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1 Introduction

Weyl semimetal is a nontrivial topological gapless state and exhibits lots of exotic novel

and robust properties, including chiral anomaly and Fermi arc etc. It has been a research

focus recently as they are both experimentally important and theoretically interesting [1–

3]. On the one hand, they are ideal systems to test the macroscopic effects due to quantum

anomaly [4], including chiral magnetic effect and transport effects induced by the mixed

axial-gravitational anomaly. On the other hand, Weyl semimetal is a novel kind of topolog-

ical quantum matter which goes beyond the Landau-Ginzburg’s paradigm for classification

of states of matter. Similar to graphene systems [5], Weyl semimetal systems could be

strongly coupled and do not possess well-defined quasiparticles. It is theoretically chal-

lenging and important to study strongly interacting Weyl semimetals, to go beyond the

conventional approach on topological states of matter based on topological band theory or

weakly coupled theory.

The holographic correspondence maps the difficult question of strongly interacting

field theory to a tractable weakly coupled gravitational problem. There have been lots of

remarkable applications of holography to tackle the strongly interacting condensed matter

questions [6–8]. In particular, holographic models for strongly interacting Weyl semimetals
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have been constructed in [9, 10] in which the anomalous Hall conductivity is an order

parameter to characterize the quantum topological phase transition.1 The effects of the

surface state [13] and topological invariants [14] in this holographic model exhibit key

features of topological Weyl semimetals. Therefore with strong interaction topological Weyl

semimetal still exits and holography is a practical tool to explore its property. Moreover,

the nontrivial topological structure in the strongly interacting system can be revealed from

the gravitational bulk physics [14, 15]. There exist two bulk matter fields in which one

field is to generate a gap in the dual theory while the other matter field is to deform the

Fermi points to a topologically nontrivial configuration (Weyl points or nodal lines). The

different topological phases arise due to the different IR solutions in the bulk which are

adiabatically disconnected and only one of the matters fields dominates in each solution.

From the holographic model a nontrivial prediction is that the presence of odd viscosity

is due to mixed axial-gravitational anomaly [16]. Other various interesting aspects of

holographic Weyl semimetals have been explored, including optical conductivity [17], axial

Hall conductivity [18], disorder effect on topological phase transition [19] and the butterfly

velocity [20].

In condensed matter systems, from weakly coupled theory Weyl semimetal can go

through a quantum phase transition to a normal band insulator [21, 22] or to Chern in-

sulator [21, 23, 24] etc.2 It would be extremely interesting to explore the phase diagram

of strongly interacting topological Weyl semimetal from holography. In the previous holo-

graphic models [9, 10] only a portion of degrees of freedom are gapped in the trivial phase

and Weyl semimetal phase goes to a trivial semimetal phase after the phase transition.

This paper aims to provide a holographic model to describe a quantum phase transition

from Weyl semimetal to a phase in which all the degrees of freedom are gapped, namely,

the trivial phase is instead an insulating phase. In doing so we start from the most generic

holographic Weyl semimetal model by using the Stueckelberg trick to replace the complex

scalar field in [9] by two real scalar fields and introduce the most general dilatonic cou-

pling. Writing the equations for fluctuations of gauge fields into a Schrodinger equation,

we can get the condition for the dilatonic couplings to produce the insulating phase. With

a proper choice of dilatonic coupling and potential terms, we could realise a holographic

topological quantum phase transition between strongly interacting Weyl semimetal phase

and Chern insulator (3+1D anomalous Hall state) phase. Then we show the evidences of

the phase transition from the perspectives of free energy and conductivities.

Our paper is organized as follows. In section 2, we introduce a generalized holographic

model with dilatonic coupling to realise the quantum phase transition from Weyl semimetal

phase to insulator phase and show that it is a first order phase transition. In section 3, the

conductivities of the dual theory are explored by studying the vector gauge field fluctuations

above the background geometry. Evidence for the insulating phase being a Chern insulator

is discussed. In section 4, we conclude and discuss the open problems. Appendices A, B, C

are devoted to the details of the field theory model, the finite temperature equations of

motion for holographic model and the Schrodinger potential approach for conductivities.

1There are also other holographic models for Weyl semimetal, e.g. from the perspectives of fermionic

spectral function [11] and top-down models [12].
2See appendix A for examples from field theoretical approach.
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2 Holographic setup

We shall start from the most general holographic system which duals to an anomalous

system with U(1)V × U(1)A. This U(1)A will be explicitly broken by turning on a source

term which plays the similar role of mass effect in the dual field theory. With the dilatonic

coupling, the generic holographic model is

S =

∫
d5x
√
−g
[

1

2κ2

(
R+ 12− 1

2
(∂φ)2 − V (φ)

)
− Y (φ)

4e2
F2 − Z(φ)

4e2
2

F 2

+
α

3
εabcdeAa

(
FbcFde + 3FbcFde

)
− W (φ)

2
(Aa − ∂aθ)2

]
+ SGH + Sc.t. (2.1)

with the vector gauge field strength Fab = ∂aVb − ∂bVa and axial gauge field strength

Fab = ∂aAb − ∂bAa. Here Va and Aa correspond to vector and axial current respectively.

κ is the gravitational constant, e, e2 are bulk vector and axial gauge coupling constants.

