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1 Introduction

In the study of Wilson loops expectation values and correlators, the ladder diagrams con-

tribution can be separated from the rest simply by identifying Feynman diagrams with no

vertices. Although ladder diagrams only account for observables partially, there are com-

pelling motivations to focus our attention on this particular type of contribution. When

restricting to the case of supersymmetric circular Wilson loops, it is possible to argue that

all diagrams with vertices cancel each other, ladder approximation becomes exact, and one

can obtain exact, non-perturbative results for a number of Wilson loop observables [1–3]

(see [4] for a review).

Another case when ladder resummation is rigorously justified arises upon analytic

continuation in the scalar coupling of the Wilson loop. Scalar ladder diagrams are then

enhanced compared to other contributions and their sum constitutes a first order of a

systematic expansion [5]. Apart from a detailed match to string theory at strong coupling,

all-order results obtained in this limit feature intriguing connections to integrability [6–8].

In this article we revisit resummation of ladder diagrams for the correlators of circular

loops [9, 10], in order to clarify some previous results and generalize the analysis in various
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ways. Although ladder diagrams do not give the precise answer in this case, their resum-

mation in the planar limit could capture anyway the essential behavior expected from the

dual string theory analysis in the strong coupling limit. For example, the ladder contri-

bution to the connected correlator exhibits a phase transition that can be associated with

the string breaking phase transition pointed out by Gross and Ooguri [11].

The ladder approximation has been analyzed in many ways and for various config-

urations of Wilson loops [1, 9, 10, 12–17], providing insight into their behavior at finite

’t Hooft coupling constant λ, and yielding all-loop results that can be contrasted with the

predictions of the AdS/CFT duality in the strong coupling limit.

We will discuss in detail the connected correlator of two co-axial circular Wilson loops,

either for the same or opposite spacetime orientations. To account for the ladder contri-

bution, we derive Dyson equations by a systematic procedure based on Gaussian average

over the fields that participate in the Wilson loops. The resulting Dyson equations can be

reduced to a Schrödinger problem whose classical limit captures the strong coupling limit

of the ladder contribution. For Wilson loops of opposite orientation the ladder contribu-

tion to the connected correlator exhibits a phase transition resembling the Gross-Ooguri

one. We also find supersymmetric critical relations between spacetime and internal space

separations [10], such that the ladder contributions can be exactly found and agree with

matrix model results from localization.

Finally, we show how to extend this analysis for correlators of more than two loops,

by considering the case of three Wilson loops. The system of integral equations turns out

to be more intricate in this case. Nevertheless, we can solve it exactly for the critical case,

recovering again known matrix model results.

2 Dyson equations for two loops correlator

General correlators of Wilson loops are not expected to be fully described by a ladder

approximation, since one would be neglecting interaction diagrams that do contribute to the

expectation value. Nevertheless, and as it has been shown [10], for certain configurations

correlators can be properly described by this reduced set of diagrams allowing, not only

an exact match with the dual string theory calculation, but also a description of a phase

transition of the Gross-Ooguri type [11, 18–20]. Therefore, we begin by deriving an integral

Dyson equation whose solutions account for the resummation of ladder diagrams. Our

procedure is fairly general and the derivation applies to any Wilson loop correlator, but we

will focus on the circular Wilson loop for concreteness.

A locally supersymmetric Wilson loop in the N = 4 SYM theory [21] depends on

the representation of the gauge group, which we take to be the fundamental of U(N), the

spacetime trajectory xµ(t) and the internal space trajectory nI(t), where nI(t) is a unit

six-component vector at each t:

W (C;nI) = trP exp

∮
C
dt
(
iAµẋ

µ + ΦIn
I |ẋ|
)
. (2.1)
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Figure 1. Ladder (green) and rainbow (blue) propagators.

In this work we focus on co-axial circular Wilson loops with constant separation along

the symmetry axis and along S5:

Ca/C̄a : xµa = (Ra cos t,±Ra sin t, ha, 0), nIa = (cos γa, sin γa, 0, 0, 0, 0), (2.2)

where the index a labels different loops in a multi-loop correlator. The contour C̄a has

opposite orientation to Ca.

Such configurations of Wilson loops have been studied in the past. The correlator of

two loops of opposite orientation is known perturbatively up to the two-loop order [22, 23].

At strong coupling the corresponding minimal surface was found in [18, 19, 24]. The

general solution in the latter case, that includes separation on S5 in addition to arbitrary

geometric parameters, was obtained in [10]. For the circles of the same orientation the

correlator is known at two loops as well [23]. The connected minimal surface most likely

does not exist for parallel circles, as we discuss later in the text. Non-co-axial circular

loops, in particular those sharing a contact point, were also studied recently, both at weak

and at strong coupling [25]. In this work we concentrate on the contribution of ladder

diagrams to co-axial circular loop correlators.

Restriction to ladder diagrams is equivalent to Gaussian integration over ΦI and Aµ,

disregarding all interaction terms in the action. For BPS configurations of Wilson loops (for

instance, for the expectation value of a single circular loop) the Gaussian approximation is

actually exact [3]. Truncation to ladders can be also justified when the S5 couplings of the

Wilson loops are imaginary and very large. In that case ladders constitute the first order of

a systematic expansion in a small parameter [5]. While in general restriction to ladders is

not a systematic approximation, it might capture qualitative features of the exact answer

even when not rigorously justified. We will thus treat ΦI and Aµ as free fields from now

on. In addition, we will take into account only planar diagrams systematically neglecting

1/N corrections.

Diagrams that survive are constructed from two building blocks (figure 1): ladder

propagators that connect different loops and rainbow propagators attached to the same

loop. These two elements are in a way similar to the worldsheets of different topology:
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ladders correspond to a cylinder worldsheet that connects a pair of Wilson loops, while

rainbow diagrams correspond to a disk attached to a single contour. This analogy is rather

loose so long as a single diagram is concerned, because a generic diagram will contain both

types of propagators in equal proportion.

Similarity to string theory becomes more pronounced at strong coupling when propa-

gators tend to become dense. Indeed the leading, dominant contribution then comes from

diagrams of order1 ` ∼ O(
√
λ). Depending on the parameters of the problem, only one

type of propagators will appear with O(
√
λ) multiplicity, while the number of propagators

of the other type will be much smaller, O(1). As a result, the leading diagrams at strong

coupling are almost exclusively built either from ladder or from rainbow propagators. The

competition between the two contributions leads to a phase transition [9], analogous to the

Gross-Ooguri transition in string theory which is caused by competition between connected

and disconnected minimal surfaces.

In the ladder approximation the problem becomes effectively one-dimensional, because

the 4d fields only appear in the combinations

Oa(t) = iAµẋ
µ
a + ΦIn

I
a|ẋa|, (2.3)

defined on each loop in the correlator. The fields Oa(t) are linear in Aµ and ΦI and thus

are Gaussian with the effective propagators〈
Oia j(t)Ōkb l(s)

〉
=

1

N
δilδ

k
jGab(t− s),〈

Oia j(t)Okb l(s)
〉

=
1

N
δilδ

k
j G̃ab(t− s),

(2.4)

where i . . . l are the color indices and the bar again corresponds to a contour of the opposite

orientation.

