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Abstract: We provide a quantum field theory based description of the nonperturbative

effects from hadronization for soft drop groomed jet mass distributions using the soft-

collinear effective theory and the coherent branching formalism. There are two distinct

regions of jet mass mJ where grooming modifies hadronization effects. In a region with

intermediate mJ an operator expansion can be used, and the leading power corrections are

given by three universal nonperturbative parameters that are independent of all kinematic

variables and grooming parameters, and only depend on whether the parton initiating the

jet is a quark or gluon. The leading power corrections in this region cannot be described by

a standard normalized shape function. These power corrections depend on the kinematics

of the subjet that stops soft drop through short distance coefficients, which encode a

perturbatively calculable dependence on the jet transverse momentum, jet rapidity, and

on the soft drop grooming parameters zcut and β. Determining this dependence requires a

resummation of large logarithms, which we carry out at LL order. For smaller mJ there

is a nonperturbative region described by a one-dimensional shape function that is unusual

because it is not normalized to unity, and has a non-trivial dependence on β.

Keywords: Effective Field Theories, Nonperturbative Effects, Perturbative QCD, Re-

summation

ArXiv ePrint: 1906.11843

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2019)002

mailto:andre.hoang@univie.ac.at
mailto:mantry147@gmail.com
mailto:aditya.pathak@univie.ac.at
mailto:iains@mit.edu
https://arxiv.org/abs/1906.11843
https://doi.org/10.1007/JHEP12(2019)002


J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

Contents

1 Introduction 1

2 Review of soft drop and partonic factorization 4

2.1 Soft drop algorithm and jet mass 4

2.2 Partonic factorization for light quark and gluon jets 6

3 Nonperturbative modes for soft drop 9

4 Nonperturbative corrections in the operator expansion region 13

4.1 Expansion of the measurement operator 13

4.1.1 Expansion for the shift term 16

4.1.2 Expansion for the boundary term 17

4.1.3 Rescaling 20

4.2 CA clustering within the nonperturbative sector 22

4.3 Factorization for matrix elements 24

4.3.1 Abelian graphs 25

4.3.2 Non-Abelian graphs 27

4.4 O(αs) matching coefficients 29

4.5 Results for power corrections from the operator expansion 30

5 Resummation for matching coefficients for hadronic corrections 33

5.1 Review of parton level resummation in coherent branching 34

5.2 Resummed matching coefficients C1 and C2 for subleading power 37

5.2.1 Resummation for the shift power correction 37

5.2.2 Resummation for the boundary power correction 39

5.3 Numerical results for C1 and C2 41

6 Hadronization effects in the nonperturbative region 43

6.1 Shape function in the nonperturbative region 43

6.2 A model for the SDNP region shape function 46

7 Comparison with previous work 49

8 Monte Carlo studies 52

8.1 Comparing Wilson coefficient results with Monte Carlo 53

8.2 Catchment area geometry versus jet mass 54

8.3 Testing universality with fits for hadronic parameters 56

9 Conclusion 61

A Measurement operator for the boundary term 63

– i –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

B Collinear-soft function with a probe nonperturbative gluon 64

B.1 Analysis with one perturbative gluon 65

B.1.1 Measurement operator in SDOE region 65

B.1.2 Abelian graphs 66

B.1.3 Non-Abelian graphs 67

B.2 Analysis with two perturbative emissions 68

B.2.1 Confirmation of the NP factorization at O(α2
s) 68

B.2.2 Boundary correction from failing subjets 73

1 Introduction

Measurements of jet observables in QCD provide a key tool to test perturbative, resummed,

nonperturbative, and Monte Carlo descriptions of QCD dynamics and also are used to

probe the presence of new physics. A typical observable receives contributions from per-

turbative momentum regions, where the description requires fixed order calculations often

supplemented with resummations of large logarithms, as well as from the nonperturbative

momentum region, related to hadronization. Remarkable progress has been achieved from

high precision perturbative calculations, where examples include event shapes in e+e− colli-

sions at next-to-next-to-next-to-leading-log order +O(α3
s) [1–9], and Higgs production with

a jet veto [10–18] with a resummation of logarithms at next-to-next-to-leading-log order.

Nonperturbative hadronization corrections can also often be described rigorously from

QCD with the help of factorization theorems, for instance by examining operators built out

of nonperturbative modes [19] within the soft-collinear effective field theory (SCET) [20–

24]. This program has been successfully carried out for e+e− event shapes [7, 8, 19, 25],

thrust for DIS with a jet [26], or the jet-mass in pp collisions [27, 28]. For other methods for

examining power corrections using nonperturbative models and other analytic techniques,

see for example [29–32]. The corresponding nonperturbative parameters frequently involve

light-like Wilson lines making them hard to evaluate using Lattice QCD. However, their

functional dependence and universality can still be determined, and the hadronization ef-

fects can then be described by fitting one or more additional parameters in a way consistent

with field theory. Often the most important information about hadronization can be en-

coded in a single parameter, which is the first moment of an underlying nonperturbative

shape function.

Another method of accounting for hadronization corrections is to rely on hadroniza-

tion models that are implemented within Monte Carlo parton shower event generators like

Pythia [33] and Herwig [34]. The parameters in these models are fixed by tuning them to

certain standard observables, and then used to predict hadronization effects in other ob-

servables. An advantage of this method is that hadronization effects can be predicted for

any observable. However, it is often hard to estimate the accuracy of these models since,

unlike the factorization based methods, they are based on an extrapolation rather than
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systematic expansions. Another problem with the Monte Carlo method is that hadroniza-

tion parameters are tuned to data using a perturbative accuracy that is often limited

to (roughly) next-to-leading logarithmic (NLL) order [35, 36] or less (though there are a

few notable exceptions that include [37–44]). When higher order perturbative precision is

available, the use of these Monte Carlo based hadronization estimates becomes problematic

since the tuning partially absorbs perturbative corrections beyond NLL, potentially leading

to double counting which is hard to control.

Together with these advances in understanding perturbative and nonperturbative dy-

namics of jets, there has also been a surge of interest in jet substructure techniques [45–49].

This includes in particular the use of jet grooming to remove soft radiation from jets, with

the goal of reducing the effects from hadronization, underlying event, and pileup. Theoret-

ically, the most widely studied jet groomer is the soft drop algorithm [48] (which includes

as a special case the earlier modified mass drop algorithm [45, 50]). Soft drop groomed

observables have been recently measured by ATLAS [51] and CMS [52]. Perturbative

methods have been developed to carry out calculations for groomed jets [50, 53–56], and

soft-drop factorization theorems have been derived for D2 [57], the 2-point energy correla-

tor, e
(α)
2 [55], and the jet-mass and angularities for inclusive jets [58, 59]. Resummation of

groomed event shapes at an e+e− collider such as soft drop thrust, hemisphere jet mass,

and narrow invariant jet mass were studied in ref. [60], and related fixed order corrections at

next-to-next-to-leading order (NNLO) accuracy were calculated in ref. [61]. Resummation

of the soft drop jet mass for top jets was studied in ref. [62] and e
(α)
2 for bottom quarks

in ref. [63]. So far, either Monte Carlo hadronization models, models based on scaling

from single gluon emission, or naive analytical shape functions have been used to estimate

hadronization corrections for these observables, and no attempt has been made at obtain-

ing a rigorous operator based description of hadronization corrections after jet grooming.

Scaling results based on the kinematics of single gluon emission in soft drop were considered

in refs. [50, 64], and shape function models for soft drop hadronization corrections have

been employed for jet angularities [55], D2 [57, 65], and heavy quark induced jets [62, 63].

In this paper we develop a factorization based description of hadronization corrections

for jet observables after soft drop grooming. We focus for concreteness on the groomed jet

mass mJ for massless jets, though our approach can also be applied to other observables

that are not sensitive to soft recoil effects, such as angularties away from the broadening

limit for a < 1. Soft drop decouples the dependence of the hadronization from aspects

of the event that are not associated with the groomed jet being studied, thus our results

apply equally well for e+e− and pp collisions. We consider two distinct regions for the jet

mass, each having a distinct description for their leading hadronization corrections:

soft drop operator expansion (SDOE) region:
QΛQCD

m2
J

(
m2
J

QQcut

) 1
2+β

� 1 ,

soft drop nonperturbative (SDNP) region: m2
J . QΛQCD

(
ΛQCD

Qcut

) 1
1+β

. (1.1)

These relations will be discussed in detail in section 3. Here ΛQCD ∼ 0.5 GeV is the typical

nonperturbative scale for QCD, and Q = 2EJ = 2pT cosh(ηJ) is a hard scale given by twice
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the jet energy, which is related to the jet pT and rapidity ηJ . We assume that Q � mJ

and note that perturbative resummation is important for both of these regions. Finally,

we have defined the smaller soft drop induced scale

Qcut ≡ 2β z̃cutQ , (1.2)

which depends on the soft drop parameters zcut and β (see section 2.1 below for the

definitions of z̃cut, zcut, and β).

In the SDOE region, we will demonstrate that the leading hadronization effects are

given by two nonperturbative matrix elements

Ω◦◦1κ and Υκ
1(β) , (1.3)

defined by a field theory based operator expansion, where κ = q, g distinguishes quark

versus gluon initiated jets. Furthermore, we will show that the Υκ
1(β) parameter has a

linear dependence on β in the SDOE region:

Υκ
1(β) = Υκ

1,0 + βΥκ
1,1 . (1.4)

This yields in total three universal hadronic parameters, Ω◦◦1κ, Υκ
1,0, and Υκ

1,1 which depend

on a universal geometry, that we describe below, and on ΛQCD. The matrix elements Ω◦◦1κ
and Υκ

1(β) are multiplied by perturbative Wilson coefficients that depend on zcut and β,

and the jet kinematic variables. The resulting power corrections depend on the kinematics

of the subjet that stops soft drop. We set up a formalism for determining these coefficients

and calculate them with leading logarithmic (LL) resummation accounting for running

coupling effects. The expansions used to derive this form for the power corrections imply

that we cannot connect them to the power corrections appearing for the ungroomed jet

mass by taking β →∞.

In the SDNP region we find that the leading hadronization effects are given by a non-

trivial shape function F⊗κ (k, β). Unlike other examples of shape functions derived in the

literature, F⊗κ (k, β) is not normalized to unity when integrated over all k. The function

F⊗κ (k, β) also depends on the color charge κ of the hard particle that initiates the jet, i.e.

it depends on whether one considers a quark or a gluon initiated jet. However, it does not

depend on pT , ηJ , zcut, the jet-radius R or other quantities related to the hard process.

The outline for the further sections is as follows: in section 2 we review the soft drop

grooming algorithm and setup the leading power soft drop factorization theorem in a con-

venient manner for our analysis. We then describe the interface between the partonic

cross section and the nonperturbative corrections. In section 3 we describe the relevant

EFT modes that are responsible for the leading power corrections in the SDOE and SDNP

regions. We derive the factorization of the measurement and the matrix elements in the

SDOE region in section 4, which leads to definitions for the power corrections Ω◦◦1 and Υ1(β).

In section 5 we calculate the perturbative Wilson coefficients of these power corrections,

which are needed to describe the hadronization corrections in the SDOE region. In section 6

we analyze the SDNP region using tools of EFT and derive the properties of the shape func-

tion that describes power corrections in this region. A comparison with previous work is
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CA Clustering Soft Drop Grooming

particles

subjets

jet

Kept (Θsd)

Rejected (Θsd)

Figure 1. Schematic of CA clustering and soft drop grooming algorithm. On the right the branches

that fail to satisfy the soft drop criteria, shown in gray, are discarded.

presented in section 7. Section 8 presents a parton shower Monte Carlo (MC) event genera-

tor study where we confront our field theory based description of the hadronization correc-

tions in the SDOE region with MC results at parton and hadron level. In particular, we test

the agreement of MCs with our predictions for universality by fitting the power corrections

in the SDOE region to results from MC hadronization models. We conclude in section 9.

2 Review of soft drop and partonic factorization

2.1 Soft drop algorithm and jet mass

The soft drop algorithm [48] considers a jet of radius R, reclusters the particles into a

angular ordered cluster tree of subjets using the Cambridge-Aachen (CA) algorithm [66, 67],

and then removes peripheral soft radiation by sequentially comparing subjets i, j in the

tree. The grooming stops when a soft drop condition specified by fixed parameters zcut

and β is satisfied by a pair of subjets. For pp collisions the condition is

min[pT i, pTj ]

(pT i + pTj)
> zcut

(
Rij
R0

)β
, (2.1)

where Rij is the angular distance in the rapidity-φ plane, R2
ij = 2

(
cosh(ηi− ηj)− cos(φi−

φj)
)

or R2
ij =

√
(ηi − ηj)2 + (φi − φj)2 (definitions that are equivalent in the boosted

limit, and the latter being the one implemented in the soft drop algorithm). In general

R0 is a parameter that is part of the definition of the soft drop algorithm which is often

chosen to be the jet radius. In the actual implementation of the soft drop algorithm one,

however, defines Rij in terms of a Euclidean distance in (η, φ) plane, such that R2
ij =√

(ηi − ηj)2 + (φi − φj)2. The two definitions are equivalent in the boosted limit. For

e+e− collisions the condition is

min[Ei, Ej ]

(Ei + Ej)
> zcut

(√
2

sin(θij/2)

sin(Ree0 /2)

)β
. (2.2)

This is illustrated in figure 1 where Θsd = 1−Θsd represents the pass/fail test being applied

by the soft drop groomer. Once eq. (2.1) or eq. (2.2) is satisfied all subsequent constituents

in the tree are kept, thus setting a new jet radius Rg < R for the groomed jet.
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Figure 2. Pythia prediction for m2
J/E

2
J distribution indicating three different regions of the spec-

trum. Here we take Ree0 = π
2 and the inequality “�” in the “p+

cs � p+
Λ” constraint for the SDOE

region is replaced by a factor of 5.

In the limit Rij � 1, with jet constituents close to the jet axis, we can rewrite eq. (2.1)

in terms of the energies Ei = pT i cosh ηi and polar angles θij � 1, so that the pp formula

becomes
min[Ei, Ej ]

(Ei + Ej)
> z̃cut θ

β
ij , (2.3)

where here we introduced the shorthand notation

z̃cut = zcut
coshβ ηJ

Rβ0
(pp case) . (2.4)

To obtain this result we used R2
ij ' cosh ηi cosh ηj θ

2
ij and cosh ηi = cosh ηj + O(θij) '

cosh(ηJ) to write the extra factors in terms of the jet’s rapidity ηJ . For e+e−, the result

in the θij � 1 limit takes the same form in eq. (2.3), but with

z̃cut = zcut

(√
2 sin

(
Ree0
2

))−β
(e+e− case) . (2.5)

With our definitions of z̃cut in eqs. (2.4) and (2.5), the formula in eq. (2.3) applies both for

pp and e+e− when θij � 1. For our analysis we will always assume

z̃cut � 1 . (2.6)

With soft drop grooming the jet mass is defined by starting with the constituents of the

jet of radius R and summing only over the constituents Jsd that remain after soft-drop has

been applied,

m2
J =

( ∑
i∈Jsd

pµi

)2

. (2.7)
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In figure 2 we show a Pythia8 Monte Carlo prediction for this groomed jet mass

spectrum with zcut = 0.1 and β = 2. We distinguish three relevant regions of the spectrum:

the soft drop nonperturbative region (SDNP) to the far left (left of the magenta dashed

line), the soft drop operator expansion region (SDOE) in the middle (between the dashed

lines), and the ungroomed resummation region on the far right where soft drop turns off

but the log resummation for the ungroomed case is still active (right of the green dashed

line). The distinction between the SDNP and SDOE regions is determined by eq. (1.1),

while the distinction between the SDOE and ungroomed resummation region is given by

soft drop operator expansion (SDOE):

m2
J � zcut p

2
TR

2

(
R

R0

)β
(pp) or m2

J � QQcut tanβ+1

(
R

2

)
(ee) ,

ungroomed resummation region: (2.8)

m2
J & zcut p

2
TR

2

(
R

R0

)β
(pp) or m2

J & QQcut tanβ+1

(
R

2

)
(ee) .

For the hemisphere case in e+e− one has R = π/2. For R = 1, in the e+e− case this

boundary roughly corresponds to m2
J/E

2
J = zcut which we use in figure 2. In all three of

these regions the resummation of large logarithms is important, though the precise nature

of this resummation is different. There is an additional transition between resummation

and fixed-order regions which occurs on the very far right of figure 2, near where dσ/dmJ

goes to zero (not indicated in the plot).

2.2 Partonic factorization for light quark and gluon jets

In this section we review the pioneering partonic massless soft drop factorization theorem

derived in [55, 68], working in the same limit

4m2
J/Q

2 � zcut � 1 . (2.9)

In sections 3–6 we will extend this factorization based description to hadron level by in-

cluding the leading final state hadronization effects. This will be achieved by incorporating

field theoretically derived nonperturbative matrix elements for the SDOE region, and by

setting up a novel shape function for the SDNP region.

Consider the groomed jet mass measurement from jets initiated by light quarks or

gluons. A partonic factorization formula for the soft dropped jet mass in the limit in

eq. (2.9), was derived in ref. [55]:

dσ̂

dm2
J

=
∑
κ=q,g

Ñκ J̃κ(m2
J/Q

2)⊗ S̃κC(zcutmJ/Q) . (2.10)

Here ⊗ denotes a convolution, κ sums over quark and gluon jets, the Ñκ are normalization

factors, and J̃κ and S̃κC are dimensionless jet and collinear-soft functions. The Ñκ determine

what fraction of the jets are produced by gluons or quarks given an underlying hard process.

For pp it incorporates the initial state parton distribution functions (PDFs). It also contains

– 6 –
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the global soft function, the hard function, as well as any other functions describing other

aspects of the event. The jet mass spectrum is determined by the inclusive jet function J̃κ
that encodes the distribution of collinear radiation in the jet and a collinear-soft function S̃C
that describes the influence of soft radiation retained by soft drop. S̃C depends on Q and the

soft drop parameters zcut and β. The dependence on the variables Q and zcut is remarkably

simple since they appear only in a single combination with mJ [55]. At (modified) LL order,

eq. (2.10) agrees with the results derived in the original soft drop paper [48] and at LL

for β = 0 with the results for modified Mass Drop Tagger derived in ref. [50] using the

coherent branching formalism. Results for β ≥ 0 have also been derived in refs. [56, 64].

We choose to write the partonic factorization theorem for the jet mass spectrum in a

more explicit form as

dσ̂

dm2
JdΦJ

=
∑
κ=q,g

Nκ(ΦJ , R, zcut, β, µ)Q
1

1+β

cut

∫
d`+ Jκ

(
m2
J −Q`+, µ

)
Sκc

[
`+Q

1
1+β

cut , β, µ
]
.

(2.11)

Here we collectively denote the jet kinematic variables by ΦJ = {pT , ηJ} for pp and ΦJ =

{EJ} for ee, and have displayed the form of the convolution between the jet and collinear-

soft functions. This expression involves the soft drop modified hard scale Qcut defined in

eq. (1.2). In our notation the Jκ and Sκc functions have non-zero mass dimensions and

hence differ from those in eq. (2.10).

In eq. (2.11) we use the standard SCET jet function Jκ for quarks and gluons which

has mass dimension −2 [22], rather than the J̃κ in eq. (2.10) that was a function of a dimen-

sionless variable. The jet function Jκ encodes collinear modes that have the momentum

scaling given by

pµC ∼
(
m2
J

Q
,Q,mJ

)
, (2.12)

where we show the light-cone momentum components

(p+, p−, p⊥) ≡ (nJ · p, n̄J · p, p⊥) , (2.13)

relative to the jet axis n̂J , with nJ = (1, n̂J) and n̄J = (1,−n̂J). In terms of these coordi-

nates the angle θ relative to the jet axis is given by sin(θ) = |~p⊥|/pz which for θ � 1 gives

θ

2
' |~p⊥|

p−
. (2.14)

Hence the collinear particles spread out relative to the jet axis with a typical angle θc ∼
2mJ/Q. The scaling for the global soft modes that contribute to Nκ is

pµgs ∼ Qcut(1, 1, 1) (e+e−) , pµgs ∼ pT zcut(1, 1, 1) (pp) . (2.15)

This soft scaling differs from that of the ultrasoft mode, pµus ∼ m2
J/Q(1, 1, 1), which is

relevant in the ungroomed case.

Finally, rather than using a dimensionless collinear-soft function S̃κC as in eq. (2.10),

we use a collinear-soft function with dimension (−2− β)/(1 + β):

Sκc

[
`+Q

1
1+β

cut , β, µ
]
≡ Q

−1
1+β

cut

nκ
tr
〈
0
∣∣T̄X†nκVnκδ(`+ −Θsd p̂

+
)
TV †κnXnκ

∣∣0〉
µ
, (2.16)
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where the subscript µ on the r.h.s. indicates that this matrix element is renormalized in

the MS scheme. The normalization convention we adopt for this definition ensures that Sκc
is truly a function of only the three variables shown, which makes manifest the non-trivial

connection between `+, Q and zcut derived in ref. [55], which imply that it is only a function

of `+Q
1

1+β

cut . Note that in the pp case this combination is independent of the jet rapidity ηJ

since the cosh ηJ factors in Q
1

1+β

cut /Q cancel:

`+Q
1

1+β

cut ∼
m2
J

Q
Q

1
1+β

cut =
m2
J

pT

(
pT zcutR

−β
0

) 1
1+β . (2.17)

Note that the prefactor of Q
−1
1+β

cut in eq. (2.16) is compensated by the prefactor in the fac-

torization formula in eq. (2.11). In eq. (2.16) nq = Nc and ng = N2
c −1 normalize the color

trace, where Nc = 3 is the number of colors. Also, Θsd is the soft drop measurement func-

tion that selects the collinear-soft particles that pass soft drop. We discuss the measurement

operator Θsd p̂
+ in eq. (2.16) in section 4.1. Up to the overall normalization factor, the

r.h.s. of eq. (2.16) is identical to the perturbative collinear-soft function defined in ref. [55]

(setting their α = 2). The terms Vnκ = Vnκ[n̄ ·Acs] and Xnκ = Xnκ[n ·Acs] in eq. (2.16) are

collinear-soft Wilson lines in the fundamental (κ = q) or adjoint (κ = g) representations.

They are easily derived following the procedure in SCET+ (see refs. [69–72]). This function

Sκc encodes the dynamics of the collinear-soft modes, whose momentum components scale as

pµcs ∼
m2
J

Qζcs

(
ζcs,

1

ζcs
, 1

)
, ζcs ≡

(
m2
J

QQcut

) 1
2+β

. (2.18)

Here ζcs � 1 follows because m2
J � QQcut holds true in the SDOE region as seen from

eq. (2.8), for R . 1. The scaling in eq. (2.18) is determined by demanding that p+
cs ∼ m2

J/Q

so that this mode contributes to the jet mass measurement, and that it saturates the soft

drop condition, hence satisfying p−cs ∼ Qz̃cutθ
β
cs = Qcut(θcs/2)β . From eq. (2.14) we have

θcs
2
∼ ζcs �

θc
2
∼ mJ

Q
, (2.19)

so that the collinear-soft modes probe the edge of the groomed jet, while the collinear modes

are well inside. At one-loop the result for the collinear-soft function in the MS scheme is

Sκc

[
`+Q

1
1+β

cut , β, µ
]

= δ
(
`+Q

1
1+β

cut

)
(2.20)

+
Cκαs(µ)

π

{
−2(1 + β)

(2+β)µ
2+β
1+β

L1

[
`+Q

1
1+β

cut

µ
2+β
1+β

]
+
π2

24

2+β

1+β
δ
(
`+Q

1
1+β

cut

)}
,

where L1(x) =
[
Θ(x) lnx

x

]
+

is the standard plus function which integrates to zero on

x ∈ [0, 1], Cq = CF , and Cg = CA. Here we see explicitly that the collinear-soft func-

tion is only a function of the three variables shown in the arguments in the left hand side

of eq. (2.20). The momentum space result in eq. (2.20) agrees with the Laplace space result

in eq. (E.4) of ref. [55].
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The form of the convolution shown in eq. (2.11) follows from the fact that the jet mass,

when decomposed into contributions from the collinear and collinear-soft modes, is

m2
J = (pn + pcs)

2 = p2
n +Qp+

cs + . . . , (2.21)

where the ellipses are higher order in the power counting. Here p2
n is the argument of the

jet function Jκ, and p+
cs = `+ is the variable that appears in Sκc . The fact that the sum

of collinear and collinear-soft momenta gives the total jet mass leads to the convolution.

