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Abstract: We study the axion field range and low energy couplings in models with

Stückelberg mixing between axions and U(1) gauge bosons. It is noted that the gauge-

invariant axion combination ξ in the model is periodic modulo an appropriate shift of

gauge-variant axions eaten by the massive U(1) gauge bosons, which in some cases makes

the connection between the field range and the low energy couplings less transparent. We

derive the field range of ξ for generic forms of the axion kinetic metric and U(1) charges, and

identify the field basis for which all non-derivative couplings of ξ are quantized in a manner

manifestly consistent with the periodicity of ξ. Generically Stückelberg mixing reduces the

axion field range. In particular, the mixings between N axions and (N − 1) U(1) gauge

bosons typically result in an exponentially reduced field range Mξ = O
(
k−(N−1)f/

√
N !
)

for the residual gauge-invariant axion ξ in the limit N � 1, where f and k denote the

typical decay constant and the root mean square of the U(1) gauge charges of the original

N axions. Using simple examples, we study also the reparameterization-invariant physical

quantities such as the axion effective potential and 1PI couplings to gauge bosons, which

are determined by the reparameterization-dependent axion couplings in the model.
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1 Introduction

Axions (or axion-like particles) are considered to be one of the most compelling candidates

for physics beyond the Standard Model of particle physics.1 Axions are periodic scalar

fields and much of their low energy physics are determined by the mass scale Ma called the

axion decay constant which defines the field range of the canonically normalized axion as

a ≡ a+ 2πMa. (1.1)

There have been a variety of different axions introduced so far in particle physics and cos-

mology, and the favoured range of the decay constant of those axions differ by many orders

of magnitudes. In most cases, Ma is considered to be well below the Planck scale MPl [1–

3], however in some cases it needs to be comparable to or even bigger than MPl [4–6]. In

theoretical side, it has been known for many years that potentially realistic string compacti-

fications provide multiple axions whose decay constants are often of the order of g2MPl/8π
2,

where g is the gauge coupling in the model [7–11]. There has been also an argument called

the weak gravity conjecture on axions [12], implying that Ma . O(g2MPl/8π
2) within a

theory defined at the scale of quantum gravity. Motivated by these, various mechanisms

have been proposed to widen the possible range of Ma in the low energy effective theory

starting from a UV theory whose axion scales are limited to be within certain range [13–39]

In this paper, we wish to revisit one of such mechanisms, utilizing the Stückelberg

mixing between axions and U(1) gauge bosons2 [26, 27, 39]. It has been noticed in [26, 27]

1For reviews on axions, see for instance refs. [1–3].
2In fact, all of our discussions are applicable also to the case that U(1) gauge symmetries are broken by

the conventional Higgs mechanism. The only difference between the Higgs mechanism and the Stückelberg

mechanism is the existence of the radial partner of the Goldstone bosons eaten by the U(1) gauge bosons,

which is not relevant for low energy physics that we are concerned with.
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that in some parameter limit of the Stückelberg mixing, the coupling 1/fξ of the canon-

ically normalized gauge-invariant axion combination ξ to non-Abelian gauge fields, i.e.
1

32π2
ξ
fξ
GaµνG̃aµν , can be significantly smaller than the inverse of the mass scales introduced

in the UV theory. Then, based on the expectation that fξ is comparable to the axion decay

constant Mξ which is defined by the axion periodicity ξ ≡ ξ + 2πMξ, such suppression of

1/fξ was interpreted as an indication of the enhanced axion field range in the corresponding

parameter limit. Recently the possibility of enhanced axion field range has been explored

again with a simple model yielding an exponentially suppressed 1/fξ in a natural man-

ner [39]. On the other hand, in the presence of gauge-charged fermions, the axion coupling

1/fξ varies under the ξ-dependent phase rotation of fermion fields, while the axion field

range Mξ is invariant under such field redefinition. In such case, the connection between

the coupling 1/fξ and the axion decay constant Mξ depends on the choice of field basis, so

deserves more careful analysis.

Recently the authors of [40] examined a model with clockwork-type Stückelberg mix-

ings between N axions and (N − 1) U(1) gauge bosons, and noticed that ξ is so well

protected by the (N − 1) U(1) gauge symmetries from getting a mass in the limit N � 1.

As we will see, such protection of ξ from being massive is deeply connected with the expo-

nential reduction of the axion field range Mξ by the Stückelberg mixing in the limit N � 1.

Therefore the previous studies suggest that Stückelberg mixing between axions and U(1)

gauge bosons can result in rich consequences in low energy axion physics. We wish to

examine those consequences in a general framework which can cover all of the previous

studies, while clarifying some confusions made in the previous works.

The organization of this paper is as follows. In the next section, we discuss the axion

field range and low energy couplings in generic axion models with Stückelberg mixing. We

first note that in such models the gauge-invariant axion combination ξ is periodic modulo

a shift of the gauge-variant axion combinations eaten by the massive U(1) gauge bosons,

which is determined by the kinetic metric and U(1) gauge charges of the original axions.

This often makes the connection between the field range and low energy couplings of ξ

less transparent. We then derive the field range of ξ for generic forms of the axion kinetic

metric and U(1) charges, and discuss the axion couplings to matter and gauge fields, which

depend on the choice of the matter field basis. We also identify the field basis for which

all non-derivative couplings of ξ are quantized in a manner manifestly consistent with the

axion periodicity ξ ≡ ξ + 2πMξ. It is noted also that Stückelberg mixing typically reduces

the axion field range to a value smaller than the mass scales in the UV theory. In particular,

for the case of Stückelberg mixing between N axions and (N − 1) U(1) gauge bosons, the

axion field range is reduced as Mξ = O(k−(N−1)f/
√
N !) in the limit N � 1, where f and

k denote the typical decay constant and the root mean square of the U(1) gauge charges

of the original N axions.

In section 3, we apply the results of section 2 to specific examples to see the implications

of our results. We first consider an illustrative simple model of Stückelberg mixing between

two axions and a single U(1) gauge boson. For this model, we study the reparameterization-

invariant physical quantities such as the axion field range, axion 1PI amplitude to gauge

bosons, and the axion effective potential induced by non-perturbative gauge dynamics,
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which are determined by the reparameterization-dependent axion couplings in the model.

Another example is the model studied in [40], involving N axions which have a clockwork-

type Stückelberg mixing with (N − 1) U(1) gauge bosons. For this model, we examine

the field range and low energy couplings of the gauge-invariant axion combination ξ, and

discuss how much non-trivial it is to generate an effective potential of ξ in the limit N � 1.

Section 4 is the conclusion.

2 Axion field range and couplings with Stückelberg mixing

2.1 Stückelberg mixing between two axions and single U(1) gauge boson

In this section, we examine the axion field range and low energy couplings in generic axion

models with the Stückelberg mixing. For simplicity, we start with the case of two axions

which have a Stückelberg mixing with single U(1)A gauge boson. In addition to U(1)A,the

model involves also a non-Abelian gauge symmetry which will be chosen to be SU(Nc) in

the following discussion. At high scales above the Stückelberg mass,the lagrangian density

is given by

L =
1

2

∑
ij

Gij
(
∂µθ

i − kiAµ
) (
∂µθj − kjAµ

)
− 1

4g2
FµνF

µν − 1

4g2
a

GaµνG
aµν

+
1

32π2

(∑
i

riθ
i

)
GaµνG̃

aµν +
1

32π2

(∑
i

siθ
i

)
FµνF̃

µν

+
∑
P

|DµφP |2 +
∑
I

ψ̄Iiσ̄
µDµψI −

(
µIJe

i
∑
i n
IJ
i θiψIψJ + h.c.

)
−
(
λIJP e

i
∑
i n
IJP
i θiφPψIψJ + h.c.

)
+
∑
i

(∂µθ
i − kiAµ)Jµi + · · · , (2.1)

where θi (i = 1, 2) are dimensionless axion fields normalized to have the 2π periodicity:

θi ≡ θi + 2π, (2.2)

Aµ and Gaµ denote the U(1)A × SU(Nc) gauge fields, ψI and φP are chiral fermions and

complex scalar fields in the model, Jµi are gauge-invariant currents made of matter fields

Φ = (φP , ψI), and the ellipsis stands for possible additional terms including the gauge-

invariant potential of θi and φP . We assume that the (approximate) continuous shift

symmetries θi → θi + constant are good enough, so that the axion kinetic metric Gij is

independent of θi. Under U(1)A, the fields transform as

U(1)A : Aµ → Aµ + ∂µΛ, θi → θi + kiΛ, Φ→ e−iqΦΛ Φ (Φ = ψI , φP ) , (2.3)

where the U(1)A gauge transformation function Λ(x) obeys the periodicity condition

Λ(x) ≡ Λ(x) + 2π, (2.4)

which ensures that the U(1)A charges ki and qΦ have integer values. The axion θi can have

a variety of non-derivative couplings to the gauge and matter fields, some of which are
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explicitly given and parametrized by ri, si, n
IJ
i and nIJPi in (2.1), as well as the derivative

couplings to the currents Jµi . Here we choose the field basis for which the 2π periodicity

of θi is manifest, i.e. the model is invariant under the discrete gauge symmetries

Zi : θi → θi + 2π (i = 1, 2), (2.5)

under which only θi transforms, while all other fields are invariant.3 In such field basis,

the non-derivative coupling parameters ri, si, n
IJ
i and nIJPi have integer values,4 which en-

sures that the model (2.1) is manifestly invariant under
∏
i Zi. Obviously the fermion mass

parameter µIJ and the Yukawa coupling λIJP can be nonzero only when the correspond-

ing operators are invariant under SU(Nc), and also satisfy the following U(1)A invariance

conditions:

qI + qJ =
∑
i

nIJi k
i, qI + qJ + qP =

∑
i

nIJPi ki. (2.6)

We consider the case that the fermions {ψI} form a vector-like representation of SU(Nc),

but can be chiral under U(1)A. Then there can be nonzero [U(1)A]3 and U(1)A× [SU(Nc)]
2

gauge anomalies, which should be cancelled by the U(1)A variation of the axion couplings

θiFF̃ and θiGG̃. This requires∑
I

q3
I +

∑
i

sik
i = 2

∑
I

qITr(T 2
a (ψI)) +

∑
i

rik
i = 0, (2.7)

where Ta(ψI) denotes the SU(Nc) generator for the fermion field ψI .

