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1 Introduction

The AdS/CFT correspondence is a duality between low-energy effective theories of string

theory and supersymmetric gauge theories. It was originally conjectured as an equality

between Type IIB Supergravity on AdS5×S5 background and the supersymmetric N = 4

SU(Nc) Super Yang-Mills quantum field theory in the limit Nc → ∞ and λ → ∞ with

λ = gYM N2
c [1–3]. Since the quantum field theory is in a strong coupling regime when the

gravity one is a low-energy effective theory, the correspondence is also a strong/weak cou-

pling duality. For this reason it has been proven to be a formidable tool to evaluate relevant

physical quantities for strongly coupled field theories by means of the gravity dual ones.

A (2+1)-dimensional semimetal is an example of a physical system for which the

AdS/CFT correspondence seems to be particularly well suited. This can be motivated

using graphene as a representative of semimetals. Although some of its properties can

be studied through perturbative approaches, there are some theoretical evidences, like the

small Fermi velocity (vF ∼ c/300), and some experimental ones [4, 5] which suggest that

interactions in graphene may be strong. If this would be the case an accurate description

of the physics in graphene would require a non perturbative approach and in this scenario

the AdS/CFT correspondence represents the best analytical tool at our disposal.

The study of Dirac semimetals with holographic techniques can be approached using

either bottom-up (see for instance [6–8] for recent applications) or, as we do in this paper,

top-down models, based on D-branes constructions. In particular we consider the well

studied D3/probe-D5-brane system, where the D5-probes intersect the D3-branes on a
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Figure 1. Illustration of the D3/probe-D5-brane setup.

(2+1)-dimensional defect, as depicted in figure 1. This turns out to be a good holographic

model to describe the physics governing charge carriers in graphene, as can be seen by

considering the field theory dual of the system, which consists in fundamental matter

particles living on the (2+1)-dimensional defect and interacting through N = 4 Super

Yang-Mills degrees of freedom in 3+1 dimensions [9–11]. Taking zero asymptotic separation

between the D3 and D5-branes corresponds to having massless fundamental particles on

the defect. This is exactly what we want for graphene, where charge carriers are known to

be massless at the kinetic level. Thus in the dual string theory picture we can interpret the

(2+1)-dimensional brane intersection as the holographic realization of the graphene layer.

The geometry of the D5-brane probes at the boundary is fixed to be AdS4 × S2.

If no external scale is introduced, it turns out that the whole geometry of the D5-brane

worldvolume is actually given by AdS4×S2 and this gives a global SO(3)×SO(3) symmetry

to the theory. When an external magnetic field B is turned on, the D5-brane geometry

changes: the probe brane pinches off before reaching the Poincaré horizon (Minkowski

embedding) and the SO(3) × SO(3) symmetry is broken to a SO(3) × U(1). In the dual

field theory this can be viewed as a chiral symmetry breaking due to the formation of a

fermion-antifermion condensate [12, 13]. The introduction of either finite charge density ρ

or finite temperature T opposes this condensation, giving rise to a more interesting phase

diagram, with a transition from the phase with broken symmetry to the symmetric one as

the ratios ρ/B or T/B increases [14]. At zero temperature the chiral symmetry breaking

transition happens at ρ/B =
√

7 and it turns out to be a BKT phase transition [15]. For

small T it is of second order nature [16] with changing ρ/B and for small ρ it is of first order

with changing T/B. When the charge density is small but finite the D5-brane geometry still

breaks the chiral symmetry but in a different fashion compared to the zero charge case, since

this time the D5-brane worldvolume reaches the horizon (Black Hole embedding). This can

be simply understood in the holographic picture where charge carriers are represented by

F1-strings, which, having higher tension with respect to D5-branes, pull the latter down

to the horizon.
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The D3/probe-D5-brane setup was also used to model double monolayer semimetal

systems formed by two parallel sheets of a semimetal separated by an insulator [17–19].

In this case one has to consider two stacks of probe branes (a stack of D5 and one of

anti-D5) to represent holographically the two semimetal layers. The presence of the two

layers introduces another parameter in the model, namely the separation between them,

and a new channel for the chiral symmetry breaking, driven by the condensation between

a fermion on one layer and an antifermion on the other one.

The aim of this paper is to derive the AC conductivity matrix for a (single layer) (2+1)-

dimensional semimetal, such as graphene, using the holographic D3/probe-D5-brane model.

In particular we will consider the D3/probe-D5 system with mutually perpendicular electric

and magnetic field at finite charge density. The presence of the electric field E is necessary

in order to have non trivial Ohm and Hall currents. When E is different from zero, the

on-shell action for the probe branes becomes generally complex at a critical locus, usually

called singular shell, on the brane worldvolume and in order to avoid this one has to turn on

the Ohm and Hall currents and suitably fix their values in terms of the parameters of the

system (e.g. E, B, ρ, . . . ) [20]. The same system we consider, also with finite temperature,

was studied before in [21] and the values of the DC currents were derived imposing the

reality condition on the on-shell action.

The holographic derivation of the AC conductivity matrix for systems involving probe

Dp-branes, similar to the one we are considering, was addressed by several papers in lit-

erature. For example, in [22] probe flavour Dp-branes in the context of a neutral Lifshitz-

invariant quantum critical theory were considered and the AC conductivity with non trivial

charge density, temperature and electric field and vanishing magnetic field was obtained.

The authors of ref. [23] studied probe Dp-branes rotating in an internal sphere direction

and derived the AC conductivity of the system considering nonzero electric field and charge

density and vanishing temperature. The results of [22, 23] are both compatible with a fi-

nite temperature regime, as suggested for instance by the presence of a finite peak at low

frequency. In [23] this is a consequence of the fact that there is an induced horizon by

the rotation of the Dp-branes and therefore there is an effective nonzero induced Hawking

temperature proportional to the frequency of rotation. In the system we consider we expect

to find, at least in some regimes, a similar physics since when the singular shell is outside

the Poincaré horizon it plays the role of an induced horizon, resulting in a finite effective

temperature.

The strategy we use to evaluate the AC conductivity matrix is the following. We

focus on the linear response regime and we fluctuate gauge and scalar fields upon a fixed

background. Then we solve the equations of motion of the action which rules the dynamic

of the system i.e. the DBI action. We obtain the equations of motion for the gauge field

fluctuations A
(1)
a (t, r) = e−iωtaa(r) and we solve them numerically. The AC conductivities

in the linear response regime can be evaluated using the Kubo formula

σij(ω) = −i
GRjijj (ω)

ω
, (1.1)

where GRjijj is the retarded current-current Green’s function. Using the holographic dictio-

– 3 –



J
H
E
P
1
2
(
2
0
1
8
)
1
0
9

t x y z r ψ θ1 ϕ1 θ2 ϕ2

D3 • • • •
D5 • • • • ψ(r) • •

Table 1. Choice of the D5-brane embedding.

nary this can be computed as

σij = lim
r→0
− i
ω

a′i(r)

aj(r)
, (1.2)

in terms of the r-dependent part of the gauge field fluctuations, ai(r).