Including the resummation of large logarithms, the factorization theorem in eq. (2.11)

becomes

dσ̂

dm2
JdΦJ

=
∑
κ=q,g

Nκ(ΦJ ,R,zcut,β,µh,µgs)USG(Qcut,µgs,µcs)Q
1

1+β

cut

∫
d`+dsJκ

(
m2
J−s, µJ

)
×UJ(s−Q`+,µJ ,µcs)Sκc

[
`+Q

1
1+β

cut ,β,µcs

]
,

≡
∑
κ=q,g

Nκ(ΦJ ,R,zcut,β,µh,µgs)
dσ̂κ
dm2

J

(µgs) , (2.22)

where USG and UJ are RG evolution kernels. Note that the hard scale µh indicates an

upper limit for an evolution that takes place inside Nκ, and since this factor also includes

the boundary condition at µh it is formally µh independent. In the third line of eq. (2.22)

we have defined a notation for the partonic cross sections dσ̂κ/dm
2
J for the individual

κ = q, g channnels which we will use later on. This formula does not account for final state

hadronization effects. The canonical global soft, jet, and collinear-soft scales appearing in

eq. (2.22) are

µh = pTR (pp) or µh = Q tan

(
R

2

)
(ee) ,

µgs = pTRzcut

(
R

R0

)β
(pp) or µgs = Qcut tan1+β

(
R

2

)
(ee) ,

µJ = mJ , µcs =
(
Qcut

) 1
2+β

(
m2
J

Q

) 1+β
2+β

. (2.23)

The renormalization group evolution between these scales sums the associated

large logarithms. Note that we will always have µJ � µcs, since µcs/µJ =

(mJ/Q)
β

2+β (Qcut/Q)
1

2+β � 1, and also µgs � µcs, since µcs/µgs ∼ (m2
J/QQcut)

1+β
2+β � 1.

On the other hand there is no universal hierarchy between the scales µgs and µJ . The func-

tions Nκ involve both the hard scale µh ∼ Q ∼ pT and the global-soft scale µgs ∼ Qcut,

and additional logarithms of zcut from the hierarchy Q � Qcut can be summed inside Nκ

if desired. The integrations in eq. (2.22) can be evaluated analytically with standard tech-

niques and give predictions at LL, NLL, etc, for the soft drop groomed spectrum. Results

up to NNLL were obtained in ref. [55] for β = 0 and β = 1.

3 Nonperturbative modes for soft drop

To determine the leading hadronization corrections we first determine for our observable the

dominant nonperturbative modes Λ with momenta (p+
Λ , p

−
Λ , p

⊥
Λ). This is done separately
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a) b)

Figure 3. Modes appearing in the soft drop factorization formula for jets initiated from massless

quarks or gluons. Panel a) shows a mJ value in the operator expansion region, while panel b) shows

a mJ in the nonperturbative region. Here z is the energy fraction relative to the total jet energy, and

θ is the polar angle relative to the jet-axis. The hard modes H at z ∼ 1 and θ ∼ 1 are not shown.

for the operator expansion (SDOE) and nonperturbative (SDNP) regions, see eqs. (1.1)

and (2.8).

In figure 3a we show all the relevant perturbative and nonperturbative SCET modes

for mJ values in the SDOE region. In figure 3b we show the relevant modes when mJ is

in the SDNP region. These figures shows only scaling relations, so that the momentum

scaling of modes at different locations are separated by a � inequality. Any particles

with momenta satisfying a ∼ relation appear at the same point, with the scaling of the

mode at that point. Here C denotes the collinear modes appearing in Jκ, which sit on the

blue measurement curve labeled m2
J = Qp+ at small θc ∼ 2mJ/Q. The slanted orange

line for z ' z̃cutθ
β bounds the momentum region removed by soft drop and is labeled

by “slope = β”. The magenta point labeled CS denotes the collinear-soft modes which

determine Sκc , whose scaling was given in eq. (2.18), and is determined by the intersection

of the slanted orange line and the blue curve. Finally, S denotes the global soft modes that

are groomed away. Their presence is required for renormalization group (RG) consistency,

as part of the calculation of the no-emission probability, and are included in Nκ. Note that

ultra-soft modes, sensitive to other parts of the event, sit at the intersection of the blue

curve and y-axis, and are removed by soft drop.

Figure 3a for the SDOE region is identical to the mode picture in [55] with two excep-

tions that did not matter there but are important for our analysis. The first is that we have

added the brown line, p2 ∼ Λ2
QCD, which denotes where the dominant modes responsible

for hadronization effects are located. The second is that the shaded orange region, which

denotes the region removed by soft drop, is truncated in the θ direction by the vertical

orange line at the angle θ ' Rg where the iterative grooming stops, see [48]. At leading

power in the SDOE region, soft drop is always stopped by comparing a perturbative CS

subjet with the subjet containing the collinear particles. Thus the vertical line occurs at

the location of the CS mode which has a parametrically larger angle than the collinear

mode. To understand this, note that the CS modes saturate the soft drop condition, i.e.

they sit at the largest possible angle from the jet axis and have large enough energies to
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Figure 4. Comparison of the leading nonperturbative Λ mode and a subleading Λ′ mode in the

SDOE region.

enable them to pass soft drop. So when pairs of subjets are tested as we traverse the CA

clustering tree backwards, there will be a subjet in the tree that carries all the C particles,

and another with one or more CS particles. As long as at least one CS subjet is kept by

soft drop, then the stopping subjet will have collinear-soft scaling.

In the SDOE region a perturbative CS subjet will always stop soft drop, yielding

Rg ∼ θcs. This then determines the dominant nonperturbative mode for the SDOE region,

labeled by Λ in figure 3a, which has the same parametric angle as the CS mode. Its

(p+, p−, p⊥) momentum components therefore have the scaling

pµΛ ∼ ΛQCD

(
ζcs,

1

ζcs
, 1

)
. (3.1)

These Λ modes yield the most important nonperturbative contribution to the jet mass since,

as seen from eq. (2.21), in the collinear-soft limit the contribution to the jet mass is given by

Qp+ and the Λ modes have the largest p+ momentum component among all modes on the

brown line that are not completely removed by soft drop. To see this we note that for mass-

less modes p+ ∼ Qz(θ/2)2 ∼ ΛQCD(θ/2), where the second ∼ follows from p2 ∼ Λ2
QCD when

θ � 1. Thus the nonperturbative mode with the largest p+ is the one with the largest θ that

is not removed by soft drop, given by θcs/2 ∼ ζcs. Comparing p+ momenta in eqs. (2.18)

and (3.1) we see that for p+
cs � p+

Λ we have (QΛQCD/m
2
J)(m2

J/QQcut)
1

2+β � 1, which is

precisely the equation for the SDOE region in eq. (1.1). In this region the hadronization

contributions from Λ are power corrections. We note that the dominant power corrections

appear only from corrections to the collinear-soft sector. The nonperturbative corrections

in the collinear sector are subleading since nonperturbative corrections to the jet function

are suppressed by ΛQCD/mJ � 1.

We could also consider the case where there is no perturbative CS particle retained

by soft drop in the SDOE region, so that all CS subjets are eliminated. In this case

soft drop will be stopped by a nonperturbative mode whose momentum would sit at a

location determined by extending the slanted orange line until it intersects the brown curve,

indicated by the Λ′ mode in figure 4. However, in the SDOE region the probability for

such an event is exponentially suppressed by the ratio of Sudakov exponentials that arise in

the cases with or without a perturbative CS mode, describing the respective no radiation

– 11 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

probability. This is because in the scenario without a CS mode there is a significantly

larger region of phase space without an emission until the brown line is reached where a

NP particle with Λ′ scaling is always found that stops soft drop.

This suppression can be examined more explicitly by considering the expression for

the LL cumulant of the soft drop jet mass distribution discussed below in section 5.1,

Σ̂(m2
J) = exp

[
−Rq

(
4m2

J

R2Q2
, RQ, z̃cutR

β , β

)]
, (3.2)

where the radiator Rq is defined in eq. (5.11) and corresponds with an area in figure 4

where emissions did not occur. For a given jet mass m2
J in the SDOE region, the prob-

ability that there is no perturbative gluon emission, so that soft drop is stopped by a

Λ′ mode, can be obtained by comparing to the radiator evaluated at the smaller value

m2
J = QΛQCD

(
ΛQCD/Qcut

) 1
1+β as in eq. (1.1) [noting that Λ′ mode corresponds to the CS

mode in this case]. This yields the probability for having no perturbative CS emission as

Prob[no pert. CS] '
Σ

(
QΛQCD

(
ΛQCD

Qcut

) 1
1+β
)

Σ(m2
J)

, (3.3)

which we see is exponentially suppressed for jet masses in the SDOE region satisfying

eq. (1.1). Taking the example shown in figure 2 for Q = 1000 GeV, zcut = 0.1, β = 2, setting

ΛQCD = 0.3 GeV, and choosing m2
J to lie in the SDOE region with log10(m2

J,SDOE/E
2
J) ∼

−2, we find the probability in eq. (3.3) is Prob[no pert. CS] ' 12%, which is compatible

with the size of other power corrections. As we will see later, this is also compatible with

the uncertainty of our leading log treatment for the perturbative coefficients of the leading

power corrections. The Λ′ in figure 4 is thus a subleading mode for power corrections in

the SDOE region.

In contrast, for p+
cs ∼ p+

Λ the CS and Λ modes become parametrically close, merging into

a single mode, which is labeled by ΛCS in figure 3b. Using eqs. (2.18) and (3.1) we find that

this parametric relation corresponds to jet masses m2
J ∼ QΛQCD(ΛQCD/Qcut)

1
1+β . This

scaling relation agrees with ref. [55]. Jet masses with these or smaller values1 correspond

to the SDNP region, quoted above in eq. (1.1).2 Here it is a ΛCS mode in SCET that stops

1Note that there is another transition for even smaller jet masses, m2
J ∼ Λ2

QCD, which corresponds to

the resonance region where the jet is reduced to having the invariant mass of a single hadron. In this region

the brown line in figure 3 runs through the location of the blue collinear modes, which themselves become

nonperturbative. For our analysis we always consider bins of jet mass whose size is parametrically much

larger than this.
2Note that if we rewrote the parametric inequality for the SDOE region as QΛQCD(ΛQCD/Qcut)

1
1+β �

m2
J it would be satisfied for somewhat smaller mJ values than the relation in eq. (1.1), due to the different

meaning for the � symbol. For example, replacing the � by a factor of 3, we see that eq. (1.1) leads

to a larger lower bound for jet masses in the SDOE region m2
J = 3

2+β
1+β QΛQCD(ΛQCD/Qcut)

1
1+β than

m2
J = 3QΛQCD(ΛQCD/Qcut)

1
1+β . This difference is particularly relevant for β = 0. Thus we quoted

eq. (1.1) without making manipulations that take powers of both sides.
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the soft drop groomer. In this region we have θcs/2 ∼ ζnp and the scaling

pµΛCS ∼ ΛQCD

(
ζnp,

1

ζnp
, 1

)
, ζnp =

(
ΛQCD

Qcut

) 1
1+β

∼
(

m2
J

QQcut

) 1
2+β

, (3.4)

where ζnp is still parametrically� 1. Since the ΛCS modes sit on the blue line in figure 3b,

there are leading nonperturbative corrections to the jet mass spectrum in this SDNP region.

The above nonperturbative modes are the new ingredients needed for our analysis of

the SDOE and SDNP regions. These modes with p2 ∼ Λ2
QCD will determine the nonper-

turbative matrix elements (SDOE) or functions (SDNP) that contribute to the jet mass

cross section. Note that the need to consider the Sudakov exponentials for the analysis of

power corrections in the SDOE region is novel, and differs from SCET analyses in other

contexts, such as ungroomed event shapes. This implies that at least leading logarithmic

(LL) resummation will need to be considered in order to properly incorporate the dominant

hadronization corrections in the SDOE region. The manner in which the nonperturbative

corrections appear can also depend on the order in resummed perturbation theory con-

sidered. For our analysis of power corrections we will make use of leading-logarithmic

resummation, leaving results at higher order to future work.

Using the SCET based techniques of refs. [7, 25, 73, 74], which here involves factorizing

perturbative and nonperturbative contributions in the collinear-soft region, we can derive

a factorized form for these power corrections. This involves factorizing the measurement

operator and matrix elements, as well as considering the role of CA clustering, which we

consider in sections 4.1–4.4 in order to obtain the final result for the SDOE region in

section 4.5. The extension to the SDNP region is considered in section 6.

4 Nonperturbative corrections in the operator expansion region

In this section we reconsider the soft drop jet mass factorization formula in order to include

the leading nonperturbative effects related to final state hadronization in the SDOE region.

The expansions for the SDOE region are based on the ratios from comparing eqs. (2.18)

and (3.1),

SDOE expansions:
p−Λ
p−cs
∼
p⊥Λ
p⊥cs
∼

p+
Λ

p+
cs
∼

QΛQCD

m2
J

(
m2
J

QQcut

) 1
2+β

� 1 . (4.1)

4.1 Expansion of the measurement operator

The measurement operator for the groomed jet mass cross section involves CA clustering,

subsequent grooming, and the measurement of the observable on the remaining set of

particles as illustrated in figure 1. In this section we extend the analysis of the partonic

measurement operator to include leading power corrections. Before we embark on the

calculation we first set up some useful notation. Consider first the case of plain jet mass

(without grooming). The differential cross section can be written as

dσ̂

dm2
JdΦJ

=
∑
κ=q,g

∑
X,X′

Hκ
IJ 〈0|OκJ δ̂|XX ′〉〈XX ′|OκI

†|0〉 , (4.2)
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where Hκ
IJ encodes the dependence on the hard production process and initial state, Oκ

represents the SCET operator which includes fields for κ = q or g which initiate the jet, X

are the final state particles in the jet region of interest, X ′ are other final state particles, and

I,J are shorthand for any color and spin indices. Since soft drop decouples the jet mass

distribution from the behavior of particles outside the jet region, we can focus on X for our

analysis. The measurement operator in the soft or collinear-soft limit can be written as

δ̂ = δ
(
m2
J −Q p̂+

)
, (4.3)

where the operator p̂+ measures the p+ momentum of final state radiation. The action of p̂+

on a n-particle final state is simply the sum of all the individual +-momentum components:

p̂+|{i1, i2, . . . in}〉 = (p+
i1

+ p+
i2

+ . . .+ p+
in

)|{i1, i2, . . . in}〉 . (4.4)

In the case of the groomed jet mass the situation is more complicated since the particles

cannot be simply selected from a simple geometrical region due to CA clustering and the

soft drop test. Hence, the p̂µ operator above is not sufficient to define the groomed jet

mass measurement operator consistently. To ameliorate the problem, we define a “soft

drop momentum operator”, p̂µsd(X; z̃cut, β), that takes into account the CA clustering and

grooming for a given multiparticle reference state |X〉. Its action on a single particle state

|i〉 that may or may not be in |X〉 is defined as follows

p̂µsd(X; z̃cut, β)|i〉 =
[
p̂µ Θsd

(
p̂µ, {pµj ; j ∈ X}; z̃cut, β

)]
|i〉 (4.5)

≡ pµi Θsd

(
pµi , {p

µ
j ; j ∈ X}; z̃cut, β

)
|i〉 .

The operator Θsd

(
pµi , {p

µ
j ; j ∈ X}; z̃cut, β

)
is defined to be 1 if the particle |i〉 is not

groomed away and 0 otherwise. For simplicity we suppress the dependence on the soft

drop parameters z̃cut and β in the argument of Θsd below. The usefulness of p̂µsd(X)

becomes apparent when its action on a multiparticle state is considered:

p̂µsd(X)|{i1, i2, . . . in}〉 =

( n∑
α=1

Θsd

(
pµiα , {p

µ
j ; j ∈ X}

)
pµiα

)
|{i1, i2, . . . in}〉 . (4.6)

If the particles {i1, i2, . . . in} are contained in X then each particle |iα〉 is individually tested

for passing soft drop amongst the particles in |X〉. Thus p̂µsd(X) yields a measurement of

the groomed jet momentum. In this notation, the measurement operator for the groomed

jet mass for the final state |X〉 of collinear-soft particles is simply

δ̂sd = δ
(

(m2
J)cs −Q p̂+

sd(X)
)
. (4.7)

The action of δ̂sd on |X〉 will precisely collect the p+ momenta of only those particles that

remain after grooming.

Having established some notation, we are now prepared to consider leading hadroniza-

tion corrections in the SDOE region. Upon including nonperturbative (NP) particles, rep-

resented by a multiparticle state |XΛ〉, together with perturbative particles |X〉, eq. (4.7)

now reads

δ̂sd = δ
(

(m2
J)cs −Q p̂+

sd(X,XΛ)
)
. (4.8)
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Figure 5. Schematic of a CA clustered tree and its simplification in the SDOE region. The

vertical separation between the branches corresponds to the angular distances and the CA clustering

proceeds from right to left. The colors correspond to the modes displayed in figure 3. The angular

locations of perturbative subjets in the SDOE region at leading power remain unperturbed as

nonperturbative particles are added.

The NP contribution to the jet mass is then given by

Q p̂+
sd(X,XΛ)|XΛ〉 = Qp+

Λsd|XΛ〉 , (4.9)

where p+
Λsd is the sum of all p+ momenta of the nonperturbative particles kept after groom-

ing. Here we have made use of the fact that the combined state |XXΛ〉 factorizes into

|X〉|XΛ〉 in the SDOE region. This follows because the Λ and CS modes have the same

boost but hierarchically different momentum components, and hence factorize in their re-

spective Lagrangians. Furthermore, the momentum operator now uses the full hadronic

state as its reference state:

p̂µsd(X,XΛ) =
[
p̂µ Θsd

(
p̂µ, {pµj ; j ∈ X ∪XΛ}

)]
. (4.10)

We identify two types of hadronization corrections:

1. A “shift” correction: contribution to the observable from the NP radiation kept in

the groomed jet, given by Qp+
Λsd in eq. (4.9),

2. A “boundary” correction: modification of the soft drop test for a perturbative subjet

in presence of NP radiation, as seen from the XΛ dependence of Θsd in eq. (4.10).

We will show below that both of these power corrections modify the shape of the spectrum

and cannot simply be included via a shape function. In general both of these corrections are

tied to the clustering history of other perturbative particles in the jet, hence complicating

the nonperturbative factorization. However, there are some key simplifications one can

make in the SDOE region up to LL accuracy, which we address in the following.

To help visualize the problem we show in figure 5 the same schematic as figure 1,

but with the momentum scaling of the branches made explicit. The labels and the colors

correspond to the EFT modes shown in figure 3. The perturbative branches are effectively

immersed in a bath of nonperturbative particles distributed at all angles, corresponding to

the brown line in figure 3. The scaling of the combined subjet depends on the dominant

mode of the pair, with the collinear modes having the highest energy. Hence, the collinear

subjet undergoes the smallest relative change in the subjet momentum during clustering.
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Collinear soft

Collinear

Figure 6. The catchment area (blue and pink shaded regions) of nonperturbative particles (wavy

lines) set by the perturbative collinear and collinear-soft subjets with angular ordering of pertur-

bative subjets. The particles shown in gray are groomed away. NP particles are not assumed to

obey angular ordering.

The soft drop grooming will be stopped by a comparison involving branches that have

collinear and CS scaling. As discussed above in section 3, in the SDOE region there is

always a perturbative CS subjet that stops soft drop.

In general, the angular location of a subjet changes at each stage of clustering as the

subjets are combined, as shown in the left figure in figure 5. At leading power in the SDOE

region the shift to the momentum of perturbative subjets on adding NP particles is small

and can be ignored. At the first subleading power where the hadronization effects enter,

the NP particles that determine the shift term are the ones that belong to the same leading

power collinear or CS subjets. In calculating the shift term we thus ignore the effects of

NP particles on the clustering and soft drop comparison of perturbative subjets, as shown

in the right schematic in figure 5, and hence can use p̂+
sd(X,XΛ) ' p̂+

sd(X) for the shift

term. In contrast, the boundary term separately captures the effect of the leading NP

modification to the subjet geometric regions, which modifies the amount of perturbative

p+ momentum kept in the groomed jet.

4.1.1 Expansion for the shift term

At LL one can make a further approximation of assuming strong angular ordering of the

perturbative emissions. This dramatically simplifies the complexity of the CA clustering

in the measurement operator. Strong angular ordering implies that all the perturbative

emissions subsequent to the one that stops soft drop lie at much smaller angles. We

illustrate in figure 6 the region of momentum space that forms the catchment area of the

kept NP particles at LL (blue and pink shaded regions). The perturbative emissions that

occur after the emission that stops soft drop will also lie within this region. Each cone is

centered on one of the subjets that stops soft drop, and the conic sections correspond to the

regions where the nonperturbative radiation is collected by each of these subjets. To extend

this formalism to NLL would require considering modifications of the catchment area in
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figure 6 due to inner resolved perturbative subjets (which are not necessarily strongly

ordered), which we leave to future work.

Looking down the jet axis, in the small angle approximation, the size and the alignment

of the region is determined by {θcs, φcs}, the polar and azimuthal location of the CS subjet

measured relative to the jet axis, as shown in figure 7a. Since the collinear subjet carries

the majority of the jet energy, we assume that the jet axis is aligned with that of the

collinear subjet. As a result the contribution of the NP particles to the observable via

the shift term will only come from the catchment area of the collinear and collinear-soft

subjet. A similar geometry but for a different application of pile-up and underlying event

subtraction in the case of CA clustering was also explored in ref. [75].

Thus, at leading log we can make eq. (4.9) manifest with a simpler geometrical con-

straint for the shift term in the SDOE region:

Q p̂+
sd(X) |XΛ〉

LL' Q p̂+
◦◦ (θcs, φcs) |XΛ〉 = Qp+

Λsd |XΛ〉 , (4.11)

where Qp+
Λsd is the contribution of the nonperturbative particles to the groomed jet mass.

Note the use here of state |X〉 in the operator p̂+
sd(X) as opposed to p̂+

sd(X,XΛ) in eq. (4.11),

since the difference is a subleading power correction as explained above. The operator

p̂+
◦◦ (θcs, φcs) gives the p+ momentum of all the particles clustered with the collinear or CS

subjet, and is defined as:

p̂µ◦◦(θcs, φcs) ≡
[
p̂µ Θ

◦◦
NP(p̂µ, θcs, φcs)

]
, (4.12)

where the operator Θ
◦◦
NP is defined to be 1 when a NP subjet in XΛ is clustered with either

the collinear or CS subjets, as given by the shaded region in the px-py plane shown in

figure 7a. The operator p̂µ◦◦ acts on a nonperturbative multiparticle state the same way

as p̂µsd does in eq. (4.6). The condition θcs � 1 in the SDOE region implies that the two

circles simply have radius θcs, yielding a compact expression for Θ
◦◦
NP:

Θ
◦◦
NP(pµΛ, θcs, φcs) = Θ

(
|∆φ| − π

3

)
Θ

(
1− θΛ

θcs

)
+ Θ

(
π

3
− |∆φ|

)
Θ

(
2 cos(∆φ)− θΛ

θcs

)
≡ Θ

◦◦
NP(θΛ, θcs, ∆φ) , (4.13)

where ∆φ = φΛ − φcs is the relative azimuthal angle in the plane perpendicular to the jet

axis, and θΛ the polar angle relative to the jet axis. In the second line, we identified the

only arguments that the operator depends on, namely the angular locations of the CS and

the NP subjets in momentum space.

4.1.2 Expansion for the boundary term

We now turn to the boundary term. We first rewrite eq. (4.10) as

p̂+
sd(X,XΛ) = p̂+

sd(X) + ∆p̂+
sd(X,XΛ) , (4.14)

with the boundary power correction being given by

∆p̂+
sd(X,XΛ) =

[
p̂+ ∆Θsd(X,XΛ)

]
(4.15)

≡
[
p̂+
(

Θsd

(
p̂µ, {pµj ; j ∈ X ∪XΛ}

)
−Θsd

(
p̂µ, {pµj ; j ∈ X}

))]
.
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a) b)

Figure 7. The catchment area of nonperturbative modes relevant for a) the shift term and b)

the boundary term up to LL, pictured from above looking down the jet axis (taken along the z-

direction). These modes are clustered with either the collinear subjet located on the jet axis (blue

dot), or the stopping collinear-soft subjet (pink cross) as indicated by the shaded brown regions.

The overlapping circles both have radius θcs.

Unlike the shift term in eq. (4.11), that only contributed through the catchment area

defined by the final collinear and CS subjets, the effect of the boundary term is to modify

the soft drop condition by ∆Θsd(X,XΛ) for every step of comparison. In the collinear-soft

limit the soft drop test for a soft subjet with perturbative momentum pµ, accounting for

the additional momentum qµ from hadronization effects, reads

Θ
p+q
sd = Θ

(
p− + q−

Q
− z̃cut

(
2 |~p⊥ + ~q⊥|
p− + q−

)β)
. (4.16)

We can expand the expression above in the limit where all the components of qµ are

parametrically smaller than those of pµ, while the angles are of the same order θp ∼ θq :

Θ
p+q
sd −Θ

p
sd = δ

(
zp − z̃cut θ

β
p

) q−
Q

[
1 + β

(
1− θq

θp
cos(∆φ)

)]
+ . . . , (4.17)

with Θ
p
sd denoting the soft drop condition applied on p alone. Here zp = p−/Q, θp =

2|~p⊥|/p−, θq = 2|~q⊥|/q−, and ∆φ = φq − φp. The boundary correction is also influenced

by momentum that is removed from the subjet due to hadronization, in which case the

correction is

Θ
p−q
sd −Θ

p
sd = −δ

(
zp − z̃cut θ

β
p

) q−
Q

[
1 + β

(
1− θq

θp
cos(∆φ)

)]
+ . . . , (4.18)

which is just the negative of that in eq. (4.17). Eqs. (4.17) and (4.18) describe scenarios

where hadronization causes NP momentum to enter and leave the soft subjet respectively.

