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1 Introduction

During the last decade, our understanding towards topological states of matter has grown

enormously in condensed matter physics. Examples of topological states of matter in-

clude topological insulators, topological Weyl semimetals (WSMs)/NLSMs, anomalous Hall

states, and topological superconductors (see e.g. [1, 2] for a review). Most properties of

the topological systems that we have known were built on the weakly coupled picture. An

important challenge in the understanding of topological states of matter is to consider the

effect of interactions, especially strong interactions, on the topological structures of these

systems. Weakly coupled nontrivial topological structure could be destroyed by strong in-

teractions or new strongly coupled topological states of matter could arise. This has been

a rapidly growing research area in condensed matter during the recent years. However,

it remains quite difficult to attack this problem due to the lack of band structure and no

notion of quasiparticles and technical difficulty at strong coupling in the condensed matter

physics, especially for gapless topological systems. Some attempts in this direction could

be found in [3, 4].

To study strongly coupled topological states of matter, a very powerful tool from string

theory, the AdS/CFT correspondence, which maps a d + 1 dimensional strongly coupled

field theory to a d + 2 dimensional weakly coupled classical gravitational theory, would

be extremely helpful. As a strong-weak duality, AdS/CFT has obtained lots of success in
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its applications to strongly coupled condensed matter systems [5–7]. It is, however, still

a relatively undeveloped research area to incorporate topological states of matter into the

holographic dictionary. Some previous attempts could be found in e.g. [8–10] for topological

insulator and [11, 12] for quantum Hall states. Here we shall explore what holography can

tell about the strongly interacting topological semimetals.

An important question is if there exists a general framework for holographic topolog-

ical states of matter and to find the corresponding bulk topological structure. As a first

step to answer these questions and inspired by our previous work [13] on a holographic

model of strongly coupled WSM state,1 we will start from building a holographic model of

topological NLSM, which is a gapless topological state of matter whose Fermi surface forms

closed loops in momentum space. We will show its dual fermion spectral function behavior

and reveal the common mathematical structure of topology in the gravitational solutions

that the NLSMs and WSMs share. In particular, this bulk topological structure could

be generalized to a general paradigm in holography to describe strongly coupled gapless

topological states of matter.

In the following of this paper we will first give an example of a new entry in the

holographic dictionary of topological states of matter: the holographic topological nodal

line semimetal in section 2. Then the behavior of the corresponding fermion spectral

functions of the nodal line semimetal will be shown in section 3. In section 4 we point out

the general bulk topological structure of topological semimetal states. Appendices A, B, C

contain the equations of motion, free energy calculations of the system and the discussion

at the probe limit.

2 Holographic topological nodal line semimetals

A NLSM [19] has a nontrivial shape of Fermi surface where Fermi nodal points form a

circle under certain symmetries, e.g. mirror reflection symmetry (see [20] for a review).

A topologically nontrivial NLSM cannot be gapped by small perturbations unless passing

through a topological phase transition to a trivial state.

2.1 A field theoretical model

To get some hint for building the dictionary of this model, we first take a look at a sim-

ple weakly coupled field theory model that represents a nodal line semimetal. The La-

grangian is

L = iψ̄
(
γµ∂µ −m− γµνbµν

)
ψ (2.1)

where γµν = i
2 [γµ, γν ] and bµν = −bνµ is an antisymmetric two form field. Note that to

be consistent with the gravity calculations, we take the (−,+,+,+) signature. We turn

on a nonzero constant bxy component of the two form field and the energy spectrum of the

1The holographic model also gave an important prediction for the transport property of the system

which could be used to detect mixed axial-gravitational anomaly in laboratories [14]. More study on this

holographic model could be found in [15–18].
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Figure 1. The energy spectrum as a function of kx, ky for kz = 0. Left: there is a nodal line at

the band crossing when m2 < 4b2xy. Right: for m2 > 4b2xy the system is gapped.

eigenstates of this system are therefore

E± = ±
√
k2
z +

(
2bxy ±

√
m2 + k2

x + k2
y

)2
. (2.2)

For m2 < 4b2xy, the system is a topological nodal line semimetal with Fermi points forming a

connected circle with radius
√

4b2xy −m2 in the momentum space. In this parameter regime

we can see that the system cannot be gapped by small perturbations like an ordinary Dirac

field, i.e. a small perturbation in m cannot gap this system. For m2 > 4b2xy, the system

becomes an insulator and m2 = 4b2xy is the quantum transition point of this topological

phase transition. In the nodal line phase, we see that close to the Fermi line, the dispersion

behaves as linear in
√
k2
x + k2

y −
√

4b2xy −m2 with velocity
√

1− m2

4b2xy
when kz = 0 and

linear in kz with velocity 1 when
√
k2
x + k2

y =
√

4b2xy −m2.

We can see that the phase described by (2.1) for m2 < 4b2xy should be a topologically

nontrivial nodal line semimetal. Other components of bµν would play a similar role and

produce a nodal line semimetal with slight difference in the spectrum, e.g. btz would produce

an accidental nodal line semimetal.

The new two form field bµν term does not break the conservation of the eletric current

Jµ = ψ̄γµψ while does not conserve the axial current Jµ5 = ψ̄γµγ5ψ. We have the following

conservation equations

∂µJ
µ = 0 , (2.3)

∂µJ
µ
5 = −2mψ̄γ5ψ − 2bµνψ̄γ

µνγ5ψ , (2.4)

where we have ignored the anomaly terms.

