distribution of the hardest

photon in diphoton production. All curves are normalized to the fitted result with the smaller set

of five τcut/mγγ values.

and does not include other numerical uncertainties. In the bulk of the rapidity range the fit

is in excellent agreement with the 0.2% result, indicating a clear improvement from the non-

fitted calculation. In the tails of the distribution, for |y| > 3, the fit is no longer reliable since

the input data to the fit is calculated with insufficient precision only at the order of 5–10%,

corresponding to a failure of step 1 of our prescription above. We have denoted this with

a dashed line where the numerical uncertainty on the input data becomes more than 5%.

One clearly observes that the reported fit uncertainty is too small to explain the discrep-

ancy between the two fixed τcut values. However, when taking into account the numerical

uncertainties of all contributions one still observes agreement. In this instance, instead of

increasing the numerical precision in the tails for a reliable fit, either through an additional

run with cuts or a reweighting function, it may be less expensive to simply run the code

with a smaller value of τcut to draw better conclusions about the residual τcut dependence.

Finally, in figure 18 we show the transverse momentum distribution of the electron

produced in pp → Z → e−e+, again using our benchmark setup. As above, we compare

results using the default value τcut/mZ = 6 × 10−3 with results targeting 0.2% precision,

τcut/mZ = 10−3. At low transverse momenta, pT (e−) . 35 GeV the situation is much the

same as observed above in figure 17 — the two results are in agreement within expectations.

Although the quality of the fit is fine, that is we successfully checked that the input data

for the fit has reliable uncertainties and that the χ2/d.o.f. from the fit is small, the fitted

corrections still have large numerical uncertainties. To improve upon this and improve the

predictions with the fit would require more numerical precision. But we have still gained
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Figure 17. τ− rapidity distributions in pp→ H → τ−τ+, corresponding to the NNLO coefficient

(left) and the NNLO total (right). The histograms for the fit result are included with the fit

uncertainties as a shaded band, not including the numerical uncertainties (represented by the noise

in the data). The dashed line indicates the point at which the fit is no longer trustworthy (see

text).

valuable information: since the fit can be trusted, the fitted corrections including their

uncertainty (the shaded band) give an estimate of the residual τcut dependence.

In the region around mZ/2 the fixed order predictions are not reliable since this distri-

bution is exactly zero for pT (e−) > mZ/2 in the leading order calculation. This is because

the benchmark setup of ref. [21] uses the zero-width approximation. For the same reason,

the only τcut dependence beyond mZ/2 comes from subleading power corrections to jetti-

ness factorization, so that there is no logarithmic dependence on τcut in this region. Since

the residual τcut dependence is not captured by our fit form, the code reports poor fits in

the region pT (e−) & 38 GeV. As a result we have only displayed the fit up to this point

(the dashed line in figure 18). Following our own advice we have repeated this study with

an even smaller cutoff, τcut/mZ = 10−4, and verified that the result shown in figure 18 is

accurate at the per mille level for pT (e−) & 50 GeV.

Summary. While in all the studies in this section we have compared results using two

choices of nominal τcut, in most cases conclusions for the reliability and magnitude of

residual finite τcut effects could be drawn from the fit and the automatically sampled

τcut dependence alone. No further runs with additional nominal τcut values are necessary
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Figure 18. e− transverse momentum distributions in pp→ Z → e−e+, corresponding to the NNLO

coefficient (left) and the NNLO total (right). The histograms for the fit result are included with

the fit uncertainties as a shaded band, not including the numerical uncertainties (represented by

the noise in the data). The dashed line indicates the point at which the fit is no longer trustworthy

(see text).

for most practical applications. This is in contrast to previous versions of MCFM and

other codes that provide no means to assess reliability of results fully differentially without

additional extra runs.

MCFM outputs histograms for the additionally sampled τcut values separately in ad-

dition to the nominal τcut histogram. Furthermore, the fitted corrections are also output

separately. In the best case the τcut dependence is asymptotic and the numerical precision

is good, so that the fitted corrections improve the nominal τcut result and at the same time

estimate the error made by using the nominal τcut value. If the numerical precision is insuf-

ficient the fit might still be good, but the fitted corrections have large uncertainties, adding

noise. This is still valuable information, since it estimates the maximum τcut dependence.

The fitting procedure can fail for the following reasons. Either the input data cannot

be trusted (generally uncertainties are then still large, around 5–10%), or the input data

uncertainties are small, but the fit itself is poor with a large χ2/d.o.f.. In the first case one

can increase the numerical precision or manually inspect the τcut dependence instead of

relying on the fit. In the latter case, the calculation is not in the asymptotic regime where

the logarithmic form of the fit function applies. This can signify an unusually large τcut
dependence, which requires a manual inspection of the τcut dependence and/or a further
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run for this kinematical region with a lower nominal τcut value. It can also signify that

the region of phase space is only populated starting at NLO. For this region there is no

logarithmic τcut dependence and so the fit fails. In this case a manual inspection should

demonstrate a small τcut dependence.

5 Precision PDF uncertainties and PDF set differences

Within the realm of uncertainties for cross section predictions, PDF uncertainties are of-

ten large compared to residual theoretical uncertainties. For instance, uncertainties from

missing higher order corrections are generally no longer leading and, even for inclusive

Higgs production, the PDF+αs uncertainty estimates range from three [73] to thirteen

percent [47]. They are in the same range as the combined theory uncertainties of about

seven percent [73]. Since the LHC is able to collect data on far more than just total

cross sections, the real goal is to compute PDF uncertainties differentially for kinematic

distributions at NNLO precision.

However, PDF uncertainties are among the most computationally expensive to study.

This is due to the need to sample many different PDF sets, or PDF set members. With

PDF uncertainties at the few percent level, one wishes to have per mille level numerical

uncertainties that are sufficiently small in comparison. The most complicated NNLO pro-

cesses (in MCFM) require hours up to days on a 10–20 node cluster to reach the desired 1–2

per mille level of numerical precision also differentially. The most näıve implementation

of a PDF uncertainty calculation then requires an individual evaluation for every PDF set

member, which for our demonstrations below with PDF uncertainties for six chosen PDF

sets, multiplies required resources by 371, the number of individual PDF set members.

The small cluster is now no longer sufficient, and either one has to run the calculation for

months on the small system or days on thousands of nodes.

It is clear that the näıve evaluation of PDF uncertainties represents a substantial ad-

ditional burden. To avoid this situation, in MCFM we take into account the correlations

between matrix elements evaluated with different PDFs by integrating over all PDFs at

once, storing only difference information. This not only holds for one PDF set, but for

any number of PDF sets, only limited by the available system memory, see appendix A.2.

In practice one then gains several orders of magnitude in performance. With these im-

provements, the time to compute NNLO PDF uncertainties and differences between PDF

sets for hundreds of PDF members simultaneously at the per mille level is comparable to

the time it takes to calculate the nominal central prediction to the per mille level. This is

because one needs a significantly smaller sample size to achieve the required accuracy in

the difference information.

