
J
H
E
P
1
2
(
2
0
1
9
)
0
2
4

Published for SISSA by Springer

Received: October 6, 2019

Revised: November 15, 2019

Accepted: November 18, 2019

Published: December 3, 2019

Neumann-Rosochatius system for strings in

ABJ model

Adrita Chakrabortya and Kamal L. Panigrahib

aCentre For Theoretical Studies, Indian Institute of Technology,

Kharagpur 721302, India
bDepartment of Physics, Indian Institute of Technology,

Kharagpur 721302, India

E-mail: adimanta09@iitkgp.ac.in, panigrahi@phy.iitkgp.ac.in

Abstract: Neumann-Rosochatius system is a well known one dimensional integrable sys-

tem. We study the rotating and pulsating string in AdS4 × CP3 with a BNS holonomy

turned on over CP1 ⊂ CP3, the so called Aharony-Bergman-Jafferis (ABJ) background. We

observe that the string equations of motion in both cases are integrable and the Lagrangians

reduce to a form similar to that of a deformed Neumann-Rosochatius system. We find out

the scaling relations among various conserved charges and comment on the finite size effect

for the dyonic giant magnons on Rt × CP3 with two angular momenta. For the pulsat-

ing string we derive the energy as function of oscillation number and angular momenta

along CP3.

Keywords: AdS-CFT Correspondence, Bosonic Strings

ArXiv ePrint: 1909.12632

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2019)024

mailto:adimanta09@iitkgp.ac.in
mailto:panigrahi@phy.iitkgp.ac.in
https://arxiv.org/abs/1909.12632
https://doi.org/10.1007/JHEP12(2019)024


J
H
E
P
1
2
(
2
0
1
9
)
0
2
4

Contents

1 Introduction 1

2 String in AdS4 × CP3 with two form NS-NS flux 2

2.1 Constraints and NR integrable system 3

2.2 Lagrangian and Hamiltonian formulation 5

2.3 Integrals of motion 7

3 Dyonic magnon on Rt × CP3 with flux 9

3.1 Dispersion relation and finite size effect 10

4 Pulsating string in dual background of ABJ model 11

4.1 String profile and conserved charges 13

5 Conclusions and outlook 15

1 Introduction

Planar integrability of both gauge theory as well as string theory has played a vital role

in understanding the celebrated AdS/CFT duality conjecture [1–3]in a better way. In this

context, it was first observed by Minahan and Zarembo [4] that the one-loop dilatation

operators of the SU(2) sector of N = 4 Supersymmetric Yang Mills (SYM) theory can be

identified with the Hamiltonian of the Heisenberg spin chain [5, 6]. As proving the duality

for all values of coupling is extremely hard, the semiclassical string states in the gravity

side have been used to look for suitable gauge theory operators on the boundary. The usual

AdS5/CFT4 duality has been generalized to AdS3/CFT2 in the presence of mixed NS-NS

and R-R flux as well. The sigma model for the string in AdS3 × S3 × T 4 in this mixed

flux background has been proved to be classically integrable [7]. The background solution

has further been shown to satisfy the type IIB supergravity field equations, provided the

parameters associated to field strengths of NS-NS flux (say q) and R-R flux (say q̂) are

related by the constraint q2 + q̂2 = 1. This AdS3×S3×T 4 background with ‘mixed’ three-

form fluxes has been an interesting testing laboratory for proving AdS3/CFT2 duality in the

presence of fluxes. This background is conjectured to be originated from the near horizon

geometry of the intersecting (F1 −NS5 −D1 −D5) branes in supergravity, although an

explicit construction is yet to be found.

In adding further examples of the AdS/CFT duality, ABJM theory [8] has been con-

jectured to be dual to the M -theory on AdS4× S7/Zk with N units of four-form flux,

which for k � N � k5 can be compactified down to a 10 dimensional type IIA string

theory on AdS4 × CP3, with k being the level of Chern-Simon (CS) theory with gauge

group U(N) × U(N). The ABJ model [9] is an interesting extension of the above with

the gauge group U(M)k ×U(N)−k and the amount of maximal supersymmetry remaining
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fixed. The corresponding string dual in the limit of k � N � k5 is conjectured to be

type IIA superstring theory on AdS4×CP3 background with a NS-NS two form holonomy

over CP1 ⊂ CP3. Using the integrability property of the classical string-sigma model, it is

relevant to find generic string solutions and their corresponding field theory duals. It has

been proved that the ABJ theory is integrable both in nonplanar and planar limits [10–13]

similar to its gravity dual. In understanding the string geodesics better, several classes of

rigidly rotating and pulsating string solutions in the background of AdS4 × CP3 with and

without flux has been studied, e.g. in [14–19].

To this end, [20–22] provided a novel way to find out a large class of simple rotat-

ing string solutions by solving a very renowned one dimensional integrable system, known

as Neumann model that describes an oscillator on a sphere. The Neumann-Rosochatius

(NR) system on the other hand depicts a particle on a sphere with an additional centrifu-

gal potential (proportional to 1
r2

). Reduction of the string-sigma model on AdS5 × S5,

AdS4 × CP3, etc. to the NR system has been quite useful in unravelling new relationships

between the integrable structures of the two sides of the AdS/CFT duality [18, 23–27].