For our subsequent discussion, it is useful to define a complete set of integer-valued

vectors and dual vectors in θ-space, for which the integer-valued components of each vector

are relatively prime. One such vector is provided by the U(1)A charges of θi as

~kr =
(
k1
r , k

2
r

)
≡
(
k1, k2

)
gcd(~k)

, (2.8)

where gcd(~k) is the greatest common divisor of k1 and k2. We can construct the other

linearly independent vector ~̀ = (`1, `2) and also the dual vectors
~̃
k = (k̃1, k̃2) and

~̃
` =

3Generically the discrete symmetry Zi may include additional transformations of light fields in the model,

e.g. Φ→ ei∆ΦΦ for matter fields Φ = {φP , ψI}, as well as a change of discrete quantum numbers to define

the effective theory (2.1), e.g. a shift of background flux which originates from the underlying UV theory.

The transformation Φ → ei∆ΦΦ can be eliminated by making the θi-dependent field redefinition: Φ →
e−i∆Φθ

i/2πΦ, after which Φ becomes invariant under Zi, while the lagrangian density is accordingly modified

in the new field basis. As for the possibility of background flux which has a non-trivial transformation under

Zi, if such flux exists, the U(1)A-invariant axion combination can get a heavy mass from the flux together

with the monodromy feature associated with the shift of flux [16, 17]. Here we are interested in the

effects of the Stückelberg mixing on low energy axion physics, and therefore consider the case without such

background flux.
4Note that such quantization of non-derivative couplings of θi is based on the assumption that the

lagrangian (2.1) is valid over the entire range of the axion fields θi, which we take in this paper. In some

case, for instance the QCD axion aQCD at scales below the QCD scale, the QCD mesons have non-trivial

axion-dependent tadpoles, rendering the axion effective lagrangian valid over the full range of aQCD to have

a complicate form. In such case, one usually considers an effective lagrangian of small axion fluctuation

δaQCD around the vacuum, whose non-derivative couplings are not constrained to be quantized in the unit

of 1/∆aQCD.

– 4 –



J
H
E
P
1
2
(
2
0
1
9
)
0
3
3

(˜̀
1, ˜̀

2) from the conditions:

~̃
k · ~kr = 0,

~̃
k · ~̀= 1,

~̃
` · ~̀= 0,

~̃
` · ~kr = 1. (2.9)

For a given ~k, the above conditions uniquely (up to sign) fix
~̃
k as

~̃
k = ±(k2

r ,−k1
r) = ±(k2,−k1)

gcd(~k)
, (2.10)

while ~̀ and
~̃
` have additional degeneracy. For ~̀ and

~̃
` satisfying (2.9), one easily finds

~̀′ = ~̀+ q~kr,
~̃
`′ = ~̃

`− q~̃k (2.11)

are also a solution, where q is an arbitrary integer. At any rate, all solutions of (2.9) satisfy

the identity

kir
˜̀
j + `ik̃j = δij (2.12)

which turns out to be quite useful for our subsequent discussions. As we will see in the

later part of this section, the above construction of the integer-valued vectors (~kr, ~̀) and

dual vectors (
~̃
k,
~̃
`) can be easily generalized to the more general case of N(> 2) axions

which have the Stückelberg mixings with (N − 1) U(1) gauge bosons.

In the above model, the U(1)A gauge boson gets a nonzero mass gMA through the

Stückelberg mechanism, where

M2
A(G,~k) =

∑
ij

Gijk
ikj . (2.13)

It is then straightforward to rewrite the axion kinetic terms in terms of the gauge-invariant

physical axion ξ and the gauge-variant ζ eaten by the massive U(1)A gauge boson:

1

2

∑
ij

Gij(∂µθ
i − kiAµ)(∂µθj − kjAµ) =

1

2
(∂µξ)

2 +
1

2
M2
A (Aµ − ∂µζ)2 , (2.14)

where

ξ = Mξ

∑
i

k̃iθ
i, ζ = M−2

A

∑
ij

Gijk
iθj (2.15)

for

Mξ(G,~k) =
1√∑

ij(G
−1)ij k̃ik̃j

. (2.16)

Note that we use the convention that the gauge-variant ζ is dimensionless, while the gauge-

invariant ξ is a canonically normalized field with mass dimension one.

Using (2.15), the original field variable θi can be expressed in terms of ζ and ξ as

θi = kiζ +

∑
j(G

−1)ij k̃j∑
ij(G

−1)ij k̃ik̃j

ξ

Mξ
. (2.17)
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To identify the periodicities of ξ and ζ, let us consider how ξ and ζ transform under

θi → θi + 2πni (2.18)

for generic integers ni, which correspond to the discrete gauge transformations generated

by (2.5). With the identity (2.12), one can make the decomposition∑
j(G

−1)ij k̃j∑
i,j(G

−1)ij k̃ik̃j
= `i + Γ(G,~k)ki, (2.19)

where

Γ(G,~k) =
1

gcd(~k)

∑
ij(G

−1)ij ˜̀ik̃j∑
ij(G

−1)ij k̃ik̃j
, (2.20)

and rewrite (2.17) as

θi = kiζ +
(
`i + Γ(G,~k)ki

) ξ

Mξ
. (2.21)

Note that if one chooses different solutions of (2.9), e.g. ~̀′ and
~̃
`′ in (2.11), the corresponding

Γ is shifted as

Γ(G,~k) → Γ′(G,~k) = Γ(G,~k)− q

gcd(~k)
. (2.22)

It is now straightforward to see that the discrete transformation (2.18) results in

ζ → ζ +
2π

gcd(~k)

∑
i

˜̀
in
i − 2πΓ(G,~k)

∑
i

k̃in
i,

ξ → ξ + 2πMξ

∑
i

k̃in
i, (2.23)

which are generated by

Zζ : ζ → ζ +
2π

gcd(~k)
, ξ → ξ,

Zξ : ξ → ξ + 2πMξ(G,~k), ζ → ζ − 2πΓ(G,~k). (2.24)

In figure 1, we depict Zζ and Zξ in the axion moduli space of θi. The discrete symmetry

Zζ involves only a shift of ζ, so ζ is by itself a periodic field with the field range

∆ζ =
2π

gcd(~k)
. (2.25)

On the other hand, both ξ and ζ are shifted under Zξ, so ξ is periodic with the field range

∆ξ = 2πMξ(G,~k) (2.26)

only when the accompanying shift ζ → ζ − 2πΓ(G,~k) is taken into account. Note that

∆ζ corresponds to the volume (length) of the U(1)A gauge orbit in the axion moduli space

– 6 –
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Figure 1. Illustration of the discrete gauge transformations Zζ (thick red arrow) and Zξ (thick

black arrow) in the moduli space of θi. As an example, here we take k1 = 1 and k2 = 2. The

red lines are the coordinate axis of ζ, while the green lines are the coordinate axis of ξ. Note that

∂θi/∂ζ = ki are integers, while ∂θi/∂ξ are kinetic-metric-dependent continuous numbers, so the

two coordinate axes are not orthogonal to each other.

and the coordinate direction ∂/∂ξ is normal to the U(1)A gauge orbit w.r.t. the metric Gij
(See figure 1), so that

MA∆ζ∆ξ = Vol(~θ) = (2π)2
√

det(Gij), (2.27)

where Vol(~θ) is the volume of the full axion moduli space.

In the original description using θi, all non-derivative couplings of θi are quantized

to be manifestly invariant under the 2π shifts of θi. However, in the description using ξ

and ζ, which is more convenient for describing low energy physics below the Stückelberg

mass MA, the connection between the periodicity and the non-derivative couplings of ξ

is less transparent as one needs to include the consequences of the accompanying shift

ζ → ζ − 2πΓ(G,~k). This calls for a care when one attempts to deduce the field range ∆ξ

from the couplings such as ξ GaµνG̃
aµν [26, 39]. In fact, the discrete symmetries Zζ and

Zξ have different realizations which are applicable even in the low energy limit where the

massive Aµ−∂µζ is integrated out. Combining them with the U(1)A transformations (2.3)

for Λ = −2π/gcd(~k) (for Zζ) and Λ = 2πΓ(G,~k) (for Zξ), one finds the equivalent discrete

symmetries under which only the light fields transform:

Z′ζ : ξ → ξ, Φ→ ei2πqΦ/gcd(~k)Φ,

Z′ξ : ξ → ξ + 2πMξ, Φ→ e−i2πqΦΓΦ, (2.28)

where Φ denotes the generic matter fields in the model. Obviously Z′ζ corresponds to the

discrete subgroup of U(1)A unbroken by the Stückelberg mechanism. As for Z′ξ which is

– 7 –
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associated with the periodicity of ξ, one can make the following ξ-dependent field redefini-

tion:

Φ → exp

(
−iqΦΓ(G,~k)

ξ

Mξ

)
Φ, (2.29)

after which the redefined Φ does not transform anymore. Then the discrete gauge symmetry

for the periodicity of ξ involves only a shift of ξ:

Z′′ξ : ξ → ξ + 2πMξ. (2.30)

As it should be, the field redefinition (2.29) modifies the non-derivative couplings of ξ in

such a way that in the new field basis all non-derivative couplings are integer-multiples of

1/Mξ, so manifestly consistent with the axion periodicity ξ ≡ ξ + 2πMξ. It modifies also

the derivative couplings of ξ by generating

∆Lderivative =
Γ(G,~k)

Mξ
∂µξ(x)

∑
Φ

JµΦ, (2.31)

where JµΦ is the U(1)A current of the matter field Φ.