The capability of our efficient implementation of multi-set PDF uncertainties is demon-

strated in figure 19. Shown are the NNLO W+ rapidity distributions for a total of six

different PDF sets, each with their own PDF uncertainties, normalized to the PDF4LHC

central value.9 Note that we have included the full W+ boson decay in the integration,

but we choose to show the W+ rapidity distribution since it is more directly related to

9See also figure 1 for the positron rapidity distributions obtained in the same run.
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Figure 19. NNLO W+ rapidity distributions with PDF uncertainty bands after applying a lepton

rapidity cut, 2.0 < yl < 4.5. All curves are normalized to the central PDF4LHC prediction.

the momentum fraction variables that parametrize the PDFs. These NNLO results were

obtained by running less than a day on our cluster using 16 nodes (2010 generation) with

12 cores each. A total of 371 PDFs were evaluated for each phase space point. Not only are

the PDF uncertainties predicted within numerical sub per mille level precision, but one can

read off sub per mille level differences between different PDF sets fully differentially. This

is an invaluable benefit for detailed studies on the impact of different data and methods on

predictions at NNLO. For instance we note that while use of the PDF4LHC envelope set

gives a first estimate of the uncertainties, figure 19 also clearly shows its shortcomings: the

averaging obscures the rich structure of the individual PDF determinations shown in the

upper row of the figure. Precision studies such as this one can help to illuminate the differ-

ences between the central values, and the corresponding uncertainty bands, of all the sets.

NNLO PDF uncertainties using lower order matrix elements. Depending on the

number of PDF sets, and considering bounds on CPU or memory availability, the gain from

correlations might not be enough to perform a calculation on a local desktop computer. In

this case it is natural to ask whether it is sufficient to compute relative PDF uncertainties

at a lower perturbative order. This would cut the computing time by another few orders of

magnitude, especially if it were possible to use LO matrix elements together with NNLO

PDFs to estimate the PDF uncertainties for the full NNLO result at the per mille level.

The difference between using NNLO matrix elements and LO matrix elements with six
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PDF sets at once, for example, can be a day of run-time on 10–20 nodes on a cluster or a

few minutes to hours on a desktop computer.

The question then is: when is it possible to use lower order matrix elements for the ex-

traction of PDF uncertainties and to examine precise differences between PDF sets? While

generally a flat k-factor in higher perturbative orders might indicate that it is acceptable

to use the lower order matrix elements, this is neither necessary nor sufficient. A flat k-

factor is certainty beneficial though, since it means that a large portion of the observable

dependence essentially factorizes with respect to the lower order matrix element. In the

same way the dependence on the parton momentum fractions would have to be very similar

at each order of the calculation in order to reliably use the lower order matrix element to

extract PDF uncertainties at a higher order.

In this section we assess the validity of such a procedure by studying the rapidity

distribution of the color singlet system for all NNLO processes included in this version of

MCFM. Since the rapidity of the color singlet system translates directly to the parton

momentum fractions, we choose this kinematical distribution as the most representative

example. Other distributions obtain some form of smearing, but of course can be computed

in the same way.

Decay channels and cuts. For our demonstrations the set of decay channels and cuts

is as follows. In all cases the W+ boson decays semi-leptonically, the Z boson leptonically

and the Higgs boson into τ+τ−. We do not explicitly present results for W−, which are

qualitatively the same as the ones shown for W+ production.

Except for the single boson processes W+, Z and H, all cuts are standard cuts as in

MCFM-8.0 and MCFM-9.0. For the single boson processes W+ and Z we additionally

restrict the rapidity of the leptons to lie between 2.0 and 4.25, motivated by the LHCb

experiment. For H production we relax the τ -rapidities y to −5 ≤ y ≤ 5 to probe ex-

treme regions of the phase space. We perform all calculations with the default set of EW

parameters as in MCFM-9.0 and for the LHC operating at
√
s = 14 TeV. We allow all

vector bosons to be off-shell (zerowidth is .false.) and include their decays (removebr

is .false.). For parameters that are set in the input file we use,

mH = 125 GeV , mt = 173.3 GeV , mb = 4.66 GeV , (5.1)

and we use µF = µR = Q2 (i.e. we set dynamicscale equal to either m(34) or m(345) or

m(3456), as appropriate). Our generic set of cuts is,

pT (lepton) > 20 GeV , |η(lepton)| < 2.4 ,

pT (photon 1) > 40 GeV , pT (photon 2) > 25 GeV ,

|η(photon)| < 2.5 , ∆R(photon 1, photon 2) > 0.4 ,

∆R(lepton, photon) > 0.7 ,

Emiss
T > 30 GeV . (5.2)

For Z as well as ZH and Zγ production we also impose a minimum Z∗ virtuality (m34min)

of 40 GeV.
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5.1 Rapidities in single- and diboson production

To study and exemplify the use and calculation of differential NNLO PDF uncertainties

we first show the rapidity distributions of W and Z bosons in the forward region, where

one might expect to see the most substantial differences between PDFs and the largest

uncertainties. This region is of particular interest for the W [74, 75] and Z [74, 76, 77]

production measurements in LHCb.

W+ rapidities. We first compute the W+ rapidity distributions with PDF uncertainties

for the six PDF sets ABMP16als118 5 nnlo [78], CT14NNLO [79], MMHT2014nnlo68cl [80],

NNPDF30 nnlo as 0118 [81], NNPDF31 nnlo as 0118 [82] and PDF4LHC15 nnlo 30 [46]. We

compute the distributions using NLO and LO matrix elements and with full NNLO matrix

elements using two values of τcut.

Our results are shown in figure 20 where, as in figure 19, we have normalized all

distributions to the PDF4LHC central value. The first column shows the normalized NNLO

cross section for τcut = 2 GeV, corresponding to slicing cutoff effects of about 1% in the total

cross section. The second column shows the difference between the NNLO τcut = 2 GeV

result and the NNLO result with τcut = 0.1 GeV, which corresponds to slicing cutoff effects

that are smaller than 0.2%. NLO and LO matrix elements are used for the last two columns,

respectively. All these differences are magnified by a factor of 10. Difference values above

one mean that the nominal NNLO uncertainties used for normalization are larger, whereas

values smaller than one mean that the uncertainties are smaller. The latter case can be

seen, for example, in the comparison with NLO matrix elements at the lowest displayed

rapidities. While for most considered PDF sets the differences just result in a line, the

CT14 and MMHT PDF sets show a band. This is because these sets allow for asymmetric

PDF uncertainties, and the upper and lower bounds behave slightly differently with respect

to the NNLO result.

We first observe that the differences between the two NNLO calculations are at the

1–2 per mille level, entirely compatible with numerical noise. In principle one might only

expect half-percent or so agreement due to the finite cutoff values corresponding to better

than 1% and 0.2% effects, but this does not appear to be the case. The difference between

using the NLO and NNLO calculations reaches about the half a percent level at the largest

rapidities, and is only a little larger again when using just the LO matrix element. Of

course the W+ rapidity distribution is not a directly-observable quantity, but we have

checked that the same conclusions apply for the lepton rapidity distribution.