For the analysis of boundary correction we can ignore the power suppressed nonperturbative

corrections to the collinear subjet momentum.

The correction in eq. (4.15) can affect the collinear-soft function Sκc as well as the

normalization factor Nκ in eq. (2.11) that accounts for the global soft modes. However,

– 18 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

the CA clustering and the scaling of the NP modes in SCET implies that only the bound-

ary correction to the collinear-soft modes need to be considered for the leading order NP

power corrections. In order for a NP mode to modify the soft drop condition for a per-

turbative global soft mode at LL (or NLL), it must sit at the same parametric angle (due

to CA clustering), which yields pµΛ(us) ∼ ΛQCD(1, 1, 1). These corrections in the global

soft region consist entirely of subjets that fail to pass the soft drop condition. However,

pµΛ/p
µ
cs � pνΛ(us)/p

ν
gs for all components in the light cone basis, so the power corrections to

global soft are always further suppressed, as can be seen from the momentum scalings in

eqs. (2.15), (2.18) and (3.1). There are also additional modifications in the collinear-soft re-

gion from subjets that fail soft drop, which first become non-trivial at O(α2
s). These subjets

do contribute to the leading power NP corrections, but are beyond LL accuracy, as we dis-

cuss in more detail in appendix B.2.2. Hence for the remainder of this section we will only

focus on the correction to the soft drop test for the collinear-soft subjet that stops soft drop.

The geometric region at LL that corresponds to the catchment area of the CS subjet

is shown in figure 7b. The projection operator that selects the NP emissions in the CS

subjet is given by

Θ
�
NP(pµΛ, θcs, φcs) = Θ

(
π

3
− |∆φ|

)
Θ

(
θΛ

θcs
− 1

2 cos(∆φ)

)
Θ

(
2 cos(∆φ)− θΛ

θcs

)
,

≡ Θ
�
NP(θΛ, θcs, ∆φ) , (4.19)

with ∆φ = φΛ−φcs . This is shown as the brown shaded region in figure 7b that represents

the region where the NP particles are clustered with the collinear-soft subjet (and not with

the collinear subjet). We also define Θ �
NP ≡ 1−Θ

�
NP, which describes the complimentary

region.

For the collinear-soft subjet that stops soft drop, the results in eqs. (4.17) and (4.18) can

be combined to give the leading result for the eigenvalue of the operator ∆Θsd(X,XΛ), as

∆Θ
cs
sd = δ

(
zcs − z̃cutθ

β
cs

) q�
cs(θcs, φcs, β)

Q
, (4.20)

where q�
cs(θcs, φcs, β) is the non-perturbative momentum entering into or leaving from the

collinear-soft subjet (the shaded region in figure 7b) that is at the angles θcs and φcs. It

can be defined by the eigenvalue equation p̂�(θcs, φcs, β) |XΛ〉 = q�
cs(θcs, φcs, β) |XΛ〉, where

the relevant operator for the boundary term is given by

p̂�(θcs, φcs, β) ≡
[

ˆ̃p(θcs, φcs, β)
(

Θ
�
NP(p̂µ, θcs, φcs)−Θ �

NP(p̂µ, θcs, φcs)
)]

,

with ˆ̃p(θcs, φcs, β) ≡ p̂− + β

(
p̂− − 2p̂⊥

θcs
cos(φ̂− φcs)

)
. (4.21)

Here the Θ
�
NP term yields the corrections corresponding with eq. (4.17), while the Θ �

NP

term yields those for eq. (4.18). The results from non-perturbative matrix elements in

the operator expansion enable us to encode effects where a simple replacement of partonic

momenta by hadronic momenta variables does not suffice. In appendix A we present

further justification for eq. (4.21) via a simple illustrative example.
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Note that ˆ̃p(θcs, φcs, β) in eq. (4.21) is linear in β. This will lead to the linear depen-

dence of the boundary power correction on β that was noted above in eq. (1.4). For β = 0,

the boundary power corrections are particularly simple, where from eqs. (4.17) and (4.18)

we can see that they entirely result from an expansion in the minus momentum of the

nonperturbative and collinear-soft modes. This has no analogue in the case of the plain

(i.e. ungroomed) jet mass since that measurement solely involves the plus component. The

groomed jet mass requires a minimum p− = Qzcut for the collinear-soft mode to pass, which

is susceptible to power corrections that are of the same order as the shift corrections to the

jet mass measurement. For β > 0 the boundary power correction has additional angular

dependence at the same order, as seen from eq. (4.16) or eq. (4.21). We also note from

examining eqs. (4.1) and (4.21) that we cannot take β too large if we want the SDOE ex-

pansion in eqs. (4.17) and (4.18) to remain valid. This implies a constraint on the β values:

β
q−

Q
∼ β

QΛQCD

m2
J

(
m2
J

QQcut

) 1
2+β

� 1 , (4.22)

so that the limit β →∞ is not compatible with the expansions in the SDOE region. In the

numerical analysis in sections 5 and 8 (also in figure 2 above), we replace the inequality

defining the SDOE region in eq. (1.1) by 1/5. Hence, to avoid violating eq. (4.22) we will

impose β ≤ 2 for our numerical analysis.

4.1.3 Rescaling

Summarizing the results from the previous sections, the two nonperturbative power cor-

rections to the jet mass measurement in the SDOE regions from a set of NP particles {qµi }
using the LL approximation can be expressed as

(m2
J)cs

SDOE' Qp+
cs +Q

∑
i

q+
i◦◦ +Qp+

cs δ
(
zcs − z̃cutθ

β
cs

)∑
i

qi�
Q

, (4.23)

where

q+
i◦◦|q

µ
i 〉 ≡ p̂

µ
◦◦(θcs, φcs)|q

µ
i 〉 = q+

i Θ
◦◦
NP(θqi , θcs,∆φi)|q

µ
i 〉 , (4.24)

qi�|qµi 〉 ≡ p̂�(θcs, φcs, β)|qµi 〉

=

[
q−i + β

(
q−i −

2qi⊥
θcs

cos(∆φi)

)](
Θ

�
NP(θqi , θcs,∆φi)−Θ �

NP(θqi , θcs,∆φi)
)
|qµi 〉

Here, (m2
J)cs refers to the contribution to the jet mass from the collinear-soft sector and

the NP particles {qi}, and ∆φi = φqi−φcs. The first term is the leading contribution to the

measurement on the perturbative collinear-soft mode and the next two terms result from the

shift and boundary corrections respectively. The measurement operators p̂µ◦◦(θcs, φcs) and

p̂�(θcs, φcs, β) in eq. (4.24) are a simplification over the full soft drop operator p̂µsd(X,XΛ)

since the same constraint now applies to all the NP subjets without involving additional

nontrivial modifications due to CA clustering. The catchment area only depends on the

kinematics of the perturbative radiation, that, however, varies at each point in the jet mass

spectrum — a novel feature for the groomed jet mass. This is related to the observation
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in section 3 that the Λ mode has the same parametric angle as the CS mode. Hence,

the dominant NP radiation lies on and inside the boundary of the catchment area defined

by the overlapping cones in figure 7 where θΛ ∼ θcs, and moves with the location of CS

mode along the spectrum. The next step towards deriving nonperturbative factorization

is then to factorize this perturbative dependence of the power corrections from the purely

nonperturbative contribution to the observable.

We observe from eqs. (4.13) and (4.19) that only the ratio of polar angles θΛ/θcs and

relative azimuthal angles φΛ − φcs appear in the projection operators. We thus make the

following change of variables from the momenta qi ∼ pΛ ∼ ΛQCD

(
θcs
2 ,

2
θcs
, 1

)
in eq. (4.24)

to momenta kµi defined by:

q+
i =

θcs
2
k+
i =

√
p+
cs

p−cs
k+
i , q−i =

2

θcs
k−i =

√
p−cs

p+
cs
k−i , qi⊥ = ki⊥ , φqi = φki+φcs .

(4.25)

This implies

θqi =
2 qi⊥

q−i
= θcs

ki⊥

k−i
, ∆φi = φki , kµi ∼ ΛQCD

(
1, 1, 1

)
. (4.26)

In terms of rescaled momentum kµi in eq. (4.24) the projection operators defined in

eqs. (4.13) and (4.19) read

Θ
◦◦
NP(θqi , θcs,∆φi) = Θ

◦◦
NP

(
ki⊥

k−i
, 1, φk

)
(4.27)

≡ Θ

(
|φki | −

π

3

)
Θ

(
1− ki⊥

k−i

)
+ Θ

(
π

3
− |φk|

)
Θ

(
2 cos(φki)−

ki⊥

k−i

)
,

Θ
�
NP(θqi , θcs, ∆φi) = Θ

�
NP

(
ki⊥

k−i
, 1, φki

)
(4.28)

≡ Θ

(
π

3
− |φki |

)
Θ

(
ki⊥

k−i
− 1

2 cos(φki)

)
Θ

(
2 cos(φki)−

ki⊥

k−i

)
,

In figure 8 we show the catchment area of the nonperturbative particles in the kx-ky
plane. In the rescaled Θ

◦◦
NP and Θ

�
NP the second argument 1 corresponds to the unit radius

appearing in these figures. Note that in contrast to figure 7 the axes are now kx,y/k
−.

We can think of the rescaling in eq. (4.25) as boosting the nonperturbative momenta

along the jet axis, and rotating by φcs in the plane perpendicular to the jet axis, which

we can approximate to be aligned with the collinear subjet. To see this explicitly we first

define the Lorentz operator Λ̂(γ, φ) for a boost γ along the jet direction and a rotation by φ:

Λ̂(γ, φ) |
(
p+, p−, p⊥

)
〉 = |Λµν (γ, φ) pν〉 =

∣∣∣∣(γ p+,
1

γ
p−, Rφp⊥

)〉
, (4.29)

where Rφ is a 2× 2 rotation matrix in the transverse plane. Hence

Λ̂−1

(
θcs
2
, φcs

)
|
(
q+
i , q

−
i , qi⊥

)
〉 = |(k+

i , k
−
i , ki⊥)〉 . (4.30)
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a) b)

Figure 8. The catchment area of nonperturbative modes kept relevant for a) shift and b) boundary

terms at LL, in the respective boosted frame, as pictured from above looking down the jet axis (taken

along the z-direction). These modes are clustered with either the collinear subjet located on the jet

axis (blue dot), or the stopping collinear-soft subjet (pink cross) as indicated by the shaded brown

regions. The overlapping circles both have radius 1 for the given choice of axes.

with Λ̂−1 being the corresponding inverse Lorentz transformation. Then the operators in

eqs. (4.12) and (4.21) for the shift and boundary power corrections assume a simple form

p̂+
◦◦ (θcs, φcs) =

θcs
2

[
Λ̂

(
θcs
2
, φcs

)
p̂+ Θ

◦◦
NP

(
p̂⊥
p̂−
, 1, φ̂

)
Λ̂−1

(
θcs
2
, φcs

)]
, (4.31)

p̂�(θcs, φcs, β) =
2

θcs

[
Λ̂

(
θcs
2
, φcs

)(
p̂− + β

(
p̂− − p̂⊥ cos(φ̂)

) )
×
(

Θ
�
NP

(
p̂⊥
p̂−
, 1, φ̂

)
−Θ �

NP

(
p̂⊥
p̂−
, 1, φ̂

))
Λ̂−1

(
θcs
2
, φcs

)]
, (4.32)

The measurement in the square brackets is performed on the state |XΛ〉 as seen in

eq. (4.11), and thus yields momenta kµi ∼ ΛQCD in both the cases, whereas the simple

angular factors outside are purely perturbative. Thus we see that, despite their ±
superscripts, the new variables k+

i and k−i are invariant under physical boosts along the

jet axis, which follows from their definitions in eq. (4.25) and eq. (4.30), since any boost

to q±i is compensated by that to θcs/2 =
√
p+
cs/p

−
cs.

Thus we observe that by performing the measurement on the nonperturbative subjets

in an appropriately boosted frame we are able to completely factorize the perturbative and

the nonperturbative dependence of the power corrections induced through the angles of

the subjet. We note that the small angle approximation is crucial for this derivation. As

already mentioned above near eq. (4.22), in the limit β → ∞ the modes that stop soft

drop have θ ∼ 1, and we are no longer able to factor out the perturbative dependence of

the measurement. Hence, our results for the soft drop power corrections do not have any

simple connection to power corrections for the plain jet mass spectrum.

4.2 CA clustering within the nonperturbative sector

We remind the reader that our method of treating hadronization uses nonperturbative

modes with virtuality p2
Λ ∼ Λ2

QCD that in conjunction with the perturbative modes account

for the full hadronic cross section. Both the NP and perturbative modes are described
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a) b)

Figure 9. Two example scenarios where (a) the NP subjets get clustered at different stages and (b)

where the NP subjets are clustered together first before they get paired with another perturbative

branch. In (b) although one the NP particles lies outside the cone of radius θcs centered at the CS

subjet, the combined NP branch gets eventually clustered. This requires Θ
◦◦
NP to act on NP subjets

rather than individual particles.

by different fields in the SCET Lagrangian, with their own individual contributions to

matrix elements. Concerning eqs. (4.12) and (4.21), we note that a key feature of the

operators p̂µ◦◦(θcs, φcs) and p̂�(θcs, φcs, β), used to calculate the power corrections, is that

they implement a single-particle and purely geometrical constraint on the NP emissions

state |XΛ〉 based on the location of the perturbative subjets and their catchment areas. As

a consequence, in the SDOE region we were able to decouple the effects of CA clustering

between the perturbative and nonperturbative sectors. However, the CA clustering is still

important within the nonperturbative sector: the angular locations of the NP branches

can change significantly if other NP branches with similar momentum scaling get paired

with it. In this section we address this issue by clarifying what we mean precisely by “NP

subjets” for the purpose of defining our NP source function.

As an example we consider two scenarios with two NP particles and two perturbative

branches as shown in figure 9: in scenario (a) both of the NP particles get clustered with

the perturbative tree at different stages, and in scenario (b) they get clustered together first

and the combined branch is then paired with a perturbative branch (here the CS branch).

In the scenario a) both the nonperturbative particles can be combined with the CS subjet

only if each of them falls in the catchment area shown in figure 7, and hence individually

satisfy Θ
◦◦
NP = 1. After the first NP particle closer to the CS subjet is clustered, the angular

location of the resulting subjet direction is roughly the same, and hence the same geomet-

rical constraint applies for the second NP particle clustered later. In scenario (b), however,

one of the NP particles may not lie in the region of overlapping cones, because only the com-

bination of them needs to. Hence, in order to make our operators in eqs. (4.12) and (4.21)

account for such cases it is mandatory to make the meaning of the state |XΛ〉 more precise.

Given a set of particles to be reclustered for grooming, the EFT provides a natural

Lorentz invariant distinction between perturbative and NP particles without introducing

a hard momentum cutoff. Physically, the momentum distribution of non-perturbative
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particles peaks at smaller momenta in the SDOE region. We demand that the operators

p̂µ◦◦(θcs, φcs) and p̂µ�(θcs, φcs, β) should be applied to “NP subjets” instead of being tested

on individual NP particles, where these NP subjets are obtained by CA clustering of all

the NP particles treating perturbative particles as “beam” directions. These NP subjets

are defined in the following manner:

1. All NP particles are called NP subjets.

2. The pair of NP subjets with smallest relative angular distance ∆θ is grouped into

a new NP subjet, if the angular separation of each of the two NP subjets to any

perturbative particle is larger than ∆θ. The grouping of the NP subjets continues

until the latter condition fails.

The set of NP subjets that result from this grouping defines the “multi-particle” state

|XΛ〉 that is tested according to the geometrical constraint set by the collinear and CS

subjets. We also note that the NP subjets then themselves have energy ∼ ΛQCD. With

this refinement of the meaning of |XΛ〉 eqs. (4.12) and (4.21) now account for all the

clustering cases with arbitrary number of particles.

Note that the steps outlined above yield the same CA clustered tree as one would obtain

via the usual CA procedure that starts with clustering the closest pair regardless of their

energy. We will make use of this procedure in the Monte Carlo studies presented below in

section 8 to demonstrate the validity of our kinematic approximations in the SDOE region.

4.3 Factorization for matrix elements

Having simplified the form of the measurement operator we now consider the nonpertu-

bative factorization for the corresponding matrix elements. In this section we shed light

on the properties of the power corrections for groomed event shapes, via fixed order cal-

culations working at LL in the perturbative emissions and using Feynman gauge, in order

to demonstrate the factorization of the perturbative and nonperturbative parts of the ma-

trix element. The part of these perturbative calculations involving nonperturbative modes

simply serve as a proxy to probe the corresponding matrix elements.

In standard event shapes, without jet grooming, the nonperturbative effects are often

sourced by Wilson lines that know only about the direction of the energetic collinear par-

ton [7, 19, 25, 76]. This is due to the fact that the leading power correction is governed

by soft modes that cannot resolve the details of collinear splittings of quarks and gluons

that constitute the internal perturbative structure of the jet. For e+e− → dijets [19], or

jet production in pp with small jet radius R [28], the matrix element of nonperturbative

radiation becomes invariant under boosts along the collinear direction. This is a desirable

property given the simplifications we obtained for the groomed jet measurement operators

in eqs. (4.31) and (4.32) on boosting the NP sector to an appropriate reference frame along

the jet direction. In our analysis below, the abelian graphs without gluon splitting exhibit

a factorization of nonperturbative and perturbative matrix elements (without making a

boost since they are boost invariant). In contrast, the non-abelian graphs, where the NP

gluon is emitted from the collinear-soft gluon, yield an expression that is apparently not
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Figure 10. Examples of abelian diagrams with one perturbative (magenta) CS gluon and a non-

perturbative (brown) gluon. Dashed line represents measurement of the plus momentum along with

the soft drop operator. Graphs with a virtual NP gluon are not considered.

factorized into perturbative and nonperturbative matrix elements. However, the change

of variables in eq. (4.25), corresponding to a boost and a rotation of the NP sector alone

that depend on the angles of the collinear-soft subjet, does in fact yields a factorization

of the perturbative and nonperturbative matrix elements in the new frame. This transfor-

mation yields precisely the same perturbative Wilson coefficients as the abelian diagrams,

showing that the transformation in eq. (4.25) is essential not only for factorization of the

measurement but also for the matrix element.

To determine the perturbative coefficients multiplying the non-perturbative matrix

elements in the operator expansion we follow the logic of ref. [25], where a source NP gluon

replaces the NP mode. As discussed above, the dominant effect of NP modes is induced

only via the collinear-soft function Sc, and thus we do not consider nonperturbative effects

in the global soft function or other functions. We consider a case of a quark or a gluon

initiated jet in the single emission picture with a perturbative gluon pµ, that has the

collinear-soft scaling, and a nonperturbative gluon qµ. With this set up we demonstrate

how the nonperturbative power corrections can be factorized from the perturbative matrix

element. The corresponding Feynman diagrams are shown in figures 10 and 11. We expand

the interactions to the leading non-trivial power, which leads to eikonal couplings to the

energetic source lines. We do not consider cut vacuum polarization graphs for quarks or

gluons as they yield subleading nonperturbative corrections. The nonperturbative gluons

are brown, whereas the perturbative gluons are magenta. With the dashed line representing

plus momentum measurement with the soft drop test, δ(`+ − p̂+
sd), these graphs precisely

correspond to the O(αs) perturbative corrections with an additional nonperturbative gluon.

4.3.1 Abelian graphs

We first consider the abelian graphs shown in figure 10. The result for the one loop

collinear-soft function in Feynman gauge including the effect of the NP gluon reads

Sκ,had
c

(
`+,Qcut,β,µ

)
=Sκ,pert

c

(
`+Q

1
1+β

cut ,β,µ
)

(4.33)

+

∫
ddq

(2π)d

[
(4Cκ−2CA)g2 µ̃2ε C̃(q)

q+q−

]{
∆S̃κ,◦◦c

(
`+,qµ,Qcut,β,µ

)
+∆S̃κ,�c

(
`+,qµ,Qcut,β,µ

)}
,

where the first term is simply the perturbative O(αs) collinear-soft function quoted above

in eq. (2.20), and the remaining terms are the power corrections with an integral over
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the momentum q of the non-perturbative source gluon. Here µ̃2ε = (µ2eγE/(4π))ε and

Cκ = CF or CA for quark and gluon initiated jets respectively. The details of the derivation

are presented in appendix B. At first order in the power expansion, only diagrams where

the NP gluon attaches after the perturbative gluon (next to the cut) contribute. Thus in

figure 10 the 1st graph does not contribute, but the 2nd and 3rd graphs do. The power

corrections for the shift and the boundary terms involve phase space integrals over the

perturbative gluon

∆S̃ κ,◦◦c

(
`+, qµ,Qcut,β,µ

)
=Q

−1
1+β

cut

αsCκ
π

(µ2eγE )ε

Γ(1−ε)

∫ ∞
0

dp+ dp−

(p+ p−)1+ε

∫ 2π

0

dφp
2π

Θ

(
p−

Q
− z̃cut θ

β
p

)
×Θ

◦◦
NP(θq, θp,∆φ)

[
δ
(
`+−p+− q+

)
−δ(`+−p+)

]
,

∆S̃ κ,�c

(
`+, qµ,Qcut,β,µ

)
=Q

−1
1+β

cut

αsCκ
π

(µ2eγE )ε

Γ(1−ε)

∫ ∞
0

dp+ dp−

(p+ p−)1+ε

∫ 2π

0

dφp
2π

δ

(
p−

Q
− z̃cut θ

β
p

)
×
(

Θ
�
NP(θq, θp,∆φ)−Θ�

NP(θq, θp,∆φ)
)

× q
−

Q

[
1+β

(
1− θq

θp
cos(∆φ)

)][
δ
(
`+−p+

)
−δ(`+)

]
. (4.34)

Here θp = 2
√
p+/p−, θq = q⊥/|~q|, ∆φ = φq − φp and the Θ

◦◦
NP and Θ

�
NP were defined in

section 4.1. The results in eq. (4.34) refer to the remaining pieces after subtracting the

perturbative S κ,pert
c from the full expression S κ,had

c . In eq. (4.33) we have further factored

out the matrix element for the NP gluon, such that the term in the square brackets serves

as a proxy for a nonperturbative source function:

F̃ ab.
κ (qµ) ≡ (4Cκ − 2CA)g2 µ̃2ε C̃(q)

q+ q−
, (4.35)

with the ‘ab.’ superscript emphasizing that this is derived from the abelian graphs, and

the subscript κ that it is dependent on the jet initiating parton. Here C̃(q) is defined in

eq. (B.8). (At the end of our analysis the source functions will be replaced by a full non-

perturbative function rather than some perturbative approximation.) In eq. (4.33) we did

not add diagrams with virtual NP gluons because they only affect the overall normalization.

We comment further on the normalization of the nonperturbative source function below.

The two graphs in figure 10 where only a NP gluon crosses the cut do not contribute in

the SDOE region, as discussed further in appendix B.

We observe that F̃ (qµ) and the measure ddq are individually invariant under boosts

along the jet direction. On performing the boost and the rotation defined in eq. (4.25)

taking θcs = θp and φcs = φp we find

θq =
q⊥
q−

= θp
k⊥
k−

, F̃ ab.
κ (qµ) = F̃ ab.

κ (kµ) , ddq = ddk . (4.36)

As a result of which eq. (4.33) becomes

S κ,had
c (`+, Qcut, β, µ) = S κ,pert

c

(
`+Q

1
1+β

cut , β, µ
)
− Ω ab.

1κ

d

d`+
∆S κ,◦◦

c (`+, Qcut, β, µ)

+
Υ ab.

1κ (β)

Q
∆S κ,�

c (`+, Qcut, β, µ) , (4.37)
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where the power corrections Ω◦◦1 and Υ1 involve measurements on the NP radiation in the

boosted frame:

Ω ab.
1κ ≡

∫
ddk

(2π)d
k+ Θ

◦◦
NP

(
k⊥
k−

, 1, φk

)
F̃ ab.
κ (kµ) , (4.38)

Υ ab.
1κ (β) ≡

∫
ddk

(2π)d

(
k− + β

(
k− − k⊥ cosφk

))
×
[
Θ

�
NP

(
k⊥
k−

, 1, φk

)
−Θ �

NP

(
k⊥
k−

, 1, φk

)]
F̃ ab.
κ (kµ) , (4.39)

with the projection operators given by eq. (4.27). Since k± are boost invariant, so are the

full definitions in eqs. (4.38) and (4.39). We note that the shift term is β and z̃cut indepen-

dent, whereas the boundary term has a linear dependence on β. The power corrections in

eq. (4.33) are multiplied by perturbative Wilson coefficients given by

∆S κ,◦◦c (`+,Qcut,β,µ) =Q
−1
1+β

cut

αsCκ
π

(µ2eγE )ε

Γ(1−ε)

∫ ∞
0

dp+ dp−

(p+ p−)1+ε

θp
2

Θ

(
p−

Q
− z̃cut θ

β
p

)
δ(`+−p+) ,

∆S κ,�c (`+,Qcut,β,µ) =Q
−1
1+β

cut

αsCκ
π

(µ2eγE )ε

Γ(1−ε)

∫ ∞
0

dp+ dp−

(p+ p−)1+ε

2

θp
δ

(
p−

Q
− z̃cut θ

β
p

)
×
[
δ
(
`+−p+

)
−δ(`+)

]
. (4.40)

Thus we see from eq. (4.37) the perturbative and the nonperturbative contributions

have been successfully decoupled. Here we see a direct application of the result in eqs. (4.31)

and (4.32) — the measurement in the boosted frame yields the nonperturbative moments in

eqs. (4.38) and (4.39), and the residual factors of θcs/2 and 2/θcs are part of the perturbative

Wilson coefficients in eq. (4.40).