Let us see the connection between the axion periodicity and the axion couplings to

matter and gauge fields more explicitly. We first consider the coupling to SU(Nc) gauge

fields. Using (2.21), the couplings in the original field basis can be decomposed as

1

32π2

(∑
i

riθ
i

)
GaµνG̃

aµν =
1

32π2

((∑
i

rik
i

)
ζ +

ξ

fξ

)
GaµνG̃

aµν , (2.32)

where
1

fξ
=

1

Mξ

(∑
i

ri`
i + Γ(G,~k)

∑
i

rik
i

)
. (2.33)

As we have anticipated, the coupling of ζ is manifestly consistent with the periodicity

ζ ≡ ζ + 2π/gcd(~k). On the other hand, the coupling of ξ, i.e. 1/fξ, contains a Gij-

dependent continuous piece in the unit of 1/Mξ, and therefore is not manifestly consistent

with the periodicity ξ ≡ ξ + 2πMξ. This is not surprising since we don’t include yet the

effect of the discrete shift of ζ in Zξ, or of the phase rotation of Φ in Z′ξ, or of the field

redefinition (2.29) for Z′′ξ . As a specific choice, let us make the field redefinition (2.29). One

of its consequences is the following change of lagrangian density through the anomalous

variation of the path integral measure of ψI :

∆Lanomaly =
1

32π2

Γ(G,~k)

Mξ

(
2
∑
I

qITr(T 2
a (ψI))

)
ξ GaµνG̃aµν

= − 1

32π2

Γ(G,~k)

Mξ

(∑
i

rik
i

)
ξ GaµνG̃aµν , (2.34)

where we used the anomaly cancellation condition (2.7) for the latter expression. Including

this change, the continuous piece of 1/fξ is cancelled and the coupling is modified to a

quantized value which is manifestly consistent with the periodicity ξ ≡ ξ + 2πMξ:

1

fξ
→ 1

Mξ

∑
i

ri`
i. (2.35)
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The underlying U(1)A gauge symmetry assures that such modification applies for all

non-derivative couplings of ξ. To see this, let us consider the coupling of ξ to an operator

O(Φ) (O(Φ) = ψIψJ , φPψIψJ , . . .) whose U(1)A charge is qO, which would originate from

exp

(
i
∑
i

nOi θ
i

)
O(Φ), (2.36)

where the U(1)A invariance requires that the integer-valued coefficients nOi satisfy∑
i

nOi k
i = qO. (2.37)

As in the case of the coupling to SU(Nc) gauge fields,
∑

i n
O
i θ

i can be expressed in terms

of ζ and ξ as ∑
i

nOi θ
i =

(∑
i

nOi k
i

)
ζ +

(∑
i

nOi `
i + Γ(G,~k)

∑
i

nOi k
i

)
ξ

Mξ
. (2.38)

Again, under the field redefinition (2.29), O(Φ) transforms as

O(Φ) → exp

(
−iqOΓ(G,~k)

ξ

Mξ

)
O(Φ), (2.39)

which results in the quantized non-derivative couplings of ξ as

exp

(
i
∑
i

nOi θ
i

)
O(Φ) → exp

(
i
∑
i

nOi `
i ξ

Mξ

)
O(Φ). (2.40)

So, in the new field basis after the field redefinition (2.29), all non-derivative couplings of

ξ are given by inter-multiples of 1/Mξ, and therefore manifestly consistent with the axion

periodicity ξ ≡ ξ+2πMξ, while the derivative couplings are shifted by the additional terms

in (2.31).

Let us summarize the above discussions with a low energy effective theory obtained

by integrating out the massive U(1)A gauge boson. The U(1)A gauge invariance admits to

choose the unitary gauge ζ = 0 and integrate out Aµ using its equation of motion. For the

model of (2.1), this results in the effective lagrangian density of the light axion ξ, gauge

fields Gaµ and matter fields Φ = (φP , ψI), which is given by

LI =
1

2
∂µξ∂

µξ − 1

4g2
a

GaµνG
aµν +

1

32π2

∑
i

ri(`
i + Γ(G,~k)ki)

ξ

Mξ
GaµνG̃

aµν

+
∑
P

|DµφP |2 +
∑
I

ψ̄Iiσ̄
µDµψI −

(
µIJe

i
∑
i n
IJ
i (`i+Γ(G,~k)ki)ξ/MξψIψJ + h.c.

)
−
(
λIJP e

i
∑
i n
IJP
i (`i+Γ(G,~k)ki)ξ/MξφPψIψJ + h.c.

)
+
∂µξ

Mξ

∑
i

(`i + Γ(G,~k)ki)Jµi +O
(

1

M2
A

)
, (2.41)

where O(1/M2
A) stands for the higher-dimensional effective interactions generated by the

exchange of the massive U(1)A gauge field, and the ellipsis denotes the other possible terms
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including the potential of ξ and φP . Here we are using the same matter field basis as in the

original model and the periodicity of ξ is ensured by the discrete gauge symmetry (2.28):

Z′ξ : ξ → ξ + 2πMξ, Φ→ e−i2πqΦΓΦ, (2.42)

where Mξ, Γ(G,~k) and ~̀,
~̃
k,
~̃
` are defined in (2.16), (2.20) and (2.9), respectively. In the

above, all non-derivative axion couplings are decomposed into two pieces, a piece quantized

in the unit of 1/Mξ and the other continuous piece proportional to Γ(G,~k). Obviously

such decomposition is not unique, but has an ambiguity parametrized by integer as (2.11)

and (2.22). The axion couplings in (2.41) assures that the continuous parts of all non-

derivative couplings of ξ can be rotated away by the field redefinition

Φ → e−iqΦΓξ/MξΦ, (2.43)

after which the effective lagrangian density takes the form

LII =
1

2
∂µξ∂

µξ − 1

4g2
a

GaµνG
aµν +

1

32π2

(∑
i

ri`
i

)
ξ

Mξ
GaµνG̃

aµν

+
∑
P

Dµφ
∗
PD

µφP +
∑
I

ψ̄Iiσ̄
µDµψI −

(
µIJe

i(
∑
i n
IJ
i `i)ξ/MξψIψJ + h.c

)
−
(
λIJP e

i(
∑
i n
IJP
i `i)ξ/MξφPψIψJ + h.c.

)
+
∂µξ

Mξ

(∑
i

(`i + Γ(G,~k)ki)Jµi + Γ(G,~k)
∑

Φ

JµΦ

)
+O

(
1

M2
A

)
, (2.44)

so all non-derivative couplings of ξ are quantized to be manifestly consistent with the axion

periodicity ξ ≡ ξ + 2πMξ.

In the above, we presented the low energy effective theory of the model (2.1) in two

different field basis. It should be stressed that axion couplings to matter and/or gauge

fields are basis-dependent, e.g. vary under axion-dependent phase rotation of matter fields,

while their physical consequences should be basis-independent. In the next section, we will

discuss this issue with a simple example.

2.2 Generalization to multiple (N > 2) axions

It is in fact straightforward to generalize the discussion to more general cases, for instance

models with N(> 2) axions having the Stückelberg mixings with (N−1) U(1) gauge bosons.

In such models, the gauge invariant kinetic terms of axions can be written as

Lkin =
1

2

N∑
ij=1

Gij

(
∂µθ

i −
N−1∑
α=1

kiαA
α
µ

)(
∂µθj −

N−1∑
β=1

kjβA
βµ

)
(2.45)

and the U(1) gauge transformations of the fields are given by

U(1)α : Aαµ → Aαµ + ∂µΛα, θi → θi +
∑
α

kiαΛα, Φ→ e−i
∑
α qΦαΛαΦ, (2.46)
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where Φ denotes the gauge-charged matter fields in the model. Again θi and Λα are

normalized to have the 2π periodicity, and then all U(1) charges kiα and qΦα have integer

values. Constructing a complete set of the integer-valued vectors and dual vectors in the

θ-space is also useful here. For N − 1 linearly independent vectors,

~krα = (k1
rα, · · · , kNrα) ≡ (k1

α, · · · , kNα )

gcd(~kα)
for α = 1, 2, · · · , N − 1, (2.47)

we can find the remaining vector ~̀ and the N dual vectors
~̃
k,
~̃
`α from

~̃
k · ~krα = 0,

~̃
k · ~̀= 1,

~̃
`α · ~krβ = δαβ ,

~̃
`α · ~̀= 0 for α, β = 1, 2, · · · , N − 1. (2.48)

As in the case of two axion model,
~̃
k is determined uniquely (up to sign) by the U(1)A

charge vectors ~krα as

k̃i = ± det


δ1
i δ2

i · · · δNi
k1
r1 k2

r1 · · · kNr1
k1
r2 k2

r2 · · · kNr2
...

...
. . .