We are now in a position to judge whether, for this process, it is acceptable to use

LO or NLO matrix elements to estimate NNLO PDF uncertainties. The answer of courses

depends on the level of precision that is required. LO matrix elements do not change

the PDF uncertainty predictions in W+ production for lower rapidities significantly, but

change uncertainties by up to one percent for most PDF sets towards the end of the rapidity

range shown here. While using NLO matrix elements reduces that difference a little, one

ultimately has to rely on the full NNLO calculation for uncertainty estimates that are more

precise than 0.5%. When using lower order matrix elements one can still compare features

of different PDF sets at the per mille level, since these are relatively unaffected by the
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Figure 20. Normalized W+ rapidity distributions in the forward region. The first column shows

the NNLO result normalized to the central value of the PDF4LHC set with a value of τcut = 2 GeV.

The other three columns show the difference of the PDF uncertainties when using NNLO (τcut =

0.1 GeV), NLO and LO matrix elements, respectively. The differences are magnified by a factor of

10. Rows represent different PDF sets.
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Figure 21. Normalized W+ rapidity distributions in the forward region. The columns represent

using NNLO (τcut = 2 GeV), NNLO (τcut = 0.1 GeV), NLO and LO matrix elements, respectively,

each one normalized by the PDF4LHC PDF set.

shifts induced at higher orders. This is illustrated in figure 21, which shows the raw results

entering figure 20, but without taking differences with respect to the NNLO τcut = 2 GeV

result. It is clear that features corresponding to individual PDF sets are retained, both

qualitatively and quantitatively, when using lower order matrix elements.
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Other processes. In order to make a more general statement, we repeat this exercise

for all the other processes that may be computed at NNLO in MCFM. We focus on

the equivalent of figure 20 in order to readily assess the impact of using matrix elements

of different orders to estimate PDF uncertainties at NNLO. Our results are shown in

figures 22 to 27. As a reminder, these are all normalized by the NNLO result with a τcut
setting representing 1% cutoff effects on the total cross section and include the 0.2% τcut
setting for comparison.

Although there are qualitative differences between the impact of individual PDF sets

on W+ and Z production, the behavior of the uncertainty bands at each order is rather

similar, as shown in figure 22. We are therefore led to similar conclusions for Z production

as already discussed above. In order to allow for predictions of the Higgs rapidity also in

the very forward region, in figure 23 we have relaxed the lepton rapidity to |y| < 5. We

then observe that here the differences between using different order matrix elements are

also small and only grow systematically to a few per mille towards large rapidities. In all

cases the differences between the two τcut values at NNLO are consistent with one per mille

numerical noise for moderate rapidities.

The results for the Zγ (figure 24), WH (figure 26) and ZH figure 25 diboson processes

are more or less similar, with per mille level differences at most. The situation for γγ

production (figure 27) is a notable exception, where using LO matrix elements leads to

noticeable shape and uncertainty differences of up to one percent compared to the NNLO

result. Of course this is not unexpected since, in this case, there is a significant contribution

from gluon-initiated processes that only enters at NLO and whose effects are clearly not

quite captured with enough precision at LO. In this case one must use at least NLO matrix

elements in order to properly assess PDF uncertainties, especially since they themselves

are only at the level of ∼ 2%.

Summary. In general, we find that NLO matrix elements can be used in many cases

for precision studies, sometimes even just LO matrix elements — even to determine per

mille level differences between different PDF sets. The difference induced by using a lower

order matrix element is far smaller than the differences between using different PDF sets.

Therefore, at least for the processes and observables studied here, it is completely sufficient

for per mille level applications to use NLO matrix elements for the computation of relative

PDF uncertainties. Nevertheless, unless theoretically motivated or plainly demonstrated,

we still advocate to use the highest order matrix element possible given the computational

resources available. Such a calculation can then be compared with results obtained using

lower order matrix elements, which can then be used for further runs or more PDF sets,

as required. For such a test it might be enough to perform a run using just a set of central

values from different PDF sets, a capability for which MCFM-9.0 allows.

5.2 Higgs boson transverse momentum

As a further example calculation we now consider the Higgs boson transverse momentum

distribution. This distribution can be used to constrain the effects of new physics contri-
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Figure 22. Normalized Z rapidity distributions in the forward region. The first column shows the

NNLO result normalized to the central value of the PDF4LHC set with a value of τcut = 2 GeV.

The other three columns show the difference of the PDF uncertainties when using NNLO (τcut =

0.1 GeV), NLO and LO matrix elements, respectively. The differences are magnified by a factor of

10. Rows represent different PDF sets.
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Figure 23. Normalized H rapidity distribution with the lepton rapidities y relaxed to |y| < 5. The

first column shows the NNLO result normalized to the central value of the PDF4LHC set with a

value of τcut = 0.5 GeV (1%). The other three columns show the difference of the PDF uncertainties

magnified by a factor of 10. Rows represent different PDF sets.
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Figure 24. Normalized Zγ rapidity distribution. The first column shows the NNLO result nor-

malized to the central value of the PDF4LHC set with a value of τcut/mZγ = 3 · 10−4 (1%). The

other three columns show the difference of the PDF uncertainties magnified by a factor of 10. Rows

represent different PDF sets.
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Figure 25. Normalized ZH rapidity distribution. The first column shows the NNLO result

normalized to the central value of the PDF4LHC set with a value of τcut = 4 GeV (1%). The other

three columns show the difference of the PDF uncertainties magnified by a factor of 10. Rows

represent different PDF sets.
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Figure 26. Normalized WH rapidity distribution. The first column shows the NNLO result

normalized to the central value of the PDF4LHC set with a value of τcut = 4 GeV (1%). The other

three columns show the difference of the PDF uncertainties magnified by a factor of 10. Rows

represent different PDF sets.

– 42 –



J
H
E
P
1
2
(
2
0
1
9
)
0
3
4

Figure 27. Normalized γγ rapidity distribution. The first column shows the NNLO result nor-

malized to the central value of the PDF4LHC set with a value of τcut/mγγ = 10−4 (1%). The

other three columns show the difference of the PDF uncertainties magnified by a factor of 10. Rows

represent different PDF sets.
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butions in the Higgs sector, and has been used previously in the highly boosted regime to

measure the H → b̄b channel at the LHC [83].

Perturbative corrections to Higgs+jet production have been computed in an EFT with

an integrated-out top-quark up to NNLO [84–90], and also in the full theory with a finite

top-quark mass up to NLO [91]. Scale uncertainties at NNLO are about 10% inclusively

and differentially. With theory uncertainties at the 10% level, it is hard to imagine that

studying PDF uncertainties at the few percent level is a priority. But even for inclusive

Higgs production, where theory uncertainties are 5− 7% and PDF uncertainties have been

estimated to be about 3% [73], recent studies question this precision and suggest PDF

uncertainties at the level of thirteen percent [47].

Since predictions for Higgs+jet production at NNLO are computationally highly chal-

lenging, one ideally wishes to obtain information for different PDFs using lower order

matrix elements. Therefore, in this section we study the Higgs transverse momentum dis-

tribution at NLO using NNLO and NLO PDFs. The perturbative NNLO/NLO k-factors

are remarkably flat, being almost constant for the most common kinematical distributions.