Meanwhile, let us elaborate more on the differences between Weyl Semimetal (WSM)

and nodal line semimetal (NLSM) which are two different novel examples of gapless topo-

logical states of matter. In the former case two Weyl points are separated at a distance

b while the latter Weyl points form a 1D circle. The low energy effective field theory for

weakly coupled WSM and NLSM are different, although both of them can be described as

a Dirac fermion coupled to an external field. In the former case, a time reversal symmetry

breaking parameter axial Az is crucial, while for the latter, a two form effective field bxy is

crucial which breaks both time reversal and charge conjugate.
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2.2 The holographic model

A weakly coupled NLSM model is shown in the above subsection, where a coupling term

ψ̄γµνψ is responsible for deforming the Fermi point to a closed loop. It is a new nontrivial

topological semimetal phase compared to WSM in which the Fermi point is seperated to two

Weyl points. Motivated by the weakly coupled mechanism, we utilize a massive two form

field Bab to be dual to an antisymmetric operator which is though not exactly the ψ̄γµνψ

operator and introduce an axially charged scalar field Φ to be dual to the operator ψ̄ψ

whose source term breaks the axial symmetry and represents the gap effect. We consider2

S =

∫
d5x
√
−g
[

1

2κ2

(
R+

12

L2

)
− 1

4
F2 − 1

4
F 2 +

α

3
εabcdeAa

(
3FbcFde + FbcFde

)
− (DaΦ)∗(DaΦ)− V1(Φ)− 1

3η

(
D[aBbc]

)∗(D[aBbc]
)
− V2(Bab)− λ|Φ|2B∗abBab

]
(2.5)

where Fab = ∂aVb−∂bVa is the vector gauge field strength,3 Fab = ∂aAb−∂bAa is the axial

gauge field strength, Da = ∇a − iq1Aa, Da = ∇a − iq2Aa and

D[aBbc] = ∂aBbc + ∂bBca + ∂cBab

− iq2AaBbc − iq2AbBca − iq2AcBab . (2.6)

Bab is also axially charged as the dual operator explicitly breaks the axial symmetry. The

potential terms are

V1 = m2
1|Φ|2 +

λ1

2
|Φ|4 , V2 = m2

2B
∗
abB

ab , (2.7)

where m1 and m2 are the mass parameters of the scalar and the two form field. Bab has

a mass term because it does not correspond to a conserved operator and we will turn on

the Bxy component in the following. The λ term denotes the interaction effect between

the operators ψ̄ψ and the antisymmetric operator, which is important to the existence of

the topological structure and the topological phase transition. Similar to the holographic

WSM [13], we introduce the λ1 term because it is not possible to find nonsingular solutions

without this term. λ1 characterises the number of UV degrees of freedom that does not

gap in the IR. This indicates that this simple holographic system cannot be completely

gapped in the IR and could only be partially gapped at most. The equations of motion,

choice of parameters and current conservation equations can be found in appendix A.

From the weakly coupled theory, we see that the operators ψ̄ψ and ψ̄γ5ψ correspond to

the real and imaginary parts of the complex scalar field in the bulk and the operators ψ̄γµνψ

and ψ̄γµνγ5ψ should have similar properties. However, the operators ψ̄γµνψ and ψ̄γµνγ5ψ

not independent indicating that the dual field Bab should have a self-dual property. To avoid

this problem, here we instead consider an operator different from ψ̄γµνψ which nevertheless

2We set 2κ2 = L = 1. We use a, b = t, x, y, z, r to denote bulk indices, µ, ν = t, x, y, z for boundary in-

dices.
3Note that a semimetal state is a zero density state so that the vector gauge field will be turned off

throughout the calculations in this paper. Here we keep the vector gauge field terms in the action for future

convenience in the calculation of transport coefficients.
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is antisymmetric in the two indices and has no self duality properties. Note that a previous

holographic model considered the self-duality effect [21].4

Three types of solutions at zero temperature. To study the quantum phase transi-

tion of the system, we shall focus on solutions at zero temperature. We choose the ansatz

of the background to be

ds2 = u(−dt2 + dz2) +
dr2

u
+ f(dx2 + dy2) ,

Φ = φ(r) , (2.8)

Bxy = B(r) .

At the UV boundary, the fields φ(r) and B(r) behave as

φ =
M

r
+ · · · , B = br + · · · , (2.9)

where M and b correspond to the source for the two dual operators. All through the paper

we will work at b = 1, i.e. all dimensionful parameters are compared to b. To solve these

equations, we need to identify the near horizon boundary condition. It turns out we have

three different kinds of near horizon geometries. With proper irrelevant deformations, these

solutions flow to the UV AdS5 with different boundary values of M/b.

Topological phase. The near horizon solution for the topological phase is

u =
1

8
(11 + 3

√
13)r2

(
1 + δu rα1

)
,

f =

√
2
√

13

3
− 2 b0r

α
(

1 + δf rα1

)
,

φ = φ0r
β ,

B = b0r
α
(

1 + δb rα1

)
,

where (α, β, α1) = (0.183, 0.290, 1.273), (δf, δb) = (−2.616,−0.302)δu for the parameter

values that we have fixed above. b0 can be set to 1 by the transformation (x, y)→ c(x, y).