Such an approach has previously been used to study the finite size effect to the giant

magnon (GM) solutions in AdS4 × S7 background [28]. It is worth emphasizing that the

NR integrable system is very effective in dealing with the classical strings in Rt × CP3.

Indeed in [18] the string dynamics on AdS4 ×CP3 has been studied by using the NR inte-

grable system. The dispersion relation and subsequently the finite size effects for the giant

magnon and single spike solutions for the string on Rt × CP3 with two angular momenta

have been studied in detail. In this article, we wish to extend the analysis presented in [18]

to the case of spinning closed strings in AdS4 × CP3 in the presence of BNS holonomy.

Among various classes of semiclassical strings, the pulsating strings have much better

stability than the non-pulsating ones [29]. The pulsating string concept was first introduced

in [30], where it was shown that they correspond to certain highly excited sigma model

operators. However unlike rotating strings, pulsating strings are less explored. These

solutions were first introduced in [31] and further generalized in [32–34]. They have also

been explored in AdS5 × S5, for e.g. in [20, 35], in AdS4 × CP3, for e.g. in [36, 37]. We

wish to show that the pulsating string in AdS4 × CP3 with BNS holonomy can also be

reduced to a NR system. We derive the energy of such pulsating strings as a function of

the oscillation number and the angular momenta along CP3.

The rest of the paper is organised as follows. In section 2 we study classical string

action in AdS4×CP3 background in the presence of BNS holonomy and the corresponding

NR system. In section 3 we study of rigidly rotating strings in Rt×CP3 and compute finite

size effect for the dyonic giant magnon solution with two angular momenta. Section 4 is

devoted to the study of pulsating string in Rt×CP3. We conclude in section 5 with a brief

discussion of our results.

2 String in AdS4 × CP3 with two form NS-NS flux

We start by writing down the Polyakov action for the bosonic string in the form

S = −T
2

∫
dτdσ

√
−γγαβGαβ −

T

2

∫
dσdτεαβBMN∂αX

M∂βX
N , (2.1)
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where Gαβ = GMN∂αX
M∂βX

N , XN (τ, σ),M,N = 0, . . . , 9 are embedding coordinates of

the string. Further, ∂α ≡ ∂
∂σα , σ

0 = τ, σ1 = σ and T is the string tension. The string is

embedded into ten dimensional background with the metric GMN and NS-NS two form

field BMN . Finally γαβ is two dimensional world-sheet metric whose equations of motion

have the form

Tαβ = − 2√
−γ

δS

δγαβ
= −T

2
γαβγ

γδGγδ + TGαβ = 0 . (2.2)

The supergravity dual background of so called ABJ theory is AdS4×CP3 background with

BNS flux turned on CP1 ⊂ CP3. The metric is given as

ds2 = GMNdx
MdxN = R2

(
1

4
ds2

AdS4
+ ds2

CP3

)
, (2.3)

which in terms of the background coordinates assumes the following form

ds2 =
R2

4

[
− cosh2 ρdt2 + dρ2 + sinh2 ρ

(
dη2 + sin2 ηdχ2

)]
+R2

[
dξ2 + cos2 ξ sin2 ξ

(
dψ +

1

2
cos θ1dφ1 −

1

2
cos θ2dφ2

)2

+
1

4
cos2 ξ

(
dθ2

1 + sin2 θ1dφ
2
1

)
+

1

4
sin2 ξ

(
dθ2

2 + sin2 θ2dφ
2
2

) ]
,

(2.4)

accompanied by the following NS-NS B-field as

BNS = − b
2

(sin 2ξdξ ∧ (2dψ + cos θ1dφ1 − cos θ2dφ2) + cos2 ξ sin θ1dθ1 ∧ dφ1

+ sin2 ξ sin θ2dθ2 ∧ dφ2. (2.5)

In addition to the above form of metric and NS-NS flux, there is a dilaton field and Ramond-

Ramond two form and four form flux respectively, whose detailed forms are not needed in

what follows. When taking α′ = 1, the curvature radius R is given by R2 = 25/2πλ1/2,

which is precisely the same as that of ABJM theory.

2.1 Constraints and NR integrable system

It is convenient to describe string moving in this background with the help of the embedding

coordinates Y i for AdS4 and Xi for CP3, where the embedding coordinates describing the

background must satisfy the following constraints (see for example [14]). For AdS4 part,

the constraint is
4∑

i,j=0

ηijYiYj +
R2

4
= 0, (2.6)

while for CP3, we have the following constraints

8∑
i=0

Xi
2 −R2 = 0,

∑
i=1,3,5,7

(Xi∂αXi+1 −Xi+1∂αXi) = 0 . (2.7)
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In case of AdS4, the embedding coordinates are related to the global ones by

Y0 + iY4 =
R

2
cosh ρeit, Y2 + iY3 =

R

2
sinh ρ sin ηeiχ ,

Y1 =
R

2
sinh ρ cos η, Y1 + i

√
(Y 2

2 + Y 2
3 ) =

R

2
sinh ρeiη (2.8)

while in case of CP3 we have

X1 + iX2 =
R√
2

sin ξeiθ1 , X3 + iX4 =
R√
2

cos ξeiθ2 ,

X5 + iX6 =
R√
2

sinψeiφ1 , X7 + iX8 =
R√
2

cosψeiφ2 . (2.9)

For simplicity, we are interested in the string dynamics on Rt × CP3 subspace, which can

be achieved by putting Y1 = Y2 = Y3 = 0. The metric (2.4) in this case, takes the following

form

ds2 =
R2

4
[−dt2] +R2

[
dξ2 + cos2 ξ sin2 ξ

(
dψ +

1

2
cos θ1dφ1 −

1

2
cos θ2dφ2

)2

+
1

4
cos2 ξ(dθ2

1 + sin2 θ1dφ
2
1) +

1

4
sin2 ξ(dθ2

2 + sin2 θ2dφ
2
2)

]
.