...

k1
rN−1 k

2
rN−1 · · · kNrN−1

 . (2.49)

For given ~krα and
~̃
k, the corresponding ~̀ and

~̃
`α are not unique as the conditions in (2.48)

are invariant under the reparameterization

~̀ → ~̀′ = ~̀+
∑
α

qα~krα,
~̃
`α → ~̃

`α′ = ~̃
`α − qα~̃k, (2.50)

where qα (α = 1, 2, · · · , N−1) are arbitrary independent integers. However such degeneracy

of ~̀ and
~̃
`α does not matter to us as all solutions satisfy the common completeness relation∑

α

kirα
˜̀α
j + `ik̃j = δij . (2.51)

Again, one can express the original axion fields θi in terms of the canonically normalized

gauge-invariant ξ and the gauge-variant ζα eaten by Aαµ:

θi =
N−1∑
α=1

kiαζ
α +

∑N
j=1(G−1)ij k̃j∑
ij(G

−1)ij k̃ik̃j

ξ

Mξ
(2.52)

for which the axion kinetic terms (2.45) take the familiar form

Lkin =
1

2
(∂µξ)2 +

1

2

∑
αβ

(M2
A)αβ(Aαµ − ∂µζα)(Aµβ − ∂µζβ), (2.53)

where

(M2
A)αβ =

∑
ij

Gijk
i
αk

j
β , M2

ξ =
1∑

ij(G
−1)ij k̃ik̃j

. (2.54)
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Obviously (M2
A)αβ is the mass matrix of the (N − 1) massive U(1) gauge bosons. As in

the case of two axion model, we will see that Mξ corresponds to the decay constant of ξ,

i.e. the field range of ξ is given by ∆ξ = 2πMξ. From (2.52), we find also

ξ

Mξ
=
∑
i

k̃iθ
i, ζα =

∑
ijβ

(
M−2
A

)αβ
Gijk

i
βθ

j , (2.55)

Using the identity (2.51), one can rewrite (2.52) as

θi =

N−1∑
α=1

kiαζ
α +

(
`i +

N−1∑
α=1

Γα(G,~kα)kiα

)
ξ

Mξ
, (2.56)

where

Γα(G,~kα) =
1

gcd(~kα)

∑
ij(G

−1)ij ˜̀αi k̃j∑
ij(G

−1)ij k̃ik̃j
. (2.57)

With the above expression, one can see that the discrete gauge symmetries for the 2π

periodicities of θi, i.e.

Zi : θi → θi + 2π (i = 1, · · · , N), (2.58)

are generated by

Zζα : ζα → ζα +
2π

gcd(~kα)
(α = 1, · · · , N − 1),

Zξ : ξ → ξ + 2πMξ, ζα → ζα − 2πΓα(G,~kα). (2.59)

One can consider also the equivalent discrete symmetries which do not involve a transfor-

mation of the massive ζα:

Z′ζα = Zζα × U(1)α|Λα= −2π

gcd(~kα)

: ξ → ξ, Φ→ ei2πqΦα/gcd(~kα)Φ,

Z′ξ = Zξ ×
∏
α

U(1)α|Λα=2πΓα : ξ → ξ + 2πMξ, Φ→ e−i2π
∑
α qΦαΓαΦ. (2.60)

As for Z′ξ which is associated with the periodicity of ξ, one can make the ξ-dependent

field redefinition

Φ → exp

(
−i
∑
α

qΦαΓα(G,~kα)
ξ

Mξ

)
Φ, (2.61)

after which the periodicity of ξ is assured by

Z′′ξ : ξ → ξ + 2πMξ, Φ→ Φ. (2.62)

As in the case of two axion model, the above field redefinition provides a field basis for

which all non-derivative couplings of ξ are quantized in the unit of 1/Mξ in a manner

manifestly consistent with the axion periodicity ξ ≡ ξ + 2πMξ.

Models of N(> 2) axions which have the Stückelberg mixings with (N −1) U(1) gauge

bosons exhibit several distinctive features in the limit N � 1. First of all, in such limit ξ
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has a field range exponentially suppressed relative to the original axion scales encoded in

the axion kinetic metric Gij . To see this, let us note that Mξ is bounded as

fmin

||k̃||
≤Mξ ≤

fmax

||k̃||
, (2.63)

where f2
max and f2

min denote the maximum and minimum eigenvalues of Gij , and

||k̃|| ≡
(∑

i

k̃ik̃i

)1/2

. (2.64)

It was shown in [19] that ||k̃|| determined by (2.49) grows exponentially in the limit N � 1:

||k̃|| ∼ (kirα)N−1
rms

√
N !, (2.65)

where (kirα)rms is the root-mean-square of the normalized U(1) charges:

(kirα)rms =

√∑
iα(kirα)2

N(N − 1)

(
kirα =

kiα

gcd(~kα)

)
. (2.66)

In the clockwork axion models [19, 33–35], a large value of ||k̃|| results in an enlarged field

range of the light axion combination as ||k̃|| can be interpreted as the number of windings

along the light axion direction. On the other hand, in the Stückelberg axion models under

discussion, a large ||k̃|| means an enlarged volume of the gauge orbit of
∏

U(1)α in the

axion moduli space of θi. As a consequence, it results in a reduction of the field range

of the gauge-invariant axion combination which is normal to the gauge orbit of
∏

U(1)α.

Specifically, for

Gij ∼ f2δij , (2.67)

the axion field range is reduced as

Mξ ∼
1

(kirα)N−1
rms

√
N !

f, (2.68)

which is exponentially smaller than the original axion scale f .

Stückelberg axion models in the limit N � 1 have an unusual feature which may cause

a confusion in some case. In the original field basis without making any ξ-dependent field

redefinition, all (both derivative and non-derivative) couplings of ξ are determined simply

by the couplings of θi and the wavefunction mixing between θi and ξ, which is given by

(see (2.52))

〈θi|ξ〉 =

∑N
j=1(G−1)ij k̃j∑
ij(G

−1)ij k̃ik̃j

1

Mξ
. (2.69)

As θi are angular fields with 2π periodicity, their couplings can be described by dimension-

less parameters, e.g. the integer coefficients ri, si, n
IJ
i , n

IJP
i for the non-derivative couplings

in (2.1) and also the continuous parameters κiψI , κ
i
φP

describing the derivative couplings of

the form:

Dµθ
iJµi = Dµθ

i
(
κiψI ψ̄Iσ

µψI + iκiφP (φ∗PDµφP − φPDµφ
∗
P ) + . . .

)
. (2.70)
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If the model does not involve any large dimensionless coupling or large number of fields,

which might be required for a sensible UV behavior of the model, those couplings of θi

are all expected to be of order unity or smaller. On the other hand, for Gij ∼ f2δij , the

wavefunction mixing (2.69) is bounded as

〈θi|ξ〉 . 1

||k̃||
1

Mξ
∼ 1

f
. (2.71)

This implies that in the original field basis all (both derivative and non-derivative) couplings

of ξ are of the order of 1/f or smaller if the couplings of θi are of order unity or smaller,

which is exponentially weaker than the strength ∼ 1/Mξ in the limit N � 1. On the

other hand, we already noticed that after the ξ-dependent field redefinition (2.61), all non-

derivative couplings of ξ are quantized in the unit of 1/Mξ, so either exactly zero or of

the order of 1/Mξ. If any of those quantized non-derivative couplings is nonzero, some

derivative couplings should be of the order of 1/Mξ in the new field basis due to the pieces

induced by the field redefinition (2.61). This means that in the limit N � 1 axion couplings

to matter and gauge fields have hierarchically different size in the two field bases related

by the field redefinition (2.61). Since all physical consequences of the model should be

independent of the choice of field basis, if one uses the new field basis, then there should

be a fine cancellation between the contributions from different couplings of O(1/Mξ) to

make the total result to be of the order of 1/f � 1/Mξ as suggested by the couplings in

the original field basis.

As a related feature, in Stückelberg axion models in the limit N � 1, ξ is so well

protected by the (N − 1) U(1) gauge symmetries from getting a mass, and therefore can

be ultra-light in a natural way. This was noticed before in [40] for a specific model with

clockwork-type U(1) gauge charges of θi. In fact, this is a consequence of the exponentially

large ||k̃||, so a generic feature of the Stückelberg axion models in the limit N � 1. To see

this, let us consider the constraint on the axion potential from the U(1) gauge symmetries.

In the prescription where the 2π periodicities of all θi are manifest, any non-trivial axion

potential should be a periodic function of the gauge-invariant combination of θi, i.e.

Veff = Veff

(∑
i

Liθ
i

)
(2.72)

for integer coefficients Li = Lk̃i where L is a non-zero integer, for which∑
i

Liθ
i = L

ξ

Mξ
. (2.73)

As ||k̃|| is exponentially large in the limit N � 1, some Li should be exponentially large

also. This means that any mechanism to generate an axion potential should provide those

large integer coefficient Li. The required large Li might be achieved by introducing many

degrees of freedom or operators with very high mass dimensions as discussed in [40]. In

any case, generically the requirement of exponentially large Li provides a strong constraint

on the mechanism to generate an axion potential, and usually makes the induced axion

– 14 –



J
H
E
P
1
2
(
2
0
1
9
)
0
3
3

potential highly suppressed. In the next section, we will present an explicit model of N(> 2)

axions θi whose gauge charges for (N − 1) U(1) symmetries have a clockwork pattern [40],

and study the behavior of the model in the limit N � 1.

3 Implications with examples

In the previous section, we derived the field range of the gauge-invariant axion combination

ξ and examined the structure of its couplings in generic models with the Stückelberg mixing

between axions and U(1) gauge bosons. In this section, we apply our results to the two

specific examples to see some implications of our results explicitly.

3.1 An illustrative simple model

Our first example is a simple model involving two axions ~θ = (θ1, θ2) and single U(1)A
gauge boson, which was discussed recently in [39]. The model has a simple form of kinetic

metric:

G =

(
f2

1 0

0 f2
2

)
(3.1)

and the U(1)A gauge charge of ~θ:
~k = (1, 1). (3.2)

For this model, we will examine the reparameterization-invariant physical quantities such

as the axion field range, the axion 1PI amplitude to gauge bosons, and the axion effective

potential induced by non-perturbative gauge dynamics, which can be determined by the

reparameterization-dependent axion couplings in the model.