The propagator connecting two points on the same circle is a constant:

G̃aa =
λ

16π2
≡ g, (2.5)

while for different circles the propagators become

Gab(θ) =
λ

16π2

cos γab + cos θ
R2
a+R2

b+h2
ab

2RaRb
− cos θ

≡ G(θ), (2.6)

G̃ab(θ) =
λ

16π2

cos γab − cos θ
R2
a+R2

b+h2
ab

2RaRb
− cos θ

≡ G̃(θ), (2.7)

where γab and hab stand for the differences γa − γb and ha − hb. It is easy to see that (2.7)

reduces to (2.5) for Ra = Rb, hab = 0, and γab = 0.

We start by considering the connected correlator of two loops with opposite

orientations: 〈
W (C1)W (C̄2)

〉
conn

=
〈
W (C1)W (C̄2)

〉
−
〈
W (C1)〉〈W (C̄2)

〉
. (2.8)

1This counting follows from the area law behavior at strong coupling, and is shared by the ladder

approximation. The argument is rather simple and is outlined in the appendix A.
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As in (2.1), the Wilson loops can be defined by the path-ordered exponentials:

−→
U a(t1, t2) =

−→
P exp

∫ t2

t1

dtOa(t),
←−
U a(t1, t2) =

←−
P exp

∫ t2

t1

dtOa(t), (2.9)

where
−→
P and

←−
P denote path and anti-path ordering. The closed contour corresponds to

t1 = 0 and t2 = 2π, but for the sake of deriving a complete set of Dyson equations we will

need to consider an arc line between generic t1 and t2.

In the ladder approximation,〈
W (C1)W (C̄2)

〉
conn

ladd.
= 〈tr

←−
U 1(0, 2π) tr

−→
U 2(0, 2π)〉conn, (2.10)

where the bracket on the right-hand-side denotes Gaussian average defined by the propa-

gators (2.5), (2.6).

The key technical simplification of the ladder approximation is that the diagrams that

survive can be generated by iterating certain integral equations. These equations can then

be used for analytic diagram resummation. To derive a closed set of Dyson equations we

need Green’s functions of two types:

Kab(t) = 〈tr
←−
U a(0, t) tr

−→
U b(0, 2π)〉conn (2.11)

Γab(t, s|ϕ) =
1

N
〈tr
←−
U a(0, t)

−→
U b(ϕ,ϕ+ s)〉. (2.12)

The Wilson loop correlator is expressed through K12 evaluated at t = 2π:〈
W (C1)W (C̄2)

〉
conn

ladd.
= K12(2π), (2.13)

while Γab plays an auxiliary role.

The Dyson equation that relates Kab to Γab is derived in the appendix B:

Kab(t) = 2g

∫ t

0
dt′
∫ t′

0
dt′′W (t′ − t′′)Kab(t

′′) +

∫ t

0
dt′
∫ 2π

0
dϕG(ϕ− t′)Γab(t′, 2π|ϕ), (2.14)

where

W (t) =
1

N
〈tr
←−
U a(0, t)〉. (2.15)

This relation is similar to the Dyson equation in [9], but is not exactly equivalent to it. We

have checked that the new equation correctly reproduces combinatorics of ladder diagrams

for the supersymmetric configuration of Wilson loops considered in [10].

In order to better understand eq. (2.14) diagrammatically, we represent the Green’s

functions (2.11)–(2.12), as well as (2.15), as shown in figure 2.

Propagators, represented by blue and green dashed double lines, can be of two sorts

depending on whether they connect two points in the same or different loops:

= g
N δ

i
jδ
k
l

l
i

k
j = G(θ)

N δijδ
k
l

l
i

k
j
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· · ·

· · ·

0 2π

0 t

= K(t)

· · ·

· · ·

ϕ ϕ+ s

0 t
i

j

= Γ(t, s|ϕ)δij

· · ·
0 t

ij

= W (t)δij

Figure 2. Diagrammatic representation of Green’s functions.

· · ·

· · ·

K(t)

0 2π

0 t

=

· · ·

· · · ..

K(t′′)

0 2π

0 t
t′t′′

+

· · ·

.. ..

K(t′ − t′′)

0 2π

0 t
t′t′′

+

· · ·

· · ·

Γ(t′, 2π|ϕ)

0 2π

0 t
t′

ϕ

Figure 3. Diagrammatic interpretation of the integral equation (2.14).

· · ·

· · ·

ϕ ϕ+ s

0 t

=

· · ·

· · ·

ϕ ϕ+ s

0 t

+

· · ·

· · ·

..

..

ϕ ϕ+ s

0 t

ϕ+ s′

t′

Figure 4. Diagrammatic interpretation of the integral equation (2.16).

In eq. (2.14) t′ indicates the position of the rightmost field in
←−
U a(0, t) contracted with

a propagator. This contraction could be either with another field in
←−
U a(0, t) sitting at a

point t′′ < t′ or with a field in
−→
U b(0, 2π) sitting at a point ϕ. In the former case, there

are two planar contributions, depicted by the first two diagrams on the right-hand-side

of the equation shown in figure 3, but those contributions are equivalent upon a change

of integration variables. For the latter case, we get the last diagram in figure 3, which

corresponds to the last term in the right-hand-side of eq. (2.14).

The Dyson equation for the auxiliary Green’s function Γab(t, s|ϕ) closes on itself:

Γab(t,s|ϕ) =W (t)W (s)+

∫ t

0
dt′
∫ s

0
ds′W (t−t′)W (s−s′)G(ϕ+s′−t′)Γab(t′,s′|ϕ). (2.16)

An analytic derivation is presented in the appendix B. Diagrammatically, the Dyson equa-

tion can also be understood as follows. The first term comes from diagrams with no

propagator connecting the two loops. In the second term t′ stands for the rightmost point

in
←−
U a(0, t) with a propagator connecting with a point ϕ+ s′ in

−→
U b(ϕ,ϕ+ s), as shown in

figure 4. Thus, in the planar limit, to the right of t′ we can only have propagators within

the segment (t′, t) and similarly, to the right of ϕ+ s′ we can only have propagators within

the segment (ϕ+ s′, ϕ+ s).
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The same analysis can be repeated for two loops with the same orientation, in which

case the Green’s functions are defined as

K̃ab(t) = 〈tr
−→
U a(0, t) tr

−→
U b(0, 2π)〉conn, (2.17)

Γ̃ab(t, s|ϕ) =
1

N
〈tr
−→
U a(0, t)

−→
U b(ϕ− s, ϕ)〉. (2.18)

An equation that relates the two functions is essentially equivalent to (2.14):

K̃ab(t) = 2g

∫ t

0
dt′
∫ t′

0
dt′′W (t′ − t′′)K̃ab(t

′′) +

∫ t

0
dt′
∫ 2π

0
dϕ G̃(ϕ− t′)Γ̃ab(t′, 2π|ϕ), (2.19)

while the auxiliary Dyson equation is slightly different:

Γ̃ab(t,s|ϕ) =W (t)W (s)+

∫ t

0
dt′
∫ s

0
ds′W (t−t′)W (s−s′)G̃(ϕ−s′−t′)Γ̃ab(t′,s′|ϕ), (2.20)

reflecting the fact that the endpoints of the ladder propagators for parallel circles must be

arranged in a different order compared to the case of contours of opposite orientation.