Moreover, the near horizon geometry has a Lifshitz symmetry at leading order

(t, z, r−1)→ c(t, z, r−1) , (x, y)→ cα/2(x, y) , (2.10)

which can be used to set δu = ±1 and δu = −1 flows the geometry to AdS5. Thus in the

IR, we only have a unique free parameter φ0.

We integrate this solution to the boundary and for this type of near horizon boundary

conditions we can only find solutions for M/b < 1.717. When the value of φ0 is zero, the

boundary reaches M/b = 0. When φ0 grows, M/b becomes larger and closer to the critical

value 1.717. To see that this corresponds to the NLSM phase, we will give evidence from

fermion spectral functions below.

4Other interesting application of (massless) two form field in holography can be found in [22, 23]

for holographic descriptions of 3+1D magnetohydrodynamics and in [24] for magnetization transitions

in AdS4/CFT3.
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Critical point. The near horizon solution for the critical point including irrelevant de-

formations is

u = ucr
2(1 + δu rβ1) ,

f = fcr
αc(1 + δf rβ1) ,

φ = φc(1 + δφ rβ1) ,

B = bcr
αc(1 + δb rβ1) ,

with

(uc, fc, αc, φc) ' (3.076, 0.828bc, 0.292, 0.894) ,

and

β1 = 1.272 , (δu, δf, δb) = (1.177,−2.771,−0.409)δφ .

Using the transformation (x, y) → c(x, y), we set bc = 1. Without the deformation,

the near horizon has the same type of Lifshitz symmetry (2.10) with α replaced by αc.

Utilizing this symmetry, δφ could be chosen to be δφ = −1 to flow the geometry to AdS5

at the boundary. There is no free parameter in the IR and the geometry is unique. At the

boundary we find the critical M/b ' 1.717.

Trivial phase. The near horizon solution for the trivial phase is

u =

(
1 +

3

8λ1

)
r2 ,

f = r2 ,

φ =

√
3

λ1
+ φ1r

2
√

160λ21+84λ1+9

3+8λ1
−2
,

B = b1r
2
√

2
√

3λ+λ1
3+8λ1 .

Note that the φ1- and b1-terms are irrelevant deformations that flow the near AdS5 leading

order exact solution to asymptotic AdS5 solutions. For this type of near horizon boundary

conditions we can only find solutions for M/b > 1.717. For the critical and the trivial

solutions here, the scalar field φ is a finite constant at the horizon and the system is

partially gapped.

In figure 2, we show the bulk behavior of φ and B/f for different values of M/b which

correspond to different near horizon geometries. Close to the critical M/b, the near horizon

solution flows to the critical solution quickly. Figure 3 is the free energy of this system,

which shows that the system is continuous when crossing the quantum phase transition

point. From figures 2 and 3 we could see that though the phase transition is a very

continuous one, the bulk IR solutions seem to be discontinuous. This is a common feature

of many holographic continuous phase transitions, especially BKT phase transitions [25–

28]. Near the transition critical point of such systems, there exists an IR critical scale

below which the solutions of the two phases (or the solution of one of the phases when

there is only one solution at each region of the phase diagram) start to deviate from the

– 6 –
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Figure 2. The bulk profile for the scalar field φ and the two form field B/f for different values of

M/b = 1.682 (green), 1.702 (brown), 1.717 (red), 1.733 (purple), 1.750 (black).
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Figure 3. The dependance of free energy on M/b. The red dot is the value of free energy density

at the critical point. Approaching the transition point from both the topological phase and the

trivial phase, the system is continuous and smooth.

critical solution while above this IR critical scale, the solutions of the two phases (or the

solution of one of the phases) converge to the critical solution. This IR scale depends on

how far the system is way from the critical point and could be exponentially small near

the critical point for very continuous phase transitions, e.g. BKT phase transitions [25].

As the system approaches the transition critical point, this IR scale decreases and becomes

infinitely small so that the solutions of the two phases converge to the critical solution for

almost all the bulk spacetime. Thus the free energy also shows a very continuous behavior

even though the IR solutions look discontinuous.

Note that the mechanism for the topological quantum phase transition here is differ-

ent from the Breitenlohner-Freedman bound mechanism for many holographic quantum

phase transitions, including holographic superconductors [25], metal-insulator phase tran-

sitions [26], etc. Here the IR scaling dimensions of the fields do not change for each phase

and different phases are due to different values of sources at the UV. There is no local

– 7 –
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order operator associated with this phase transition similar to the holographic quantum

phase transitions in [27].

3 Fermion spectral functions

For NLSMs there is no smoking gun transport coefficient like anomalous Hall conductivity

for WSMs. An immediate and straightforward test would be to see if there is indeed a

closed nodal loop from the dual fermion spectral functions. We will show that the fermion

spectral function in this system confirms that in the nodal line semimetal phase, there is

indeed a peak5 at k2
x + k2

y = k2
0 where the value of k0 decreases with M/b increasing and

finally becomes zero at the critical point. We expect that we could also see the nontrivial

topology in the structure of the fermion spectral functions, which we hope to report in the

future work.