Note that the scalar fields φ and θ are real. The action is invariant under the gauge

transformation θ → θ + χ, Aa → Aa + ∂aχ. One can recover the holographic Weyl

semimetal model in [9] via Φ = 1√
2
φeiθ which is axially charged under the axial symmetry,

and choose Y (φ) = Z(φ) = 1, W (φ) = q2φ2, V (φ) = m2

2 φ
2. SGH is the Gibbons-Hawking

boundary action and Sc.t. is the counterterm that renormalized the on-shell action. Their

explicit forms are shown in (B.19) and (B.20) of appendix B. The model (2.1) is a generic

holographic model for Weyl semimetal.3

From now on we set 2κ2 = e2 = e2
2 = 1.4 The equations of motion of the system are

Rab −
1

2
gab
(
R+ 12

)
− 1

2
Tab = 0 ,

∇b
(
Y (φ)F ba

)
+ 2αεabcdeFbcFde = 0 ,

∇b
(
Z(φ)F ba

)
+ αεabcde

(
FbcFde + FbcFde

)
−W (φ)(Aa −∇aθ) = 0 ,

∇a∇aφ−
∂φY (φ)

4
F2 −

∂φZ(φ)

4
F 2 −

∂φW (φ)

2
(Aa − ∂aθ)2 − ∂φV (φ) = 0 ,

∇a [W (φ)(Aa −∇aθ)] = 0 ,

where

Tab = Y (φ)

[
FacF c

b −
1

4
gabF2

]
+ Z(φ)

[
FacF

c
b −

1

4
gabF

2

]
+W (φ)

[
(Aa − ∂aθ)(Ab − ∂bθ)−

1

2
gab(Ac − ∂cθ)2

]
+∇aφ∇bφ−

1

2
gab(∂φ)2 − gabV (φ) .

3Note that εabcde =
√
−gεabcde with ε0123r = 1. Similar generalisation has been made in [17] to study

the optical conductivity in the quantum critical regime.
4Note that we have already set the AdS radius L = 1. One could study the system in details without

fixing 2κ2 = e2 = e22 = 1 while introducing two additional dimensionless free parameters β1 = e√
2κ

and

β2 = e2√
2κ

charactering the ratios between the electromagnetic interactions and gravitational interaction

following e.g. [25]. This can be achieved by rescale: Va → β1Va, Aa → β2Aa, θ → β2θ.
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The dual consistent currents can be obtained through the variation of the on-shell

action with respect to the gauge fields,

Jµ = lim
rc→∞

[√
−gY Fµr + 4α

√
−gεrµνρλAνFρλ +

δSc.t.

δvµ

]
, (2.2)

Jµ5 = lim
rc→∞

[√
−gZFµr +

4

3
α
√
−gεrµνρλAνFρλ +

δSc.t.

δaµ

]
, (2.3)

with

∇µJµ = 0 , (2.4)

∇µJµ5 = lim
rc→∞

[√
−gW (Ar −∇rθ)− α

3

√
−gεrµνρλ(FµνFρλ + 3FµνFρλ)

]
+ c.t. . (2.5)

For simplicity the countertem part is not shown here. Note that the above equations

are the dual Ward identities at the operator level. One can always choose the radial

gauge Ar = 0. For a particular state of the dual field theory, i.e. the fluctuation state

around the background in the bulk, the term −
√
−gWgrr∂rθ plays the role of the explicit

breaking term as in the weakly coupled theory which can be found in appendix A. Since

the Ward identity of conserved currents should not depend on the coupling constant of the

system, it is expected that this holographic model describes a strongly interacting Weyl

semimetal model.

We shall focus on the zero temperature physics. The ansatz for the background fields

at zero temperature is

ds2 = u(−dt2 + dx2 + dy2) +
dr2

u
+ hdz2 , A = Azdz , φ = φ(r) , (2.6)

where fields u, h,Az, φ are functions of the radial coordinate r and the AdS5 boundary is

located at r →∞. Note that according to the equation of motion for θ, a constant solution

of θ will be found and we have set it to be zero. The corresponding equations of motion are

3u′′

u
+ φ′2 − 3h′u′

2hu
− WA2

z

hu
= 0 , (2.7)

1

4
φ′2 +

6

u
− 3u′

4u

(
u′

u
+
h′

h

)
− V

2u
− WA2

z

4uh
+
ZA′2z
4h

= 0 , (2.8)

A′′z +A′z

(
2u′

u
− h′

2h
+
φ′∂φZ

Z

)
− AzW

uZ
= 0 , (2.9)

φ′′ + φ′
(

2u′

u
+
h′

2h

)
−
∂φV

u
−
A2
z∂φW

2hu
−
A′2z ∂φZ

2h
= 0 , (2.10)

where the prime is the derivative with respect to the radial coordinate r. We have four

independent ODEs for four unknown fields.

In this paper we will choose

Z(φ) = 1 , W (φ) = −q0

[
1− cosh

[√
2

3
φ

]]
, V (φ) =

9

2

[
1− cosh

[√
2

3
φ

]]
. (2.11)
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Note that the system is invariant under the transformation φ → −φ. When φ → 0, we

have W (φ) ' q0
3 φ

2 and V (φ) ' −3
2φ

2. It is obvious that q0 plays a similar role as axial

charge and we restrict to q0 > 0. Close to the boundary (i.e. r →∞), φ→ 0, the potential

in (2.11) has the form of V (φ) = 1
2m

2φ2 + . . . with m2 = −3. The coupling Y does not

play any role in the background solution while it plays an important role for computing

the conductivities. We set

Y (φ) = cosh

[√
2

3
φ

]
. (2.12)

Close to the UV boundary we have

φ =
M

r
+ . . . , Az = b+ . . . (2.13)

and a detailed expansion will be shown in subsection 2.2. M and b play the same roles as

the sources of the scalar operator ψ̄ψ and chiral current ψ̄γ5γzψ. Turning on these two

sources, the dual field theory has the same structure as the weakly coupled field theory

described in appendix A. In the following we shall study the bulk geometry and its free

energy by tunning the parameter M/b in the UV.

2.1 Zero temperature solutions

To study the groundstate of the system, we focus on the zero temperature solutions.5 We

will first find the near horizon solutions and then turn on irrelevant perturbations to gen-

erate the full solutions. At zero temperature, we find three different kinds of IR solutions.