Finite top-quark-mass corrections are also flat with respect to rescaling with the top-quark

mass dependent Born cross section, even in the threshold region. See ref. [91] for explicit

results at NLO in the Higgs transverse momentum distribution. The combination of these

effects means that we anticipate the calculation of PDF uncertainties for this process to

be excellent in an EFT description and even when just using NLO matrix elements. The

calculation in MCFM provides NLO predictions that go beyond the EFT and take into

account mass effects, with residual mass effect uncertainties of 1–2% [92, 93].

To stress test the calculation of PDF uncertainties across kinematical thresholds, we

have applied a jet cut of 150 GeV, which means that the region of Higgs boson transverse

momentum below this value is not described at LO. Our results for the PDF uncertainties

in the Higgs boson transverse momentum distribution up to pT = 1 TeV are shown in

figure 28. All PDF sets are chosen to consistently have αs(mZ) = 0.118 at NLO and

NNLO to eliminate large differences caused by different central values of αs. Results are

presented in similar fashion to the plots in the last section, where each column is normalized

by the PDF4LHC central value. The left two columns show results with NNLO PDFs but

using LO and NLO matrix elements, respectively, whereas the rightmost column shows

consistent NLO results. The left two columns indicate small differences of at most two

percent between PDF uncertainties estimated using LO and NLO matrix elements.

In the right column, for the consistent NLO calculation, the ABMP16 set shows a

peculiar behavior: the predictions are consistently larger than all other sets and reach

values that are about 16% larger than the PDF4LHC central value. Uncertainties can

in no way account for this behavior. This is despite the fact that using NNLO PDFs

(the middle column) the central predictions of ABMP16 are very close to those of the

NNPDF31 set and the two are mutually consistent within uncertainties. In that light, only

the uncertainty of the ABMP16 NLO fit seems to be somewhat underestimated.

We conclude that with current modern PDF sets one observes predictions for central

values that differ by more than ten percent at the largest considered transverse momenta

approaching 1 TeV, the region that is the most relevant for new physics analyses. The
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Figure 28. PDF uncertainties for the Higgs transverse momentum distribution normalized to

PDF4LHC with varying matrix element orders and PDF set orders. The left column uses LO

matrix elements with NNLO PDF sets, the middle column NLO matrix elements with NNLO PDF

sets, and the right column uses NLO matrix elements with NLO PDF sets. All PDF sets use

αs(mZ) = 0.118.
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differences between the sets that take into account the newest LHC data (ABMP16 and

NNPDF31) and the older sets can not be explained by PDF uncertainties at the one

sigma level. As long as these differences are not resolved and are competing with scale

uncertainties at the same level, new physics will be very difficult to constrain. This version

of MCFM provides a robust framework for carefully studying such issues in the light of

new data.

6 Precision studies of W and Z production

Theory predictions for W and Z production are available at NNLO QCD in MCFM [21]

and include one-loop electroweak corrections for Z production [22]. Remaining perturba-

tive truncation uncertainties, estimated by scale variation, are at about the 1% level. In

contrast, experimental uncertainties reach the level of a few per mille. To achieve a similar

accuracy in the theoretical predictions is highly difficult and even the purely numerical

integration uncertainty can easily surpass the expected systematic theory uncertainties.

These numerical difficulties are illustrated, for example, in ref. [94] where the numer-

ical differences between the codes FEWZ and DYNNLO, implementing the same NNLO

corrections for Drell-Yan production, are found to be 1.2% for fiducial W+ cross sections.

This is similar to the estimated truncation uncertainty and double the size of the experi-

mental uncertainty of 0.6%. This has significant phenomenological impact. The extracted

strange quark density, based on HERA and ATLAS W and Z data, is affected at the

8% level by this difference, again larger than the 6% experimental uncertainty [94]. The

measurement of |Vcs| is similarly impacted by the FEWZ/DYNNLO difference, requiring

an additional theoretical uncertainty of 1%, which is again large compared to the theory

truncation uncertainty of less than half a percent.

In these cases the problem is exacerbated by a choice of experimental cuts that is

pathological for at least one of the calculations, as explained in ref. [95]. Nevertheless, this

highlights the importance of precise control over the theoretical calculations, where differ-

ent techniques for computing higher-order corrections can result in small but important

systematic differences. In particular, the effect of any type of technical cutoff or numeri-

cal integration artifact must be able to be studied at a level of precision below any other

uncertainties, typically around a few per mille. These are topics that we have partially

addressed in general already, but in this section we illustrate them in detail by performing

a dedicated study of these processes with MCFM-9.0. This follows closely the benchmark

comparison study performed in ref. [95], which collects predictions from a number of codes

including FEWZ and DYNNLO.

NLO results. As a first point of comparison we have computed the W+ cross section

with the settings in ref. [95].10 First, for the tuned comparison cuts and parameters, we

find a value of 2900.1± 0.1 pb at NLO compatible with the values in table 3 of ref. [95];

for reference, these range from 2899.0± 0.1 pb to 2899.9± 0.3 pb, with values in-between

10To do this we had to use the MSTW2008 NLO PDF set even with the LO matrix element, which is

not clear from the text.
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with larger uncertainties. These values seem to indicate a discrepancy, but the choice of

symmetric cuts could potentially lead to underestimated uncertainties even if all input

parameters match.

The cuts used in ref. [95] have an equal minimum transverse momentum requirement on

the lepton and neutrino (symmetric cuts). As has been noted in ref. [95], and much longer

ago in ref. [96], such symmetric cuts are pathological, since one is highly sensitive to the

cancellation of collinear singularities between virtual and real emission corrections. While

being exposed to the edge of the singularity is problematic for an efficient integration in

general, calculations with an intrinsic slicing or cutoff parameter are affected much worse.

Since the jettiness slicing method implemented in MCFM is just such a calculation it is

important for us to study the limitation that this presents in practice.

In the following we use the slightly altered benchmark cuts and parameters from

ref. [95], used for all their NNLO results. Most importantly, the pT cuts on lepton and

neutrino are kept symmetric. In figure 29 we show the NLO cross section with varying min-

imum neutrino transverse momentum between 25 GeV and 26 GeV in steps of 0.01 GeV. To

generate this plot we have computed the neutrino transverse momentum distribution, and

subtracted the accumulated pT bins up to a certain value from the total result. The darkest

line is the exact result from a dipole subtraction (exact) calculation. The top panel shows

the absolute cross section, while the bottom panel shows the ratio to the exact result. The

horizontal black line at 3091 pb denotes the cross section for fully symmetric cuts obtained

using the exact calculation. The exact line does not meet the black line at 3091 pb, because

the first point with a minimum neutrino transverse momentum of 25.01 GeV, a difference

of 0.01 GeV to the symmetric cuts, already leads to a shift of about one per mille. As noted

in ref. [96], the approach to the symmetric case has an infinite slope. The other curves are

obtained using jettiness slicing with a finite value of τcut, or correspond to the result of a fit

to these values. The figure clearly shows that the dependence on τcut worsens dramatically

as the case of symmetric cuts is approached.