The paper is structured as follows. In section 2 we will describe in detail the holographic

model we consider. We will show its action, discuss how the currents are naturally fixed by

reality conditions which must be imposed on the on-shell Routhian and we show the phase

diagram of the system. In section 3 we derive the effective action for the fluctuations for

the D3/D5 system in a very general framework, considering both scalar fields and gauge

field fluctuations. Section 4 is devoted to the computation of AC conductivity matrices for

all the relevant phases of the system. For each of these phases we show some plots of Ohm

and Hall conductivities. We conclude with section 5 where we discuss the obtained results.

2 The holographic model

The holographic model we consider is the D3/probe-D5-brane system. In this section we

briefly summarize the setup and the allowed configurations for this system. These will

constitute the background configurations around which we fluctuate in order to study the

conductivities.

2.1 D-brane setup

We start by considering a stack of N D3-branes, which as usual we replace with the

AdS5×S5 geometry that they generate in the near horizon limit. In the coordinate system

we use, the AdS5 × S5 metric reads

ds2 = Gµνdx
µdxν =

1

r2

(
−dt2 + dx2 + dy2 + dz2 + dr2

)
+ dψ2 + sin2 ψ d2Ω2 + cos2 ψ d2Ω̃2 ,

(2.1)

where d2Ω2 = dθ2 + sin2 θdϕ2 and d2Ω̃2 = dθ̃2 + sin2 θ̃dϕ̃2 are the metrics of two 2-spheres,

S2 and S̃2. The AdS boundary is located at r = 0 and the Poincaré horizon at r =∞.

We now embed N5 D5-branes as probes in this background. We choose σa = (t, x, y, r,

θ1, ϕ1) as D5 worldvolume coordinates and we also allow the D5-branes to have a non-trivial

profile along ψ. The choice of the embedding is summarized in table 1.

The dynamics of the D5-branes in the probe approximation regime is governed by the

DBI action

S = −TD5N5

∫
d6σ
√
− det(γab) , (2.2)
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where TD5 =
(
(2π)5gsα

′3)−1
is the D5-brane tension and γab is given by

γab ≡ Gµν∂aXµ∂bX
ν + 2πα′Fab = gab + 2πα′Fab , (2.3)

gab being the induced metric on the D5-brane worldvolume and F = dA being the field

strength of the U(1) gauge field A living on the D5. Note that we do not include the

Wess-Zumino term in the action since it will not play any role in our setup.

With our ansatz for the embedding the induced geometry of the D5-brane turns out

to be

ds2 = gab dσ
adσb = r2

(
−dt2 + dx2 + dy2

)
+
dr2

r2

(
1 + (rψ′)2

)
+ sin2 ψ d2Ω2 . (2.4)

In order to have a finite charge density, an external magnetic field orthogonal to the

defect and a longitudinal electric field we make the following choice for the worldvolume

gauge field (in the Ar = 0 gauge)

2πα′A = At(r)dt+ (E t+Ax(r)) dx+ (B x+Ay(r)) dy . (2.5)

The At(r) term is the one responsible for the finite charge density, E and B are constant

background electric and magnetic fields along the x and z directions respectively.1 The

two functions Ax(r) and Ay(r), as we will shortly see, are in general necessary in order to

have a physical configuration; indeed they encode the information about the optical and

Hall currents.

Plugging the induced metric (2.4) and the worldvolume gauge field (2.5) into the DBI

action (2.2) and integrating over all the worldvolume coordinates but r we get

S=−N5

∫
drL

[
ψ(r),ψ′(r),A′a(r);r

]
,

L
[
ψ(r),ψ′(r),A′a(r);r

]
=

sin2ψ(r)

r4

[(
1+
(
B2−E2

)
r4
)(

1+r2ψ′2(r)
)

(2.6)

+r4
(
−A′t(r)2+A′y(r)

2+A′x(r)2−r4
(
BA′t(r)+EA′y(r)

)2)]1/2
,

where N5 = 4π TD5N5V2+1, with V2+1 the volume of the (2+1)-dimensional space-time.

We immediately see that At, Ax and Ay are cyclic coordinates and thus their conjugate

momenta, that represent the charge density ρ and the currents jx and jy respectively, are

constant. They turn out to be

ρ =
1

N5

∂L
∂A′t

, jx =
1

N5

∂L
∂A′x

, jy =
1

N5

∂L
∂A′y

. (2.7)

The presence of cyclic coordinates simplifies considerably the problem since we can im-

mediately solve the relations (2.7) for the gauge field functions Aa(r). It is also useful to

1Note that we included the factor 2πα′ inside all the Aa components and consequently also inside the

electric and magnetic fields E and B.
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consider the Routhian (density) R, i.e. the Legendre transformed Lagrangian with respect

to the cyclic coordinates, which it is given by

R = N5
sgn(ξ)

r4

√
(ξχ− a2) (1 + r2ψ′(r)2) , (2.8)

where

ξ = 1 +
(
B2 − E2

)
r4 , (2.9)

χ = sin4 ψ(r) + r4
(
ρ2 − j2

x − j2
y

)
, (2.10)

a = r4 (jy E + ρB) . (2.11)

The equation of motion for the only non trivial variable ψ is then simply given by the

Euler-Lagrange equation for the Routhian.

We could think of the conserved momenta ρ, jx and jy as parameters for the various

physical configurations of the system, just like the external fields E and B. However, as we

will see in the next subsection, this is only true for the charge density ρ, since the currents

are actually subject to physical constraints that uniquely fix their values in terms of the

other parameters.

2.2 The currents

If we take a careful look at the expression (2.8) for the Routhian we notice a potentially

critical issue. The square root term
√
ξχ− a2 seems quite dangerous since it can become

imaginary for certain regions of the brane worldvolume. Indeed from eqs. (2.9)–(2.11) we

get that

ξχ−a2 = sin4 ψ+
[(
B2 − E2

)
sin4 ψ + ρ2 − j2

x − j2
y

]
r4+

[(
E2 −B2

)
j2
x − (E ρ+B jy)

2
]
r8 .