The insulating phase. For the insulating phase, the near horizon solution is6

u = r(1 + r) , (2.14)

h = r(1 + r) , (2.15)

Az = a1r
1
4

(
√

1+8q0−1) , (2.16)

φ = −
√

3

2
log

r

1 + r
, (2.17)

where a1 is a free parameter. Note that a1-term is the subleading term and it sources higher

oder terms in φ, thus different a1 will flow the geometry to different M/b. The leading

order of metric fields takes the form of ds2 = r(−dt2+dx2+dy2+dz2)+ dr2

r . This particular

metric is known as the GPPZ gapped geometry [29] and the properties of entanglement

entropy and behavior of dual scalar operators have been studied in e.g. [30, 31]. The

difference is that a nontrivial Az will generate an anisotropic geometry. As we will show

5At finite temperature the ansatz of the background fields, the corresponding equations of motion and

asymptotic expansions can be found in appendix B.
6The Ricci scalar for the near horizon geometry at the leading order is −3/r and therefore the geometry is

singular near the horizon. Nevertheless the scalar potential in this solution is bounded above and satisfy the

the Gubser criterion [27, 28]. Thus the singularity is acceptable and the dual field theory is not pathological.
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in subsection 3.1 there is a hard gap in the real part of diagonal optical conductivities

while the anomalous Hall conductivity is nonzero at zero frequency, therefore this phase

corresponds to a Chern insulator phase.

The Weyl semimetal phase. The near horizon solution is

u = r2 , (2.18)

h = r2 , (2.19)

Az = a0 +
φ2

0

4a0r
e
− 2a0

√
q0√

3r , (2.20)

φ =
φ0

r3/2
e
−a0

√
q0√

3r . (2.21)

The leading order of the IR geometry is an AdS5 geometry with a constant Az and we

can always rescale a0 to 1. The exponential terms are the irrelevant perturbations. With

the free parameter φ0, this IR geometry could flow to the whole spacetime asymptotic to

AdS5 with different M/b. This kind of near horizon also shows up in the groundstate of

the holographic superconductor [32, 33] and the holographic Weyl semimetal phase studied

in [9].

The critical point. The near horizon solution is

u = u0r
2
(
1 + δurαc

)
, (2.22)

h =
q0

9
r2β
(
1 + δhrαc

)
, (2.23)

Az = rβ
(
1 + δarαc

)
, (2.24)

φ =

√
3

2
(log φ1)

(
1 + δφrαc

)
. (2.25)

In the case of q0 = 15, we have (u0, β, φ1, αc) ' (1.150, 0.769, 1.797, 1.230) and (δu, δh, δa) '
(0.147,−1.043, 0.591)δφ. At the leading order there is a Lifshitz symmetry (t, x, y, r−1)→
c(t, x, y, r−1), z → cβz which can set δφ = −1 to flow the Lifshitz geometry to AdS5.

In the UV we have (M/b)c ' 0.986. Note that for q0 > 0 other relevant perturbations

around the Lifshitz fixed point are always complex which indicates the ciritical point is

unstable [34, 35] and we will confirm this by studying the free energy.

Integrating from the above near horizon solution to the boundary, we could obtain

the full solution. Different from the previous studies on holographic semimetals [9, 15], we

find that the near horizon behavior (2.18)–(2.21) flows to M/b whose value runs from zero

to (M/b)c, and keeps increasing to a finite value of (M/b)t+ with (M/b)t+ > (M/b)c and

then turns back to (M/b)c. While the near horizon behavior (2.14)–(2.17) flows to M/b

whose value runs from infinity to (M/b)c, and keeps decreasing to a finite (M/b)t− with

(M/b)t− < (M/b)c and increases to reach (M/b)c finally.7 Examples for the bulk profiles of

7Note that (M/b)t+ = 0.994, (M/b)t− = 0.977 and (M/b)c = 0.986. These values can also be read from

figure 2.
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r
b

ϕ

Figure 1. The bulk profiles of Az and φ for different values of M/b = 0.941 (green), 0.983 (blue),

0.987 (dashed cyan), 0.986 (dashed black), 0.984 (dashed brown), 0.987 (orange), 1.019 (purple).

The solid lines are profiles in the stable phase while dashed lines are for the unstable phase.

the matter fields at different values of M/b are shown in figure 1. The axial gauge field and

the scalar field configurations in the topological phase and the insulating phase are generally

separated by the bulk profiles (dashed black) at the critical point. In the topological phase,

from UV to IR the axial gauge field Az decreases monotonically and ends at a finite value

in the deep IR. The scalar field is not monotonic and it first increases, then decreases to

zero in the deep IR. In the insulating phase, the axial gauge field decreases from UV to

zero in the IR while the scalar field increases monotonically until it hits the IR singularity.

Near the critical value of M/b, we observe oscillatory behavior of the matter fields (dashed

color lines), which is due to the complex irrelevant deformations around the Lifshtiz fixed

point. This can be taken as a signature of unstable critical solution, indicating that the

phase transition is not continuous, which will be confirmed from the free energy in the

next subsection.

2.2 Asymptotic expansions and free energy

In order to study the stability of the background, we shall study the free energy of the bulk

geometry. The asymptotic behavior and free energy for the finite temperature case can be

found in appendix B.2 and the zero temperature results can be obtained straightforwardly

by setting f = u. At zero temperature, we have the following behaviour of fields near the

UV boundary

u = r2 − M2

6
+
u2

r2
+ . . . , (2.26)

h = r2 − M2

6
+
b2q0M

2

12

log r

r2
+
h2

r2
+ . . . , (2.27)

Az = b− bq0M
2

6

log r

r2
+
η

r2
+ . . . , (2.28)

φ =
M

r
− b2w0M

6

log r

r3
+
O

r3
+ . . . , (2.29)
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0.975 0.980 0.985 0.990 0.995
-2.231

-2.230

-2.229

-2.228

-2.227

M

b

Ω

Vb4(M/b)2.5

Figure 2. The free energy density as a function of M/b for q0 = 15. The blue (dashed) lines

are solutions generated from the Weyl semimetal phase while the red (dashed) line are from the

insulator phase. The black dot represents the free energy at the unstable critical point. The

system undergoes a first order quantum phase transition from the Weyl semimetal phase to an

insulating phase.

with u2 = 1
6(bη−MO) + 1

72q0b
2M2 + M4

108 and h2 = −1
3bη−

1
6MO− 1

144q0b
2M2 + M4

108 . The

free energy density can be obtained from the on-shell action to be

Ω

V
= − 1

24
b2M2q0 −

bη

2
+
M4

48
− MO

2
(2.30)

where η,O are the dual expectation values of the current and scalar operators. The free

energy can also be written as Ω
V = ε − Ts with ε, s the energy and entropy densities (for

details see appendix B.2).

