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ABSTRACT: Intersecting D-brane models and their T-dual magnetic compactifications yield
attractive models of particle physics where magnetic flux plays a twofold role, being the
source of fermion chirality as well as supersymmetry breaking. A potential problem of these
models is the appearance of tachyons which can only be avoided in certain regions of moduli
space and in the presence of Wilson lines. We study the effective four-dimensional field
theory for an orientifold compactification of type IIA string theory and the corresponding
toroidal compactification of type I string theory. After determining the Kaluza-Klein and
Landau-level towers of massive states in different sectors of the model, we evaluate their
contributions to the one-loop effective potential, summing over all massive states, and we
relate the result to the corresponding string partition functions. We find that the Wilson-
line effective potential has only saddle points, and the theory is therefore driven to the
tachyonic regime. There tachyon condensation takes place and chiral fermions acquire a
mass of the order of the compactification scale. We also find evidence for a tachyonic
behaviour of the volume moduli. More work on tachyon condensation is needed to clarify
the connection between supersymmetry breaking, a chiral fermion spectrum and vacuum
stability.
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1 Introduction

Intersecting D-brane models and their T-dual magnetic compactifications provide attrac-
tive and intuitive string theory compactifications to four dimensions with chiral fermion
spectra [1, 2]. The main emphasis in model building has been on the construction of
vacua with unbroken N = 1 supersymmetry (for a review and references, see [3, 4]), but
in absence of any hint for supersymmetry at the Large Hadron Collider, models where
supersymmetry is broken at a high scale, in the spirit of ‘split supersymmetry’ [5, 6] or
‘split symmetries’ [7, 8], are also of current interest.



An intriguing aspect of magnetic compactifications is the connection between fermion
chirality and supersymmetry breaking [9], which occurs in compactifications of type I
strings on tori and orbifolds [10-12] and in the related intersecting D-brane models [11,
13, 14]. This setup allows to construct models which come very close to the Standard
Model of particle physics [15-18]. Generically, magnetic compactifications have tachyonic
instabilities of Nielsen-Olesen type [19]. Originally, one could hope to relate such an insta-
bility to electroweak symmetry breaking [9, 15, 16] in case of a low string scale and large
extra dimensions. This is no longer viable but the structure of the setup is rich enough to
incorporate in principle also split supersymmetry [20, 21].

The goal of this paper is the computation of quantum corrections for string compactifi-
cations with magnetic background flux. This is partly motivated by the recent observation
that in quantum corrections to Wilson-line scalars large cancellations occur [22-25] due to
the presence of magnetic flux. This suggests that in appropriate compactifications similar
cancellations may occur in quantum corrections to Higgs masses, which would be important
in view of the hierarchy problem. In order to address these questions we extend the pre-
vious calculations for six-dimensional field theory models to a full string compactification
on magnetized tori. Notice, that another motivation of our effective field theory approach
is that, whenever supersymmetry is broken by magnetic fluxes, in string theory NSNS
tadpoles are generated that make any quantum computation very hard, both conceptually
and technically (see, for example, [26]).

Our starting point is the construction of an intersecting brane model with broken
supersymmetry in a matter sector without tachyons and with chiral fermions which can
acquire mass via the Higgs mechanism. For simplicity, and to facilitate the computation of
quantum corrections, we choose as unbroken gauge group U(N) x U(1) x U(1) rather than
the Standard Model gauge group. The model has a Higgs sector and antisymmetric tensor
fields with fermions in vector-like representations. Some scalar masses in these sectors
depend on the distance between branes that are parallel in some tori. These moduli
correspond to Wilson-line scalars in the T-dual picture. They become tachyonic if the
branes come close to each other. At tree level the Wilson-line potential is flat. However,
as we shall see, one-loop quantum corrections make it concave, implying that the system
is driven into the tachyonic regime of moduli space.

After determining intersection numbers and scalar masses for the D-brane model, we
turn to the T-dual magnetic compactification which is better suited to evaluate the four-
dimensional (4d) effective field theory. Starting from the 10d SO(32) Super-Yang-Mills
Lagrangian expressed in terms of /' = 1 vector and chiral superfields [27, 28], we compute
the 4d effective action for a toroidal compactification with three U(1) magnetic background
fluxes that break SO(32) to U(N) x U(1) x U(1). For each sector of the model we deter-
mine the Kaluza-Klein (KK) and Landau-level (LL) towers of mass eigenstates of vectors,
fermions and scalars. The calculations are based on the harmonic oscillator algebra of
covariant derivatives in a flux background [9, 24, 29-31]. The mass spectra are compared
with the string formula of Bachas, also in view of supersymmetries that remain unbroken
for particular choices of magnetic fluxes in some sectors.



In the Higgs sector branes are parallel in some tori and, knowing the spectrum of
massive KK and LL states, we compute the effective potential as function of magnetic
flux and Wilson lines. The effective potential is also obtained in the field theory limit of
the corresponding string partition function, and the two results agree. As function of the
Wilson line the potential is concave and there are no local minima. Hence, the tree level
vacua with non-vanishing Wilson lines are unstable. This is a new result of our paper. For
vanishing Wilson lines tachyon condensation takes place and all chiral fermions acquire
masses of the order of the compactification scale.

The contributions to the effective potential from the various sectors are most easily
obtained from the corresponding string partition functions. In sectors without Wilson lines
we also calculate the effective potential as function of the volume moduli of the three tori.
We find evidence that also in this case the system is driven to the tachyonic regime of moduli
space, which would imply that the only vacuum state corresponds to the decompactification
limit. A further, well-known problem is the NSNS tadpole (see, for example, [26]) in case
of broken supersymmetry.

The paper is organized as follows. The intersecting D-brane model and its T-dual
magnetic compactification are discussed in sections 2 and 3, respectively. Mass eigenstates
and mass spectra are derived in sections 4 and 5, and the effective one-loop potential is
computed in section 6. Section 7 deals with tachyon condensation. The appendices A and B
give details concerning the embedding of the various sectors of the model in the adjoint
representation of SO(32), and in the appendices C and D some formulae are collected for
superfield components and Jacobi functions, respectively.

2 Intersecting D-brane model

We are interested in a D-brane model with broken supersymmetry, which contains a ‘matter
sector’ with chiral fermions and a ‘Higgs sector’ with vector-like fermions such that vacuum
expectation values of Higgs fields can give mass to the chiral fermions. As a simple example,
we choose the gauge group

G=U(N)xU(1) xU(1), (2.1)

corresponding to a stack of N branes, a, and two single branes, b and ¢. The fermions are
supposed to be chiral with respect to U(1) x U(1) and vector-like with respect to the ‘colour
group’ U(N). Following [11, 16], we start from type ITA string theory compactified on a
rectangular factorized torus T° = TZ x T x T2 with real coordinates 2y, . . ., 9 and complex
coordinates z; = (woy2; + iw342i)/2, i = 1,2,3, with the identifications z; ~ z; + L;/2,
2z ~ zi+iL}/2. An orientifold is obtained by dividing out the discrete symmetry QR(—1)%z,
where () is worldsheet parity, Fp is left-moving fermion number, and R is a reflection
symmetry of T,

R : (21, 29, Z3) — (21, Z9, 23) . (2.2)
The orientifold has eight O6-planes along Minkowski space and the directions zsi9; that

are invariant under R. The orientifold planes are localized at the fixed points (21, 22, 23),
zi = (0,7L'/4). Each orientifold plane has RR charge Qo = —2 in units of a D6-brane



Branes, gauge groups | (n',m!) (n?,m?) (n3,m?3)
a, UN) (1,0) (1,2) (1,1)
b, U(1) (1,1) (L,0) (1,-2)
c, U(1) (1,1) (1,-1) (1,2)

Table 1. Intersecting D-brane model. Wrapping numbers of a stack of N branes, a, and two single
branes, b and c.

charge. Cancellation of the total RR charge requires 16 D6-branes together with 16 mirror
D6 branes to satisfy the reflection symmetry R of the compact space. A brane e is wrapped
around the 1-cycles [a;] and [b;] of the 2-tori T7? with wrapping numbers n¢ and m¢, yielding
for the wrapped 3-cycle of the brane the homology class'

ML) = @i (nelai] + me[bs) - (2.3)

The homology class [II/] of the mirror brane is obtained from [II.] by replacing m’ by
—m}. In case of stacks of N, branes, leading to gauge symmetries U(N,), the RR tadpole
cancellation condition can now be written as

> Ne[lL] —2[Mog] = 0, (24)

where [IIpg] = 8 ®; [a;] is the homology class of the orientifold plane.

We are interested in the gauge group U(NN)x U(1) x U(1), corresponding to one stack of
N branes, a, with gauge group U(N), and two further single U(1) branes, b and c¢. Table 1
shows a set of wrapping numbers which can be consistent with the wanted gauge group
U(N) x U(1) x U(1). We have chosen all wrapping number in the xsy9; directions equal,
n' = 1, and one wrapping number in the first torus as zero, m! = 0. In this case, the

tadpole conditions (2.4) read explicitly,

N +2=16,
2,3 2,3 2,3
Nmymy, +mymy +m;m, =0, (2.5)
mpmy +mem?d =0,
mém%%—m}:mg:

One easily verifies that these equations are solved by the ansatz in table 1, with N = 14,
[ = 7. The chosen wrapping numbers imply that not all branes intersect in all tori: a and
a’, and b and c¢ are parallel in the first torus, whereas b and ¢ are parallel in the second
and in the third torus. This situation is illustrated in figure 1.

On each brane an N' = 4 supermultiplet of zero-modes in the adjoint representation of
the gauge group is localized. The branes intersect at angles determined by the wrapping
numbers. At these intersections fermions and scalars in bi-fundamental representations
(Ne, Ny) are localized. For non-zero intersection numbers

I = ®; (ném} — mzn}) (2.6)

'We mostly follow the conventions of [4].



Figure 1. Left: intersections of brane stack a with branes b and ¢, and brane b with ¢ in the second
torus T%; right: intersections of brane stack a with branes b and ¢ in torus 77 where branes b and
c are parallel.

Brane sector | Intersection number I 4d fermions (L)
ab + ba -3(l-2) Nig
ac+ ca —(1+2) No1
abl +ba I+2 Nig
ac + ca 3(1-2) Noa
aa' 0 N(N —1)/2, N(N —1)/2
be + cb 0 111,14,
b’ + b 0 11,1, 1211

Table 2. Chiral and vector-like representations of left-handed fermions at various brane intersec-
tions.

the fermion spectrum is chiral. The fermions are left-handed for I.; > 0 and right-handed
for I,y < 0, corresponding to left-handed fermions in the complex conjugate representation
(Ne, Nf). At the intersections of the brane system defined in table 1 one obtains the left-
handed fermions listed in table 2. There are matter fields that carry ‘colour’, transforming
as N or N under SU(N). They form a chiral representation of the full gauge group, whereas
colour singlet ‘Higgs fields’ form vector-like representations. The quantum numbers of the
chiral fermions allow Yukawa couplings that are most conveniently expressed in terms of
the associated chiral superfields,
3(1-2) 142
Ly > Z YW NT NG 1 1 + Zyg)N&Nﬁol—L—l : (2.7)
r,8 T8
These couplings lead to fermion mass terms after a vacuum expectation value (1_1 _1) # 0
breaks the chiral group U(1) x U(1) to the diagonal U(1) subgroup. The complete list of
Yukawa couplings will be given in the subsequent section.
In the brane sector aa’, bb’ and cc’ chiral fermions in symmetric and antisymmetric
representations of the gauge group occur with multiplicities

1
Nsym,e = 3 (Leer — Ie,06) = —4mimgmg’ (néngng’ — 1) ,
(2.8)
Nasym,e = 5 (Iee’ + Ie,OG) = _4mémgmg (néngng + ]-) , €= a, b,C.



Brane sectors 4ol M3 |ef 4ol M3 |ef 4l M3 ey
ab, ac’ —p1+ (L =2)p2+3ps p1—(—=2)p2+3p3s p1+ (Il —2)p2—3p3
ab’, ac =+ U+2)p2+p3 pr—(U+2)p2+p3  p1+I+2)p2—p3
ad’ 4p2 + 2p3 —4p2 + 2p3 4pa — 2p3
be 2lpa + 4p3 —2lpa + 4p3 2lps — 4p3
bc’ —2p1 2m 2p1

Table 3. Masses of scalars at various brane intersections.

