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1 Introduction

String compactifications to lower dimensions preserving supersymmetry motivate us to
study Calabi-Yau varieties as initiated in [1]. To analyze various properties of Calabi-
Yau backgrounds, it is useful to consider the two dimensional gauged linear sigma model
(GLSM) [2]. This model corresponds to the UV description of the non-linear sigma models
on Calabi-Yau backgrounds and has provided a powerful technique to compute the correla-
tion functions exactly (see for example [3]). Utilizing the duality property of the model, a
physical understanding about mirror symmetry has also been developed [4] (see also [5, 6]
for several recent developments).

On the other hand, by using the supersymmetric localization techniques [7], exact
formula for the GLSM partition functions [8, 9] (see also [10, 11]) and correlation func-
tions [12, 13] on the 2-sphere backgrounds has been clarified. This means that one can
evaluate the genus-0 Gromov-Witten invariants from the GLSM calculation in a direct
fashion. This methodology has also been applied to the GLSMs with non-abelian gauge
groups and the study of the complete intersection Calabi-Yau varieties in Grassmanni-
ans has progressed in the last few years [14, 15]. Several notable aspects of the GLSM
correlation functions have also been clarified in [16, 17].

While the toric complete intersection varieties described by abelian GLSMs have been
thoroughly investigated in various contexts, a comprehensive understanding about the non-
complete intersection varieties requires further efforts. In [18], as an example of a class of
non-complete intersections, the determinantal varieties [19, 20] and the associated non-
abelian GLSMs have been investigated. The aim of our work is to make advances in the
study of the determinantal varieties and provides a further step toward the comprehensive
understanding of general Calabi-Yau backgrounds with non-abelian GLSM descriptions.

In this paper we explicitly clarify what kind of determinantal Calabi-Yau varieties
in Grassmannians can be constructed while satisfying several requirements. We mainly
focus on the 3-fold examples and the analysis for the determinantal Calabi-Yau 2-folds
and 4-folds is summarized in appendix. We will also study the quantum aspects of the
GLSM associated with determinantal varieties. Our method is based on the analysis of
the so-called Givental I-functions [21-23] which can be extracted from the localization
formula for the GLSM on a supersymmetric 2-sphere. In particular, we will compute



the genus-0 Gromov-Witten invariants of determinantal Calabi-Yau varieties by using a
conjectural handy formula, and check that our results coincide with previous results for
known examples included in our classification.

This paper is organized as follows. First we examine a class of determinantal Calabi-
Yau varieties in Grassmannians satisfying several requirements and specify the possible
examples in section 2. In section 3, we briefly review the computation of the genus-0
invariants of complete intersection Calabi-Yau varieties in complex projective spaces and
Grassmannians utilizing the I-functions, and provide a conjectural formula for Grassman-
nian Calabi-Yau varieties. In section 4, we compute the genus-0 invariants of determinantal
Calabi-Yau varieties with GLSM realizations by using the algorithm described in section 3.
Section 5 is devoted to conclusions and discussions. In appendix A we summarize our
results of the analysis for determinantal Calabi-Yau 2-folds and 4-folds. In appendix B,
we take a brief look at the computation of Hodge numbers using the Koszul complex and
demonstrate several computations explicitly. In appendix C we summarize the data of the
genus-0 invariants of several determinantal Calabi-Yau 4-folds.

2 Determinantal Calabi-Yau varieties in Grassmannians

In this section, we first review a minimal ingredient of determinantal varieties, following [18]
(see also [19, 20]). Afterwards we classify a class of determinantal Calabi-Yau 3-folds in
Grassmannians satisfying appropriate conditions.

2.1 Definitions

Let V' be a compact algebraic variety, and A : £, — F, be a linear map from a rank p
vector bundle &, on V' to a rank ¢ vector bundle F, on V. Here we assume that the linear
map A is a global holomorphic section of the rank pg-bundle Hom(&), Fy) = &, @ F,; with
maximal rank at a generic point of V. By representing the linear map A locally as a ¢ x p
matrix A(¢) of the holomorphic sections, a determinantal variety is defined as

Z(A ) ={ eV | rank A(¢) <}, 0</{<min(p,q), (2.1)

where ¢ denotes the homogeneous coordinates on V. The complex codimension of Z (A, ¢)
in V is given by

codim Z(A, ) = (p — £)(q — £). (2.2)

Here (£+ 1) x (¢4 1) minors of A(¢) generate the ideal I(Z(A,¥)). Since codim Z (A, () =
(p—0)(q—10) < (441:1) (211) for £ > 1, the ideal I(Z(A,)) has non-trivial relations called
syzygies and the determinantal variety Z(A,¢) for £ > 1 is not a complete intersection. As
argued in [18], a simple analysis of the Jacobian matrix implies that Z(A,¢) for ¢ > 1 has
singular loci along Z(A,¢ — 1) C Z(A,¢) only. One can resolve these singularities by the
so-called incidence correspondence [18, 19],

X4 ={(0,2) €Vg,pt | A9)z =0} — Z(A0), (2.3)



where Vg, ¢ denotes the fibration
Gp—4,&) — Ve, p—t N V, (2.4)

with Grassmannian fibers G(p — ¢, &,) of (p — ¢)-planes with respect to the p-dimensional
fibers of &,. It is worth noting that the codimension of the singular loci in V' is
codim Z(A,¢ — 1) = codim Z(A,¢) + p+ g — 2¢ + 1, and then the determinantal variety
Z(A, ) with the dimension less than p + ¢ — 2¢ + 1 does not have singular loci [18].1

Remark 2.1 ([18]). Since ¢ < min(p, q), the determinantal varieties with dimension less
than 2 do not have singular loci. The determinantal 3-folds have singular points only when
p=¢q =/{+ 1. The determinantal 4-folds have singular lines only when p = ¢ = ¢+ 1, and
have singular points only when (p,q) = (£ + 1,4+ 2) or (p,q) = (£ + 2,0+ 1).

In this paper we only consider the square (p = ¢q) determinantal varieties with
V=G(kn), &=0"  rank F,=p, (2.5)

where G(k,n) is the complex Grassmannian defined by the set of k-planes in C", and Oy
is the structure sheaf of V. Then the variety Vg, , 4 can be described by a product variety
Ve, p—t = G(k,n) x G(p —£,p) and the incidence correspondence (2.3) becomes

Xa:= X708 = {(6,2) € Gk,n) x G(E),p) | A(@)z =0}, £ :=p—L (26)

In addition we require n = £ ¢;(Fp) derived from Calabi-Yau condition [18]. Here
c1(Fp) = e1(Fp) o1

is the first Chern class of F, and o1 = ¢1(Q) is the Schubert class of G(k,n). Q is
the universal quotient bundle on G(k,n). The dimension of X4 is given by dim X4 =
k(n—k) — (p—0)* = ) (ker(Fp) — £)) — k*. By taking the duality G(k,n) = G(n — k,n)
into consideration, here we only consider the case with 2k < n. Furthermore, the rank
condition 0 < ¢ < p can be rephrased as 0 < EX < p =rank F.

In summary, we have seen that the following conditions? must be satisfied in order to
realize the determinantal varieties appropriately.

1. Dimensional condition: by (ker(Fp) — ) = E? 4 dim X 4. (2.7)
2. Calabi-Yau condition: n=4L)ci(Fp). (2.8)
3. Duality condition: 2k <n. (2.9)
4. Rank condition: 0 < () <p=rank F,. (2.10)

In the following, we will classify the determinantal Calabi-Yau 3-folds satisfying the above
four conditions. Although we consider the desingularized determinantal varieties X 4, the
following analysis also gives a classification of Z(A,¢).?

'As noted in [18], one can also use the incidence correspondence (2.3) to describe the determinantal
varieties without singular loci.

*Note that we do not impose irreducibility or the conditions H*(X4,Ox,) = 0 in our analysis.

3See appendix A for the analysis of determinantal Calabi-Yau 2-folds and 4-folds.



2.2 General dimensions

Before moving on to the discussion about the determinantal Calabi-Yau 3-folds, let us
consider general implications of the above requirements. In general dimensions, obviously
the following two ansatz always satisfy the dimensional condition (2.7).

Ansatz (I): (f;f, kei(Fp)) = (1,dim X4 + k* + 1), (2.11)
Ansatz (IT) : () ke (Fp)) = (dim X4 + k% dim X4 + k> + 1) . (2.12)

In the following, we will illustrate what kind of setups for (k, n; EI\,/, cl(}"p)) satisfy all the

above requirements if we start from the Ansatz (I) or (IT).*

2.2.1 Ansatz (I)

In this case, the Calabi-Yau condition (2.8) becomes
1
n=o (dim X4 + &% +1). (2.13)
Then the duality condition (2.9) implies
k? < dim X4 + 1, (2.14)

which means that examples with & > 3 provide determinantal varieties with dim X > 8.
When k =1, V is given by G(1,n) = P"~! and one obtains the solutions with

(k,ni ) e1(Fp)) = (1,dim X4 +2;1,dim X4 + 2). (2.15)

In this case the rank condition (2.10) is trivially satisfied, and appropriate F, on V are
given by the following vector bundles associated with the integer partitions of dim X 4+ 2 :
T
Fp=@i0v(p), pr1=p2>-2p >0, > pi=dimX,+2. (2.16)
i=1
When k = 2, V becomes G(2,n) and one finds the solutions with
(k,ni €y, e1(Fp)) = (2, (dim X4 45)/2; 1, (dim X4 + 5)/2) . (2.17)

Since n has to be an integer, this type of solution can exist only when the dimension of
X4 is odd. Moreover, (2.14) requires dim X4 > 3.

2.2.2 Ansatz (II)

In this case, the Calabi-Yau condition (2.8) becomes

n = % (dim X4 + &%) (dim X4 + k% + 1), (2.18)

*Of course there exist other solutions which do not belong to the Ansatz (I) or (IT). In section 2.3 we
have also taken into account this kind of solutions and checked, by Mathematica and Maple, that our result
exhausted all the possible solutions up to k& = 50.



and the duality condition (2.9) is trivially satisfied. Thus we only need to consider the
rank condition given by

dim X 4 + k? < rank F,,. (2.19)
For example, when k = 1, we obtain the following solutions

(k,ns €y, c1(Fp)) = (1, (dim X 4 + 1)(dim X 4 + 2); dim X4 + 1, dim X4 + 2)

i i 2.20
with F, = Oy (12454 & 0y (2), Oy (1) Xa+2), (2.20)

Note that the rank condition (2.19) strongly constrain the possible vector bundles.

2.3 Determinantal Calabi-Yau 3-folds

Here we will focus on the square determinantal Calabi-Yau 3-folds and determine what kind
of setups satisfy the above four conditions. Let us start with the dimensional condition
given by

0 (ker(Fp) —€)) = k* + 3. (2.21)

Then we will find out which type of choices for (k:,n;f},/, ] (]—"p)) can be possible while

changing the parameter k.

231 k=1

In this case we have V = G(1,n) = P"!. From (2.15) and (2.16) one finds that there
exists a “quintic family” (see for example [24]) given by

(k,n; 0, e1(Fp)) = (1,5;1,5) with F, = @], Ov(pi), pr =pa >+ = pr >0, ¥ _pi=5.
(2.22)

The example constructed from F, = Oy (5) with p = 1 (i.e. £ = 0) is the well-known quintic
Calabi-Yau 3-fold, which is the zero locus of a holomorphic section of Op4(5).

Since EZ =1 (i.e. p=£+1), according to the Remark 2.1, generically the above quintic
families have singular points. The determinantal Calabi-Yau 3-folds in this class are con-
nected by the deformations of complex structures, and it is known that the desingularized
3-folds are related by the so-called extremal transitions.’

Apart from the above quintic family, one can also find the following solutions

(k,ns €y, e1(Fp)) = (1,8;2,4) with
Fp = 0p(1) @ Oy (3), Oy(2)%2, Ov(1)®2 @ 0y (2), Ov(1)®.  (2.23)

Here the first two examples with p = 2 (i.e. £ = 0) in (2.23) can be identified with the
well-known complete intersection Calabi-Yau 3-folds as

X4 with Oy (1) ® Oy (3) «— X33 C IP)5, X4 with Ov(Q)@Q —— X99292 C P7,

5The comparison of topological invariants in section 4.3.1 makes this point clearly understandable.



where X4, 4. C P"~! denotes the complete intersection variety defined by the zero locus
of a holomorphic section of the vector bundle @/ _,Opn-1(d,). The last two examples
in (2.23) are Gulliksen-Negard type 3-folds studied in [25].

Moreover, (2.20) provides another type of solutions given by

(k,n; €, c1(Fp)) = (1,20;4,5) with 7, = Oy (1)™* @ Oy (2), Oy (1)%°. (2.24)

) p7

The Calabi-Yau 3-fold X4 in (2.24) constructed from F, = Oy (1)%® & Oy (2) with p = 4
(i.e. £ =0) has the following isomorphism:

X 4 with Ov(1)$3 D Ov(Q) — X272,272 C P”.
The other example constructed from F, = Oy (1) has been studied in [18].

232 k=2

In this case, V' becomes the Grassmannians V = G(2,n). Compared with the complex
projective spaces, there exist additional components for the vector bundles on the Grass-
mannians, as explained in the followings.

When k£ > 2, beside the line bundle Oy (d) on V' = G(k,n), one can also consider
vector bundles with rank greater than one denoted by

S* and Q.