4.3.2 Non-Abelian graphs

We now turn to the non-abelian contributions shown in figure 11. Here the NP gluon is

radiated off the perturbative gluon. These diagrams contribute at the same order as the

abelian ones, while graphs that are not shown (such as a cut gluon vacuum polarization

graph) are higher order in the power expansion. The sum over all the non-abelian graphs

is discussed in appendix B and the result reads

S κ,had,n.a.
c (`+,Qcut,β,µ) =Q

−1
1+β

cut

αsCκ
π

(µ2eγE )ε

Γ(1−ε)

∫ ∞
0

dp+ dp−

(p+ p−)1+ε

∫
ddq

(2π)d
2g2CA µ̃

2ε C̃(q)
q+ q−

×
[
Mp+q−Mq

] q+p−+p+q−

p+q−+q+p−−2
√
p+p−|~q⊥|cos(∆φ)

, (4.41)

where the measurement functions Mp+q and Mq are given in eqs. (B.3) and (B.4).

Unlike the abelian graphs it appears that we cannot simply carry out the p+ and p−

integrations to express Shad, n.a.
c in a factorized form analogous to eq. (4.33). Since the last

factor in the second line of eq. (4.41) non-trivially couples the nonperturbative and the

perturbative momentum dependence. This term also invalidates a definition of F in terms
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Figure 11. Examples of non-abelian diagrams with one perturbative (magenta) CS gluon and a

nonperturbative (brown) gluon. Dashed line represents measurement of the plus momentum along

with the soft drop operator. Graphs with a virtual NP gluon are not considered.

of n-n̄ Wilson lines. However, if carry out the rescaling according to eq. (4.25),

q+ =
θp
2
k+ =

√
p+

p−
k+ , q− =

2

θp
k− =

√
p−

p+
k− , q⊥ = k⊥ , φq = φk + φp ,

(4.42)

we find that the nonperturbative and the perturbative factors in the last term of eq. (4.41)

completely decouple:

q+p− + p+q−

p+q− + q+p− − 2
√
p+p−|~q⊥| cos(∆φ)

=
k+ + k−

k+ + k− − 2 |~k⊥| cos(φk)
. (4.43)

Note that the factor in eq. (4.43) is boost invariant. Using the expansions for Mp+q and

Mq the leading non-perturbative power corrections in the SDOE region eq. (4.41) are then

S κ,had, n.a.
c (`+, Qcut, β, µ) = S κ,pert

c

(
`+Q

1
1+β

cut , β, µ
)
− Ω n.a.

1

d

d`+
∆S κ,◦◦

c (`+, Qcut, β, µ)

+
Υ n.a.

1 (β)

Q
∆S κ,�

c (`+, Qcut, β, µ) , (4.44)

where the perturbative coefficients ∆S ◦◦c and ∆S �
c are exactly the same as in the abelian

case, see eq. (4.40), and the nonperturbative moments are given by

Ω n.a.
1 ≡

∫
ddk

(2π)d
k+ Θ

◦◦
NP

(
k⊥
k−

, 1, φk

)
F̃ n.a.(kµ) , (4.45)

Υ n.a.
1 (β) ≡

∫
ddk

(2π)d

(
k− + β

(
k− − k⊥ cosφk

))
×
[
Θ

�
NP

(
k⊥
k−

, 1, φk

)
−Θ �

NP

(
k⊥
k−

, 1, φk

)]
F̃ n.a.(kµ) . (4.46)

Here F̃ n.a.(kµ) is a proxy for the nonperturbative source function for the non-abelian

graphs:

F̃ n.a.(kµ) ≡ 2CA g
2 µ̃2ε C̃(k)

k+ k−
k+ + k−

k+ + k− − 2 |~k⊥| cos(φk)
. (4.47)

This expression demonstrates that the power corrections we are considering here can not be

expressed in terms of a non-perturbative matrix element of a Wilson line operator. From the
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analysis of the non-abelian graphs we see that the rescaling in eq. (4.25) is crucial to achieve

a separation of the nonperturbative matrix elements and perturbative Wilson coefficients.

The factorization property of the source function continues to hold in the presence

of additional perturbative gluons at LL. This occurs because the nonperturbative gluon

momentum is relevant only in one denominator, which is either from a gluon propagator

or Wilson line regardless of the number of perturbative emissions. In appendix B.2.1 we

perform an explicit check that this property holds with two perturbative gluons. We note

that in our one-loop fixed order analysis we only considered the boundary power correction

to the subjet stopping soft drop. In case of multiple perturbative emissions there are subjets

with collinear-soft scaling that fail soft drop and their contribution to the normalization

of the cross section can receive a boundary power correction as well. However, we show in

appendix B.2.2 that such corrections only enter beyond LL order.

Overall we can combine the abelian and non-abelian results from eqs. (4.37) and (4.44)

to obtain:

S κ,had
c (`+, Qcut, β, µ) = S κ,pert

c

(
`+Q

1
1+β

cut , β, µ
)
− Ω◦◦1κ

d

d`+
∆S κ,◦◦

c (`+, Qcut, β, µ)

+
Υκ

1(β)

Q
∆S κ,�

c (`+, Qcut, β, µ) , (4.48)

with Ω◦◦1κ = Ω ab.
1κ + Ω n.a.

1 and Υκ
1(β) = Υ ab.

1κ (β) + Υ n.a.
1 (β). We note that we did not explic-

itly consider diagrams with virtual nonperturbative gluons in the analysis above, however

they do not affect in any way the conclusion of this factorization analysis. The essential

point is that our analysis clarifies that the interface between NP and perturbative modes,

and in particular the shift and boundary corrections, are governed by a nonperturbative

source function F̃κ(kµ) which, eventually, has to be determined using methods outside

perturbation theory.

4.4 O(αs) matching coefficients

In this section we evaluate the Wilson coefficients in eq. (4.48) at the cross section level

at O(αs) It is straightforward to evaluate the integrals in eq. (4.40) for ε = 0, and their

results read

Q
1

1+β

cut ∆S κ,◦◦
c (`+, Qcut, β, µ) =

αsCκ
π

2

`+

(
`+

Qcut

) 1
2+β

, (4.49)

Q−1Q
1

1+β

cut ∆S κ,�
c (`+, Qcut, β, µ) =

αsCκ
π

2

2 + β

1

(`+)2

(
`+

Qcut

) 1
2+β

.

We parameterize the hadron level differential cross section with the leading power shift and

boundary nonperturbative corrections in the SDOE region in the form

dσhad

dm2
JdΦJ

=
∑
κ=q,g

Nκ(ΦJ , zcut, β, µgs)

[
dσ̂κ
dm2

J

+
dσshift

κ

dm2
J

+
dσbndry

κ

dm2
J

]
. (4.50)

– 29 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

Combining eq. (4.49) with tree level ingredients in eq. (2.22) we can derive results for the

power corrections at the cross section level with O(αs) soft-collinear matching coefficients:

dσshift
κ

dm2
J

∣∣∣∣
O(αs)

= QΩ◦◦1κ
d

dm2
J

(∫ ∞
0

d`+δ(m2
J −Q`+)Q

1
1+β

cut ∆S κ,◦◦
c (`+, Qcut, β, µ)

)

= QΩ◦◦1κ
d

dm2
J

(
2
αsCκ
π

1

m2
J

(
m2
J

QQcut

) 1
2+β

)

= −QΩ◦◦1κ
m4
J

(
αsCκ
π

)[
2(1 + β)

2 + β

(
m2
J

QQcut

) 1
2+β
]
,

dσbndry
κ

dm2
J

∣∣∣∣
O(αs)

=
Υκ

1(β)

Q

∫
d`+δ(m2

J −Q`+)Q
1

1+β

cut ∆S κ,�
c (`+, Qcut, β, µ)

=
QΥκ

1(β)

m4
J

(
αsCκ
π

)[
2

2 + β

(
m2
J

QQcut

) 1
2+β
]
. (4.51)

The form of both results in eq. (4.51) makes explicit that they are the same order in the

power counting, as argued above. We also note that for the pp case the combinations in

eq. (4.51) are independent of cosh ηJ since

Q

(
m2
J

QQcut

) 1
2+β

= pT

(
m2
J

p2
T zcutR

−β
0

) 1
2+β

. (4.52)

Note that the presence of an explicit αs factor in the first order SDOE power corrections

is explained by the need for a perturbative emission which stops soft drop. Furthermore we

emphasize that the coefficients for the shift and boundary power corrections contain large

logarithms from higher orders so one should not conclude that the O(αs) terms shown in

eq. (4.51) suffice to determine these coefficients at the leading log level. Due to the inherent

separation of scales that is present with the collinear-soft, jet, and global soft scales, these

results will be dressed by further perturbative emissions which produce a tower of leading

logarithms.

4.5 Results for power corrections from the operator expansion

Based on the factorization for the power corrections derived in sections 3–4.4 it is natural

to write the hadronic cross section as

dσhad
κ

dm2
J

=
dσ̂κ
dm2

J

− QΩ◦◦1κ
m2
J

d∆σ̂◦◦κ
dm2

J

+
QΥκ

1(β)

m2
J

d∆σ̂�
κ

dm2
J

, (4.53)
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where the leading power corrections are projections on a non-perturbative source distribu-

tion F̃κ(kµ) given by

Ω◦◦1κ ≡
∫

ddk

(2π)d
k+ Θ

◦◦
NP

(
k⊥
k−

, 1, φk

)
F̃κ(kµ) , (4.54)

Υκ
1(β) = Υκ

1,0 + βΥκ
1,1 ,

Υκ
1,0 ≡

∫
ddk

(2π)d
k−
[
Θ

�
NP

(
k⊥
k−

, 1, φk

)
−Θ �

NP

(
k⊥
k−

, 1, φk

)]
F̃κ(kµ) ,

Υκ
1,1 ≡

∫
ddk

(2π)d
(
k− − k⊥ cosφk

) [
Θ

�
NP

(
k⊥
k−

, 1, φk

)
−Θ �

NP

(
k⊥
k−

, 1, φk

)]
F̃κ(kµ) .

Here we have used the fact that Υ1(β) is linear in β. Thus the leading non-perturbative

power corrections in the SDOE region are expressed in terms of three hadronic parameters,

Ω◦◦1κ, Υκ
1,0, and Υκ

1,1. These parameters are each O(ΛQCD), depend on whether the jet is

initiated by a quark or gluon via κ = q, g, and are independent of all other variables.3 Since

the momentum variables k± are defined as boost invariant along the jet axis, so are these

hadronic parameters. We stress that these parameters are only defined for groomed jet mass

in the SDOE region, with geometry determined by the Θ
◦◦
NP and Θ

�
NP functions, and have no

connection to the nonperturbative matrix element(s) that govern the case of plain jet mass.

In eq. (4.53) the terms d∆σ̂◦◦κ /dm
2
J and d∆σ̂�

κ /dm
2
J are perturbative coefficients con-

taining terms scaling as

d∆σ̂◦◦κ
dm2

J

∼ d∆σ̂�
κ

dm2
J

∼
(

m2
J

QQcut

) 1
2+β αs

m2
J

[ ∞∑
k=0

(αsL
2)k + . . .

]
, (4.55)

where L denotes a generic large logarithm in the SDOE region (which will be determined in

section 5). The displayed terms are at LL order, while the ellipses denote terms at higher

orders in the resumed perturbation theory.

In section 5 we will show that, in fact, the LL series for each of d∆σ̂◦◦κ /dm
2
J and

d∆σ̂�
κ /dm

2
J can be related to the LL series in the leading power cross section, dσ̂κ/dm

2
J .

This simplification can be expressed by rewriting the hadronic cross section with leading

power corrections in the form:

dσhad
κ

dm2
J

=
dσ̂κ
dm2

J

−QΩ◦◦1κ
d

dm2
J

(
Cκ1 (m2

J ,Q,z̃cut,β,R)
dσ̂κ
dm2

J

)
+
QΥκ

1(β)

m2
J

Cκ2 (m2
J ,Q,z̃cut,β,R)

dσ̂κ
dm2

J

.

(4.56)

Where we have introduced two additional functions Cκ1 (m2
J , Q, z̃cut, β, R) and

Cκ2 (m2
J , Q, z̃cut, β, R) which we will refer to as the Wilson coefficients for the shift and the

boundary corrections respectively. Their arguments reflect the fact that they are not con-

stants along the spectrum, and that they depend the grooming parameters. When there is

no cause for confusion we will suppress the {Q, z̃cut, β, R} arguments for simplicity. Hence,

3We ignore possible dependence on the renormalization scale µ because we do not attempt to sum large

logarithms occurring between the µcs and ΛQCD scales. Single logarithms of this type are known to appear

for e+e− event shapes [25].
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the correction to the normalization and the shape of the partonic spectrum is given by

dσhad
κ

dm2
J

=

[
1−QΩ◦◦1κ

dCκ1 (m2
J)

dm2
J

+
QΥκ

1(β)

m2
J

Cκ2 (m2
J)

]
dσ̂κ
dm2

J

−QΩ◦◦1κC
κ
1 (m2

J)
d

dm2
J

dσ̂κ
dm2

J

. (4.57)

Equation (4.56), or equivalently eq. (4.57), are our main results for the operator expansion

with leading power corrections in the SDOE region.

In the next section we will show that a leading double logarithmic series is absent from

Cκ1 and Cκ2 when defined as in eq. (4.56), so that their parametric forms include terms

Cκ1 ∼ Cκ2 ∼
(

m2
J

QQcut

) 1
2+β 1

L

[
1 +

∞∑
k=1

(αsL)k + . . .

]
. (4.58)

Here we work at LL order with a running coupling, and hence only single logarithms from

the running of αs(µ) are included. The determination of the full set of terms
∑

k=1(αsL)k

requires a NLL calculation for d∆σ̂◦◦κ /dm
2
J and d∆σ̂�

κ /dm
2
J which we leave to future work.

We remind the reader that the factors in eq. (4.58) are such that in the pp case the

combination of factors of Q and coefficients Cκ1,2 yield cosh ηJ independent results for these

power corrections, see eq. (4.52).

It can be convenient to express the shift power correction as the moment of a one

dimensional distribution:

Ω◦◦1κ =

∫ ∞
0

dk k F̃ ◦◦κ (k) , (4.59)

where

F̃ ◦◦κ (k′) ≡
∫
ddk δ(k′ − k+) F̃κ(kµ) Θ

◦◦
NP

(
k⊥
k−

, 1, φk

)
. (4.60)

Interestingly, eq. (4.60) implies that Ω◦◦1 in eq. (4.59) is effectively obtained from an unnor-

malized distribution, which differs completely from the case of ungroomed event shapes:∫ ∞
0

dk F̃ ◦◦κ (k) = f0 ≡
∫
ddk F̃κ(kµ) Θ

◦◦
NP

(
k⊥
k−

, 1, φk

)
. (4.61)

At this order we can reexpress the results in terms of a normalized distribution F ◦◦κ (q′)

defined as

F ◦◦κ (q′) ≡ 1

f2
0

F̃ ◦◦κ

(
q′

f0

)
=

1

f2
0

∫
ddk F̃κ(k) δ

(
q′

f0
− k+

)
Θ
◦◦
NP

(
k⊥
k−

, 1, φk

)
, (4.62)

such that ∫ ∞
0

dq′ F ◦◦κ (q′) = 1 ,

∫ ∞
0

dq′ q′F ◦◦κ (q′) = Ω◦◦1κ . (4.63)

Thus using eqs. (4.56) and (4.63) we arrive at an expression of the hadronic cross section

valid for terms up to the leading nonperturbative corrections:

dσhad
κ

dm2
J

=

∫ ∞
0

dk
dσ̂κ
dm2

J

(
m2
J −QkCκ1 (m2

J)
)

(4.64)

×
[
1−Qk

dCκ1 (m2
J)

dm2
J

+
QΥκ

1(β)

m2
J

Cκ2 (m2
J)

]
F ◦◦κ (k) .
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Written in this manner we see more explicitly that the Cκ1 term in the first line acts like a

jet mass dependent shift, while the Cκ1 and Cκ2 in the second line contribute to a jet mass

dependent normalization correction. This form may be more useful than eq. (4.56) as it

allows the higher order power corrections to be modeled by higher order moments of F ◦◦κ (k).

Combining the nonperturbative factorization in eq. (4.64) with the partonic factoriza-

tion theorem in eq. (2.11) we obtain

dσhad

dm2
J

=
∑
κ=q,g

Nκ(ΦJ , R, z̃cut, β, µ)Q
1

1+β

cut

∫ ∞
0
d`+

∫ ∞
0
dk Jκ

(
m2
J −Q`+, µ

)
(4.65)

× Sκc
[(
`+ − Cκ1 (m2

J) k
)
Q

1
1+β

cut , β, µ
](

1−Qk
dCκ1 (m2

J)

dm2
J

+
QΥκ

1(β)

m2
J

Cκ2 (m2
J)

)
F ◦◦κ (k) .

Note that eq. (4.65) contains a nontrivial form of convolution between the collinear-soft

function Sc and the normalized shape function F ◦◦κ due to the appearance of the Wilson

coefficient Cκ1 (m2
J). This encapsulates the effect of the jet mass dependent NP catchment

area. In contrast, for an ungroomed event shape, such as thrust or a hemisphere mass,

the dijet region receives leading power NP corrections that represent a constant jet mass

independent shift to the spectrum. Furthermore, for the leading power corrections there is

also no analog of the mJ dependent normalization corrections.

5 Resummation for matching coefficients for hadronic corrections

The goal of this section is to calculate the perturbative Wilson coefficients Cκ1 and Cκ2 in

eq. (4.56), and demonstrate that they do not contain LL double logarithms. We make use

of a combination of the coherent branching formalism [77] and input about the nature of

the expansion from SCET. Since Cκ1 and Cκ2 are properties of the groomed jet, it suffices

to calculate them for quark dijets from an e+e− collision, with the extension to gluon jets

obtained by a simple replacement. We will also quote the corresponding results for pp

collisions.

In what follows, we first review the derivation of the partonic resummation formula for

the groomed jet mass using the coherent branching formalism presented in refs. [48, 50].

We then make use of the key results derived from the EFT analysis above to setup a coher-

ent branching calculation of the Wilson coefficients in eq. (4.51). In coherent branching,

the resummation is implemented via a sum over real emissions, where one can, in analogy

to a coherent branching parton shower, track the kinematic information of the sequence

of emissions, making the calculation quite intuitive. This novel coherent branching cal-

culation corresponds to carrying out a resummation for an observable (here m2
J) while

simultaneously weighting its phase space by a function of another observable (the stopping

angle, θcs). Schematically, the calculation of Cκ1 and Cκ2 corresponds to evaluating the

following resummed averages of the powers of the soft drop stopping angle:

Cκ1 (m2
J) ∼

〈
θcs(m

2
J)

2

〉
, Cκ2 (m2

J) ∼
〈

2

θcs(m2
J)

m2
J

Q2
δ
(
zcs − z̃cutθ

β
cs

)〉
. (5.1)
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We note that it is not obvious how to define this result from coherent branching alone,

since coherent branching does not provide the power expansion or the formulation of fields

needed for describing non-perturbative corrections. On the other hand, at LL order in

resummed perturbation theory, using the coherent branching formalism is simpler than

setting up the necessary (novel) SCET formalism for the resummation of large logarithms.

5.1 Review of parton level resummation in coherent branching

We start with a series of angular-ordered emissions off an energetic parton. These are being

clustered in a jet of radius R, with the previous emissions off the parton being at wider

angles, θ1 > θ2 > . . . > θn. Subsequently the radiation is groomed. We now assume that

the CA clustering proceeds such that, at each step, an emission is paired with the central

collinear subjet, and not with another emission. Thus at every stage of unclustering we

will recover the emissions in the order they were emitted [77–80]. It is useful to define

θ̃i =
θi
R
, (5.2)

which satisfies θ̃i ≤ 1. We also define zi as the energy fraction of the i’th emission with

respect to the jet’s energy. At this point we replace the angular ordering with ordering in

the variable [50, 56]:

ρi = zi θ̃
2
i , ρ1 > ρ2 > . . . > ρn . (5.3)

Using this chain of ordered emissions we review the known resummation for the parton

level jet mass cross section in this section. This provides the basis for the calculation

of the resummed expressions for the Wilson coefficients C1(m2
J) and C2(m2

J) discussed in

section 5.2.

In the collinear-soft and soft limit the contribution to the jet mass from the i’th

emission is

∆m2
Ji = Qp+

i =
1

4
ρiR

2Q2 , (5.4)

Thus we see that the ordering in ρi is equivalent to the ordering in the contribution to

the jet mass of each emission carried away from the collinear parton. For simplicity we

consider a quark jet for our discussion, noting that the result for gluon jets at NLL is

simply obtained via a substitution for the color factor CF → CA and the splitting function

pgq(z)→ pgg(z). We will therefore frequently suppress the κ = q subscript in the following.

For convenience, we also use a short hand notation for the single emission phase space and

matrix element: ∫
d2ωi ≡

∫ 1

0
dzi

∫ 1

0

dθ̃2
i

θ̃2
i

αs(ziθ̃iRQ/2)CF
π

pgq(zi) . (5.5)

Here pgq(z) is the one-loop collinear splitting function which reads

pgq(z) =
1 + (1− z)2

2z
. (5.6)

We also include a running coupling in eq. (5.5) as a part of the LL resummation. Here

the running coupling is evaluated at the scale of the ⊥ momentum of the emission with
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respect to the jet axis. At LL accuracy we can limit ourselves to the case that the emission

with the largest ρn that passes soft drop also sets the value of measured jet mass m2
J .

Emissions with ρi < ρn (for i > n) that are kept can then be considered unresolved. Thus

the ordering in ρi ensures that there is a natural upper cutoff for the unresolved emissions.

Further, in the LL approximation the ρi can be assumed to be strongly ordered, with

the inequality ‘>’ in eq. (5.3) replaced by strong inequality ‘�’. We also can ignore the

perturbative radiation off the emitted gluons. If the stopping pair that sets the value of

the groomed jet mass mJ is found after n unclusterings then the normalized perturbative

differential cross section is given by

1

σ̂

dσ̂

dm2
J

= δ(m2
J) +

∞∑
n=1

[ n∏
i=1

∫
d2ωi

]{
Θ
n
sd δ

(
m2
J −

1

4
ρnR

2Q2

)
+ Θn

sd δ(m
2
J)− δ(m2

J)

}

×
n−1∏
j=1

{
Θ j

sd − 1
}

Θ(ρj − ρj+1) , (5.7)

where Θ
i
sd and Θ i

sd are soft drop passing and failing conditions for the ith subjet:

Θ
i
sd = Θ

(
zi − z̃cut(θ̃iR)β

)
, Θ i

sd = 1−Θ
i
sd . (5.8)

The −δ(m2
J) and −1 terms in eq. (5.7) correspond to the virtual contributions in the

passing and failing subjets respectively and the terms Θ(ρi − ρi+1) impose the ordering.

The term with Θn
sd represents a unique scenario where all the n emissions in the jet fail

soft drop and a zero contribution to the jet mass m2
J is obtained. The scenario where there

is yet another emission after the nth one is accounted for by the (n+ 1)th term in the sum,

and so on. Hence, there is no double counting in the resummation formula in eq. (5.7).

It is convenient to work with the cumulant of the cross section defined by

Σ̂(m2
J) =

∫ ∞
0

dm′2J
1

σ̂

dσ̂

dm′2J
Θ
(
m2
J −m′2J

)
, (5.9)

which leads to exponentiation for the emissions:

Σ̂(m2
J) = Θ(m2

J) + Θ(m2
J)
∞∑
n=1

[ n∏
i=1

∫
d2ωi

]
(−Θ

n
sd) Θ

(
1

4
ρnR

2Q2 −m2
J

)

×
n−1∏
i=1

(
−Θ

i
sd

)
Θ(ρi − ρi+1)

= Θ(m2
J) exp

[
−Rq

(
4m2

J

R2Q2
, RQ, z̃cutR

β , β

)]
, (5.10)

where the radiator Rq for quark jets in the Sudakov factor reads

Rq
(
ρ
)

= Rq
(
ρ,RQ, z̃cutR

β , β
)

(5.11)

≡
∫ 1

0

dθ̃′2

θ̃′2

∫ 1

0
dz′

αs(z
′θ̃′RQ/2)CF

π
pgq(z

′)Θ
(
z′ − z̃cut

(
θ̃′R
)β)

Θ
(
z′θ̃′ 2 − ρ

)
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Note that the radiator and cumulant only depend on R in combinations with other vari-

ables. The cumulant requires m2
J ≥ 0 and we will leave the Θ(m2

J) implicit below. For

the gluon jet radiator Rg we can replace CF pgq(z′) → CApgg(z′) to capture the leading

logarithms. Lastly, the exponentiation in eq. (5.10) resulted from the replacement of the

angular ordering of the emissions by ρi ordering in eq. (5.3), which yields the same con-

straint on the nth emission as the previous ones.