Since in our model m! = 0 and n! = n?2 = n? =

1 for e = a,b,c, there are no chiral
fermions in symmetric or antisymmetric representations. As we shall see in the following
section, a vector-like pair of fermions in the antisymmetric representation of SU(V) occurs
in the aa’-sector. The bV'- and the cc’-sector correspond to U(1) symmetries where such
representations are absent.

The masses of bi-fundamental scalars depend on the angles at which the branes inter-
sect. We restrict ourselves to small angles with respect to the orientifold planes,

/

. . . I/
tan @, = mgp; ~ 6., pi:i, 1=1,2,3, e=ua,b,c, (2.9)
1

where L;/(2r) and L}/(27) are the two radii of the torus 772, respectively. In the T-dual
picture small angles correspond to large areas of the dual tori so that we shall be able to
use a field theory approximation to string partition functions.

At the intersection of two stacks of branes, e and f, one then has three light bi-
fundamental scalars with masses [14]

dma/ Mtep = —[00f] + 16271 + 1621
47ro/M2|ef_|9 | — 162 f|+|9 | (2.10)
Aol M3 | = 102;] + 02| — 1021,

where 6 of = =6 — ¥, with —m/2 < 9’ < /2. For the model defined in table 1 one obtains
OCIL:Oa 0(3:2;027 922037
ngph 9321927 61:?:_2P37
0. = p1, 0; = —lps, 0 = 2p3. (2.11)

Using eq. (2.10) these angles yield the scalar mass spectrum at the various brane intersec-
tions which is listed in table 3.

In any sector of states stretched between any two stacks of branes e, f, some super-
symmetry is preserved provided that angles fulfill the following conditions [13],

0, i@ZfiGef_ : N=4-N=1,
Qef:I:QGf—O Qf—() N:4—>N:2 (212)



In the considered model, a tachyon occurs in the bc’-sector,
m3|pe o< —2p; < 0. (2.13)

A further tachyon appears either in the aa’-sector or in the be-sector. In both sectors the
flux in the first torus is zero, i.e. 1 = 0. Choosing 6% = 62 yields two massless scalars,
avoiding tachyons. For the aa’-sector this means

p3 = 2p2, (2.14)

which avoids coloured tachyons but implies a second tachyon in the bc-sector,
m3|pe o< (=21 +4)py < 0. (2.15)

Together with the two fermionic zero-modes the aa’-sector then forms a subsystem with
N = 2 supersymmetry. For the choice [ps = 2p3 the roles the aa’-sector and the be-sector
are reversed.

The condition for absence of tachyons in the ab- and ac’-sector reads
(8=Dp2a<pr <(I+4)p2, (2.16)
and for the ab’- and ac-sector one obtains
lpa <p1 <(l+4)p2. (2.17)

With | = 7, the last condition (2.17) is the stronger one and implies condition (2.16).
Hence, once the conditions (2.14) and (2.17) are satisfied, all scalars in the sectors ab,
ac’, al’ and ac are massive and supersymmetry is completely broken. The angles satisfying
these conditions form a tetrahedron [16]. It is illustrated in figure 2, together with a domain
of small angles.

The appearance of tachyons is a generic feature of non-supersymmetric intersecting
D-brane models. However, it is argued that such tachyons can be removed by couplings to
moduli fields that parametrize the distance between branes in tori where they are parallel.
In the T-dual picture discussed in the following section these moduli correspond to Wilson-
lines &, ¢’ that acquire vacuum expectation values (see, for example, [16, 21]). In the present
model the corresponding superpotential terms would have the form (in superfield notation,
see table 2),

W§'7fl = )\1 5 117_11_171 + )\2 f/ 11711_17_1 . (218)

Clearly, existence and stability of a ground state require an appropriate potential for &,
&', At tree-level the potential is flat. To compute the one-loop quantum correction to
the potential is an essential goal of this paper. To achieve this we first construct the T-
dual type I string compactification on a magnetized torus, which allows a straightforward
computation of the full mass spectrum of the model as well as Yukawa couplings.
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Figure 2. Domain of angles for which no tachyons appear. Left: line in 62 — #3-plane in case of
no flux in first torus, i.e. ' = 0. Right: tetrahedron in case of fluxes in all tori. The gray areas
indicate small-angle domains with |6?| /7 < 0.15.

3 T-dual toroidal flux compactification

The intersecting D-brane model constructed in the previous section is T-dual to a type I
compactification on a magnetized dual rectangular torus T? x T2 x T32 with the identifica-

tions
ZZ'NZi—i-LZ‘/Q, ZiNZZ'—i-Q?TQO//L;, (31)

where the angles 62 between brane e and the orientifold plane are related to magnetic flux
densities in the 2-tori 77 [13],
tan 0. = 2w/ g fi . (3.2)

Here g is the gauge coupling, brane e (e = a, b, ¢) has a U(1) group with Cartan generator
Hy (I =0,1,2), and f¢ is the corresponding flux density in the torus 72. Using eq. (2.9),
tan 0! = mépi, this implies the Dirac quantization condition for the flux densities f},

Al .
g/TQ fr= > 9f1 =2mmj. (3.3)
: 7

For small angles, corresponding to small flux densities, one has?
0. ~ mip; = 2malgfi, pi=1Lj/Li. (3.4)

The considered D-brane model has three stacks of branes and therefore three U(1) fac-
tors, U(1)4, U(1), and U(1)... Correspondingly, each torus T2 can have three flux densities
f4, which allow to break SO(32) to the gauge group of the D-brane model,

SO(32) D U(16) > U(14) x U(1) x U(1). (3.5)

2In the following we shall use the notations f¢, m? and f{, m¢ in parallel, according to convenience.



The corresponding decomposition of the adjoint representation reads (see appendices A
and B, N = 14),

U(N)|N-10|No—1| A | Nio| Noa

aa ab ac aa’ ab | ac

Nio | U@M) [11,1 | Mg | O | 111

)

ba bb be ba’ bb' | bc
Noi|1-11 | UQ) | Noa | 11a 0

) )

ca chb cc ca’' cb’ cc
SO(32) ~ — —— : (3.6)
A* IN_19|No—1|UN)*| Nipo | Noa

)

aa a'b a'c aad | aV | ddc

N_ipol 0 |11 Nogo|U@)*[ 11,
ba b'b be ba' | BV | ¥
No_1|1-1-1| 0 | No_1|11-1|U1)*

ca b de da | b |

Each block is labeled by the related brane intersection. The upper left and the lower right
quadrant correspond to the adjoint representation of U(16), whereas the upper right and
the lower left quadrant represent the antisymmetric representation of U(16), decomposed
with respect to U(14) x U(1) x U(1).

The representation in the block ef feels the magnetic flux feif = fi— f} in torus TZ-Z.
According to the index theorem the multiplicities of chiral zero-modes are given by

Iy = (;ﬂ)?’]:[ / Ao = Tl =i, (37)

Because of eq. (3.3) these multiplicities agree with the intersection numbers of the D-brane
model given in table 2.

The starting point for the computation of the 4d effective action is the 10d Super-Yang-
Mills action with N' = 4 supersymmetry and gauge group SO(32), which is conveniently
expressed in term of 4d vector superfields V' and chiral superfields ¢ [27, 28],

S10 = /dmx {llc /d29 tr [iWW + %Eijk@ﬁi (éb‘d)k + 3\’% [(bj,cka] +h.c. (3.8)
+ ]i/d49912 tr K—\@gi + gq3’> sV <\/§az + g(bi) eIV ¢ @egv&'e—gv} } .

Here W is the field strength of the vector field,? i, j,k = 1,2, 3 label the three 2-tori, and
our trace convention is tr (7,73) = kd.p. Expanding the exponentials, integrating some of

3We use the conventions of [32], and we have dropped the WZW term that vanishes in WZ gauge, V3 =0.



the terms by part, and using the WZ gauge V3 = 0, one obtains

Sio = / % {i / 0 tr BWW + e’ <8j¢k v ¢>k]>] the.

+ % / a0 tx [W FV2(8:6' + 9;0°)V — gl ¢V

+ (aiv - %W, V]) <al-v + \%W,V]ﬂ } . (3.9

Note, that in this action the invariance with respect to 4 supersymmetry transformations is
manifest whereas the invariance with respect to 12 further supersymmetry transformations
is hidden. This will be important in our discussion of supersymmetry breaking by magnetic
fluxes in the following sections.

Vector and chiral superfields are conveniently decomposed into the different sectors
indicated in eq. (3.6). The unbroken group is H = U(NN) x U(1) x U(1) C U(N + 2) with
the U(1) and SU(N) generators*

1 -
;ﬁ§zha, Hy =Tnuiny1, Hy=Tnioni2, Tap- (3.10)

In terms of the generators of H and SO(32)/H, vector superfields can be expressed as (see

Hy =

appendix B)

V = VigTop + ViHr + V0T + VOO 4 vO-10~ 4 v O+ 70+

1 1. -
iv’ngX’;% + iv'yéX'yd + ch_OX;_O (3'11)
+ V. OX 04 VO XOT VO X Xt VX

+ V+—T+— + V—+T—+ +

The charges with respect to H; and Hy are indicated explicitly. The fields V0, V0=, ffjo
and VOF transform in the fundamental, and the fields V0, V0t V-0 and VO~ in the
anti-fundamental representation of SU(N), respectively. VWE is an antisymmetric tensor of
SU(N) and VVE is the complex conjugate representation. Vf(s are neutral with respect to
H, and H,. Here, the superscript denotes the charge with respect to Hy. Analogously, the
decomposition of the chiral and antichiral superfields is given by®

¢ = dasTap + X1 Hr + 03T, + 3 T, + o0 Ty~ + ¢t Tot
PO b 6T 4 X 4 on X BEOX (3.12)
+ 0 X+ T XST Py XY T X

¢ = GasToa + XrHi + 63 T + 60T 0 + 07T + 60T

+ %&;5X% +o0X 0 (3.13)

_ _ 1_
=+ | g—tpt— o Do+ v
AR A AT

X 4 BN BXY BT X

1A sum over repeated indices is understood.
5Note that ¢, ° stands for ¢3°.

~10 -



In order to compute the mass spectrum caused by the magnetic fluxes and also for a
discussion of tachyon condensation one has to know the Yukawa couplings of the model.
They are obtained from the cubic gauge coupling in the action (3.9) and the commutators

listed in appendix B. A straightforward calculation yields the result
1 g
Ly = [ @0"etr[¢'[¢), ¢"] = zein

\[ J [ [ H ﬂ J

where W' and W? describe couplings without and with SU(V) fields, respectively,

dPO(Wh + W), (3.14)

Wik = —xb (4200 + 0ok — G030 — G310 + ol
1 (= LR — LR+ T T+ )
+xa(— A TR T — TR T — T T+ )

_ ¢i+— (¢£—0¢20+ + %OJW;];_O) _ ¢i—+(¢£0—¢§+0 + éz‘;roqg/;o-)
+ (=TT OO + 6T (0000 — ol ™)

;—%((;5]5-1-0 ~lcc;0 + quéo-i-(gléof) - ;TB(¢%_0¢;§+O ¢]0— k0+) , (315)
Y R ST
+ @l heky — ekt + ol ok, — ¢l 0, (3.16)

Note, that these couplings involve 10d fields. The 4d effective Lagrangian is obtained
by performing a mode expansion for all fields and by evaluating the overlap integrals of
products of mode functions.

The gauge group SO(32) is broken to the subgroup U(N)xU(1)xU(1) by a background
of the U(1) gauge fields in the compact dimensions,

X7) = —= 17+ & (3.17)

\f

corresponding to Wilson lines and magnetic fluxes in the three 2-tori (x%|y_g_o = (A1 342+
iAr212:)/V2), - ‘
(Fotois42i)0ij = 0i(x7) = f10ij - (3.18)

The mass spectrum of the charged fields is obtained by calculating the quadratic part of
the effective action in this gauge field background.