(2.12)

We see that near the boundary ξχ − a2 ' sin4 ψ, i.e. it is positive, and the Routhian is

real. However moving toward the Poincaré horizon this term may change sign. If we want

to have a physically acceptable configuration we have to avoid this. Now we examine the

conditions that are needed in order for the Routhian to stay real: we will distinguish two

cases, E > B and E < B.

Currents for E > B. When E > B it is simple to understand what can cause problems

to the Routhian. Indeed from the definition of ξ in (2.9) we see that in this case there

exists a zero of ξ for a finite positive value of r = rs, given by

rs =

(
1

E2 −B2

)1/4

. (2.13)

The locus of points in the brane worldvolume with r = rs is usually called singular shell. In

general it is quite obvious that when ξ is zero the combination ξχ−a2 becomes negative and

this results in an imaginary Routhian. However, as pointed out by Karch and O’Bannon

in ref. [20], we can prevent this problem by requiring that both χ and a also have a zero

– 6 –
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at the same point rs.
2 Imposing this condition fixes the values of the currents jx and jy to

the following expressions

jx =

√
sin4 ψ(rs) (E2 −B2) (ρ2 + E2)

E
, jy = −ρB

E
. (2.14)

Currents for E < B. When the electric field is smaller that the magnetic field the

singular shell coincides with the Poincaré horizon. Nevertheless, also in this case, in order

to fix the currents we can look at the sign of ξχ−a2 in eq. (2.12). In particular we observe

that this is positive near the boundary while it is negative near the Poincaré horizon where

the r8 contribution dominates. It is easy to check that in order for ξχ − a2 to be always

positive we have to choose the currents so as to cancel this r8 contribution. In this way we

obtain the following values for the currents

jx = 0 , jy = −ρE
B

. (2.15)

2.3 D5-brane configurations

In order to build all the possible configurations for the D5-brane embeddings we have to

explicitly solve the equation of motion for ψ coming from the Routhian (2.8). We look for

solutions that have the following asymptotic behavior near the boundary

ψ ' π

2
+ c2r

2 + . . . . (2.16)

In principle also a term c1r could be present in this expansion but we discard it since c1

would correspond to the mass of the fermions in the dual defect theory and in real graphene

this is zero. The modulus c2 is instead proportional to the chiral condensate, c2 ∼ 〈f̄f〉.
Setting c2 = 0 gives the trivial constant solution ψ = π/2. This solution corresponds to

the chirally symmetric configuration, which we denote χS . Solutions with c2 6= 0 represent

instead configurations with spontaneously broken chiral symmetry, χSB.

The solutions can be classified in black hole (BH) embeddings and Minkowski (Mink)

embeddings, according to whether or not the brane worldvolume reaches the Poincaré

horizon [25, 26]. Minkowski embeddings are those for which the worldvolume pinches off

at some finite radius r0, i.e. ψ(r0) = 0. For such particular configurations the arguments

of the previous subsection do not apply. Indeed in this case the singular shell does not

actually exist, since rs > r0. Thus the on-shell Routhian is always real and we do not need

to impose any physical condition on the currents; in this case the currents can be safely

set to zero. Table 2 summarizes the values of the currents for all the possible D5-brane

embeddings.

Note that Minkowski embeddings are possible only for neutral configurations,

ρ = 0 [25, 26]. This is due to the fact that in the string picture charge carriers are repre-

sented by F1-strings stretching from the D3-branes to the D5-branes. Since F1-strings have

greater tension than D5-branes they eventually pull the D5-worldvolume to the Poincaré

horizon giving rise to BH embeddings.

2In ref. [20] the procedure was introduced in the study of the D3-D7 system with finite density and

external electric field. The procedure was then extended to include magnetic field in [24].
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Mink embeddings
BH embeddings

E > B E < B

jx 0
sinψ2(rs)

√
(E2 −B2) (ρ2 + E2)

E
0

jy 0 −ρB
E

−ρE
B

Table 2. Currents for all the possible D5-brane configurations.

BKT

E

B

0.5 1

ρ

B

1

2

3

χSB

χS

Figure 2. Phase diagram for the D3/D5 system: the blue region covers the chirally symmetric

phase, χS , and the red region the spontaneously broken phase, χSB .

2.4 Phase diagram

In order to derive the phase diagram for the system we have to compare the free energies of

all the possible solutions in some thermodynamical ensamble, in order to determine which

configuration is energetically favored. We choose to work in the ensamble where the density

ρ, the magnetic field B and the electric field E are kept fixed. With this choice the right

quantity that defines the free energy is the on-shell Routhian.

In the explicit computations of the solutions and their free energies it is actually

convenient to reduce the number of relevant parameters (i.e. the dimension of the phase

space) from three to two. This can be done, without loss of generality, thanks to the

underlying conformal symmetry of the theory. We choose to measure everything (ρ and E

for instance) in units of magnetic field B.

The results of the analysis on the thermodynamics of the phases can be found in [21].3

They are summarized by the phase diagram in figure 2. The two competing phases are

the chirally symmetric one χS (blue region) and the chirally broken one χSB (red region).

3In this paper the authors consider the same D3/D5 system but also at finite temperature.
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Analyzing the phase diagram through a vertical slicing we see that when E < B, while

increasing ρ, the system undergoes a BKT transition at ρ/B =
√

7 from the χSB phase to

the χS one. When E > B instead only the trivial ψ = π/2 solution is allowed and thus

the system is always in the symmetric phase χS . In the non-symmetric region we have also

to distinguish the zero density slice from the finite density area, since in the former the

D5-brane configurations are Minkowski embeddings while in the latter BH embeddings.

3 The fluctuations

In this section we review how to introduce the fluctuations for the D3/D5 system and we

show their equations of motion. We will do this by deriving the effective action for the

fluctuation fields [27, 28]. At first, the effective action and its equations of motion will be

constructed for a generic setup of the D3/D5 system and we will eventually specialize it to

the case of interest.

3.1 The effective action for the fluctuations and the open string metric

As we discussed in the previous section, in the low energy limit, the dynamic of the D3/D5

system is encoded in the DBI action showed in eq. (2.2). We use the static gauge where

the embedding functions Xµ are split in the following two groups{
Xa = σa a = 0, 1, . . . , 5

XI = ZI(σ) I = 6, . . . , 9
(3.1)

Exploiting the absence of mixed terms GaI in the background AdS5 × S5 metric (2.1), we

can simply write the pull-back metric tensor gab as

gab = Gab(σ, Z(σ)) +GIJ(σ, Z(σ))
∂ZI

∂σa
∂ZJ

∂σb
. (3.2)

The embedding functions ZI and the gauge fields Aa can be written as sums of background

terms and small perturbations

ZI(σ) = Z(0)I(σ) + εZ(1)I(σ) ,

Aa(σ) = A(0)
a (σ) + εA(1)

a (σ) , (3.3)

where ε is just a small constant parameter controlling the perturbative expansion. The

background functions Z(0)I and A
(0)
a represent the profile and the gauge potential of the

branes determined by the DBI equations of motion. Z(1)I and A
(1)
a encode the fluctuations

around that background.