With the bulk solution found in the previous subsection, we can obtain the free energy

numerically. Figure 2 shows the free energy as a function of M/b close to the phase

transition. The critical point generated by IR geometry (2.22)–(2.25) is unstable and the

system undergoes a first order quantum phase transition from the Weyl semimetal phase

to an insulator phase.8 This behavior exists for any q0 > 0.9 Notably this is quite different

from the previous holographic model [9] in which a continuous holographic phase transition

happens between the topological Weyl semimetal phase and a trivial semimetal phase. The

different order of the phase transition may imply the different underlying mechanics for

these two types of phase transitions.

The phase transitions for interacting Weyl semimetals were studied in [22] from the

field theoretical approach, and it was found that for sufficiently strong interactions there

exists a first order quantum phase transition between the Weyl semimetal and a normal

band insulator. Our holographic study shows that the quantum phase transition from

8Note that these quantum phases are not distinguished by symmetry breaking.
9Following the rescaling mentioned in footnote 4, one could recover the β1 and β2 by replacing q0 by q0e2.

Thus the order of the phase transition will not change for different values of β1 and β2. This is different

from the well-known result in holographic p-wave superfluids studied in [25] in which the order of the phase

transition depends on the ratio between gauge field coupling constant and gravitational coupling constant.
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strongly interacting Weyl semimetal to a Chern insulator (as we will show in the next

section) is also of first order. Thus it broads our understanding on the phase structure of

strongly interacting Weyl semimetals.

3 Transport properties of the dual theory

To figure out the exact nature of the stable phases, we should study the conductivities. In

the following we will compute the full frequency dependent longitudinal and transverse elec-

tric conductivities. We will also study the phase diagram from the behavior of anomalous

Hall conductivity at zero frequency.

The conductivities of a quantum many body system can be computed via the

Kubo formula

σij = lim
ω→0

1

iω
〈JiJj〉R(ω,k = 0) . (3.1)

In holography, the current-current retarded correlators can be computed by studying the

fluctuations of the gauge fields dual to the currents around the background with infalling

boundary conditions.

3.1 Longitudinal conductivities

We perturb the background (2.6) by the fluctuation δVz = vz(r)e
−iωt, and obtain

the equation

v′′z +

(
2u′

u
− h′

2h
+
∂φY

Y
φ′
)
v′z +

ω2

u2
vz = 0 . (3.2)

The electric conductivities depend on the form of dilatonic coupling Y (φ) in the action (2.1)

which is chosen to be (2.12). Near the conformal boundary we have

vz = v(0)
z +

v
(2)
z

r2
+
v

(0)
z ω2 log Λr

2r2
+ · · · . (3.3)

With proper boundary conditions in the IR, the optical longitudinal conductivity is then

σzz =
1

iω

(
2
v

(2)
z

v
(0)
z

− ω2

2

)
(3.4)

where we have considered the counterterm to cancel the log Λr term.

In the phase with IR geometry (2.14)–(2.17), there are two linearly independent solu-

tions for vz in IR

vz1 ' c1r
1
4

(1+
√

1−16ω2)
(

1 +O(r)
)
, (3.5)

vz2 ' c2r
1
4

(1−
√

1−16ω2)
(

1 +O(r)
)
. (3.6)

Both these two solutions are real and normalisable when ω < ∆ = 1/4. The unique

boundary condition can be fixed by the analyticity condition of the correlator in ω [26].

– 9 –
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When ω > ∆, the solutions become complex and we can choose the infalling boundary

condition

vz ' r
1
4

(1−i
√

16ω2−1)
(

1 +O(r)
)
. (3.7)

The solution in (3.5) and (3.6) to produce the above infalling boundary conditon under

the ω → ω + iε prescription is the first one, i.e. we choose the boundary condition for vz
when ω < ∆

vz ' r
1
4

(1+
√

1−16ω2)
(

1 +O(r)
)
. (3.8)

Since this boundary condition is real for ω < ∆, this leads to the result that the real

part of the conductivity σzz(ω) vanishes. There is a continuum above a gap in the optical

longitudinal conductivity. Note that in this calculation we have set the unit in which the

IR horizon geometry is of the form (2.14)–(2.17). As this solution flows to a specific value

of Az ' b0 at the UV boundary, this indicates that if we set the unit b = 1, the width

of the hard gap ∆/b is 1/4b0. As b0 depends on the parameter a1 in (2.16) which will

generate different M/b, we shall have different width of the gap for different M/b in the

insulating phase. Another equivalent way to see that there is indeed a hard gap in the

optical conductivity is from the Schrodinger potential approach in appendix C.

In the phase with IR geometry (2.18)–(2.21), the IR infalling boundary condition

for vz is

vz '
−iω
r
K1

[
−iω
r

]
. (3.9)

In this case there is always a continous gapless spectrum for Re[σzz(ω)].

With the boundary conditions (3.7) and (3.9), we could obtain the retarded Green

function. In figure 3, we plot the real part of the longitudinal conductivity in the topological

phase and the insulating phase for different values of M/b. In the topological phase, the

longitudinal conductivity is linear in ω at both small and large frequency regimes, which

is similar to the holographic results in [17]. In the insulating phase there is a hard gap in

the conductivity which confirms the nature of holographic insulating phase. There exists a

continuum gapless spectrum above the gap and the conductivity eventually becomes linear

in ω at large frequency.

The dependance of the width of the hard gap as a function of M/b is shown in figure 4.

Similar to the weakly coupled case, it is monotonically increasing when we increase M/b

in the insulator phase and for large enough M/b, we have ∆/b ∝ 0.22(M/b− 0.3).