The result for the differential jet mass distribution in e+e− annihilation then reads

1

σ̂

dσ̂

dm2
J

=
d

dm2
J

Σ̂(m2
J) =

1

m2
J

Cq0
(
m2
J , RQ, z̃cutR

β , β
)
, m2

J > 0 (5.12)

where we find it convenient to work with the result in terms of Cq0 defined as

Cq0(m2
J) = Cq0

(
m2
J , RQ, z̃cutR

β , β
)

(5.13)

≡ exp

[
−Rq

(
4m2

J

R2Q2

)]∫ 1

0

dθ̃2

θ̃2
αs

(
2m2

J

θ̃RQ

)
CF
π

4m2
J

θ̃2R2Q2
pgq

(
4m2

J

θ̃2R2Q2

)
×Θ

(
θ̃ − 2mJ

RQ

)
Θ
(
θ̃?(m2

J)− θ̃
)
,

where θ̃? is given by

θ̃?(m2
J) = θ̃?(m2

J , RQ, z̃cutR
β , β) ≡ 2

R

(
m2
J

QQcut

) 1
2+β

=
2

R
ζcs . (5.14)

Note that to simplify the notation we have here defined Cq0 , Rq and θ̃? with abbreviated

arguments, and we continue to use this notation below. The ζcs is defined in eq. (2.18)

and appeared in the definition of CS mode, which captures the scaling of the softest subjet

that satisfies the soft drop condition. We see that in eq. (5.13) the angle of the stopping

subjet lies between the angle of the collinear modes and the collinear-soft modes:

θ̃c =
θc
R

=
2mJ

RQ
≤ θ̃ ≤ min

{
θ̃?(m2

J), 1
}
, (5.15)

where the minimum condition accounts for the transition to the ungroomed resummation

region when θ̃?(m2
J) ∼ 1.

For a quark jet from a pp collision with R . 1, the angles are cutoff by θi ≤ R/ cosh ηJ ,

so we would define θ̃i = θi cosh ηJ/R to have 0 ≤ θ̃i ≤ 1. Repeating the analysis for this

case we obtain

C
q(pp)
0 (m2

J)=C
q(pp)
0

(
m2
J ,RpT ,z

′
cutR

β ,β
)

(5.16)

≡exp

[
−Rppq

(
m2
J

R2p2
T

,RpT ,z
′
cutR

β ,β

)]
×
∫ 1

0

dθ̃2

θ̃2
αs

(
m2
J

θ̃RpT

)
CF
π

m2
J

θ̃2R2p2
T

pgq

(
m2
J

θ̃2R2p2
T

)
Θ

(
θ̃− mJ

RpT

)
Θ
(
θ̃?pp(m

2
J)−θ̃

)
,

where θ̃? is now given by

θ̃?pp(m
2
J) = θ̃?(m2

J , RpT , z
′
cutR

β , β) ≡ 2 cosh ηJ
R

(
m2
J

QQcut

) 1
2+β

=
2 cosh ηJ

R
ζcs . (5.17)
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Eq. (5.16) also involves the radiator for the pp case which is

Rppq
(
ρ,RpT , z

′
cutR

β , β
)

=

∫ 1

0

dθ̃′2

θ̃′2

∫ 1

0
dz′

αs(z
′θ̃′RpT )CF
π

pgq(z
′)

×Θ
(
z′ − z′cut

(
θ̃′R
)β)

Θ
(
z′θ̃′ 2 − ρ

)
, (5.18)

with

z′cut = zcut/R
β
0 . (5.19)

Note that with the rescaled variables the results for C
q(pp)
0 (m2

J), θ̃?(m2
J), and Rppq are all

independent of cosh ηJ . In the case of θ?(m2
J) the displayed cosh ηJ dependence cancels

with the implicit dependence contained in the Q and Qcut, see eq. (4.52).

5.2 Resummed matching coefficients C1 and C2 for subleading power

We now turn to a calculation of the matching coefficients C1 and C2 of the leading power

nonperturbative corrections, which we carry out at LL order.

5.2.1 Resummation for the shift power correction

In section 4.1 we showed that the shift correction corresponds to the total NP radiation cap-

tured by the groomed jet area. From eq. (4.31) we see that this correction can be obtained

by performing a measurement in an appropriately boosted frame and rescaling the result

by θcs/2, the opening angle of the soft drop stopping pair. From the analysis in section 4.3

we learned that the nonperturbative and perturbative matrix elements can be factored by

boosting the nonperturbative momentum to an appropriate reference frame, see eq. (4.25).

Using these results the jet mass cumulant including the shift correction is given by

Σ̂(m2
J)+Σshift(m2

J) = 1+

∫
ddk

(2π)d
F̃ (kµ)

∞∑
n=1

[ n∏
i=1

∫
d2ωi

]
(5.20)

×

{
Θ
n
sd Θ

(
m2
J−

1

4
ρnR

2Q2−RQ θ̃n
2
k+ Θ

◦◦
NP

(
k⊥
k−

, 1, φk

))
+Θn

sd Θ(m2
J)−Θ(m2

J)

}

×
n−1∏
i=1

(
−Θ

i
sd

)
Θ(ρi−ρi+1) ,

In eq. (5.20) the measurement on the NP radiation is performed in the boosted frame

with respect to the collinear-soft momentum of emission n, which corresponds to setting

θcs to θn = Rθ̃n in eq. (4.31). The term F̃ (kµ) is the NP source function. Separating the

perturbative and nonperturbative components we get

Σshift(m2
J) = −RQΩ◦◦1

d

dm2
J

Σ◦◦(m2
J) , (5.21)

where

Σ◦◦(m2
J) =

∞∑
n=1

[ n∏
i=1

∫
d2ωi

]
θ̃n
2

(−Θ
n
sd) Θ

(
1

4
ρnR

2Q2 −m2
J

) n−1∏
i=1

(
−Θ

i
sd

)
Θ(ρi − ρi+1) ,

(5.22)

– 37 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

and just as above in eqs. (4.38) and (4.45) we have identified

Ω◦◦1 ≡
∫

ddk

(2π)d
k+ Θ

◦◦
NP

(
k⊥
k−

, 1, φk

)
F̃ (kµ) . (5.23)

The series in eq. (5.22) exponentiates as in eq. (5.10) yielding

Σ◦◦(m2
J) = −

∫ 1

0
dz

∫ 1

0

dθ̃2

θ̃2

θ̃

2

αs(z θ̃ RQ/2)CF
π

pgq(z) Θ
(
z − z̃cut

(
θ̃R
)β)

(5.24)

× Θ

(
1

4
zθ̃2R2Q2 −m2

J

)
e−Rq(zθ̃

2) ,

Thus the shift correction to the differential cross section is given by

1

σ̂

dσshift

dm2
J

=
dΣshift

dm2
J

= −RQΩ◦◦1
d

dm2
J

d

dm2
J

Σ◦◦(m2
J) ,

= −RQΩ◦◦1
d

dm2
J

[
C̃q1
(
m2
J , RQ, z̃cutR

β , β
) 1

σ̂

dσ̂

dm2
J

]
, (5.25)

which have rewritten in the desired form of eq. (4.56). Then from eqs. (5.24) and (5.12)

we can identify

C̃q1
(
m2
J ,RQ, z̃cutR

β , β
)

=
m2
J

Cq0(m2
J)

d

dm2
J

Σ◦◦(m2
J) (5.26)

=
e
−Rq

(
4m2

J
R2Q2

)
Cq0(m2

J)

∫ 1

4m2
J

R2Q2

dθ̃2

θ̃2

θ̃

2
αs

(
2m2

J

θ̃ RQ

)
CF
π

4m2
J

θ̃2R2Q2
pgq

(
4m2

J

θ̃2R2Q2

)
Θ
(
θ̃?(m2

J)− θ̃
)

=

∫ 1
θ̃2c

dθ̃2

θ̃2
θ̃
2 αs

(
2m2

J

θ̃ RQ

)
CF
π

4m2
J

θ̃2R2Q2
pgq

(
4m2

J

θ̃2R2Q2

)
Θ
(
θ̃?(m2

J)− θ̃
)

∫ 1
θ̃2c

dθ̃2

θ̃2
αs

(
2m2

J

θ̃ RQ

)
CF
π

4m2
J

θ̃2R2Q2
pgq

(
4m2

J

θ̃2R2Q2

)
Θ
(
θ̃?(m2

J)− θ̃
) ≡

〈
θ̃
2

〉
(m2

J)

〈1〉(m2
J)

,

where θ̃c = 2mJ/(QR). Thus the Wilson coefficient Cq1 in eq. (4.56) for the e+e− case is

given by

Cq1(m2
J , Q, z̃cut, β, R) = R C̃q1

(
m2
J , RQ, z̃cutR

β , β
)
. (5.27)

Note that in the ratio e−Rq/Cq0 of the Sudakov exponential and the leading power cross

section, all the double logarithmic terms cancel out.

From eq. (5.26) we see that C1 is given by the average resummed opening angle of

the stopping pair that passes soft drop at a given value of mJ . Our result is similar to

the average of the groomed jet radius, Rg, calculated in ref. [81], except that the result is

evaluated at a fixed value of mJ that sets the range of possible values for θstop in eq. (5.15).

We find that a rough approximation is

Cq1(m2
J , Q, z̃cut, β, R) ∼ 0.66 ζcs . (5.28)

This demonstrates the validity of the power counting estimate of the opening angle of

collinear soft emissions given in eq. (2.18). Interestingly, the result is approximately R

independent in the SDOE region.
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We now give the corresponding result for Cq1(m2
J) for a pp collider. Here we find

C̃
q(pp)
1

(
m2
J , RpT , z

′
cutR

β , β
)

=
1

C
q(pp)
0 (m2

J)
exp

[
−Rppq

( m2
J

R2p2
T

, RpT , z
′
cutR

β , β
)]

(5.29)

×
∫ 1

0

dθ̃2

θ̃2

θ̃

2
αs

(
m2
J

θ̃ RpT

)
CF
π

m2
J

θ̃2R2p2
T

pgq

(
m2
J

θ̃2R2p2
T

)
Θ

(
θ̃ − mJ

RpT

)
Θ
(
θ̃?pp(m

2
J)− θ̃

)
,

such that

C
q(pp)
1 (m2

J , Q, z̃cut, β, R) =
R

cosh ηJ
C̃
q(pp)
1

(
m2
J , RpT , z

′
cutR

β , β
)
, (5.30)

where z′cut and θ?pp(m
2
J) are given above in eqs. (5.19) and (5.17). Here a rough approxi-

mation is

C
q(pp)
1 (m2

J , Q, z̃cut, β, R) ∼ 0.66

2 cosh ηJ

(
m2
J

p2
T zcutR

−β
0

) 1
2+β

. (5.31)

5.2.2 Resummation for the boundary power correction

We now turn to the boundary power correction that originates from the fact that the soft

drop comparison for the collinear-soft subjet receives a correction given by eq. (4.20). The

perturbative cumulant with these corrections then reads

Σ̂(m2
J) + Σbndry(m2

J) = 1 +

∫
ddk

(2π)d
F̃ (kµ)

∞∑
n=1

[
n∏
i=1

∫
d2ωi

][
−Θ

(
1

4
ρnR

2Q2 −m2
J

)]

×
[
Θ
n
sd + ∆Θ

n
sd

] n−1∏
i=1

Θ(ρi − ρi+1)
[
−Θ

i
sd

]
, (5.32)

where ∆Θ
n
sd is the correction in the soft drop test for the stopping subjet n stated in

eq. (4.20). Performing the change of variables in eq. (4.25) we can again factorize the

measurement such that∫
ddk

(2π)d
F̃ (kµ) ∆Θ

n
sd =

2

θ̃nR
δ
(
zn − z̃cut

(
θ̃nR

)β) Υ1(β)

Q
, (5.33)

where just as eqs. (4.39) and (4.46) we identify

Υ1(β) =

∫
ddk

(2π)d

(
k− − β

(
k− − k⊥ cos(φk)

))
(5.34)

×
(

Θ
�
NP

(
k⊥
k−

, 1, φk

)
−Θ �

NP

(
k⊥
k−

, 1, φk

))
F̃ (kµ)

= Υ1,0 + βΥ1,1 .

We note again that Υ1(β) is linear in β. The power correction can be factorized from the

perturbative component as:

Σbndry(m2
J) =

Υ1(β)

RQ
Σ�(m2

J) , (5.35)
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where

Σ�(m2
J) =

∫ 1

0
dz

∫ 1

0

dθ̃2

θ̃2

αs(z θ̃ RQ/2)CF
π

pgq(z)
2

θ̃
δ
(
z − z̃cut

(
θ̃R
)β)

(5.36)

×
[
−Θ

(
1

4
zθ̃2R2Q2 −m2

J

)]
e−Rq(zθ̃

2) .

Comparing this result to eq. (4.56)

1

σ̂

dσbndry

dm2
J

=
dΣbndry

dm2
J

=
QΥ1(β)

m2
J

C2(m2
J , Q, z̃cut, β, R)

1

σ̂

dσ̂

dm2
J

, (5.37)

allows us to identify C2 coefficient for a quark jet in the e+e− case as

Cq2(m2
J , Q, z̃cut, β, R) =

1

R

m2
J

Q2
C̃q2(m2

J , RQ, z̃cutR
β , β) , (5.38)

where C̃q2 is given by

C̃q2(m2
J , RQ, z̃cutR

β , β) =
m2
J

Cq0(m2
J)

d

dm2
J

Σ�(m2
J) (5.39)

=
e
−Rq

(
4m2

J
R2Q2

)
Cq0(m2

J)

2

2 + β

2

θ̃?(m2
J)

αs

(
1

2
z̃cutR

β θ̃?(m2
J)β+1RQ

)
CF
π
pgq

(
z̃cut

(
θ̃?(mJ)R

)β)
×Θ

(
1− z̃cut

(
θ̃?(m2

J)R
)β)

Θ
(
1− θ̃?(mJ)

)
≡
〈2/θ̃ δ

(
z − z̃cut(Rθ̃)

β
)
〉(m2

J)

〈1〉(m2
J)

.

Here θ̃?(m2
J) is defined as in eq. (5.14). Thus we see that C̃q2(m2

J) is the average of 2/θ̃

evaluated at the boundary of soft drop at a given m2
J .

The result in the pp case can be computed in a similar manner, and is given by

C
q(pp)
2 (m2

J , Q, z̃cut, β, R) =
R

cosh ηJ

m2
J

4(RpT )2
C̃
q(pp)
2

(
m2
J , RpT , z

′
cutR

β , β
)
, (5.40)

where C̃
q(pp)
2 reads

C̃
q(pp)
2

(
m2
J , RpT ,z

′
cutR

β , β
)

=
1

C
q(pp)
0 (m2

J)
exp

[
−Rppq

(
m2
J

R2p2
T

, RpT , z
′
cutR

β , β

)]
× 2

2 + β

2

θ̃?pp(m
2
J)
αs

(
z′cutR

β θ̃?pp(m
2
J)β+1RpT

)
CF
π
pgq

(
z′cut

(
θ̃?(mJ)R

)β)
×Θ

(
1− z′cut

(
θ̃?pp(m

2
J)R

)β)
Θ
(
1− θ̃?pp(mJ)

)
, (5.41)

with z′cut and θ?pp(m
2
J) are given above in eqs. (5.19) and (5.17).
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Figure 12. Results for Cq1(m2
J) and Cq2(m2

J) across the jet mass spectrum for different values of

zcut and β. Here the jet energy, EJ = Q/2.

5.3 Numerical results for C1 and C2

Having derived the expressions for C1(m2
J) and C2(m2

J) we now present some numerical

results for quark jets κ = q. We use 2-loop running for αs(µ):

1

αs(µ)
=

1

αs(µ0)
+
β0

2π
ln

(
µ

µ0

)
+

β1

4πβ0
ln

[
1 +

β0

2π
αs(µ0) ln

(
µ

µ0

)]
, (5.42)

with αs(µ0 = mZ) = 0.118 and

β0 =
11

3
CA −

2

3
nf , β1 =

34

3
C2
A −

10

3
CAnf − 2CFnf . (5.43)

Given that for Q = 500–1000 GeV and the typical values of zcut we adopt both the collinear-

soft and jet scales lie well below the top mass, we employ the evolution for nf = 5 dynamical

flavors. We choose to freeze the coupling at αs(1.5 GeV) for scales µ ≤ 1.5 GeV.

In figure 12 we show the e+e− results for Cq1(m2
J) and Cq2(m2

J) as a function of the jet

mass, picking Q = 1000 GeV and various values of zcut and β. Here the jet energy is set

to EJ = Q/2. We note that both coefficients depend on mJ and hence have a nontrivial

affect on the shape of the spectrum. In addition, we find that on holding m2
J/Q

2 fixed, the

coefficients have little remaining dependence on Q, consistent with the expectation from

running coupling effects. To estimate the uncertainty of our LL calculations, we compare

the results for Cq1(m2
J) and Cq2(m2

J) evaluated with a frozen coupling and µ = mZ and with

a running coupling. We find that for Cq1(m2
J) the variations are small at larger mJ and
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Figure 13. Absolute value of the fractional power correction induced by the leading nonpertur-

bative shift and boundary corrections, choosing for illustration Ω ◦◦1 = 1.0 GeV, Υ1,0 = 0.7 GeV,

Υ1,1 = 0.4 GeV. The vertical lines as in figure 2 indicate the extent of the SDOE region, as labeled

in the top left panel.

grow to at most −5% at the lower limit of the SDOE region, i.e. when log10(m2
J/E

2
J) ∼ −3.

For Cq2(m2
J) the variation is larger, varying between 0% and −20% as we go from larger to

smaller jet masses. The running coupling effects can of course be included exactly. Note

that we expect the uncertainty to be fairly moderate since the Wilson coefficients involve

a single logarithmic series. Moreover, since they are related to ratios of two perturbative

series, see eqs. (5.26) and (5.39), there are also cancellations from higher order contributions

that affect the overall normalization of the numerator and denominator. To account for

missing higher order corrections beyond our LL analysis, we conservatively take ±20% as

an estimate for the uncertainty in our determination of C1,2.

Due to the dependence on zcut and β one may obtain the hadronic matrix elements

Ω◦◦1κ and Υκ
1,i from data by considering different sets of zcut and β values, as we show

below through Monte Carlo studies in section 8. The kinks in the curves in figure 12 occur

at the transition point from the SDOE to the ungroomed resummation region, where

m2
J/E

2
J ' zcut. Above this transition point the description of power corrections with

eq. (4.56) no longer applies. It is instead replaced by an analogous formula with C2 = 0,

C1 = 1, and a different definition for the parameter Ω◦◦1κ → Ω1κ(R), see [28] for its definition.

In figure 13 we show corrections due to the shift and boundary power corrections

using eq. (4.56). For the nonperturbative parameters we take the representative values

of Ω ◦◦1 = 1.0 GeV, Υ1,0 = 0.7 GeV, Υ1,1 = 0.4 GeV and consider several values of zcut

and β. The curves named “shift” and “boundary” correspond to the two leading power

correction terms in eq. (4.56) divided by the parton level cross section dσ̂/dm2
J . The “shift”

term involves derivative of the partonic cross section times C1(m2
J) and is proportional to

Ω◦◦1κ, and the “boundary” term is the correction to the normalization due to C2(m2
J) times
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Υκ
1(β) = Υκ

1,0 + βΥκ
1,1:

—shift correction— =

∣∣∣∣−QΩ◦◦1κ
d

dm2
J

(
Cκ1 (m2

J , Q, z̃cut, β, R)
dσ̂κ
dm2

J

)/
dσ̂κ
dm2

J

∣∣∣∣ (5.44)

—boundary correction— =

∣∣∣∣QΥκ
1(β)

m2
J

Cκ2 (m2
J , Q, z̃cut, β, R)

dσ̂κ
dm2

J

/
dσ̂κ
dm2

J

∣∣∣∣ .
The region between the vertical dashed and dashed-dotted lines indicates the appropriate

SDOE region where this description is valid. We see that the power corrections amount

to about ∼ 1–10% in the SDOE region and grow larger as we approach the SDNP region.

These plots display the absolute value of the power corrections, and hence do not illustrate

the possibility that the two nonperturbative corrections may have different signs. In general

we expect a positive value for the shift parameter Ω◦◦1κ. We will see in section 8.3 that MC

event generators favor a negative value for Υκ
1,0.

6 Hadronization effects in the nonperturbative region

Next we consider the nonperturbative (SDNP) region of the groomed jet mass spectrum,

as defined in eq. (1.1). Here the nonperturbative effects contribute at leading order, and

we show that they can be accounted for via a shape function. We demonstrate that this

shape function exhibits universality by being independent of the jet kinematics ΦJ and

zcut, but does depend on β in a non-trivial fashion. Furthermore, it exhibits an unusual

feature that it is not normalized to 1.

6.1 Shape function in the nonperturbative region

Consider the factorization for the cross section in the SDNP region, as illustrated in fig-

ure 3b. In this region we have the same hierarchy of modes as were considered for the

perturbative cross section in the SDOE region, with {H,C,S,CS} mapped to {H,C,S,ΛCS}.
The essential difference is that now the collinear-soft ΛCS mode is nonperturbative. Since

the steps in the derivation of the factorization theorem with SCET that lead to eq. (2.11)

do not rely on a perturbative expansion, the factorization formula in eq. (2.11) and its

properties are also valid for the SDNP region. However now the collinear-soft function

Sκc

(
`+Q

1
1+β

cut , β, µ
)

defined in eq. (2.16) is nonperturbative since it involves modes that

have p2 ∼ Λ2
QCD. Here `+ represents the total plus momentum of the collinear-soft sec-

tor. In the following we show how to best describe this collinear-soft function, and how

this leads to a conceptually and practically viable version of the factorization theorem of

eq. (2.11) involving a shape function with prescribed properties.

Note that in the SDNP region there is no analog of a separation into shift and boundary

corrections as seen in the SDOE region, since here the NP subjets themselves determine

when the soft drop is stopped. So there is a single leading order effect to the jet mass

measurement from particles in the SDNP region which enters through Sκc .

In ref. [55] it was shown that the Q and zcut dependence in the collinear-soft function Sκc

in eq. (2.16) only enters in the combination `+Q
1

1+β

cut . Although the analysis in ref. [55] relied
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on considering the phase space integrals for on-shell particles, it is also straightforward to

see that it also holds when considering off-shell particles in the nonperturbative region (as

is necessary when considering the interpolating operators for hadrons). The proof follows

from expressing the momenta pµi in the lab frame in terms of dimensionless rescaled coor-

dinates {kai , k⊥i , kbi} which in our notation corresponds to the following change of variables

p+
i = (`+) kai pi⊥ =

(
Q

1
2+β

cut

(
`+
) 1+β

2+β

)
ki⊥ , p−i =

(
Q

2
2+β

cut

(
`+
) β

2+β

)
kbi . (6.1)

As discussed in detail in ref. [55], the CA clustering and soft drop test on a cluster of

particles become independent of Qcut upon making this rescaling.4 The Wilson lines

appearing in the definition in eq. (2.16) are also invariant under this rescaling. Finally,

Lorentz invariant combinations of momenta such as

pi · pj =
p+
i p
−
j + p+

j p
−
i

2
+ pi⊥ · pj⊥ =

((
Q

1
1+β

cut `
+
) 1+β

2+β

)2 (kai kbj + kaj k
b
i

2
+ ki⊥ · kj⊥

)
, (6.2)

also involve only the combination `+Q
1

1+β

cut . Applying this change of variables in eq. (2.16)

gives a rescaling to the explicit momentum operator p̂+ and the momentum operators in

Θsd(p̂µi ), which can be arranged into the form

Sκc

[
`+Q

1
1+β

cut , β, µ
]

=
1

nκ
tr
〈
0
∣∣TX†nκVnκδ(Q 1

1+β

cut `
+ −Q

1
1+β

cut `+k̂aΘsd(k̂i)
)
T̄ V †κnXnκ

∣∣0〉
µ
,

(6.3)

where the new operators k̂i give the rescaled momenta of eq. (6.1). Thus the proof for

the dependence on only this combination holds also with having offshellness of O(Λ2
QCD).

Note that due to the ultraviolet structure of the collinear-soft function that there are

contributions from p−2ε
⊥ , which leads to another source of `+ dependence in eq. (6.3)

through distributions involving (`+Q
1

1+β

cut /µ
2+β
1+β ). Therefore one should not simply pull the

distribution variable `+ in eq. (6.3) out of the δ-function.