It is clear that the case of fully symmetric cuts requires a very small value of τcut
in order to obtain results that are not affected by the slicing procedure. Of course, for

such a value of τcut it is already computationally very expensive to obtain small numerical

uncertainties even at NLO. As we can see, only with a τcut value of 0.002 is the prediction

reliable within one per mille, while for a 1 GeV asymmetry in the cuts one obtains the same

precision for a τcut value of 0.05 GeV. This significantly improves when the asymmetry is

increased further. In practice, the symmetric cuts lead to order of magnitude increases in

the computational resources that are required. Although this alone might not be a reason

to abandon symmetric cuts for experimental studies, it emphasizes the importance of the

choice of these cuts for precise numerical comparisons, even at NLO. Referring to figure 29

again, we do however notice that — even for the exact calculation — the NLO cross section

displays an odd behavior below 25.3 GeV: the cross section decreases as the cut is reduced.

This is simply the remnant of the problematic cancellation of singularities, and reflects the

fact that the perturbative calculation is not reliable in this region. This represents a strong

motivation to abandon fully symmetric cuts, as has been done some time ago (for the same

reasons) in the case of diphoton [97] and dijet [96] production.
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Figure 29. NLO W+ cross section with cuts as in ref. [95], except that the cut on the neutrino

transverse momentum is varied (while keeping plT > 25 GeV). The leftmost point corresponds to

pνT > 25.01 GeV. The darkest line displays the result obtained using dipole subtraction, the other

curves show various choices of τcut (in GeV). The upper panel shows the absolute NLO result and

the lower panel the result normalized to the smallest displayed value of τcut = 0.002 GeV.

NNLO results. The equivalent plot for the NNLO calculation is shown in figure 30. In

this case we do not include our τcut fit at NNLO, since for our reasonably reached numerical

precision the uncertainties for the fitted corrections are 50–100% due to the presence of

the symmetric cuts. For τcut values below 0.01 GeV it appears that the residual effect of

a finite τcut is at the few per mille level. On the other hand the τcut dependence for the

fully symmetric cuts is so large that no apparent convergence towards τcut → 0 is visible.

This is in contrast to the τcut dependence for pνT > 26 GeV (not shown in the plot) that
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Figure 30. NNLO W+ cross section with cuts as in ref. [95], pνT > 25 GeV in dependence of a

minimum neutrino transverse momentum cut. The leftmost point corresponds to pνT > 25.01 GeV.

Note the uncertainty of 10 pb on the results. The upper panel shows the absolute NNLO result

and the lower panel the result normalized to the smallest displayed value of τcut = 0.001 GeV. The

black lines denote the results of 3207 ± 2 pb (FEWZ) and 3191± 7 pb (DYNNLO) from ref. [95],

solid for the central values and dotted for the uncertainties.

is below one percent for τcut = 0.2 GeV. Since this is still above our expectation from the

benchmark cuts (cf. figure 10) it suggests that an asymmetry of at least a few GeV should

be used in order to more easily obtain a precision prediction with this method.

The absolute position of our set of curves has an uncertainty of about 10 pb, corre-

sponding to 3 per mille in relative terms, similar to the result reported from DYNNLO

in ref. [95]. Within this uncertainty, our τcut = 0.001 GeV result is compatible with the

one from DYNNLO but slightly lower than the one from FEWZ. In order to press the
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comparison further, say at the 1 per mille level, would require running at even lower values

of τcut to better probe the asymptotic logarithmic dependence; however, we are already

limited by the numerical precision that we are able to reasonably achieve.

Overall we find that it is computationally very expensive to obtain numerically pre-

cise values for fully symmetric cuts. In the presence of these cuts the power corrections

are sizeable and force one to use tiny values of τcut, which amplify cancellations between

contributions and challenge all parts of the numerical integration. In addition to this, with

our binning size of 0.01 GeV and τcut = 0.001 GeV, we already see a difference of ∼ 10 pb

when a cut is made at 25.01 GeV instead of 25.00 GeV. This indicates that for the NNLO

coefficient the approach towards fully symmetric cuts is at least as steep as that at NLO.

In light of these findings we believe that not just experimental studies should avoid the

symmetric cuts, but also comparison benchmarks, since no precise comparisons at the per

mille level are possible for calculations with intrinsic cutoff parameters. We note that all

observations in this section transfer equivalently to Z production with symmetric cuts on

the two leptons.

In figure 31 we show the NNLO positron transverse momentum distribution in W+

production normalized to the NLO distribution for the benchmark cuts and parameters in

ref. [95]. This is to be compared with the corresponding results in figure 17 of ref. [95].11

The distributions for the neutrino as well as for the positron are virtually indistinguishable,

so we only include the positron distribution here. Again, the jettiness cutoff effects become

sizable towards fully symmetric cuts, but also in the region around mW /2, which is again

sensitive to soft radiation effects and problematic in fixed order perturbation theory.

Summary. In ref. [95] the authors of various codes, including FEWZ and DYNNLO,

provide benchmark comparisons for W and Z production at NNLO accuracy. At NNLO

the difference between FEWZ and DYNNLO inclusively is at the level of 0.5%, compatible

within their respective numerical uncertainties. Considering that the experimental uncer-

tainties are at that level, one now needs to aim for higher precision. Since the benchmark

setup uses a choice of cuts that cause numerical instabilities, this is difficult to achieve in

practice. We therefore advocate the use of a set of cuts that allows for one per mille numer-

ical precision, so that numerical errors no longer constitute a substantial uncertainty, and

the implementations and methods can be compared at a more useful level. After having

established a common precision baseline, numerically difficult cuts could be studied.

To achieve a more useful comparison, we propose the use of cuts that are slightly

asymmetric, differing by at least a few GeV. Although highly asymmetric cuts decrease

the cross section and remove part of the phase space that is calculated at higher orders, the

benefits of a small asymmetry are twofold. First, it removes a region of phase space that

11We found that in ref. [95] the NLO-normalized NNLO neutrino and lepton distributions use opposite

NLO-normalization factors. That is, we can fully reproduce their differential distributions for W± when us-

ing lepton NLO distributions for the normalization of the NNLO neutrino distributions, and vice versa. For

example in figure 20 the normalized l+ transverse momentum distribution in the phase space region predom-

inated by W+jets shows a 10% difference between the fixed order NNLO result and POWHEG+PYTHIA,

while agreement is found with SHERPA NLO+PS. With the fixed normalization this situation is exactly

reversed.
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Figure 31. NNLO positron transverse momentum distribution in W+ production. The upper

panel shows the ratio to the NLO result. The lower panel shows the ratio to the smallest displayed

τcut value of 0.001.

is problematic in a fixed order calculation and results in unphysical predictions (negative

cross sections in the transverse momentum distribution). Second, it enables precise NNLO

predictions with a variety of NNLO codes that in principle should agree.

7 Conclusions

With the onset of key hadron-collider measurements at the per mille level, interpretation of

the results — and thus our understanding of nature — should be limited by uncertainties

inherent in the theoretical predictions. Even with current higher-order predictions, that in

some cases have percent-level scale uncertainties, control of numerical and methodological
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errors at the per mille level is required to demonstrate their reliability. This then allows

for the study of input parameters, and their impact, at the necessary level of precision.