The prescription for calculating the holographic fermion spectral function could be

found in [29–31]. In five dimensions, one bulk Dirac spinor corresponds to one chirality of

boundary Weyl spinor. We utilize two spinors with one spinor to use standard quantization

to calculate the dual fermion spectral function and change the sign of Fermi mass m and

use alternative quantization to calculated the fermion spectral function of the other chi-

rality. Since in both the holographic Weyl/nodal line semimetal model, the two chiralities

interact with each other due to the axial symmetry breaking terms. As can be seen from

formula (2.4) both the mass term and the bµν term break the axial symmetry and couple

spinors of two chiralities together. The action of the two spinors Ψ1 and Ψ2 are

Sfermion = S1 + S2 + Sint , (3.1)

where

S1 =

∫
d5x
√
−giΨ̄1

(
ΓaDa −mf

)
Ψ1 ,

S2 =

∫
d5x
√
−giΨ̄2

(
ΓaDa +mf

)
Ψ2 ,

Sint = −
∫
d5x
√
−g
(
iη1ΦΨ̄1Ψ2 + iη∗1Φ∗Ψ̄2Ψ1

)
+ SB ,

and

SB =

∫
d5x
√
−gi(η2BabΨ̄1Γabγ5Ψ2 − η∗2B∗abΨ̄2Γabγ5Ψ1) . (3.2)

Note that the Lorentz invariance in the tangent space has been explicitly broken in

the bulk and this is the exact choice to produce the specific coupling for the fermions to

generate a nodal line in the spectrum. Here

Da = ∂a −
i

4
ωmn,aΓ

mn − iq3Aa (3.3)

where ωmn,a is the bulk spin connection. Note that a and m are the bulk spacetime index

and the tangent space index respectively. Ψ̄ = Ψ†Γt, Γab = emaenb
i
2 [Γm,Γn]. mf is the

5We calculate the dual retarded Green’s function from bulk probe fermions by numerics and keep a very

small ω = 10−5 for numerical convenience. This peak becomes a pole when the small value of ω is removed.
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mass of the bulk spinor which determines the scaling dimension of the dual Fermionic

operator and we choose mf = −1/4 so that there could be poles in the dual fermion

spectral functions [29]. We also set η1 = η2 = 1. The equations of motion are(
ΓaDa −mf

)
Ψ1 −

(
η1φ− η2BabΓ

abγ5
)
Ψ2 = 0 ,(

ΓaDa +mf

)
Ψ2 −

(
η1φ+ η∗2B

∗
abΓ

abγ5
)
Ψ1 = 0 , (3.4)

where the five dimensional Γ functions are Γµ = γµ, Γr = γ5. We expand the fermion

field as

Ψl = (uf)−1/2ψle
−iωt+ikxx+ikyy+ikzz

with l = (1, 2) and the corresponding Dirac equation can be written as(
Γr∂r +

1

u

(
− iωΓt + ikzΓ

z
)

+
1√
uf

(
ikxΓx + ikyΓ

y
)

+ (−1)l
mf√
u

)
ψl

−

(
η1

φ√
u

+ (−1)lη2
b√
uf

Γxyγ5

)
ψ3−l = 0 . (3.5)

We can solve this as a coupled system of 8 functions. At the horizon the ingoing bound-

ary condition depends on the near horizon geometry of each phase. For the topologically

trivial phase, the near horizon ingoing solution for nonzero k while ω → 0 is real just as the

pure AdS5 case in [29]. Thus the imaginary part of the Green’s function is automatically

zero for nonzero k and the Fermi momentum should stay at k = 0. For the topologically

nontrivial and critical phases, the near horizon ingoing boundary condition is

ψl ' e
i

√
w2−k2z
u0r


zl1(1 + · · · )
zl2(1 + · · · )

i

√
ω2−k2z
ω−kz zl1(1 + · · · )

i

√
ω2−k2z
ω+kz

zl2(1 + · · · )

 (3.6)

with l = (1, 2) for w > kz, where “ · · · ” denote subleading terms. This is because the

terms proportional to kx and ky are not so important compared to terms with ω and kz as

gxx is not as divergent as gzz and gtt at the horizon. This also means that for nonzero kz
and ω → 0, the retarded Green’s function is real and the Fermi surface could only stay at

kz = 0, which is consistent with the fact that this corresponds to a nodal line semimetal

in the x-y plane.

Near the boundary r →∞,

ψl =


al1 rmf + · · ·
al2 rmf + · · ·
al3 r−mf + · · ·
al4 r−mf + · · ·

 , (3.7)

with l = (1, 2).
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Because the two chiralities couple to each other, ψ1,2 will also source expectation values

of ψ2,1 respectively. To calculate the retarded Green’s function, we need four different

horizon boundary conditions and get four sets of source and expectation values. We denote

the four boundary conditions as I, II, III, IV respectively and the source and expectation

matrix would look like

Ms =


a1,I

1 a1,II
1 a1,III

1 a1,IV
1

a1,I
2 a1,II

2 a1,III
2 a1,IV

2

a2,I
3 a2,II

3 a2,III
3 a2,IV

3

a2,I
4 a2,II

4 a2,III
4 a2,IV

4



and Me =


−a2,I

1 −a2,II
1 −a2,III

1 −a2,IV
1

−a2,I
2 −a2,II

2 −a2,III
2 −a2,IV

2

a1,I
3 a1,II

3 a1,III
3 a1,IV

3

a1,I
4 a1,II

4 a1,III
4 a1,IV

4

 .