These are known as the dual of the universal subbundle and the universal quotient bundle
on G(k,n), respectively. Note that they fulfill the relation A¥S* = Oy,(1) and satisfy

rank S* = k;’ 51(5*) = 1, rank Q = n — k?, Cl(Q) =1.

Accordingly, general irreducible vector bundles can be constructed as

Sym™ S§*(d) := Sym™ §* ® Oy (d), A"S*(d) = N"'S* @ Oy (d),
Sym™ Q(d) := Sym™ Q* ® Oy (d), AN"Q(d) == N"Q* @ Oy (d),
where
k — k — k —
rank Sym™ S§*(d) = ( +Z 1), ¢ (Sym™ S*(d)) = ( —H: 1> —|—d< +:§ 1),
k k—1 k
rank A"'S*(d) = <m)’ ¢ (AN"S*(d)) = (m B 1) + d<m),
rank Sym™ Q(d) = (n - k;;m— 1>’
cl(Syme( )):(N—I:L+T:—1> d<n—k—7;m—1)’
—k —k—-1 —k
B . N NCTO WC



Returning to the main subject of the classification, (2.17) with the rank condition (2.10)
implies that the following setups are possible

(k,ns €y, e1(Fp)) = (2,4;1,4) with
Fp=0v(4), Ov(1) & 0y (3), Ov(2)%2 Op(1)%2 e 0y (2), S*& Oy (3),
S*(1) @ Oy (1), Oy(1)®, S*® Oy (1) @ Oy (2), Sym?S* @ Oy (1),
ST e 0v()¥, (88 0y(2), ()P e0v(1)®?, (8P e0ov(), (51
(2.25)

Note that S* =2 Q on G(2,4) and A2S* = Oy (1) when k = 2. The example constructed
from F, = Oy (4) with p = 1 (i.e. £ = 0) is the complete intersection Grassmannian Calabi-
Yau 3-fold in G(2,4) with the vector bundle Og(p4y(4). Since £y =1 (ie. p= £+ 1), as
discussed in the case for the quintic family (2.22), these determinantal Calabi-Yau 3-folds
generically have singular points and the desingularized 3-folds are connected through the
extremal transitions (see also section 4.3.3).

Another class of solutions can be obtained by the ansatz (IT) in (2.12) and the result is

(k,ni €y, e1(Fp)) = (2,28;7,4) with
Fp= (8NP ®0y(1), (), Q@ 0y(3), Q& Oy(1) ® Oy (2), Q& Oy (1), (2.26)
Q%2 @ 0y (2), Q2 @ Ov(1)®2, Q% @ Oy (1), Q%

Here the Calabi-Yau 3-fold constructed from F, = (S*)®* @ Oy (1) with p = 7 (i.e. £ = 0)
can be identified with the complete intersection Grassmannian Calabi-Yau 3-fold in G(2,7)
with the vector bundle Og(o 7)(1)%7.

233 k>3
In this case, we have V' = G(k,n). Interestingly, there exist four “infinite families” given by

(kvn;gl\)/vcl(fp)) = (k275€u£175)7 i1 €N

with ky =4, 01 =19, ki1 = i, liy1 = ki + 500 Fp = (8%, 9%,
(k,n’ﬁv Cl(./rp)) = (ki,ﬁwi;&,ll), 1 €N

1 po

with ky =7, €1 = 26, ki1 =0, Liy1 = —ki + 400 Fp = (S, Q%

(2.27)

By using mathematical induction, one can check that the duality condition (2.9), the
rank condition (2.10), and in particular /) < rank J,, are maintained. Since we do not
impose the irreducibility condition in our analysis, it is still possible that the above infinite
families can be reduced to other trivial or non-trivial examples. In any case, it is required
to thoroughly investigate various topological invariants of these higher rank examples, and
this would require a considerable effort and we leave this issue as an open problem.

3 I-functions and Gromov-Witten invariants

In this section, we briefly overview the computation of genus-0 Gromov-Witten invariants
using the Givental I-functions [21-23] (see also [26]). We will also provide a handy for-
mula for the computations of the Gromov-Witten invariants of Grassmannian Calabi-Yau
varieties, which is also applicable to the determinantal varieties.



3.1 Building blocks of [-functions

When a Fano or a Calabi-Yau variety X has a GLSM realization with gauge group G, one
can easily construct the Givental I-function of X by using the supersymmetric localization
formula (see [14-17, 27]). Here we clarify the building blocks of the I-function of X
associated with such a GLSM on the (2-deformed 2-sphere S% which has a vector multiplet
and chiral matter multiplets with R-charge 0 or 2 under U(1)g. The deformation parameter
h is identified with an equivariant parameter.

Let x = (21,...,%Z1(g)) € b ®r C be Coulomb branch parameters and q =
(a1, &(g)) € 7% < ih be magnetic charges for Cartan subalgebra h of a Lie al-
gebra g associated with G, where rk(g) denotes the rank of g. Here the parameters x are
identified with the Chern roots of X which give the total Chern class of X as

rk(g)
e(X)= [ t+=). (3.1)
i=1
To construct the I-function of X, first we need a “classical block” associated with the
subgroup U(1)¢ C G, where c is the number of the central. The Fayet-Iliopoulos (FI)
parameters &, and theta angles 6,, a = 1,...,c, are associated with each U(1)¢ factor, and
the classical block of the I-function is given by

I(CI(Z7 X; h) _ eQWﬁT(X/ﬁ+q)’ T = {Ta} =/ =1 é.a =+ %HQ (32)

Here the parameters z = {z,} = 2™V =17 represent the exponentiated Kihler moduli of
X, and the canonical pairing 7(x) is defined by embedding 7 into h* @g C.

Other contributions come from the 1-loop determinants of multiplets of the GLSM.
The vector multiplet provides a block given by

I;CC(X; h) — H (_1)0((1) w’ (33)

(XEA+

where AL is the set of positive roots of g. In general, the GLSM also has chiral matter
multiplets ® with R-charge 0 and P with R-charge 2 in a certain representation R. Note
that one can turn on a twisted mass parameter A while preserving supersymmetry, which
is identified with an equivariant parameter. Their contributions are given as follows:

[Ler T2 (p(x) + A+ph) ™, for pla) > 1,
Iéf(x, Ah) =141, for p(q) =0, (3.4)
[Ler LAY (p(x) + X —ph),  for p(q) < -1,
and
[Lyer [ILAY (—p(x) — A+ ph) for p(q) < —1,
IP(x, A h) =4 1, for p(q) =0, (3.5)
[Ler II29 ™" (—p(x) = A —ph)™",  for pla) > 1,



Field | U(1) | twisted mass | U(1)r
D, +1 —W; 0
P, —dg Aa 2

Table 1. Matter content of the U(1) GLSM for the complete intersection variety X; in P"~!. Here
1=0,....n—landa=1,...,r.

where p denotes the weight of R. Note that the products a(x) and p(x) are defined by the
canonical pairing.

Combining all the above building blocks (3.2), (3.3), (3.4), and (3.5), after taking a
sum over the magnetic charges q, one can construct the Givental /-function as (3.7), (3.19),
and (4.3). As we will see next, the genus-0 Gromov-Witten invariants can be extracted
from this function.

3.2 Examples

Here we will demonstrate how to compute genus-0 Gromov-Witten invariants via the I-
functions for well-studied examples, and find out a useful formula for treating Grassman-
nian Calabi-Yau varieties.

3.2.1 Complete intersections in P"~!

Let us consider a complete intersection variety X1 = Xy, 4. C P"~! defined by the zero
locus of a holomorphic section of a vector bundle €& = &”_, 0y (d,) on V = P! satisfying
Fano or Calabi-Yau condition ), d, < n. Note that rank& = r and ¢;(£) = >, _, da.
This variety has a complex dimension

dmX; =n—r—1, (3.6)

and is described by a U(1) GLSM whose matter content is shown in table 1. This model has
a superpotential W = Y"" | P,G(®) where Go(®) are homogeneous degree d, polynomials
of the chiral matter multiplets ®;.

For each matter multiplet we assign twisted masses and U(1) R-charges as described
in table 1. Combining the building blocks (3.2), (3.4) and (3.5) with the assignment in
table 1, the I-function in the geometric large volume phase with FI parameter & > 0 is
constructed as [21-23]

[e] n—1 r
1O s p) = 3 Ie(z.05h) (H 134, wi h)) (H 17 (@, Aa; h>)
q=0 i=0 a=1

r d,
= Zx/ﬁ i Ha:l Hp:q1 (da.’E — Aa + ph) r
q=0 H?:_()l ;1):1(37 —w; + ph)

(3.7)

Geometrically z = e~ 2mE+V=10 provides the Kéahler moduli parameter of X7, and x is
identified with the equivariant second cohomology element of X satisfying H?:_Ol (x—w;) =



0, where the twisted masses w; give the equivariant parameters acting on P*~!. The twisted
masses \, correspond to the equivariant parameters acting on €& = &/ _, Oy (d,).
Then it can be shown that the I-function (3.7) obeys the ordinary differential equation

n—1 d

{witdXa} (. 1y .
I (e — w; —ZHH (hde®: — A+ ph) | I} (z0;h) =0, =2

(3.8)

=0 a=1p=1

In the Calabi-Yau case >, _;d, = n with vanishing equivariant parameters w; = A\, =
0, the differential equation (3.8) yields the Picard-Fuchs equation for the periods of the
holomorphic (n —r — 1)-form on X; given by [28-31]

r ode—1
;@"T—<Hﬁ>zIIIIMJk+m Ix, (z2;:h) =0, (3.9)

a=1 p=1

where Ix, (z;x;h) == I}{g}’{o}(z; x;h). If we expand the [-function around i = oo as

n—r—1

Lo (zah) = Y () (3 ) (3.10)

k=0

the coefficients Ij(z) precisely give the solutions to the Picard-Fuchs equation. One can
also obtain the flat coordinate ¢ on the Kéhler moduli space of X; through the relation

1
logq = =logz + O(z), (3.11)

Io(2)
called the mirror map. It has been shown in [32] that the genus-0 3-point A-model corre-
lators (OO Opn—r—k—2)p1, k =1,...,n —r — 1, which enumerate the number of rational
curves are given by

I,
<Ohohk0hn—r—k_2>Pl = K M

I (»
102 (2)) . (3.12)
n—r—k— q
=K+ Y ng(h',hF hrT R o
d=1
where ]A'k(z) are inductively constructed from the I-functions as
Io(2) = Io(2),
=~ 1 1 1 I 3.13
In(z) = 0. = 0. --.@Zf@zﬁ, k=1,...,n—r—1. (3.13)
Ii—1(2)  Ip—2(2) Ii(z)  Io(z)

Here the observable Oy is associated with the hyperplane class h € H%'(X7), and

K :/ = ] da / ht =] da (3.14)
Xi a=1 pr—t a=1

,10,



Field | U(k) | twisted mass | U(1)g
D, k —wy 0
P, | det™% Aa 2

Table 2. Matter content of the U(k) GLSM for the complete intersection variety Xs in G(k,n).
Here I=1,...,nanda=1,...,r.

is the classical intersection number of Xj. Ick(z) have relations

~ ~

Ii(2) = Ln—r—k(2), k=1,...,n—7r—1. (3.15)

Note that there is a selection rule Y " | p; = dim X; +n — 3 to realize non-trivial genus-

0 n-point correlators (Ope1 -+ Oppn)pr arising from the index theorem. The number

ng(h', h¥, h"=7=%=2) in (3.12) is an integer and enumerates the number of degree d holo-

morphic maps intersecting with the cycles dual to h, h¥, and h"~""k=2 [30, 31, 33] (see

also [34, 35]).

In a special case with k& = 1, the relation ©, = I;(2)©, and the so-called divisor
equation (O -« )p1 = Oy (- -+ )p1 imply that
Ir(2(q)) &

(Opn—r—a)ps = k ——=2 = ~ (logq)* + 3 na(h"~"~%) Liz(¢9), (3.16)
h P To (2(q)) 9 g4q dz_; d 2(q

where Li,(z) = > 72, z—’; Here ng(h"~"=3) = ng(h,h, A"""73)/d? is an integer which

enumerates the number of degree d holomorphic maps intersecting with the cycle dual to
R "3, When n — r = 4 (i.e. dim X = 3), by the divisor equation, (3.16) yields [36, 37]

o [TRCCN W S
e =r [ T ¢ = 000 + o naliale (317)

where the number ng = n4(h)/d is a genus-0 integer invariant.

3.2.2 Complete intersections in G(k,n)

Let us consider a complete intersection variety Xo defined by the zero locus of a holomorphic
section of & = @) _,0y(d,) on Grassmannian V = G(k,n) satisfying Fano or Calabi-Yau
condition Y. _, dq < n. Note that rank& = r and ¢;(€) = >, _, dq. The variety X has a
complex dimension

dim Xy = k(n — k) —r, (3.18)

and can be described by a U(k) GLSM whose matter content is given in table 2. This
model has a superpotential W = " | P,G4(B) where G4(B) are homogeneous degree
d, polynomials of the baryonic variables By, 1, = Eil...ikq’lﬁ . @Z]’Z called the Plicker
coordinates [38].