The strategy to build the effective action for the fluctuations is to expand the La-

grangian density up to the second order in ε

L = L0 + εL1 + ε2L2 . (3.4)

We start by considering the expansion of the pull-back metric (3.2) and the field strength

Fab = ∂aAb − ∂bAa

gab = g
(0)
ab + εg

(1)
ab + ε2g

(2)
ab , Fab = F

(0)
ab + εF

(1)
ab , (3.5)

– 9 –
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where

g
(0)
ab =Gab(σ,Z

I(σ)) ,

g
(1)
ab =

(
Gab,K+GIJ,KZ

(0)I
,a Z

(0)J
,b

)
Z(1)K+2GIJZ

(0)I
,(a Z

(1)J
,b) ,

g
(2)
ab =

1

2

(
Gab,KL+GIJ,KLZ

(0)I
,a Z

(0)J
,b

)
Z(1)KZ(1)L+GIJZ

(1)I
,a Z

(1)J
,b +2GIJZ

(0)I
,(a Z

(1)J
,b) Z(1)K .

(3.6)

In this way we obtain that the terms in the expansion (3.4) of the Lagrangian are given by4

L0 =
√
γ ,

L1 =
√
γ

(
1

2
Tr Σ(1)

)
,

L2 =
√
γ

(
1

2
Tr Σ(2) − 1

4
Tr Σ(1)2 +

1

8
(Tr Σ(1))2

)
,

(3.7)

with

Σ(i)a
b = γacG(i)

cb , (3.8)

and

γab = G(0)
ab = g

(0)
ab + F

(0)
ab , G(1)

ab = g
(1)
ab + F

(1)
ab , G(2)

ab = g
(2)
ab . (3.9)

Clearly, in order to obtain the effective action for the fluctuations, the quantity we are

interested in is just L2.5 Now we want to express this Lagrangian in terms of the so-called

open string metric, sab, which represents the effective geometry seen by open strings in the

presence of external fields [29, 30]. The inverse open string metric sab (sabs
bc = δca) can be

defined as the symmetric part of the inverse γab matrix

γab = (γab)
−1 = sab + θab , (3.10)

with sab = sba and θab = −θba. This equation can be inverted and it can be shown that

sab = gab − (Fg−1F )ab (3.11)

provides the definition of the open string metric as a combination of the pull-back metric

and the gauge fields.

With our choice for the D5-brane embedding (see table 1) the worldvolume coordinates

are σa = (t, x, y, r, θ1, ϕ1). However we will not consider fluctuations along the S2 wrapped

by the D5-branes. This means in particular that A(1)
θ1 = A(1)

ϕ1 = 0 thus the indices in

the gauge field fluctuations effectively vary only along (t, x, y, r). Given that and using

4The procedure and the notation used follow faithfully appendix A of paper [27].
5L0 is just the DBI Lagrangian for the background fields, which we already studied in the previous

section; L1 vanishes when evaluated on the background profiles.
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eq. (3.8) and eq. (3.11) we can write the effective action Seff ∼
∫
L2 as6

Seff = −N5

∫
d6σ

{√
s

g2
5

[
1

2
sabg

(2)
ba −

1

4
sacsbdg

(1)
cb g

(1)
da +

1

8

(
sabg

(1)
ab

)2
− 1

4
θacθbdg

(1)
cb g

(1)
da

+
1

4
sacsbdF

(1)
cb F

(1)
da −

1

2
(sacθbd + θacsbd)g

(1)
cb F

(1)
da −

1

4
sabθcdg(1)

abF
(1)
cd

]
(3.12)

+
1

8
Qεabcdθ1ϕ1F

(1)
ab F

(1)
cd

}
,

with s = − det sab, g
2
5 =

√
s
√
γ

and

Q = −
√
γ

8
εefghθ1ϕ1θ

efθgh , (3.13)

where the Levi-Civita symbol is defined as εtxyrθ1ϕ1 = −εtxyrθ1ϕ1 = 1. Note that the

last term of Seff is a topological term that appears only if there are two non-vanishing

components of θab with all different indices in the subset a, b = (t, x, y, r).

We can now plug the pull-back metric components (3.6) into the effective action in

order to write it as a sum of kinetic terms, mass terms and interaction terms for the

fluctuating scalar fields and gauge fields

Seff =−N5

∫
d6σ

{√
s

g2
5

[
PabIJ Z(1)I

,a Z
(1)J
,b +QIJ Z(1)IZ(1)J+RaIJ Z(1)I

,a Z(1)J+
1

4
sacsbdF

(1)
cb F

(1)
da

+SabcI Z(1)I
,a F

(1)
bc +T abI Z(1)IF

(1)
ab

]
+

1

8
Qεabcdθ1ϕ1F

(1)
ab F

(1)
cd

}
, (3.14)

where the coefficients P,Q,R,S, T are

PabIJ ≡
1

2

(
GIJs

ab−GIKGJLZ(0)K
,c Z

(0)L
,d (sadsbc−sacsbd+sabscd+θadθbc−θabθcd)

)
,

QIJ ≡
1

8

[
2sabGab,IJ+2sabGKL,IJZ

(0)K
,a Z

(0)L
,b −(2sacsbd−sabscd−2θacθbd)

×
[
Gab,IGcd,J+Z(0)K

,a Z
(0)L
,b

(
Gcd,JGKL,I+Gcd,IGKL,J+GKL,IGMN,JZ

(0)M
,c Z

(0)N
,d

)]]
,

RaIJ ≡ sabGIK,JZ
(0)K
,b +

1

2
Gcd,JGIJZ

(0)K
,b (sabscd−2sacsbd+2θacθbd) (3.15)

+GKL,JGIMZ
(0)K
,b Z(0)L

,c Z
(0)M
,d (sadsbc−2sabscd−2θabθcd) ,

SabcI ≡−
1

2
GIJZ

(0)J
,d (scdθab−sbdθac+sadθbc−sacθbd+sabθcd) ,

T abI ≡−
1

4

(
Gcd,I+GJK,IZ

(0)J
,c Z

(0)K
,d

)
(scdθab−2sbcθad+2sacθbd) .