The function Sκc depends on three arguments, but we can factor out its dependence on

the MS UV renormalization scale µ by following refs. [73, 74]. First we define the Fourier

transform

S̃κc (y, β, µ) ≡
∫
d`+Q

1
1+β

cut exp
(
−i y `+Q

1
1+β

cut

)
Sκc

[
`+Q

1
1+β

cut , β, µ
]
, (6.4)

so that the variable y has mass dimensions −(2 +β)/(1 +β) and the function S̃κc is dimen-

sionless. In position space the RGE equation for S̃κc (y, β, µ) is multiplicative. Therefore

we can define a new µ independent nonperturbative shape function F̃⊗κ (y, β) via

S̃κc (y, β, µ) ≡ S̃κ,pert
c (y, β, µ) F̃⊗κ (y, β) , (6.5)

4The proof in ref. [55] did not explicitly consider the fact that emissions lying at angles smaller than the

passing subjet do not get tested for soft drop. The additional constraint imposed by this is the comparison

of angles of these subjets with that of the stopping subjet. This angular comparison is also invariant under

the rescaling in eq. (6.1) and hence is fully compatible with the proof.
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the perturbative collinear-soft function S̃κ,pert
c is included to the order in the αs expansion

(or in resummed perturbation theory) required for the precision of the prediction. When

using MS for the computation of S̃pert
c this leads to the nonperturbative function F̃⊗κ being

defined in the MS scheme. At this point other solutions with reduced infrared-sensitivity,

which could allow to control renormalon effects, are also possible following the approach of

ref. [73]. The superscript ⊗ in eq. (6.5) is meant to distinguish it from the source function

introduced in section 4.3 that describes the Λ mode in SDOE region.

The collinear-soft function S̃κc depends on the jet initiating hard parton κ = q, g.

Furthermore, all possible logarithmic dependence on y is associated with the µ dependence

captured by S̃κ,pert
c , implying that it is confinement which restricts the possible form of

the shape function F̃⊗κ . In momentum space this implies that all moments of F⊗κ exist,

so that it falls off at large momentum faster than any power law (such as exponentially).

In position space this implies that all derivatives of the function exist at the origin y = 0.

Next we define the momentum space shape function F⊗κ using a dimension 1 momentum

space variable kNP via

F⊗κ (kNP, β) ≡ 2 + β

1 + β
k

1
1+β

NP

∫
dy

2π
exp
(
i y k

2+β
1+β

NP

)
F̃⊗κ (y, β) , (6.6)

so that F⊗κ has mass dimension −1. The prefactors in eq. (6.6) allow switching from

the natural momentum space variable k
2+β
1+β

NP to kNP and absorb the resulting Jacobian as

part of the definition of F⊗κ (kNP, β). With this definition we naturally have the scaling

kNP ∼ ΛQCD and we can assume that the function F⊗κ (kNP, β) typically only has non-

trivial support in this momentum range. With the definition in eq. (6.6), the Fourier

transform of eq. (6.5) now yields a convolution with this momentum space shape function,

Sκc

[
`+Q

1
1+β

cut , β, µ
]

=

∫
dkNP S κ,pert

c

[
`+Q

1
1+β

cut − k
2+β
1+β

NP , β, µ
]
F⊗κ (kNP, β) . (6.7)

This is the final form that we will use for describing the collinear-soft function in the SDNP

region. Note that the shape function F⊗κ (kNP, β) depends only on β and the jet initiating

parton κ, but not on Q or zcut, demonstrating this universality. We also note that the

condition that only the combination `+Q
1

1+β

cut appears in Sκc already implies the form of the

convolution in eq. (6.7).

An important difference to the case of ungroomed event shapes is that the normaliza-

tion of F⊗κ is not constrained to unity. In the ungroomed case the normalization condition

follows from the fact that the shape function represents a unitary non-perturbative redis-

tribution of the partonic plus momentum. Moreover, in both the nonperturbative peak

region and the operator expansion region, the leading nonperturbative mode is a wide

angle soft mode that scales as ΛQCD(1, 1, 1), enabling a connection to be made between

these two regions, constraining the normalization condition and the way how the hadronic

parameters enter [73]. In contrast, in the groomed case, the power corrections in the SDOE

region involved both a term with a derivative of the cross section, as well as terms without.

This can be seen from eq. (4.65) where in the context of our SDOE analysis we went as far

as possible to rewrite the result to a form involving a one-dimensional shape function. The
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form of terms involving Υκ
1(β) and dCκ1 /dm

2
J makes it clear that the same normalization

condition can not be derived in this case, so the shape function F⊗κ of eq. (6.7) is not

normalized to unity. Furthermore, there is no simple connection between the shape func-

tion F⊗κ (kNP, β) and the function F ◦◦κ (k) of eq. (4.65) since the perturbative mJ -dependent

Wilson coefficients C1 and C2 must emerge when we transition from the SDNP to the

SDOE region. This is because there are two different leading nonperturbative modes, the

ΛCS mode for the SDNP region and the Λ mode for the SDOE region, so the transition

requires a more complicated interpolation between them which we do not consider further

here. In the next section we discuss an approach for building a model for F⊗κ (kNP, β) in

order to study this function in greater detail.

6.2 A model for the SDNP region shape function

Here we discuss a model for the nonperturbative function F⊗κ (kNP, β) in the SDNP re-

gion which enables a more detailed exploration of its properties. Unlike the perturbative

CS mode in the SDOE region, the relevant nonperturbative mode for this region, ΛCS,

both stops the groomer and is responsible for the nonperturbative effects. Consider a

nonperturbative subjet with momentum qµ that is being tested for soft drop:

Θ
q
sd = Θ

(
q−

Q
− z̃cut

(
2
q⊥
q−

)β)
= Θ

(
2

(
q⊥
Qcut

) 1
1+β

− 2
q⊥
q−

)
= Θ

(
θΛCS(q⊥)− θq

)
, (6.8)

where we have expressed the angle in terms of q⊥ and q− since the subjet does not need

to obey an onshell condition, but is still boosted. Here we have identified for a given q⊥
the maximum angle a NP subjet can have to pass soft drop:

θΛCS(q⊥) ≡ 2

(
q⊥
Qcut

) 1
1+β

, q⊥ ∼ ΛQCD . (6.9)

In the SDNP region, CA clustering of commensurate momenta will lead to significant

changes in the direction of the subjet as the particles are clustered. However, we can

simplify the analysis by considering subjets of NP particles defined via the procedure

described above in section 4.2. In the SDNP region the only perturbative subjet relevant

is the collinear jet-initiating parton. This implies that once the NP particles have been

clustered to yield a set of NP subjets, the subsequent CA clustering will only combine an

NP subjet with the collinear subjet.

We show in figure 14a a NP subjet at angle θq that stops soft drop, which from eq. (6.8)

satisfies θq ≤ θΛCS(q⊥). The brown shaded region is the catchment area for any other NP

subjets that contribute to the jet mass which have been clustered with the collinear parton.

To construct our model, we consider two NP subjets with momenta qµ and rµ, where qµ

stops soft drop. In the SDNP region we then express the collinear-soft function as follows

S κc

(
`+Q

1
1+β

cut ,β,µ
)

=Q
−1
1+β

cut

∫
ddq

∫
ddr F⊗κ (qµ, rµ,µ) Θ

(
θΛCS(q⊥)−θq

)
(6.10)

×
{

Θ
⊗
NP

(
rµ,θq,∆φ

)
δ(`+−r+−q+)+Θ◦◦NP

(
rµ,θq,∆φ

)
Θ
(
θr−θΛCS(r⊥)

)
δ(`+−q+)

}
.
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1θΛCS(q⊥
)

px/p
0

py/p
0

kx/k
−

ky/k
−

θ q
k⊥
k
−

a) b)

Figure 14. The catchment area of nonperturbative modes in the SDNP region is shown. The

brown cross indicates a NP subjet that stops soft drop in the SDNP region and has an angle

θq < θΛCS(q⊥). Blue dot refers to the collinear parton aligned with the jet axis. The brown shaded

region corresponds to the region where any other NP subjets could lie clustered with the collinear

subjet. In b) the same geometry is shown in the rescaled coordinates.

The distribution of the two subjets in the SDNP region including its µ dependence is

described by a nonperturbative source function F⊗κ (qµ, rµ, µ). The function does not de-

pend on the soft drop parameters which are implemented explicitly by the measurement

in eq. (6.10). (For simplicity we do not write the symmetric case when rµ stops soft drop

and qµ is kept or rejected.) Here Θ
⊗
NP denotes the catchment area for rµ related to the

collinear subjet when qµ stops soft drop at angle θq. It can be expressed with the help of

the operators defined in eqs. (4.13) and (4.19) above, which we introduced in our analysis

for shift and boundary terms:

Θ
⊗
NP(rµ, θq,∆φ) = Θ

◦◦
NP(rµ, θq,∆φ) Θ�

NP(rµ, θq,∆φ) ,

= Θ

(
|∆φ| − π

3

)
Θ

(
1− θr

θq

)
+ Θ

(
π

3
− |∆φ|

)
Θ

(
1

2 cos(∆φ)
− θr
θq

)
≡ Θ

⊗
NP(θr, θq,∆φ) , (6.11)

where ∆φ = φr − φq. This is shown as the brown shaded area in figure 14a. In eq. (6.10)

the first term in the second line corresponds to the case where rµ is already a part of

the collinear subjet when qµ is being tested and hence it contributes to the measurement.

Since we have assumed that qµ stops soft drop, the second term in eq. (6.10) describes the

scenario where rµ lies outside the combined catchment area of qµ and the collinear subjet

and fails soft drop.

The expression in eq. (6.10) can be further simplified by expressing all nonperturbative

momenta in terms of variables in an appropriately boosted frame with respect to the qµ

subjet in a fashion similar to eq. (4.25). Here the analog is to choose the relevant angle

for the boost to be θΛCS(q⊥), the maximum angle allowed for the momentum qµ of the
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stopping NP subjet:

q+ =
θΛCS(q⊥)

2
k+ , q− =

2

θΛCS(q⊥)
k− , q⊥ = k⊥ ,

r+ =
θΛCS(q⊥)

2
k̃+ , r− =

2

θΛCS(q⊥)
k̃− , r⊥ = k̃⊥ . (6.12)

Note that since θΛCS(q⊥) does not transform under boosts along the jet direction, the

variables kµ in eq. (6.12) are not boost invariant and transform as qµ does under boosts

(unlike the rescaled variables in the SDOE case in eq. (4.25)). We will assume that the

nonperturbative function F⊗κ (qµ, rµ, µ) is invariant under boosts along the jet direction,

and thus F⊗κ (qµ, rµ, µ) = F⊗κ (kµ, k̃µ, µ). Applying this rescaling we can rewrite eq. (6.10)

in the form.

S κ
c

(
`+Q

1
1+β

cut , β, µ
)

=

∫
dk′+

∫
ddk

∫
ddk̃ F⊗κ (kµ, k̃µ, µ) Θ

(
1− k⊥

k−

)
(6.13)

× δ
(
`+Q

1
1+β

cut − k′+
(
k⊥
) 1

1+β

){
Θ
⊗
NP

(
k̃⊥

k̃−
,
k⊥
k−

,∆φ

)
δ(k′+ − k+ − k̃+)

+ Θ◦◦NP

(
k̃⊥

k̃−
,
k⊥
k−

,∆φ

)
Θ

(
k̃⊥

k̃−
−
(
k̃⊥
k⊥

) 1
1+β
)
δ(k′+ − k+)

}
.

We thus see that after the change of variable, the dependence on Qcut drops out in the

soft drop passing and failing conditions for the two subjets consistent with our discussion

in section 6.1. In figure 14b we show the catchment area in the rescaled coordinates. We

have also introduced an auxiliary variable k′+ that encodes the total NP + momentum.

We can rewrite eq. (6.13) including µ evolution down to a low nonperturbative scale

µΛ ∼ ΛQCD via:

Sκc

(
`+Q

1
1+β

cut ,β,µ
)

=

∫
d
(
k

2+β
1+β

NP

)∫
dk′+

∫
ddk

∫
ddk̃ UκSc

(
`+Q

1
1+β

cut −k
2+β
1+β

NP ,µ,µΛ

)
F⊗κ (kµ,k̃µ,µΛ)

×δ
(
k

2+β
1+β

NP −k
′+(k⊥) 1

1+β

)
Θ

(
1− k⊥

k−

){
Θ
⊗
NP

(
k̃⊥

k̃−
,
k⊥
k−

,∆φ

)
δ(k′+−k+−k̃+)

+Θ◦◦NP

(
k̃⊥

k̃−
,
k⊥
k−

,∆φ

)
Θ

(
k̃⊥

k̃−
−
(
k̃⊥
k⊥

) 1
1+β
)
δ(k′+−k+)

}
, (6.14)

where we introduced k
2+β
1+β

NP as a convenient integration variable, and note that the δ function

sets k
2+β
1+β

NP = k′+
(
k⊥
) 1

1+β . At NLL the perturbative collinear-soft function only consists of

a RG evolution factor since the boundary condition at tree level is a δ-function, so

Ŝ κ,NLL
c

(
`+Q

1
1+β

cut , β, µ
)

= UκSc

(
`+Q

1
1+β

cut , µ, µΛ

)
. (6.15)

As a result of this eq. (6.14) becomes:

S κ
c

(
`+Q

1
1+β

cut , β, µ
)

=

∫
dkNP Ŝ κ,NLL

c

(
`+Q

1
1+β

cut − k
2+β
1+β

NP , β, µ
)
F⊗κ (kNP, β) , (6.16)
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where

F⊗κ (kNP, β) ≡ 2 + β

1 + β

∫
ddk

∫
ddk̃

(
kNP

k⊥

) 1
1+β

F⊗κ (kµ, k̃µ, µΛ) Θ

(
1− k⊥

k−

)
(6.17)

×
{

Θ
⊗
NP

(
k̃⊥

k̃−
,
k⊥
k−

,∆φ

)
δ

(
kNP

(
kNP

k⊥

) 1
1+β

− k+ − k̃+

)
+ Θ◦◦NP

(
k̃⊥

k̃−
,
k⊥
k−

,∆φ

)
Θ

(
k̃⊥

k̃−
−
(
k̃⊥
k⊥

) 1
1+β
)
δ

(
kNP

(
kNP

k⊥

) 1
1+β

− k+

)}
.

The result in eq. (6.16) is the analog of what we derived above in eq. (6.7) from gen-

eral considerations. The result in eq. (6.17) provides an explicit model for F⊗κ (kNP, β) in

terms of a two-variable source function F⊗κ (kµ, k̃µ, µΛ) that is independent of the soft drop

parameters. This expression clearly illustrates the non-trivial β dependence of the non-

perturbative shape function. Note that this model also includes the same overall factors

that appeared in the prefactor of eq. (6.6).

Using the properties of the Θ functions, we can also investigate the normalization of

F⊗κ (kNP, β):∫ ∞
0

dkNPF
⊗
κ (kNP,β)=

∫
ddk

∫
ddk̃ F⊗κ (kµ,k̃µ,µΛ)Θ

(
1− k⊥

k−

)
(6.18)

×
{

Θ
⊗
NP

(
k̃⊥

k̃−
,
k⊥
k−

,∆φ

)
+Θ◦◦NP

(
k̃⊥

k̃−
,
k⊥
k−

,∆φ

)
Θ

(
k̃⊥

k̃−
−
(
k̃⊥
k⊥

) 1
1+β
)}

<

∫
ddk

∫
ddk̃F⊗κ (kµ,k̃µ,µΛ)Θ

(
1− k⊥

k−

)
<

∫
ddk

∫
ddk̃F⊗κ (kµ,k̃µ,µΛ).

Thus we see explicitly that the presence of the soft drop grooming induced Θ-function

projection operators decreases the normalization. A practical assumption for this

model would be then to take F⊗κ (kµ, k̃µ, µΛ) as normalized, which would then imply∫∞
0 dkNPF

⊗
κ (kNP, β) ≡ fNP

0 < 1.

7 Comparison with previous work

Nonperturbative corrections to groomed jet mass spectra have been studied previously as

an extension of perturbative calculations, both with Monte Carlo studies [48, 50, 55, 56, 64],

analytic models [50, 64] and shape function models [55]. In general, hadronization correc-

tions are found to be reduced by the jet grooming [48]. Here we will make a comparison of

our results with the analytic estimates for hadronization corrections from refs. [50, 55, 64].

For pp collisions ref. [50] considered the modified mass-drop tagger, which closely

corresponds to soft drop with β = 0. Analogs of both the shift and boundary corrections

were considered in the region where m2
J > Λ2

QCD/zcut, which corresponds to the SDOE

region in eq. (1.1) with β = 0. These estimates were extended to β > 0 in ref. [64] where

hadronization corrections were considered due to a shift in mJ and a reduction in pT of

soft subjets from nonperturbative particles,

δm2
J = CiΛhadrpTReff , δpT = −CA

Λhadr

Reff
. (7.1)
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Here Reff = mJ/(pT
√
z(1− z)) is the effective radius of the jet formed by a single pertur-

bative splitting, and Λhadr ∼ ΛQCD is a nonperturbative parameter common to both the

corrections. Eq. (7.1) was then used to calculate the leading power corrections from these

two types of hadronization effects to the jet mass cross section by averaging over z with

the soft drop passing constraint:

dσκ
dmJ

∣∣∣∣mJ shift

hadr

=
dσ̂κ
dmJ

×
(

1 +
CκΛhadr

mJ

z
−1/2
sd −∆κ

lnz−1
sd +Bi

)
, (7.2)

dσκ
dmJ

∣∣∣∣pT shift

hadr

=
dσ̂κ
dmJ

×
(

1− CAΛhadr

mJ

z
−1/2
sd

lnz−1
sd +Bκ

)
.

Here dσ̂/dmJ is the partonic cross section and an expansion in zsd = z
2

2+β

cut

(
mJ
RpT

) 2β
2+β

� 1

was performed. The constants ∆q = 3π/8, ∆g = (15CA − 6nfTF )π/(32CA), Bq = −3/4,

Bg = −11/12 + nfTF /(3CA) are the first subleading terms from this expansion. The

logarithm can also be expressed as lnz−1
sd = ln

[
θ̃?(m2

J)/θ̃c(m
2
J)
]
, and hence is the same

as the first logarithm that appears in an αs expansion of C0(m2
J) in eq. (5.13). The two

corrections in eq. (7.2) have the same scaling for zsd � 1. Taking dσ̂/dmJ ∼ (αslnz
−1
sd )/mJ ,

the lowest order terms in αs have the scaling

dσ

dmJ

∣∣∣∣
hadr

− dσ̂

dmJ
∼ αs

ΛQCD

RpT

(
R2p2

T

m2
J

) 1+β
2+β
(

1

zcut

) 1
2+β

. (7.3)

Comparing eq. (7.3) with our eqs. (4.53) and (4.55) we find that our results agree as far as

the scaling for the term is concerned.

When compared in more detail there are, however, significant differences be-

tween the model of refs. [50, 64] shown in eq. (7.2) and our final pp results from

eqs. (4.56), (5.30), (5.40), which we now discuss. One difference is that our shift cor-

rection in eq. (4.56) involves a derivative of the differential jet mass cross section, implying

that the shift corrections in eqs. (4.56) and (7.2) do not agree at LL order, and hence differ

for example in their mJ and β dependence. This is not unexpected as refs. [50, 64] did not

carry out a LL analysis. Comparing our boundary correction with the pT -shift term, we see

that both results are proportional to the leading power cross section at this order, so pertur-

batively the only difference is due to running coupling effects kept in our Cpp2 , compared to

the fixed coupling that was used to obtain the expressions in eq. (7.2) (this difference is also

present for the shift term). The results also differ because ours depend on three hadronic

parameters for each of the quark and gluon induced jets (Ω◦◦1,κ,Υ
κ
1,0,Υ

κ
1,1). In contrast only

one hadronic parameter Λhadr is employed in the two corrections in eq. (7.2) for both the

mJ and pT shift correction terms with color prefactors Cκ that do not appear in this man-

ner for us (since in general both abelian and non-abelian attachments of non-perturbative

gluons are present as sources). Furthermore, since the source function F̃κ in eq. (4.54) has

been derived after performing a rescaling in the NP sector following eq. (4.25), it cannot be

simply related to models for nonperturbative functions that have appeared in the previous

literature. Since different projection operators appear in the definition of Ω◦◦1κ and Υκ
1(β) in
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Figure 15. Comparison of absolute value of the power corrections from our mJ shift and pT shift

terms (labeled as “HMPS”) with the results from ref. [64] (labeled as “MSS”).

eq. (4.54) there is no relation that connects these two quantities in our treatment. The Υκ
1,1

also signifies additional linear β dependence in our boundary correction that is not present

in the pT -shift correction of eq. (7.2), since refs. [50, 64] did not account for the additional

β dependence from expanding the soft drop condition in their treatment of eqs. (4.17)

and (4.18). Finally, in our treatment the signs of our Υκ
1,i are apriori not determined as

the softer subjet can in principle both gain or lose momentum from hadronization.

For a numerical comparison of the mJ - and β-dependence of our shift and boundary

corrections with the corresponding results of ref. [64] given in eq. (7.2) we consider the quark

jet case, and set Ω◦◦1q = CFΛhad = 1 GeV, Υq
1,0 = CAΛhad = 1 GeV, and Υq

1,1 = 0 GeV. We

then consider the following ratios:

∆σmJ shift, MSS

∆σshift, HMPS
≡
(
dσMSS

dmJ

∣∣∣∣mJ shift

hadr

− dσ̂

dmJ

)/
dσshift

dmJ
, (7.4)

∆σpT shift, MSS

∆σbndry, HMPS
≡
(
dσMSS

dmJ

∣∣∣∣pT shift

hadr

− dσ̂

dmJ

)/
dσbndry

dmJ
, (7.5)

where the numerators (labeled “MSS”) are predictions from ref. [64] in eq. (7.2), and the

denominators (labeled “HMPS”) are our predictions for shift and the boundary terms in

eqs. (5.25) and (5.37). We plot these ratios in figure 15, where the three panels correspond

to three choices of β. Differences can be as large as 30% for β = 0, and they become even

larger for larger β. For the dashed curves we keep only LL terms from the splitting function,

pgq(z) = 1/z, and other z dependent terms, and use a fixed scale for the coupling, so that

higher order terms that are treated differently in the two formulas are uniformly dropped.

For the solid curves we use the full O(αs) splitting function pgq(z) given in eq. (5.6). The

differences between dashed and solid curves is at the 10–20% level. The difference in the

mJ dependence appears to be rather moderate for the shift term, but is more significant

for the boundary term except when β = 0. Note that the presence of a non-zero hadronic

parameter Υq
1,1 will induce an even larger differences.

In ref. [55] hadronization corrections to soft dropped jets were investigated in the

SDNP region with a simple convolution with a normalized model function Fshape to obtain

an alternate estimate for these corrections, based on the analogy with event shapes in e+e−

collisions. Their model corresponds to using∫
dk+ Sκc

[(
`+ −

(
k+

Qcut

) 1
1+β

k+

)
Q

1
1+β

cut , β, µ

]
Fmodel(k

+) , (7.6)
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in place of the last line in our eq. (4.65). In [55] the approximate agreement of this

implementation with Monte Carlo was taken as evidence that there might indeed exist a

normalized shape function for describing hadronization in groomed jet observables. Given

that we have derived a shape function description of the power corrections for the jet mass

in eq. (6.7) in the SDNP region we can directly compare with eq. (7.6). In particular we note

that eq. (7.6) has the same form as our result in the SDNP region, given in eq. (6.7) (though

the integration variable is not strictly speaking a +-momentum). The most important

difference, however, is that the norm of our shape function F⊗κ (kNP, β) is not constrained,

and is instead determined by an additional nonperturbative parameter. Our F⊗κ (kNP, β)

is independent of zcut, but depends on β and the jet initiating parton κ = q, g.

The scaling analysis of ref. [55] effectively corresponds to considering nonperturbative

modes Λ′ with the scaling

pµΛ′ ∼ ΛQCD

(
ζ ′0,

1

ζ ′0
, 1

)
, with ζ ′0 ≡

(
ΛQCD

Qcut

) 1
1+β

. (7.7)

As shown in figure 4, for the SDOE region these Λ′ modes differ from the Λ modes in

eq. (3.1) which represent the true dominant NP modes in the SDOE region. The Λ′ modes

do no account for the existence of soft drop stopping angle, which is represented by the verti-

cal orange line and which effectively reduces the jet radius to Rg < R. In our SDOE analysis

we have shown that the Λ modes are the dominant nonperturbative modes. Their effects

exceed those of the Λ′ modes since they have parametrically larger p+ momenta, and lead to

only an αs suppression rather than extra Sudakov suppression. In the SDNP region, mJ has

decreased to a region where the CS, Λ, and Λ′ modes of figure 4 all have the same scaling, so

that eq. (7.7) and eq. (3.4) describe the same mode. We note, however, that the SDNP re-

gion does not have a simple connection to the SDOE region, so that the latter does not yield

a simple normalization constraint for the SDNP the shape function, F⊗κ (kNP, β) of eq. (6.7).

In ref. [59] a model equivalent to that of ref. [55] in eq. (7.6) was employed to describe

soft drop angularity distributions [82]. Our analysis of nonperturbative modes and con-

clusions can also be applied for angularities as long as one considers angularities that are

sufficiently jet mass like and away from the broadening limit, i.e. a < 1. We leave a de-

tailed analysis of the power corrections to groomed angularities to future work. In ref. [63]

the angularity a = 1.5 was considered where the collinear mode becomes nonperturbative

before the collinear-soft modes do. In this case our conclusions from the jet mass analysis

do not apply.

8 Monte Carlo studies

In this section we present a Monte Carlo study to test our predictions for power corrections

in the SDOE region. We consider three Monte Carlos: Pythia 8.235 [83, 84], Vincia

2.2 [85] and Herwig 7.1 [34, 86] with their respective default tunes for hadronization.