3.2 Transverse conductivities

The transverse conductivities can be studied by considering fluctuations δVx =

vx(r)e−iωt, δVy = vy(r)e
−iωt. The corresponding equations for vx and vy are

v′′x +

(
u′

u
+
h′

2h
+
∂φY

Y
φ′
)
v′x +

ω2

u2
vx + 8iαω

A′z

Y u
√
h
vy = 0 , (3.10)

v′′y +

(
u′

u
+
h′

2h
+
∂φY

Y
φ′
)
v′y +

ω2

u2
vy − 8iαω

A′z

Y u
√
h
vx = 0 . (3.11)

– 10 –
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Figure 3. The real part of longitudinal conductivity as a function of the frequency ω/b for different

values of M/b = 0.941 (green), 0.983 (blue), 0.987 (orange), 1.019 (purple) in the topological phase

and the insulating phase.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

M

b

Δ

b

Figure 4. The dependance of the width of the hard gap as a function of M/b in the holographic

insulating phase (red) and weakly coupled field theory (dashed green).

Define v± = vx ± ivy, we obtain

v′′± +

(
u′

u
+
h′

2h
+
∂φY

Y
φ′
)
v′± +

ω2

u2
v± ± 8αω

A′z

Y u
√
h
v± = 0 . (3.12)

For the last two terms, in the deep IR r → 0, the term ω2

u2
always dominates. Thus the

near horizon boundary conditions are the same as the case for the longitudinal conductivi-

ties. More explicitely, for IR geometry (2.18)–(2.21), the IR infalling boundary conditions

v± = −iω
r K1

[−iω
r

]
, while for IR geometry (2.14)–(2.17), the IR boundary conditions are

v± ' r
1
4

(1+
√

1−16ω2)
(
1 + O(r)

)
when ω < ∆ = 1/4 and v± ' r

1
4

(1−i
√

16ω2−1)
(

1 + O(r)
)

when ω > ∆.

With the Green functions G± from the new variables v±, we can compute Gxx, Gyy
and Gxy. We have σxy ± iσxx = ±G±

ω , i.e.

σT = σxx = σyy =
G+ +G−

2iω
, σxy =

G+ −G−
2ω

. (3.13)
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Figure 5. The real part of the transverse conductivity (left) and the anomalous Hall conductivity

(right) as a function of frequency at different values of M/b = 0.941 (green), 0.983 (blue), 0.987

(orange), 1.019 (purple) in the topological phase and the insulator phase.

The Chern-Simons term in the consistent current contributes to the anomalous Hall con-

ductivity. We define Jcons = σAHeb×E and we have σAH = 8αb−σxy = 8αb− G+−G−
2ω [10].

The numerical results for the full frequency dependent transverse conductivities are

shown in figure 5. The left plot in figure 5 is for the real part of optical transverse con-

ductivities σxx and σyy. We have a gapless spectrum in the Weyl semimetal phase. In the

insulating phase, there is a continuous gapless spectrum above a hard gap ∆/b = 1/4b0.

This behavior is similar to the longitudinal component. Different from the longitudinal one,

in the Weyl semimetal phase if we increase M/b, the ratio of the transverse conductivity

ReσT to the frequency increases at low frequency. This difference is caused by the emergent

Lifshitz symmetry in the critical point which leads to the result that Re[σzz(ω)] ∝ ω2−β

while both Re[σT (ω)] and Re[σAH(ω)] are proportional to ωβ when M/b is approaching the

(unstable) critical value [16, 17]. The right plot in figure 5 is the real part of optical anoma-

lous Hall conductivity. In the insulating phase different from the diagonal component, the

anomalous Hall conductivity approaches a nonzero value at zero frequency although there

is an emergent time reversal symmetry in the deep IR. This is because σAH depends on the

real part of G±, it is nonvanishing when ω < ∆ and there is no hard gap. The nonvanishing

σAH crucially depends on the IR boundary condition for the fluctuations which is fixed by

the ω → ω + iε prescription. Furthermore, we observe that there is smooth change at

ω = ∆ for the optical anomalous Hall conductivity in the insulating phase.

The behavior of conductivities in the insulating phase resembles that of a Chern in-

sulator, indicating that our holographic model realises a quantum phase transition from

a topological Weyl semimetal to a Chern insulator. In weakly coupled field theory, there

are models to describe the phase transition from a Weyl semimetal to a Chern insula-

tor [21, 23, 24]. Our holographic study confirms that a similar phase structure exists for

strongly interacting Weyl semimetal.

3.3 Phase diagram

The order parameter of the quantum phase transition between the topological phase and

the insulating phase is the DC anomalous Hall conductivity. The DC anomalous Hall

– 12 –
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conductivities can be computed using a near-far matching method following [9]. We show

here the explicit procedure of the calculations in the topological phase, and also comment

on the calculations in the insulating phase.

In the topological phase, near horizon the solution of v± with infalling boundary con-

dition is v
(n0)
± = −iω

r K1

[−iω
r

]
. In the matching regime ω � r � min{M, b}, this solution

can be expanded as

v
(n0)
± = 1− ω2

4r2

(
− 1 + 2γ + 2 ln

[
−iω
2r

])
, (3.14)

where γ is the Euler-Mascheroni constant. From this expansion, we know that at the

matching region the infalling solution corresponds to the solution 1 while the ω2 term can

be ignored since we are interested in the ω → 0 result. The linear order correction in

ω to the near region solution is sourced by the infalling leading order solution. Thus at

matching region the full linear order in ω boundary condition is

v
(n)
± = 1 + ωv

(n1)
± , (3.15)

where v
(n1)
±
′
= ∓8α(Az(r)−Az(0))

r3
.

In the far region ω � r, we have

v
(f)
±
′′

+

(
h′

2h
+
u′

u
+
∂φY

Y
φ′
)
v

(f)
±
′
± 8ωα

Y u
√
h
A′zv

(f)
± +

ω2

u2
v

(f)
± = 0 . (3.16)

Its solution can be expanded according to ω and we will solve the equation (3.16) up to

the first order in ω. Note that the last term in (3.16) can be ignored at order ω. With the

near horizon boundary condition (3.15), we obtain the solution v
(f)
± = 1 + ωv

(f1)
± where

v
(f1)
±
′
= ∓8α(Az(r)−Az(0))

Y u
√
h

.