Each pair of fields in eq. (3.6), such as (A4, A*), (N_10, N1,) etc., feels magnetic fluxes
f} in the three tori. The mass spectrum of each sector ef is then characterized by Landau
levels (n1,n2,m3) and internal helicities (o1, 092,03) in the three tori, with n; € N and
o; = 0,£1/2,+1. Hence, for each triple of Landau levels one obtains two 4d complex
vector states, eight 4d Weyl fermions and six complex 4d scalars. Their masses have been
obtained in a type I string compactification on a magnetized torus (f; ;= fi— f}) 9],

ME(ni0) = g D (2 + DIfiy| +2fy0). (3.19)

- 11 -



Here o = (01,09, 03) takes the values (0,0,0), (+£1/2,4+1/2,4+1/2) and (+,0,0), (0,+,0),
(0,0, £) for vectors, fermions and scalars, respectively. Contrary to what one might expect,
these masses are not associated with a single set (n1,n2,ng) of Landau levels in a mode
expansion of the 10d fields in eq. (3.6). As we shall see in the following section, the magnetic
fluxes mix neighboring levels in the Kaluza-Klein towers, and mass eigenstates are linear
combinations of different Landau levels.

In this T-dual internal magnetic field description that we will mainly focus on, su-
persymmetry breaking for generic magnetic fields is captured by the (internal helicity)
spin-magnetic field coupling in the mass formula (3.19). The special values of magnetic
fields for which some supersymmetry is preserved can be understood in various ways. One
of them is by checking the boson and fermion mass formulae and the flux value parameters
for which there is boson-fermion degeneracy. Equivalently, the scalar potential that we will
compute in section 6 will turn out to vanish precisely for these flux values. Another way to
understand supersymmetry breaking and preservation is by writing the gaugino variation
for the Super-Yang-Mills theory directly in ten dimension, before compactification, which

reads
o_ 1

4

where I'PQ = %(FPFQ —TerP), Fpg is the 10d Yang-Mills field strength and € are the 10d
supersymmetry parameters. The number of preserved supercharges is given by the number

oA TPeFp e, (3.20)

of independent spinors € annihilated by the operator
L(f) =T"Fpg) ~ TS+ T fo +T% f3, (3.21)

where we defined the fluxes f; = (Fhior3+2k), K = 1,2,3, and I is a Cartan subalgebra
generator supporting the magnetic flux. A well known and convenient Fock space basis
for fermions is obtained by introducing the creation and annihilation operators (see, for

example, [33]) 1 1
bL — §(F2+2k o Z'1'\3+2k:) ’ bk — 5

with £ = 1, 2,3 denoting the complex internal space degrees of freedom. Using

(1’\24‘2]6 + 2‘1“3"1‘2]6) , (322)

blby — bbl = iT2H2RT342k — 90, o 5o, (3.23)

where Jo 91 3421 are rotations generators in the internal space, one can rewrite the operator
I' as

3
T(f) ~ > fr(blbr — bib}) . (3.24)
k=1
Then, by explicit construction, one can show that I'(f)e = 0 for

=10y and bIBIBLI0Y, if  fidfot f3=0,

e =b[0) and Bipij0),  if —fi+fot fz=0, 5.25)
e = b5|0) and bLbI[0), it fi—fod f3=0, '
es = bj|0) and BiBbj0), it fi4+fo— fz3=0.
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These relations match the field theory limit of the intersecting brane supersymmetry con-
ditions (2.12). As we will see explicitly in the following sections, the effective theory
does not easily capture the supersymmetry restoration points in moduli space. The rea-
son is that the supercharge corresponding to €y is aligned with the superspace expansion,
whereas the other preserved supercharges corresponding to €23 are not, and the corre-
sponding supersymmetries are hidden in an effective Lagrangian that at first sight looks
non-supersymmetric.

In later sections we will discuss tachyon condensation, which requires to add the fluc-
tuations around the magnetic background (3.21). In this case, the operator I' is changed
according to

3
D =TP0FL, =23 (chpohidly — ifF)(blbx — bib))

k=1
+dchp Y [blblohah + biby sl + blbs@indly + bibldeh |, (3.26)
i<j
where 0{4 p are the structure constants of the 10d Yang-Mills gauge group and A, B are
indices of the adjoint representation. Acting with the operator I' on the spinors Q =
(€0, €1,€2,€3)T one defines a 4 x 4 matrix M according to

rQ =MQ. (3.27)

Notice that the spinors €g, ¢; do not carry flux charge, since they transform only under the
SU(4) R-symmetry group, which commutes with the gauge group generators. They should
be understood as the constant zero modes of the KK reduction from 10d to 4d. Labeling
the four rows and columns by 0, 1,2, 3, the matrix elements are computed to be

Moo = =2i(f} + f7 + f}) — 2cl gl oy, Moi = —40{4362'3‘16?335‘1_5% , (3.28)
Mo = dchpeijud’y ol . Mij = 2i(f] + f1 + 1 — 2f1)8i; + 2ci 5 (850565 — 2644 0%) -

After compactification to four dimensions, quantities like qu;\qB]fg should be understood as
integrated over the internal space, leading to a sum over Landau levels Zn,n/ qbf;l m,qglfgmn,.
As before, the number of zero eigenvalues of the matrix M is the number of unbroken
supersymmetries in four dimensions. Let us study some simple examples:

e One flux, say f} = fI2 = 0, f;’ # 0. In the absence of vev’s for ¢’s, there is no
zero eigenvalue according to (3.25) and all supersymmetries are broken. However, by
giving a vacuum expectation value ¢3 # 0, one can set to zero all matrix elements
and restore full ' = 4 supersymmetry by choosing ci B¢3A<Z>% =1 f;’. Notice that the
vev’s concern fields charged under the (Cartan) generator Hj.

e Two fluxes, say f} = 0, f?, f? # 0. In this case, in the absence of vev’s for ¢’s,
all supersymmetries are generically broken, except for f12 =+ fl?’, which preserves
N = 2 supersymmetry. For f12 #* f?, one can easily find vev’s restoring N' = 2
supersymmetry:

chpdadh =0, i(ff — f7) = 2 5($a0% — HA0%) (3.29)
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which can be satisfied for example for ¢% = 0 and i(f7 — f3) = —20{4 p®%0%. One can
also search the existence of an A/ = 4 vacuum. It seems natural to assume ¢}4 =0,
both since this field is not tachyonic for such fluxes and since in this case the matrix
M has a simpler block-diagonal form of two 2 x 2 matrices. The conditions for the
existence of an N' = 4 vacuum are

trl¢?, ¢°|Hy = —f7, trlo®, &°|Hr = — f, (3.30)
tr[p?, Q| Hr =0,  tr[¢? ¢’|Hr = 0. '
e Three fluxes, say f1,f7,f? # 0. In this case, in the absence of vev’s for ¢’s, all
supersymmetries are generically broken, except for f} & f? + f? = 0, which preserves
N = 1 supersymmetry. For f} & fZ + f3 # 0, one can easily find vev’s restoring
N = 1 supersymmetry by switching on only one vev. For example, one can choose
¢* = ¢3 =0 and
i(fl £ 1 £ f7) = chpdhods, (3.31)
for any (single) choice of signs. The case of vev’s restoring more supersymmetries
seems similar to the previous example with two fluxes. In order to obtain NV = 4
supersymmetry, one would need vev’s for the three ¢'’s and satisfy

tr[g’, o' Hy = —f1, ey tr[o’, ¢’ |Hr =0, e tr[¢’, ¢'|H = 0. (3.32)
This seems always possible.

In all cases, one should also impose the D-term conditions for the charged generators.
They are more complicated than the ones for the Cartan generators written above. The
reason is that in addition to bilinear terms similar to the ones for Cartan generators (for
example, € tr[¢?, '] E,), there are also terms linear in the charged fields coming from
the covariant derivative acting on charged fields, which have a non-constant profile in the
internal space. These terms, of the type ﬁag tr(¢/ E,) or \/?}ag tr(¢/ E,), depending
on the sign of the flux, can be computed in explicit cases and will be displayed explicitly
in section 7. However, a general expression for these terms, and a general analysis of the
charged D-term conditions is beyond the scope of this paper. Therefore, at this point we
leave open the question whether or not there are vacua with full N’ = 4 supersymmetry in
the case of arbitrary fluxes.

4 Matter sector

In this section we consider potentially tachyon-free sectors of the model, i.e., the anti-
symmetric tensor with vector-like massless fermions, and the fields in fundamental and
anti-fundamental representations with chiral fermions.

4.1 Antisymmetric tensor (aa’-sector)

Let us start with the antisymmetric tensor fields, V,ng, qbi; and qg%. These fields have charge
+2/+/ N with respect to Hy and charge zero with respect to H; and Hs. For simplicity, we
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choose & = 0. According to table 1, the flux in the first torus vanishes and the fluxes in
the second and third torus satisfy the quantization conditions (p; = L;/L;),

g 2_ 9 2ma’ g 3_ 9 2ma/
2. _ -1, 4.1
21V N Jr3 =8 27v/N Jr2 =78 i (4.1)
which yields the flux densities
gf2 = 2\/N2i2, =gVNfy, gfd= \/N27’;3a, = gVNfs. (4.2)

For the special choice p3 = 2ps in eq. (2.14), the flux density is the same in both tori, i.e.,
fg =13 or fa= fa.

Using the relevant commutators in eq. (B.7),

2

Hy, XT]=4+——X* |

ool N (4.3)
_ 2 '

[Xop X 5l = (6ar035 — 0570a0) + - - -,

vN
it is straightforward to derive the quadratic part and the cubic couplings involving the
neutral fields XO = ' and Xo Y,

1 1 29
SlO D) /dlox {/d29 <4W0W0 + W+W ¥ + €ij¢ ( yjéxj> d’%) +hC

+/d49 ()‘cixW SO550% Z; 5+ V20 + 0ix) Vo

7= (o0t &zgczsgg) v

+ 12 <<&~ :Zé%) 515+ <8i + \/\/%x’) ;g) v
(az {Ng ) Vs (a + ‘/\/?gxi) V5

o)) o

There is no Hp flux in the first torus. To obtain the lowest mass eigenstates, we can

ﬂ\

S

therefore neglect the dependence of the fields on z;. Inserting the background flux in the
second and third torus yields covariant derivatives 0y & 2g foZ2, 024 2g foze, and 93+ g f3%3,
03+ ¢ f323, which form a harmonic oscillator algebra. The fields can therefore be expanded
in the corresponding set of orthonormal eigenfunctions.
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For a flux density gf = 2nM, M € N, one defines two pairs of annihilation and creation
operators [24],

T
a+ = (8+gf2’), ay = 8_gf2 )
29f T V2] ( )
. (4.5)
i
a-=—— 0+gfz), ol = (0 —gfz) ,
g7 (0t 977) o
which satisfy the commutation relations
[as,al] =1, [at,a¢] =0, [ai,a;] =0. (4.6)
The ground state wave functions are determined by
a+&o,; =0, afg(),j =0, (4.7)
where j = 0,...|M|—1 labels the degeneracy. An orthonormal set of higher mode functions
is given by
i . i i n_
n,j = N < ) §0js &nj= N (af) €0, - (4.8)
Annihilation and creation operators act on these mode functions as
g =iV &nryy alny = —iVn 1 &y, (4.9)
a—gn,j =ivn gn—l,j ’ CLT_EW' =—ivn+1 En—&-l,j :
The mode expansions of the fields with positive and negative charge read
¢t = Z bt Z¢> il O = Z¢ s
(4.10)

Z ¢n jfnvj ’ V+ = Z ijfn,j ’ = Zvnijgn,j :
n,j

The antisymmetrlc tensor fields feel ﬂux in the second and third torus. Hence, there
are two sets of annihilation and creation operators, a3, afg and a3, af’J. Suppressing tensor
indices, i.e. W sW. 5/2 = WTW™ etc., and using f& = VN f5 and 3= V/N f3, one obtains
from eq. (4. 4)

S105 / 0% { / 020 (}lWoWw;W*W—z«/zgfz (67 a2lg* g +alo)
—1 /2gf3 <¢2+a?j¢1—¢1+QET¢2)>+h.c.
25 (\F ( 2 G2 12 2~ ) 73 (aiTq33++ai¢3—)) las
—2i\/g (\/E (afgb2++aid_>2_>+ f3 (a?jj¢3++ai¢33_)) V-
—29fs (azv—aivwafvmzjv—)

—2gf3 <a3VaiV++aiTVaiTV+)> } : (4.11)
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The fields have a double expansion in two sets of mode functions®

T (x5 21, 29, 23) Z <Z5n]nj 2)&nj(22)En j7(23)

njn'y’

¢ (x; 21, 22, 23) Z Drijnr it (T )€, j(22)E jo(23) ,  ete., (4.12)

njn'y’

where, for simplicity, we only consider the lowest KK mode in the first torus. According to
the quantization condition (4.1) the multiplicity in the second and third torus is two and
one, respectively, giving a total multiplicity of two for all fields.