For each matter multiplet we assign twisted masses and U(1) R-charges as described
in table 2. Combining the associated building blocks (3.2), (3.3), (3.4) and (3.5) for the

— 11 —



U(k) vector multiplet and the chiral multiples in table 2, we can construct the I-function
for X5 in the geometric phase with large FI parameter £ > 0 as [39]

I){g’}’{)‘a}(z;x; h) = Z I (255 h) 157 (x5 h) <H I:ff(x,wj;h)> (H Iff“(x, )\a§h)>

qE(Zzo)’“ I=1 a=1
k
e S (g TR T B s
z2-i=1 Z (( 1) z) H P

a€(Z>o)* 1<i<j<k
r da 3K ai
Ty T (4o S0 = A+ )
X .

3.19
TT7— Ty 12 (25 — wr + ph) (319

Geometrically z = e 2mE+V/ 10 provides the Kéhler moduli parameter of Xs, and x; are
identified with the degree 2 elements in the equivariant cohomology of Xs. The twisted
masses wy and A, correspond to the equivariant parameters acting on G(k,n) and & =
@l _,0v(d,), respectively.

Remark 3.1. For w; = 0, the cohomology ring of G(k, n) is given by [40] (see [41] for the

equivariant quantum cohomology ring):

H*(G(k,n)) 2 Clat, ..., 2%/ (An—ts1(xX), - . ., hn (X)), (3.20)

where S is the symmetric group on k elements and

hp(x) = Z TiyTiy * iy

are the complete symmetric polynomials.

For the Calabi-Yau case Y. ;d, = n with vanishing equivariant parameters w; =
Ao = 0, the I-function Iy, (z;x;h) = I;[g}’{o}(z; x; h) can be expanded around i = oo as

k
(%)
Ix,(z:%; h) Z Ip(z h|P| . |P|= Zpi, (3.21)
|P|=0
where sp(x) = sp(x1,...,2x) is the Schur polynomial for a partition P = {p1,...,px},

and note that sp0,.0(x) = hy(x) and s11,...1(x) = ep(x) = 21§z‘1<z‘2<...<z’p§k Ly Lig * + * Tip -
The flat coordinate which provides the mirror map is given by

logq = 222 =log z + O(z). (3.22)

As a non-abelian generalization of the formula (3.16), here we conjecture that the genus-0
1-point A-model correlator

<(9H)p1= . (log q) +an ) Lia(q"), (3.23)

— 12 —



for the Grassmannian Calabi-Yau variety Xs is given by

_ L(z(q) . halz(a)
<0H>p1—/X2H <Io ) 2 T Gl) 1,1>. (3.24)

Here

K = H (o3 +011) = Ho? (3.25)
Xo Xa
is the classical intersection number associated with the Poincaré dual H of a codimension
dim X9 — 2 cycle in X9, where op denotes the Poincaré dual of a Schubert cycle of codi-
mension |P| in G(k,n) [42]. The numbers ny(H) are integer invariants associated with H
which are related to Gromov-Witten invariants of Xy [11, 43-45].
The Giambelli’s formula and the definition of Schur polynomials yield

2 2
01,1 =01 — 02, 511 E T = 51(x)* — s2(x).
1<i<j<k

Then one can reformulate the expression in (3.24) in terms of the classes o1 and oy as

b(z) . ha(z) - ha(2) o2 4 Iy(2) — ha(z)

(=) * 7 D(z) M hG) T I (3.26)
 —Ix,[#7] + I, w129 2 2, [27] — Ix, [x129)] ” ‘
- Ix,[1] ! Ix,[1] .

where Iy, [t] denotes the coefficient of ¢ at & = 1 in the expansion (3.21). Then, it is obvious
that the first term in (3.23) is determined from the classical block. One can also see that
for k = 1 the relations Iy,[z172] = 0 and o2 = o? imply that the formula (3.24) reduces
o (3.16).

Now we claim that the conjectural formula (3.24) is also applicable not only for com-
plete intersection Grassmannian Calabi-Yau varieties but also for the determinantal Calabi-
Yau varieties, as we will see in the next section.

Remark 3.2. Instead of Pieri’s formula for Schubert cycles, the intersection numbers of
Grassmannian G(k,n) can also be computed by Martin’s formula [40]:

T | N i

k1) | Rl=k(n—k) |R|=k(n—Fk)
(3.27)

Utilizing this formula, one can then compute the intersection numbers of complete intersec-
tion Grassmannian Calabi-Yau varieties by considering the top Chern class of their normal
bundles in G(k,n). For example, (3.25) for X7 is computed as

-
Ky = HO‘%:/ HU%Hdaal.
Xo G(k,n) a=1

Generic case can also be treated with a slight modification. Suppose that a Grassmannian
Calabi-Yau variety X, defined by the zero locus of a holomorphic section of a vector bundle
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on G(k,n), has a GLSM realization with a massless matter multiplet P in a representation
R of U(k) with R-charge 2. Then one obtains

2

lk(k—l) k des [Ticivich (@i —x5)
2 L 1<i<j<k\Ti —Tj)" p
[] on=" (T14 PRt S e T sae),
/R| dim X k! i—y Jei=0 27V —1 [y 7 |R|=dim X

(3.28)

where

= I r»

rPER

Let us consider the dual of the universal subbundle £ = §* on G(k,n). A Grassmannian
Calabi-Yau variety defined by the zero locus of a holomorphic section of £ = §* is described
by a U(k) GLSM with a superpotential W = P;G(®)’. Here G(®) is a homogeneous degree
1 polynomial of ®; (I =1,...,n) in k of the U(k) gauge group with R-charge 0, and P in
k with R-charge 2. For the matter multiplet P with twisted mass ), (3.5) becomes

(x,A; h) H H — A+ph), for Pin k with R-charge 2. (3.29)
i=1p=1

Similarly, for instance, for vector bundles £ = Sym” §*(d) and £ = A"'S*(d) we get

k
E;nzl qi; +dY i ai m

k
meoxn = ] 11 z;% +dz;$i‘“rph ©(3.30)
j= i=

1<ii < <im <k p=1

with P in Sym™k ® det™¢ and

> i td S

m k
reoxn = ] I1 Z;wz‘jer;xi_A*ph’ (3.31)
J= =

1<iy < <im<k p=1

with P in A™ k ® det™?, respectively. Using these building blocks with the help of our
formula (3.24), one can obtain the genus-0 Gromov-Witten invariants of Grassmannian
Calabi-Yau varieties computed e.g. in [14].

To consider a Grassmannian Calabi-Yau variety associated with the universal quotient
bundle & = Q on G(k,n), a little ingenuity is needed. By tensoring Og s n)(d) with the
short exact sequence

0—8— Offy — 20, (3.32)
as
0 — 8(d) <L Og(om (d)*" L Q(d) — 0, (3.33)
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Field | U(k) [ U(£)) [ U Field | U(k) | U(¢) | Ur
o, | k | 1 0 T T N
X 1 7 0 —> X; 1 y4 0
: s 4 Y R, £ 0
P | R, | & 2 PR |1 5

Table 3. The left table describes matter content of the PAX model for the desingularized determi-
nantal Calabi-Yau variety in G(k,n), where a =1,...,n,i=1,...,p, and R, is a representation
in the gauge group U(k) which describes the vector bundle F,,. U(1)r denotes an R-charge which
is assigned to the matter content. The right table describes matter content of the PAXY model
which is a dual GLSM of the PAX model.

one can realize a corresponding GLSM for the vector bundle £ = Q(d) from the viewpoint
of a quotient Og (4, ) (d)®" /im(f). The resulting model consists of n matter multiplets P; in
det™@ i=1,...,n of U(k) with R-charge 2, and a single matter multiplet ¥ in k ® det? of
U(k) with R-charge 0 [46]. The associated building block of the I-function without twisted
mass is then given by

5 (a5t b )

—qi+d Y51 q) '
H?:l [l ™ H (_xi +d Z?:l zj+ ph)

1EY (xy By = (3.34)

4 I-functions of determinantal Calabi-Yau varieties

In this section, we describe how to utilize our formula (3.24) to compute genus-0 Gromov-
Witten invariants of the determinantal Calabi-Yau varieties. Here we focus on the desin-
gularized determinantal Calabi-Yau variety X4 in (2.6) which can be described by a
U(k) x U(fy) GLSM with matter content in the left of table 3. This GLSM is called

a PAX model and has a superpotential [18]

p

&
Wpax = 3 > PaiA(®); Xja. (4.1)

i,j=1 a=1
The PAX model has several distinct phases. Let & and & be the FI parameters
associated with the central U(1) factors of U(k) and U(fy), respectively. For example,
a geometric phase called a “X 4 phase” with & > 0 and & < 0 of the PAX model in
the IR describes the variety X4 in (2.6), and another geometric phase “X 47 phase” with
k& + E;,/ & > 0 and & > 0 corresponds to an incidence correspondence constructed from

the transposed matrix A(¢)7.

Remark 4.1. Alternatively, one can consider Seiberg-like dual [38] of the PAX model as
follows. The chiral matter multiplet P in the fundamental representation B;)/ under the
U(¢,) factor corresponds to the vector bundle S* on G(£y,p). By taking the Seiberg-like
duality with respect to the gauge group U(E;)/ ), 8* is mapped to Q on G(¢,p) and as

,15,



indicated by the short exact sequence (3.32), the chiral matter multiplet P is mapped to
the dual chiral matter multiplets Y and P; in the right of table 3. This dualized GLSM is
called a PAXY model with gauge group U(k) x U(¢) and has a superpotential given by [18]

P ¢

Weaxy = > By (A(cb)ij -y YiBXBj). (4.2)
ij=1 B=1

4.1 I-functions and A-model correlators

Let us consider the PAX model with massless matter multiplets shown in table 3. From
the building blocks (3.2), (3.3), (3.4) and (3.5), the I-function of this model in the X4
phase with FI parameters £; > 0 and & < 0 is given by

Ix, (2, w;x,y;h) = > Ig(z,wix, y; h) 1§ (%, y5 h)
(@r)E(Z0)* X (Z0)P
< (I (x: )" (IX (y3 h))" 1L (%, y3 B), (4.3)
where
ZV

zf:i ZE)/ v Zf; T4
el (Sl e (SR Il

vee L T; — T+ (g — q]')ﬁ Yi —y; + (ri — Tj)h
Igr (x,y;h) = < H T — H ’

1<i<j<k 1<i<j<ty Yi—Yj
1 1 (4.4)
Iﬁf(x h) = A 7 ) IIA‘X' (y;h) = o~ - )
[Tiz [Ty (@i + dh) IL2 TTosq (i + dh)

&y p(q

)i
iy =TT I1 TI (o) +vi+dn).

pER, i=1 d=1

Here z = e 2m1+V=101 apq o = 2m62-V=102 are moduli parameters associated with the
central U(1)? C U(k) x U(£)), and in particular w parametrizes the blowing up in (2.3).
x (resp. y) are identified with the degree 2 elements in the cohomology of G(k,n) (resp.
G(4y.p)).

As performed in (3.21), the I-function (4.3) can be expanded around i = oo in terms
of Schur polynomials as

o

5Q(x) sr(y)
Ix,(z,w;x,y;h) = Z Io.r(2z,w) Qh@W' (4.5)
Q| R|=0

The flat coordinates g, and q,,, which provide the exponentiated Kéahler moduli parameters
of X 4, are given by
I (z,w)

lo z = *:102"‘02’,11), lo w =
gq Towo (7, 0) g (z,w) gq

I (2, w)

Too(2,0) =logw + O(z,w). (4.6)
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From our conjectural formula (3.24), one can deduce a formula for the genus-0 1-point
A-model correlator (Op)p: in the X4 phase as

I (z,w) I 10 (2,w)
Oy = [ H (2 1
(OH)p1 /XA (Io;o (z,w) o2 + Too (=, @) o1,1

I (z,w) Ina (z,w) I (z,w) >
— 0171+ p) 1,1
I(];o (Z, w) IO;O (Z, w) Io;g (Z, w)
kg 9 K 2 S di d
= " (10g:)* + K7 log gz logqu + =" (108 qu)” + Y, nay 0, (H) Lin(¢2' ).
di,da=1
(4.7)
Here
Ky = Ho?, kY = Hoym, Kg= H7i, (4.8)
Xa Xa X4

are the classical intersection numbers associated with the Poincaré dual H of a codimension
dim X4 — 2 cycle in X 4, where op (resp. 7p) is the Poincaré dual of a Schubert cycle of
codimension |P| in G(k,n) (resp. G({;,p)). The genus-0 invariants ng, q4,(H) associated
with H, which are related to Gromov-Witten invariants, are conjecturally integers.

Remark 4.2. When dim X4 = 3, analogous to the formula (3.17), the above result (4.7)
yields

Ko 3 o1 2 . 9 Ky 3
(*)p1 Zﬁ(long) + ;1 (log ¢:)" log qu + =+ log g (log qu) +37,1(10ng)
4.
> s (4.9)
+ Z nd1,d2L13(qz Qw )v
dy,d2=1

where ng, 4, = n4, 4,(01)/d1 (for di # 0) and ng, 4, = n4, 4,(71)/d2 (for do # 0) each
provide genus-0 integer invariants.
4.2 An algorithm to compute genus-0 invariants

In a similar fashion to the computation (3.26), by taking the classes o1, o2, 71 and 7o for
the special Schubert cycles, the 1-point correlator (4.7) can be evaluated with

Io(z,w) I 10(2,w) I (z,w) Ino(z,w) In:1,1(2,w)
7 2 o1+ +—F——=0171+ 2 T1,1
0;0(z, w) Ino(z,w) Io0(z,w) Ino(z,w) Ino(z,w)
_ I, (et + Ix, [ma) o? 2, [43] — Ix , [z129] oy Ix,[r1y1] o (4.10)
IXA[]‘] IXz[l] IXA[]']
L oDl o+ Dealyiye) o 20x (i) = Txalyive] .
IXA[l] ! IXz[l] 7

where Iy ,[t] denotes the coefficient of ¢ at & = 1 in the expansion (4.5). From the coeffi-
cients Ix ,[t] and the classical intersection numbers

Ho?, H o9, Hoym, H 73, H 7, (4.11)
Xa Xa Xa XA Xa
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one can compute the 1-point A-model correlator (4.7) and obtain the integer invariants.