(2.10)

Now let us define the Xi’s in terms of the polar coordinates as follows:

W1 = X1 + iX2 = Rr1e
iΦ1 , W2 = X3 + iX4 = Rr2e

iΦ2 (2.11)

W3 = X5 + iX6 = Rr3e
iΦ3 , W4 = X7 + iX8 = Rr4e

iΦ4 (2.12)

Therefore the embedding of the string in Rt × CP3 may be reduced as

z = Z(τ, σ) =
R

2
eit(τ,σ), wa = Wa(τ, σ) = Rra(τ, σ)eiΦa(τ,σ). (2.13)

In the case of embedding in CP3, it must be:

4∑
a=1

WaW̄a = R2,
4∑

a=1

(Wa∂αW̄a − W̄a∂αWa) = 0 (2.14)

In terms of the embedding coordinates, the CP3 constraints become

4∑
a=1

ra
2(τ, σ) = 0,

4∑
a=1

ra
2(τ, σ)∂αΦa(τ, σ) = 0 (2.15)

For this embedding, the metric induced on the string worldsheet Gαβ and the Bαβ is

given by,

Gαβ = −∂(αZβ)Z̄ +

4∑
a=1

∂(αWa∂β)W̄a, (2.16)

Bαβ = BMN∂αX
M∂βX

N =
b

2
εαβ

[
∂(αZ∂β)Z̄ +

4∑
a=1

∂(αWa∂β)W̄a

]
. (2.17)
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Putting the expressions of Z and Wa we get

Gαβ = −R
2

4
(∂αt∂βt) +R2

4∑
a=1

(∂αra∂βra + ra
2∂αΦa∂βΦa), (2.18)

Bαβ = BMN∂αX
M∂βX

N = bR2
4∑

a=1

ra [∂σra∂τΦa − ∂τra∂σΦa] . (2.19)

The corresponding Lagrangian in target space now becomes

L = −
√

2λ

{
(∂τ t)

2 − (∂σt)
2

4
+

4∑
a=1

(∂σra)
2 −

4∑
a=1

(∂τra)
2

−
4∑

a=1

ra
2[(∂τΦa)

2 − (∂σΦa)
2]

}
− b
√

2λ

4∑
a=1

ra(∂σra∂τΦa − ∂τra∂σΦa)

+
√

8λΛ

(
4∑

a=1

ra
2 − 1

)
+
√

8λΛ0

4∑
a=1

(ra
2∂τΦa) +

√
8λΛ1

4∑
a=1

(ra
2∂σΦa). (2.20)

Here M,N = τ, σ and Λ,Λ0,Λ1 are suitable Lagrange multipliers corresponding to the

constraints.

2.2 Lagrangian and Hamiltonian formulation

NR system, being an integrable modification of the first proposed Neumann integrable

model, illustrates the constrained motion of a harmonic oscillator of unit mass on a (N−1)

dimensional unit sphere under another centrifugal potential barrier. The Lagrangian for

such a system is given by

L =
1

2

N∑
i=1

[
x
′2
i + x2

i

(
K
′2
i − ω2

i

)]
− Λ

2

(
N∑
i=1

x2
i − 1

)
, (2.21)

where K
′
i =

v2i
x2i

, with v2
i being a constant and Λ is a suitable Lagrange multiplier to deal

with the spherical geometry. The corresponding equation of motion is

x
′′
i =

(
K
′2
i − ω2

i + Λ
)
xi. (2.22)

The Hamiltonian for such a system may be written as

H =
1

2

2∑
i=1

[
x
′2
i − x2

i

(
K
′2
i − ω2

i

)]
, (2.23)

where
∑N

i=1 x
2
i = 1. We wish to study the spinning string in Rt × CP3 background in the

presence of BNS holonomy. We use the following parametrization:

t = κτ, ra(τ, σ) = ra(ζ), Φa(τ, σ) = ωaτ + fa(ζ), ζ = ασ + βτ , (2.24)

– 5 –
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where κ, ωa, α, β are constants. Using the ansatz (2.24) for the string rotating in Rt×CP3,

the Lagrangian (2.20) becomes,

L=−
√

2λ

[
κ2

4
+(α2−β2)

4∑
a=1

(
ra
′2+ra

2

(
f
′
a−

βωa
α2−β2

)2

− α2ω2
ar

2
a

(α2−β2)2

)]

−b
√

2λ
4∑

a=1

r
′
araαωa+

√
8λΛ

(
4∑

a=1

ra
2−1

)
+
√

8λΛ0

4∑
a=1

(ra
2ωa)+

√
8λΛ1

4∑
a=1

(ra
2f
′
a).