Inserting the mode expansion of the fields in the 10d action, using eq. (4.7) and the
orthonormality of the mode functions, and dropping the indices 7, ;" that label the degen-
eracy, one arrives at the 4d effective Lagrangian

1 1
29 [ = E : Wt w-
L4 D/d 0 <4WQW(}+ 2 <2 ! W
29f2(n + 1) (an_H n’ qsi_n ¢n+1 n/¢711;l’>

2gf3(n + 1) (¢nn+1¢111;L - ¢nn +1¢$L;L >>> +h.c.

+ / d*0 (m/ﬁ( fot Vo + > (&jjn, Gt + P B

nn'

L (Gt = G tin) W

((ﬁ (VAGEE = Vi 162,10
9f3 (\qunn, L=V + <Z>M+1>> nn,+h.c.)

+2Mp VLV > ) (4.13)
where
Mn,n’ = (gf2(2n + 1) + gf3(2n/ + 1))1/2 : (414)

The magnetic flux mixes different Landau levels of the KK towers and it is therefore
convenient to introduce linear combinations of the original chiral superfields,

wm G =V 20fs0 62, 1), (n,n!) £ 0 B0 =0, (4.15)
Xnn = ———— (V29 fs(n + 1) ¢%, w1t V29fa(n+1) 271 ) (4.16)

/~Ln+1 n’+1

¢n n

SMore precisely, the fields depend on z; and Z;.
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B = — (VEIBW AT ¥y — VIR D) 655 (1.17)

Hn41n/+1

1
(\/ 29f2n (b?ztl,n’ + V 29f3n/ ¢i:;l_1)7 (n>n/) 7& 0; XE")_,O = 0> (418)
n,n’

+
Xnnt =
with
fin = (29 fan + 2g fan')'/2. (4.19)
In terms of the new fields the 4d Lagrangian reads

L4D / d%0 ( WoWo + Z ( W W =t G s Gy

nn’

- Mn—l—l,n’—&-l(b?ll;/(b:’n/)) +h.c.

+/ <2f<f2+f3vo+2<!¢ P2 1o P+ 165l + 165l

+ 1P e A A LR

+|X;7n” \/7
—1Oh 2 = | = ) Vo

_ \/5 ((Nn,n’)g:;n’ - Mn-l—l,n/_i_lX;’n/) Vn—i,_n’ + hC)

n,n "nmn TLTL

+2M? VTV >> (4.20)

So far the diagonalization could be performed in terms of superfields. Since the mag-
netic flux breaks supersymmetry, one has to expand the superfields in components” in the
final step (cf. appendix C),

o= (0,0, F), V=(A,\D). (4.21)

The mixing term between chiral and vector superfields then leads to a charged D-term and
a derivative coupling between Goldstone bosons and vector fields,

/d49(ﬂnyn')2:,n’ - Mn+1,n’+1X;’n/)Vq—:_n/
1 VAl - + ¢ +p
:i('u”’nlxn,n’ - Mn+17”/+1xn,n’)D B ﬁ 'a Hn n’An n e (4'22)

Here the Goldstone fields II™ and the orthogonal complex scalars 7, formed from the
complex scalars Y and x—, are given by
1

— _ _+ —
Hn,n’ = \/iMn,n’ (Mn,n’an/ + /in+1,n’+1Xn7n/) ) (4.23)
1
— o 7+ —
T = m(umwﬂxn,n/ — Hnn Xy ) - (4.24)

"Note, that we use the same symbol for the chiral superfield and its scalar component.
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The vector bosons of the tower of Landau levels acquire their mass by the Stiickelberg
mechanism, and a shift of the vector bosons,

AR 5 ATE 4 oI

’ ’ B
n,m n,n n,n
Mnn

(4.25)

cancels the mixings with the Goldstone bosons as well as the kinetic terms of the Goldstone
bosons. Finally, eliminating all F- and D-terms via their equations of motion, one obtains
the bosonic mass terms

255 =30 (M2 (AT A + L85 P+ 168+ 5, P)

nn/ p n,n n,n’
/
n,n

+Uﬁm—%ﬁ—%@@%f+@ﬁm+%ﬁ+%MW%f% (4.26)

where it is important to remember that ¢;, = X5, = 0.
Consider first the lowest lying scalars,

LY D —g(f2+ f3) (105517 + 0001%) — g(—fa + f3)ldg|* — g(fo — fa)ldrol*.  (4.27)

These masses are in agreement with the ones given in table 3 for the aa’-sector. The
comparison with the string formula (3.19) is more subtle. The mass spectrum of ¢'*
corresponds to Mga, (0,n,n';4,0,0). Since ¢, , = 0, one can write

> (M7 —2gf2 = 29f3)|éy, 017 =

n,n’

D (M3 = 2002)l¢y 2+ (M = 20f3) |y, ” = M2 16y 7). (4.28)
n,n’
Hence, the spectrum of ¢~ together with one polarization state of the vector corresponds
to the spectrum M2 ,(0,n,n’;0, —,0) together with M2 ,(0,n,n’;0,0,—). Analogously, the
spectra of ¥~ and ¢ correspond to Mfa,(O, n,n’;0,+,0) together with Mga, (0,m,n';0,0,4).
Since in the string formula (3.19) massive vectors are only counted with two polarization
states, the entire spectra of eqgs. (3.19) and (4.26) agree. However, there is no direct
correspondence for individual Landau levels.
Denoting the Weyl fermions contained in the superfields ¢'*, ¢*, x* and V+ = VT
by '*, %, wt and A*, respectively, one finds for the fermionic mass terms of the 4d
Lagrangian (4.20) (cf. appendix C),

L4 Z (,Un,n’ nn’w n' + an n’/\nn )

nn'

+ Hnt1,n/+1 (wn n’wn n’ + an n' )\n n’ )) +h.c. (429)

Note that by definition, ¢y, = w({o = 0 (cf. egs. (4.15), (4.18)). Clearly, the spectrum
contains two zero-modes, wéj{) and /\57 0

The structure of the be-sector is identical to the one in the aa’-sector. Also in the
be-sector the flux vanishes in the first torus, see table 1, and only the flux densities f¢,
i = 2,3, have to be replaced by fg and f!, which corresponds to a redefinition of fo and f3
in eq. (4.2).
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4.2 Chiral matter (ab-sector)

We now turn to the chiral ‘matter sector’ and consider the vector and chiral superfields
V0 9020 ~ N_jp and V10 ¢t% ~ Nyg. For simplicity, we drop the superscripts “0”
referring to zero Ho charge in the following. The commutators of the corresponding SO(32)
matrices are given in eq. (B.3),

[Ho, TS| = +—=T1°, [H,T7%| = FT;°, [T,°T;°] = dap

1
\ﬁa’ Ho—H1)+

(o
(4.30)

For anti-chiral superfields signs are exchanged. According to table 1, the flux densities f?
in the three tori satisfy the quantization conditions (p; = L}/L;)

27r f1— o1 gfl—1 27r/ fl— gfl_l

g/ [ S
T Jr2 P3

Combining the H; flux densities with the Hy flux densities given in eq. (4.1), one obtains
for the total flux densities, i.e. the differences between fé /V'N and fi, in the three tori

(4.31)

1 P11 _ 9 2 o (2-=0Dp2 _
gfl= P — I g2 _gpp 202 g
gfl 27TOCI .gf17 \/Nfo gfl 27('@, gf27 (4 32)
9 .3 3_ 3p3 _ '
I g3 = OB —9ug
\/Nf[) gfl ol gf3

Note that the flux parameters f; are all positive.
Using egs. (3.11), (3.12) and (4.30), one obtains from the action (3.9) the relevant

terms for the generation of boson and fermion masses,

1 1 1
Lip D /d29 (4W0W0 + Wi+ 5W,jmg

+eijkPa (33' - 7/—2NX{) + \/§Xi> ¢§+> +h.c.

+ /d49 (xéxé +XIXG+ O O+ ool
+ V2 (9;%h + Tixh) Vo + V2 (0:Xt +9ixt) Vi

B — G Vo — g (B — ) W
9 i ) G+ ( \%x’i) ¢if) Vo

7
7i 9 i e g 9 i) 4i—\ 1+
VoA >¢ ( 2NX°+\/§1)¢ )V“

+ (3
(-3
(o

+V2
+V2

—90 —



5 g i 9 i + g i 9 i -
F 0+ —2=xh - =Xt ) Vi (0 + —2=xb — —“=xi | Vs
( V2N 0 ﬁ’“) ( V2N o \/5"1)

+<a,-_ ngxg+\gﬁxg> v, (ai FXO f )v+> (4.33)

Replacing the scalar fields x{, and x| by the flux densities (4.1) and (4.31), respectively,

one obtains covariant derivatives. Using eqgs. (4.5) they can be replaced by annihilation
and creation operators that now act on the coordinates of all three tori,

Lig D / d*0 (iwowoiwlvm;W+W——z'\/zgfl(qﬁ*aiqﬁ”—&‘aﬁ“)
—i \/2gf2<¢>1ai¢3+—¢>3ai<z>1+)—z'\/2gf3<¢2a%”—qblai%”)) +h.c.

+ / d*0 (xéx6+>zixi+¢‘>"+¢i++&—¢Z‘—+2 <f§+f§—\/%(<5”¢”—¢3"‘¢i‘)> Vi

2 (fl+fi+fi+g9(d o =0 ¢ ) W
21 ((Vohiah '~ +all o) +/gfalad ¢+l ™)
/9 f3(a> % +a?id>3+)> V*—i—h.c.)

—2gf1 (a}JVJral_TV*—Fal,V*a}FVJr) —2gfs (aiTVJraZ_TV*

+a* V*aiVJr) —29f3 (aiTVJra?iTV*—l—ai VaiV*)) : (4.34)
The fields have a triple expansion in three sets of mode functions

¢i_ (x’ 21, 22, Z3) = Z il_ljl,nzjz,ngjg (x)§n1]1 (Z1)€n2j2 (22)§n3j3 (Z3) ’

n1j1,n2j2,n3Jj3
& (2521, 22, 23) = Z d)i:jhnﬂg’ngjg (7)€, 71 (21)E 0 (22)E g5 (23) ,  ete.. (4.35)
nij1,m232,m373
As in the discussion of antisymmetric tensor fields, one can now form linear combina-
tions of the six chiral superfields ¢+ and ¢'~ such that two new fields, 2+ and Z~, mix
with the vectorfield and the other four, ¢ and ®*, form pairwise superpotential mass
terms. It is straightforward to verify that this is achieved in a two-step process,

Prinang = (= V20him Gotmams TV 20F2m2 O s 1 0s) s

(m,ng) £(0,0)5  dpon =0, (4.36)
O npms = un1+1 — ——(V29f1(n1 + 1) ¢n1+1n2,n3 V29 fa(na +1) ¢p 1 0,) s (4.37)
Xovy oy = e (V290111 Oy yms + V20 F2m0 625 101 0s)

(n1,n2) # (0,0)5  Xgons =0, (4.38)
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1

X'rjl,ng,ng = 7(\/ 29f1 (nl + 1) }L;+1,TL2,TL3 + \% 2gf2(n2 + 1) ?L;nngl,ng) ’ (439)

Hng+1,n0+1

with pin, n, = (29 f1m1 + 2gf2n2)1/2, and, as the second step,

1 o 3
(I):L_l,ng,ng = Loy miam ( 29f3n3 X;’i;hng,’ngfl + Hny,no ¢n—1|—,n2,n3) ’
1,12,n3
(n1,n9,m3) # (0,0,0), ¥4 =ph0; (4.40)
B 1 B .

q’”l»“m”s = (V 29f3(ns +1) Xnyngng+1 T Hni+1na+1 ¢m,n2,n3) , (4.41)

Hni+1,n2+1,n3+1
- 1 fo o 1\ 43
‘:‘7—51,”2,713 - 7(/‘”17"2 X;:l,nz,m B 2gf3(n3 + 1> nj,nz,n3+1) ’ (4'42)

Hnyng,nz+1
— 1 _ o ,3_
:'nl,ng,ng = (/’Ln1+17n2+1 an,ng,ng - 2gf3n3 ¢n17n2,n3—1) ) (443)

Nn1+1,n2+1,n3

where

Hnynong = (2gf1n1 + 2gf2n2 + 2gf3n3)1/2 . (4'44)