The classical intersection numbers can be computed by Martin’s formula (3.28) as

v

V4
/ H o — (—1) k(k—1)+507 (6 1) <H7{ dx; )(ﬁf dy; >
¥ . Q'R kLey! w0 20/ —1) \ 11 J o 2my/—1

A |QI+|Rl=dim X 4

« H1§i<jgk(33i - 5Uj) H1§i<j§€g (yi — ?/j)2 IP(
k 0y
Iz 27 1Yy

x I se®)saly), (4.12)

QI+ R=dim X 4

X,y)

where

L T -

pERp i=1
4.3 Illustrative examples of the computations

Here we will consider several examples of the desingularized determinantal Calabi-Yau 3-
folds investigated in section 2.3 and compute their genus-0 invariants ng, 4, defined in (4.9).°

4.3.1 Quintic family

The determinantal Calabi-Yau 3-folds in (2.22) are connected with the famous quintic
Calabi-Yau 3-fold with (%!, h%!) = (1,101) which can be described as a “trivial” deter-
minantal 3-fold with 7, = Oy (5) on V = P%. In terms of the parameters in section 3.2.1,
the quintic 3-fold is characterized as X; with n = 5, r = 1 and d; = 5. The classical
intersection number (3.14) of X is given by x = 5 and the genus-0 invariants ng in (3.17)
are well-known to be [36]

ny = 2875, ng = 609250, n3 = 317206375, ng = 242467530000,
ns = 229305888887625, .. .. (4.13)

The quintic family can be described by GLSMs with U(1) x U(1) gauge group. Fol-
lowing section 4.2 and appendix B, one can compute topological invariants of the quintic
family as summarized in table 4, which is consistent with the previous works. Here one
can also check that h%? = 0. By comparing (4.13) with the entries N4, d, in table 4 of each
determinantal 3-fold, we see that they exhibit a behavior of the extremal transition [47]
(see also [10]):

N
na= Y Nddy, (4.14)

da=0

where N is a certain finite positive integer.

%We only focus on the determinantal varieties described by U(k) x U(£y) PAX models with k < 2, £ < 2.
In appendix C we summarize our computational results for several determinantal Calabi-Yau 4-folds.
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Fp=0y(1) ®O0y(4): (b1 h21) = (2,86)
Intersection numbers O’% =5, cr%*rl =4, 017-12 =0, Tf =0
g, dy | d1 =0 1 2 3 4 5 6
do =0 640 10032 288384 10979984 495269504 24945542832
1 16 2144 231888 23953120 2388434784 232460466048 22229609118768
2 0 120 356368 144785584 36512550816 7251261673320 1242876017216016
3 0 -32 14608 144051072 115675981232 50833652046112 16156774167471792
4 0 3 -4920 5273880 85456640608  106397389165188 69178537204963920
5 0 0 1680 -1505472 3018009984 62800738246496  107220234702633360
6 0 0 -480 512136 -748922304 2196615443648 52910679981204144
Fp=0y(2) ®O0y(3): (b1, h%1) = (2,66)
Intersection numbers a{’ =5, 0%7’1 =6, 017-12 =0, 7'13 =0
Ng, . dy | d1 =0 1 2 3 4 5 6
da =0 366 2670 35500 606264 12210702 273649804
1 36 1584 73728 3286224 142523712 6060689280 253954899504
2 0 909 255960 34736049 3387935304 273906849222 19594379113848
3 0 16 231336 106245024 23702767680 3623779411776 436922554063224
4 0 0 45216 119474748 66922830504 19938817169442 4093759996324344
5 0 360 48046176 85607985132 53346064121712 19206910967576760
6 0 -20 5357838 49765200024 74247746393898 49456242071288532
Fp=0y(1) @O0y (2)92: (h:1, h%1) = (2,58)
Intersection numbers cr;? =5, 0'%7’1 =38, 017'12 =4, 7'13 =0
Ng,.dy | d1 =0 1 2 3 4 5 6
do =0 144 140 144 112 144 140
1 44 1120 13520 107264 645048 3190528 13669600
2 0 1354 113916 3627224 68006448 901242596 9287483360
3 0 256 258840 29390080 1463601384 44141205824 937689927488
4 0 1 183690 89360780 11490671144 741564140238 30303625673624
5 0 0 37896 115185728 41359928372 5682155162688 434288936956304
6 0 0 1248 64102328 74832601592 22827028536708 3267218929443668
Fp = Ov(1)®2 @ Oy (3): (M1 h>1) = (2,68)
Intersection numbers a% =5, 0%7'1 =17, 017'12 =3, 7'13 =0
Ng, . dy | d1 =0 1 2 3 4 5 6
da =0 204 204 132 204 204 132
1 34 1348 26843 338016 3050972 21359344 123786248
2 0 1290 179490 9621696 299056816 6401442680 103385827082
3 0 35 292557 59496360 5101530190 260050051116 9166825459347
4 0 -2 108312 127400436 29874798664 3367972159714 235659178171360
5 0 0 1909 97863426 75032773743 18958650256980 2557795024380895
6 0 0 -68 22115268 84738954674 52879556793440 13984934136290076
Fp = Ov(1)® @ Ov(2): (hM1 R = (2,56)
Intersection numbers U% =35, 0%7'1 =9, 017'12 =17, 7'13 =2
Ng,.dy | d1 =0 1 2 3 4 5 6
da =0 84 10 0 0 0 0
1 46 865 4461 9380 9380 4461 865
2 0 1478 60360 760580 4423324 14207450 27724124
3 0 438 211547 10517154 200833886 1987023580 11758507011
4 0 10 238798 51571964 2762153102 67275586298 926085646998
5 0 0 86203 107216585 16493768487 916157767777 26171128616181
6 0 0 7826 99623760 48905658096 6224190580040 353098716104028
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Fp = Oy (1) (W11 h21) = (2,52) [24, 48, 49]
Intersection numbers J‘;’ =5, Ufﬁ =10, 017'12 =10, Tf’ =5
Ng, . dy | d1 =0 1 2 3 4 5 6
do =0 50 0 0 0 0 0
1 50 650 1475 650 50 0 0
2 0 1475 29350 148525 250550 148525 29350
3 0 650 148525 3270050 24162125 75885200 110273275
4 0 50 250550 24162125 545403950 5048036025 22945154050
5 0 0 148525 75885200 5048036025 114678709000 1231494256550
6 0 0 29350 110273275 22945154050 1231494256550 27995704239850

Table 4. Genus-0 invariants of determinantal 3-folds in (2.22) with V = P*.

4.3.2 Determinantal Calabi-Yau 3-folds in (2.23)

Next, let us consider the determinantal Calabi-Yau 3-folds described in (2.23) with p # 2.
These examples can be described by GLSMs with U(1) x U(2) gauge group. Using the
methodology we established in section 4.2, one can obtain the genus-0 invariants summa-
rized in table 5. Here one can also check that A0 = 0.

4.3.3 Determinantal Calabi-Yau 3-folds in (2.25)

In a similar spirit to the quintic family discussed above, the determinantal Calabi-Yau
3-folds in (2.25) are connected with the complete intersection Calabi-Yau 3-fold with
(R h21) = (1,89) corresponding to the “trivial” determinantal Calabi-Yau 3-fold with
Fp=0y(4)onV = (G(2,4), namely Xo with k =2, n =4, r = 1 and d; = 4 in the language
of section 3.2.2. This family is described by GLSMs with U(2) x U(1) gauge group.

The classical intersection numbers (3.25) of X, are given by Jf’ =8, 0102 = 4, and the
genus-0 invariants ng = ng(o1)/d in (3.24) are

ny = 1280, ng = 92288, n3 = 15655168, ny = 3883902528, ns = 1190923282176, .. ..
(4.15)

The genus-0 invariants for other determinantal Calabi-Yau 3-folds in (2.25) are summarized
in table 6, where one can check that they exhibit the behavior (4.14) of the extremal
transition and A0 = 0.

Note that, via the incidence correspondence (2.6), a geometric phase of the determi-
nantal Calabi-Yau variety with F, = Oy(1)®* on V = P7 in (2.23) can be identified with
a geometric phase of the variety with F, = (8*)% on V = G(2,4) in (2.25) [18]. Indeed,
by taking di <+ da, the genus-0 invariants ng4, 4, of the former coincide with the genus-0
invariants of the latter [10].
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Fp = Ov(1)®? @ Oy (2): (R*' h*1) = (2,58) (Gulliksen-Negard Calabi-Yau 3-fold [18, 25])

Intersection numbers | O’% =17, U%Tl =10, 01712 =4, o112 =0, 7-13 =0, T2 =0

Ndy,dy | d1 =0 1 2 3 4 5 6 7

do=0 156 116 156 112 156 116 156
1 0 256 6656 63232 415232 2159360 9583104 37772288
2 0 1 1248 193678 8278144 172114785 2326878112 23641531470
3 0 0 0 10496 5211136 592671744 28906081792 822717728768
4 0 0 0 0 111712 136564760 31768995672 2999009092032
5 0 0 0 0 0 1394944 3522539520 1444421355520
6 0 0 0 0 0 0 19318752 89779792749

Fp = Oy (1)®: (B A1) = (2,34) (Gulliksen-Negard Calabi-Yau 3-fold [10, 25, 50, 51])

Intersection numbers | 03 =20, oit1 =20, ot =16, o1 =6, T =8, T =4
Ndy,dy | d1 =0 1 2 3 4 5 6 7
da =0 56 0 0 0 0 0
1 0 192 896 192 0 0 0
2 0 56 2544 23016 41056 23016 2544 56
3 0 0 896 52928 813568 3814144 6292096 3814144
4 0 0 0 23016 1680576 35857016 284749056 933789504
5 0 0 192 813568 66781440 1784024064 20090433088
6 0 0 0 41056 35857016 3074369392 96591652016

Table 5. Genus-0 invariants of determinantal 3-folds in (2.23) with V = P7.

Fp=0y(1) ®O0y(3): (b1, h21) = (2,72)

Intersection numbers 0'? = o102 =4, 0'%7'1 =6, 0'17'12 =0, o211 =3, ‘rf =0

Ngy .dy | d1 =0 1 2 3 4 5 6 7

do =0 348 2706 35416 606516 12209820 273653140 6617946300
1 18 900 41778 1871784 81468792 3473471196 145835134092 6050552127264
2 0 36 46548 8009712 864795636 74041264872 5497197606864 370175324505012
3 0 -4 1512 5604204 1928672640 363480492960  49681240379520  5528217639011448
4 0 0 -306 153936 985016556 530436671676 148552854522624 28868137556536800
5 0 54 -24768 25990110 214272257040 159209292083400 60303976799146560
6 0 -4 5940 -3264792 5674351788  53439787982532 50841527973755064

Fp =0y (2)82: (W11 A1) = (2,58)

Intersection numbers a? =38, o102 =4, of‘rl =8, 01712 =0, oom =4, Tf’ =0

Ngy,dy | d1 =0 1 2 3 4 5 6 7

do =0 256 1248 10496 111712 1394944 19318752 288338176
1 32 768 21888 591872 15653568 406723584 10427720448 264554741760
2 0 256 46016 3851264 229545472 11320801792 494003913216 19776092919808
3 0 0 21888 6747904 952111808 90236788736 6690341483648 419279237824512
4 0 0 1248 3851264 1489057408 286163875840  36930089276288  3663867073538048
5 0 0 0 591872 952111808 414664112384  97746565623808 15741994226581504
6 0 0 0 10496 229545472 286163875840 134131710670016 36555466071304192

Fy = Ov ()2 @ Oy (2): (W11, h21) = (2,56)
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Intersection numbers O’% =8, o102 =4, 0%7'1 =10, 01712 =4, o211 =5, Tf’ =0

Ndy,dy | d1 =0 1 2 4 5 6 7

do =0 140 152 140 108 140 152 140
1 34 692 8310 67644 424226 2179788 9628540 37862432
2 0 436 37266 1201096 23129444 318263924 3423444286 30397041864
3 0 12 38424 4809332 251071058 7882006668 174584679336 2978341361748
4 0 0 8072 6408160 936362724 64838871368 2796104549608 85836804179264
5 0 66 2838032 1449869614 230006825996  19186188980224  1035385789366608
6 0 -2 329036 956057192 393389988300  65626229819274  6246121752675024

Fp=8* @Oy (3): (WM, A2 = (2,77)

Intersection numbers Ui" =8, o102 =4, Ufﬁ =17, 017'12 =3, o211 =3, 'rf’ =0

Ngy,dy | d1 =0 1 2 3 4 5 6 7

do =0 195 195 150 195 195 150 195
1 13 1030 24479 330960 3035018 21301930 123660710 622928364
2 0 78 65007 5464206 213740347 5220791429 91165319219 1233231670475
3 0 -26 3822 9502026 1561721228 114639515100 5115340545693 159519319143362
4 0 3 -1820 503243 2028893885 514721709028  58258127191937  3983242948904679
5 0 858 -215410 103906805 535733030960 185997625577552 29104035511228470
6 0 -312 111267  -38991863 27312140744 162043340071962 71687188824610803