(2.25)

Equation of motion for fa is

f
′
a =

1

α2 − β2

[
Ca
r2
a

+ βωa + Λ1

]
, (2.26)

where Ca’s are proper integration constants. Putting this expression of fa in the La-

grangian (2.25)we get

L = −
√

2λ

[
κ2

4
+ (α2 − β2)

4∑
a=1

(
r
′2
a +

1

(α2 − β2)

(
C2
a

r2
a

+ 2CaΛ1 + Λ2
1r

2
a

)
− α2ω2

ar
2
a

(α2 − β2)2

)]

−B
√

2λ

4∑
a=1

αωar
′
ara +

√
8λΛ

(
4∑

a=1

ra
2 − 1

)
+
√

8λΛ0

4∑
a=1

(ra
2ωa)

+
√

8λΛ1

4∑
a=1

1

(α2 − β2)
(Ca + βωar

2
a + Λ1r

2
a). (2.27)

From (2.27), we calculate the equation of motion for ra as

(α2 − β2)r
′′
a −

Ca
(α2 − β2)r3

a

+ [2(Λ + Λ0ωa) + ω2
a +

(Λ1 + βωa)

(α2 − β2)
]ra = 0. (2.28)

We note that, this equation can also be derived from the following Lagrangian:

L =

4∑
a=1

[
(α2 − β2)r

′2
a −

1

(α2 − β2)

Ca
r2
a

− ω2
ar

2
a

]
+

4∑
a=1

αωarar
′
a − 2Λ

(
4∑

a=1

ra
2 − 1

)

− 2Λ0

4∑
a=1

(ra
2ωa) +

4∑
a=1

1

(α2 − β2)
(βωar

2
a + Λ1r

2
a).

(2.29)

Here it is quite obvious from equation (2.29) that the Lagrangian is that for the NR system

only with an extra term added due to the presence of BNS two-form holonomy through

CP1 and two additional constraints (2.15) to deal with the geometry of CP3. Now the

equation of motion for Λ1 gives

4∑
a=1

(βωa + Λ1) = 0,

– 6 –
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so that the term
∑4

a=1
1

(α2−β2)
(βωar

2
a + Λ1r

2
a) in the Lagrangian becomes zero. Now from

the constraints of AdS4 × CP3, we get the Ca’s as

Λ1 = −
4∑

a=1

Ca = 0, C2
a = β2ω2

ar
4
a. (2.30)

The Hamiltonian for such system is given as

HNR = (α2 − β2)
4∑

a=1

[
r
′2
a +

1

(α2 − β2)2

(
Ca

2

ra2
+ α2ωa

2ra
2

)]
=
α2 + β2

α2 − β2

κ2

4
, (2.31)

whose form is exactly the same as equation (2.23), thereby supporting the NR approach of

studying the gravity dual of ABJ theory in planar limit. We note that in deriving the above

relations, we use the Virasoro constraints, Gττ + Gσσ = 0 and Gτσ = 0 which gives the

conserved Hamiltonian HNR and the relation between the embedding coordinates and the

arbitrary constants Ca. Another relation
∑4

a=1 ωaCa+ βκ2

4 = 0 along with the Hamiltonian

helps to satisfy both the Virasoro constraints simultaneusly. For closed strings, ra and fa
satisfy the periodicity conditions as,

ra(ζ + 2πα) = ra(ζ), fa(ζ + 2πα) = fa(ζ) + 2πna, (2.32)

where na is the integer winding number.

2.3 Integrals of motion

Integrability of any system requires the existence of infinite number of conserved quantities,

also known as the integrals of motion, to be in involution. K. Uhlenbeck fist introduced

the integrals of motion for Neumann model which states that there must be N number of

integrals of motion Ii such that [38]

{Ii, Ij} = 0∀i, j ∈ {1, 2, . . . , N} , (2.33)

so that the integrable features of NR system exists. For any arbitrary values of the constants

v2
i , the integrals of motion for the NR system assume the following form

Ii = x2
i +

∑
j 6=i

1

ω2
i − ω2

j

[(
xix

′
j − xjx

′
i

)2
+ v2

i

x2
j

x2
i

+ v2
j

x2
i

x2
j

]
. (2.34)

To construct the integrals of motion for the string moving in ABJ background we use the

parametrization (2.13). With this, the Lagrangian in the desired background reads as1

L = −(∂τ t)
2 + (∂σt)

2 +
∑
a

(
∂τWa∂τW̄a − ∂σWa∂σW̄a

)
+
i

2

∑
a

(
−∂τWa∂σW̄a + ∂τW̄a∂σWa

)
− Λ

(∑
a

WaW̄a − 1

)
− Λ0

∑
a

(
Wa∂τW̄a − W̄a∂τWa

)
− Λ1

∑
a

(
Wa∂σW̄a − W̄a∂σWa

)
.

(2.35)

1Here we consider b = 1 for simplicity.
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For convenience, let us use the following ansatz [22]

Wa = xa(ζ)eiωaτ , (2.36)

where ζ = ασ + βτ and xa(ζ) = ra(ζ)eifa(ζ).