3 Solving Dyson equations

We first consider the connected correlator of two Wilson loops of opposite orientation. To

account for the ladder contribution we need to solve (2.16) and then express Kab in terms

of Γab using (2.14). We start with the latter step.

The Dyson equation (2.14) has the following form:

f(t) = 2g

∫ t

0
dt′
∫ t′

0
dt′′W (t′ − t′′)f(t′′) +

∫ t

0
dt′ j(t′). (3.1)

This is an integral equation of convolution type and, as such, can be solved by the Laplace

transform:

f(z) =

∫ ∞
0

dt e−ztf(t). (3.2)

Taking into account that the Laplace image of W (t) is2

W (z) =
z −

√
z2 − 4g

2g
, (3.3)

solving for f(z), and going back to the original variables we find:

f(t) =

t∫
0

dt′ V (t− t′)j(t′), (3.4)

where the kernel is given by

V (z) =
1√

z2 − 4g
=⇒ V (t) = I0(2

√
gt). (3.5)

2See appendix B or C.
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Applying this result to (2.14) we get

Kab(t) =

∫ t

0
dt′
∫ 2π

0
dϕV (t− t′)G(ϕ− t′)Γab(t′, 2π|ϕ). (3.6)

The ladder contribution to the connected correlator of two loops with opposite orientations

is obtained from this equation as K12(2π).

Similarly, the ladder contribution in the case of loops with the same orientations can

be worked out from

K̃ab(t) =

∫ t

0
dt′
∫ 2π

0
dϕV (t− t′)G̃(ϕ− t′)Γ̃ab(t′, 2π|ϕ). (3.7)

Thus, in order to have explicit expressions for the ladder contribution to correla-

tors of two loops it is sufficient to solve the integral equations for the auxiliary Green’s

functions (2.16) and (2.20). As we shall see the problem reduces to a one-dimensional

Schrödinger equation for a particle in a periodic potential, which will allow us to obtain

a spectral representation for the correlator. In a special case when hab and γab are re-

lated such as to render the effective propagator G constant, the solution can be found

explicitly at any coupling. The spectral representation also considerably simplifies in the

strong-coupling limit.

3.1 Spectral representation for opposite orientations

As shown in [9], the solution of the Dyson equation (2.16) admits a spectral representa-

tion in terms of the eigenfunctions of a certain Schrödinger operator. The Schrödinger

representation arises upon changing variables to

x = s− t, y = s+ t. (3.8)

We use the same notation Γ(x, y|ϕ) for the Green’s function in the new variables, which

hopefully will not cause any confusion.3 While the function Γ(t, s|ϕ) is defined in the upper

right quadrant of the (s, t) plane, the new variables span a wedge y > |x|. The kernel

Γ(x, y|ϕ) is an exponentially growing function of y, for any fixed x, satisfying boundary

condition Γ(x, |x||ϕ) = W (|x|). It is natural, therefore, to Laplace transform in y:

Γ(x, y|ϕ)→ L(x, ω|ϕ), L(x+ ϕ, ω|ϕ) =
1

2

∫ ∞
|x|

dy e−ωyΓ(x, y|ϕ). (3.9)

The integral converges for Reω sufficiently large, when the Laplace exponential can beat

the growth of Γ. The shift in x and the factor of 1
2 are introduced for later notational

convenience. The function L(x, ω|ϕ) is analytic in ω, at least when Reω is large enough.

The inverse transform is

Γ(x, y|ϕ) =

∫ C+i∞

C−i∞

dω

πi
e ωyL(x+ ϕ, ω|ϕ), (3.10)

3And also omit the indices ab labeling the loops.
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where the contour lies at the right of all the singularities of L. The rightmost singularity,

which we denote by ω0, reflects the exponential growth of Γ at large y. At any fixed

ω, L(x, ω|ϕ) exponentially decreases at x → ±∞ and thus admits a well-defined Fourier

transform.

By changing the order of integration, one can show that for any function R(s),∫ s

0
ds′R(s′)Γ(t, s− s′|ϕ)→ R̂

(
ω +

∂

∂x

)
L(x, ω|ϕ)∫ t

0
dt′R(t′)Γ(t− t′, s|ϕ)→ R̂

(
ω − ∂

∂x

)
L(x, ω|ϕ). (3.11)

In these formulas R̂ stands for the Laplace transform of the function R. We now define

the operator Dt such that:4

DtW (t) = δ(t), (3.12)

so that its Laplace transform is5

D(ω) =
1

W (ω)
=
ω +

√
ω2 − 4g

2
. (3.13)

At g = 0, Dt coincides with the ordinary derivative. Applying DtDs to both sides of (2.16),

we find:

DtDsΓ(t, s|ϕ)−G(ϕ+ s− t)Γ(t, s|ϕ) = δ(t)δ(s), (3.14)

which, upon the Laplace transform, becomes(
D

(
ω − ∂

∂x

)
D

(
ω +

∂

∂x

)
−G(x)

)
L(x, ω|ϕ) = δ(x− ϕ). (3.15)

This chain of arguments shows that L(x, ω|ϕ) is the Green’s function of a particle with

the dispersion relation ε(p) = D(ω+ip)D(ω−ip) moving in a 2π-periodic potential −G(x).

Such a quantum-mechanical problem has a band spectrum, the eigenfunctions have Bloch

form e ipxψn(x) with 2π-periodic ψn and quasimomentum p constrained to the Brillouin

zone −1/2 < p < 1/2. The eigenfunctions are solutions of the Schrödinger equation(
D

(
ω − ip− ∂

∂x

)
D

(
ω + ip+

∂

∂x

)
−G(x)

)
ψn(x, ω; p) = En(ω; p)ψn(x, ω; p). (3.16)

In consequence, L(x, ω|ϕ) admits the following spectral representation in terms of the

solutions to the Schrödinger equation:

L(x, ω|ϕ) =
∑
n

∫ 1
2

− 1
2

dp e ip(x−ϕ) ψ
∗
n(ϕ, ω; p)ψn(x, ω; p)

En(ω; p)
. (3.17)

4The delta function is defined to give 1 upon integration from zero, in this sense it corresponds to δ(t−0).
5Here and in the following we omit the symbol ˆ to refer to the Laplace transform of a function in those

cases where it is evident from the context.
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From (3.6) we then get the spectral representation of the Wilson loop correlator:

〈
W (C1)W (C̄2)

〉
ladders

=

∫ C+i∞

C−i∞

dω

πi
e4πω

∑
n

∫ 1
2

− 1
2

dp
1

En(ω;p)

×
∫ 2π

0
dϕψ∗n(ϕ,ω;p)V

(
ω+ip+

∂

∂ϕ

)
G(ϕ)ψn(ϕ,ω;p). (3.18)

This differs from the result in [9] by an insertion of the operator V . As explained above (see

also [10]), this insertion takes into account different combinatorics of the ladder diagrams

in the two loops correlator compared to a single Wilson loop.

3.1.1 Strong coupling limit

When the coupling is large, g and Gab go to infinity simultaneously. The spectral represen-

tation for the Wilson loop correlator then features strong exponential enhancement. Indeed,

the ω integral in (3.18) is saturated by the rightmost singularity of the integrand. The expo-

nential behavior of the Wilson loop correlator is governed by the position of this singularity:〈
W (C1)W (C̄2)

〉
ladders

' e 4πω0 , (3.19)

as long as ω0 goes to infinity at strong coupling.