6This effective action is analogous to the one showed in [28] for D7-probe-branes; however it is more

general since it also includes the scalar fluctuations Z(1)I besides the gauge ones.

– 11 –



J
H
E
P
1
2
(
2
0
1
8
)
1
0
9

From the Lagrangian (3.14) we obtain the general equations of motion for both the

embedding functions and the gauge fields

EoM[Z(1)I ]→
√
s

g2
5

(
2QIJZ(1)J+RaJIZ(1)J

,a +T abI F
(1)
ab

)
−∂a

[√
s

g2
5

(
2PabIJZ

(1)J
,b +RaIJZ(1)J+SabcI F

(1)
bc

)]
= 0 , (3.16)

EoM[A
(1)
b ]→ ∂a

[√
s

g2
5

(
F (1)ab+2ScabI Z(1)I

,c +2T abI Z(1)I
)

+
Q

2
εabcdθ1φ1F

(1)
cd

]
= 0 . (3.17)

The coefficients (3.15) are very complicated in general, however when we specialize

them to the case under consideration many simplifications are possible. First of all, since

we consider background solutions with a non trivial transverse profile of the D5-branes only

along ψ, we will also consider only one scalar perturbation field along the same direction,

i.e. Z(1)I = ψ(1)δIψ. With this assumption, and using the background specification of

section 2, we obtain that the non vanishing components of the coefficients (3.15) are just

Pabψψ =
1

2

[
sab(1− srrψ′2)− ψ′2θarθbr

]
,

Qψψ =
cos 2ψ

sin2 ψ
,

Raψψ = 2 cotψ ψ′ sar ,

Sabcψ = −1

2
ψ′
(
scrθab − sbrθac + sarθbc − sacθbr + sabθcr

)
,

T abψ = − cotψ θab .

(3.18)

To simplify the notation we denote the background profile ψ(0) simply as ψ.

4 The conductivities

In this section we show the results for the Ohm and Hall conductivities obtained from the

holographic D3/probe D5 model introduced in section 2. Notice that the DC conductivities

are already known, since by definition they can be simply calculated from the currents jx
and jy:

ji = σijEj . (4.1)

Actually, using the currents determined in section 2.2, what we obtain is the full non-linear

DC conductivity tensor. In this section we will instead focus on the linear response theory,

that allows us to derive the frequency dependent conductivities. As a first step we solve the

equation for the gauge field fluctuations A
(1)
a with the following (zero momentum) ansatz

A(1)
a (t, r) = e−iωtaa(r) . (4.2)

We also fix the gauge choosing ar = 0. Then the conductivities σij are obtained through

the Kubo formula

σij(ω) = −i
GRjijj (ω)

ω
, (4.3)
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where GRjijj is the retarded current-current Green’s function. Using the holographic dictio-

nary this can be computed as

σij = lim
r→0
− i
ω

a′i(r)

aj(r)
. (4.4)

According to what we saw in section 2 for the currents, we distinguish two cases,

E > B and E < B.

4.1 Conductivities for E > B

As showed in the phase diagram of figure 2, when E > B there is only one stable con-

figuration for every value of the charge density, namely the chirally symmetric one, with

ψ = π
2 .

The coefficients (3.18) of the effective action for the fluctuations become extremely

simple in this case

Pabψψ =
sab

2
, Qψψ = −1 , Raψψ = 0 , Sabcψ = 0 , T abψ = 0 . (4.5)

This basically means that the gauge and scalar fluctuations are decoupled. Since we are

interested in the conductivity we can neglect the scalar field ψ(1).

From eqs. (3.10)–(3.11) we can compute the open string metric sab as

sab dσ
a dσb = − 1

r2

(
1− r4

r4
ρ

)
dt2 + 2

ρ

E

r2

r2
sr

2
ρ

dt dx− 2
B

E

r2

r4
ρ

dt dy +
r2

r2
sr

2
ρ

dt dr

+
1

r2

(
1 +

ρ2

E2

r4

r4
ρ

)
dx2 − 2

ρB

E2

r2

r2
sr

2
ρ

dx dy + 2
ρ

E

r2

r4
s

dx dr

+
1

r2

(
1 +

B2

E2

r4

r4
ρ

)
dy2 − 2

B

E

r2

r2
sr

2
ρ

dy dr +
1

r2

(
1 +

r4

r4
ρ

)
dr2 + dΩ2

1 ,

(4.6)

and the antisymmetric tensor θab, whose non vanishing components are

θtx = E r4 , θtr = −ρ r4 , θxy = −B r4 ,

θxr =
r4

E r2
sr

2
ρ

, θyr = −ρB r
4

E
,

(4.7)

where rs is the singular shell radius introduced in eq. (2.13) and rρ is defined as

rρ ≡
(
E2 + ρ2

)−1/4
. (4.8)

Notice that the open string metric (4.6) is a black hole metric and its horizon radius

exactly coincides with the singular shell radius (2.13). The Hawking temperature of this

black hole geometry is given by

Teff =
r2
ρ

π r3
s

√
B

=
(E2 −B2)3/4

π
√
B(ρ2 + E2)

, (4.9)

and it represents the effective temperature felt by open strings. Thus, even though we

considered a zero temperature background, the presence of the electric field induces an

effective thermal heat bath.
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Although the theta tensor (4.7) has apparently enough non zero components to give

rise to a topological term, it turns out that when these components are plugged into (3.13)

they yield Q = 0. Thus the effective action for the fluctuations is just given by the Maxwell

action. Nevertheless, due to the form of the open string metric (4.6), without vanishing

components in the 4-dimensional (t, x, y, r) sub-manifold (unless for zero density), the

equations of motion for the gauge fluctuations are still quite complicated. We can simplify

them slightly by making a change of coordinates that kills the mixed radial components

str, sxr, syr of the open string metric, in such a way that the latter becomes7

sab dσ
a dσb =− 1

r2

(
1− r

4

r4
ρ

)
dt2+

ρ

E

r2

r2
sr

2
ρ

dtdx+
1

r2

(
1+

ρ2

E2

r4

r4
ρ

)
dx2

− ρB
E2

r2

r2
sr

2
ρ

dxdy+
1

r2

(
1+

B2

E2

r4

r4
ρ

)
dy2+

[
r2

(
1− r

4

r4
s

)]−1

dr2+dΩ2
1 .