For the above U(1)A charge vector ~k, the corresponding
~̃
k, ~̀ and

~̃
` satisfying (2.9) can

be easily found to be
~̃
k = (1,−1), ~̀= (1, 0),

~̃
` = (0, 1). (3.3)

We may take different ~̀ and
~̃
` given by (2.11), but all physical consequences should be

the same. According to our results in the previous section, the gauge-invariant axion

combination ξ and the gauge-variant ζ eaten by the U(1)A gauge boson are given by

ξ = Mξ

∑
i

k̃iθ
i = Mξ(θ

1 − θ2),

ζ = M−2
A

∑
ij

Gijk
iθj =

f2
1 θ

1 + f2
2 θ

2

f2
1 + f2

2

, (3.4)

where

M2
A =

∑
ij

Gijk
ikj = f2

1 + f2
2 ,

M2
ξ =

1∑
ij(G

−1)ij k̃ik̃j
=

f2
1 f

2
2

f2
1 + f2

2

, (3.5)
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and the U(1)A gauge boson mass and the field range of ξ are determined as gMA and

∆ξ = 2πMξ, respectively. Equivalently, the original angular axions ~θ can be decomposed as

~θ = ~k ζ +
(
~̀+ Γ(G,~k)~k

) ξ

Mξ
, (3.6)

where

Γ(G,~k) =

∑
ij(G

−1)ij ˜̀ik̃j∑
ij(G

−1)ij k̃ik̃j
= − f2

1

f2
1 + f2

2

. (3.7)

Let us consider the possible axion couplings to gauge and matter fields in this model.

In [39], it was noticed that this model can give a highly suppressed coupling of ξ to non-

Abelian gauge bosons in the parameter limit5

f1 � f2. (3.8)

This observation is based on the coupling

1

32π2
~r · ~θ GaµνG̃aµν with ~r = (1, 0), (3.9)

which results in
1

32π2

ξ

fξ
GaµνG̃

aµν , (3.10)

where
1

fξ
=

1

Mξ

(
~r · ~̀+ Γ(G,~k)~r · ~k

)
=

f2
2

f2
1 + f2

2

1

Mξ
. (3.11)

Then in the limit f1 � f2, the effective coupling 1/fξ is much smaller than the size

(∼ 1/Mξ) one would naively expect from the axion field range ∆ξ = 2πMξ. On the

other hand, the above expression of 1/fξ shows that the big suppression of 1/fξ relative

to 1/Mξ is possible only when the coupling (3.9) is not gauge-invariant by itself, i.e. only

when ~r · ~k 6= 0. Note that if ~r · ~k = 0, then 1/fξ = (~r · ~̀)/Mξ is an integer multiple of

1/Mξ as expected. If ~r · ~k 6= 0, the model should include gauge-charged chiral fermions

whose mixed U(1)A× [SU(Nc)]
2 anomaly cancels the U(1)A variation of the coupling (3.9).

In the presence of such chiral fermions, the coupling 1/fξ varies under the ξ-dependent

phase rotation of fermion fields, implying that the suppression of 1/fξ is an artifact of the

particular choice of field basis, so needs more careful interpretation.6

To see this, let us introduce the required fermions which can cancel the U(1)A variation

of (3.9):

ψ = (Nc, qψ), χ = (N̄c, qχ), (3.12)

5As was discussed in [39], this scale hierarchy can be achieved by either a warped extra dimension or

nearly conformal 4D dynamics in the underlying UV theory.
6In fact, the discussion of [39] relies on the axion potential derived in [38], which is not compatible with

our result in the previous section. This discrepancy arises from that the fermion bilinear condensation

〈ψχ〉 is treated as a field-independent constant in the discussion of axion potential in [38]. If one takes

into account the correct field-dependence of the fermion bilinear condensation, i.e. 〈ψχ〉 ∝ eiη/fη for the

composite meson field η, the resulting axion potential becomes compatible with our results.
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where Nc and N̄c denote the fundamental and anti-fundamental representation of SU(Nc),

and qψ,χ are the U(1)A charges of ψ, χ. Then the generic axion couplings to gauge and

matter fields take the form

Lint =
1

32π2
~r · ~θ GaµνG̃aµν −

(
µei~n·

~θψχ+ h.c.
)

+
∑

ψI=ψ,χ

~κψI ·Dµ
~θ ψ̄Iσ

µψI

=
cg

32π2

ξ

Mξ
GaµνG̃

aµν −
(
µeicµξ/Mξψχ+ h.c

)
+
∂µξ

Mξ

∑
ψI=ψ,χ

cψI ψ̄Iσ
µψI , (3.13)

where the gauge-variant ζ is integrated out in the latter expression. The U(1)A invariance

of the model requires

qψ + qχ = ~r · ~k = 1, ~n · ~k = n1 + n2 = qψ + qχ = 1, (3.14)

where the first condition is for the cancellation of the U(1)A × [SU(Nc)]
2 anomaly. Then

the four axion couplings cg, cµ and cψI (ψI = ψ, χ) are given by

cg = ~r · ~̀+ Γ(G,~k)~r · ~k =
f2

2

f2
1 + f2

2

,

cµ = ~n · ~̀+ Γ(G,~k)~n · ~k =
n1f

2
2 − (1− n1)f2

1

f2
1 + f2

2

,

cψI = ~κψI · ~̀+ Γ(G,~k)~κψI · ~k =
κψI1f

2
2 − κψI2f

2
1

f2
1 + f2

2

. (3.15)

We can now consider the two parameter family of ξ-dependent field redefinition:

ψ → eixψξ/Mξψ, χ → eixχξ/Mξχ, (3.16)

under which the axion couplings vary as

cg → cg + xψ + xχ, cµ → cµ + xψ + xχ, cψI → cψI − xψI (ψI = ψ, χ). (3.17)

Here the change of cg is due to the anomalous variation of the path integral measure of ψI ,

while the change of the derivative couplings cψI originates from the kinetic terms of ψI . In

the previous section, we considered a particular field redefinition with

xψI = −qψIΓ(G,~k) (ψI = ψ, χ), (3.18)

after which all non-derivative couplings of ξ are quantized to be manifestly consistent with

the axion periodicity ξ ≡ ξ+ 2πMξ. Indeed, we find that the corresponding cg and cµ have

integer values as

cg = ~r · ~̀= 1, cµ = ~n · ~̀= n1, (3.19)

while the derivative couplings are shifted as

cψI = ~κψI · ~̀+ Γ(G,~k)(~κψI · ~k + qψI ). (3.20)
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At any rate, all physical consequences of the axion coupling (3.13) should be invari-

ant under the field redefinition (3.16), and therefore determined by the following two

reparameterization-invariant coupling combinations:

cg − cµ = (~r − ~n) · ~̀ = 1− n1,

cψ + cχ + cµ = (~κψ + ~κχ + ~n) ·
(
~̀+ Γ(G,~k)~k

)
(3.21)

=
f2

2

f2
1 + f2

2

(
(~κψ)1 + (~κχ)1 + n1

)
− f2

1

f2
1 + f2

2

(
(~κψ)2 + (~κχ)2 + (1− n1)

)
.

For the specific model under discussion, cg = Mξ/fξ ' f2
2 /f

2
1 � 1 in the limit f2 � f1.

However the associated reparameterization-invariant combination cg−cµ, which is relevant

for the generation of the axion effective potential, has an integer value which is independent

of f1,2. In regard to this, one may make an analogy with the QCD. The combination cg−cµ
is an analogue of the reparameterization-invariant QCD angle θ̄ = θQCD + arg det(Mq),

where Mq is the light quark mass matrix, while the basis-dependent cg (or 1/fξ = cg/Mξ)

corresponds to the bare vacuum angle θQCD whose physical consequences always appear

through the invariant combination θ̄. In the following, we evaluate the axion effective

potential and the axion 1PI amplitude to gauge bosons to confirm that they are indeed

determined by the above two reparameterization-invariant parameter combinations.

Let us first consider the 3-point 1PI diagram of axion and SU(Nc) gauge bosons (fig-

ure 2) for the external momenta |pi| � ΛSU(Nc), where ΛSU(Nc) denotes the confinement

scale of the SU(Nc) gauge interactions. It is straightforward to find that at one-loop ap-

proximation the amplitude is given by

AξGG =
iαs

2πMξ
εµνρσε1µε2νp1ρp2σ

[
(cg − cµ) + (cψ + cχ + cµ)F (p1, p2;µ)

]
, (3.22)

where piµ and εµi are the 4-momenta and polarization vectors of the two external gauge

bosons. The loop function F is given by

F (p1, p2;µ) = 1−
∫ 1

0
dx

∫ 1−x

0
dy

2µ2

µ2 − (p2
1 x(1− x) + p2

2 y(1− y) + 2p1 · p2 xy)
, (3.23)

which has the limiting behaviour

F (p1, p2 : µ) =

−
p2

1+p2
2+p2

12µ2 +O
(
p4

µ4

)
for p2

1 ∼ p2
2 ∼ p2 � µ2

1 +O
(
µ2

p2

)
for p2

1 ∼ p2
2 ∼ p2 � µ2,

(3.24)

where pµ = −(pµ1 + pµ2 ) is the axion 4-momentum. The above result shows that the 1PI

amplitude AξGG is determined indeed by the two reparameterization-invariant combina-

tions of (3.21). One can see also that in high energy limit with p2 � µ2, we have F ' 1

and therefore AξGG is determined mostly by the reparameterization-invariant parameter

combination cg + cψ + cχ. On the other hand, in the heavy fermion limit with µ2 � p2,

F = O(p2/µ2)� 1 and then AξGG is determined mostly by the other reparameterization-

invariant combination cg − cµ.
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+ +
χ

q

q

q

+ · · ·

2

Γχ→qqq = (1)

φ

N̄

N

· · ·

ξ(p)

g(p1)

g(p2)

ψ + ξ(p)

g(p1)

g(p2)

φ

δgµν
φ

ξ
∼ ξ

16π2

Λ4
UV

M2
Pl
φ2

1

Figure 2. Feynman diagrams for the 3-point 1PI amplitude of axion (ξ) and SU(Nc) gauge bosons

(g). The fermion loop involves either the derivative couplings cψi or the non-derivative coupling cµ.

Although we literally call cg and cµ non-derivative couplings, they can be regarded as

derivative couplings in perturbation theory since GaµνG̃
aµν is a total divergence and cµ can

be rotated away into cg and cψ,χ by an appropriate ξ-dependent field redefinition (3.16).