There are actually two possible scenarios. Both V (ω) and D(ω) have a square-root

branch point at

ωr0 = 2
√
g . (3.20)

This singularity appears in the expectation value of a single Wilson loop. As such, it reflects

combinatorics of rainbow diagrams. The branch point at ω = ωr0 affects the integrand in

the spectral representation through the kernel V (ω) and also through the eigenfunctions

and eigenvalues of the Schrödinger equation (3.16), which inherit this singularity from the

function D(ω) in the kinetic energy.

If no other singularities lie to the right of ωr0, the branch point at ω = ωr0 dictates the

strong-coupling asymptotics of the correlator. In that case,〈
W (C1)W (C̄2)

〉
ladders

' e 2
√
λ ' 〈W (C)〉2 . (3.21)

The main contribution to the correlator then comes from disconnected diagrams without

exchanges between the two loops. The exchange, ladder diagrams are statistically less

numerous than rainbow diagrams, and the connected correlator behaves as the square of

the Wilson loop expectation value.

Other possible singularities of the integrand in (3.18) are cuts associated with the

Brillouin zones. At the bottom of a Brillouin zone, the energy is quadratic in quasi-

momentum:

En(ω, p) = En(ω, 0) +
1

2
E′′n(ω, 0)p2 + . . . (3.22)

The momentum integration produces a branch cut when the zone boundary crosses zero.

The rightmost singularity corresponds to the bottom of the lowest zone:

E0(ωl0; 0) = 0. (3.23)
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Figure 5. The phase diagram for two loops of opposite orientation.

In the strong-coupling limit the Schrödinger problem (3.16) becomes semi-classical

(see [9] for a detailed justification), and the bottom of the lowest zone coincides with the

minimum of the classical energy, given by

E0(ω; 0) ' D2(ω)−G(0). (3.24)

The condition for the zero crossing is

D(ωl0) =
√
G(0). (3.25)

The function D(ω) is given by (3.13) and takes positive real values on the semi-infinite

interval ω > 2
√
g, growing monotonously from D(2

√
g) =

√
g to infinity. Hence, there are

two possible scenarios: (i) G(0) < g, the equation for ωl0 then has no solutions, and (ii)

G(0) > g, then

ωl0 =
√
G(0) +

g√
G(0)

, (G(0) > g) , (3.26)

such that ωl0 is always larger than ωr0 = 2
√
g.

Competition between the two singular points (3.20) and (3.26) determines the phase

structure of the correlator. If the solution (3.26) exists, ωl0 always constitutes the leading

singularity. The correlator is then saturated by the ladder diagrams. The singular point

ωl0 collides with ωr0 and moves under the cut once G(0) reaches g. Beyond that point, the

rainbow graphs are more important than ladder exchanges between the two loops. The

two regimes are separated by a phase transition, which is analogous to the Gross-Ooguri

transition between connected and disconnected minimal surfaces in string theory.

The transition happens when G(0) = g. Taking into account the explicit form of the

ladder propagator (2.6) we find the critical separation between the two loops:

hc =

√
2R1R2 (1 + cos γ)− (R1 −R2)2 . (3.27)

The resulting phase diagram for cos γ = 1 is shown in figure 5. When R1 = R2 ≡ R, we

get hc = 2R, in agreement with [9]. As cos γ → −1, the connected region shrinks to a

point — in this extreme case rainbow diagrams always give the dominant contribution to

the Wilson loop correlator.
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Figure 6. Comparison between ladders contribution phase transition and the Gross-Ooguri phase

transition.

The transition happens even if h = 0. The connected phase then exists for

2+cosγ−
√

(1+cosγ)(3+cosγ)<
R1

R2
< 2+cosγ+

√
(1+cosγ)(3+cosγ) . (3.28)

In fact, eq. (3.27) specifies a region in a 3-dimensional diagram with axes h
R2

, R1
R2

and γ.

The interior of the purple surface in figure 6(a) corresponds to the region of parameters

where the ladder diagrams dominate over rainbow diagrams. Remarkably, and despite the

contribution of interaction diagrams to the correlator has been omitted, ladder diagrams

capture all the qualitative features of the Gross-Ooguri phase transition. The latter is

represented in the figure 6(b), using the solution found in [10]. The region under the

purple surface in this plot represents the configurations in which the area of the connected

dual worldsheet is the minimal one.

This is consistent with the picture of the correlator saturated by the dense net of ladder

or rainbow diagrams, depending on the spacial arrangement of the two contours.

It is perhaps worthwhile to give an alternative, simplified derivation of the strong-

coupling behavior that lacks rigor, but instead is more physically transparent. The Dyson

equation (3.14) can be formally written as(
D

(
∂

∂y
+

∂

∂x

)
D

(
∂

∂y
− ∂

∂x

)
−G(ϕ+ x)

)
Γ(x, y|ϕ) = 2δ(x)δ(y), (3.29)

where D(ω) is given by (3.13). Anticipating an exponential growth of Γ we look for a

solution of the form

Γ(x, y|ϕ) ∼ ψ(x) e Ωy. (3.30)

Substituting this ansatz into (3.29) we find:(
D

(
Ω +

∂

∂x

)
D

(
Ω− ∂

∂x

)
−G(ϕ+ x)

)
ψ(x) = 0. (3.31)

This can be viewed as an eigenvalue equation for Ω, which is essentially equivalent to (3.16)

with zero energy and quasi-momentum. At strong coupling G, Ω2 and D2 all scale as g ∼ λ.
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The problem becomes semiclassical, and the maximal possible eigenvalue Ω is determined

by a classical computation where we look for a solution of

D2(Ω)−G(0) = 0, (3.32)

taking into account that G(ϕ+x) reaches maximum at zero. The solution to this equation

exists only for G(0) > g and then is given in (3.26). For G(0) < g we have to take Ω = 2
√
g,

the smallest value allowed by analyticity of the kinetic energy.

Upon substituting (3.30) into (3.6), we get, keeping an exponential accuracy:

〈
W (C1)W (C̄2)

〉
ladders

= K(2π) ∼
∫ 2π

0
dt′ e 2

√
g(2π−t′)+Ω(2π+t′). (3.33)

If Ω > 2
√
g, the main contribution to the integral comes from t′ ∼ 2π and is determined

by the asymptotics of Γ(x, y|ϕ). While for Ω = 2
√
g, all the interval of integration con-

tributes, and we get the asymptotic behavior (3.21) dictated by disconnected diagrams.

The transition between the two regimes happens when G(0) = g.

3.2 Strong coupling limit for same orientation

For loops of the same orientation the change of variables from s and t to x and y results in(
D

(
∂

∂y
+

∂

∂x

)
D

(
∂

∂y
− ∂

∂x

)
− G̃(ϕ− y)

)
Γ̃(x, y|ϕ) = 2δ(x)δ(y). (3.34)

The potential now depends on y and to the first approximation we can just neglect the x

dependence. A natural ansatz to start with is

Γ̃(x, y|ϕ) ∼ e S(y). (3.35)

Denoting

Ω(y) = S′(y), (3.36)

we get in the semiclassical limit:

D2(Ω)− G̃(ϕ− y) = 0. (3.37)

Again, this is solved by

Ω(y) =

√
G̃(ϕ− y) +

g√
G̃(ϕ− y)

, (3.38)

for G̃ > g and we should take Ω = 2
√
g for G̃ < g. In either case, the action S scales as√

λ which justifies the use of the semiclassical approximation at strong coupling.