Fp=8*(1) ® Oy (1): (11, h%1) = (2,49)

Intersection numbers 0'11” =8, o102 =4, 0'%7'1 =11, 0'17'12 =5, o211 =05, Tf’ =0

Ngy.dy | d1 =0 1 2 3 4 5 6 7

do =0 110 113 113 110 94 110 113
1 41 632 5449 32522 155463 628866 2256445 7358644
2 0 486 29680 672004 9213931 91886539 730644383 4890880851
3 0 52 40521 3389134 122021518 2682580356 42201281320 518612135254
4 0 0 15206 6089576 584124117 27553828341 823110963896 17728177368851
5 0 0 1318 4251622 1230515498 127127937012 7158680727853 265381636196294
6 0 0 1 1125074 1223539121 297185353890  32148039886801  2051420839803630

Fp = Oy (1)@ (p11, h%1) = (2,50)

Intersection numbers a% =8, o102 =4, 0'%7'1 =12, 0'17'12 =8, o271 =6, Tf =2

Ngy ,dy | d1 =0 1 2 3 4 5 6 7

do =0 80 20 0 0 0 0 0
1 40 560 2800 6800 9104 6800 2800 560
2 0 560 22220 274784 1695200 6283360 15291620 25650640
3 0 80 42208 2102160 40381840 417187840 2708790480 12060977392
4 0 0 22220 5443840 299074880 7435705920 106637235608 1000779043760
5 0 0 2800 5443840 929117120 53663104048 1580847225600 28485500761200
6 0 0 20 2102160 1343346240 187910411760  11181575861220 371398929912800

Fp =8* @Oy (1) d Oy (2): (M1, h?1) =(2,57)

Intersection numbers 0{’ =8, o102 =4, 0%7'1 =11, 017-12 =7, o211 =05, Tf’ =2

Ngy . dy | d1 =0 1 2 3 4 5

do =0 88 5 0 0 0
1 33 634 4048 10037 10037 4048 634 33
2 548 28997 466086 3406527 13159772 28776716 37157620
3 10 45347 3181936 80480431 1027716204 7647030133 35755062323
4 0 13736 6686966 522689207 17306100970 313954566036 3528240156238
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165 4524366 1312841562 108179999795 4280740941876 99081868036162
-10 780282 1358341003 305921060292  25988397030539  1167267498525808
Fp =Sym?S* @ Oy (1): (RV1 A1) = (2,32)
Intersection numbers 0% =8, o102 =4, 0%7'1 =14, 01712 =12, o971 =5, Tf’ =4
Ngy,dy | d1 =0 1 2 3 4 5 6 7
do =0 20 22 0 0 0 0 0
1 58 348 870 1160 870 348 58 0
2 0 844 9460 42320 115744 200724 244280 200724
3 0 68 35968 541140 3646870 14883488 41436000 83496920
4 0 0 34722 2839040 47787096 402821800 2153902504 8105770980
5 0 0 11050 5898656 298453714 5287652400 51848056504 335849637824
6 0 0 196 4822716 908058576 37135584632 678692927028 7409928380632
Fp =8 @Oy (1)®3: (L1 h21) = (2,49)
Intersection numbers O'% =8, o102 =4, 0%7'1 =13, 017'12 =11, o271 =6, Tf =5
Ngy,dy | d1 =0 1 2 3 4 5 6 7
do =0 52 1 0 0 0 0 0
1 41 486 1318 917 113 0 0 0
2 0 632 15206 94206 216954 202196 72260 7686
3 0 110 40521 1125074 10519903 43910603 91555625 99039844
4 0 0 29680 4251622 124486831 1484582184 8931510318 29965206018
5 0 0 5449 6089576 579108969 17340098333 242953144372 1875605165389
6 0 0 113 3389134 1223539121 92586552714 2802737114627 44031493485406
Fp = (89)%23 0y (2): (W11, h21) = (2,56)
Intersection numbers ai’ =8, o102 =4, 0'%7'1 =12, 0'1‘1'12 =10, o271 =5, ‘rf =5
Ngy . dy | d1 =0 1 2 3 4 5 6
do =0 48 -2 0 0 0 0
1 34 544 1719 544 34 0 0 0
2 0 688 19704 138352 291762 138352 19704 688
3 0 0 48165 1682784 18006204 75544928 126642213 75544928
4 0 0 22206 5807280 214145556 2945951712 18597811286 57190487824
5 0 0 561 6279840 910538594 34261029504 557526592367 4630265286624
6 0 0 -68 1729152 1545311902 167569246816 6356737689516 116628229665712
Fo = (897 & Oy (1)%2: (hL1 h21) = (2,46)
Intersection numbers 0% =38, o102 =4, O’%Tl =14, 017'12 =14, o211 =6, Tf =9
Ngy ,dy | d1 =0 1 2 3 4 5 6 7
do =0 28 0 0 0 0 0 0
1 44 404 579 28 -2 0 0 0
2 0 708 9486 26276 15912 432 -2 0
3 0 140 35891 511640 2079058 2757236 1011037 29956
4 0 0 36284 2887060 41253512 209384984 432768018 355277816
5 0 0 9641 5964836 295048376 4172615020 24615473481 67966106564
6 0 0 406 4749072 923105328 35005695588 489248692862 3213917918364
Fp = (8% @ 0y (1): (h11, 021 = (2,41)
Intersection numbers cr? =8, o102 =4, 0%7—1 =15, 017'12 =17, o211 =6, 7—13 =14
Ngy .dy | d1 =0 1 2 3 5 6 7
do =0 10 0 0 0 0 0
1 49 308 231 0 0 0 0 0
794 5349 5729 231 0 0 0
168 29491 190382 287583 76182 78 0
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0 0 40547 1681790 10332969 18880381 9662787 760431
0 0 15540 5118106 119727638 699168640 1461234039 1090271882
0 0 1120 5820116 572514233 9758035439 54759243098 126157897721
Fp = (8P4 (n11 h21) = (2,34) [10]

Intersection numbers O'i)’ =8, o102 =4, 0%7'1 = 16, (717'12 =20, o271 =6, Tf =20
Ngy . dy | d1 =0 1 2 4 5 6 7
d2 =0 0 0 0 0 0 0
1 56 192 56 0 0 0 0
2 0 896 2544 896 0 0 0 0
3 0 192 23016 52928 23016 192 0 0
4 0 0 41056 813568 1680576 813568 41056 0
5 0 0 23016 3814144 35857016 66781440 35857016 3814144
6 0 0 2544 6292096 284749056 1784024064 3074369392 1784024064

Table 6. Genus-0 invariants of determinantal 3-folds in (2.25) with V' = G(2,4).

5 Conclusions

In this paper we have examined a class of square determinantal Calabi-Yau varieties in
Grassmannians satisfying appropriate conditions about dimension, a Calabi-Yau defini-
tion, duality G(k,n) = G(n — k,n), and rank of the vector bundles. We found that infinite
families of examples associated with non-abelian quiver GLSMs might be possible. Fur-
thermore, we explicitly demonstrated how to compute genus-0 integer invariants of the
determinantal Calabi-Yau varieties via the Givental [-functions. By constructing the I-
functions from the supersymmetric localization formula for the GLSM on a supersymmetric
2-sphere, we provided a guideline for the evaluation of the genus-0 A-model correlators.
We also found the handy formula for the 1-point correlators for Grassmannian Calabi-Yau
varieties, which turned out to be generalized into the cases with the determinantal vari-
eties. We hope that our results would give a clue to understand various properties of the
less studied GLSMs with non-abelian gauge groups.
Finally, we comment on possible future research directions.

e Since we have not imposed irreducibility as a requirement, to make our classifica-
tion more rigorous, a comprehensive study of topological invariants such as Hodge
numbers and Gromov-Witten invariants for the infinite families in (2.27), (A.4),
and (A.10) is indispensable to check whether they are appropriate irreducible Calabi-
Yau varieties.

e We have classified the square determinantal varieties based on the requirement (2.5).
It would be interesting to examine determinantal varieties with general vector bundles
&, such as £, = L ® O where L is a line bundle, as studied in [25].

e We conjectured the formula (3.24) for the genus-0 1-point A-model correlators for
Grassmannian Calabi-Yau varieties, which generalizes the formula (3.16). It would
be interesting to find out the 3-point extension of our formula (3.24) as a natural
generalization of the formula (3.12) studied in [32], and give a proof of it.
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e In [52], GLSM realizations of the so-called Veronese embeddings and the Segre em-
beddings were proposed, and it opened up the possibility of more broad class of
Calabi-Yau varieties. Various exotic Calabi-Yau examples including the construc-
tions in [53] have also been discussed, and it would be interesting to consider these
examples and discuss their I-functions.
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A  Determinantal Calabi-Yau 2-folds and 4-folds

In section 2.3, we have focused on the realization of a class of determinantal Calabi-Yau
3-folds of square type. In a similar spirit, here we discuss the classification of determinantal
Calabi-Yau 2-folds and 4-folds satisfying the requirements (2.7)—(2.10).

A.1 Determinantal Calabi-Yau 2-folds

When dim X 4 = 2, the dimensional condition (2.7) becomes
0 (ker(Fp) — €)) = k* + 2. (A.1)

Note that, as mentioned in Remark 2.1, the generic determinantal Calabi-Yau 2-folds
X4 do not have the singular loci. In the following, we clarify which type of choices for

(k, n;ﬁz, cl(]-"p)) can be possible while changing the parameter k.
All k=1

When k = 1 we have V = G(1,n) = P"~! and the generic solution (2.15) with (2.16)
provides a “quartic family” given by

T
(k,ni €y, e1(Fp)) = (1,4;1,4) with F, = &[_,Ov(pi), p1 = p2 > -+ > pp >0, Zpi =4.

i=1

(A.2)
In addition, (2.20) provides another class of solutions
(ks ), e1(Fp)) = (1,12;3,4) with Fp, = Oy(1)®* @ Oy (2), Oy (1)%. (A.3)

Here the Calabi-Yau 2-fold X4 constructed from F, = Oy (1)®2 & Oy (2) with p = 3 (i.e.
¢ = 0) can be described by the complete intersection Calabi-Yau 2-fold in P® with the
vector bundle Ops(2)®3 as

X4 with Oy (1)®2 @ Oy (2) +— Xgo0 C PO
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Al2 k>2

When k > 2 we have V = G(k,n). In this case, there exist two “infinite families” of solu-
tions as determinantal 2-folds satisfying all the requirements (A.1), (2.8), (2.9), and (2.10).

(]C,n‘fv Cl(fp)) = (k:i,4€,~;€,-,4), 1 €N

TP . L (A4
where k1 = 3, £ = 11, ki1 = l;, Zi—i—l = —k; +4¢; with F, = (S*)GB R QEB .
A.2 Determinantal Calabi-Yau 4-folds
When dim X 4 = 4, the dimensional condition (2.7) becomes
0 (ker(Fp) — €)) = k> 4+ 4. (A.5)

A21 k=1

When k& = 1 we have V = G(1,n) = P"~! and the generic solution (2.15) with (2.16)
provides a “sextic family” given by

(k,n,ﬁg, CI(FP)) = (1’6’ 176) with ‘FP = @7{:10\/(])7;)7 P1 Z D2 Z e Z Dr > 07 sz = 6.
i=1

(A.6)

Via the incidence correspondence (2.6), the sextic family is connected each other through
the extremal transitions (see appendix C.1).
In addition, (2.20) provides another class of solutions

(k,ni €, c1(Fp)) = (1,30;5,6) with F, = Oy (1) @ Ov(2), Oy (1)%°. (A7)

) p7

Here the Calabi-Yau 4-fold X4 constructed from F, = Oy (1)®* & Oy (2) with p =5 (i.e.
¢ = 0) can be described by the complete intersection Calabi-Yau 4-fold in P? with the
vector bundle Ops(2)®° as

X4 with Oy (1)®* @ Oy(2) +— Xo2922 C P,

A22 k=2

When k = 2 we have V = G(2,n). In this case there exists a class of determinantal 4-folds
which satisfy the conditions (A.5), (2.8), (2.9), and (2.10) given by’

(k,ns €y, e1(Fp)) = (2,6;2,3) with
Fp =0y (1) @ Oy (2), S*(1), Ov(1)®, S* @ Oy (2), Sym?S*, S* © Oy (1)%2,
(8@ 0y (1), (899, Qe 0v(2), Q& 0y(1)®?, Q% & 0y (1), Q%7

A2 Q, AQ, &*®Q®Oy(1), (8% Q, 8*a Q2

(A.8)

"In appendix C.2, we see that the determinantal 4-fold associated with Fp = Sym? S* is not a Calabi-Yau
variety with (h*°, h??) = (0,0) but an irreducible holomorphic symplectic variety with (h*% h%°) = (0, 1).
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Here the Calabi-Yau 4-fold X4 constructed from F, = Oy (1) & Oy (2) (resp. S*(1)) with
p = 2 (i.e. £ = 0) can be described by the complete intersection Grassmannian Calabi-
Yau 4-fold in G(2,6) with the vector bundle Og6)(1)%? & Og26)(2)%? (resp. S*(1)%2
on G(2,6)).