(4.10)

Now we have all the ingredients to write down the equations of motion for the gauge

fields fluctuations A
(1)
a using the ansatz (4.2) and the gauge choice ar = 0. The at compo-

nent can be easily decoupled and one is left just with the equations of motion for ax and

ay. In the near-horizon limit, r → rs, both these equations become

a′′i +
1

r − rs
a′i +

ω2B r6
s

16 r4
ρ (r − rs)2

ai = 0 i = x, y. (4.11)

Performing a Frobenius expansion we get that the correct behavior near the open string

metric horizon is

ai(r)r→rs → (r − rs)
±i ω

4πTeff , (4.12)

where Teff is the effective temperature in eq. (4.9). Therefore, near the singular shell we

can write the solution as

ai(r) = (r − rs)
i ω
4πTeff χi(r), (4.13)

where the first term takes into account the right infalling behavior near the singular shell

while χ is a regular function which can be expanded analytically in powers of (r − rs). In

particular we can express the near-singular shell shape of χi as follows

χhx = cx0 +cx1(r−rs)+cx2(r−rs)2+. . . χhy = cy0 +cy1(r−rs)+cy2(r−rs)2+. . . (4.14)

where the coefficients cx1 , cx2 , . . . , cy1 , cy2 , . . . can be easily determined as functions of

ω, rs, ρ and of the two moduli cx0 , cy0 .

7The change of coordinates is of the form

dt→ dt+ ftr(r) dr , dx→ dx+ fxr(r) dr , dy → dy + fyr(r) dr ,

with the three f functions fixed in such a way to get rid of the mixed radial components of the open string

metric. It turns out that this change of coordinates does not affect the computation of the conductivities

since the behavior of the f functions near the boundary is of order O(r4). Thus we can safely proceed with

this transformed metric.
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DC conductivities. The DC conductivities can be easily extracted from the equations

of motion in an analytical way, since they only require the knowledge of the solution for

the fluctuations up to the linear order in ω in the small frequency limit. Then the strategy

is to expand the functions χx and χy in powers of the frequency ω as follows

χx(r) = χ(0)
x + ωχ(1)

x , χy(r) = χ(0)
y + ωχ(1)

y . (4.15)

The solutions for the χ
(k)
i functions can be obtained analytically. Imposing regularity at

the singular shell and using the holographic formula (4.4) at the leading order in ω we

found the following results for the DC conductivities

σDC
xx =

E4 +B2 ρ2

E2
√

(E2 −B2)(E2 + ρ2)
, σDC

yy =

√
(E2 −B2)(E2 + ρ2)

E2
, σDC

xy = σDC
yx =

ρB

E2
.

(4.16)

It is straightforward to check that these conductivities are in perfect agreement with the

expressions of the currents in eq. (2.14). Indeed we can extract the linear conductivities

from the latter as follows: we add a small perturbation ε along the j = x, y direction to the

background electric field, ~E → ~E+ εĵ (ĵ unit vector pointing along j) and then, according

to eq. (4.1), we read the conductivities σij as the coefficients of the linear term in ε of the

current ji.

AC conductivities. In order to compute the full frequency dependent conductivity we

have to solve the equations for the fluctuations and then plug the solutions in the for-

mula (4.4). Though linear, these equations cannot be solved analytically so we used a

numerical technique.8 The boundary conditions of the differential equations are fixed at

the singular shell using (4.13) and (4.14).

In the following we show some plots of the conductivities computed with our model in

the E > B sector. Without loss of generality, the magnetic field B has been set to 1 in all

plots.

Figure 3 shows only the real part of the conductivities, since the imaginary one can be

straightforwardly determined by means of the Kramers-Kronig relation, relating the real

and the imaginary parts of the retarded Green’s function as follows

Im [GR(ω)] = −P
∫ ∞
−∞

dω

π

Re [Gr(ω
′)]

ω′ − ω
, (4.17)

where P denotes the principal value of the integral. Nevertheless in figure 4 we show some

examples of Im[σxx(ω)] for completeness.

From figure 4 we observe that the imaginary part of the conductivities goes to zero

not only in the high frequency limit, but also in the low frequency one, ω → 0. This is also

true in general for all the other cases.

Looking at the plots in figure 3 we can immediately note that all the real parts of the

conductivities go to a constant in the high frequency limit ω →∞, i.e.

lim
ω→∞

σij(ω) = Cij . (4.18)

8We simply used the built-in NDSolve command in Mathematica.
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Figure 3. Real parts of the conductivities for different values of electric field E and charge density ρ.
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Figure 4. Imaginary part of the longitudinal σxx conductivity for different values of electric field

E and charge density ρ.

This is a standard behavior of the (2+1)-dimensional systems and it is consistent since the

conductivities are dimensionless in this case.

It can be easily checked that the low frequency trend of the conductivities is consistent

with the DC values determined by the Karch-O’Bannon method. Even if the brane system

is translationally invariant, we do not see the presence of the delta function Drude peak,

as it can be argued from the imaginary part of the conductivities, which in fact goes to

zero in the low frequency limit.9 Furthermore we recall that the analytical property of the

sum rule implies that the following relation∫ ∞
0

dω (Re [σij (ω)]− Cij) = 0 (4.19)

must hold if there is no delta function peak [31]. We checked that this relation is fulfilled for

all the longitudinal and transverse conductivities we have considered. As it is well known,

the reason why we do not see the delta function Drude peak is that we are studying the

system in the probe approximation limit which introduces dissipation without breaking

the translational invariance: in this regime the gluon sector of the 3 + 1 dimensional Super

Yang-Mills theory plays the role of the lattice in solid state physics and, due to its large

density, it can absorb a large amount of momentum standing basically still [20].

Note that as the ratio E/B → 1 the value of the DC conductivity grows and conse-

quently we see the emergence of a Drude-like peak at small frequency. This peak eventually

becomes a delta function, δ(ω), when E = B and the effective temperature felt by open

strings becomes zero. This delta function is not related to momentum conservation, but

to an additional conserved quantity that probe branes have at zero temperature only, the

charge current operator [32]. When the (effective) temperature is small but finite the weak

non-conservation of this current is then responsible for the appearance in the conductiv-

ity of the Drude-like peaks we observed. The peaks are indeed associated to poles in the

Green’s function, whose presence is a general feature in low energy effective theories with

approximately conserved operators (quasihydrodynamics), as pointed out recently in [33].

9The delta function Drude peak should appear as a pole in the imaginary part of the conductivities

at ω → 0.
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Very similar results for the AC conductivity have been found in [22] considering non

vanishing temperature, charge density and electric field in the context of a neutral Lifshitz-

invariant theory and in [23] studying rotating Dp-branes at zero temperature which induce

an effective horizon. In both of these papers the authors found the same standard behavior

at large frequencies and a finite peak in the limit ω → 0. Here we managed to obtain a very

similar physics in the context of the D3/probe-D5-brane system. This is possible because,

although we are considering zero temperature, there is an effective temperature induced

by the singular shell, which plays the role of an horizon.