The strong-coupling estimate of the Wilson loop correlator is

〈W (C1)W (C2)〉ladders ∼
∫ 2π

0
dt′ e 2

√
g(2π−t′)+S(2π+t′). (3.39)
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Figure 7. The y dependence of the Bethe-Salpeter wavefunction from numerical solution of the

Dyson equation for various values of R1. The other parameters are set to h = 0, R2 = 1 and g = 10:

(a) for loops of opposite orientation and γ = 0. For these values of parameters the Gross-Ooguri

transition happens at Rc = 3 + 2
√

2 ' 5.83; (b) for loops of the same orientation and γ = π/4.

The ladder diagrams would give the dominant contribution if the integral were saturated

by a non-trivial saddle-point:

S′(2π + t∗) = 2
√
g . (3.40)

Since S′ = Ω, and Ω is given by (3.38) the saddle-point condition becomes

G̃(θ∗) = g. (3.41)

However this scenario is never realized for real values of the parameters, because

G̃(θ) 6 G̃(π) = 2gR1R2
1 + cos γ

(R1 +R2)2 + h2
< g, (3.42)

and the saddle-point condition (3.41) never has a solution.

We thus conclude that the same-orientation correlator is always saturated by the

rainbow-type diagrams, and does not undergo the Gross-Ooguri transition. We have

checked this picture numerically. The Bethe-Salpeter wavefunction indeed grows expo-

nentially with y at fixed x, in agreement with (3.30), as clear from figure 7. In the ladder

phase, the rate of growth Ω varies with the parameters of the problem (in the numerics

we varied R1 with all other parameters fixed), as shown in figure 8. For contours of the

same orientation Ω remains approximately constant. Perhaps the most dramatic mani-

festation of the phase transition is the change in the x dependence of the Bethe-Salpeter

wavefunction, figure 9. The dependence on x becomes almost flat in the rainbow phase.

The residual, slow variation with x can be attributed to the next order in the semiclassical

expansion in 1/
√
g.

The absence of the phase transition for same-orientation circular loops is consistent

with the expectations from AdS/CFT. One could try to find a connected worldsheet for

coincident orientations as a surface of revolution connecting opposite points on the two

circles. But such a surface would contain a self crossing point that leads to a conical

– 14 –



J
H
E
P
1
2
(
2
0
1
8
)
1
0
0

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 2 4 6 8
0

2

4

6

8

10

12

14

Ω

R1

Rc

(a)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0 2 4 6 8
0

2

4

6

8

10

12

14

Ω

R1

(b)

Figure 8. The exponent in (3.30) extracted from numerical. The parameters take the same values

as in figure 7: (a) The Gross-Ooguri transition is clearly visible for opposite-orientation loops. It is

clear from the plot that the transition is second order. The red curve corresponds to the analytical

result for (3.20) and (3.26) and the difference with the numerical is attributed to finite g effects;

(b) There is no phase transition for loops of the same orientation.
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Figure 9. Dependence of the Bethe-Salpeter wavefunction on x at fixed y. The parameters are the

same as in figure 7: (a) in the ladder phase ψ(x) in (3.30) has a clearly pronounced profile, while

in the rainbow phase the dependence on x is almost flat (b) The dependence on x is much weaker

for loops of the same orientation.

singularity. Conical singularities are inconsistent with the string equations of motion and

are forbidden on minimal surfaces, so the solution with the cylinder topology for this

configuration of Wilson loops does not exist for any choice of parameters. Solutions which

connect coaxial circles of the same orientation can be found [24]6 for Wilson loops non-

trivially extended along S5, such that the dual string wraps an S2 ⊂ S5 thus avoiding

self-crossing in AdS5.

6It is unclear to us if these solutions are linearly stable.
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The transition for the same orientation occurs upon analytic continuation to imagi-

nary γ:

γ = iα. (3.43)

The critical imaginary angle is

coshαc =
R2

1 +R2
2 + h2

2R1R2
. (3.44)

For α < αc the maximum of the propagator still occurs at θ = π and the inequality (3.42)

still holds. But when α exceeds αc the maximum occurs at zero:

G̃(0) = g
coshα− 1

R2
1+R2

2+h2

2R1R2
− 1

> g, (3.45)

and moreover G̃(θ) > g for any θ, which means that the integral (3.39) is saturated on the

upper limit. The correlator is governed by the ladder contribution with the exponent S(4π).

This conclusion is consistent with the fact that at large imaginary γ the correlator of Wilson

loops is saturated by scalar ladder exchanges, which are enhanced by a factor of cosh α

compared to gluon and scalar rainbow diagrams which do not contain exponential factors.

3.3 Solution for BPS configurations

As shown in [10], for some specific relation between the geometric parameters and the inter-

nal space separation, the correlator of Wilson loops with opposite orientations is supersym-

metric. In such cases the propagator (2.6) becomes constant and an explicit resummation

of ladder diagrams, that matched both matrix model computations and the holographic

description, is possible.

In this section we first show how this result can be recovered by solving the Dyson

equation (2.16), and then extend a similar analysis for the correlator of Wilson loops with

equal orientations, i.e. by solving (2.20) for some other specific critical relation between

the parameters.

From expression (2.6), it is immediate that the critical relation in the case of opposite

orientations is

cos γ = −R
2
1 +R2

2 + h2

2R1R2
⇒ G(θ) = −g (3.46)

The effective propagator being constant, the integral (2.16) becomes a convolution in

both variables t and s with the function W . Since Γ is independent of ϕ, we will omit ϕ to

simplify the notations. Thus, we can solve the integral by doing a Laplace transformation

from which we get that

Γ(z, w) =
W (z)W (w)

1 + gW (z)W (w)
=
W (z) +W (w)

w + z
, (3.47)

whose inverse transform gives

Γ(t, s) = W (t− s) . (3.48)

Therefore we get in this case

K(t) = −2πg

∫ t

0
dt′ V (t− t′)W (2π − t′) . (3.49)
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Therefore, the ladder contribution reads

K(2π) = −2πg

∫ 2π

0
dt
I0(2
√
g(2π − t))I1(2

√
g(2π − t))

√
g(2π − t)

(3.50)

= −8π2g I2
0 (4π

√
g) + 2π

√
g I0(4π

√
g)I1(4π

√
g) + 8π2g I2

1 (4π
√
g).

Ladder resummation gives the exact result in this case.