With the far region solutions, we obtain G± = ω
(
± 8α(b − Az(0))

)
. From (3.13) we

obtain the DC conductivities

σxy =
G+ −G−

2ω
= 8α

(
b−Az(0)

)
, σxx = σyy = 0 . (3.17)

Note that in the computations above, the result of (3.17) is for the anomalous Hall conduc-

tivity defined from the covariant currents. In the following, we will obtain the anomalous

Hall conductivity for the consistent currents which is more close to results in real experi-

mental systems [4, 10]. The final result for the zero frequency anomalous Hall conductivity

in the holographic Weyl semimetal phase is

σAHE = Re[σAH(ω → 0)] = 8αb− σxy = 8αAz(0) (3.18)

which is completely determined by the near horizon value of the axial gauge field.

In the gapped phase, one could attempt to repeat the above near-far matching method

to compute the DC anomalous Hall conductivity. The solution at the matching regime

should be modified to be v
(n)
± =

√
r+ωv

(n1)
± , which leads to the observation that ωv

(n1)
± can

not be determined analytically. In the insulating phase we do not have a simple formula

– 13 –
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Figure 6. Both plots are for the zero temperature anomalous Hall conductivity at zero frequency

of the holographic system. The right plot is a zoomed in version of the left plot close to the phase

transiton point. In both plots, the blue line is for the topological Weyl semimetal phase and the

red line is for the Chern insulator phase. The solid and dashed lines are for stable and unstable

phases respectively. We see that under the phase transition, the anomalous Hall conductivity is

discontinuous and the system undergoes a first order phase transition from a Weyl semimetal phase

to a Chern insulator phase.

as (3.18). This is also intuitively correct. The boundary condition (3.8) is determined

by the analytical continuation of the large frequency condition which reflects necessary

information beyond the near horizon behavior. Therefore we have to compute the DC

anomalous Hall conductivity numerically by taking ω → 0 limit of Re[σAH(ω)] obtained

from the last subsection.

Figure 6 shows the anomalous Hall conductivity at zero frequency as a function of M/b.

The solid line is for the stable phase while the dashed line is for the unstable phase, similar

to the free energy plots in figure 2. This figure shows that when we increase M/b the non-

zero anomalous Hall conductivity decreases and jump directly at a phase transition point to

a nonzero value which seems to be insensitive to M/b. The blue lines is for the background

from IR geometry (2.18)–(2.21) while the red line is for the solutions from (2.14)–(2.17).

The discontinuity of the zero frequency anomalous Hall conductivity further supports that

this holographic phase transiton is of first order, which is consistent with the result from

the free energy analysis. Moreover, in the holographic insulating phase, in the diagonal

components of the optical conductivities there is a continuous gapless spectrum above

a hard gap, and the zero frequency anomalous Hall conductivity is nonzero. These are

the signals of a Chern insulator. Therefore, our holographic model describes a first order

quantum phase transition from a strongly interacting Weyl semimetal to a Chern insulator.

4 Conclusion and discussion

We have provided a holographic model to charaterize the quantum phase transition between

the strongly interacting Weyl semimetal and the Chern insulator, by tunning the ratio
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between the mass parameter and time reversal symmetry breaking parameter in the dual

field theory. We established that this quantum phase transition is of first order. We

also computed the frequency dependent conductivities numerically in each phase. In the

holographic Weyl semimetal phase, we found that there is a nontrivial DC anomalous Hall

conductivity and the diagonal components of optical conductivities are linear in frequency

in both small and large frequency regimes. In the holographic Chern insulator phase,

we found that there is a hard gap in the real part of the diagonal components of the

frequency dependent conductivities and there is also a nonvanishing DC anomalous Hall

conductivity. This is a first example of Chern insulator from holography signified by a

nontrivial anomalous Hall conductivity in a gapped state.

Our holographic model reveals the interesting phase diagram for strongly interacting

Weyl semimetal and provides a novel framework to explore further problems of strongly

coupled topological states. There are many open questions. Firstly, in the particular holo-

graphic model we studied, the phase transition is of first order. It would be interesting to

see if it is still first order for more general holographic phase transition models between

Weyl semimetal and insulating phase with different dilatonic couplings. It is also impor-

tant to have a better understanding of the essential physics at the first order holographic

quantum phase transition point. Secondly, note that in field theory, there are studies of

the disorder effects on the quantum phase transitions between Weyl semimetal and Chern

insulators [23, 24, 39]. It would be worthwhile to explore the disorder effects or other

momentum dissipation effects on this holographic quantum phase transition to understand

the similarities or differences to the weakly coupled field theoretical results. Meanwhile,

the transport properties of the holographic system at finite temperature is to be further

explored. Finally, the insulating phase we found in this work is a Chern insulator with

nontrivial anomalous Hall conductivity. It would be very interesting to study the topo-

logical invariants of this holographic Chern insulator following [14], to explore effects of

surface states, to realise the phase transition to a normal insulator and so on. These studies

should be helpful to build holographic models for topological insulators towards more com-

plicated topological states of mater. We hope to explore some of these questions further

in the future.
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Figure 7. The energy spectrum as a function of kz in the weakly coupled theory. Left: when

M < b, there are Weyl points separating by an effective separation 2
√
b2 −M2 which indicates the

system is in the Weyl semimetal phase. Right: when M > b, there is a band gap with 2(M − b) in

the spectrum and the system is in an insulating phase.

A Weakly coupled field theory for Weyl semimetal

In this appendix we briefly review the weakly coupled field theory model for Weyl semimet-

als. A simple low energy effective theory for Weyl semimetal [36–38] is

L = iψ̄
[
γµ(∂µ − ieAµ)− γ5γ

µbµ
]
ψ +Mψ̄ψ . (A.1)

Here b0 plays the role of axial chemical potential which breaks inversion symmetry, while

bi plays the role of separation which breaks time reversal symmetry. We chose bµ = bδzµ.