The Green’s function is determined by G = −MeM
−1
s Γt. After getting G we find

eigenvalues of G and read the imaginary part of the four eigenvalues. With the above in-

gredients one can compute the spectral function. A plot for the spectral function G−1(0, kx)

at kz = ω = 0 for a finite regime of kx is shown in figure 4, which is taken from [32]. In

the framework of topological systems, we can treat −G−1(0, k) as a topological Hamilto-

nian [3, 33] which essentially determines the topological behavior of the system and the

eigenvalues plot would agree qualitatively with the spectral density plot in the ω-kx plane.

Different from the weakly coupled band structure in figure 1 the strong interaction hy-

bridize all the four bands to have multiple poles. We use different colors to distinguish

different bands in figure 1. More explanations and details on the fermion spectral func-

tions of this system and topological invariants could be found in the follow-up work [32],

which are based on the construction in this paper.

In the following we summarise the properties for the Green’s function in the

three phases.

• In all the three phases, when kz is not zero, the zero frequency retarded Green’s

function is real and does not have an imaginary part.

• In the topologically trivial phase, the near horizon geometry guarantees that for all

values of kx, ky, kz 6= 0, the retarded Green’s function is real. The pole stays at

kx = ky = kz = 0 as this is a partially gapped trivial semimetal phase.

• For the critical solution, we find that two branches of eigenvalues have peaks in the

imaginary part at kx = ky = 0 and the other two are still small for all kx, ky.

• Different from the weakly coupled NLSMs, for the holographic NLSM phase, the

system has multiple and discrete Fermi surfaces at a set of values of kiF =
√
k2
x + k2

y

and kz = 0, ω → 0, which are closed nodal loops in the kx-ky plane. This feature

reflects the strong coupling effect of the holographic system. At each nodal line

– 10 –
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Figure 4. Eigenvalues of −G−1(0, k) for M/b ' 0.0013 as a function of kx. Red and blue curves

represent two different sets of eigenvalues. This corresponds to an effective band structure of the

topological Hamiltonian of this system, which captures the same topological structure of the original

system. This figure also agrees qualitatively with the density plot of spectral densities in the ω-kx
plane of the original system. Figure taken from [32].

momentum, there is a sharp peak (which becomes a pole at ω = 0) in the imaginary

part of two eigenvalues of the Green’s function and the imaginary part of the other two

eigenvalues are very small indicating that the other two are gapped at this momentum.

This different behavior in the kz and kx, ky directions are partially caused by the IR

Lifshitz geometry.

• Each pair of adjacent nodal lines come from opposite sets of two bands [32]. The

interval between two adjacent nodal lines gets larger as kF increases. The position

of kF of each branch of nodal line decreases as M/b increases and reaches zero at the

quantum critical point. The left plot in figure 5 shows the value of one branch of kiF
as a function of M/b. For each branch of nodal lines, we find that the dispersion in

both the kz and kx directions are almost linear. The right plot in figure 5 shows the

dispersion in the kx direction of one branch of nodal lines at M/b ' 0.0013. A figure

taken from [32] showing the fermion spectral structure could be found in figure 4.

More details about the fermion spectral functions and topological invariants of this

system could be found in [32].

The spectral function behavior confirms that the topological phase corresponds to a

NLSM with multiple nodal lines and the critical and trivial solutions correspond to trivial

semimetals. Strong coupling effect produces more complicated topological structures in

the NLSM phase. Nontrivial topological invariants could be obtained in the holographic

NLSM phase from the dual Green functions [32] using the topological Hamiltonian method

developed in [33]. Moreover, in the holographic NLSM phase as the subleading order of φ

grows bigger the radius of the nodal line circle becomes smaller. This confirms that small

perturbations would not gap the system while only making the Fermi nodal circle bigger

or smaller.
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Figure 5. Left: the Femi momentum kF =
√
k2x + k2y in the holographic NLSMs for kz = 0. In

the critical point or the trivial phase, there is no Fermi surface at finite k and the pole is located

at k = ω = 0. Right: an example of dispersion relation. For M/b ' 0.0013, the best fitting curves

for the poles are almost linear in kF − kx, i.e. for kx < kF , ω ' 0.005(1.0477 − kx)0.998; while for

kx > kF , ω ' 0.005(kx − 1.0477)0.994.

4 Topological structure in the solution space

In the bulk there is an intrinsic topological structure for this system from the near horizon

configurations of the matter fields Bab and Φ.

The near horizon leading order behavior of B and φ are determined by their IR confor-

mal dimensions δB,φ± in the backreacted geometry. As r−δ
B,φ
+ is too divergent in the IR, we

have B, φ ∼ cB,φr−δ
B,φ
− . One crucial observation is that with the interaction term between

B and φ, cB and cφ cannot both be nonzero simultaneously. This divided the solutions

into three categories: cφ = 0 while cB 6= 0 corresponding to the topologically nontrivial

semimetal solution, cB = 0 while cφ 6= 0 corresponding to the trivial phase and cφ = cB = 0

corresponding to the critical phase where near horizon solutions are subleading terms. In

other words, the interaction term always changes the IR scaling dimension of at least one

of the fields and it is not possible to keep both scaling dimensions unchanged. Note that

this structure is still true with the presence of λ1φ
4 term where φ is at most O(1) at leading

order and we can substitute cφr
−δφ− with cφ in this case.