Analogously, the critical relation that makes (2.7) constant is

cos γ =
R2

1 +R2
2 + h2

2R1R2
⇒ G̃(θ) = g (3.51)

Once again, we solve (2.20) doing a Laplace transformation and obtain in this case

Γ̃(t, s) = W (t+ s) . (3.52)

With this solution

K̃(t) = 2πg

∫ t

0
dt′ V (t− t′)W (2π + t′) . (3.53)

Therefore, for the correlator of Wilson loops with the same orientation we get

K̃(2π) = 2π
√
g I0(4π

√
g)I1(4π

√
g). (3.54)

The results (3.50) and (3.54) were originally obtained from localization, as a two-loop

correlator in the Hermitian one-matrix model [26, 27]. Details of matrix model results are

reviewed in appendix C. The same answer was found in [10] by combinatorial methods.7

4 Dyson equation for three loops correlator

In principle, the same analysis can be extended to account for the connected correlator

of any number of concentric circular loops. In order to illustrate how the procedure is

generalized, we consider two representative cases of three-loop correlators for concentric

circles. These connected correlators in the ladder approximation are given by〈
W (C̄1)W (C2)W (C3)

〉
conn

ladd.
=
〈

tr
←−
U 1(0, 2π) tr

−→
U 2(0, 2π) tr

−→
U 3(0, 2π)

〉
conn

(4.1)

〈W (C1)W (C2)W (C3)〉conn
ladd.
=
〈

tr
−→
U 1(0, 2π) tr

−→
U 2(0, 2π) tr

−→
U 3(0, 2π)

〉
conn

(4.2)

As before, the brackets on the right-hand-sides denote Gaussian average with the propa-

gators (2.5)–(2.7).

To compute the first of these quantities, we now define the Green’s function

M123(t) = N
〈

tr
←−
U 1(0, t) tr

−→
U 2(0, 2π) tr

−→
U 3(0, 2π)

〉
conn

(4.3)

7The case of equal orientations was actually not discussed in [10], but the combinatorial counting is

identical to the opposite orientation case up to the sign that comes from the constant effective propagator.

If the alternating sign in the sum of eq. (67) in [10] were removed, the result would have been (3.54).
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which eventually gives the correlator, when evaluated at 2π〈
W (C̄1)W (C2)W (C3)

〉
conn

ladd.
=

1

N
M123(2π). (4.4)

The corresponding Dyson equation for M is derived in the appendix B:8

M123(t) = 2g

∫ t

0
dt′
∫ t′

0
dt′′

[
W (t′ − t′′)M123(t′′) +K12(t′ − t′′)K13(t′′)

]
+

3∑
a=2

∫ t

0
dt′
∫ 2π

0
dϕG1a(ϕ− t′)∆1aā(t

′, 2π|ϕ) (4.5)

This involves the auxiliary function

∆abc(t, s|ϕ) =
〈

tr[
←−
U a(0, t)

−→
U b(ϕ, s+ ϕ)] tr

−→
U c(0, 2π)

〉
conn

(4.6)

which itself satisfies another integral equation

∆1ab(t, s|ϕ) = K̃ab(s)

+ g

∫ t

0
dt′
∫ t′

0
dt′′
[
W (t′ − t′′)∆1ab(t

′′, s|ϕ) +K1b(t
′ − t′′)Γ1a(t

′′, s|ϕ)
]

+

∫ t

0
dt′
∫ s

0
ds′G1a(ϕ+ s′ − t′)

[
W (s− s′)∆1ab(t

′, s′|ϕ)

+K̃ab(s− s′)Γ1a(t
′, s′|ϕ)

]
+

∫ t

0
dt′
∫ 2π

0
dαG1b(α− t′)χ1ab(t

′, s, 2π|ϕ, α), (4.7)

in terms of yet another auxiliary function

χ1ab(t, s, u|ϕ, α) =
1

N

〈
tr
←−
U 1(0, t)

−→
U a(ϕ,ϕ+ s)

−→
U b(α, α+ u)

〉
. (4.8)

This one finally satisfies an integral equation that closes on itself, provided W , Γ̃ and Γ

are known:

χ1ab(t,s,u|ϕ,α) =W (t)Γ̃ab(s,u|α+u−ϕ) (4.9)

+

∫ t

0
dt′
∫ s

0
ds′G1a(ϕ+s′−t′)W (t−t′)Γ1a(t

′,s′|ϕ)Γ̃ab(s−s′,u|α+u−ϕ−s′)

+

∫ t

0
dt′
∫ u

0
du′G1b(α+u′−t′)W (t−t′)W (u−u′)χ1ab(t

′,s,u′|ϕ,α).

We can interpret diagrammatically this equation through figure 10. The first term

comes from diagrams with no connecting propagator from the loop 1. In the remaining

terms, t′ stands for the rightmost point in
←−
U 1(0, t) with a connecting propagator. Thus,

from the propagators in between t′ and t we have a W (t−t′) factor. Between 0 and t′ we do

have connecting propagators and in the planar approximation we get the second and third

terms when t′ connects with a point in
−→
U a(ϕ,ϕ+s) and a point in

−→
U b(α, α+u) respectively.

8We use ā = 2, 3 for a = 3, 2 respectively.
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Figure 10. Diagrammatic interpretation of the integral equation (4.9).

When the three loops have the same orientation we define

M̃abc(t) = N〈tr
−→
U a(0, t) tr

−→
U b(0, 2π) tr

−→
U c(0, 2π)〉conn, (4.10)

∆̃abc(t, s|ϕ) = 〈tr
−→
U a(0, t)

−→
U b(ϕ− s, ϕ) tr

−→
U c(0, 2π)〉conn, (4.11)

χ̃abc(t, s, u|ϕ, α) =
1

N
〈tr
−→
U a(0, t)

−→
U b(ϕ− s, ϕ)

−→
U c(α− u, α)〉, (4.12)

for which we obtain the following set of integral equations

M̃123(t) = 2g

∫ t

0
dt′
∫ t′

0
dt′′
[
W (t′−t′′)M̃123(t′′)+K̃12(t′−t′′)K̃13(t′′)

]
+

3∑
a=2

∫ t

0
dt′
∫ 2π

0
dϕG̃1a(ϕ−t′)∆̃1aā(t

′,2π|ϕ) (4.13)

∆̃1ab(t,s|ϕ) = K̃ab(s)

+g

∫ t

0
dt′
∫ t′

0
dt′′
[
W (t′−t′′)∆̃1ab(t

′′,s|ϕ)+K̃1b(t
′−t′′)Γ̃1a(t

′′,s|ϕ)
]

+

∫ t

0
dt′
∫ s

0
ds′ G̃1a(ϕ−s′−t′)

[
W (s−s′)∆̃1ab(t

′,s′|ϕ)

+K̃ab(s−s′)Γ̃1a(t
′,s′|ϕ)

]
+

∫ t

0
dt′
∫ 2π

0
dαG̃1b(α−t′)χ̃1ab(t

′,s,2π|ϕ,α), (4.14)

χ̃1ab(t,s,u|ϕ,α) =W (t)Γ̃ab(s,u|ϕ−α−s)

+

∫ t

0
dt′
∫ u

0
du′ G̃1b(α−u′−t′)W (t−t′)Γ̃1b(t

′,u′|α)Γ̃ab(s,u−u′|ϕ−α+u′−s)

+

∫ t

0
dt′
∫ s

0
ds′ G̃1a(ϕ−s′−t′)W (t−t′)W (s−s′)χ̃1ab(t

′,s′,u|ϕ,α). (4.15)

These equations completely determine the ladder contribution to the three-loop cor-

relator. In the next section we show how to solve them for the BPS configurations, when

the parameters are adjusted to make all propagators constant.