Note, that in eq. (4.40) the field (I)(J)r,o,o is determined from the requirement Y (|®}[* +
=517 = 3,052 + 19271?), where (nq,m2,n3) = n. In terms of the new fields the 4d
Lagrangian reads,

L4D /d29 <1W0Wo - %W1W1 + <;Wn+Wn — lny s s O P
— [ny+1m9+1,n5+1 @fq’n)) +h.c.
+ /d40 (2(f3 + Vo +2(ff + L+ Vi
+ 3 (1087 + 1622 + 83 + |05 + (1P + 21

_ 9
VN

+g (Ion P+ 105 P + 2517 = |of |2 = |22 — |25 %) i

(Ion I + 12, 1 + 12, 1 — (651> — 12 = [E5 ) Vo
+ \/§ ((Mn1+1,n2+1,n3 E; — Mnq,no,ng+1 E;’z—) Vn_ + h.C.)
+ 2M31,n2,n3Vn+Vn>) ; (4.45)

where
My, npmg = (91201 + 1) + gfo(2n2 + 1) + g f3(2ns + 1)) /2. (4.46)

At this step, supersymmetry breaking by the flux induced D-terms has to be taken into
account, and vector and scalar masses have to be calculated by eliminating all auxiliary
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F- and D-terms. The mixing between =, and =, yields the Goldstone fields IT,} and the

n
orthogonal complex scalars 3t

1

Hz = m(ﬂnﬁl,nﬁl,ns E;L + Hnynons+1 EX) ) (4-47)
1 — _
b= ( = Hninanz+l Sn T Png41,n0+1,n3 :7—5) . (4'48)

ot
V2Mi; iy s

The vector bosons of the tower of Landau levels acquire their mass by the Stiickelberg
mechanism, and a shift of the vector bosons,

R LN | £ (4.49)

Mnl,ng,ng,

cancels the mixings with the Goldstone bosons as well as the kinetic terms of the Goldstone
bosons. The final result for the bosonic part of the 4d Lagrangian (4.45) reads

255 =37 (M2, oy (AT A+ [SH2)

n

(M2, ne = 2051 = 29f2) |60 2+ (M2, 0y s + 2051+ 20f2) |62 (4:50)
(M2, g+ 20F3) |05 P 4 (M, = 2053)|91]2)

where, by definition, ¢y ,, = 0 and @&070 = (ﬁ%j{]’o (see egs. (4.36), (4.40)). The scalars
with smallest masses are ¢ 4 o, ¢1 o and CIDE; 0,00

LYo —g(-fi+ fo+ f3)|¢>6,1,o’2 —g(fi—fo+ f3)|¢f,0,0‘2

(4.51
—g(fi+ f2— f3)190 0] - )

These masses are in agreement with the ones given in table 3 for the ab-sector.

Denoting the Weyl fermions contained in the superfields ¢+, ®*, =+ and V* = V1
by ¥, 1//*, wt and A*, respectively, one finds for the fermionic mass terms of the 4d
Lagrangian (4.45) (cf. appendix C),

£a2 Z (Mnl’mvnii Yty + iy ng ng+1 Wi Ay
! (4.52)

+on' = 1 -\t
+ Ly +1ma+1ms+1 Y Vo F Ubny 1m0 +1,n5 Wy )‘n) + h.c.

Note, that by definition, 1/1& omg = 0. Hence, the spectrum contains one zero-mode,
%ﬁ),o C T500-

The number of flux quanta in the first, second and third torus is 1, [ — 2 and 3,
respectively. All fields therefore have a multiplicity of 3(l — 2), in agreement with the
intersection number for the ab-sector listed in table 2. The multiplicity of fields is labeled
by the indices j1,7j2,73. The quadratic part of the 4d Lagrangian, given in eqs. (4.50)
and (4.52), is diagonal and the same for all fields. However, due to the non-trivial profile
of the mode functions in the compact space, Yukawa couplings depend on j1, js, j3.
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5 Higgs sector

In the be- and bc’-sectors of the D-brane model there are no chiral fermions, and both
sectors contain a tachyon, see table 3. In this section we will analyze the bc’-sector in
detail. According to table 1, brane b and brane ¢’ are parallel in two tori, their distances
being moduli. In the T-dual flux compactification these moduli correspond to Wilson lines.
From table 1 and eq. (3.17) one obtains for the background fields in the three tori,

1P o lpa Zo 9 3 2p3 73 3
g =5 %, 9xi=5 7 totr,  oxi=-5 7 + 9¢7, -
1 P o lpp Z 2 5_ P3 %3 3 '
9f2 =571, 9x; el 3 t98, 9x2=5 NG + 98 -

The bc'-sector contains the vector and chiral superfields V++, ¢t V== and ¢'~~. The
charges with respect to H; and Hy are identical. For notational simplicity, we shall drop
one of the superscripts in the following. The commutators of the relevant SO(32) matrices
are given in eq. (B.9),

[Hy, X*] = X5, [Hp, X = £X7, [XTH, X" = Hi + H.

Combining the H; and Hs background fields in eq. (5.1), one obtains for the total flux
densities and Wilson lines in the three tori

g(fi +f3) = %El =4g9fz1, g0xid+x3) =9(& + &) =9V28,
(5.2)

g+ x3) = 9(& + &) = gv2¢s.

Using egs. (3.9), (3.11), (3.12) and (B.9), and inserting the background fields (5.2),
one obtains for the quadratic part of the 10d Lagrangian,

L10 D /d29 (inwl - iWQWQ + %W+W—
+ 0¥ (01— 29f71)¢" — ¢°T (1 — 29.f71)9°"
+ 10 — g€2)¢”" — 7 (02 — g&2)d'
+ ¢t (03 — g€3)0' T — ¢! (95 — 953)¢>2> +h.c.
+ / d49(¢3i+¢i+ + ¢ +Af(Vi+ Vo) +g(¢T T — ¢ ") (Vi + Vh)
+ \/5(((81 +29fZ1) " + (02 + 9&2) % + (05 + g&3) 9~
D1 = 29f21) 0" + (92 — gE2) 9% + (B3 — 9&3)6™) V™ +hc.)
D = 29fz1) V(01 = 29f21)V™ + (T2 — 9&) VT (2 — g&2) V™
03 — g&3) V(05 — 9&3) V™ + (01 +29f21)V ™ (01 +29fz1) VT

02+ g&2)V ™ (82 + 9&) VT + (95 + g&3) VT (05 + 953)‘/_) . (5.3)
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The fields feel magnetic flux only in the first torus. Hence the mode functions are harmonic
oscillator wave functions in the first torus and ordinary KK mode functions in the second
and third torus,

O (w22, 28) = Y B ()€ ()T (22) T (23)

nj,mlm’l’

| (5.4)
¢l_ (x; 215 %2, Z3) = Z ¢n] ml m/l/ )5 (Zl)nml(ZZ)nm’l’(ZS) , etc.,
nj,mlm’l’
where
M (2) = eHm=Hm =7 g, = 2m(m A+ l) = Hory - (5.5)

Replacing covariant derivatives with flux by annihilation and creation operators according
to eq. (4.5), inserting the mode expansion (5.4) for the second and third torus and keeping
for the two U(1) factors only the lowest mode, one arrives at

Llog/cﬂe “WAWL + W2W2+Z< W W,
—iv/Agf (6fal oy — ol oy ) + o Mao

¢3+M qS}]; + ¢2+M ¢1— ¢,17:75Mn’¢727;/> + h.c.

- / a0 | 4f (Vi+Va)+ ) (&%W, + O

"
+g(Vi+ V) (16552 \<z>;;,|2) +v2 ((=iv/agf (046 + al o)
W02 — My @b+ T2 + My ) Vo o+ h.c.) (5.6)
—4gf( Val Ve s Vf,a+v+) +2 (|My |2 + | My | )V%,V,m) ,
where
My = pn =982, My = puy — g&3 (5.7)

are mass terms that depend on the Wilson lines.

Consider first the case without flux, i.e., f = 0. In this case supersymmetry is unbroken
and, for simplicity, we restrict ourselves to mode functions (5.4) that are constant in the
first torus. Then one can easily diagonalize the Lagrangian. Defining the superfields®

1 1
+ _ 2+ 3+ - 2— 3—
gbﬁ ’M ‘ (M (b Mngbml) I qbnn ’M ‘ (M d) anb'r]n’) )
(5.8)
1 — — 1
+ 2+ 3+ - 2— 3—
Xy = | M, ,\(M" W’+M”/¢W’)’ Xy = M, ‘( Py + M P )’

8The following discussion holds for M,,, # 0. For M,,, = M, = M, = 0, the fields ¢35 and ¢p: do

not mix.
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where | M,,/| = (|M,|? + |M,,|?)/2, and shifting the vector superfield,

|7 !

o — 5o
v - Vo, |( — Xy ) » (5.9)

one obtains

1 1
Lo D/d20 ZWIWl + ZWQWQ

+Z< W W+ My | (0 6%, = 05 <z>,m)) +he.

4 1+2 1— 2 2 - 2
/d GZ(ch* F |Gy |2 | ° A+ s [P+ 2 My | VWVn;) . (5.10)

The Goldstone chiral multiplets eritn’ have been removed from the Lagrangian, and a com-
plex vector multiplet and four chiral multiplets all have the same mass M,,,, corresponding
to N = 4 supersymmetry.

The magnetic flux in the first torus mixes different Landau levels of ¢** , and x*

n,mn n,mm’”
Now it is convenient to introduce the superfields
1
=+ — +
T ' (|M’7’7/| X~ \/m gbn L’ )
— 1 - PR EEEY
‘:n,rm’ = (|M7777/| Xn,nn 4gf n + 1 ¢n+1 nn’ )
) .
+ 1+
Pnm MLy (VAgF (1) Xy gy + 1Moy | 6150)
(I)'r_mm Mnnn(V4gfnxn 1n17’+‘ U‘(bnm])
with
fin = (4gfn + |Mnn/|2)1/2- (5.12)

Using egs. (4.5) and (5.6), a straightforward calculation yields for the 4d Lagrangian,

L9 D /d29 -Wil + W2W2 + Z < nnn WTZWW'
nnm’

+ —
+ Ky (I)n nn’(bn ' = Bty (I)n,ﬁ’ ¢n,nn/> +h.c.

+/d49 L R+ Va)+ 3 (167 2 160 P+ 105, 2+ 22

n,nn’
+|¢nnn |2+|‘_‘n7777 ‘2+g<|¢nnn |2+|@n1717 |2+| nr]n |2

_|¢;Tm’|2 N |<I)7:,nn’|2 ~ |E | ) (Vi+V2)
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+ \/i ((,Un,nn/ E;W’ — Hn+1my E;W’) Vnrm’ + h.c. )

+2M2 Vi Vi) | (5.13)
where
My = (29 (20 + 1) + [ My |*)/2. (5.14)
Like in the prev1ous section the Goldstone bosons giving mass to the vector bosons A’ ’:m
are identified as’
1
+
Hn,'rm \[M ('un m’ Sy o’ + MTH‘LW] ‘—’n an’ ) (515)
ny’

with the orthogonal complex scalars

1
+ +
X = VoM, .. o (g E — Mt 1 Eny) (5.16)
where we have used MiJann/ ‘HL”,W = 2M? - The kinetic terms of the tower of Goldstone

bosons are removed by shifting the vector bosons,

+u +h wyT+
AT = AT 4 ——— Mn - I LR (5.17)

Eliminating all F-terms and the D-terms D, Do, Dy by their equations of motion, one
obtains for the bosonic mass terms

b + 2 2 2
£4D_Z< n,m’ (Anrmu nnn/+|¢nrm| +|¢nrm| + nnn|)

nnn’
2 - 24
F (M2 = 490)1D5 0 2+ (M2, + Ag Pl0F 7). (5.18)
Note that the mass of 5 00
M2?[@ 0] = =29 + g* (& + &), (5.19)

is tachyonic for |&2|? + |€3]2 < f/g. The implications will be studied in the subsequent
section. The boson masses are consistent with the string formula (3.19) for the internal
helicities (0,0,0), (£,0,0), (0,+,0), (0,0, ).

Denoting the Weyl fermions contained in the superfields ¢+, ®*, Z* and V* = V1 by
PE Y i, wT and AT, respectively, one obtains for the fermion mass terms (see eq. (5.12)),

f - r+ D
[’4 o= (F‘n,rm’ (d}n,ﬁﬂ’[} ngn w, n’ An W/)

. " (5.20)
-

+ Hn+1,mn/ (¢n ﬁ’w n,nn’ W, nn’ /\n ' )) + h.c.