This structure indicates that when we have a NLSM solution, we cannot find a small

perturbation in the IR with φ at φ ∼ cφr−δ
φ
− or cφ in the case with λ1φ

4 term, which could

(partially) gap the semimetal. This means that the interaction between B and φ at IR is

the intrinsic reason that the nodal line solution is topological. The topological NLSM phase

could only become partially gapped after a quantum phase transition passing through the

critical point where the nodal line becomes a nodal point.

4.1 A general framework

This holographic NLSM shares the same mathematical structure as the holographic

WSM [13]. We propose that there exists a general framework in holography to produce

strongly coupled topological gapless states and the key ingredients of the holographic topo-
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logical structure are:

• A holographic system with at least two interacting fields, with one corresponding to a

mass operator, and the other corresponding to an operator that deforms the topology

of the Fermi surface, which we denote as φ and A for illustration. The IR interaction

between the two operators produces the topological structure of the solution space

in the bulk.

• At the horizon there are three types of solutions: A (or φ) is nonzero at leading order

with r−δ
A,φ
− while φ (or A) is at subleading order sourced by A (or φ) and a critical

solution with two fields both at subleading order sourcing each other. The fact that

A and φ cannot both be at leading order with r−δ
A,φ
− at the horizon implies that the

semimetal phase cannot be gapped by small perturbations.

We expect that a general holographic topological semimetal state shares the proper-

ties above. It is expected to be able to describe topological gapped states of matter after

introducing bulk fields dual to boundary gapped operators. As there is an intrinsic bulk

topological structure for the system that does not require any knowledge of the dual fermion

spectral functions, it is possible that this framework would shed light on a better under-

standing of the deeper organizational principles of strongly coupled topological gapless

states of matter and predict new kinds of strongly coupled topological semimetal states.
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A Equations of motion

The equations of motion for the action in the main text are

Rab −
1

2
gab(R+ 12)− Tab = 0 , (A.1)

∇bF ba + 2αεabcdeFbcFde = 0 , (A.2)

∇bF ba + αεabcde(FbcFde + FbcFde)

−iq1

(
Φ∗DaΦ− (DaΦ)∗Φ

)
− iq2

η

(
B∗caD[bBca] − (D[bBca])∗Bca

)
= 0 , (A.3)

DaD
aΦ− ∂Φ∗V1 − λΦB∗abB

ab = 0 , (A.4)

1

η
DaD[aBbc] −m2

2Bab − λΦ∗ΦBab = 0 , (A.5)
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where

Tab =
1

2

[
FacF c

b −
1

4
gabF2

]
+

1

2

[
FacF

c
b −

1

4
gabF

2
]

+
1

2

(
(DaΦ)∗DbΦ + (DbΦ)∗DaΦ

)
+ (m2

2 + λ|Φ|2)(B∗acB
c
b +B∗bcB

c
a ) +

1

2η

(
(D[aBcd])

∗D[bB
cd] + (D[bBcd])

∗D[aB
cd]
)

− 1

6η
(D[mBcd])

∗(D[mB
cd])gab −

1

2

(
(DcΦ)∗(DcΦ) + V1 + V2 + λ|Φ|2B∗cdBcd

)
gab .

In this system, the scalar and the two form fields both have sources at the boundary,

therefore for the system to be normalizable at the boundary and without loss of generality

we choose the conformal dimension for the source of the dual mass term and the ψ̄γµνψ

term in (2.1) to be 1. Thus the massive scalar and 2-form fields in the bulk have the values

for the mass to be m2
1 = −3 and m2

2 = 1. Furthermore, for simplicity, we set q1 = q2 = 1,

λ = 1, λ1 = 0.1 and η = 1.

After a variation of the total action with respect to the gauge fields, we can obtain the

dual consistent currents and they satisfy

∂µJ
µ
con = 0 ,

∂µJ
µ
5con = lim

r→∞

√
−g
(
− α

3
εrαβρσ(FαβFρσ + FαβFρσ) + iq1

[
Φ∗(DrΦ)− Φ(DrΦ)∗

]
+
iq2

η

(
B∗µνD[rBµν] − (D[rBµν])∗Bµν

))
+ c.t. .

Here we have not explicitly shown the counterterm for simplicity and the above conservation

can be further simplified in the radial gauge. The point is that the last two terms contribute

only when the non-normalisable mode of the scalar filed or two-from field is switched on

and it is straightforward to see that the above identities are of the same structure of the

weakly coupled theory (2.3), (2.4). Thus this holographic model is expected to go beyond

the weakly coupled theory to a strongly coupled nodal line semimetal model.