– 19 –



J
H
E
P
1
2
(
2
0
1
8
)
1
0
0

4.1 Solution for the BPS configurations

In the BPS case G1a = −g and the dependence of ϕ and α drops from (4.9). The Laplace

transformation of this integral equation gives

χ(z, v, w) =
Γ̃(v, w)

z
[1− gΓ(z, v)] +

g

z
[W (z)−W (w)]χ(z, v, w). (4.16)

Thus,

χ(z, v, w) =
Γ̃(v, w)[1− gΓ(z, v)]

z − g[W (z)−W (w)]
=

W (w)−W (v)

(v − w)(z + w)
+
W (z) +W (v)

(z + w)(z + v)
, (4.17)

which is the triple Laplace transform of W with argument t− s−u. Thus, we simply have

χ(t, s, u) = W (t− s− u). (4.18)

Let us now turn to the auxiliary function ∆1ab(t, s|ϕ). Since in this case ∆123 and ∆132

are equal and independent of ϕ, we will denote them as ∆(t, s). The Laplace transform of

its integral equation gives

∆(z, v) =
K̃(v)

z
+
g

z
[W (z)−W (v)]∆(z, v) +

g

z
[K(z)− K̃(v)]Γ(z, v)

− 2πg

z

J(z) + J̃(v)

z + v
, (4.19)

where J(z) and J̃(z) are the Laplace transforms of J(t) = W (t−2π) and J̃(t) = W (t+2π)

respectively. If we further use that

K(z) = − 2πgJ(z)

z − 2gW (z)
, K̃(z) = +

2πgJ̃(z)

z − 2gW (z)
, (4.20)

we obtain

∆(z, v) =
K(z) + K̃(v)

z + v
, (4.21)

which means that

∆(t, s) = K(t− s). (4.22)

Finally, with this result we get for the BPS connected correlator of three loops

M(2π) = 2g

∫ 2π

0
dt

∫ t

0
dt′V (2π−t)K(t−t′)K(t′)−4πg

∫ 2π

0
dtV (2π−t)K(t−2π), (4.23)

which using the exact result (3.49) gives

M(2π) = (2π
√
g)3
(
I3

1 (4π
√
g)− I0(4π

√
g)2I1(4π

√
g)
)
, (4.24)

in agreement with the direct calculation in the matrix model (C.12).
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In the critical case of G̃ab = g, the integral equations for the case of three loops with the

same orientation can be solved by doing Laplace transformations. We obtain in this case

χ̃(t, s, u) = W (t+ s+ u), (4.25)

∆̃(t, s) = K̃(t+ s), (4.26)

and from these

M̃(2π) = 2g

∫ 2π

0
dt

∫ t

0
dt′V (2π − t)K̃(t− t′)K̃(t′) + 4πg

∫ 2π

0
dtV (2π − t)K̃(2π + t)

= (2π
√
g)3
(
I3

1 (4π
√
g) + 3I0(4π

√
g)2I1(4π

√
g)
)
, (4.27)

in agreement with the matrix model result (C.13).

The results given in eqs. (3.50), (3.54), (4.24) and (4.27) for BPS configurations can be

related to the results of connected correlators of more general Wilson loops also computable

in terms of matrix models. More precisely, using multi-matrix models [27, 28] it is possible

to obtain the connected correlators of the 1
8 BPS Wilson loops supported in arbitrary

curves on a S2 [29–31]. In particular eq. (8.79) of [27] reproduces our eqs. (3.50) and (3.54),

whereas eq. (4.39) of [28] reproduces our eqs. (4.24) and (4.27) when the 1
8 BPS Wilson

loops are taken to be coincident.

5 Conclusions

We have studied correlators of circular Wilson loops in the ladder approximation. For

the supersymmetric configurations, no approximation is made by restricting to ladders and

their resummation yields exact results for Wilson loop correlators. Moreover, resummation

of ladders in this case is a combinatorial problem accounted for by the Gaussian matrix

model. More generally, ladder resummation cannot be rigorously justified, but still results

in a qualitative agreement with expectations from string theory. In particular, the phase

diagram of the string-breaking transition is qualitatively similar to the one obtained from

minimal area law in AdS5×S5. The numerical details differ because ladders do not account

for all possible contributions at large ’t Hooft coupling.

Recently found connections between Dyson equations for ladder diagrams and the

AdS/CFT integrability [6–8] is suggestive of a deeper mathematical structure behind ladder

resummation. It would be extremely interesting to understand how integrable structures

arise in Wilson loop correlators studied in this paper. The first steps in this direction have

been made in [32].
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A Average number of propagators

Consider the perturbative expansion of a Wilson loop expectation value (or a correlator,

at this level the difference is immaterial):

〈W (C)〉 =
∑
`

w`λ
`. (A.1)

The order of perturbation theory ` counts the number of loops, which for ladders coincides

with the number of propagators. The dominant contribution comes from diagrams of order

¯̀=

∑̀
`w`λ

`

∑̀
w`λ`

= λ
∂

∂λ
ln 〈W (C)〉 . (A.2)

At strong coupling, the AdS/CFT correspondence predicts an exponential growth of

the correlator:

ln 〈W (C)〉 ' Ar

2π

√
λ, (A.3)

where Ar is minus the regularized area in AdS5 × S5 (one can show that Ar > 0). The

order at which diagrams contribute most thus grows as the square root of the coupling:

¯̀' Ar

4π

√
λ . (A.4)

The ladder approximation shares the square-root exponential scaling with the exact an-

swer [1, 9, 12, 13]. The diagram counting therefore is the same up to a numeric coefficient.

B Derivation of Dyson equations

The ordered exponentials (2.9), used to define the Green’s functions, are solutions to the

following recursion relations:

−→
U a(t1, t2) = 1 +

∫ t2

t1

dt
−→
U a(t1, t)Oa(t), (B.1)

←−
U a(t1, t2) = 1 +

∫ t2

t1

dtOa(t)
←−
U a(t1, t). (B.2)

The Dyson equations follow from these recursion relations upon applying Wick’s

theorem:

〈OaF(O)〉 = ÔaOb
〈
∂F
∂Ob

〉
, (B.3)
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with subsequent use of the large-N factorization. Wick’s theorem applies because fields

Oa(t) are Gaussian.

For example, starting with a single trace of an ordered exponential, we have〈
tr
←−
U a(0, t)

〉
= N +

∫ t

0
dt′
〈

trOa(t′)
←−
U 1(0, t′)

〉
= N +

g

N

∫ t

0
dt′
∫ t′

0
dt′′

〈
tr
←−
U a(0, t

′′) tr
←−
U a(t

′′, t′)
〉
, (B.4)

where (B.2) is used in the first equality and Wick’s theorem in the second one. Finally,

applying large-N factorization and recalling that

W (t) =
1

N

〈
tr
←−
U a(0, t)

〉
, (B.5)

we get an integral equation for W (t):

W (t) = 1 + g

∫ t

0
dt′
∫ t′

0
dt′′W (t′ − t′′)W (t′′). (B.6)

This is the loop equation for the Gaussian one-matrix model [33, 34], and can be easily

solved by a Laplace transform:

W (t) =
1
√
gt
I1 (2
√
gt) , (B.7)

where I1 is the modified Bessel function.

Applying the same chain of arguments, we can derive the integral equations that de-

scribe the ladder contribution to the connected two-loop correlator. Using the relation (B.2)

and Wick’s theorem on a correlator of two ordered exponentials we get〈
tr
←−
U a(0, t) tr

−→
U b(0, 2π)

〉
= N

〈
tr
−→
U b(0, 2π)

〉
+

g

N

∫ t

0
dt′
∫ t′

0
dt′′

〈
tr
←−
U a(0, t

′′) tr
←−
U a(t

′′, t′) tr
−→
U b(0, 2π)

〉
+

1

N

∫ t

0
dt′
∫ 2π

0
dϕG(ϕ− t′)

〈
tr
←−
U a(0, t

′)
−→
U b(ϕ,ϕ+ 2π)

〉
.