The equation of motion for xa is given by

(α2 − β2)x
′′
a − (2iβωa − 2Λ0β − 2Λ1α)x

′
a − (ω2

a + 2iΛ0ωa − Λ)xa = 0. (2.37)

It may be noted that this equation of motion can also be derived from the following

Lagrangian

L =

[∑
a

(α2 − β2)x
′
ax̄
′
a + iβ

∑
a

ωa(x
′
ax̄a − x̄

′
axa)−

∑
a

ω2
axax̄a

]

+
1

2

∑
a

αωa(xax̄
′
a + x̄ax

′
a) + Λ

(∑
a

xax̄a − 1

)
+ Λ0β

∑
a

(
xax̄

′
a − x̄ax

′
a

)
− 2iΛ0

∑
a

ωaxax̄a + Λ1α
∑
a

(
xax̄

′
a − x̄ax

′
a

)
.

(2.38)

This Lagrangian is equivalent to (2.29). The momenta pa conjugate to xa can be derived as

pa =
∂L
∂x̄′a

= (α2 − β2)x
′
a − iβωaxa +

α

2
ωaxa + Λ0βxa + Λ1αxa. (2.39)

Therefore,

(x̄bpa − xap̄b) = (α2 − β2)(x
′
ax̄b − xax̄

′
b)− iβ(ωa + ωb)xax̄b +

α

2
(ωa + ωb)xax̄b. (2.40)

Now, we know that the form of the integral of motion for any NR system is

Fα = α2xax
′
a +

∑
b 6=a

|x̄bpa − xap̄b|2

(ω2
a − ω2

b )
. (2.41)

Using equation (2.36), we get,

x
′
a = (r

′
a + iraf

′
a)e

ifa . (2.42)

Again, from the equations of motion we get

i(α2 − β2)(x
′
ax̄a − x̄

′
axa)

′
= [−2βωa − 2i(Λ0β + Λ1α)]xax̄a. (2.43)

Now using equations (2.40)–(2.43) we get,

α2xax̄
′
a = α2r2

a,

|x̄bpa − xap̄b|2 = (x̄bpa − xap̄b)(xbp̄a − x̄apb)

= (α2 − β2)(r
′
arb − rar

′
b)

2 +

(
Carb
ra

+
Cbra
rb

)2

+ 2β
[
Car

2
bωa + Car

2
bωb + Cbr

2
aωa + Cbr

2
aωb
]

+
α2

4
(ωa + ωb)

2r2
ar

2
b .

– 8 –
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This finally yields

Fα = α2r2
a +

(
α2 − β2

)2∑
b 6=a

(r
′
arb − rar

′
b)

2

(ω2
a − ω2

b )
+
∑
b 6=a

1

(ω2
a − ω2

b )

(
Carb
ra

+
Cbra
rb

)2

+
α2

4

∑
b 6=a

(
ωa + ωb
ωa − ωb

)
r2
ar

2
b . (2.44)

These are the Uhlenback integrals of motion for the closed rotating string in Rt × CP3 in

the presence of the BNS holonomy.

3 Dyonic magnon on Rt × CP3 with flux

Let us assume that the string is spinning in the given background with two independent

angular momenta ω1 = −ω3 and ω2 = −ω4. For such a system we consider the embedding

coordinates as r1 = r3 = 1√
2

sin θ and r2 = r4 = 1√
2

cos θ. The equation of motion (2.28)

then reduces to

θ
′2(ζ) =

1

(α2−β2)2

[
(α2+β2)

κ2

4
− 2(C2

1 +C2
3 )

(sinθ)2
− 2(C2

2 +C2
4 )

(cosθ)2
−α2(ω2

1(sinθ)2+ω2
2(cosθ)2)

]
,

(3.1)

where we have used the Hamiltonian (2.31). We wish to study the giant magnon solution.

For this we put C2 = C4 = 0 so that
∑4

a=1Caωa = −βκ2

4 yields C1 = −C3 = −βκ2

8ω1
. Thus

the expression for (3.1) reduces to

(cos θ)
′

= ∓ 1

(α2 − β2)

[
(α2 + β2)

κ2

4
− (α2 + β2)

κ2

4
cos2 θ − β2κ4

16ω2
1

− α2ω2
1 + 2α2ω2

1 cos2 θ − α2ω2
2 cos2 θ + α2(ω2

2 − ω2
1) cos4 θ

] 1
2

,

(3.2)

with a solution

cos θ = z+dn(Cζ|m), (3.3)

where

z±
2 =

1

2(1− ω2
2

ω1
2 )

[
y1 + y2 −

ω2
2

ω1
2
±

√
(y1 − y2)2 −

[
2(y1 + y2 − 2y1y2)− ω2

2

ω1
2

]
ω2

2

ω1
2

]
.

(3.4)

In the above exprerssion, y1 = 1 − κ2

4ω1
2 and y2 = 1 − β2κ2

4α2ω1
2 ; C = ∓α

√
(ω2

1−ω2
2)

(α2−β2)
z+ and

m = 1− z2−
z2+

.

For fa = 1
α2−β2

∫
dζ(Ca

r2a
+ βωa), one has

f1 =−f3 =∓ β

αz+

√
1− ω2

2

ω2
1

[
K

(
1−

z2
−
z2

+

)
− κ2

4ω2
1(1−z2

+)

{
Π(am(Cζ),−

(z2
+−z2

−)

(1−z2
+)
|m)

}]
, (3.5)

f2 =−f4 =∓ βω2

αω1z+

K
(

1− z2−
z2+

)
√

1− ω2
2

ω2
1

. (3.6)
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The full string solution in this case using NR integrable system is the same as the ones

obtained in [18] for the string in AdS4 × CP3 without the BNS flux.