The spectrum can be computed as Eij = (−1)i
√
k2
x + k2

y + (b+ (−1)j
√
M2 + k2

z)
2 with

(i, j) = 1, 2. The energy spectrum as a function of kz while kx = ky = 0 is shown in figure 7

from which it is clear that tunning M/b the system undergoes a quantum phase transition

from the Weyl semimetal to a normal band insulator. This topological phase transition

can also be characterized by the DC anomalous Hall conductivity. More precisely, in the

Weyl semimetal phase we have σAHE = 1
2π2

√
b2 −M2 while in the insulating phase we have

σAHE = 0. It is also interesting to note that a similar weakly coupled field theory exists for

other topological semimetals, e.g. for nodal line semimetal [3, 15].

The Ward identity of the weakly coupled theory (A.1) is

∇µJµ = 0 , ∇µJµ5 =
1

16π2
εµνρλFµνFρλ +Mψ̄γ5ψ . (A.2)

Notably the holographic model in the main text produced exactly the same Ward identity.

It is also possible to construct field theory model from a Weyl semimetal to a Chern

insulator (3+1D anomalous Hall state) [21, 23, 24, 39, 40]. For example, if we put the above

model in a lattice, by tunning M/b to make the Weyl nodes located at the Brillouin zone

boundary to be annihilated pairwise, the system shows a quantum phase transition from

the Weyl semimetal to a Chern insulator. In the Chern insulator phase (3+1D anomalous

Hall state), the longitudinal and transverse conductivities are gapped while there is a

nontrivial DC anomalous Hall conductivity. The holographic model studied in the main

text shows similar behaviors in the topological trivial phase after the phase transition and

it is tempting to identify this phase as a holographic Chern insulator phase.
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B Equations of motion at finite temperature

In the main text we focus on the zero temperature case and for completeness we list the

calculations for finite temperature in this appendix. The ansatz for the background fields

at finite temperature is

ds2 = −udt2 +
dr2

u
+ f(dx2 + dy2) + hdz2 , A = Azdz , φ = φ(r) , (B.1)

where fields u, f, h,Az, φ are functions of the radial coordinate r.

Plugging the ansatz (B.1) into equation, we obtain the equations of motion

f ′′

f
− u′′

u
+
f ′h′

2fh
− h′u′

2hu
= 0 , (B.2)

f ′′

f
+
u′′

2u
− f ′2

4f2
+
f ′u′

fu
− 6

u
+
V

2u
− WA2

z

4hu
− ZA′2z

4h
+
φ′2

4
= 0 , (B.3)

1

4
φ′2 +

6

u
− u′

2u

(f ′
f

+
h′

2h

)
− f ′h′

2fh
− f ′2

4f2
− V

2u
− WA2

z

4uh
+
ZA′2z
4h

= 0 , (B.4)

A′′z +A′z

(
f ′

f
− h′

2h
+
u′

u
+
φ′∂φZ

Z

)
− AzW

uZ
= 0 , (B.5)

φ′′ + φ′
(
f ′

f
+
h′

2h
+
u′

u

)
−
∂φV

u
−
A2
z∂φW

2hu
−
A′2z ∂φZ

2h
= 0 , (B.6)

where the prime is the derivative with respect to the radial coordinate r. The first equation

can be written as
(√
h(uf ′ − u′f)

)′
= 0 which is essentially a conserved Noether charge.

Note that setting f = u, we get the equations of motion for the zero temperature case, i.e.

the equation (B.2) is trivial and we reduced to the four independent ODEs (2.7)–(2.10) in

the main text.

There is another conserved Noether charge

Jr = 2u5/2

(
f
√
h

u3/2

)′
+
uf√
h
ZAzA

′
z (B.7)

satisfying ∂rJ
r = 0 associated with the following scaling symmetry (x, y, z) →

c(x, y, z) , t → t/c3 , r → c3r , u → c6u , (f, h) → (f, h)/c2 , Az → Az/c , φ → φ . This

Noether charge is useful to check the accuracy of numerical code. Meanwhile, the following

scaling symmetries are useful to work in certain unit, e.g. b = 1 for zero temperature case.

(I.) r → λr , (t, x, y, z)→ λ−1(t, x, y, z) , (u, f, h)→ λ2(u, f, h) , Az → λAz ;

(II.) (x, y)→ λ(x, y) , f → λ−2f ;

(III.) z → λz , h→ λ−2h , Az → λ−1Az .

We can use the first scaling symmetry to make the black hole horizon located at r0 = 1 in

the finite temperature case. The last two symmetry can further take the leading asymptotic

coefficients of f and h to be 1.
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B.1 Near horizon

Near horizon r → r0, we have the expansion

u = 4πT (r − r0) + . . . , (B.8)

f = f1 +
f1Az2

(
3 + 10e

√
2/3φ1 + 3e2

√
2/3φ1

)
Az1q0(e

√
2/3φ1 − 1)2

(r − r0) + . . . , (B.9)

h = h1 + . . . , (B.10)

Az = Az1 +Az2(r − r0) + . . . , (B.11)

φ = φ1 −
Az2
(
e
√

2/3φ1 + 1
)(

9h1 −A2
z1q0

)
√

6h1Az1q0

(
e
√

2/3φ1 − 1
) (r − r0) + . . . , (B.12)

with T = Az1q0e
−
√

2/3φ1 (e
√

2/3φ1−1)2

8πAz2
. The independent parameters are T, f1, h1, Az1, φ1. With

the above scaling symmetries, we only have two free parameters, which correspond to

M/b, T/b in the dual field theory.