For vanishing Wilson lines there are four vector-like zero modes, . o g 0> Yo P

and )\+f, In the string formula (3.19) the mass spectrum is obtained for the helicities

(— 1/2 il/2 +1/2) and (1/2,£1/2,41/2). There are two flux quanta in the first torus,
hence the multiplicity of all fields is two. In the case M, ,,» = 0, corresponding to a com-
pactification from six dimensions to four dimensions, the mass spectrum has previously
been obtained in [22].

9Note that we use the same notation for a chiral superfield and its scalar component.
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5.1 be-sector

The be-sector is very similar to the aa’-sector. In both cases the magnetic flux is non-zero
only in the second and third torus. We therefore do not treat this case in detail but only
mention some key features which are relevant for the discussion of tachyon condensation
in section 7.

The sector contains the vector and chiral superfields V=, ¢'*—, V=F and ¢~ 1, i.e.,
the charges with respect to Hy and H, are opposite. The commutators of the relevant
SO(32) matrices read (see eq. (B.8)),

[H, T*F] = +7*F | [Hy, T*F | = 771*F, [T, 7 "] =H, - H,. (5.21)

For zero Wilson lines, one obtains for the background fields given in eq. (5.1) the total flux

densities in the three tori
1 1 2 2 P2 _ —
g(fi = f2) =0, g(fi —f2)22l2wa,22=9f222,

3_ 43y _ _o P3
g(f1 f2) 327ro/

(5.22)

Z3 = —gfszs.

The crucial difference compared to the aa’-sector is the opposite sign of the flux densities
in the second and third torus. In the derivation of the effective 4d action this exchanges
annihilation and creation operators in various steps of the calculation. Taking this into
account, all relevant F- and D-terms can be essentially read off from eq. (4.13).

6 Effective potential

We are now ready to calculate the one-loop effective potential from the effective field theory.
We start with the potential for Wilson lines in the bc’-sector, then we discuss the potential
in the ab-sector which is independent of Wilson lines and depends only on volume moduli.
We shall perform the calculation for the effective field theory discussed in the previous
section, summing over the full towers of Landau levels and KK modes, and we shall then
compare the result with a string calculation.

6.1 Field theory calculation

The one-loop effective potential is given by the well known Coleman-Weinberg expression

4
V© =5 SO [ (2 4 383(9), (61)
: (2r)
where the sum extends over all bosonic and fermionic states. The masses in the bc’-sector
are denoted by M;(&), F denotes fermion number, I accounts for Landau levels and KK
quantum numbers, and £ represents real and imaginary parts of the Wilson lines in the
second and third torus, i.e. & = (£1,£2,&3,&1) = (Re &,Im &, Re &3,Im &3). Using the
Schwinger representation of propagators one has

d4k 2 2 1 o0 dt —M2t
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According to eqgs. (5.12), (5.18) and (5.20) the mass spectrum of the bc’-sector takes the form
M7 (&) = 2gfn +mgf + |Myy[*, (6.3)

where n is the Landau level, and m takes the values m = —1,0,1, 2, 3; multiplicities [,,
and fermion numbers F), for different values of m are (I,,) = (1,4,6,4,1) and (F,;,) =
(0,1,0,1,0). The sum over Landau levels is easily carried out,

oo
—(2 g fmt My 2t _ M Prgfmet 1 6.4
Z € " e 2sinh(gft)’ (6-4)
and the sum over all bosons and fermions yields

oo

1
§ :l _\Fm § : —(2gfn+gfm+|M, ,|?)t _ 1M /]2t
— m(=) nzoe " e 2sinh(gft)

> <629ft — 497t 46— e 911 + e_Qth> (6.5)

‘Mm]’l% Sinh4 (gft/2)

=16 e .
¢ 2sinh(gft)

There are two flux quanta in the first torus leading to a multiplicity two for all states.
Introducing radii for the second and third torus as (R, Ra, R3, R4) = (L2, LY, L3, L}) /2,
the final result for the potential takes the form

s gy sinh? (4
“51 nge"p(—t(fﬁg@) ) (00

The integral V(§) = [dtV(t,€) has an infrared as well as an ultraviolet divergence.

V() =

For large t the contribution of the m; = 0 term to the integrand behaves as
1 942
V(t,€) tfge@f 9N (6.7)

Hence, the integral diverges if £2 < f/g. The same is true if ¢ is closer than \/m to any
lattice vector m/R. This infrared divergence is an effect of the tachyon in the spectrum.
Moreover, there is an ultraviolet divergence. Although each term in the sum is convergent,
the sum over KK modes behaves as R*/t? for small ¢ so that the integrand scales as

V(t,€) x (gf) elaf ="t (6.8)

Introducing an ultraviolet cutoff, ¢t > 6 = 1 /A%V, the quadratic ultraviolet divergence
becomes manifest, V ~ (gf)>R*A%,

A convenient regularization of the potential can be obtained by considering a Poisson
resummation of the sum over KK modes,

2 72
Zexp < ( + g&) > = H R Zexp (’L Z llRZfZ — 7T2 Z(Rzlz)g/t> . (6.9)
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The ultraviolet divergence is now encoded in the term I; = 0. Adding to the sum a
counter term
— cre Pt = cpe (6.10)

with
l—ci—ca=0, cipf+copi=0, (6.11)

implies that

2 2 )
ZGXP ( ( + g&) ) - WI}RZ (cle_“%t + @e‘“gt) (6.12)

is finite as ¢ — 0, yielding a finite integral V(£) = [ dtV (¢,€). Note, that the terms

o s

correspond to Pauli-Villars regulators in 8d field theories.

8 8
d k ~(R )t o / é? In (k% 4 112) (6.13)

Stationary points of the potential have to satisfy
v (t,€) m; m; 2
m;

The solutions are given by

=0 pnez, (6.15)

since

SN (Y e [t (e ’ 616
N R, 2R, )P R, 2R, (6.16)
mj

In the vincinity of an extremum the potential can be approximated by the contributions
of a few neighboring lattice points. As an example, consider a one-dimensional case where
¢ points in one lattice direction. For gR¢ = 1/2 the four nearest points yield

Son (-t 5) ) = e (1 (- 5%) ) (617
+exp< (—]1% + 21R>2> + exp (—t (21R>2> + exp (—t (; + 21R>2> +...

Using this approximation for the sum over KK modes the potential can be evaluated
numerically. As discussed above it is periodic with period gR{ ~ gR¢ + 1. Tachyonic
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regions (gR¢ —n)? < gf R? = A? /4, where the potential is ill defined, have to be excluded.
The result for the normalized potential V' (¢) = V/(€)/V (y/f/g) is shown in figure 3. The
approximation used in eq. (6.17) is remarkably robust. Changing the number of neighboring
points from four to six, or even two, does not lead to a visible change in figure 3. At the
boundary to the tachyonic region the potential looses its meaning and one has to address
the problem of tachyon condensation.

The computation in the ab-sector goes as follows. The two stacks a and b intersect
in the three tori, therefore in the internal magnetic field framework charged states have
Landau levels in the three tori. Having checked that the mass formula (3.19) is valid in
the effective field theory (though the eigenvectors are linear combination of the states in
the Fock space spanned by Landau levels), one can compute the scalar potential after
diagonalizing the mass matrix. The states contributing are charged gauge vectors A,
three complex scalar fields ®; and four Weyl fermions A, ¥;, where ¢ = 1,2,3. As shown
in detail in section 4.2, not all scalars in ®; are physical, some of them being absorbed by
the massive Landau levels of gauge fields A,. It is however simpler to consider separately
the two degrees of freedom in A, and the absorbed scalars in the computation. Then the
various contributions to the scalar potential are

1
. -ty Cn+l)gfi -~
A 2;(3 AT];sinh(g fit)
- 34205+ 1)gF,) —t@ni—Vgfi | ,—tni+3)es) _ _Cosh(2gfit)
i 1n§“ ¢ %: (e te ) 411, sinh(gfit)’
, o mighs o -2t (it n)gf) _ Cosh(g(f1 + fa + f3)P)
Al Z (e +e ) T (6.18)

Uy o: 1 Z (e—2t(2i nigfi+gfi) + 6_2t(zi(ni+1)gfi_gfl)> _ COShEigl(_[_f:'l ;(fo—;)f3)t) ’
;sinh(gf;

with contributions of Wy, W3 similar to the one of ¥ with appropriate obvious modifica-
tions. Adding all the contributions, taking into account of the opposite sign contributions
of bosons versus fermions and multiplying also by the multiplicity I,; of zero modes and
Landau levels, one gets

I > dt 1
Vb = ~Ton2 /0 ﬁm <1 + ; cosh(2gf;t)
—cosh(g(f1 + f2 + f3)t) — cosh(g(—f1 + f2 + f3)t)

—cosh(g(f1 — fa + f3)t) — cosh(g(f1 + f2 — fs)t)> : (6.19)

By using standard identities one can rewrite the result into the form

Iy [ dt 1 . g(fi+ f2+ f3)t
o= |, e () (020
« sinh <9(—f1 +2f2 + f3)75> sinh <g(f1 — 22 + f3)t> sinh <g(f1 + J; — f3)t> ‘
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Figure 3. Wilson-line potential, normalized to its value at the border to the tachyonic region,
which is chosen to have the width A = 2,/gfR2? = 0.2 (see text).

> gR¢

Notice that the scalar potential vanishes if
fit fot f3=0. (6.21)

Whenever one of the four equations (6.21) is fulfilled, supersymmetry is restored in the
corresponding (ab in our case) sector, in agreement with the arguments given at the end
of section 3. More precisely, if fi + fo = 0, f3 = 0, the four-dimensional effective theory
has A/ = 2 supersymmetry, whereas when all f; are non-vanishing but one of the equa-
tions (6.21) is satisfied, the effective theory has N/ = 1 supersymmetry. This is not always
manifest in the effective actions written in the previous sections, except for the cases when
fi+ fo+ fs3 = 0. The reason is that for the other cases of supersymmetry restoration,
the preserved supercharge generates multiplets misaligned to our superfield expansion. In-
deed, in the superfield expansion we used pre-assigned superpartners in an universal way,
whereas the supersymmetries preserved by the internal magnetic fields generically gener-
ate supermultiplets in a different way. While this could seem surprising at first sight, it
is standard in extended supersymmetric theories (see, for example, [37-39]). One test of
residual supersymmetries in the compactified theory is the boson-fermion degeneracy at
each mass level. However, this is realized non-trivially, since the eigenvectors of the mass
matrix mix different Landau levels, as shown explicitly in previous sections. Notice that
this discussion matches known results on supersymmetry preservation in D-brane models
at angles [13] and the T-dual version of type I/type II strings with internal magnetic fields.
However, as far as we know, this subtlety of the effective action has never been discussed
in detail in the string literature.