Unfortunately practical resource limitations, set by local workstations or even expensive

computing clusters, are easily reached by precise calculations at NNLO. These limitations

are even easier to saturate when including scans over additional parameters in the predic-

tions. More often than not these limitations result in the introduction of errors, or the use

of uncontrolled approximations, that may lead to a loss of the required precision. This can

have a direct phenomenological impact that, for instance, can decide between the advent

of a signal for new physics or the continued success of the SM.

In this paper we have addressed this issue by demonstrating that control at the per-

mille level can be achieved with a new version of the code MCFM. A key component of the

theoretical prediction is the numerical integration over the available phase space, where

any type of technical cutoff or artifact must be able to be controlled below that level of

precision. We first ensured that the raw numerical predictions can reach these levels of

precision and that their errors are reliably estimated. This has been achieved through our

newly implemented fully parallelized MPI+OMP Vegas integration that adaptively selects

contributions with the largest uncertainties and is fully resumable through automatically

written snapshots. Our approach allows reliable error estimates for precision predictions

because it can use a huge number of calls per single integral estimate, i.e. per iteration.

We have compared to a näıve parallelization, obtained by combining many independent

low-statistics calls, and find that it requires statistical analysis methods to obtain trust-

worthy error estimates. For such a situation we recommend the use of the well-known

bootstrap/jackknife technique.

A further consideration is that a number of today’s NNLO calculations, including those

implemented in MCFM, depend on a slicing cutoff to regularize IR divergences (a jettiness

cutoff, τcut, in this paper). Results can only be obtained as an extrapolation τcut → 0,

otherwise residual finite τcut effects enter as a systematic error. To estimate the slicing

cutoff uncertainties for a finite τcut, additional integrations must be performed for a range

of τcut values and the dependence assessed. This is especially important differentially, where

the residual dependence can be highly non-uniform and large compared to inclusive results.

This extrapolation is extraordinarily computationally expensive since smaller values of τcut
lead to larger numerical cancellation effects. Reaching either the required precision or a

small enough τcut for these independent runs is not always possible. To address this we have

implemented an automatic correlated sampling of multiple τcut values within one single

integration run. This saves orders of magnitude in resources or, equivalently, improves

results with equal resources by orders of magnitude. Furthermore we have implemented a

boosted jettiness definition for all processes and included leading power corrections, which

in combination lead to further order of magnitude performance improvements.

Taken together, these improvements ensure that the τcut dependence can be controlled

at the per mille level on small computing clusters. To assess the reliability and give concrete

error estimates, we have presented a detailed scheme for estimating the residual τcut error of

NNLO results based on our automatic sampling of additional τcut values and their fitting.

Since our fully differential fitting is based on the expected behavior in the asymptotic
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regime, we can reliably exploit it for both improvements and error or reliability estimates.

We have shown examples where the differential fit improves results by an order of magnitude

and furthermore makes the differential τcut dependence uniform. We have also considered

the case where the fit is no longer reported to be reliable, illustrating the identification of

regions that need to be scrutinized further for a valid error estimate.

To avoid introducing the approximation of using NLO matrix elements for the calcu-

lation of PDF uncertainties, our new implementation allows the use of multiple PDF sets

and PDF set members simultaneously at NNLO. They are computed simultaneously in a

correlated way, saving many orders of magnitude of computational resources compared to

uncorrelated integrations. We have used these improvements to study cases where lower-

order matrix elements are used to approximate full NNLO PDF uncertainties and shown

that our correlated implementation allows for per mille level comparisons between differ-

ent PDF sets. Studies that discern the impact of different data sets and methods in the

fits become directly tractable at NNLO at a high precision. We have demonstrated this

feature for all NNLO processes in MCFM and also for the high-pT tail of the Higgs boson

transverse momentum spectrum at NLO. In addition we have used our code to attempt

to reproduce results contained in the benchmarking exercise of ref. [95] but find that the

cuts used there prohibit a comparison at the per-mille level.

Modern calculations at the level of NNLO QCD and beyond require the assembly and

availability of dozens of components that each represents years of work. It is therefore

mandatory that such components can be easily and reliably reused for further studies.

MCFM provides a repository of such work, and has been used several times as a basis

for fixed order NNLO and NLO SM calculations, resummed calculations, as well as imple-

mentations of physics beyond the SM. Its library of amplitudes has found use in dozens

of projects and studies. Given this track record, the overhaul of all core components of

the code described here is an important step to increase its usability and reliability, and

to keep it an important tool for both experimentalists and theorists. In particular, the

features and efficiency gains documented here will enable a public distribution of NNLO

W±, Z and H production processes in association with a jet in the near future.

Acknowledgments

This work was supported by the U.S. Department of Energy under award No. DE-

SC0008347. This document was prepared using the resources of the Fermi National Ac-

celerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP

User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under

Contract No. DE-AC02-07CH11359.

– 53 –



J
H
E
P
1
2
(
2
0
1
9
)
0
3
4

A Detailed description of new features

In this section we present the new and modified features in MCFM and describe how

to use them on a technical level, complementing the new MCFM manual. With all re-

implemented and newly implemented components we strive for Fortran 2008 compliance,

making explicit use of its features. Following the Fortran standard furthermore allows us

to achieve compatibility with not just the GNU compiler. In previous versions of MCFM

the licensing was unclear, since none was specified. We now license all code under the GNU

GPL 3 license.12

Improved input file mechanism. We have implemented a new input file mechanism

based on the configuration file parser config fortran [98]. This INI-like file format no

longer depends on a strict ordering of configuration elements, allows easy access to con-

figuration elements through a single global configuration object, and makes it easy to

add new configuration options of scalar and array numerical and string types. Using the

parser package also allows one to override or specify all configuration options as com-

mand line arguments to MCFM, for example running MCFM like ./mcfm omp input.ini

-general%nproc=200 -general%part=nlo. This is useful for batch parameter run scripts.

Settings can also be overridden with additional input files that specify just a subset

of options.

New histogramming. We replaced the previous Fortran77 implementation of his-

tograms, that used routines from 1988 by M. Mangano, with a new suite of routines.

The new histogram implementation allows for any number of histograms with any number

of bins, each of which is dynamically allocated. Furthermore, everything is also handled

in a fully multi-threaded approach with the integration. For each OMP thread tempo-

rary histograms are allocated which are then reduced to a single one after each integration

iteration, so that no OMP locks (critical regions) are required.

New Vegas integration, part-adaptive and resumable. The previous implementa-

tion of the Vegas routine was based on Numerical Recipes code. We have re-implemented

Vegas and the surrounding integration routines. All parts of a NLO or NNLO calculation

are now chosen adaptively based on the largest absolute numerical uncertainty. A precision

goal can be set in the input file as well as a χ2/it goal and a precision goal for the warmup

run. If the goals for the warmup are not reached, the warmup repeats with twice the num-

ber of calls. With the setting writeintermediate one can control whether histograms are

written in intermediate stages during the integration. Enabling the setting readin allows

one to resume the integration from any point from a previous run. Snapshots saving the

whole integration state are saved automatically. When resuming, the only parameter that

the user can safely officially change is the precisiongoal. Further tweak configuration

options to control the stages of the integration have been introduced, which can provide

benefits over the default settings in certain situations.