A.1 Zero temperature

With the ansatz of the zero temperature solution in the main text the corresponding

equations of motion are

f ′′

f
− u′′

u
+
f ′u′

2fu
− u′2

2u2
+

4

f2

(
B′2

η
+
λB2φ2

u
+
m2

2B
2

u

)
= 0 ,

φ′2

2
+

6

u
− u′

u

(
f ′

f
+
u′

4u

)
+
B′2

ηf2
− φ2

2u

(
m2

1 +
λ1

2
φ2

)
− f ′2

4f2
− B2

uf2

(
m2

2 + λφ2

)
= 0 ,

φ′′ +

(
3u′

2u
+
f ′

f

)
φ′ −

(
m2

1 + λ1φ
2 +

2λB2

f2

)φ
u

= 0 ,

B′′

η
+
B′

η

(
3u′

2u
− f ′

f

)
− B

u

(
m2

2 + λφ2
)

= 0 .
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Close to the boundary r →∞, we have the following boundary behavior of the fields

u = r2 − 2b2 − M2

3
+
(4b4 + 2λb2M2 +M4

9
+
λ1M

4

6

) ln r

r2
+
u2

r2
+ · · · , (A.6)

f = r2 − M2

3
+
(4b4 + 2λb2M2 +M4

9
+
λ1M

4

6

) ln r

r2
+
f2

r2
+ · · · , (A.7)

φ =
M

r
+
(
− M3

3
− λ1M

3

2
− b2Mλ

) ln r

r3
+
φ2

r3
+ · · · , (A.8)

B = br +
(

2b3 − λbM2

2

) ln r

r
+
b2
r

+ · · · , (A.9)

with f2 = 1
144

(
56b4 + 48bb2 + 14M4−72u2 + 4b2M2(4 + 7λ) + 9M4λ1−72Mφ2

)
. Note that

we have set the non-physical free parameter related to the shift symmetry r → r+ c in the

bulk to be zero in the above expansion. When we extract the boundary data, we should

carefully deal with this shift constant.

Radially conserved quantity ∂rJ
r = 0 with Jr =

√
uu′f − u3/2f ′ − 4u3/2

f BB′. From

the near boundary behavior, we have6 Jr = 4f2 − 4u2 + 2λM2b2. The following scaling

symmetry is useful for rescaling the boundary to be asymptotic to standard AdS5 and b = 1.

(1) (x, y)→ a(x, y) , (f,Bxy)→ a−2(f,Bxy) ;

(2) r → ar , (t, x, y, z)→ a(t, x, y, z) , (u, f,Bxy)→ a−2(u, f,Bxy) .

A.2 Finite temperature

We start from the most general ansatz for the background solutions at finite temperature

that are allowed by the symmetry

ds2 = −udt2 +
dr2

u
+ f(dx2 + dy2) + hdz2

Φ = φ(r) , (A.10)

Bxy = B(r) .

The equations of motion are

f ′′

f
− u′′

u
+
f ′h′

2fh
− h′u′

2hu
+

4

f2

(
B′2

η
+
λB2φ2

u
+
m2

2B
2

u

)
= 0 , (A.11)

f ′′

f
+
f ′

f

(
h′

6h
+

2u′

3u

)
− f ′2

6f2
− 4

u
+

2B2

uf2

(
m2

2 + λφ2

)
+
φ2

3u

(
m2

1 +
λ1φ

2

2

)
+

2B′2

ηf2
− f ′2

6f2
− h′u′

6hu
+
φ′2

3
= 0 , (A.12)

φ′2

2
+

6

u
− u′

2u

(
f ′

f
+
h′

2h

)
− f ′h′

2fh
+
B′2

ηf2
− φ2

2u

(
m2

1 +
λ1

2
φ2

)
− f

′2

4f2
− B2

uf2

(
m2

2 + λφ2

)
= 0 , (A.13)

6With the near horizon conditions, we have f2 − u2 + λ
2
M2b2 = 0 which can be used to check the

numerical code.
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φ′′ +

(
f ′

f
+
h′

2h
+
u′

u

)
φ′ −

(
m2

1 +
2λB2

f2
+ λ1φ

2

)
φ

u
= 0 , (A.14)

B′′

η
+
B′

η

(
u′

u
+
h′

2h
− f ′

f

)
− B

u

(
m2

2 + λφ2
)

= 0 . (A.15)

Note that the ansatz (A.10) is invariant under two independant transformations

(t, x, y, z, r)→ (a−2α−βt, aαx, aαy, aβz, a2α+βr),

(u, f, h, φ,B)→ (a4α+2βu, a−2αf, a−2βh, φ, a−2αB)

with constant a and arbitrary α and β. The corresponding two Noether currents (radially

conserved quantities) are Jr1 = fh3/2
(
u/h

)′
and Jr2 = fuh′√

h
− u
√
hf ′ − 4u

√
hBB′

f . From the

near horizon behavior of the fields one concludes that Jr1 = Ts with s the entropy of the

system. At zero temperature, we have Jr1 = 0 which leads to h = u and the ansatz (A.10) is

reduced to the zero temperature ansatz in the main text and this confirms that the ansatz

made for the zero temperator background is the most generic one. The sencond Noether

current Jr2 reduced to the one discussed in the subsection for zero temperature.

B Free energy

For each value of M/b from the boundary, there is only one bulk solution, nevertheless

we can compute the free energy of this system to see whether the phase transition is a

continuous one. To compute the free energy, we need to be careful with the boundary

counterterms. The total action is

Sren = S + SGH + Sc.t. (B.1)

with the Gibbons-Hawking boundary term SGH =
∫
r=r∞

d4x
√
−γ(2K) and the countert-

erms

Sc.t. =

∫
r=r∞

d4x
√
−γ
(
−6−|Φ|2+|Bµν |2+

1

2
(logr2)

[
1

4
F2+

1

4
F 2+|DµΦ|2

+

(
1

3
+
λ1

2

)
|Φ|4+

1

3η

(
D[µBαβ]

)∗(D[µBαβ]
)
−|Bµν |4+λ|Φ|2|Bµν |2

])
where γµν is the metric induced by gab on the boundary via γab = gab − nanb where na is

outward pointing unit normal vector of the boundary. K = γab∇anb is the trace of the

extrinsic curvature with respect to the metric at the boundary.