4.2 Conductivities for E < B

When E < B the open string metric takes the form

sab dσ
adσb =−

(
r4
b+r4

)(
B2∆4−E2r4

)
Br2

(
B2∆4r4

b+r4
) dt2−2

Er2
(
r4
b+r4

)
B2∆4r4

b+r4
dtdy+

r4
b+r4

Br4
br

2
dx2

+
B
(
r4
b+r4

)(
∆4+r4

)
r2
(
B2∆4r4

b+r4
) dy2+

B∆4
(
r4
b+r4

)(
1+r2ψ′(r)2

)
r2
(
B2∆4r4

b+r4
) dr2+dΩ2

1 ,

(4.20)

where

rb =
(
B2 − E2

)−1/4
, ∆ =

(
B2 + ρ2 csc(ψ(r))4

)−1/4
. (4.21)

The open string metric has no finite radius horizon and indeed we know that the singular

shell is located at the Poincaré horizon. The antisymmetric θab tensor is given by

θtx =
EB r4

b r
4

r4
b + r4

, θtr = −
ρ r4r2

b

∆2
(
r4
b + r4

)
sin2 ψ(r)

√
B2∆4r4

b + r4

1 + r2ψ′(r)2
,

θxy = −
B2 r4

b r
4

r4
b + r4

, θyr = −
E ρ r4r2

b

B∆2
(
r4
b + r4

)
sin2 ψ(r)

√
B2∆4r4

b + r4

1 + r2ψ′(r)2
.

(4.22)

Differently from the previous case, now the θab tensor gives rise to a non vanishing topo-

logical term, Q 6= 0, in the effective action for the fluctuations.

In this regime the D3/D5 system has two stable phases, the chirally symmetric and

the chirally broken ones (see figure 2). So, we have to further distinguish between these

two cases.

Symmetric phase (ρ >
√

7B.) When the charge density ρ is above the threshold

value
√

7B the system is still in the chirally symmetric phase just as for E > B. Thus,

also in this case, we have that the gauge fluctuations decouple from the scalar ones (the

coefficients of the effective actions (3.14) are those shown in eq. (4.5)). So the effective

action we need to consider in order to study the gauge fluctuations is given by

Seff = −N5

∫
d6σ

[√
s

g2
5

1

4
sacsbdF

(1)
cb F

(1)
da +

1

8
Qεabcdθ1ϕ1F

(1)
ab F

(1)
cd

]
. (4.23)

The equations for the ax and ay fluctuations in the r →∞ limit are

a′′i −
2

r
a′i − ω2B3 r4

b ai = 0 i = x, y. (4.24)
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Figure 5. Real parts of the conductivities for different values of electric field E and charge density

ρ in the case E < B (symmetric phase). We do not show the plots of the transverse conductivities

since they are just constants in ω.

The solutions for the gauge fluctuations near the Poincaré horizon, with the desired (in-

falling) behavior, can be written as

ai(r) = r ei ω B
3/2 r2

b r χi(r) , (4.25)

where again the χi admit a power series expansion near the Poincaré horizon. We will use

the form of the solutions given in eq. (4.25) in order to fix the boundary conditions in the

numerical integration of the equations of motion.

DC conductivities. Also in this case the zero frequency results for the conductivities

can be extracted analytically. They turn out to be

σDC
xx = 0 , σDC

yy = 0 , σDC
xy = −σDC

yx =
ρ

B
. (4.26)

They are again consistent with the expressions for the currents (2.15).

AC conductivities. In the following we show some plots of the conductivities for E < B

and ρ >
√

7B. Without loss of generality, the magnetic field B has been set to 1 in all plots.

Looking at the plots in figure 5 we immediately recognize for the real parts of the

longitudinal conductivities the same standard large frequency behavior of the E > B case,

i.e. we have that they are constant in the limit ω → ∞. In the low energy limit instead

they vanish as they should, in order to be consistent with the DC conductivities. At
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Figure 6. Imaginary part of the longitudinal σxx conductivity for the case E < B (symmetric

phase).

intermediate frequencies they exhibit a finite peak which becomes larger when the charge

density increases. We do not show the plots of the transverse conductivities since they do

not depend on ω, so they are identically equal to their DC value, σxy = −σyx = ρ
B .

As in the previous case, it is possible to obtain the imaginary part of the conductivities

using the Kramers-Kronig relations (4.17). However we report the imaginary part of σxx
as an example in figure 6.

We find for the imaginary parts a standard behavior, very similar to the one we have

obtained for the E > B case. Indeed, they vanish in both the low frequency and high

frequency limits and they have finite peaks at intermediate frequencies. We have very

similar plots for Im[σyy], while the imaginary parts of the transverse conductivities vanish

for every frequency. This is consistent with the fact that their real parts are just constant.

From the plots in figure 5 we notice that when the electric field is small (e.g. E = 0.1)

the Ohm conductivities σxx and σyy are almost equal, while they become clearly different

for higher values of the electric field (e.g. E = 0.8). This is consistent with the fact that

the background electric field E is what actually breaks the rotational symmetry on the

2-dimensional semimetal sheet.

Non symmetric phase (ρ <
√

7B). As we see from the phase diagram in figure 2,

when E < B and ρ <
√

7B the system is in the chirally broken phase. Therefore in this

case we have to deal with background worldvolume configurations for the probe D5 with

non-trivial profile along ψ. These can be determined by solving (numerically) the equations

of motion of the DBI action (2.2).

The fact that ψ is not constant makes the computations much more involved. Indeed,

when ψ 6= π/2 the gauge sector does not decouple anymore from the scalar one, as we

can see from the action for the fluctuations (3.14) along with (3.18). We have then to

consider the whole action with scalar fluctuations ψ(1)(r) only along ψ, which, to simplify

the notation, we denote simply as Ψ. Then the effective action for the fluctuations Seff
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assumes the following expression

Seff = −N5

∫
d6σ

{√
s

g2
5

[
Pabψψ Ψ,aΨ,b +Qψψ Ψ2 +Raψψ Ψ,aΨ +

1

4
sacsbdF

(1)
cb F

(1)
da

+Sabcψ Ψ,aF
(1)
bc + T abψ ΨF

(1)
ab

]
+

1

8
Qεabcdθ1ϕ1F

(1)
ab F

(1)
cd

}
.