12See https://www.gnu.org/licenses/gpl-3.0.en.html.
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The section integration in the configuration file allows for tweaks in the follow-

ing way. The precision goal can be adjusted by setting precisiongoal to a relative

precision that should be reached. Similarly, the settings warmupprecisiongoal and

warmupchisqgoal control the minimum relative precision and χ2/it for the warmup phase

of iterbatchwarmup (default 5) iterations. If the warmup criterion fails, the number of

calls is increased by a factor of two. The calls per iteration get increased by a factor of

callboost (default 4) after the warmup. From then on the number of calls per iteration is

increased by a factor of itercallmult (default 1.4) for a total of iterbatch1 iterations.

After these first iterbatch1 iterations, the increase happens for every iterbatch2 itera-

tions. The setting maxcallsperiter controls the cap for the number of calls per iteration.

The number of Vegas grid subdivisions can be controlled with ndmx (default 100).

The purpose of these settings is a fine control in certain situations. For example to

compute expensive PDF uncertainties, one wants a relatively precise warmup run (where

additional PDF sets are not sampled) and as few calls as necessary afterwards: for the plots

in this paper we thus chose a relative warmup precision goal of 10%, and set callboost

to 0.25. This means that the first iterbatch1 iterations after the warmup run only with

a quarter of the calls than during the warmup. This precision is sufficient to compute

precise PDF uncertainties, when making use of the strong correlations as in MCFM-9.0.

Any further iterations come in batches of iterbatch2, which we set to 1. It allows for a

quick switching to parts of the NNLO cross section that have the largest uncertainty. For

normal applications one wants to boost the number of calls after the warmup significantly,

so a default value of callboost=4 is chosen.

We provide default settings for the initial number of calls per iteration for all com-

ponents of a NNLO calculation. They can be overridden with the following settings

in the integration section: initcallslord, initcallsnlovirt, initcallsnloreal,

initcallsnlofrag for parts of a NLO calculations, initcallssnlobelow, initcall-

ssnloabove for parts of a SCET based NLO calculation, and initcallsnnlobelow,

initcallsnnlovirtabove, as well as initcallsnnlorealabove for the parts of the NNLO

coefficient.

Low discrepancy sequence. MCFM-8.0 and prior relied on a linear congruential gen-

erator implementation from Numerical Recipes for the generation of a pseudo-random

sequence. With newer versions the MT19937 implementation of the C++ standard li-

brary is used, and with this version of MCFM we include an implementation of the Sobol

low discrepancy sequence based on the code sobseq [52] with initialization numbers from

ref. [53]. The Sobol sequence is used by default and can be toggled using the flag usesobol

= .true. in the integration section of the input file, see also section 3. When running in

MPI mode, the number of nodes has to be a power of two for the Sobol sequence, because

we use it in a strided manner. Otherwise the code will automatically fall back to using

the MT19937 sequence with seed value seed in the integration section of the input file. A

seed value of 0 denotes a randomly initialized seed.
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Fully parallelized OMP+MPI use of LHAPDF. In previous versions of MCFM

calls to LHAPDF were forced to access from only a single OMP thread through a lock.

This is because the interface was based on the old LHAglue interface, part of LHAPDF.

We have written an interface to LHAPDF from scratch based on the new object oriented

treatment of PDFs in LHAPDF 6. For each OMP thread we initialize a copy of the

used PDF members which can be called fully concurrently. The amount of PDF sets

with or without PDF uncertainties is only limited by the available system memory. The

memory usage of MCFM can then range from roughly 20MB when only one central PDF

grid is being used, to ∼ 7.4 GB when 32 OMP threads fully load all members of the

PDF sets CT14nnlo, MMHT2014nnlo68cl, ABMP16als118 5 nnlo, NNPDF30 nnlo as 0118,

NNPDF31 nnlo as 0118 and PDF4LHC15 nnlo 30 for PDF uncertainties. The total number

of members for these grids is 371, each loaded for every of the 32 OMP threads.

Since each OMP thread allocates its own copy of PDF members and histograms we

have no need to introduce any OMP locks. On the other hand the memory usage increases

and one runs into being CPU cache or DRAM bandwidth bound earlier. In practice, we

find that this is still faster than having OMP locks, which directly decrease the speedup in

the spirit of Amdahl’s law. Ideally the LHAPDF library should be improved to allow for

thread-safe calls with just one memory allocation.

Histograms for additional values of τcut, µR, µF and multiple PDFs. When using

the automatic scale variation, in addition to the normal histograms, additional histograms

with filenames scale XY are generated, where X is a placeholder for the renormalization

scale variation and Y for the factorization scale variation. X and Y can either be u for an

upwards variation by a factor of two, d for a downwards variation by a factor of two, or

just - if no change of that scale was made. The envelope of maximum and minimum can

then easily be obtained.

For the sampling of additional values of τcut for NLO and NNLO calculations using jet-

tiness subtractions, additional histograms with filenames taucut XXX are written. Here

XXX is a placeholder for the chosen τcut values in the optional array taucutarray, if spec-

ified, or one of the five automatically chosen values. These additional files only contain

the differences to the nominal choice of τcut, so that ∆σ(τcut,nominal)−∆σ(τcut,i) is stored.

If taucutarray has not been specified, the automatic choice of additional τcut values is

enabled based on the default nominal τcut for the process or the users choice of the nominal

τcut value as specified in taucut. In addition a file with taucutfit is generated, which

in addition to the fitted corrections and its uncertainty includes columns for the maximum

relative integration uncertainty for the additionally sampled τcut values and the reduced

χ2 of the fit. With the procedure in section 4, the fit together with the individual τcut
histograms allows the user to assess the systematic τcut error and possibly improve results.

When multiple PDF sets are chosen, additional files with the names of the PDF sets

are generated. In case PDF uncertainties are enabled, the histograms also include the

upper and lower bounds of the PDF uncertainties.
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User cuts, histograms and re-weighting. Modifying the plotting routines in the

files src/User/nplotter*.f allows for modification of the pre-defined histograms and

addition of any number of arbitrary observables. The routine gencuts user can be adjusted

in the file src/User/gencuts user.f90 for additional cuts after the jet algorithm has

performed the clustering. In the same file the routine reweight user can be modified to

include a manual re-weighting for all integral contributions. This can be used to obtain

improved uncertainties in, for example, tails of distributions. One example is included in

the subdirectory examples, where the reweight user function approximately flattens the

Higgs transverse momentum distribution, leading to equal relative uncertainties even in

the tail at 1 TeV.

A.1 Compatibility with the Intel compiler and benchmarks

Previous versions of MCFM were developed using gfortran as a compiler. MCFM con-

tained code that did not follow a specific Fortran standard, and was only compatible with

using gfortran. We fixed code that did not compile or work with the recent Intel Fortran

compiler ifort 19.0.1. This does not mean that we claim to be strictly standards compli-

ant with a specific Fortran version, but we aim to be compliant with Fortran 2008. We now

fully support GCC versions newer than 7 and Intel compilers newer than 19. There might

still be compatibility issues with other Fortran compilers, but we are happy to receive bug

reports for any issues regarding compilation, that are not due to a lack of modern Fortran

2008 features. To use the Intel compiler one has to change the USEINTEL flag in the files

Install and makefile to YES.