The jet finding and soft drop grooming is implemented using the SoftDrop plugin in the

FastJet 3.3 package [48, 87]. We choose to simulate the e+e− → qq̄ dijet process at
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Figure 16. Comparing our computation of C1(m2
J) with partonic Monte Carlo for zcut = 0.1, 0.2

(rows), β = 0, 1, 2 (columns).

Figure 17. Comparing our computation of C2(m2
J) with partonic Monte Carlo for zcut = 0.1, 0.2

(rows), β = 0, 1, 2 (columns).

Q = 500 and 1000 GeV, take Ree0 = π/2 and reconstruct two leading R = 1 jets with the

anti-kT jet-finding algorithm [88].

8.1 Comparing Wilson coefficient results with Monte Carlo

We show in figure 16 a direct comparison of our calculation of C1(m2
J) with partonic level

Monte Carlo events. According to eqs. (5.26) and (5.27) C1(m2
J) corresponds to the average

of half the opening angle of the stopping pair for a given jet mass mJ . So to obtain the

Monte Carlo result for a given mJ value we can simply sample the opening angle of the

stopping pair of the groomed jet in different jet mass bins. We show the comparison for

zcut = {0.1, 0.2} and β = {0, 1, 2} and Q = 1000 GeV with Pythia, Vincia and Herwig.
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The purple and green vertical lines in figure 16 delineate the SDOE region as shown in

figure 2. We observe good agreement of all the Monte Carlos with the calculation in the

SDOE region.

In order to extract C2(m2
J) from Monte Carlo we implement the δ function in eq. (5.36)

by modifying the soft drop condition such that

Θ
(
z − z̃cutθ

β
)
→ Θ

(
z − z̃cutθ

β +
2

θ
ε

)
, (8.1)

and take a numerical derivative with respect to ε of the jet mass cross section in a given

jet mass bin. This yields C̃2(m2
J) in eq. (5.38) times the partonic cross section in that bin.

In figure 17 we compare the C2(m2
J) obtained in this way from the Monte Carlo using the

modification of the soft drop test in eq. (8.1) with our analytical result from eqs. (5.38)

and (5.39). Note that we do not show results for C2(m2
J) from the Monte Carlo further to

the left of the pink vertical line, i.e., beyond the SDOE region where the formalism with

C2 no longer applies. We observe that unlike the case of C1(m2
J) discussed in figure 16,

Pythia and Vincia results for C2(m2
J) differ from Herwig, with Herwig being in a

better agreement with our calculation of C2.

8.2 Catchment area geometry versus jet mass

The key ideas that allowed us to describe the NP corrections in the SDOE and SDNP

regions were our assumptions about the geometry of the catchment area of the NP subjets

around the collinear and collinear-soft jet axes. Upon rescaling the NP subjet momenta

according to eq. (4.25) we were able to factorize the perturbative contributions and the

nonperturbative matrix elements. To test the underlying kinematic approximations we

show in figure 18 heat maps illustrating the distribution of the rescaled angular location of

the NP subjets in the plane perpendicular to the jet axis for different bins of the jet masses

from hadron level Vincia with at Q = 1000 GeV with zcut = 0.1 and β = 1. Here hotter

colors correspond to a higher density of NP subjets. In accordance with our definition

for NP subjets in section 4.2 we uncluster the groomed jet until we find the first subjet

that has energy E ≤ 1.0 GeV. We then rescale the angle of this subjet with respect to

the jet axis using eq. (4.25) and our calculation for the opening angle θcs = 2C1(m2
J) for

the corresponding jet mass value of the jet. We then rotate the subjet in the azimuthal

plane by φcs, where the more energetic (collinear) subjet lies at the origin, and the softer

subjet of the stopping pair is rotated onto the positive x-axis (according to figure 8). These

transformation allow us to visualize the 2 dimensional distribution of the angular locations

of the NP subjet in the rescaled coordinates shown in figures 8 and 14b.

We divide the distributions in several jet mass bins in order to visualize how the

catchment area geometry changes when going from the SDNP to the SDOE region, and

from the SDOE to the ungroomed resummation region. These distinct regions of the jet

mass spectrum have been defined as in eqs. (1.1) and (2.8) and are illustrated in figure 19.

We can see from figure 18 that there are prominent voids around the collinear subjet and

(once present) the perturbative collinear-soft subjet. These are primarily due to the fact

that both hadronization and the CA algorithm cluster non-perturbative particles/hadrons
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Figure 18. “Heat maps” showing probability distribution of the angular location of the NP subjet

in the plane perpendicular to the jet axis in rescaled coordinates for different regions of jet mass

spectrum.
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Figure 19. Vincia prediction for m2
J/E

2
J distribution indicating the bins of jet masses that corre-

spond to the different panels shown in figure 18. Here the inequality � is replaced by a factor of 3.

with the energetic subjets close to the collinear or collinear-soft subjet axes, and these

clusters always lie deeper than the first NP subjet in the CA clustering tree. The top left

panel corresponds to the events in the SDNP region. Here we see that the NP subjets are

clustered along with the collinear subjet at angles ∼ θcs. The region extends slightly to

the right of the collinear subjet catchment area since the stopping subjets are themselves

nonperturbative and are included in the distribution. In the subsequent three panels we

enter the SDOE region and see the expected geometry from figure 8a emerging. Since

we rescaled the angles of the NP subjets by our perturbative prediction, θcs = 2C1, it is

a nontrivial check of our discussions in section 4 that the rightmost “black hole” at the

collinear-soft subjet location in the center right panel is indeed centered at kx/k
− ' 1 and

ky/k
− ' 0. The resulting regions of high density also confirm our expectation that the

dominant NP modes are determined by the θcs angle, leading to the halos of radius ' 1

around the stopping subjets. In the bottom two panels we exit the SDOE region and start

to enter the ungroomed resummation region. Here we see a distortion in the distributions

due to the effect of the ungroomed jet boundary, which is a circle of radius R = 1.

8.3 Testing universality with fits for hadronic parameters

We now test the compatibility of the hadronization models of the three Monte Carlos with

our description of power corrections in the SDOE region. In figure 20 the solid curves show

the hadron level jet mass spectrum for zcut = 0.1, β = 1, and Q = 500 GeV for the three

Monte Carlos in the SDOE region. We note that while the hadron level predictions of the

three Monte Carlos are quite close, they differ significantly in their parton level output,

indicating in turn significant differences concerning their hadronization models.

To carry out a fit to determine the compatibility of the MC hadronization models with

our description of hadronization, we consider a grid of jet mass spectra for the following
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Figure 20. Differing hadronization models and partonic cross sections in Monte Carlos in the soft

drop operator expansion region.

Event Generator Ω◦◦1q (GeV) Υq
1,0 (GeV) Υq

1,1 (GeV) χ2
min/dof

Pythia 8.235 1.63 -1.21 0.33 0.96

Vincia 2.2 1.22 -1.04 0.50 0.84

Herwig 7.1.4 (default) 1.14 -1.73 -0.15 2.53

Herwig 7.1 (pTB) 1.14 -1.32 -0.11 0.77

Table 1. Summary of central fits for hadronic parameters in the SDOE region for different Monte

Carlos. We also include a goodness of fit measure with χ2
min/dof following the method described in

the text.

Figure 21. 70% Confidence interval ellipses showing correlations between the hadronic parameters

from Vincia when assigning 10% and 20% hadronization uncertainties. Other Monte Carlos yield

ellipses of similar size.

– 57 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

Figure 22. Fit to hadronic Vincia Monte Carlo in the SDOE region (indicated by the dotted

vertical lines) for zcut = 0.1, 0.2 (columns), β = 0, 1, 2 (rows) and Q = 500 GeV. The same values of

hadronic parameters displayed in the top left panel are used everywhere else. The vertical dashed

and dot-dashed lines delineate the SDOE region as indicated in the top right panel.

sets of parameters:

Q = {500, 1000}GeV , zcut = {0.05, 0.1, 0.15, 0.2} , β = {0, 0.5, 1.0, 1.5, 2.0} . (8.2)

Following eq. (4.56) we then fit for the hadronic parameters Ω◦◦1q, Υq
1,0 and Υq

1,1 in the SDOE

region, taking the corresponding partonic MC cross section with hadronization turned off

as the perturbative cross section dσ̂/dm2
J , and use our analytical results for Cq1(m2

J) and

Cq2(m2
J) in eqs. (5.26) and (5.38). We define the χ2-function as the sum of squared difference

between the MC hadron level and the MC parton level cross sections including the power

corrections of eq. (4.56). We adopt mJ independent uncertainties in the SDOE region.

For the size of uncertainty, we first take 5% as the approximate size of the hadronization

– 58 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

Figure 23. Linear behavior of the boundary power correction in β is verified via comparison of

Υq
1(β) for individual β values and the linear prediction using global fit values of Υq

1,0 and Υq
1,1.

Figure 24. Testing zcut independence of Υq
1,0 and Υq

1,1 by fitting for individual zcut values and

comparing against the global fit.

corrections to the normalized cross section in this region, as is suggestive from figure 20,

and then define the uncertainty to be employed in the χ2-function to be 10% of that. We

then fit in the SDOE region with approximately 20-30 bins, for all combinations of Q, zcut

and β values shown in eq. (8.2). The result of the minimization is summarized in table 1.

We first note that the results of the fits all yield O(1 GeV) values of the three universal

hadronic parameters as expected. Although the extracted results from Pythia and Vincia

differ, in both cases our three universal hadronic parameters provide an excellent descrip-

tion of the MC hadronization model. To further probe the reason for a rather poor fit

results from default Herwig 7.1.4 we carried out a fit for the pTB tune defined in ref. [89].
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Figure 25. Testing zcut and β independence of Ω◦◦1q by fitting for individual zcut and β values and

comparing against the global fit. The global fit values of Ω◦◦1q for Herwig are the same for both

tunes and hence the green lines are on top of each other.

The default Herwig 7.1.4 parton shower uses the jet mass preserving kinematic reconstruc-

tion, which was pointed out to be problematic in ref. [36] where the shower-cut dependence

of the parton level thrust distributions was analyzed. In ref. [36] a better agreement with

their analytical QCD results was observed with the pT preserving reconstruction originally

proposed in ref. [90] (see also [34]) which is the basis of the pTB tune. This observation

is further supported by studies in refs. [35, 91]. We find here that the pTB tune, with5

αs(mZ) = 0.118, yields similar values of the hadronic parameters as the Herwig 7.1.4 but

with a much improved χ2. The correlations between the fit results for Ω◦◦1q, Υq
1,0 and Υq

1,1 for

our fits for Vincia are displayed in figure 21. Although there is some visible correlation be-

tween the three parameters, they are all still well constrained at the central values of the fits.

In figure 22 we show a selection of the fit results (blue curves) for Vincia hadron

level results (red curves) and parton level results (black dashed curves) for a subset of

the distributions included in the fits, using representative values of Q = 500 GeV, zcut =

{0.1, 0.2} and β = {0, 1, 2}. We see that the three fitted values of the hadronic parameters

Ω◦◦1q, Υq
1,0 and Υq

1,1 are sufficient to describe the hadronization corrections for a range of

Q, zcut and β values. We obtain similar good quality results for Q = 1000 GeV and other

values of zcut and β not shown in figure 22.

A prediction of eq. (4.54) is that the boundary correction depends linearly on β. To

check this within the context of our analysis we also fitted for Υq
1(β) for each value of β

separately, while fixing Ω◦◦1q to the global fit value shown in table 1. This allows us to com-

pare the fit results for individual β values against our prediction for Υq
1(β) using the global

fit values of Υq
1,0 and Υq

1,1. The result of this exercise is displayed in figure 23. We observe

5Note that the pTB tune of ref. [89] also prescribes a change in the reference strong coupling value from

αCMW
s (mZ) = 0.127 (corresponding to αs(mZ) = 0.118 in the MS scheme) to αCMW

s (mZ) = 0.1087 as a

part of the tune. However, we found that upon using the αCMW
s (mZ) = 0.1087 the fitting procedure failed

to produce stable, and we therefore used the pTB tune with αCMW
s (mZ) = 0.127.
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a good agreement of the linear prediction and the explicit fit results for Pythia, Vincia

and Herwig pTB, well within the ±20% estimated uncertainty from our predictions for Cq1
and Cq2 . In figure 24 we also test the zcut-independence of the boundary power correction

parameters Υq
1,0 and Υq

1,1. While the fits for these parameters obtained from Pythia and

Vincia are roughly zcut independent, as expected from our theoretical considerations, we

find a residual zcut dependence for the two versions of Herwig. We see, however, for Her-

wig some reduction of the zcut dependence when using the pTB tune since the individual

fits are significantly closer to the global fit. We conclude that the MC results support the

universality of the Υq
1,i parameters at the expected level of precision of ±20% induced from

the uncertainty in Cq1 and Cq2 .

Finally, in figure 25 we test the universality of the shift correction with respect to

variations in zcut and β. Here we fit for Ω◦◦1q for individual zcut and β values (colored

symbols) while fixing Υq
1,0 and Υq

1,1 to their global fit values. The results from these

individual fits are then compared with those from the global fit values shown in table 1

(horizontal solid and dashed lines). We find an independence to the value of zcut at the

10% level for Pythia and Vincia, and up to 15% for Herwig 7.1 pTB. Again the MC

results support the expected level of universality for Ω◦◦1q.

9 Conclusion

We have presented a study of the dominant nonperturbative corrections to the groomed

jet mass spectrum based on quantum field theory calculations in the framework of soft

collinear effective theory and the coherent branching formalism. We considered the oper-

ator expansion region (SDOE), where the hadronization effects are power corrections, and

the nonperturbative region (SDNP) of the jet mass spectrum, where they become lead-

ing order effects. In the SDOE region we identified two leading nonperturbative power

corrections, called the “shift” and “boundary” corrections, which are related to the con-

tribution of the nonperturbative radiation to the jet mass and to modifications in the soft

drop test due to nonperturbative radiation respectively. The two power corrections have a

perturbative dependence on the angle of the soft drop stopping collinear-soft subjet that

sets the catchment area for the nonperturbative particles. We showed that this stopping

angle dependence can be factored into the Wilson coefficient by an appropriate rescaling

of the momenta of the nonperturbative modes. This allowed us to derive factorization at

the level of both the measurement function and the nonperturbative matrix element. It

resulted in jet mass dependent perturbative Wilson coefficients for the two effects, which

involve the perturbative functions C1(m2
J) and C2(m2

J), that encode non-trivial dependence

of the leading power corrections on the kinematic parameters pT , ηJ , the jet radius R, and

grooming parameters zcut and β. We have explicitly calculated the coefficients C1(m2
J)

and C2(m2
J) using the coherent branching formalism at LL order with a running coupling.

As a result the leading power corrections in the SDOE region can be described by three

universal hadronic parameters Ω◦◦1κ, Υκ
1,0 and Υκ

1,1 that are independent of these parameters

and have dimension of mass. Here κ = q for a quark initiated jet, while κ = g for a gluon

initiated jet, and the parameters can differ for these two cases. In the SDNP region we
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showed that the leading order nonperturbative corrections can be described by a shape

function that depends on β which has a normalization less than one.

We tested our conceptual analysis on the structure of hadronization corrections in the

SDOE region by carrying out Monte Carlo studies with Pythia 8.235, Vincia 2.2, and

Herwig 7.1. We extracted C1(m2
J) and C2(m2

J) from the Monte Carlos and found that

they agree well with our LL calculations. We confirmed the kinematic approximations of

our conceptual studies by analyzing the angular distributions of nonperturbative subjets

produced by MC generators, and we found the expected geometries for the SDNP and

SDOE jet mass regions. We then tested the hadronization models of the MC generators

in detail by fitting for the three universal parameters Ω◦◦1q, Υq
1,0 and Υq

1,1 for quark jets

in e+e− annihilation in the SDOE region. We found that the fitted values of the three

parameters are O(1) GeV, and consistently describe the MC hadronization corrections for

a range of Q, zcut and β values. The parameters also showed the predicted universality

for each of Pythia, Vincia and Herwig, though with different values for the hadronic

parameters. An improvement of Herwig 7.1.4 results was observed upon considering a

different parton shower kinematic reconstruction from ref. [90]. Thus our predictions for

hadronization corrections were successfully confirmed by this comparison to MCs.

The results of this work enable a more precise description of hadronization effects for

the groomed jet mass distribution, and make it possible to consider obtaining improved pre-

cision measurements of QCD parameters such as αs and top mass mt from the LHC data us-

ing the groomed observables. We note that some of our results are also used in our theoreti-

cal analysis of soft drop groomed top quark jets in ref. [62], where it is pointed out that these

hadronization corrections are also universal between massive and massless quarks. While

we focused on the case of jet mass in this work, we emphasize that the same techniques can

also be applied to other groomed observables such as angularities [82]. We also envisage,

that our study may contribute to better calibrate and tune hadronization models of Monte

Carlos, which have so far relied only on ungroomed observables. The universal hadronic

parameters we obtained in our analysis involve combinations of +, −, and ⊥ components

of nonperturbative momenta and are hence more sophisticated than those obtained from

classic event shapes. Thus, our results for the power corrections for the groomed jet mass

have interesting implications for dedicated tuning studies of MC hadronization models.
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A Measurement operator for the boundary term

To illustrate the key physical ideas for understanding the operator for the boundary term

in eq. (4.21) we consider a simple example. Consider two perturbative subjets with energies

E1 and E2 forming a jet with energy EJ such that

E1 + E2 = EJ . (A.1)

We will consider the first subjet to be collinear-soft and the second to be collinear, so

E1 � E2 . (A.2)

For simplicity we consider the case with β = 0, such that the soft drop criteria is purely a

comparison of energies. Then the soft drop comparison is

Θ
part
sd = Θ

(
E1

EJ
− zcut

)
= Θ

(
z1 − zcut

)
, (A.3)

and we are interested in the regime where zcut � 1.

Turning on hadronization, involves including NP radiation with energy EΛ ∼
ΛQCD/ζcs � E1. This radiation encodes both the non-perturbative rearrangement of

momenta into and out of the subjets as well as the binding of partons to hadrons. Since

E1 � E2, the leading hadronization effects will occur when hadronization modifies the

energy of the E1 subjet. There will be a reduction in energy from the regrouping done by

hadronization causing a loss of particles from the 1 subjet to other subjets (here subjet

2). Similarly there can be an increase to E1 from hadronization if the nonperturbative

regrouping adds particles to the 1 subjet.

We can probe these non-perturbative effects by using a single NP subjet of energy

EΛ that participates in the CA clustering. At the stage where this NP subjet is not yet

clustered, hadronization has changed the energy of subjet 1 to E′1 = E1−EΛ1 . We also note

that E′2 = E2−EΛ2 is the energy of subjet 2 after hadronization. Case by case the EΛi could

be positive or negative, but on aggregate we expect a positive value. Here EΛ2 is always

negligible relative to E2, but can appear in comparisons with E1. By energy conservation

the total jet energy is EJ ≡ E1 + E2 = E′1 + E′2 + EΛ, which implies EΛ2 = EΛ − EΛ1 .

We consider the effect on the soft drop condition in eq. (A.3) on the hadronized subjets

1′, 2′ and Λ, and expand back in terms of the variables of the perturbative subjets 1 and

2. From the point of view of CA clustering, we have three situations:

(i) the CS subjet 1′ and NP subjet are clustered first, followed by the collinear subjet 2′,

(ii) collinear subjet 2′ and NP subjet are clustered first, followed by the CS subjet 1′,

(iii) the subjets 1′ and 2′ are clustered first, followed by the NP subjet.
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The case that occurs is entirely determined by a geometric test of the angles of the NP

subjet, which divides up the phase space as 1 = Θ
(i)
NP + Θ

(ii)
NP + Θ

(iii)
NP . From the beginning

we drop corrections EΛ and EΛi relative to EJ and E2 and only retain those appearing

with E1 or E′1. For case (i), we have

Θ
(i)
sd Θ

(i)
NP = Θ

(
E′1 +EΛ

EJ
−zcut

)
Θ

(i)
NP = Θ

(
E1 +EΛ2

EJ
−zcut

)
Θ

(i)
NP = Θ

(
(z1 + zΛ2)−zcut

)
Θ

(i)
NP

= Θ
part
sd Θ

(i)
NP +zΛ2 δ(z1−zcut)Θ

(i)
NP + . . . , (A.4)

where z1 = E1/EJ , zΛ2 = EΛ2/EJ , etc., and the ellipses denote higher order power cor-

rections. For case (ii) there is no correction from the CA clustering since the NP subjet

is grouped with the collinear subjet. This is also the situation for case (iii) where the NP

subjet is simply groomed away by soft drop in the SDOE region, since it is the comparison

of 1′ and 2′ that stops soft drop. Expanding to the first non-trivial order, these cases give

Θ
(ii)
sd Θ

(ii)
NP = Θ

(
E′1
EJ
− zcut

)
Θ

(ii)
NP = Θ

part
sd Θ

(ii)
NP − zΛ1 δ(z1 − zcut)Θ

(ii)
NP , (A.5)

Θ
(iii)
sd Θ

(iii)
NP = Θ

(
E′1
EJ
− zcut

)
Θ

(iii)
NP = Θ

part
sd Θ

(iii)
NP − zΛ1 δ(z1 − zcut)Θ

(iii)
NP . (A.6)

Noting that Θ
�
NP = Θ

(i)
NP and Θ �

NP = Θ
(ii)
NP + Θ

(iii)
NP = 1 − Θ

�
NP, the sum of results in

eqs. (A.4)–(A.6) give

Θ
had
sd = Θ

part
sd −Θ �

NP(θΛ, θ1, ∆φ1) zΛ1 δ(z1 − zcut) + Θ
�
NP(θΛ, θ1, ∆φ1) zΛ2 δ(z1 − zcut) ,

= Θ
part
sd + δ(z1 − zcut)

[
−Θ �

NP(θΛ, θ1, ∆φ1)
q−1
Q

+ Θ
�
NP(θΛ, θ1, ∆φ1)

q−2
Q

]
. (A.7)

The terms in eq. (A.7) track flow of energy in and out of the subjets. Generalization of

this example to β > 0 is straightforward.

The final step is to determine an analog for eq. (A.7) from the point of view of the

operator expansion with NP fields. In this context the NP fields enable us to describe

effects where a simple correspondence between partonic and hadronic expressions breaks

down without double counting the hadronization effects related to particles that remain in

the same region. In the OPE with a single non-perturbative Λ field, there is only a single

q− momentum, so that at this order the OPE gives q−1 = q−2 = q−. Thus the NP source

fields satisfying Θ
�
NP(θΛ, θ1, ∆φ1) = 1 correspond to the term for region (i), and those with

Θ �
NP(θΛ, θ1, ∆φ1) = 1 correspond to the terms for regions (ii) and (iii). This leads to the

result quoted in eq. (4.20).

B Collinear-soft function with a probe nonperturbative gluon

Here we provide some details of the results presented in section 4.3 required to demonstrate

the factorization of nonperturbative corrections, and to show that the boundary correction

from soft drop failing subjets is subleading at LL accuracy.
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B.1 Analysis with one perturbative gluon

B.1.1 Measurement operator in SDOE region

We first start by considering the measurement operator for the diagrams in figures 10

and 11. The momentum of the collinear-soft perturbative gluon is taken to be p, which

can be real or virtual, and that of the NP source gluon to be q, which is always real. Here

the total plus momentum `+ of the real radiation kept by soft drop is measured. For the

real graphs with p passing the cut the measurement operator is given by

Mp+q=Θ
◦◦
NP(θq,θp,∆φ)Θ

�
NP(θq,θp,∆φ)

{
Θ
p+q
sd δ(`+−p+−q+)+Θp+q

sd δ(`+)

}
(B.1)

+Θ
◦◦
NP(θq,θp,∆φ)Θ�

NP(θq,θp,∆φ)

{
Θ
p−q
sd δ(`+−p+−q+)+Θp−q

sd

[
Θ
q
sdδ(`

+−q+)+Θq
sdδ(`

+)
]}

+Θ◦◦NP(θq,θp,∆φ)

{
Θ
q
sdδ(`

+−p+−q+)+Θq
sd

[
Θ
p−q
sd δ(`+−p+)+Θp−q

sd δ(`+)
]}
,

whereas for the virtual graphs for p this is simply a soft drop test on the NP gluon q:

Mq = Θ
q
sdδ(`

+ − q+) + Θ q
sdδ(`

+) . (B.2)

Here the unbarred Θ’s are complements of the Θ’s, so Θ = 1−Θ. The three lines in eq. (B.1)

correspond to the three CA clustering situations we discussed above in appendix A. In the

first line in eq. (B.1), p and q are first combined together into a subjet and the combined

momentum p+ q is tested for soft drop with the collinear jet. In the second line, the first

step of clustering combines q with the collinear parton, with q representing momentum lost

by the CS subjet, and hence the soft drop test is first applied on p− q. The third line with

Θ◦◦NP corresponds to the case when p and the collinear jet are clustered first, and thus the

first soft drop test compares q and the collinear+p subjet. In this case the NP particle lies

outside the shaded region in figure 7a.