(4.27)

When the charge density is less than
√

7B but finite the D5-branes have black hole

embeddings, namely they do reach the Poincaré horizon. From the r → ∞ limit of the

equations of motion derived from this action, we find the following behavior for the gauge

and scalar fluctuations near the Poincaré horizon

ai = r ei ω B
3/2 r2

b rχi(r) ,

Ψ = ei ω B
3/2 r2

b rχΨ(r) ,
(4.28)

where the functions χi(r) and χΨ(r) admit analytical expansions near the Poincaré horizon.

We shall use these expansions to fix the boundary conditions in the numerical integration

of the equations of motion.

When the charge density vanishes the D5-branes configurations are Minkowski embed-

dings. In this case the boundary conditions for the fluctuation fields have to be fixed at

the point where the D5-brane worldvolume pinches off.

AC conductivities. In the following we show some plots of the conductivities for E < B

and ρ <
√

7B. Without loss of generality, the magnetic field B has been set to 1 in all

plots. We start with the case of finite charge density, i.e. 0 < ρ <
√

7B.

The behavior of the real part of the longitudinal conductivities for small and large

frequencies is the same as for the symmetric phase (E < B) case. Indeed, they again

approach to a constant in the high frequency limit and they go to zero as ω → 0 consistently

with the vanishing DC conductivities. At intermediate frequencies we notice the presence

of some peaks, which become narrower and higher as the charge density goes to zero. For

the real parts of the transverse conductivities we observe instead a different behavior with

respect to the one seen for the symmetric phase. Indeed in this case they are not just

trivially constant, but they vary with the frequency. They start from the DC value, have

extremal points for intermediate frequencies and become constant in the high frequency

limit. Again the smaller the charge density the higher are the amplitudes of the peaks.

For completeness figure 8 shows some examples of the imaginary part of the longitu-

dinal σxx conductivity. From these plots we observe the same behavior of the symmetric

E < B case for these imaginary parts. The same happens for the other longitudinal con-

ductivity σyy. For the transverse conductivities we have a different situation with respect

to the symmetric case, as it happens for the real parts. Indeed, the imaginary parts are

not zero, but they vary with the frequency in a way very similar to the longitudinal case.

Also in this case we see that as the value of the background electric field approaches

zero the system tends to recover the 2-dimensional rotational symmetry: indeed for small

E we have σxx ' σyy and σxy ' −σyx.
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Figure 7. Real parts of the conductivities for different values of electric field E and charge density

ρ in the case E < B (non-symmetric phase).
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Figure 8. Imaginary part of the longitudinal σxx conductivity in the case E < B (non-symmetric

phase).

Figure 9. Imaginary part of the longitudinal σxx = σyy conductivities in the case ρ = 0 (Minkowski

embedding), E < B.

At zero charge density, where the background configurations for the D5-branes are

Minkowski embeddings, all the real parts of the conductivities identically vanish, except

for the presence of delta function peaks in the longitudinal conductivities, that can be

identified looking at their imaginary parts. In figure 9 we show, as examples, two plots

of the imaginary part of the longitudinal conductivity. Note that when ρ = 0, σxx = σyy
and that the Hall conductivities are identically zero, so the conductivity matrix still has a

rotational symmetry, even in presence of the electric field.

The behavior of the conductivities in figure 9 confirms our previous observation that

the peaks in the real part of the conductivities tend to become delta functions in the zero

charge density limit.

5 Discussion

We used the D3/probe-D5-brane system as a top-down holographic model for a Dirac

semimetal like graphene. In particular, we considered the system at finite charge density ρ

and in the presence of mutually orthogonal electric and magnetic fields at zero temperature.

The phase diagram, depicted in figure 2, shows two stable phases for the system: the

one with broken chiral symmetry, favored when E < B and ρ <
√

7B, and the chirally

symmetric one, favored in the remainder part of the phase space. Studying the fluctuations
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around stable background configurations we were able to compute the AC conductivity

matrices for the system.

All the conductivities derived in our model have the expected behavior in the small

and high frequency regimes. Indeed in the ω → 0 limit we recover exactly the DC values

that can be obtained using the Karch-O’Bannon method to fix the currents. In the high

frequency limit the real part of the conductivities goes to a constant; this is a standard

behavior of any (2+1)-dimensional systems where the conductivity is dimensionless. The

imaginary parts go to zero both in the low and high frequency limits.

When E > B the system is in the metallic phase. The real part of the conductivities

stays finite in the low frequency regime: this is evident from the plots in figure 3, and

it is also confirmed by the vanishing of the imaginary parts of the conductivities at zero

frequency, since a delta function peak would appear as a divergence in the imaginary part.

Moreover, it is worth noticing that as E → B, a Drude-like peak does emerge at small

frequencies. This is the expected behavior in probe brane systems [22, 23, 34] and it is

due to the fact that in this limit the effective temperature felt by open string excitations

tends to zero and the system approximately recovers the conservation of the charge current

operator [32].

It is possible to compare the behavior of the conductivities we found with some ex-

perimental measures performed on graphene or similar materials. For example, it is found

that for high quality graphene on silicon dioxide substrates, the AC conductivity in the

THz frequency range is well described by a classical Drude model [35]. The assumptions

behind this model are that there must be an electric field E which accelerates the charge

carriers and that the scattering events are instantaneous and isotropic. Under these hy-

potheses, the conductivity of high quality graphene should look as in figure 13 (c-e) of [35].

Very similar experimental results have been found also in [36] (see figure 2 reported there).

This experimental picture is compatible with what we found for the AC conductivity in

the case E > B. In most of our plots, the similarity with the Drude model and with the

experimental measurements is striking (even if we start to see deviations when the charge

is high).

In the E < B, ρ >
√

7B case we obtained a trivial frequency dependence for the

transverse AC conductivities, which therefore are fixed only by Lorentz invariance [24, 37].

In the chirally broken phase, namely when E < B, ρ <
√

7B, a peculiar and particu-

larly interesting behavior in the conductivity does emerge. From the plots in figure 7 we

clearly notice the presence of some peaks in the conductivity which become sharper as the

charge density decreases and eventually turn into delta functions when ρ is exactly zero.

These peaks can be interpreted as resonances that appear when the system is (almost-

)neutral and that are otherwise concealed by the presence of the charge density. These

resonances are related to the chiral condensates, which indeed are present only in this re-

gion of the phase space. It would be worth to further investigate if this interpretation is

indeed correct. If this should be the case, the presence of the peaks would be a remarkable

outcome of our model since it would show that the effects of the chiral condensates can be

observed in the optical conductivities.
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