As a result, all perturbative amplitudes induced by the axion couplings cg, cµ and cψ,χ are

vanishing in the limit when the external axion momentum p becomes zero. This can be

easily understood by the continuous PQ symmetry

U(1)PQ : ξ → ξ + cMξ, ψχ→ e−iccµψχ (c = constant), (3.25)

which is an exact symmetry in perturbation theory in our case.

Of course, the above PQ symmetry can be explicitly broken by the U(1)PQ× [SU(Nc)]
2

anomaly through non-perturbative effects such as the SU(Nc) instantons with∫
d4xGaµνG̃

aµν 6= 0, (3.26)

and also possibly by non-perturbative quantum gravity effects. Including such nonper-

turbative SU(Nc) dynamics, cg and cµ, more precisely the reparameterization-invariant

combination cg − cµ, can be regarded as genuine non-derivative coupling which can gen-

erate a non-trivial axion potential. To have a small parameter which allows a systematic

expansion of the generated axion potential, let us assume that µ/ΛSU(Nc) � 1. Then, at

scales around ΛSU(Nc), the light fermions ψ, χ form a bilinear condensation which can be

parametrized as

〈ψχ〉 = Λ3
ψe

iη/fη , (3.27)

where η is a composite meson and Λψ ∼ fη ∼ ΛSU(Nc). The behavior (3.17) of axion

couplings under the fermion field redefinition (3.16) implies that the meson potential should

be invariant under the following spurion transformation of the field and parameters:

η

fη
→ η

fη
+ (xψ + xχ)

ξ

Mξ
,

cg → cg + xψ + xχ, cµ → cµ + xψ + xχ. (3.28)

This suggests that

V (ξ, η) = U

(
η

fη
+ cg

ξ

Mξ

)
− µΛ3

ψ cos

(
η

fη
− cµ

ξ

Mξ

)
+O(µ2Λ2

SU(Nc)
), (3.29)
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where U(θ) = O(Λ4
SU(Nc)

) is a periodic function of θ which has a global minimum at

θ = 0. Note that the precise form of U(θ) depends on the details of non-perturbative

SU(Nc) dynamics, while the next term is unambiguously determined to be a simple cosine

function. Without knowing the detailed form of U(θ), we can integrate out η by minimizing

U(θ) (θ ≈ 0), which results in

η

fη
= −cg

ξ

Mξ
+O

(
µ

ΛSU(Nc)

)
. (3.30)

Inserting this solution to the potential (3.29), one finds the axion effective potential is given

by

Veff(ξ) = −µΛ3
SU(Nc)

cos

(
(cg − cµ)

ξ

Mξ

)
+O(µ2Λ2

SU(Nc)
). (3.31)

Since the basis-independent cg − cµ has an integer value, this axion potential is manifestly

consistent with the axion periodicity ξ ≡ ξ + 2πMξ regardless of the value of cg which can

be highly suppressed in some particular field basis.

3.2 Models of multiple axions with clockwork-type U(1) gauge charges

Our next example is a model of N axions ~θ = (θ1, θ2, · · · , θN ) which have the Stückelberg

mixing with (N − 1) U(1) gauge bosons Aαµ (α = 1, 2, . . . , N − 1). The U(1) gauge charges

of ~θ take the clockwork form [40]:

~k1 = (1,−q, 0, 0, · · · , 0), ~k2 = (0, 1,−q, · · · , 0), · · · , ~kN−1 = (0, 0, · · · , 1,−q) (3.32)

for an integer q > 1. Then the corresponding
~̃
k, ~̀ and

~̃
`α are found to be

~̃
k = (qN−1, qN−2, · · · , q, 1), ~̀= (0, 0, · · · , 0, 1),

~̃
`1 = (1, 0, · · · , 0, 0),

~̃
`2 = (q, 1, · · · , 0, 0), · · · , ~̃

`N−1 = (qN−2, qN−3, · · · , 1, 0).

For simplicity, we assume all U(1)α gauge couplings are universal, gα = g, and take the

most simple form of the axion kinetic metric:

Gij = δijf
2. (3.33)

Then the gauge boson mass matrix is given by

g2M2
A = g2

∑
ij

Gijk
ikj = g2f2


1 + q2 −q 0 · · · 0

−q 1 + q2 −q · · · 0
...

...
. . .

... −q
0 0 · · · −q 1 + q2

 , (3.34)

which results in the mass eigenvalues(
M

(n)
A

)2
= g2f2

(
1 + q2 − 2q cos

nπ

N

)
(n = 1, 2, · · · , N − 1). (3.35)
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As anticipated in the previous section, the axion decay constant of ξ, which is defined by

the periodicity ξ ≡ ξ + 2πMξ, is exponentially reduced as

Mξ =
1√∑

ij(G
−1)ij k̃ik̃j

=
f

||k̃||
=

√
q2 − 1

q2N − 1
f ∼ f

qN−1
, (3.36)

which is consistent with the behavior (2.68) in the limit N � 1 as the root mean square

of the U(1) charges is estimated as (kirα)rms ∼ q/
√
N .

However, having the field range Mξ � f does not mean that the couplings of ξ are of

the order of 1/Mξ � 1/f . The gauge-invariant axion ξ interacts with other fields through

the wavefunction mixing between ξ and the original angular axions θi. Then from the

decomposition

θi =

N−1∑
α=1

kiαζ
α +

q2 − 1

(qN − q−N )qi
ξ

Mξ
=

N−1∑
α=1

kiαζ
α +

(
`i +

N−1∑
α=1

Γα kiα

)
ξ

Mξ
, (3.37)

where

Γα =
qα − q−α
qN − q−N , (3.38)

one immediately finds that the wavefunction mixing is given by

〈θi|ξ〉 ∼ 1

qi−1

1

f
. (3.39)

As a consequence, unless one makes a ξ-dependent field redefinition which may change the

characteristics of axion couplings, all couplings of ξ are of the order of 1/f or smaller if the

couplings of θi are of order unity or smaller.

To examine the axion couplings more explicitly, let us introduce SU(Nc) gauge fields

Gaµ and Nf pairs of chiral fermions (ψI , χI) (I = 1, 2, . . . , Nf ) whose SU(Nc) ×
∏
α U(1)α

gauge charges are given by

ψI = (Nc, qψIα), χI = (N̄c, qχIα). (3.40)

Those gauge and matter fields can couple to θi as

1

32π2

(∑
i

riθ
i

)
GaµνG̃

aµν −
(∑

I

µIe
i
∑
i n
I
i θ
i
ψIχI + h.c.

)
+
∑
I,i

Dµθ
i
(
κIψiψ̄Iσ

µψI + κIχiχ̄Iσ
µχI

)
, (3.41)

where the invariance under
∏
α U(1)α requires∑

i

rik
i
α =

∑
I

(qψIα + qχIα),
∑
i

nIi k
i
α = qψIα + qχIα. (3.42)

Here for simplicity we consider only the flavour-diagonal axion couplings. After integrating

out the massive U(1)α gauge fields Aαµ−∂µζα, one finds the low energy couplings of ξ given
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by

cg
32π2

ξ

Mξ
GaµνG̃aµν −

(∑
I

µIe
icIµξ/MξψIχI + h.c.

)
+
∂µξ

Mξ

∑
I

(
cIψψ̄Iσ

µψI + cIχχ̄Iσ
µχI
)
, (3.43)

where

cg =
q2 − 1

qN − q−N
∑
i

ri
qi
, cIµ =

q2 − 1

qN − q−N
∑
i

nIi
qi
,

cIψ =
q2 − 1

qN − q−N
∑
i

κIψi
qi
, cIχ =

q2 − 1

qN − q−N
∑
i

κIχi
qi
. (3.44)

Hence in this prescription, the effective axion couplings cg, c
I
µ, c

I
ψ and cIχ are manifestly sup-

pressed by 1/qN � 1 relative to the original axion couplings ri, n
I
i , κ

I
ψi, κ

I
χi, and therefore

all couplings of ξ are of the order of 1/f ∼ 1/qN−1Mξ or smaller as long as the original

couplings of θi are of order unity or smaller. On the other hand, in the new field basis after

the field redefinition (2.61), one finds

cg =
∑
i

ri`
i = rN , cIµ =

∑
i

nIi `
i = nIN ,

cIψ = κIψN +
∑
α

Γα

(
qψIα +

∑
i

κIψik
i
α

)
, cIχ = κIχN + Γα

(
qχIα +

∑
i

κIJχi k
i
α

)
, (3.45)

so the couplings do not reveal a suppression by 1/qN . This means that the characteristic

size of axion couplings is so different in the two different field bases. On the other hand,

all physical consequences of the model should be independent of the choice of field basis.

This indicates that one needs to be careful when examine the physical consequences of the

axion couplings in the new field basis after the field redefinition (2.61) as there can be a

fine cancellation among the contributions from different couplings.

To avoid a confusion due to the basis-dependent feature of the couplings, let us consider

the basis-independent (reparameterization-invariant) combinations of axion couplings. Al-

though we have introduced 3Nf + 1 axion couplings, all of their physical consequences can

be described by the Nf + 1 combinations of couplings:

c̃g ≡ cg −
∑
I

cIµ =
∑
i

(
ri −

∑
I

nIi

)
`i = rN −

∑
I

nIN ,

c̃I ≡ cIψ + cIχ + cIµ =
q2 − 1

qN − q−N
∑
i

κIψi + κIχi + nIi
qi

, (3.46)

which are invariant under the field redefinition

ψI → eixψI ξ/MξψI , χI → eixχI ξ/MξχI . (3.47)
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For instance, the perturbative 3-point 1PI amplitude of ξ to SU(Nc) gauge fields is given

by

AξGG =
iαs

2πMξ
εµνρσε1µε2νp1ρp2σ

[
c̃g +

∑
I

c̃IF (p1, p2;µI)

]
, (3.48)

where piµ and εµi are the 4-momenta and polarization vectors of the two external gauge

bosons and the loop function F is given by (3.24), while the axion potential generated by

non-perturbative SU(Nc) dynamics is determined by the integer-valued combination c̃g as

Veff

(
c̃g

ξ

Mξ

)
, (3.49)

where Veff(x) is a 2π periodic function of x, whose form is determined by more details of

the model. Note that c̃I are continuous real numbers, while c̃g is integer-valued.