To see whether MCFM can make use of potential Intel compiler improvements over the

GNU compiler collection (GCC) we benchmarked the double real emission component of

Higgs production at NNLO. We perform tests on our cluster with Intel Xeon 64-bit X5650

2.67 GHz Westmere CPUs, where two six-core CPUs are run in a dual-socket mode with

a total of twelve cores. Similarly, we have an AMD 6128 HE Opteron 2GHz quad-socket

eight-core setup, thus each having 32 cores per node.

We benchmark both the Intel and GCC compilers on both the Intel and AMD systems.

On the Intel system we use 16 MPI processes each with 12 OMP threads, and on the AMD

system we have 8 MPI processes using 32 OMP threads. With this we have the same total

clockrate of 512 GHz for each setup. For all benchmarks we find that the scaling is perfect

up to this size, that is if we use half the number of MPI or OMP threads we double our

run-time.

We first try both the Intel fortran compiler 19.0.1 and GCC 9.1.0 on the Intel sys-

tem with the highest generic optimization flags -O3 -xsse4.2 and -O3 -march=westmere,

respectively. Furthermore, we lower the optimizations to -O2 each and remove the pro-

cessor specific optimization flags -xsse4.2 and -march=westmere, respectively. All our

benchmark run-times in the following are consistent within ±0.5 s.

We do not support enabling unsafe math operations with -ffast-math, since the code

relies on the knowledge of NaN values and checks on those. Such checks would be skipped

with the meta flag-ffast-math which sets -ffinite-math-only.
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Compiler/flags wall time ± 0.5s

ifort -O3 -xsse4.2 90s

ifort -O2 -xsse4.2 86s

ifort -O2 90s

ifort -O1 103s

gfortran -O3 -march=westmere 101s

gfortran -O2 -march=westmere 105s

gfortran -O2 105s

gfortran -O1 110s

Table 2. Benchmark results on the Intel system with 10 · 25M calls distributed over 16 MPI pro-

cesses, each using 12 OMP threads. The GCC version is 9.1.0 and the Intel Fortran compiler 19.0.1.

The benchmark results in table 2 show that using the Intel compiler, performance

benefits of ' 10 − 20% can be achieved. Our goal here is not to go beyond this and

check whether exactly equivalent optimization flags have been used in both cases. Enabling

optimizations beyond -O2 have little impact, but come with a penalty for the Intel compiler

and with a slight benefit for gfortran. We also notice that processor specific optimizations

play no significant role. This might also be in part due to the fact that MCFM does not

offer much space for (automatic) vectorization optimizations. To summarize, the default

optimization flags of -O2 should be sufficient in most cases. We do not expect that the

conclusions from these benchmarks change for different processes. On the other hand

if computing PDF uncertainties, the majority of time is used by LHAPDF and different

optimization flags for LHAPDF might play a role then. We performed the same benchmark

with an older version of GCC, version 7.1.0 using -O2 optimizations, and found that the

run-times are the same as for the newer version.

Finally, we performed some benchmarks on our AMD setup and found that it is ' 2.5

times slower for the same total clockrate. Using the Intel compiler for the AMD setup

decreased the performance by another ' 30%. This is likely due to the fact that the Intel

compiler already optimizes for the general Intel architecture.

These benchmarks try to give a general impression and might depend in detail on

the process, the number of histograms and whether to compute PDF uncertainties, for

example. Especially when computing PDF uncertainties the perfect scaling we tested here

might break down since the computation can become memory bound. We discuss this

caveat in more detail in appendix A.2.

A.2 Remarks on memory bound performance issues

To get numerically precise predictions at the per mille level for NNLO cross sections,

already hundreds of million of calls are necessary. Obtaining PDF uncertainties using those

NNLO matrix elements significantly increases the computational time. In a simplified
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view the total computational time composes as Ncalls ∗ (T + NPDF · TPDF), where T is

the computational effort for the matrix element piece, and the PDF part is proportional

to the time calling the PDF evolution NPDF times and code related to performing the

convolutions. For tree level matrix element evaluations, usually also T ≪ TPDF holds, so

the computational cost grows linearly with the number of PDFs.

This naive picture breaks down in practice when a lot of PDFs are sampled together

with a lot of histograms or histogram bins. The total memory necessary to store all the

histogram information grows like NPDF · Nbins · Nthr., where NPDF is the number of PDF

members, Nbins the number of histogram bins summed over all histograms and Nthr. is the

number of OMP threads. The factor Nthr. enters since we have thread-local storage to

avoid OMP locks. The values are stored in double precision, so the total memory used is

NPDF ·Nbins ·Nthr. · 8 bytes.

Assuming for example, 300 PDF members, 10 histograms with each 20 bins and 12

threads, this sums up to 720 kb of memory. For the virtual corrections and LO pieces,

one has to update this amount of memory once for each call. For the real emission matrix

elements one has to accumulate all dipole contributions, so this number additionally scales

with the number of dipole contributions. All the histogram updates are usually fully vector-

ized for modern superscalar processors with SSE and/or AVX extensions. But if this used

memory is too large and does not easily fit into the CPU core caches anymore, a transfer

to and from DRAM happens, which now is the limiting factor and significantly slows down

the computation. Because for that reason, one should work with a minimal number of nec-

essary histograms when working with a lot of PDF members. This is especially important

for cluster setups that are not optimized towards memory bound applications, non-NUMA

systems. For example in our cluster we have relatively old AMD Opteron quad-socket

eight-core nodes with little CPU cache, and with above numbers we are already limited in

wall-time improvements with using ∼ 16 cores. Then reducing the number of histograms

will significantly improve the performance. In principle one can reduce the histogram

precision to single precision and cut memory transfer and storage in half, while doubling

the computational speed. This might lead to problems with accumulated rounding errors

though, and we have not investigated this further, since in practice one can sufficiently

limit the number of histograms or PDF sets.

B Supporting plots for the jackknife-after-bootstrap procedure

In figure 32 and figure 33 the lower panel displays a visualization of the jackknife after

bootstrap technique. Each point represents one of the N data points that is being left

out. The dashed lines represent quantiles of the bootstrap distribution. figure 32 shows

that leaving out the single point number 557 would significantly shrink the percentiles

and make the Gaussian distribution symmetric. After removing the outlier figure 33 is

obtained, where now no single point would significantly modify the bootstrap distribution.

For more details we refer to [61].
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Figure 32. Result of applying the bootstrap technique to our MT19937 data set of about 4500

data points with 10 million calls each. The sample size is not Gaussian due to one significant outlier.
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Figure 33. Result of the applying the bootstrap technique to our MT19937 data set of about 4500

data points with 10 million calls each. The worst four outliers as shown in the jackknife plot in

figure 32 have been removed. The result is 31559 ± 13.
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