(B.8)

Applying large-N factorization in the second line and taking the connected part of the

correlator we get an equation that can be expressed in terms of the Green’s functions K

and Γ defined in (2.11)–(2.12):

Kab(t) = 2g

∫ t

0
dt′
∫ t′

0
dt′′W (t′−t′′)Kab(t

′′)+

∫ t

0
dt′
∫ 2π

0
dϕG(ϕ−t′)Γab(t′,2π|ϕ). (B.9)

The auxiliary function Γab(t, s|ϕ) satisfies a closed Dyson equation [9]. Here we red-

erive it applying the relation (B.2) and Wick’s theorem to the defining expectation value
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of Γ (2.12):〈
tr
←−
U a(0, t)

−→
U b(ϕ,ϕ+ s)

〉
=
〈

tr
−→
U b(ϕ,ϕ+ s)

〉
+

g

N

∫ t

0
dt′
∫ t′

0
dt′′

〈
tr
←−
U a(0, t

′′)
−→
U b(ϕ,ϕ+ s) tr

←−
U a(t

′′, t′)
〉

+
1

N

∫ t

0
dt′
∫ s

0
ds′G(ϕ+ s′ − t′)

×
〈

tr
←−
U a(0, t

′)
−→
U b(ϕ,ϕ+ s′) tr

−→
U b(ϕ+ s′, ϕ+ s)

〉
. (B.10)

The double-trace correlators factorize in the large-N limit, and we get a closed equation

for Γab:

Γab(t, s|ϕ) = W (s) + g

∫ t

0
dt′
∫ t′

0
dt′′W (t′ − t′′)Γab(t′′, s|ϕ)

+

∫ t

0
dt′
∫ s

0
ds′G(ϕ+ s′ − t′)W (s− s′)Γab(t′, s′|ϕ). (B.11)

This equation can be brought to a more symmetric form with the help of the following

argument. Consider an integral equation

f(t) = g

∫ t

0
dt′
∫ t′

0
dt′′W (t′ − t′′)f(t′′) +

∫ t

0
dt′ j(t′), (B.12)

where f(t) is an unknown and j(t) is given. Due to the fact that W (t) satisfies (B.6),

equation (B.12) is solved by

f(t) =

∫ t

0
dt′W (t− t′)j(t′), (B.13)

as can be checked by direct substitution. Applying this result to the equation (B.11) brings

the latter to a symmetric form quoted in the main text as (2.16).

For the connected three-loop correlator we need to derive an integral equation for the

triple-trace correlator. Using (B.2) and Wick’s theorem we get9〈
tr
←−
U 1(0, t) tr

−→
U 2(0, 2π) tr

−→
U 3(0, 2π)

〉
= N

〈
tr
−→
U 2(0, 2π) tr

−→
U 3(0, 2π)

〉
(B.14)

+
g

N

∫ t

0
dt′
∫ t′

0
dt′′

〈
tr
←−
U 1(0, t′′) tr

←−
U 1(t′′, t′) tr

−→
U 2(0, 2π) tr

−→
U 3(0, 2π)

〉
+

1

N

3∑
a=2

∫ t

0
dt′
∫ 2π

0
dϕG1a(ϕ− t′)

〈
tr[
←−
U 1(0, t′)

−→
U a(ϕ,ϕ+ 2π)] tr

−→
U ā(0, 2π)

〉
.

Applying large-N factorization and keeping the connected part, we get an equation for

the correlator that can be expressed in terms of M and ∆ defined in (4.3) and (4.6)

M123(t) = 2g

∫ t

0
dt′
∫ t′

0
dt′′

[
W (t′ − t′′)M123(t′′) +K12(t′ − t′′)K13(t′′)

]
+

3∑
a=2

∫ t

0
dt′
∫ 2π

0
dϕG1a(ϕ− t′)∆1aā(t

′, 2π|ϕ) (B.15)

9We use ā = 2, 3 for a = 3, 2 respectively.
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C Matrix models for BPS correlators

The correlators of BPS circular Wilson loops can be obtained from a Gaussian matrix

model with partition function

Z =

∫
dMe

− N
2g

tr(M2)
. (C.1)

The connected correlators are computed from,

W (t1, · · · , tk) = Nk−2〈tret1M · · · tretkM 〉conn, (C.2)

whose Laplace transforms are the k-point resolvents

W (z1, · · · , zk) = Nk−2

〈
tr

1

z1 −M
· · · tr 1

zk −M

〉
conn

. (C.3)

In [26] the first k-point resolvents are explicitly presented. To leading order in the

large N limit

W (z1) =
1

2g
(z1 −

√
z2

1 − 4g) (C.4)

W (z1, z2) =
1

2(z1 − z2)

(
z1z2 − 4g√

(z2
1 − 4g)(z2

2 − 4g)
− 1

)
(C.5)

W (z1, z2, z3) =
2g2 (z1z2 + z1z3 + z2z3 + 4g)[
(z2

1 − 4g)(z2
2 − 4g)(z2

3 − 4g)
] 3

2

. (C.6)

Upon inverse Laplace transformation we obtain

W (t1) =
1
√
gt1

I1(2
√
gt1) (C.7)

W (t1, t2) =
√
g
t1t2
t1 + t2

[I0(2
√
gt1)I1(2

√
gt2) + I1(2

√
gt1)I0(2

√
gt2)] (C.8)

W (t1, t2, t3) = g
3
2 t1t2t3 [I1(2

√
gt1)I0(2

√
gt2)I0(2

√
gt3)

+ I0(2
√
gt1)I1(2

√
gt2)I0(2

√
gt3)

+ I0(2
√
gt1)I0(2

√
gt2)I1(2

√
gt3)

+ I1(2
√
gt1)I1(2

√
gt2)I1(2

√
gt3)] (C.9)

From (C.8) we obtain the connected two-loop correlators: W (−2π, 2π) gives the cor-

relator in the case of loops with opposite orientation while W (2π, 2π) gives the correlator

for loops with the same orientation〈
W (C̄1)W (C2)

〉
BPS

= −8π2g I2
0 (4π

√
g) + 2π

√
g I0(4π

√
g)I1(4π

√
g)

+ 8π2g I2
1 (4π

√
g) (C.10)

〈W (C1)W (C2)〉BPS = 2π
√
g I0(4π

√
g)I1(4π

√
g) (C.11)
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Similarly, from (C.9) we obtain the connected three-loop correlators. W (−2π, 2π, 2π)

gives the correlator in the case in which one of the loops has opposite orientation, while

W (2π, 2π, 2π) gives the correlator for the three loops with the same orientation.〈
W (C̄1)W (C2)W (C3)

〉
BPS

= (2π
√
g)3
(
I3

1 (4π
√
g)− I0(4π

√
g)2I1(4π

√
g)
)

(C.12)

〈W (C1)W (C2)W (C3)〉BPS = (2π
√
g)3
(
I3

1 (4π
√
g) + 3I0(4π

√
g)2I1(4π

√
g)
)

(C.13)
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