One might be puzzled about that the basis-independent combinations c̃I are suppressed

by 1/qN relative to the original axion couplings such as κIψi, κ
I
χi, n

I
i , while there is no such

suppression for c̃g. This suggests that the model should involve a structure yielding an

exponentially large number of O(qN ) to have c̃g 6= 0. Indeed the U(1)α (α = 1, 2, . . . , N−1)

gauge symmetries require such a structure and make it highly non-trivial to achieve c̃g 6= 0.

To see this, let us note that the gauge invariance condition (3.42) implies∑
i

(
ri −

∑
I

nIi

)
kiα = 0 for all α = 1, 2, . . . , N − 1, (3.50)

and therefore ~r −∑I ~n
I should be proportional to

~̃
k. Combined with c̃g = rN −

∑
I n

I
N

from (3.45), this determines ~r −∑I ~n
I as

~r −
∑
I

~nI = c̃g
~̃
k = c̃g (qN−1, qN−2, · · · , q, 1). (3.51)

Therefore c̃g can be non-zero in the limit N � 1 only when the model parameters ri and/or∑
I n

I
i are exponentially large as O(qN−i). In other word, ξ can get a non-trivial potential

from non-perturbative SU(Nc) dynamics only in the extreme case involving exponentially

large parameter and/or exponentially many degrees of freedom [40]. This reflects that in

the limit N � 1 the axion ξ is so well protected by the U(1)α (α = 1, 2, . . . , N − 1) gauge

symmetries from getting a mass, so can be ultra-light in a natural manner.

As the above discussion suggests, one needs a non-trivial engineering to generate an

effective potential of ξ. We close this subsection by providing one example of such engi-

neering. Our example involves N complex scalar fields φP with the U(1)α gauge charges

qφPα = δPα (P = 1, 2, . . . , N ; α = 1, 2, . . . , N − 1). (3.52)

Although it is not essential for our discussion, to make the model simpler, we assume the

discrete symmetry Zq+1 under which

Zq+1 : θi → θi + (−1)i
2π

q + 1
, φP → e

i(−1)P (P+1) 2π
q+1φP . (3.53)
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Then the scalar potentials of φP takes the form

V (θi,φI) =
∑
P

m2
P |φP |2 +

∑
PQ

λPQ|φP |2|φQ|2

−ε1ei(q+1)θ1
φ∗q+1

1 −ε2eiθ
2
φq1φ

∗
2−·· ·−εNeiθ

N
φqN−1φ

∗
N −εN+1φ

q+1
N +h.c.+ . . . ,

where the ellipsis denotes the higher-dimensional terms. Here we consider the case with

q = 3 or 2, but pretend that q is a generic integer. After integrating out ζα eaten by the

U(1)α gauge fields, the second line of the potential becomes

− ε1eib1ξ/Mξφ∗q+1
1 − ε2eib2ξ/Mξφq1φ

∗
2 − · · · − εNeibN ξ/MξφqN−1φ

∗
N − εN+1φ

q+1
N + h.c., (3.54)

where

b1 =
(q + 1)(q2 − 1)

(qN − q−N )q
, b2 =

q2 − 1

(qN − q−N )q2
, · · · , bN =

q2 − 1

(qN − q−N )qN
. (3.55)

One can easily arrange the model to have non-zero vacuum values of φP , and then φP can

be decomposed as

φP (x) =
1√
2

(
vP + hP (x)

)
eiaP (x)/vP , (3.56)

where vP /
√

2 = 〈φP 〉 and hP denotes the radial fluctuation of φP . Here we are interested

in the limit that εI are small enough, so that the phase fields aP can be regarded as light

pseudo-Goldstone bosons. Then the massive hP can be safely integrated out, while leaving

the following effective potential of aP and ξ:

Veff(ξ, aI) = −Λ4
1 cos

(
(q + 1)

a1

v1
− b1

ξ

Mξ

)
− Λ4

2 cos

(
q
a1

v1
− a2

v2
+ b2

ξ

Mξ

)
+ · · ·

−Λ4
N cos

(
q
aN−1

vN−1
− aN
vN

+ bN
ξ

Mξ

)
− Λ4

N+1 cos

(
(q + 1)

aN
vN+1

)
, (3.57)

where

Λ4
1 =

ε1v
q+1
1

2(q−1)/2
, Λ4

2 =
ε2v

q
1v2

2(q−1)/2
, · · · , Λ4

N =
εNv

q
N−1vN

2(q−1)/2
, Λ4

N+1 =
εN+1v

q+1
N

2(q−1)/2
. (3.58)

The above potential involves N + 1 independent terms for the N + 1 pseudo-Goldstone

bosons involving ξ and aP , so can provide a non-trivial effective potential of ξ which would

be the lightest pseudo-Goldstone boson in the parameter limit vP � Mξ. In fact, the

above potential of N + 1 pseudo-Goldstone bosons reveal the clockwork structure studied

before [19, 33–35]. To proceed, let us first minimize the above potential except the first

and last terms under the assumption that all ΛI (I = 2, 3, . . . , N) are comparable to each

other. This results in the following ξ-dependent vacuum values of aI (I = 1, 2, . . . , N − 1):

a1

v1
=

1

q

(
a2

v2
− b2ξ

Mξ

)
,
a2

v2
=

1

q

(
a3

v3
− b3ξ

Mξ

)
, · · · , aN−1

vN−1
=

1

q

(
aN
vN
− bNξ

Mξ

)
. (3.59)

Inserting these to (3.57), we get the effective potential of ξ and aN , which is given by

Veff(ξ, aN ) = −Λ4
1 cos

(
q + 1

qN−1

(
aN
vN
− ξ

Mξ

))
− Λ4

N+1 cos

(
(q + 1)

aN
vN

)
. (3.60)
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If Λ1 ∼ ΛN+1, aN gets a mass dominantly from the second term with a vanishing vacuum

value, which would result in

Veff(ξ) ' −Λ4
1 cos

(
q + 1

qN−1

ξ

Mξ

)
. (3.61)

In this case the scalar potential (3.54) not only provides a non-trivial effective potential

of ξ, but also enlarges the axion field range from Mξ to qN−1Mξ through the clockwork

mechanism [19, 33–35]. Yet there exists a parameter limit where a non-trivial potential of

ξ is generated while keeping the axion field range as Mξ. If Λ2
N+1/Λ

2
1 � 1/qN−1, aN gets

a mass dominantly from the first term of (3.60) with the ξ-dependent vacuum value

aN
vN

=
ξ

Mξ
, (3.62)

yielding the effective potential

Veff(ξ) ' −Λ4
N+1 cos

(
(q + 1)

ξ

Mξ

)
(3.63)

without changing the field range of ξ. At any rate, our example shows again that ξ is so

well protected by
∏
α U(1)α, so it requires a highly non-trivial engineering to generate an

effective potential of ξ in the limit N � 1.

4 Conclusion

Stückelberg mixing between axions and U(1) gauge bosons can result in a variety of interest-

ing consequences in low energy axion physics. In this paper, we studied those consequences

in a general framework which can be applied for many different situations. More specifically

we derived the field range of the gauge-invariant axion combination ξ for generic form of ax-

ion kinetic metric and U(1) gauge charges, and examined the low energy axion couplings to

matter and gauge fields in models with Stückelberg mixing, as well as some of their physical

consequences. Stückelberg mixing typically reduces the field range of ξ compared to the

mass scales introduced in the UV theory. In particular, for the case of Stückelberg mixing

between N axions and (N −1) U(1) gauge bosons in the limit N � 1, the axion field range

can be exponentially reduced relative to the mass scales in the UV theory. As is well known,

axion couplings in the effective lagrangian vary under the axion-dependent field redefinition

of matter fields, so depend on the choice of the matter field basis. It is noted that in some

parameter limit of Stückelberg mixing the axion couplings to matter and gauge fields can

have hierarchically different size in different field bases, and then one needs to consider the

basis-independent (reparameterization-invariant) combination of couplings rather than fo-

cusing on a specific basis-dependent coupling to see the physical consequence of the model.
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[10] P. Svrček and E. Witten, Axions in string theory, JHEP 06 (2006) 051 [hep-th/0605206]

[INSPIRE].

[11] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper and J. March-Russell, String

axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

[12] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and

gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].

[13] N. Arkani-Hamed, H.-C. Cheng, P. Creminelli and L. Randall, Extra natural inflation, Phys.

Rev. Lett. 90 (2003) 221302 [hep-th/0301218] [INSPIRE].

[14] J.E. Kim, H.P. Nilles and M. Peloso, Completing natural inflation, JCAP 01 (2005) 005

[hep-ph/0409138] [INSPIRE].

[15] S. Dimopoulos, S. Kachru, J. McGreevy and J.G. Wacker, N -flation, JCAP 08 (2008) 003

[hep-th/0507205] [INSPIRE].

[16] E. Silverstein and A. Westphal, Monodromy in the CMB: gravity waves and string inflation,

Phys. Rev. D 78 (2008) 106003 [arXiv:0803.3085] [INSPIRE].

[17] N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 102

(2009) 121301 [arXiv:0811.1989] [INSPIRE].

[18] F. Marchesano, G. Shiu and A.M. Uranga, F-term axion monodromy inflation, JHEP 09

(2014) 184 [arXiv:1404.3040] [INSPIRE].

[19] K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys.

Rev. D 90 (2014) 023545 [arXiv:1404.6209] [INSPIRE].