The superscripts on the Θsd and Θsd operators correspond to the momentum that gets

soft drop tested with the collinear parton. They represent soft drop passing and failing

conditions respectively. In accordance with eq. (4.21) and the discussion in appendix A,

in the first line where q is clustered with the softer subjet, the momentum tested for soft

drop is p + q. The next two cases in the second and the third line reduce the momentum

of pµ from the point of view of the soft drop condition. On the other hand, the NP

particle contributes to the total momentum as long as it is part of either the collinear or

the collinear-soft subjet, as shown by the arguments of the δ-functions.

In the SDOE region, the probability of a NP emission to pass soft drop in this region

alone is exponentially Sudakov suppressed. Hence, we set Θ
q
sd = 0 and Θq

sd = 1 in eqs. (B.1)

and (B.2). Thus, expanding to first order in the SDOE region, the measurement operators

– 65 –



J
H
E
P
1
2
(
2
0
1
9
)
0
0
2

simplify to

Mp+q SDOE
= δ(`+) + Θ

p
sd

[
δ(`+ − p+)− δ(`+)

]
(B.3)

+ Θ
◦◦
NP(θq, θp, ∆φ) Θ

p
sd

[
δ(`+ − p+ − q+)− δ(`+ − p+)

]
+
(

Θ
�
NP(θq, θp, ∆φ)−Θ�

NP(θq, θp, ∆φ)
)

∆Θsd

[
δ(`+ − p+)− δ(`+)

]
Mq SDOE

= δ(`+) , (B.4)

where ∆Θsd is given by

∆Θsd = δ

(
p−

Q
− zcut

(
θp
R0

)β) q−

Q

[
1 + β

(
1− θq

θp
cos(∆φ)

)]
. (B.5)

In simplifying to eq. (B.3) we made use of the following relations related to the geometric

regions:

Θ
◦◦
NP Θ

�
NP = Θ

�
NP , (B.6)

Θ◦◦NP + Θ
◦◦
NP Θ�

NP = Θ�
NP .

We have written eq. (B.3) such that the second and third lines correspond to the shift

correction in the + momentum and the boundary correction, respectively, as we saw above

in eqs. (4.23) and (4.24). Note that we dropped the subleading q+ shift in the boundary

correction term. The term −δ(`+−p+) in the shift correction in the second line in eq. (B.3)

results from separating out the partonic measurement.

B.1.2 Abelian graphs

In the following we give details of the computation of the abelian graphs shown in figure 10

and discussed in section 4.3.1. The sum of all the diagrams with the real perturbative

gluon carrying momentum pµ (with examples shown as the second and third diagrams in

figure 10) reads:

∑
(abelian, real) = Cκ(4Cκ − 2CA)(g2µ̃2ε)2

∫
ddp

(2π)d
C(p) n · n̄

n · p n̄ · p

×
∫

ddq

(2π)d
C̃(q) n · n̄

n · q n̄ · q
Mp+q , (B.7)

where qµ is the momentum of the nonperturbative gluon and Cκ = CF or CA is the color

factor for quark or gluon being the parent parton, respectively. C(p) and C̃(q) implement

the onshell cut conditions:

C(p) = 2π δ(p2)Θ(p0) , C̃(q) = 2π δ(q2 −m2)Θ(q0) , (B.8)

and the MS factor µ̃2ε = (µ2eγE/(4π))ε. For simplicity in eq. (B.7), and also in the

following, we include an implicit overall factor of Q
1

1+β

cut on the left hand side in the meaning

of sum over graphs. In eq. (B.8) m2 ∼ Λ2
QCD is a mass term for the nonperturbative source
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gluon, which for this calculation can be thought of as a proxy for the mass of the NP

subjet. We get two Eikonal factors for both the gluons emitted from the parent parton.

The virtual diagrams (examples are the last two diagrams in figure 10) add to give

∑
(abelian, virtual) = −Cκ(4Cκ − 2CA)(g2µ̃2ε)2

∫
ddp

(2π)d
C(p) n · n̄

n · p n̄ · p

×
∫

ddq

(2π)d
C̃(q) n · n̄

n · q n̄ · q
Mq . (B.9)

The sum of all the abelian graphs is then given by

∑
(abelian) = Cκ(4Cκ − 2CA)(g2µ̃2ε)2

∫
ddp

(2π)d
C(p) n · n̄

n · p n̄ · p

×
∫

ddq

(2π)d
C̃(q) n · n̄

n · q n̄ · q
[
Mp+q −Mq

]
=

∫
ddq

(2π)d

[
g2 (4Cκ − 2CA) µ̃2ε C̃(q)

q+ q−

]
αsCκ
π

(µ2eγE )ε

Γ(1− ε)

×
∫ ∞

0

dp+ dp−

(p+ p−)1+ε

[
Mp+q −Mq

]
. (B.10)

Note that the δ(`+) term in eq. (B.4) in the virtual graphs cancels the first δ(`+) term in

eq. (B.3) from the real graphs. This yields the result stated in eqs. (4.33) and (4.34).

B.1.3 Non-Abelian graphs

In this section we give details of the computation of the non-abelian diagrams shown in

figure 11 and discussed in section 4.3.2. The sum of real radiation graphs (with examples

given by the first two diagrams in figure 11) gives:

∑
(non-abelian, real) = 4CκCA(g2µ̃2ε)2

∫
ddp

(2π)d

∫
ddq

(2π)d
C(p) C̃(q)Mp+q 1

(p+ q)2

×
[

1

p+(p− + q−)
+

1

q+(p− + q−)
+

1

(p+ + q+)p−
(B.11)

+
1

(p+ + q+)q−
− 4

(p+ + q+)(p− + q−)
+

1

q+p−
+

1

p+q−

]
Expanding the Eikonal propagators in the limit pµ � qµ for all the components gives∑

(non-abelian, real)

= 4CκCA(g2µ̃2ε)2

∫
ddp

(2π)d

∫
ddq

(2π)d
C(p) C̃(q)Mp+q 1

(p+ q)2

[
2

q+p−
+

2

p+q−

]
,

=
αsCκ
π

(µ2eγE )ε

Γ(1− ε)

∫ ∞
0

dp+ dp−

(p+ p−)ε

∫
dφp
2π

∫
ddq

(2π)d
g2CA µ̃

2ε C̃(q)
q+ q−

Mp+q (B.12)

× 2

p+q− + q+p− − 2
√
p+p−|~q⊥| cos(∆φ)

[
q−

p−
+
q+

p+

]
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where we made use of the onshell cut conditions in eq. (B.8) to simplify the propagator.

This yields

∑
(non-abelian, real) =

αsCκ
π

(µ2eγE )ε

Γ(1− ε)

∫ ∞
0

dp+ dp−

(p+ p−)1+ε

∫
ddq

(2π)d
2 g2CA µ̃

2ε C̃(q)
q+ q−

Mp+q

× q+p− + p+q−

p+q− + q+p− − 2
√
p+p−|~q⊥| cos(∆φ)

. (B.13)

Next consider the virtual non-abelian graphs (examples are the last two diagrams in

figure 11).6 The sum of all the non-abelian graphs reads

∑
non-abelian =

αsCκ
π

(µ2eγE )ε

Γ(1− ε)

∫ ∞
0

dp+ dp−

(p+ p−)1+ε

∫
ddq

(2π)d
2 g2CA µ̃

2ε C̃(q)
q+ q−

×
[
Mp+q −Mq

] q+p− + p+q−

p+q− + q+p− − 2
√
p+p−|~q⊥| cos(∆φ)

. (B.14)

Note that the δ(`+) term again cancels in the differenceMp+q−Mq. This yields the result

stated in eq. (4.41).

B.2 Analysis with two perturbative emissions

B.2.1 Confirmation of the NP factorization at O(α2
s)

In this appendix we perform a cross check on the factorization of the nonperturbative

matrix element by using two perturbative emissions, one of which stops the soft drop and

the other being either a failing or an unresolved emission. We show examples of such

graphs in figure 26. For simplicity, in this exercise, we will only evaluate the real radiation

graphs, where two perturbative gluons and one nonperturbative source gluon run across

the cut. The graphs with one or both the perturbative gluons being virtual simply serve to

cancel certain terms and correspond to the cases already considered above in appendix B.1.

At LL it suffices to consider the diagrams with both the perturbative gluons having eikonal

couplings to the energetic collinear parton. The soft drop stopping gluon has the momen-

tum pµ2 and the additional gluon has pµ1 . At LL we can limit ourselves to the case where

the angles θp1 and θp2 are strongly ordered, such that we have the following two scenarios:

pµ1 fails soft drop : R� θp1 � θp2 ,

pµ1 is an unresolved emission : θp1 � θp2 � R . (B.15)

Concerning attachments of the NP gluon, at leading order, we again only need to consider

diagrams where the NP gluon is either emitted last from the collinear parton (described by

a Wilson line), or is attached to one or both of the perturbative gluons. From eqs. (4.35)

6Unlike for the abelian graphs, here it is known that there can be additional 1/ε UV poles which generate

anomalous dimensions for the power correction parameters [25], which here would sum single logarithms

generated between ΛQCD and the collinear-soft scale. Consideration of these effects is beyond the scope of

this work.
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Figure 26. Examples of diagrams with one perturbative soft drop failing or unresolved gluon

(purple, labeled 1), one perturbative soft drop passing gluon (magenta, labeled 2), and a nonper-

turbative gluon (brown, labeled NP). Dashed line represents measurement of the plus momentum

of the passing gluon along with the soft drop operator. Eikonal emissions of perturbative gluons

are considered. Diagrams with virtual perturbative gluons are not shown. Graphs with a virtual

NP gluon are not considered.

and (4.47) we see that the combined NP source function from the abelian and non-abelian

graphs derived with a single perturbative emission is given by

F̃ (kµ) = 4g2 µ̃2ε C̃(k)

[(
Cκ −

CA
2

)
1

k+ k−
+
CA
2

1

k+ k−
k+ + k−

k+ + k− − 2 |~k⊥| cos(φk)

]
. (B.16)

Here the variables (k+, k−, k⊥) are related to the NP gluon momentum qµ by the rescaling

in eq. (4.25) with θcs = θp2 being the angle of the stopping gluon with respect to the jet

axis. The goal is to check that also in the presence of an additional perturbative emission,

the same source function of eq. (B.16) emerges at LL accuracy. We anticipate that in

presence of additional perturbative emissions at LL, we will obtain an additional Cκ for

each emission. The contributions from all the real emission diagrams of the kind shown in

figure 26, can be then decomposed into the following color basis:

C2
κ

(
Cκ −

CA
2

)
, C2

κ

CA
2
, Cκ

(
CA
2

)2

. (B.17)

The graphs involving two triple gluon vertices, such as the last two diagrams in figure 26,

and many more, contribute with a Cκ(CA/2)2 color factor. For simplicity, we will not

include these diagrams in this analysis and hence will only consider contributions involving

the first two color structures in eq. (B.17), which are generated by the abelian graphs and

the non-abelian graphs involving a single triple gluon vertex.

We first consider the measurement operator M(`+, pµ1 , p
µ
2 , q

µ) for the case of two per-

turbative emissions. It is a higher order generalization of the two emission case in eq. (B.3)
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and can be expressed as follows

M(`+, pµ1 , p
µ
2 , q

µ) =M(`+, pµ1 , p
µ
2 ) + Θ(θp1 − θp2)Θp1

sd∆M(`+, pµ2 , q
µ) (B.18)

+ Θ(θp2 − θp1)∆M(`+, pµ1 , p
µ
2 , q

µ) .

The first term on the right hand side is the measurement for the leading power term that

only involves the two perturbative emissions pµ1 and pµ2 . Since we can ignore clustering of

pµ1 and pµ2 due to the strong ordering limits, it reads:

M(`+, pµ1 , p
µ
2 ) = Θ(θp1 − θp2)Θp1

sd

[
Θ
p2
sdδ(`

+ − p+
2 ) + Θp2

sdδ(`
+)
]

(B.19)

+ Θ(θp2 − θp1)Θ
p2
sdδ(`

+ − p+
1 − p

+
2 ) .

The second term and the third term in eq. (B.18) account for the power corrections in the

two cases in eq. (B.15), namely, when p1 fails soft drop first and when p1 lies at a smaller

angle, respectively. They are given by

∆M(`+,pµ2 ,q
µ)=Θ

◦◦
NP(θq,θp2 ,∆φ)Θ

p2
sd

[
δ(`+−p+

2 −q
+)−δ(`+−p+

2 )
]

(B.20)

+∆Θ
p2
sd

(
Θ

�
NP(θq,θp2 ,∆φ)−Θ�

NP(θq,θp2 ,∆φ)
)[
δ(`+−p+

2 )−δ(`+)
]
,

∆M(`+,pµ1 ,p
µ
2 ,q

µ)=Θ
◦◦
NP(θq,θp2 ,∆φ)Θ

p2
sd

[
δ(`+−p+

1 −p
+
2 −q

+)−δ(`+−p+
1 −p

+
2 )
]

+∆Θ
p2
sd

(
Θ

�
NP(θq,θp2 ,∆φ)−Θ�

NP(θq,θp2 ,∆φ)
)[
δ(`+−p+

2 )−δ(`+)
]

−∆Θ
p2
sd

(
Θ

�
NP(θq,θp2 ,∆φ)−Θ�

NP(θq,θp2 ,∆φ)
)

Θ
p1
sd

[
δ(`+−p+

1 )−δ(`+)
]
.

Here the final term involving Θ
p1
sd in the boundary correction in ∆M(`+, pµ1 , p

µ
2 , q

µ) results

from the case where pµ2 fails soft drop due to hadronization and the groomer then recurses

to test the inner pµ1 emission. We will consider this term in detail in appendix B.2.2 where

we show it to be subleading at LL. We can thus ignore this term for now. Note that in the

limit where pµ1 is an unresolved emission with p+
1 � p+

2 , the two ∆M formulas in eq. (B.20)

become equal and eqs. (B.18) and (B.19) then simplify to the following expression:

M(`+, pµ1 , p
µ
2 , q

µ) =M(`+, pµ1 , p
µ
2 ) +

[
1−Θ(θp1 − θp2) Θ

p1
sd

]
∆M(`+, pµ2 , q

µ) , (B.21)

where the leading power term in this limit is given by

M(`+, pµ1 , p
µ
2 )

p+1�p
+
2=
[
1−Θ(θp1 − θp2) Θ

p1
sd

]
Θ
p2
sdδ(`

+ − p+
2 ) + Θ(θp1 − θp2) Θp1

sd Θp2
sd δ(`

+) .

(B.22)

We now consider the abelian diagrams, such as the first two graphs in the top row

in figure 26. With the gluon carrying qµ always being the last radiated, the sum of these

diagrams is given by∑
(abelian, real, LL) =

(
αs
π

(µ2eγE )ε

Γ(1− ε)

)2 ∫ ∞
0

dp+
1 dp

−
1

(p+
1 p
−
1 )ε

∫ ∞
0

dp+
2 dp

−
2

(p+
2 p
−
2 )ε

∫
ddq

(2π)d
(B.23)

×M(`+, pµ1 , p
µ
2 , q

µ)

{
4g2 µ̃2ε C̃(q)Cκ

(
Cκ −

CA
2

)2 1

p+
1 p
−
1

1

p+
2 p
−
2

1

q+q−
+ . . .

}
,
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where we only show the sum of terms from all the abelian diagrams that add up to give

the independent emission result, as this will give the largest logarithmic contribution. The

terms denoted by ellipsis with other color structures give subleading logarithms. In the

following we will suppress such terms.

As an aside, we note that upon including the virtual terms, the leading power mea-

surement in the unresolved limit of pµ1 emission can be manipulated into the same form as

in the coherent branching formalism in eq. (5.7),

M(`+, pµ1 , p
µ
2 ) +Mvirtual(`

+, pµ2 ) = Θ(θp1 − θp2)
[
−Θ

p1
sd

]
Θ
p2
sd

[
δ(`+ − p+

2 )− δ(`+)
]
. (B.24)

Keeping only the LL terms, the sum of diagrams involving one triple-gluon vertex,

with the NP gluon attached to either of the perturbative gluons, with examples being the

third and the fourth diagrams in figure 26, yield

∑
(1 n.a., real, LL) =

(
αs
π

(µ2eγE )ε

Γ(1− ε)

)2 ∫ ∞
0

dp+
1 dp

−
1

(p+
1 p
−
1 )1+ε

×
∫ ∞

0

dp+
2 dp

−
2

(p+
2 p
−
2 )1+ε

∫
ddq

(2π)d
M(`+, pµ1 , p

µ
2 , q

µ)

× 4g2 µ̃2ε C̃(q)Cκ
CA
2

(
Cκ −

CA
2

)
×
[(

p+
1

q+
+
p−1
q−

)
1

(p1 + q)2
+

(
p+

2

q+
+
p−2
q−

)
1

(p2 + q)2

]
. (B.25)

The two terms in the last line of eq. (B.25) result from attachments of the NP gluon to p1

and p2 respectively.

In the next step, we remove the dependence of the non-perturbative part of the matrix

element on θp2 and φp2 by performing a boost and a rotation to the NP gluon qµ as in

eq. (4.25). The result for the abelian graphs in eq. (B.23) becomes

∑
(abelian, real, LL) =

(
αs
π

(µ2eγE )ε

Γ(1−ε)

)2

Cκ

(
Cκ−

CA
2

)2∫ ∞
0

dp+
1 dp

−
1

(p+
1 p
−
1 )1+ε

∫ ∞
0

dp+
2 dp

−
2

(p+
2 p
−
2 )1+ε

×
∑
a

M̃a(`
+,pµ1 ,p

µ
2 )

∫
ddk

(2π)d
MNP

a (kµ) 4g2 µ̃2ε C̃(k)
1

k+k−
, (B.26)

where the measurement function after rescaling has now factorized into a sum M →∑
a M̃aMNP

a , where the terms in the sum include the leading power result (a = 0), the
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shift (a = ◦◦) and the boundary corrections (a = �) in eq. (B.21):

M̃0(`+, pµ1 , p
µ
2 ) =M(`+, pµ1 , p

µ
2 ) , (B.27)

M̃NP
0 (kµ) = 1 ,

M̃◦◦(`+, pµ1 , p
µ
2 ) = −θp2

2

[
1−Θ(θp1 − θp2) Θ

p1
sd

]
Θ
p2
sd

d

d`+
δ(`+ − p+

2 ) ,

M̃NP
◦◦ (kµ) = k+ Θ

◦◦
NP

(
k⊥
k−

, 1, φk

)
,

M̃�(`+, pµ1 , p
µ
2 ) =

2

θp2

[
1−Θ(θp1 − θp2) Θ

p1
sd

]
δ

(
p−2
Q
− z̃cut θ

β
p2

)[
δ(`+ − p+

2 )− δ(`+)
]
,

M̃NP
� (kµ) =

(
k− + β

(
k− − k⊥ cosφk

)) [
Θ

�
NP

(
k⊥
k−

, 1, φk

)
−Θ �

NP

(
k⊥
k−

, 1, φk

)]
.

We see that the factors M̃a(`
+, pµ1 , p

µ
2 ) have no dependence on the NP momentum, and

the restriction in the rescaled coordinates is now implemented viaMNP
a (kµ). Furthermore,

the operators MNP
◦◦ (kµ) and MNP

� (kµ) will implement the same moments of the source

function as in eq. (4.54) derived using one perturbative emission analysis.

While the NP matrix element for the abelian result in eq. (B.26) remains the same, the

terms appearing in the non-abelian results in parentheses in eq. (B.25) yield the following

expressions

(
p+

1

q+
+
p−1
q−

)
1

(p1 + q)2
=

1

k+k−

k+ θp2
θp1

+ k−
θp1
θp2

k+ θp2
θp1

+ k−
θp1
θp2
− 2|~k⊥| cos(φk)

, (B.28)

(
p+

2

q+
+
p−2
q−

)
1

(p2 + q)2
=

1

k+k−
k+ + k−

k+ + k− − 2|~k⊥| cos(φk)
,

where we have used the small angle approximation and on-shell condition,

θpi = 2

√
p+
i

p−i
, |~pi⊥| =

√
p+
i p
−
i , i = 1, 2 . (B.29)

We see that upon rescaling the momentum qµ with respect to θp2 leaves a residual θp1/θp2
dependence in the terms where the gluon is attached to p1. We can, however, simplify

the expressions by making use of the fact that only a strong ordering of the angles as in

eq. (B.15) will contribute to the LL result. In these two limits we find

k+ θp2
θp1

+ k−
θp1
θp2

k+ θp2
θp1

+ k−
θp1
θp2
− 2|~k⊥| cos(φk)

θp1�θp2−→ 1 , (B.30)

k+ θp2
θp1

+ k−
θp1
θp2

k+ θp2
θp1

+ k−
θp1
θp2
− 2|~k⊥| cos(φk)

θp1�θp2−→ 1 .
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Thus, taking either of the limits in eq. (B.30) we get the same result for the non-abelian

graphs in eq. (B.25), which simplify to

∑
(1 n.a., real, LL) =

(
αs
π

(µ2eγE )ε

Γ(1− ε)

)2

Cκ
CA
2

(
Cκ −

CA
2

)
×
∫ ∞

0

dp+
1 dp

−
1

(p+
1 p
−
1 )1+ε

∫ ∞
0

dp+
2 dp

−
2

(p+
2 p
−
2 )1+ε

×
∑
a

M̃a(`
+, pµ1 , p

µ
2 )

∫
ddk

(2π)d
MNP

a (kµ)4g2µ̃2εC̃(k)

×
[

1

k+k−
+

1

k+k−
k+ + k−

k+ + k− − 2|~k⊥| cos(φk)

]
. (B.31)

Thus, upon adding the results in eqs. (B.26) and (B.31) we find that for the C3
κ and C2

κCA
terms we obtain the following expression:

∑
(real, LL, C3

κ, C2
κCA) =

∑
a

(
αsCκ
π

(µ2eγE )ε

Γ(1− ε)

)2

×
∫ ∞

0

dp+
1 dp

−
1

(p+
1 p
−
1 )1+ε

∫ ∞
0

dp+
2 dp

−
2

(p+
2 p
−
2 )1+ε

M̃a(`
+, pµ1 , p

µ
2 )

×
∫

ddk

(2π)d
4 g2 µ̃2ε C̃(k)MNP

a (kµ)
1

k+k−

×
[(
Cκ −

CA
2

)
+
CA
2

k+ + k−

k+ + k− − 2 |~k⊥| cos(φk)

]
. (B.32)

We thus see that eq. (B.32) involves precisely the same source function as identified in

eq. (B.16) from the analysis of one perturbative emission, and hence, following eq. (B.27),

the same hadronic parameters. This confirms our expectation that the OPE involves

precisely the same NP matrix element for any number of perturbative emissions at LL order.

B.2.2 Boundary correction from failing subjets

Here we evaluate the perturbative coefficient for the power correction to the soft drop

tests for failing subjets that have collinear-soft scaling and show that their contribution is

subleading at LL accuracy. This serves to demonstrate that at LL accuracy one does not

need to consider boundary corrections from failing collinear-soft subjets. We consider the

same setup as in appendix B.2.1 with two perturbative gluons that have the collinear-soft

scaling, one of which lies at larger angle and fails soft drop, and the other one which passes,

plus an additional nonperturbative probe gluon. More precisely, we focus on the last term

involving Θ
p1
sd in the boundary correction in ∆M(`+, pµ1 , p

µ
2 , q

µ) in eq. (B.20), where the

pµ2 is now a soft drop failing emission. Having checked that the same source function and

hadronic parameters appear in the case of two perturbative emissions, the contribution

from this term is simply given by

Shad(2)
c (`+, Qcut, β, µ) =

Υκ
1(β)

Q
∆S �,fail

c (`+, Qcut, β, µ) , (B.33)
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where the Wilson Coefficient for failing subjets reads

∆S �,fail
c (`+, Qcut, β, µ) = Q

−1
1+β

cut

(
αsCκ
π

(µ2eγE )ε

Γ(1− ε)

)2

×
∫ ∞

0

dp+
1 dp

−
1

(p+
1 p
−
1 )1+ε

∫ ∞
0

dp+
2 dp

−
2

(p+
2 p
−
2 )1+ε

M̃′�(`+, pµ1 , p
µ
2 ) . (B.34)

The measurement in the perturbative sector M̃′�(`+, pµ1 , p
µ
2 ) results from similar manipu-

lations that led to eq. (B.27), and is given by

M̃′�(`+, pµ1 , p
µ
2 ) =

2

θp2
Θ
(
θp2−θp1

)[
−δ
(
p−2
Q
−z̃cutθ

β
p1

)]
Θ

(
p−1
Q
−z̃cut θ

β
p1

)[
δ(`+−p+

1 )−δ(`+)
]
.

(B.35)

Since we are in the SDOE region we restrict ourselves to `+ > 0 and discard the δ(`+)

term. On performing the remaining three integrations, we find that the integral is finite

and can be evaluated with ε = 0, giving

∆S �,fail
c (`+, Qcut, β, µ) = −

(
αsCκ
π

)2 2 + β

(1 + β)2

1

`+Q
1

1+β

cut

Q

Q
1

2+β

cut

(
`+
) 1+β

2+β

. (B.36)

Thus we see that the correction is O(α2
s) and does not involve a large logarithm, and is

hence, subleading at LL accuracy.
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[82] C.F. Berger, T. Kúcs and G.F. Sterman, Event shape/energy flow correlations, Phys. Rev. D

68 (2003) 014012 [hep-ph/0303051] [INSPIRE].
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