B.2 Asymptotic behavior and free energy

Close to the UV boundary (i.e. r →∞), we obtain the following behaviour of fields

u = r2 − M2

6
+
u2

r2
+ . . . , (B.13)

f = r2 − M2

6
+
f2

r2
+ . . . , (B.14)

h = r2 − M2

6
+
b2q0M

2

12

log r

r2
+
h2

r2
+ . . . , (B.15)

Az = b− bq0M
2

6

log r

r2
+
η

r2
+ . . . , (B.16)

φ =
M

r
− b2q0M

6

log r

r3
+
O

r3
+ . . . , (B.17)

with h2 = −2f2− MO
2 + 1

48b
2q0M

2 + M4

36 . Furthermore, one can obtain f2 = u2 +πTf1

√
h1

and h2 = u2− 1
2bη−

1
48b

2q0M
2+πTf1

√
h1 from the two conserved Noether charges evaluated

at the horizon and conformal boundary. These relations show that u2, f2, h2 can be fully

determined by b,M, η,O, Tf1

√
h1. Note that one can determine the above expansions only

up to a shift r → r + a. It is worth to point out that different from the minimal model

in [9], we do not have any correction of order log r
r2

in u and f .

To compute the free energy, we need to obtain the on-shell action. The renormalised

action is

Sren = S + SGH + Sc.t. (B.18)

where the Gibbons-Hawking term is

SGH =
1

κ2

∫
d4x
√
−γK (B.19)
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and the counterterm

Sc.t. =
1

2κ2

∫
d4x
√
−γ
[
− 6− φ2

2

]
+ log r

∫
d4x
√
−γ
[

1

4
FµνFµν +

1

4
FµνF

µν +
1

2
(∂µφ)2 +

W (φ)

2
A2
µ

]
. (B.20)

Note that γab = gab − nanb is the induced metric on the boundary surface r = r∞ with na

the outward unit vector normal to the boundary. The trace of the extrinsic curvature is

K = γab∇anb.
For the ansatz (B.1), the renormalized on-shell action is

Sos

V
=

1

24
b2M2q0 +

bη

2
+ πTf1

√
h1 −

M4

48
+
MO

2
, (B.21)

therefore the free energy of the system is

Ω

V
= −Sos

V
= − 1

24
b2M2q0 −

bη

2
− πTf1

√
h1 +

M4

48
− MO

2
.

The thermodynamics of the dual system can be obtained straightforwardly. The ex-

pectation value of the stress tensor can be computed from

Tµν = 2(Kµν − γµνK) +
2√
−γ

δSc.t.

δγµν
. (B.22)

We obtain ε = − 1
24b

2M2q0 − bη
2 + 3πTf1

√
h1 + M4

48 −
MO

2 . Thus the free energy density is
Ω
V = ε− 4πTf1

√
h1 = ε− Ts where s is the entropy density expressed in unit 2κ2 = 1.

C Schrodinger potential approach to conductivities

The retarded Green’s function can be computed from another equivalent approach which

was widely studied in e.g. [26, 32]. The idea is to transform the equation of motion for the

fluctuations into a Schrodinger potential problem. In the following we shall assume in the

IR at the leading order the geometry is of a generic form10

u ' u0r
α1 , h ' h0r

α2 , Az ' a1r
α3 , eφ ' φ0r

α4 (C.1)

and Y ' y0e
αφ ' y0φ

α
0 r

αα4 . We will not explicitly solve the related Schrodinger equations,

however, by analysing the behavior of Schrodinger potentials close to IR, one can conclude

about which form of the leading order of geometry should one consider if the dual phase is

in an insulating phase or a semimetal phase.

The fluctuation equation (3.2) can be rewritten as
(
u2Y√
h
v′z
)′

+ Y√
h
ω2vz = 0 . Introducing

ξ and ṽz as

dξ

dr
=

1

u
, ṽz = C1vz , C1 =

√
uY√
h
, (C.2)

10Obviously for the model considered in the main text, the IR geometries found in section 2.1 are of

this form.
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we write the equation (3.2) as a Schrödinger equation

−d
2ṽz
dξ2

+ Veff(ξ)ṽz = ω2ṽz (C.3)

with the Schrödinger potential

Veff =
(uY h−1/2)′

4

(
u

Y h−1/2

)′
+
u2(uY h−1/2)′′

2uY h−1/2
(C.4)

where the prime is the derivative with respect to r. One can transfer it back to the

coordinate ξ using (C.2).

Depending on the values of α1, in the new radial variable of form (C.2), the horizon is

located either at ξ = −∞ (for α1 ≥ 1) or ξ = c (for α1 < 1) . Near the UV boundary ξ →
0−, we have a divergent potential Veff ∝ (−ξ)−2. Near the horizon, we have Veff ∝ r2α1−2

and its behavior will depend on α1.

• When α1 = 1, the effective potential is a constant at IR, with VIR =
u20
4 (1+αα4− α2

2 )2.

When this constant value is positive, the system is in the phase with a hard gap. One

can check that in the model studied in the main text (2.11) VIR = 1
16 , thus we have

a hard gap with width ∆ = 1
4 .

• When α1 > 1, the effective potential goes to zero at IR and we have a

semimetal phase.

• When α1 < 1, the effective potential diverges and we will have a discrete spectrum

for the conductivity.

We can perform a similar analysis for the fluctuation equations (3.10), (3.11). Define

ω± = ω ± 4α uA′z
Y
√
h

we have
(
u
√
hY v′±

)′
+
√
hY
u ω2

±v± −
16uα2A′2z√

hY
v± = 0 . We make the

coordinate change and redefine the variable

dξ

dr
=

1

u
, ṽ± = C2v± , C2 =

√
Y h1/2 , (C.5)

the equations (3.10), (3.11) can be written as Schrödinger equations

−d
2ṽ±
dξ2

+ Veff(ξ)ṽz = ω2
±ṽ± (C.6)

with Schrödinger potential

Veff =
u

C2

(
uC ′2

)′
+

16α2u2A′2z
C2

2

=
(Y h1/2)′

4

( u2

Y h1/2

)′
+ u2

[
(Y h1/2)′′

2Y h1/2
+

16α2A′2z
Y 2h

]
. (C.7)

The location of the horizon in the coordinate ξ is the same as in the previous case, which

depends on the value of α1 in (C.1). Close to the UV boundary ξ → 0−, Veff ∝ (−ξ)−2.

When α1 = 1, we have VIR = 1
16 and from (3.13) we know that there is a hard gap in the

transport Re[σT ].
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