From the zz component of the Einstein equation (A.1), we have Rzz − 1
2gzzL = 0.

Thus the bulk on-shell action is a total derivative

S =

∫
d4xdr

√
−gL = −

∫
d4x

∫ r∞

0
dr
[
fu1/2u′

]′
. (B.2)

Taking into account the boundary terms and performing a Wick rotation, the free energy

density can be obtained as

Ω

V
=

7

9
b4 − 4bb2

3
+

7M4

36
− 3u2 +

5 + 8λ

9
b2M2 − 2Mφ2 . (B.3)
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The stress tensor for the dual field theory can be calculated as

Tµν = 2(Kµν − γµνK) +
2√
−γ

δSc.t.

δγµν
. (B.4)

The total energy density is ε = limr→∞
√
−γ〈T 0

0 〉 = 7
9b

4 − 4bb2
3 + 7M4

36 − 3u2 + 5+8λ
9 b2M2 −

2Mφ2, thus Ω
V = ε.

The free energy can be found in the main text and we conclude that the system is

smooth when it crosses the phase transition.

C Probe limit

The simplest way to solve the system is to consider the probe limit κ/L3/2 � 1. However,

the probe limit for the nodal line semimetal system is not well defined near the horizon and

even with another set of scaling dimensions where the probe limit is well defined near the

horizon it is not valid near the critical point. For the axial vector field in the holographic

Weyl semimetal, the probe limit is a good limit for the same scaling dimensions of operators

dual to Az and Bxy except near the critical point.

In the probe limit, we assume that the Newton coupling constant is very small so that

the backreaction to the geometry could be ignored. We need to check if the probe limit is

satisfied for a given solution of B and φ. The equations of motion for B and φ in the AdS5

background is

B′′ +
B′

r
−
m2
bB

r2
− ηBφ2

2r2
= 0 , (C.1)

φ′′ +
5φ′

r
−
m2
φφ

r2
− ηB2φ

r6
= 0 . (C.2)

We have to make sure that the source term of B and φ at both the boundary and the

horizon are small enough not to cause too much backreaction. In the probe limit, the IR

scaling dimention of B and φ is the same as the UV scaling. Thus it seems that there is

only one scaling dimenion that we can use, which is zero for both fields, otherwise, the

fields either backreact too much at the horizon or too much at the boundary. In this way,

the two fields contribute at κ2 order compared to the background and when κ → 0 the

probe limit is a physically well defined limit for finite solutions.

Let us focus on mφ = 0 and mB = 2. There are three types of near horizon solutions

The first solution is

φ ' φ0 + φ1(φ0, b1)r
√

16+2λφ20−4 + · · · , (C.3)

Bxy ' b1r4+λφ20/2 + · · · , (C.4)

where b1 is a tuning parameter and the second solution is

φ ' φ1r
√

4+λb20−2 + · · · , (C.5)

Bxy ' b0r2 + b1(b0, φ1)r2(
√

4+λb20−1) (C.6)
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where φ1 is a tuning parameter. The critical solution is Bxy = 1/
√

2r2φ and the critical

point is M/b =
√

2. This is a special property of the probe limit at the critical point,

which is also true for the holographic Weyl semimetal model at the probe limit. Flowing

this geometry to the boundary we find that at the boundary, though the scaling dimension

of B and φ guarantees that free B or φ does not have backreaction in the probe limit, the

interaction at the UV makes both B and φ more divergent than their scaling dimensions,

which means that it cannot flow to asymptotic AdS5 solutions.

To solve this problem and make the probe limit well defined, we introduce another

scalar field λ which mediates the interaction between B and φ and choose a scaling dimen-

sion for λ so that the interaction term is not important in the UV so that the probe limit is

still valid. We change the interaction term of φ and B to λ2B2φ2 and introduce the kinetic

term for λ in the action with a relative minus sign. The equations of motion now become

B′′ +
B′

r
−
m2
bB

r2
− ηλ2Bφ2

2r2
= 0 , (C.7)

φ′′ +
5φ′

r
−
m2
φφ

r2
− ηλ2B2φ

r6
= 0 , (C.8)

λ′′ +
5λ′

r
− mλλ

r2
− V0λ

3

r2
+
ηλB2φ2

r6
= 0 , (C.9)

where B denotes Bxy. We choose m2
λ = −3 so that the interaction at the UV is not

important. For the interaction to be not important in the IR we introduce a λ4 potential

term for the λ scalar.

The near horizon boundary conditions now have a new field λ =
√

3/V0 + · · · where

the subleading terms in λ depends on the phase of the solution. For the other two fields,

the near horizon boundary condition does not change except to substitute η with 3η/v0.

Flowing these solutions to the boundary and we could also get a valid probe limit system

with three different types of solutions. This probe limit is well defined for most of the

parameter regime. However, near the critical point the probe limit becomes subtle because

the solutions become larger and larger near the boundary when getting more and more

close to the critical point. Thus considering backreactions is a better and more physical

choice, and here we do not elaborate more on this probe limit.
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