6.2 String calculation

From the string theory perspective, the scalar potential coming from various sectors is
given by (minus) the cylinder partition function found by usual string quantization with
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appropriate boundary conditions, in the internal magnetic picture, or equivalently, the
T-dual intersecting brane one. In particular,

%c’ = _Abc’ . (622)

Let us start with the scalar potential in the bc’-sector. The corresponding brane stacks
are parallel in the second and the third torus and intersect in the first torus. Standard
formulae [1] lead to the partition function

It © dry (Vg — Ss)(e17|T)  2in
A =5 | o5 Panyré2 Prmg 6o 2
T 9(ur2al)? / 3 nb O (eyr|r) M2tee matls (6.23)
where )
—nr2a! 37, it
Praysgy =y e 0 (i+s) (6.24)
m2

is the Kaluza-Klein sum along the second torus, with a similar expression for Pp,ye,-
The parameter ¢; is related to the angle between the stacks in the first torus according to
9;6/ = 7ep. Various modular functions are defined in appendix D. In eq. (6.23) we also used
the character

0303(e17|7) — 0304 (e17|7) — 0302 (er7|7) _ O1(HT)

(Vs = Ss)(er7|m) = o0t = (6.25)

where the last equality is the Jacobi identity (D.5), and 6; = 0;(0|7). The modular param-
eter of the doubly covering torus of the cylinder is defined as
q=e"" = % , (6.26)
and the relation with the Schwinger proper time of the field theory computation is t =wma/.
The connection with the field theory computation is done by decoupling the charged
open string oscillators in the formulae above, while keeping the Kaluza-Klein states and
the Landau levels. This is achieved in the 75 — oo limit of the modular functions, for
example,

01(e17|7) — 2isinh (7%;72) qY8, (6.27)

which is valid for |e;| < 1/2. Notice that the Wilson-line dependence of the field theory
expression is accurate in the large volume limit, v; > /. Indeed, in this limit, Kaluza-
Klein states and Landau levels are much lighter than the charged open string oscillators. It
is important that the UV divergence of the amplitude/scalar potential, which arises even
after summing over all sectors due to the NSNS tadpole generated by the magnetic fields,
is independent of the Wilson lines. The scalar potential can therefore be regulated by the
Pauli-Villars method discussed in the previous paragraph.
The analogous expression for the amplitude Ay, is easily found to be

JEN K © dry (Vg — Ss)(eaTsest|T)  2in 2in
Ave = 550 / — : P, 6.28
T o(4r)? Jy A Uk 01 (27| 7) Oy (e37|7)” ™1 TE (6.28)
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where one can now use the Jacobi identity (D.5),
1
(Vs — Sg)(eaT;e37|T) = oy (9%93(627’|T)93(63T‘7’)
— 9394(62T’7’)94(62T|7’) — 9%92(627’|7)92(63T\7’))
1y (2t e3)T o ( (€2 —€3)T
- 17491( : ‘T 0 5 ‘T . (6.29)

The stacks in the ab-sector intersect in all three tori. In this case, there are no standard
Kaluza-Klein sums, but Landau levels in the three tori. The cylinder partition function

reads
L1213 dr (V—S)(elTeTeT]T
A, = ababab/ 2178 8 27,3 6.30
ab 2(4m2al)? Tg n? H 01( 617'\7' (6.30)

which can again be simplified with the help of the Jacobi 1dent1ty (D.5),

031, Os(eir|T) — 04T, Ouleit|r) — 2 [T, O2(eiT|7)

(Vs — Sg)(e17; €273 €37|T) =

2n4
_ _1491 <(61 + €2 + 63)7‘7) 0, <(—61 + e +e3)7 ‘T>
n 2 2
o (lazatar)y, (@re-ar) gy
2 2
Notice that the potential vanishes whenever
€e1teate3 =0, (6.32)

which encode the standard condition for supersymmetry restoration (see eq. (2.12)), 0 +
62 4+ 63 = 0, as explained in [13].

After taking the field theory limit and by introducing Pauli-Villars regulators for the
UV part of the potential and using the field theory Schwinger proper time ¢, one finds the
scalar potential

IL 12 13 dt
Vo = W/ 7 (1-ac ! — ) (6.33)
T 0
sinh (W) sinh (W) sinh <W) sinh (W)

% sinh (elt) sinh (EQt) sinh (E3t) ’

where ¢1 + c2 = 1,¢142 + cou? = 0. The non-regularized potential matches, by using the
field theory limit €; — 2gf;, the field theory result (6.20). As is well-known, the one-loop
cylinder string partition functions can be also written, after a modular transformation, as
a tree-level propagation of closed strings between two stacks of branes (see figure 4). This
open-closed string duality is crucial for the consistency of the string theory partition func-
tions. However, after taking the field theory limit and decoupling the open string massive
oscillators, the field theory scalar potentials do not feature this duality. As a consequence,
we choose for brevity to not write the scalar potentials in this dual formulation, which
would otherwise be crucial for the full fledged string theory formulation.
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Figure 4. Left: loop-diagram for open string; right: tree-diagram for closed string.

6.3 Volume-moduli potential

The effective potential (6.33) depends on the parameters of ¢;. In the D-brane model they
represent the brane intersection angles, ¢; = #°/7 and in the T-dual magnetic compactifi-
cation they correspond to the torus volumes v;, with tan we; = mipi = 412a/m’ /.
Consider first the case with vanishing flux in the first torus, which is the case in the
sectors aa’ and be. The effective potential can be obtained from eq. (6.33) by setting €; = 0,

which yields
) sinh? <7(62+63)t> sinh? (7(62_63)t)
Vgar o< —/ d (1 — cre Mt — cze_"gt) ! !
0

(6.34)
sinh (%t) sinh (%t)

t3

On the line €3 = €3 in moduli space (see figure 2) the potential V., vanishes. However,
as one easily verifies, for €5 # €3 the potential has an infrared divergence and approaches
—o0o. Hence, due to the existence of a tachyon for es # €3, the line es = €3 is unstable.

We can also evaluate the integral V,; for non-zero fluxes in all three tori, and therefore
no Wilson lines. In string theory, the result is UV divergent due to NSNS tadpoles which
require a vacuum redefinition that is very challenging to perform explicitly [26].

In our field theory approach, the potential can be regulated a la Pauli-Villars, but
now the result will depend on the regulator masses. We have checked numerically that for
6 < /LiQ < 1/6, where 1/0 is the ultraviolet cutoff, variation of ui2 essentially changes
the normalization of the potential and not the shape. Figure 5 shows the potential V; for
three slices of moduli space defined by €3 = €3, €2 = €2 and €; = €, where (€1, €,€3) =
(0.04,0.07,—0.1) is one allowed point in moduli space (see figure 5). At the boundary
of the tachyon-free region the potential vanishes. The figure clearly illustrates that the
system is always driven to the tachyonic region in moduli space. The same conclusion has
previously been reached in a related discussion in [17] from the viewpoint of the disc level
scalar potential. This suggests that a stabilization mechanism for the volume moduli is
needed at or above the compactification scale.

7 Tachyon condensation

Most sectors of the considered model have potentially tachyonic charged scalars. A fre-
quent assumption is that such tachyonic instabilities can be avoided by means of Wilson
lines. However, as we demonstrated in the previous section for the bc’-sector, the one-loop
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Figure 5. One-loop potential V,;, for three slices in the three-dimensional space of the volume
moduli v; of the three 2-tori T?, with tanme; oc 1/v;. The slices are defined by e3 = é3 (top),
€2 = €2 (middle), and e = & (bottom), where (é1,éz,é3) = (0.04,0.07,—0.1) is a point in the
tachyon-free region of moduli space. The potential (arbitrary units) is evaluated numerically for an
ultraviolet cutoff 6=! = 10® and Pauli-Villars regulator masses u? = 75, u3 = 25.

Wilson-line potential has no stable extrema and the system is therefore driven to the tachy-
onic regime. For zero Wilson lines tachyon condensation takes place. This is interpreted
as brane-brane recombination and it is expected that tachyon condensation restores super-
symmetry, at least partially (see, for example, [34-36]). In the following, we shall address
for the first time tachyon condensation in a compact space.
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7.1 bc’-sector

The situation is particularly simple in the bc’-sector. According to eq. (5.19) the field
Q500 = (15(1)50 has a negative mass squared. The interesting question is whether its con-
densation can restore supersymmetry. Inspection of (5.13) shows that the relevant F- and
D-terms are given by (for simplicity we restrict ourselves to n =1’ = 0),

—FF = |Myo0| @, (7.1)
—2D1 =4f+gZ |¢II2+ 1+ |Z P — 1o, I — 19, 17 = |2, 1), (7.2)
—vb+er*|MmE; (7.3)

The equation D} = 0 is easily satisfied by = = Z. = 0. The crucial point is that
because of | My go| = 0, the field &, = qﬁé_ decouples from the superpotential, and therefore
Fif = 0. Setting ¢;f = @ == = ¢, =@, ., =E, =0, D2 = 0 can be satisfied by

[1,* = +/2f/g, and supersymmetry is restored. The D-term scalar potential

Vp = (af —od 12)?, (7.4)

=@

yielding the tachyonic mass squared —2gf, in agreement with eq. (5.19).
According to egs. (2.7), (3.6), (3.12) and (3.15), a vev of ¢§~ leads to masses for all
chiral fermions,

3(1-2) 1+2
Lmass X y|¢éi| Z N{,ONg,l + ZNé,le,O ’ (75)
j=1 j=1

where j labels the ground state wave functions. Hence, after tachyon condensation, all
fermions have masses of order /gf.

7.2 be-sector

This sector is very similar to the aa’-sector, since the flux vanishes in the first torus.
However, an important difference is the sign of the flux densities. In the aa’-sector one
has positive flux densities in the second and the third torus. On the contrary, in the bc-
sector the two flux densities have opposite sign. Taking this into account, the relevant F-
and D-terms can be essentially read off from eq. (4.13). One finds, before forming linear
combinations for mass eigenstates,

Fyty = 2gfan )1, — 29 fs(0 +1) 92 1 (7.6)
Fyh=—=\2gfa(n+1) o317+ 29f30" 62, (7.7)
—(D1—Da) = fo—fs+g Y (Ie5t P — 1% 5 17) (7.8)

n,n’

D?;,:L_/ = \/@(\f ¢n 1,n/ v +1 ¢n+1 n’ )
ﬁwn+¢mﬂ,¢*& ) (7.9)

nn/—1
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Similar to the bc’-sector, now the fields ¢35+ and gﬁgf)_ decouple from the superpotential.
Setting all other fields to zero, Frlb';,_, Frlb:f and D I, vanish and one is left with

— (D1 —Da) = fa— fs+g(16557 1> — 1625 ?) . (7.10)

Depending on the sign of fo— f3, D1 — Do = 0 is achieved for a vev of qbg:g_ or qﬁ%ff. Hence,
as in the bc’-sector, tachyon condensation restores supersymmetry. However, according to
eq. (2.7), these vev’s do not generate mass terms for chiral fermions. In the special case
fa = fs, there are two massless scalars and no tachyon condensation takes place.

Tachyon condensation in the aa’-sector is more complicated since the SU(N) D-terms
and the superpotential couple the antisymmetric tensor to chiral fields in the adjoint rep-
resentation of SU(N). Also Wilson lines of the U(1), gauge group have to be taken into
account. This allows for more complicated solutions of the F- and D-term equations.
Tachyon condensation involves fields of order \/m Hence, the couplings between the
various sectors by D- and F-terms have to be taken into account in a complete analysis of
the vacuum structure.

8 Conclusions and open questions

We have studied the effective field theory for an intersecting D-brane model and its T-dual
magnetic compactification, which has all features wanted for extensions of the Standard
Model with high-scale supersymmetry breaking: the model has a ‘matter sector’ with
chiral fermions, broken supersymmetry and massive scalars, and a ‘Higgs sector’ with
vector-like fermions. For certain choices of fluxes, in some sectors scalars are massless and
supersymmetry is partially preserved. Expectation values of Higgs scalars can give mass
to the chiral fermions. In general it is assumed that tachyons in the Higgs sector can be
avoided by means of Wilson lines. All these features are well known from phenomenological
applications in the literature (see, for example, [16, 21]).

The considered model is also representative at the technical level. The different sectors
are examples of the three possibilities for background gauge fields, with flux in one torus
and Wilson lines in the other two, flux in two tori and Wilson lines in one torus, and flux
in three tori. The magnetic flux mixes the towers of Landau levels, yielding also massless
Goldstone bosons that give mass to vector fields via the Stiickelberg mechanism. Physical
4d fields are linear combinations of fields from different Landau levels. For each mass level
the counting of bosonic and fermionic states is consistent with the string mass formula.

The scalar masses depend on moduli, i.e., Wilson lines and the volume moduli of
the three tori. One of the main results of this paper is the computation of the one-loop
effective potential for Wilson lines in the ‘Higgs sector’ based on the effective 4d field
theory. Summing over the tower of Landau levels leads to a result which is consistent with
the string cylinder amplitude in the field theory limit. It turns out that the computation
of the string amplitude is very convenient to obtain the one-loop potential, and in this way
we have therefore evaluated the contributions of all sectors of the model to the effective
potential.
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Notice, that in string theory, whenever the magnetic fluxes break supersymmetry, there
are NSNS tadpoles that generate divergences. These divergences, that are UV from the
loop viewpoint, are actually IR from the viewpoint of the tree-level gravitational exchange.
Their existence implies that the computation is not performed in the right vacuum, that
has to be redefined (see, for example, [26]), which is technically very challenging (for recent
progress, see, for example, [40]). This does not affect the Wilson-line potential, since the
divergence is independent of the Wilson lines. Our field theory approach with Pauli-Villars
regulators allowed us to analyze also the dependence of the potential on the volume moduli.
We find the expected instability of the perturbative vacuum. However, a more detailed
study is needed to obtain a definite result on the potential vacuum instability.