– 26 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/RevModPhys.82.557
https://arxiv.org/abs/0807.3125
https://inspirehep.net/search?p=find+EPRINT+arXiv:0807.3125
https://doi.org/10.1146/annurev-nucl-102212-170536
https://doi.org/10.1146/annurev-nucl-102212-170536
https://arxiv.org/abs/1301.1123
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.1123
https://doi.org/10.1016/j.physrep.2016.06.005
https://arxiv.org/abs/1510.07633
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.07633
https://doi.org/10.1103/PhysRevLett.65.3233
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,65,3233%22
https://doi.org/10.1103/PhysRevD.62.043509
https://arxiv.org/abs/hep-ph/9902292
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9902292
https://doi.org/10.1103/PhysRevLett.115.221801
https://arxiv.org/abs/1504.07551
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07551
https://doi.org/10.1016/0370-2693(84)90422-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B149,351%22
https://doi.org/10.1016/0370-2693(85)90416-2
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B154,393%22
https://doi.org/10.1016/0370-2693(85)90693-8
https://doi.org/10.1016/0370-2693(85)90693-8
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B165,71%22
https://doi.org/10.1088/1126-6708/2006/06/051
https://arxiv.org/abs/hep-th/0605206
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605206
https://doi.org/10.1103/PhysRevD.81.123530
https://arxiv.org/abs/0905.4720
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.4720
https://doi.org/10.1088/1126-6708/2007/06/060
https://arxiv.org/abs/hep-th/0601001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0601001
https://doi.org/10.1103/PhysRevLett.90.221302
https://doi.org/10.1103/PhysRevLett.90.221302
https://arxiv.org/abs/hep-th/0301218
https://inspirehep.net/search?p=find+EPRINT+hep-th/0301218
https://doi.org/10.1088/1475-7516/2005/01/005
https://arxiv.org/abs/hep-ph/0409138
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0409138
https://doi.org/10.1088/1475-7516/2008/08/003
https://arxiv.org/abs/hep-th/0507205
https://inspirehep.net/search?p=find+EPRINT+hep-th/0507205
https://doi.org/10.1103/PhysRevD.78.106003
https://arxiv.org/abs/0803.3085
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3085
https://doi.org/10.1103/PhysRevLett.102.121301
https://doi.org/10.1103/PhysRevLett.102.121301
https://arxiv.org/abs/0811.1989
https://inspirehep.net/search?p=find+EPRINT+arXiv:0811.1989
https://doi.org/10.1007/JHEP09(2014)184
https://doi.org/10.1007/JHEP09(2014)184
https://arxiv.org/abs/1404.3040
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.3040
https://doi.org/10.1103/PhysRevD.90.023545
https://doi.org/10.1103/PhysRevD.90.023545
https://arxiv.org/abs/1404.6209
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.6209


J
H
E
P
1
2
(
2
0
1
9
)
0
3
3

[20] T. Higaki and F. Takahashi, Natural and multi-natural inflation in axion landscape, JHEP

07 (2014) 074 [arXiv:1404.6923] [INSPIRE].

[21] T.C. Bachlechner, M. Dias, J. Frazer and L. McAllister, Chaotic inflation with kinetic

alignment of axion fields, Phys. Rev. D 91 (2015) 023520 [arXiv:1404.7496] [INSPIRE].

[22] I. Ben-Dayan, F.G. Pedro and A. Westphal, Hierarchical axion inflation, Phys. Rev. Lett.

113 (2014) 261301 [arXiv:1404.7773] [INSPIRE].

[23] T. Rudelius, On the possibility of large axion moduli spaces, JCAP 04 (2015) 049

[arXiv:1409.5793] [INSPIRE].

[24] T.C. Bachlechner, C. Long and L. McAllister, Planckian axions in string theory, JHEP 12

(2015) 042 [arXiv:1412.1093] [INSPIRE].

[25] A. de la Fuente, P. Saraswat and R. Sundrum, Natural inflation and quantum gravity, Phys.

Rev. Lett. 114 (2015) 151303 [arXiv:1412.3457] [INSPIRE].

[26] G. Shiu, W. Staessens and F. Ye, Widening the axion window via kinetic and Stückelberg

mixings, Phys. Rev. Lett. 115 (2015) 181601 [arXiv:1503.01015] [INSPIRE].

[27] G. Shiu, W. Staessens and F. Ye, Large field inflation from axion mixing, JHEP 06 (2015)

026 [arXiv:1503.02965] [INSPIRE].

[28] M. Montero, A.M. Uranga and I. Valenzuela, Transplanckian axions!?, JHEP 08 (2015) 032

[arXiv:1503.03886] [INSPIRE].

[29] J. Brown, W. Cottrell, G. Shiu and P. Soler, Fencing in the swampland: quantum gravity

constraints on large field inflation, JHEP 10 (2015) 023 [arXiv:1503.04783] [INSPIRE].

[30] A. Hebecker, P. Mangat, F. Rompineve and L.T. Witkowski, Winding out of the swamp:

evading the weak gravity conjecture with F-term winding inflation?, Phys. Lett. B 748 (2015)

455 [arXiv:1503.07912] [INSPIRE].

[31] D. Junghans, Large-field inflation with multiple axions and the weak gravity conjecture,

JHEP 02 (2016) 128 [arXiv:1504.03566] [INSPIRE].

[32] B. Heidenreich, M. Reece and T. Rudelius, Weak gravity strongly constrains large-field axion

inflation, JHEP 12 (2015) 108 [arXiv:1506.03447] [INSPIRE].

[33] K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with

high scale supersymmetry, JHEP 01 (2016) 149 [arXiv:1511.00132] [INSPIRE].

[34] D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries

from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [arXiv:1511.01827] [INSPIRE].

[35] G.F. Giudice and M. McCullough, A clockwork theory, JHEP 02 (2017) 036

[arXiv:1610.07962] [INSPIRE].

[36] T.C. Bachlechner, K. Eckerle, O. Janssen and M. Kleban, Multiple-axion framework, Phys.

Rev. D 98 (2018) 061301 [arXiv:1703.00453] [INSPIRE].

[37] T.C. Bachlechner, K. Eckerle, O. Janssen and M. Kleban, Systematics of aligned axions,

JHEP 11 (2017) 036 [arXiv:1709.01080] [INSPIRE].

[38] G. Shiu and W. Staessens, Phases of inflation, JHEP 10 (2018) 085 [arXiv:1807.00888]

[INSPIRE].

[39] N. Fonseca, B. von Harling, L. de Lima and C.S. Machado, Super-Planckian axions from

near-conformality, Phys. Rev. D 100 (2019) 105019 [arXiv:1906.10193] [INSPIRE].

[40] Q. Bonnefoy, E. Dudas and S. Pokorski, Axions in a highly protected gauge symmetry model,

Eur. Phys. J. C 79 (2019) 31 [arXiv:1804.01112] [INSPIRE].

– 27 –

https://doi.org/10.1007/JHEP07(2014)074
https://doi.org/10.1007/JHEP07(2014)074
https://arxiv.org/abs/1404.6923
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.6923
https://doi.org/10.1103/PhysRevD.91.023520
https://arxiv.org/abs/1404.7496
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7496
https://doi.org/10.1103/PhysRevLett.113.261301
https://doi.org/10.1103/PhysRevLett.113.261301
https://arxiv.org/abs/1404.7773
https://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7773
https://doi.org/10.1088/1475-7516/2015/04/049
https://arxiv.org/abs/1409.5793
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5793
https://doi.org/10.1007/JHEP12(2015)042
https://doi.org/10.1007/JHEP12(2015)042
https://arxiv.org/abs/1412.1093
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1093
https://doi.org/10.1103/PhysRevLett.114.151303
https://doi.org/10.1103/PhysRevLett.114.151303
https://arxiv.org/abs/1412.3457
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.3457
https://doi.org/10.1103/PhysRevLett.115.181601
https://arxiv.org/abs/1503.01015
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.01015
https://doi.org/10.1007/JHEP06(2015)026
https://doi.org/10.1007/JHEP06(2015)026
https://arxiv.org/abs/1503.02965
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.02965
https://doi.org/10.1007/JHEP08(2015)032
https://arxiv.org/abs/1503.03886
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03886
https://doi.org/10.1007/JHEP10(2015)023
https://arxiv.org/abs/1503.04783
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.04783
https://doi.org/10.1016/j.physletb.2015.07.026
https://doi.org/10.1016/j.physletb.2015.07.026
https://arxiv.org/abs/1503.07912
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07912
https://doi.org/10.1007/JHEP02(2016)128
https://arxiv.org/abs/1504.03566
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.03566
https://doi.org/10.1007/JHEP12(2015)108
https://arxiv.org/abs/1506.03447
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03447
https://doi.org/10.1007/JHEP01(2016)149
https://arxiv.org/abs/1511.00132
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.00132
https://doi.org/10.1103/PhysRevD.93.085007
https://arxiv.org/abs/1511.01827
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.01827
https://doi.org/10.1007/JHEP02(2017)036
https://arxiv.org/abs/1610.07962
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.07962
https://doi.org/10.1103/PhysRevD.98.061301
https://doi.org/10.1103/PhysRevD.98.061301
https://arxiv.org/abs/1703.00453
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.00453
https://doi.org/10.1007/JHEP11(2017)036
https://arxiv.org/abs/1709.01080
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.01080
https://doi.org/10.1007/JHEP10(2018)085
https://arxiv.org/abs/1807.00888
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.00888
https://doi.org/10.1103/PhysRevD.100.105019
https://arxiv.org/abs/1906.10193
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.10193
https://doi.org/10.1140/epjc/s10052-018-6528-z
https://arxiv.org/abs/1804.01112
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01112

	Introduction
	Axion field range and couplings with Stückelberg mixing
	Stückelberg mixing between two axions and single U(1) gauge boson
	Generalization to multiple (N>2) axions

	Implications with examples
	An illustrative simple model
	Models of multiple axions with clockwork-type U(1) gauge charges

	Conclusion