We find that there exist another type of solutions satisfying all the require-
ments (A.5), (2.8), (2.9), and (2.10) given by

(k,n; ), c1(Fp)) = (2,12;4,3) with
Fp=8"00v(1)®, (§)" e 0v(1), (9%, Q& 0y(2), (A.9)
QaOv(1)®?, 92 a0y (1), Q2.

Here the Calabi-Yau 4-fold X 4 constructed from 7, = S*@® Oy (1) with p = 4 (i.e. £ = 0)
can be described by the complete intersection Grassmannian Calabi-Yau 4-fold in G(2,8)
with the vector bundle Og 2,8)(1).

A23 k>3

When k > 3 we have V = G(k,n), and there exist six “infinite families” of determinantal
4-folds given by

(k,n; ), c1(Fp)) = (ki 605;05,6), i €N
with ky =5, 01 =29, kiy1 = b, lis1 = ki +60;: Fp = (S)%°, Q%6
(k.ni 6, c1(Fp)) = (kiy 365 4;,3), i €N
with ky =4, 1 =10, kiy1 = —3k;i + 86;, i1 = —8k; +214; - F, = (8P, Q%3
(k,n; ) c1(Fp)) = (kiy 305;43,3), i €N

with ky =10, 1 =26, kip1 = —3k; + 80;, lipq = —8k; + 214; : F, = (S*)®*, 093,

(A.10)

where the third (resp. fourth) and the fifth (resp. sixth) families of 4-folds associated
with 7, = (§*)%* (resp. Q®3) are given by the same recurrence relation with the differ-
ent initial conditions. By using mathematical induction, one can check that the duality
condition (2.9), the rank condition (2.10), and in particular £, < rank 7, are maintained.

B Hodge number calculations via the Koszul complex

Following [54] (see also e.g. [55-58]), here we briefly review how to compute cohomologies
and Hodge numbers of Calabi-Yau varieties via the Koszul complex. We will demonstrate
the explicit computations for several examples.

B.1 General algorithm

Let V' be a complex manifold, £, be a rank p vector bundle over V' and consider the locus
X C V as a holomorphic section of £,. In this appendix we describe how to compute the
cohomologies

HYmX=Lix)y — gY(X,TX), or H“(X)=H (X, T*X), i=0,1,...,dimX, (B.1)

via the Koszul complex.
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B.1.1 Step 1: computation of (B.2)

First we describe a method to compute bundle-valued cohomologies of X,
Hi(XafV’X)ﬁ (B.2)

by using the Koszul exact sequence.
The Koszul exact sequence gives the resolution of Ox over V as

0— APE — o — NP6 — & — Oy —> Ox — 0. (B.3)
For the Koszul exact sequence, the Koszul spectral sequence (see e.g. [42]),
{EX}, i=0,1,...,dimV, ¢=0,1,....p, 7=0,1,2,...,
can be associated as follows. Starting from
Ey" = H'(V,NE), (B.4)
define d,-cohomology recursively as

ker(drz E,Z;’q — Ef;*r’qfrfl)

- A A B.5
r+1 im(drz E;+r,q+r+1 N Eﬁ’q) ( )

which is associated with differentials
d. : EY — EImaerl (B.6)

with d, o d, = 0. Here EX? =0 for i, < 0,4 >dimV, and ¢ > p. At finite r = rg, EY1

converges to Ef;;)q = Ei’OqH = ...= E% and we obtain a cohomology of X as
p . . .
Y Eil — H'(X,0x)=H"(X), (B.7)
q=0

where the summation represents a formal sum.

Remark B.1. By tensoring the Koszul exact sequence (B.3) with a vector bundle Fy (e.g.
&, &, TV, TV, etc.) over V, one obtains the resolution of Fy|x over V as

0—>/\p6;®]-"v—>-~-—>/\25;®]-'v—>5;®]-'v—>}“v—>]-'V|X—>O. (B.8)

Then, by considering the Koszul spectral sequence associated with (B.8), one can obtain
the bundle-valued cohomologies H(X, Fy|x) in (B.2).

Therefore, by using the Koszul spectral sequence, the cohomologies H'(X, Fy/|x) can
be computed from the cohomologies H*(V, NES ® Fv). For computing these quantities,
the Bott-Borel-Weil theorem B.5 is quite useful. To state the theorem, consider a flag
manifold

V= U@” N=> n. (B.9)
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A holomorphic homogeneous vector bundle Fy over V' can be described by a representation
of U(ny) x -+ x U(np), where a representation of each U(n) is described by a Young
diagram which is given by a monotonically increasing sequence with length n of integers
as (ai,...,an), a; < aj+1. Then, a vector bundle Fy is described by a representation of
U(ny) x -+ x U(np) as

Fv ~(ar, ..o an b1, .o bpy |- 71, i) (B.10)

Example B.2. For V = P*" ! = U(n)/[U(1) x U(n — 1)], in terms of the representations
of U(1) x U(n — 1), one can describe e.g.,

S~ (1)0,...,0), 5~ (~1/0,...,0),
Ov(p) = (8*)®P ~ (—p|0,...,0), Ov(p)* =S ~ (pl0,...,0), (B.11)
TV ~ (~1[0,...,0,1), TV ~ (1] - 1,0,...,0),

where S is the universal subbundle on V = P"~!. The representations of tensor product
and wedge product are obtained as e.g.,

Ov(p)*@T*V ~ (p+1| —1,0,...,0), ATV ~ (=2[0,...,0,1,1).

Example B.3. For V = G(k,n) = U(n)/[U(k) x U(n— k)], in terms of the representations
of U(k) x U(n — k), one can describe e.g.,

S~ (0,...,0,1]0,...,0), S* ~ (~1,0,...,0[0,...,0),
det S*)®P ~ (—p,...,—pl0,...,0),
(pz (de ; ( —p P ) (B.12)
Ov(p) (detS) P~ (p,...,pl0,...,0),
TV ~ (-1 ,0/0,...,0,1),  T*V ~(0,...,0,1—1,0,...,0),

where S is the rank k universal subbundle on V' = G(k,n). The representations of tensor
product and wedge product are obtained e.g. for V = G(2,5) as

S(—1) =S ® 0y (1)* ~ (1,2]0,...,0), A2S(-1) ~ (3,3]0,...,0,0),
S(—1) A Oy (2)* ~ (3,4/0,...,0,0),  (A2S(=1)) A Oy(2)* ~ (5,5[0,...,0,0).

Example B.4. For product manifold V' = P? x G(2,4), one obtains e.g.,

1 2
00 : A28(0, 1) ~
00 33

S(0,-1) =S @ Oy (0,1)* ~ (1 )

S(0,—1) A Oy (1,1)* ~ (3 ; 8 8) . (A2S(0,-1)) AOy(L,1)* ~ (4 |

where S is the rank (1,2) universal subbundle on V.

Using the above representations (B.10) for vector bundles, the Bott-Borel-Weil theorem
is stated as follows.
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Theorem B.5 (Bott-Borel-Weil). Let Fy be a holomorphic homogeneous vector bundle,
represented as (B.10), over a flag manifold V in (B.9). Then at most only one of the
cohomologies H'(V, Fy) is non-trivial (= CP), and D is given by the dimension of an
irreducible representation (y1,...,yn) of U(N) determined as follows:

1. For the sequence (B.10), add the sequence (1,2,...,N) as

(a1 +1,a2+2,...,an, +n1,00 +n1+1,...,bpy + 11 +n2,...,7, +N).

2. If the above sequence contains any same number, the cohomologies H'(V,Fy) are
trivial, if not;

3. Minimally swap the above sequence, with the minimal swapping number I, so that the
resulting sequence gives a strictly increasing sequence (y,. .. ,y?v), yg < y7’;+1.

4. For the above swapped sequence, subtracting the sequence (1,2,...,N) as
(y17y27"'7yN) = (yi - 1ayé _277y§V_N)’
one obtains a representation (y1,...,yn) of U(N) which gives HI(V, Fy).

Remark B.6. The dimension D of a representation (yi,...,yn) of U(N), which is given
by a Young diagram Y with length y; for the i-th row, is computed by

Fy (s
D= E H‘;((S)) (B.13)

where Hy (s) is the hook length of s in Y, and Fy(s) = N —i+ j for s = (4,7) (the box of
i-th row and j-th column).

Remark B.7. When V is a product manifold V' = V; x V5 of two flag manifolds V; and
Va, for computing the cohomologies of V' one can use the Kinneth formula

H'(V,Fv)= @ H"(Vi,Fvlv,) @ H?(Va, Fv|w,), (B.14)

i1+io=1
where Fy is a vector bundle over V' and each Fy |y, is the restricted vector bundle over V;.

B.1.2 Step 2: computation of (B.1)

By Step 1 one can compute, in particular, H%*(X) = HY(X,0x), H (X, TV|x),
H'(X,&|x), H'(X,T*V|x), and H (X, &}|x). Now, using these results one can compute
the cohomologies (B.1) via the short exact sequence (adjunction formula)

0 —=TX —TV|x — &l|lx — 0, (B.15)
or its dual

0—&lx —TV|x —T°X — 0. (B.16)
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The former and the latter in (B.1) are related by the Hodge dual, and then in the following
we only describe the computation of the latter by using the exact sequence (B.16). The
exact sequence (B.16) induces the following long exact sequence:

0— HY(X,&E|x) — HY (X, T*V|x) — HY (X, T*X) —
— HY(X,&|x) — HY X, T*V|x) — HY X, T*X) — ... (B.17)
C— HI™YN(X &x) — H"™XYX,TV|x) — H™Y(X,T"X) —0.
Then, using the above exact sequence, from the cohomologies H*(X,T*V|yx) and
H'(X,&}|x) obtained in Step 1, one can compute the cohomologies H*(X,T*X).

Remark B.8. To find other cohomologies, one can use the following well-known relations

Complex conjugate: H"(X) = H"(X),
Hodge duality: Hb(X) = gamX—idimX= ),

Furthermore, if X admits the unique holomorphic 3-form in 4 X0(X) = C, Serre duality
gives H%(X) = gdmXi(x),

Remark B.9. To compute the Hodge numbers of X, one can also use a formula for the
Hirzebruch x,-genus (see [59] for the explicit formulae of dim X = 2,3, 4 written in terms
of the Chern classes of X):

dim X ) ' ) ) p (1 —i—ye_”’“)xk
W= 3 (Y dmmE ATy = [ [[EE sy
i,j=0 k=1
which is derived from Hirzebruch-Riemann-Roch index theorem. Here xy, k =1,...,p, are

the Chern roots of X in (3.1).

B.2 Examples

We demonstrate the explicit computations of cohomologies for some examples based on
the strategy in appendix B.1.

B.2.1 Quintic Calabi-Yau 3-fold: & = Oy(5) on V = P*

As a famous example, consider the quintic Calabi-Yau 3-fold X defined by the zero locus
of a holomorphic section of & = Oy (5) on V = P* [36]. Using the representations in
Example B.2, the Koszul exact sequence (B.3) is given by

0 —> (5/0,0,0,0) — (0[0,0,0,0) — Ox — 0. (B.19)
By (B.7) and the Bott-Borel-Weil theorem B.5, one finds that
HY(V,0y)=C = H"(X)=C, HYV,0y(5)*)=C — H*3(X)=C, (B.20)

and H%'(X) and H*?(X) are trivial, i.e. H%}(X) = H%?(X) = 0.
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For Fy = Oy(5)* and Fy = TV the exact sequence (B.8) yields

0 —> (10/0,0,0,0) — (5/0,0,0,0) — Oy (5)*|x —> 0, (B.21)
0 —> (6| —1,0,0,0) —> (1| — 1,0,0,0) — T*V|x —> 0. (B.22)

From (B.21) one finds that

ker(dy : HY(V,0vy(5)* ® Oy (5)") =C** — H*(V,0y(5)") =C)
— H3(X,0y(5)"|x) = C'%, (B.23)

and H(X, 0y (5)*|x), i = 0,1,2, are trivial. From (B.22) one finds that

HY(V,T*V)=C = HY(X,T*V|x) =C,

B.24
HYV,0p(5)* @ T*V) =C* — H3(X,T*"V|x) = C*, (B.24)

and HY(X,T*V|x) and H*(X,T*V|x) are trivial. Using these results, the exact se-
quence (B.17) yields the following exact sequences:

0— H°(X,T*X) — 0,
0—C— HY(X,T*X) — 0, (B.25)

0 — HX(X,T"X) — C'% L2 5 g3(X, 7" X) — 0.
Then one obtains

HYW(X)=H'X,T*X) =0, H"(X)=HY(X,T*X) =C, (B.26)
HY2(X)=H*(X,T*X) =ker(f) =C'%,  HY3(X)=H3X,T*X) = coker(f) = 0.