The one-loop Wilson-line potential in the Higgs sector is concave. There are no stable
extrema and the system is therefore driven to the tachyonic regime. We showed that for
vanishing Wilson lines tachyon condensation indeed takes place, and the corresponding
vacuum expectation value gives masses to all chiral fermions of the order of the compact-
ification scale. It is quite possible, however, that in other models some chirality remains
after tachyon condensation.

As we have seen, tachyon condensation in the Higgs sector restores supersymmetry.
It is important to extend the first analysis in this paper to all sectors of the model, since
the restoration of supersymmetry is closely related to the vacuum energy density and
the stability, or possibly metastability, of the model. Given the phenomenological virtues
of magnetic compactifications and intersecting D-brane models, it appears mandatory to
further pursue these questions.
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A Embedding U(N) into SO(2N)

In section 2 and section 3 we discussed an intersection D-brane model with gauge group
U(14) x U(1) x U(1) and a T-dual type I string compactification on a magnetized torus,
respectively. The connection becomes particularly transparent if one uses step generators
for the U(16) subgroup of SO(32). In this appendix we collect some formulae which extend
the step generators of a U(N) algebra to an SO(2N) algebra by adding generators that
transform as the antisymmetric complex representation of U(N).

The N? generators of U(N) are given by matrices Tag that transform as N ® N,

(Ta/g)alg, — Saralsp - (A1)

-39 —



Note that the Tag are not hermitian but satisfy the relation

Ty = Tha . (A.2)

«,

The step generators are related to N(N + 1)/2 symmetric hermitean generators Tiﬁ and
N(N —1)/2 antisymmetric hermitian generators 7 35 by

Toclﬁ = Taﬁ + T,Bom Tgﬁ =1 <Ta5 — T5a> . (A.3)
Infinitesimal U(N) transformations of the fundamental representation ¢ ~ N read

where e,5 = el ap T ie? o Note that ¢, BT 5 and €2 aﬁ 5 are symmetric and antisymmetric
N x N matrices, respectively. An infinitesimal transformation of the complex conjugate
representation ¢ ~ N reads

5 = —i (sgﬁfaﬁ n eaﬁfﬁa) b = —i ( T + 2412 ) 5. (A.5)

The step generators satisfy the commutator relations

[Taﬁa ] - 567 ad — (55&T’yﬁ7 (Aﬁ)
and are normalized as
tr (Taﬁ> =0ap, ftr (Tgﬁj—iﬂ;) = 50[7555 . (A.7)

The N x N matrices ’f’ag and —Tga can be combined into 2N x 2N matrices

Tag 0 Tas 0
7. (Tas 0 ) _ (Tap O A8
op (o —Tﬁa) (0 ~T7) (A.8)

which act on the 2 N-component vector

v = (Z) . (A.9)

tr(Thg) =0, tr (TQBTTW;) = 260,055 - (A.10)

Note that

The generators T,z satisfy the same algebra as the generators Tag,

[Taﬁ, T,yg] = 557Ta5 — 5604T'yﬁ , (A.ll)

and the corresponding SO(2N) transformations read

00 =i (epsTp +capTag) V- (A.12)
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The generators of SO(2N)/ U(N) form a complex antisymmetric tensor of U(N). They
can be chosen as

X = <8 X;f) . X = (_)Q(w 8) : (A.13)
where
(X15)yr80 = OyrOs60 — 06005 5 (A.14)
with
Xpp=-XLi=-XI;=-X,. (A.15)

The generators X 3[5 satisfy the relations

x4, = x5 xE =0, (A.16)
and are normalized as
fr (X%TX;E,) = 2805, — 0-p0se) (A.17)
Together with 7,5 they form a closed algebra,
[Tap: X35 = 87X o5 + 05 X o
(Top, X ] _5a7X55 — 5Q5X7_ﬁ ) (A18)
[ng,xﬂ X35 X =0,
[ 75> ] 576 op — 566T7p + 550T% - 5va56 :

The corresponding SO(2N) transformations read
00 =i (235 X0+ &5 X, ) W =i (B15X1; + 84,X%) W, (A.19)

~ _ ~1 .~2
where £,5 = €y T1€55 and

Xos=Xh+X 5=

0 X,
el X5 0 )7

/ (A.20)
0 X

2 _ v+ -\ — vé

X75_1<X75—XW5)_Z<X5 0).

5

From eqgs. (A.12) and (A.19) one concludes that a general SO(2N) transformation is
given by the 2N x 2N matrix

S+iAs A+ 1Ay
X = . A.21
(—A1 + 149 —S + iAg) ( )

Here S = 5})@8TA0‘1/B is a real symmetric N x N matrix, and A3 = —ic? of aﬁ’ A =¢ (SXW;
and Ay = 536)275 are real antisymmetric N x N matrices. This can be compared to the
standard form of SO(2N) generators [41]

A= — (”1 ”) =T, (A.22)

P772

— 41 —



where 11 and 72 are antisymmetric real N x N matrices and p is an arbitrary real N x N
matrix. After a unitary transformation,

U é (; —;) | (4.23)

one obtains

gt L[ el —imtm) —(p=p) —i(m — )
AN =UNU 2 <(P_pT) —i(m —m2) —(p+p") —i(m +772)) . (A.24)

This expression for X' agrees with the one for X in eq. (A.21) with S = (p + p)/2,

Az =—(m +m)/2, At = —(p—p")/2 and As = —(m —12) /2.
Notice that the transformation (A.23) is also diagonalizing the magnetic flux. Indeed,
in the SO(2N) basis, the magnetic flux is of the type

01
F) = : A.25
() (_I 0) (4.25)
After the unitary transformation, the flux becomes
il 0
v(FyUt =" . A.26
() (0 _U> (4.26)

B Commutators

In sections 2-5 we have considered the groups G = SO(2(N +2)) D U(N) x U(1) x U(1) =
H, and in egs. (3.11), (3.12) and (3.13) we have expanded vector, chiral and anti-chiral
superfields in terms of SO(2(N + 2)) generators, with the identifications (cf. (3.6)),

1 ~ 1
Hy=—Tu,, H1=T , Hoy=T , Toag =Tasg + —=0da5H B.1
0= 75 Taa 1=TNy1,N+1 2 =TNi2,N+2 ap = Tap + Z0asHo (B.1)
for generators of H and
T, =Tant1, Ty =Tante, T0°=Tnira, Tt =Tni2a, T77 =Tniinye,
T = TN+2,N+15 X;ro = X;F,NH = _X]—~\}+1,a’ ng = X;F,N+2 = _XJJ\;+2,a7
—0 — — 0— — _
Xa - XN+1,01 = _Xa,N+1’ on - XN+2,a = _Xa,NJrQ’
Xt = X% =X X=Xy =Xy (B.2)
N+1,N+2 N+2,N+1 N+2,N+1 N+1,N+2> :
for generators of G/H.
Non-vanishing commutators needed in sections 3-5 include
1 _
[H07T;FO] = iﬁTjo’ [HlvT;FO] = :FTc:yFOa [Ta O,T;O] :Taﬁ 76aﬂHla (B3)
1 _
[H07Ta0:F] = :t\/NT(SZF, [H%To(c):':] = ?ngﬁ [Tg 7T8+] = Ta,B - 501,3H27 (B4)
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1

[Hy, X3 =+ \/Nxfo, [Hy, X320 = £X5°0, (X0, X3 = —Top — 6apH1, (B.5)
1
[HOngi] = iﬁXgiv [H2>X2i] = ng:ta [Xngan_] = —Top — dapHz, (B.6)
2 _
[Ho, X55) = iﬁXfw [ X5 X35] = 0ayTas — 0pyTas + 0psTay — GasThy,  (B.7)
[H17 Ti:F] - :tTi:Fv [H27 Ti:F] = :FTi:Fa [T+77 T7+] = Hy — H», (BS)
[HlaXii] ::tXii7 [H27Xii] :iXii7 [X++7X77] = Hy + Hs, (Bg)
[T, Tg ) = =6apT~F, [I.°,TH ) =T, [1,°% X5 ] = —0ap X0+ 0ar X7,
(B.10)
[T,0, X5 = =Xt (1.0 X5 = =0asX 7, [T,° XM = X0, (B.11)
(T8~ T = =6apTT, [T, T =T,° [T, X5 ] = =0apX)™ + 60y X,
(B.12)
[Ta~ X = =Xl (T8, X5 = 6ap X, [T, X" =X}, (B.13)
(IO, T4 = =10, (TS0, X3 ) = 00y X3° = 0apXJ0, (TS0, X5H] = Gap Xt
(B.14)
[T, X5 = =X [T, X 7= -X07, (B.15)
[T, 777 ] = =T3° (T8, X3 ) = 0oy X" —0apXT",  [IF, X3°) = —0apX ™,
(B.16)
[Te", X1 =—Xo5 [T9F,X71=X.7, (B.17)
[TJriu Xng] = X;rO’ [TJF?,X;O] = _Xgiv (Blg)
[TiJru XCJMFO] = Xg+a [Tﬁ+’X27] = _X;07 (Blg)
[XJO’ X/%] = 5aBT';r0 - 60&’YTB+07 [XcJurov Xg_} - _5aﬁT+7v [X;rov X )= To(z)i’
(B.20)
[Xngv Xﬁ_y] = 50&5T’8+ - 604’YT8+7 [Xng?Xﬁ_o} = _5045T7+7 [Xngini] = T707
(B.21)
(X0, X0 ) = 0apTy = 60y T5 0, [X.0, XTH] = =137, (B.22)
[Xg_v XE,Y] = 50¢5T’3_ B 50¢7Tg_7 [Xg_7X++] T(jo (B23)

C Superfield components

For N' = 1 superfields we use the conventions of Wess and Bagger [32]. In the following
we list a couple of formulae for charged superfields'® that are frequently needed in the

ONote, that we use the notation A= At ete.
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derivation of the 4d effective Lagrangian:

VE = —0o"OAE +i00ONT — i00ONT + %90@1}*, (C.1)
¢t = ¢F + V20T +i05100,6F + . .. (C.2)
_ 1, —
ViV = —5096914;14 P, (C.3)
WHW~ =00DTD™ + ..., (C.4)
tom — LosBBAT O S 4 - poEEN U + L0sB8D T &
VEeT = S0000 40" +\/§9096)\ YT+ 50000DT7 + (C.5)
+’+:_f 00 AT u*+_i 00\ ot } 00 D+ A+
Ve S 000045049 ﬁaeew ¥h 500000 6t + (C.6)

D Jacobi functions

For the reader’s convenience we collect in this appendix the definitions, transformation

properties and some identities among the modular functions that are used in the text. The

Dedekind function is defined by the usual product formula (with ¢ =e

2772'7')

[e.e]

n(r) =gz [J(1-q), (D.1)

n=1

whereas the Jacobi §-functions with general characteristic and arguments are

(67 . 2 .
0 o) = em‘r(nfa) eQﬂz(zfﬁ)(nfa) ) D.2
[ B]( BE (D.2)

nez

We give also the product formulae for the four special §-functions

01(2|7) = 0
Oy(2|7) = 0
03(z|7) = 0
O4(2|7) =0

o

1 , :
f (z|T) = 2¢"/3sinmz H(l —¢")(1 — ¢"e*™)(1 — e *™%),
2

n=1

0 (2lr) = 24'/ Bcosmnf:[lu — )L+ ") (1 + g"e ),
(1)] ) ﬁ(l M1 - qn—1/2627riz)(1 . qn—1/26—27ri2). (D.3)
L2 n=1
The modular properties of these functions are described by
n(r+1)=e™2(r) | 8 m (2|7 + 1) = e~im(a=1)g [a +‘; - ﬂ (2|7)

n(-1/7) =i n(r) . 6 [

e

) = v g 8 ] . 0

T
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A useful identity for theta functions is the Jacobi identity

4
1\ 20+2B+4a « 2l7) =
> vreed To[ 4] i

a,5=0,1/2 i=1
—21+2+ 23+ 24 21— 22+ 23+ 24
_201 T 01 T
2 2
X91(21+Z2;ZS+Z4 7)91<21+Z2—523—Z4 T). (D.5)

In computing partition functions, it is useful to define SO(2n) characters. Of particular
relevance for us are

[T, 0s(zi7|T) — TTi; Oa(ziT|T)

Va(ziT|T) = o )
4 ‘ 1 .
Ss(z7|7) = Ilizy 92(ZZT|T)2;;4H1_1 01 (ziT|T) (D.6)
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