3.1 Dispersion relation and finite size effect

As the Lagrangian does not depend on t and Φa we have the conserved charges as

E = −
∫
dσ

∂L
∂(∂τ t)

, Ja =

∫
dσ

∂L
∂(∂τΦa)

, (3.7)

with a = 1, 2. Therefore,

ES =
κ
√

2λ

2α

∫
dζ, Ja = 2

√
2λ

(α2 − β2)

∫
dζ

(
β

α
Ca + α2ωar

2
a

)
− b
√

2λ

∫
rar

′
adζ (3.8)

In what follows we will be looking at the conserved charges for α2 > β2. E and Ja become

E =
Es√
2λ

=
κ

2α

∫
dζ =

2κ(1− β2

α2 )

ω1z+

√
1− ω2

2

ω2
1

K

(
1−

z2
−
z2

+

)
. (3.9)

J1 =
J1√
2λ

=
2

α2 − β2

∫ (
β

α
Ca + αω1r

2
1

)
dζ − b

∫
r1r

′
1dζ (3.10)

J2 =
2

α2 − β2

∫
αω2r

2
2dζ + b

∫
r2r

′
2dζ (3.11)

Therefore, the final expression of the currents after doing the integration are as follows:

J1 =
2

z2
+

√
1− ω2

2

ω2
1

z+

(
1− β2κ2

4α2ω2
1

)
K

(
1−

z2
−
z2

+

)
− 2

z2
+

√
1− ω2

2

ω2
1

E

(
1−

z2
−
z2

+

)
− b

4

(
z2

+−z2
−
)
, (3.12)

J2 =
2

1− ω2
2

ω2
1

ω2

ω1
z+E

(
1−

z2
−
z2

+

)
+
b

4

(
z2

+−z2
−
)
, (3.13)

J3 =−J1−
b

2

(
z2

+−z2
−
)
, (3.14)

J4 =−J3+
b

2

(
z2

+−z2
−
)
. (3.15)

Therefore it is quite obvious that the constraints of CP3 geometry support

4∑
a=1

Ja = 0 (3.16)

by using the NR approach. The computation of ∆Φ1 gives

p = ∆Φ1 = 2

∫ θmax

θmin

dθ

θ′
f
′
1

=
2β

αz+

√
1− ω2

2

ω2
1

[
K

(
1−

z2
−
z2

+

)
− κ2

4ω2
1(1− z2

+)

{
Π(am(Cζ),−

(z2
+ − z2

−)

(1− z2
+)
|m)

}]
.

(3.17)
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Here, let us assume, u ≡ ω2
2

ω2
1
, v ≡ β

α , ε ≡ z2−
z2+

, where u and v are also functions of ε.

Considering
z2−
z2+

= ε→ 0 the leading order value of z+ is

z+ =

√
J 2

2 + 4 sin2 p

2
, (3.18)

and hence

ε = 16 exp

−2
(J1 + J2 +

√
J 2

2 + 4 sin2 p
2)

J 2
2 + 4 sin4 p

2

√
J 2

2 + 4 sin2 p

2
sin2 p

2

 . (3.19)

Putting all the expansions of the elliptic integrals and their coefficients we get the dispersion

relation as

E − J1 =

√
J 2

2 + 4 sin2 p

2
−

32 sin4 p
2√

J 2
2 + 4 sin2 p

2

exp

−2
(J1 + J2 +

√
J 2

2 + 4 sin2 p
2)

J 2
2 + 4 sin4 p

2

√
J 2

2 + 4 sin2 p

2
sin2 p

2


− b

4

(
J 2

2 + 4 sin2 p

2

)
exp

−2
(J1 + J2 +

√
J 2

2 + 4 sin2 p
2)

J 2
2 + 4 sin4 p

2

√
J 2

2 + 4 sin2 p

2
sin2 p

2

− 1

 .

(3.20)

This result resembles with the dispersion relation for dyonic giant magnon in the Rt ×
S3 [39, 40] with an extra B dependent term. For the string rotating in Rt ×CP3 subspace

there exists a similar dispersion relation between E , J3 and J4 with a form exactly the

same as that of (3.20). Again with one angular momentum J2 to be zero it reduces to the

giant magnon dispersion relation in Rt × S2 subspace [19].

4 Pulsating string in dual background of ABJ model

In this section, we analyze the case of closed pulsating string in Rt×CP3 with BNS flux. It

will be worth showing that the pulsating strings with two-form NS-NS fluxes in Rt × CP3

can also be reduced to a deformed NR system. The embedding ansatz for closed pulsating

string in Rt × CP3 is [26]:

Z(τ) = Y0 + iY3 =
R

2
z0(τ)eih0(τ) (4.1a)

W1(τ, σ) = X1 + iX2 = Rr1(τ)ei(f1(τ)+m1σ) (4.1b)

W2(τ, σ) = X3 + iX4 = Rr2(τ)ei(f2(τ)+m2σ) (4.1c)

W3(τ, σ) = X5 + iX6 = Rr2(τ)ei(f3(τ)+m3σ) (4.1d)

W4(τ, σ) = X7 + iX8 = Rr4(τ)ei(f4(τ)+m4σ) (4.1e)
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where, z0 = z0(τ) and ra = ra(τ), with a = 1, 2, 3, 4,. The winding numbers ma are

kept only along the σ direction to make the time direction single-valued. Taking such an

ansatz and considering all the constraints, the Lagrangian for the pulsating string may be

derived as:

L = −
√

2λ

[
ż2

0 + z2
0 ḣ

2
0

4

]
+
√

2λ

4∑
a=1

[
ṙ2
a + r2

aḟ
2
a − r2

am
2
a

]
+ b
√

2λ
4∑

a=1

raṙama −
Λ

2

√
8λ

(
4∑

a=1

r2
a − 1

)
− Λ̃

2

√
8λ
(
z2

0 + 1
)

−
√

8λ
Λ1

2

4∑
a=1

r2
aḟa −

√
8Λ

Λ2

2

4∑
a=1

r2
ama, (4.2)

where the derivative with respect to τ is denoted by dots. Λ,Λ̃,Λ1 and Λ2 are suitable

Lagrange multipliers. The equations of motion for z0 and fa are given by

z̈0 −
C2

0

z3
0

+ 4Λ̃z0 = 0, (4.3)

ḟa =
Ca
r2
a

+
Λ1

2
(4.4)

Substituting the expression of ḟa in the equation (4.2) we get,

L = −
√

2λ

[
ż0

2 + z2
0 ḣ0

2

4

]
+
√

2λ
4∑

a=1

[
ṙa

2 +
C2
a

r2
a

+ CaΛ1 +
Λ2

1

4
r2
a − r2

am
2
a

]

+ b
√

2λ

4∑
a=1

raṙama −
Λ

2

√
8λ

(
4∑

a=1

r2
a − 1

)
− Λ̃

2

√
8λ
(
z2

0 + 1
)

−
√

8λ
Λ1

2

4∑
a=1

(
Ca +

Λ1

2
r2
a

)
−
√

8Λ
Λ2

2

4∑
a=1

r2
ama. (4.5)

This eventually yields the equation of motion for ra as:

r̈a +
C2
a

r3
a

+
Λ2

1

4
+
(
Λ + Λ2ma +m2

a

)
r2
a = 0. (4.6)

One can show that the equations of motion (4.3) and (4.6) can also be obtained from a

Lagrangian

LNR =
ż0

2

4
− C2

0

4z0
0

− Λ̃
(
z2

0 + 1
)

+
4∑

a=1

(
ṙ2
a +

C2
a

r2
a

)
+B

4∑
a=1

raṙama

+

4∑
a=1

(
r2
a − 1

)( 4∑
a=1

Ca

)2

−
4∑

a=1

m2
ar

2
a + Λ

(
4∑

a=1

r2
a − 1

)
+ Λ2

4∑
a=1

mar
2
a. (4.7)
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It is obvious that this Lagrangian is of the form of a NR system with z2
0 , 1

z20
, r2

a and 1
r2a

type

of terms. Here we have used Λ1 =
(
−2
∑4

a=1Ca

)
. The Hamiltonian formulation yields

HNR =
ż2

0

4
+
C2

0

4z2
0

+

4∑
a=1

(
ṙ2
a −

C2
a

r2
a

)
+

4∑
a=1

m2
ar

2
a. (4.8)

The corresponding Virasoro constraints may be written as:

4∑
a=1

[
ṙ2
a + r2

aḟ
2
a + r2

am
2
a

]
=

(
ż2

0

4
+
C2

0

4z2
0

)
, (4.9)

4∑
a=1

r2
aḟama = 0. (4.10)

The Uhlenback integrals of motion involved in the motion of the pulsating string in Rt×CP3

in the presence of flux may be obtained by using the similar procedure as described in

section 2.3 and those are2

F = z2
0 + r2

a

∑
b 6=a

(ṙarb − raṙb)2

m2
a −m2

b

+
∑
b 6=a

1

m2
a −m2

b

(
Carb
ra

+
Cbra
rb

)2

+ 2
∑
b 6=a

(
raṙar

2
b − rbṙbr2

a

)
ma +mb

+
1

4

∑
b 6=a

(
ma −mb

ma +mb

)
r2
ar

2
b . (4.11)

4.1 String profile and conserved charges

To find the expression of ra(τ), firstly we take r1=r3= 1√
2

sin θ, r2=r4= 1√
2

cos θ, m1 = −m3

and m2 = −m4, so that the constraints become

4∑
a=1

r2
a = 1,

4∑
a=1

r2
ama = 0. (4.12)

Now if we consider z0(τ) = 1 and h0(τ) = τ = t, from the Virasoro constraint (4.9) we get

θ̇2 =
1

4
− 2C2

1

sin2 θ
−
(
m2

1sin
2θ +m2

2 cos2 θ
)
, (4.13)

with C2 = C4=0 and C1 = −C3. Equation of motion (4.13) finally yields

∂

∂τ
(cos θ) = ṙ2 = ∓

√
m2

1 −m2
2

√(
cos2 θ − z2

−
) (
z2

+ − cos2 θ
)

(4.14)

which gives a solution for all ra’s, a = 1, 2, 3, 4 as

r1 = r3 =
1√
2

√
1− z2

+dn
2 (Aτ |m); r2 = r4 =

z+√
2
dn (Aτ |m) , (4.15)

2Here also we consider b = 1 for simplicity.
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where