As a result, the Hodge diamond is obtained as

h0:0 1
hl,O hO,l 0 0
h2’0 hl’l h0’2 0 1 0
h3:0 h*! ht-2 h%3 = 1 101 101 1.
h3’1 h2’2 hl,S 0 1 0
h3’2 h2’3 0 0
h3:3 1

B.2.2 Grassmannian Calabi-Yau 3-fold: & = S8*(1) @ Oy(2) on V = G(2,5)

As a non-abelian example, consider a Grassmannian Calabi-Yau 3-fold X defined by the
zero locus of a holomorphic section of & = S*(1) ® Oy (2) on V = G(2,5) [60, 61]. Using
the representations in Example B.3, the Koszul exact sequence (B.3) is given by

(3,30,0,0)  (1,2]0,0,0)
0 — (5,5/0,0,0) — ® — @ — (0,0]0,0,0) - Ox — 0. (B.27)
(3,4/0,0,0)  (2,2[0,0,0)
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By (B.7) and the Bott-Borel-Weil theorem B.5, one finds that
H(V,0y)=C = H°Y(X)=C, HS(V,A¢})=C — H"3(X)=C, (B.28)

and H%'(X) and H%?(X) are trivial, i.e. H*'(X) = H%?(X) = 0.
For Fy = 8(1), Oy (2)*, and T*V the exact sequence (B.8) yields respectively,

(4,5(0,0,0)  (2,4]0,0,0)

o o
0 — (6,7]0,0,0) — (5,5/0,0,0) — (3,3]0,0,0) — (1,2]0,0,0) — S(1)|x — 0,  (B.29)
o o

(4,6/0,0,0)  (3,4/0,0,0)
(5,5]0,0,0) (3,4/0,0,0)

0— (7,7/0,0,0) — & — & — (2,2/0,0,0) - O(2)*|x — 0, (B.30)
(5,6/0,0,0)  (4,4/0,0,0)

and
(3,4] —1,0,0) (1,3 —1,0,0)
D 2
0— (5,6| = 1,0,0) = (3,5| —1,0,0) — (2,2| —1,0,0) — (0,1] — 1,0,0) = T*V|x — 0.
%) %)
(474| - 17070) (2a3| - 1>O>O)
(B.31)
From (B.29) one finds that
ker(dy : HO(V,A’€5 @ S(1)) =C* — HO(V,A%E @ S(1)) = C)
= H’(X,S8(1)|x) = C¥, (B.32)
and H'(X,S(1)|x), i = 0,1,2, are trivial. From (B.30) one finds that
ker(do : HO(V,A\’€5 ® Oy (2)*) = C — HO(V,A\%E; ® Ov(2)*) = C°)
— H’(X,0¢(2)"|x) = C*, (B.33)

and HY(X, Oy (2)*|x), i = 0,1,2, are trivial. Then one gets H3(X, £|x) = C* by (B.32)
and (B.33). From (B.31) one finds that

HYV,T*V)=C = HYX,T*V|x) =C, (B.34)
HO(V, A€ @ T'V) = € — H(X,T"V|x) = C*, '

and HY(X,T*V|x) and H*(X,T*V|x) are trivial. Using these results, the exact se-
quence (B.17) yields the following exact sequences:

0 — HYX,T*X) — 0,
0—C— HY(X,T*X) — 0, (B.35)

0 — HX(X,T"X) — €3 L ¢ B3(X, 7" X) — 0.
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Then one obtains
HY(X)=H'X,T*X) =0, HM(X)=H'X,T*X) =C, (B.36)
HY(X)=H*(X,T*X) = ker(f) =C*», HY“(X)=H3X,T*X) = coker(f) = 0.

As a result, the Hodge diamond is obtained as

RO 1
hl,O h0,1 0 0
h2,0 hl,l h0’2 0 1 0
h3:0 h2! h1:2 o3 = 1 59 59 1.
h3’1 h2,2 hl,B 0 1 0
h3’2 h2,3 0 0
h33 1

B.2.3 Determinantal Calabi-Yau 3-fold in (2.25) with F3 = S*(1) ® Oy (1)

Consider a determinantal Calabi-Yau 3-fold in (2.25) with F3 = S*(1) @ Oy(1). We
especially consider a geometric phase, and then the desingularized determinantal Calabi-
Yau 3-fold X is defined by the locus of a holomorphic section of £ = 8?()2) &) 5351) on V' =
G(2,4) x P2, where 5§2) =8 ® Oy/(1,0) and Eél) = Oy(1,1). Using the representations
in Example B.4, the Koszul exact sequence (B.3) is given by

33100 12/00
44100 200 Hoo 00/00
—>< 300)—> ® — @ —>( 000>—>0X—>0. (B.37)
23100 11[00
( 200) ( 100)
By (B.7) and the Bott-Borel-Weil theorem B.5, one finds that
H'V' ,Oy)=C = H°Y(X)=C, HY(V' A&)=C = HX)=C, (B.38)

and H%'(X) and H*?(X) are trivial, i.e. H%}(X) = H%?(X) = 0.
The exact sequence (B.8) gives, for Fy» = 8352) "

4500 24(00
3100 2(00

@ 2]

Boo) = (ke = (1he) ~eremn man

5 5[0 0 11]00 ()
0—>( 400>—> @ — @ —>< 100>—>53 lx =0, (B.40)
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for Fyr =T%G(2,4),

P 57
oo (19710 L (2a-10) (220 (010N s 0 (Bl
3100 2100 110 0 0j00
D @

4400 00[0 0 -
—>< 400>—> ® — ® —>< 1_10)—>TIPX—>0. (B.42)

From (B.39) one finds that
ker(do : HO(V',A%85 @ £77) = C% — HO(V', A265 @ £7) = C)
— H¥X,eP"|x) =C%, (B.43)
and H'(X, 8§2)*|X), i =0,1,2, are trivial. From (B.40) one finds that
ker(do : HO(V/, A€ @ &N ) =C® — HO(V', A2€5 0 €") =C)
— H3(X,&{N"|x) =C"7, (B.44)

and H(X,E"*|x), i = 0,1,2, are trivial. Then one gets H3(X,&%[x) = C™ by (B.43)
and (B.44). From (B.41) one finds that

HYV' T*G(2,4)) =C — HYX,T*G(2,4)|x) = C,

B.45
HY(V', A%8) @ T*G(2,4) = ©1F = H3(X, T"G(2,4)|x) = C, (B.45)
and H(X,T*G(2,4)|x) and H*(X,T*G(2,4)|x) are trivial. From (B.42) one finds that

HY (V' T*P*) =C = H'(X,T*P?x) =C, -
H6(V/,/\3€§ ® T*]P;2) _ (CS _— H3(X, T*PQIX) _ CS, .

and H°(X,T*P?|x) and H?(X,T*P?|x) are trivial. Then one gets H'(X,T*V’|x) = C?
and H3(X,T*V'|x) = C* by (B.45) and (B.46). Using these results, the exact se-
quence (B.17) yields the following exact sequences:

0 — HYX,T*X) — 0,
0— C?> — HYX,T*X) — 0, (B.47)
0 — H*(X,T"X) — C? 153 — H3(X, T"X) — 0.
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Then one obtains

HY(X)=H'X,T*X) =0, HY(X)=H'\(X,T*X) = C?, (B.48)
HY(X)=H*(X,T*X) =ker(f) =C*, H“(X)=H*X,T*X) = coker(f) = 0.

As a result, the Hodge diamond is obtained as

h0:0 1
hl,O h0,1 0 0
h2,0 hl,l h0’2 0 2 0
h3:0 h2! ht:2 ho3 =1 49 49 1.
h3’1 h2,2 h1’3 0 2 0
h3’2 h2,3 0 0
h33 1

C Genus-0 invariants of determinantal Calabi-Yau 4-folds

Following the techniques introduced in section 4.2, here we consider genus-0 invariants of
the desingularized determinantal Calabi-Yau 4-folds clarified in appendix A.2 which are
described by U(k) x U(£y) PAX models with k,£; = 1,2, while ignoring the examples
with the universal quotient bundle Q in F,. For the computation, we need to evaluate the
classical intersection numbers (4.11) simply denoted by

Ho?, Hoy, Hoym, Hri, Hm. (C.1)

We also compute their Hodge numbers by analysing the Koszul complex introduced in
appendix B. Note that here the genus-0 invariants ng, 4,(H) in (4.7) are denoted as

Ny ds 11 = Ny ds (01), Ny doro = Ny ds(02), Mty 12 = Ny dy (0171),

(C.2)

Ny ds,22 = Ny ds (TD)s My doir = Ny do (T2).-

C.1 Sextic family

As a higher dimensional analogue of the quintic family discussed in section 4.3.1, we con-
sider the determinantal Calabi-Yau 4-folds in (A.6) which can be described by U(1) x U(1)
GLSMs. The “trivial” determinantal Calabi-Yau 4-fold with F, = Oy (6) on V = P5 cor-
responds to the sextic Calabi-Yau 4-fold X; with n = 6, »r = 1, d; = 6 in section 3.2.1.
The Hodge numbers are (™!, h?1, h%2 h31) = (1,0,1752,426). The classical intersection
number (3.14) and the genus-0 invariants (3.16) of the sextic X; are given by x = 6 and

ni,11 = 60480, no 11 = 440884080, n3 11 = 6255156277440,
ng11 = 117715791990353760, . . ., (C.3)

respectively [30].
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Several genus-0 invariants of the sextic family (A.6) are summarized in table 7, where

one can check that (', h%%) = (0,0) and there is a relation originated from the extremal

transition:

N
Ng11 = E Nd,do, 11,

(C.4)
da=0
where N is a certain finite positive integer.
Fp=0y(1)®Oy(5): (11, h%1 h22 h31) = (2,0,1452,350), (nd,,dy,20 = 0)

Intersection numbers | o"l1 =6, 0{’7’1 =5, 0'%7'12 =0, 0'17'13 =0, ‘rf =0
Ngy . dy,11 | d1 =0 1 2 3 4 5
do =0 11100 5974850 5337637100 5961261947000 7549696778037500
1 0 47800 139595300 341903160900 781526104500800 1722498037214056500
2 0 2300 288301400 2474705048600  12772788325116200 51691531760557694400
3 0 -900 10709800 3363595465000  51229393390313200 425107528698920155100
4 0 200 -5618400 103567454100  51958819718170400  1158355364337024993600
5 0 -20 2835300 -51911590000 1403818415592500 938149531037521616000
Ndy.dy 12 | d1 =0 1 2 3 4 5
do =0 2875 1218500 951619125 969870120000 1146529444438125
1 25 43025 80799950 156102470525 304442819735350 596487343049391900
2 0 7075 268094350 1716513933050 7342810580729600 25898280425210696100
3 0 -3325 27921700 3182702667725  38694830186103150 274863504753902753625
4 0 850  -16827350 244126695475  49743335407652800 920672555667202043750
5 0 -100 9475875  -139333207500 3049558752331250 905924121779310315625

Fp =0y (2) ® Oy (4): (b1 A2 h22 h31) = (2,0,984,233), (14, 4,22 = 0)

Intersection numbers | O’% =6, 0%7’1 =38, 0%712 =0, Ule’ =0, Tf =0
Ny dy,11 | d1 =0 1 2 3 4 5
do =0 5152 933968 274818272 100238592192 41343866067168
1 0 30464 30631168 24983703040 18823860029184 13607365845297920
2 0 24384 148136832 344078200064 540875866571264 689210122091722112
3 0 512 196648704 1484112439552 5090782137162496 11687877699117056512
4 0 -32 63767008 2480102598912  20463045985953792 88125209117491672192
5 0 0 833024 1597722995712  39020950213890816 338009904921145655552
Ndy.dy12 | d1 =0 1 2 3 4 5
da =0 1280 184576 46965504 15535610112 5954616410880
1 64 32000 19441024 12147379712 7666954166848 4863492485707008
2 0 45696 155375232 264748238336 338696685934592 370700658349715200
3 0 1792 288667776 1555786807552 4265241324428224 8297783461923275008
4 0 -128 121767232 3295974933504  21444381835426304 T7T4ATT7798899226917376
5 0 0 2638208 2582769371136  49128078374461248 354147270418259729152

]:p - OV(3)€B2 (h1’17 h2’17 h2’27 hg’l) = (27 07 7807 182)7 (ndl,d2,22 = 0)

Intersection numbers | O’% =6, a%n =9, 0%7’12 =0, Ule’ =0, Tf =0
Ndy.dy11 | d1 =0 1 2 3 4 5
da =0 3996 528012 111620808 29176888824 8616413173572
1 0 26244 18834444 10994448492 5928552658692 3066843382569540
2 0 26244 107617896 174298692024 193364991313056 174792376622296872
3 0 3996 186923376 916489110132 2154915386009316 3451110870456005940
4 0 0 107617896 2025684267264  10761703969222224 31389410244093246936
5 0 0 18834444 2025684267264  27258432537609648 151496100969322358520

— 37 —



Ny dyi2 | di =0 1 2 3 4 5
d2 =0 1053 105624 19272978 4557793536 1248939462915
1 81 27945 12158991 5420580417 2449467003132 1110716561847951

2 0 50787 114975450 136362364218  122098311431838 95426230272412266

3 0 10935 280385064 978583930209  1836173061024606 2489535822420553203

4 0 0 207878238 2745855802098  11484979618590612 28070822227226686614

5 0 0 44344341 3331196998794  34978559566645782  161618974169879654460

Fp =0y (2)®3: (R p21 p22 B3:1) = (2,0,600,137)