A≡∓z+τ
√
m2

1−m2
2,m≡ 1−

z2
−
z2

+

, (4.16)

z2
±=

1

2
(
m2

1−m2
2

)
(1

4
−2m2

1+m2
2

)
±

√(
1

4
−2m2

1+m2
2

)2

−4
(
m2

1−m2
2

)(
m2

1+2C2
1−

1

4

) .
(4.17)

Hence the string solutions may be written as

Z =
R

2
eiτ , W1 =

R√
2

√
1− z2

+dn
2(Aτ |m)ei(m1σ+f1), (4.18a)

W2 =
R√
2
z+dn(Aτ |m)ei(m2σ+f2), W3 =

R√
2

√
1− z2

+dn
2(Aτ |m)e−i(m1σ+f1), (4.18b)

W4 =
R√
2
z+dn(Aτ |m)e−i(m2σ+f2). (4.18c)

Now, the conserved charges for the pulsating string in such a background may be found

from the target space Lagrangian as

Es =
∂L

∂(∂τ t)
= −
√

2λ

2
, Ja =

∂L
∂(∂τφa)

= −
√

2λr2
aḟa (4.19)

It is obvious that the presence of flux in the background does not affect the conserved

charges in the case of a pulsating string. Now expressing the Virasoro constraint (4.9) in

terms of E = E√
2λ

and Ja = Ja√
2λ

, the oscillation number can be written as [41]

N =
N√
2λ

=

∮
r1ṙ1dr1 =

√
2λ

∫ √R
0

dr1
1

2r1

√
4r2

1E2 − J 2
1 − 4m2

1r
4
1, (4.20)

where
√
R = r1max = 1

m1

[
E2 ±

√
E2 − J 2

1 m
2
1

] 1
2
. From the above we get,

∂N
∂m1

= −2m1

∫ √R
0

r3
1√(

r2
1 −

a−
m2

1

)(
a+
m2

1
− r2

1

)dr1, (4.21)

where a± = E2±
√
E2 − J 2

1 m
2
1 and

√
R =

√
a+
m2

1
. Expressing it in terms of standard elliptic

integrals and dropping some terms for sake of simplicity we get,

∂N
∂m1

= 2
√
m1a

3
2
+

[
K

(
a−
a+

)
−E

(
a−
a+

)]
. (4.22)

Now we use the following standard expansions of the elliptic integrals of first and second

kinds,

K (ε) =
π

2
+
πε

8
+

9πε2

128
+

25πε3

512
+

1225πε4

32768
+O[ε]5, (4.23)

E (ε) =
π

2
− πε

8
− 3πε2

128
− 5πε3

512
− 175πε4

32768
+O[ε]5, (4.24)
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where ε = a−
a+

. Substituting the expressions for a+ and a− in the above expansion and

expanding for small E and J1, we get

∂N
∂ma

=

(
11

64
πJam

5
2
a −

135

1024
πJ 4

am
9
2
a +

175

2048
πJ 6

am
13
2
a +O[J 8

a ]

)
−
(
π

8
m

1
2
a +

117π

512
J 2
am

5
2
a −

175

4096
πJ 6

am
9
2
a +O[J 8

a ]

)
E

+

(
− 3

32
πm

1
2
a +

21

128
πJ 2

am
5
2
a −

525

8192
πJ 4

am
9
2
a +O[J 6

a ]

)
E2

−
(

3

32
m

1
2
1 −

57

128
πJ 2

am
5
2
a +

525

2048
πJ 4

am
9
2
a +O[J 6

a ]E3

)
+O[E4].

(4.25)

Integrating the equation (4.25) with respect to m and then inverting the series we get

the energy as a function of oscillation number, winding number and conserved angular

momenta as,

E =M+K(ma)
5πma

32
J 2
a +O[Ja]4, (4.26)

where,

M =
π

16
√
ma

+
√
N ,

K(ma) =
117m

1
2
a

32
−N

(
11m

1
2
a +

63π

256

)
. (4.27)

When we take ma → 1 and Ja → 0 it yields the first order term of the small energy limit

expansion of the energy for the string pulsating in one plane [42, 43].

5 Conclusions and outlook

We have shown, in this paper, that the string motion in AdS4×CP3 in the presence of BNS
holonomy is integrable by reducing the Lagrangian of such a system into the form of a NR

model with an additional term proportional to the flux. We have elucidated the Lagrangian

and Hamiltonian formulation and computed the integrals of motion in our pursuit to show

it to be integrable. We have then turned out attention for studying the rotating string

with two angular momenta and have found out the relevant scaling relation among various

charges corresponding to the giant magnon solution of string rotating in this background.

We have also computed the leading order finite size correction of such dispersion relation.

For the pulsating string we have performed the Lagrangian and Hamiltonian formulation

and integrals of motion to show that it reduces to a NR system. We have derived the

integrable equations of motion, the pulsating string profile and the short string energy as

function of oscillation number and angular momenta. It would be certainly interesting to

generalize the construction to the more generic rotating and pulsating string solutions and

check the integrability. The presence of BNS field does not destroy the integrability of the

background and hence it will be interesting to check for general rotating strings in the ABJ

background. It would also be interesting to look at the D1-string equation of motion in
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this background and check the integrability via the NR system. We wish to come back to

some of these issues in future. It will also be interesting to look for finite-size corrections

by using the Lüscher correction formulation based on exact S-matrix.
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