Intersection numbers | o"ll =6, 0':137'1 =12, 0%7’12 =38, Ule =0, T{l =0
Ngy . dy, 11 | d1 =0 1 2 3 4 5
do =0 1104 13464 196848 3102144 52343184
1 0 14016 1708224 120184704 6485946432 298466405568
2 0 30240 24792672 6198463872 882834675456 89849127844224
3 0 14016 107708352 89554908096 31167666411840 6550759785428544
4 0 1104 172438656 529075766016 444446786009856 187337558146915488
5 0 0 107708352 1473092769024 3125024856532800 2640802670799084864
Ngy . dy,12 | d1 =0 1 2 3 4 5
do =0 384 3744 47232 670272 10462080
1 96 16128 1240896 68822016 3180759840 130766711040
2 0 60480 28308096 5320032000 629362595328 55970237060352
3 0 39936 168950976 102040729344 28860224852448 5218075942288896
4 0 4032 344877312 753418660608 505820047097088 181160699096012928
5 0 0 261882432 2521023722496 4224146727978144 3003266065628143872
Ndy,dy22 | d1 =0 1 2 3 4 5
da =0 0 0 0 0 0
1 96 7296 358080 14528256 528892320 17932977792
2 0 38592 13180992 1930140672 186374277120 13980674976768
3 0 31104 97081920 47789472384 11376521292384 1772136040869504
4 0 3648 226720032 411451649280 237591482788608 74578392862419072
5 0 0 190013376 1533694993920 2239140736880928 1413152060075199360

Fp=0y(1) @0y (2) & Oy (3): (RH1, A2 A%2 R31) = (2,0,732,170)

Intersection numbers | 01‘ =6, o:fﬁ =11, 0%7'12 =6, ole =0, T{* =0
Ndy .dy,11 | d1 =0 1 2 3 4 5
da =0 1547 29197 664966 16655276 449773471
1 0 17415 3387141 390771675 34733397231 2631133285191
2 0 31234 40960891 16736425757 3941526901738 666261117547152
3 0 10138 143247860 196780670876 113318694822063 39594013933183682
4 0 147 172936880 924949591952 1299468913703502 913025985733713523
5 0 -1 72200686 1974502966996 7224038700165558 10275054838460143332
Ng, . dy,12 | d1 =0 1 2 3 4 5
do =0 546 8022 159708 3637752 91579530
1 85 19550 2414660 220345310 16823027671 1141797701894
2 0 61679 45928018 14111157767 2763493715428 408754388583466
3 0 28503 221344804 220417729691 103132562736885 31012895322615811
4 0 607 341620521 1297053558298 1454510648416542 868094813403547075
5 0 -5 173699427 3333597269546 9614835008030966 11495407244589530600
Ngy dy22 | d1 =0 1 2 3 4 5
do =0 0 0 0 0 0
1 66 7944 665916 45550248 2770233906 155976830808
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2 0 33774 19165296 4739973306 774617782512 98109047877348
3 0 18270 110465976 92373759582 37217080568574 9812878163478678
4 0 498 190515834 619593755556 610866205882020 325210132883359866
5 0 -6 104930694 1742691953364 4476709752274068 4833888549187725312
Fp =0y ()22 @ Oy (4): (WY1, A% 22 h31) = (2,0, 1068, 254)
Intersection numbers | O‘% =6, 0{’7’1 =9, 0%712 =4, Ule’ =0, T{l =0
Ndy . dy,11 | d1 =0 1 2 3 4 5
do =0 2796 111420 5415876 297906744 17836490652
1 0 25368 11074512 2923919928 597405875232 103952142270864
2 0 31452 96756426 92450088216 50890408972608 20094224706004404
3 0 1020 215383416 746257722660 1032988712010672 857190260480341476
4 0 -168 115603488 2184801219792 7902484863731640 13590303106004642712
5 0 12 2269284 2399750411904  27079947685057788 100137122291641121868
Ndy.dy,12 | d1 =0 1 2 3 4 5
da =0 960 30096 1297728 65879904 3714521280
1 57 27438 7644177 1605192702 282936273240 44282085901044
2 0 3657 104754642 75519972306 34661964976188 12004979836835943
3 0 -681 320554332 807765491547 910677818722380 651630952247594127
4 0 57 222052140 2956519017480 8551880283800160 12515007949041304332
5 0 0 7374009 3919508517492  34811597561726766 108347819585126752047
Ng, . dy,22 | d1 =0 1 2 3 4 5
do =0 0 0 0 0 0
1 36 10104 2000580 323373624 46020698976 6018914291280
2 0 28260 39402408 23483405064 9172938062064 2759901496567260
3 0 2340 140674032 304708034988 301404502100016 191986430652018684
4 0 -420 108023472 1249191338400 3231021483376128 4278942916449123696
5 0 36 4447332 1793863512336  14384155887545592 40973480285079165564
Fp =0y (1)%2 @ Oy (2)92: (b1 p21 A2 p31) = (2,0,588,134)
Intersection numbers | o} =6, ojr =13, o022 =12, o171} =4, Til =0
Ng, . dy,11 | d1 =0 1 2 3 4 5
do =0 624 1512 2448 2352 3696
1 0 10552 560168 12419664 167237208 1611465704
2 0 29420 12216604 1270882648 63182183032 1933845747256
3 0 17892 74261296 28590861496 4065328815272 310191664249228
4 0 1988 162756004 245615224064 91643735242360 15636111812478864
5 0 4 139994444 965140012064 959192743343064 351280339787531780
Ngy . dy,12 | d1 =0 1 2 3 4 5
do =0 256 504 768 784 1280
1 97 12412 431558 7712632 90771993 798269252
2 0 59597 14304660 1139364456 47795706040 1296194947220
3 0 51377 118235744 33425512482 3910275895911 259643765174029
4 0 7379 329186320 355897081724 107040862884600 15662234678584878
5 0 19 343523755 1673793068984 1321513374907908 410052719920052585
Ndy dy22 | d1 =0 1 2 3 4 5
do =0 0 0 0 0 0
1 132 7696 167672 2165664 19882116 143012720
2 0 51428 8977216 553197376 18798577216 427186381936
3 0 53076 91577920 21040910824 2061819081980 117330402886948
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0 8732 290650960 261518705648 67487950758592 8623613017337400
28 332988380 1368920496992 941519514353136 258784559873434676
Fp =0y (1)®3 @ Oy (3): (WY1, A% 22 h31) = (2,0,744,173)

Intersection numbers | 0% =6, U%’rl =12, 0%712 =10, 017{’ =3, 7'{1 =0
Ndy . dy,11 | d1 =0 1 2 3 4 5
do =0 876 2754 2340 4506 6384
1 0 13224 1111680 40000284 854694672 12548849748
2 0 31692 20814618 3502913724 285343689342 14296324624164
3 0 14388 105558792 66167398224 15392391723972 1933287656228904
4 0 312 182631774 469032117948 288248187932658 80990413510330656
5 0 -12° 111190416 1474197621264 2474334577233804 1501801964420459808
Ng,,dy,12 | d1 =0 1 2 3 4 5
da =0 363 726 702 1452 1815
1 84 15267 846654 24454455 451560702 5971621263
2 0 63390 24022410 3100366203 213030667314 9432564106950
3 0 40614 165803226 76310133777 14614556335185 1597429012014378
4 0 1383 364788126 670587309870 332222425569714 80079498824062290
5 0 =57 269640918 2524188530034 3364141372570932 1730133151583505285
Ngy . dy22 | d1 =0 1 2 3 4 5
do =0 0 0 0 0 0
1 102 8976 325302 6898368 99988848 1084024620
2 0 51372 14396598 1462589520 82497883614 3089416732524
3 0 38808 121109886 45893323332 7447857934212 704572082465418
4 0 1716 301039440 466225271184 200138738462880 42499979609169498
5 0 =72 242665410 1939341503028 2272289621718792 1043316736192230672

Fp =0y (1)®* 3 Oy (2): (h11, h21 22 h31) = (2,0,552, 125)

Intersection numbers | 0‘11 =6, 02137'1 = 14, 0%712 =16, o170 =09, ‘rf =2
Ngy . dy,11 | d1 =0 1 2 3 4 5
do =0 360 110 0 0 0
1 0 7780 181660 1182060 3226100 4267500
2 0 27260 5703230 247915040 4199645570 35730530600
3 0 21540 47022520 8368536780 487011519380 13321298891500
4 0 3500 137972490 101219111200 16761773920870 1158268337627600
5 0 40 161154360 546681379380 252762644451260 40097079604396400
gy dy,12 | d1 =0 1 2 3 4 5
do =0 165 40 0 0 0
1 100 9345 147740 785690 1894775 2320375
2 0 55990 6844020 231492010 3350412730 25503215825
3 0 62310 76006130 10030946845 485539930370 11668962937750
4 0 13125 282277260 149233093550 20076931277380 1199570758766725
5 0 185 399094290 960929261945 354879437832140 48004138643512850
Ndy dy22 | d1 =0 1 2 3 4 5
da =0 0 0 0 0 0
1 170 6860 65700 250120 468350 468350
2 0 58020 5042710 129717540 1502417400 9512031410
3 0 77400 70019970 7403781260 296605169360 6050035785700
4 0 18700 298541880 129860240700 14833108148590 766859594261640
5 0 300 465232050 936876897400 298655994540650 35488204982996150

Fp = Ov(1)F%: (1, h21 h22, b3 1) = (2,0,492, 110), (ndy 5,22 = Mg ,ay,11) [11]
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Intersection numbers af =6, a:fn =15, 0%712 = 20, olrf’ =15, Tf =6
Ndy . dy,11 | d1 =0 1 2 3 4 5
da =0 210 0 0 0 0
1 0 5670 59430 100170 34650 1680
2 0 24360 2579640 47382930 264433680 546221760
3 0 24360 28015260 2324403900 55841697870 539959428960
4 0 5670 107096220 38404166850 2848564316640 80315543697900
5 0 210 165382980 277070715810 60035324018880 4163431890254700
Ng, . dy,12 | d1 =0 1 2 3 4 5
do =0 105 0 0 0 0
1 105 6930 50715 71085 21420 945
2 0 50715 3166800 45928155 221593050 413457450
3 0 71085 45928155 2851172100 57546197940 493317415605
4 0 21420 221593050 57546197940 3492450469200 85788539294850
5 0 945 413457450 493317415605 85788539294850 5102793274479600

Table 7. Genus-0 invariants of determinantal 4-folds in (A.6) with V = P5.

C.2 Determinantal Calabi-Yau 4-folds in (A.8)

Finally, we consider the determinantal Calabi-Yau 4-folds with p # 2 in (A.8) which are
described by U(2) x U(2) GLSMs, while ignoring the examples with the universal quotient
bundle Q in F,. We summarized the genus-0 invariants of (C.2) in table 8, where one
can check that (b9 h%%) = (0,0). For the Calabi-Yau 4-folds with 7, = &* @& Oy (1)%2,
(8*)%% @ O (1), (8%)®3, just due to a technical complexity, instead of the Hodge numbers
we give the x,-genera y; = Z;’-‘:O(—l)jhi’j, i =0,1,2 obtained by the formula (B.18).

Note that the determinantal 4-fold with F, = Sym?S* in (A.8) is an irreducible
holomorphic symplectic variety with (b0 h20) = (0,1), and all the genus-0 invariants
vanished. This property is known to be a general phenomenon for irreducible holomorphic
symplectic varieties (see e.g. [62]).

Fp =0y (1)®3: (W1 h21 p2:2 p31) = (2,0,384,83), (ngy,dy,r =0)
Intersection numbers | U‘l1 = 84, 0‘%0’2 = b4, 0':137'1 =42, 0%7‘12 = 14, 0‘%7'2 =0, ag = 36,
o109T1 = 27, 02712 =9, o021 =0, Jl'rf’ =0, o1 =0, Tf =0, 71272 =0, 7'22 =0

g, .dy,11 | d1 =0 1 2 3 4 5 6
do =0 966 6258 40194 313992 2465694 20471724
1 0 966 79464 2850624 73342920 1577557254 30264388560

2 0 0 6258 2850624 353216472 23351152860 1075419836442

3 0 0 0 40194 73342920 23351152860 3280923722160

4 0 0 0 0 313992 1577557254 1075419836442

5 0 0 0 0 0 2465694 30264388560
Ndy . de,oc | d1 =0 1 2 3 4 5 6
do =0 639 3987 25857 201888 1584999 13160502
1 0 639 51804 1846260 47378196 1017817191 19510365672

2 0 0 3987 1846260 229064418 15125263182 695710713879

3 0 0 0 25857 47378196 15125263182 2125753214616

4 0 0 0 0 201888 1017817191 695710713879

5 0 0 0 0 0 1584999 19510365672
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g, .dy,12 | d1 =0 1 2 3 4 5 6
da =0 210 1218 7182 50400 369810 2894220
1 0 756 39732 1136940 25336080 491193528 8693374452

2 0 0 5040 1713684 176608236 10236028824 426294634584

3 0 0 0 33012 48006840 13115124036 1640461861080

4 0 0 0 0 263592 1086363726 649125201858

5 0 0 0 0 0 2095884 21571014108
Ndy . dy22 | d1 =0 1 2 3 4 5 6
da =0 0 0 0 0 0 0
1 0 546 13692 260484 4432344 69555990 1036360500

2 0 0 3822 837228 64074948 2961523404 102768656970

3 0 0 0 25830 27103104 5840618616 604275131880

4 0 0 0 0 213192 664726188 325599224244

5 0 0 0 0 0 1726074 13914000156

Fp =8 @O0y (2): (k11 h21 h22 p31) = (2,0,636,146), (ng, 4,r = 0)

Intersection numbers | 0‘11 =48, JfUz =31, O':f’ﬁ =24, Uf’rf =38, O’%’TQ =0, O’% =21,
o1027 = 14, 027’12 =4, o212 =0, ale’ =0, oimm =0 74=0, 72m=0, 7'22 =0
Ndy.dy,11 | d1 =0 1 2 3 4 5 6
d2 =0 1536 17280 244224 3772608 62805504 1099018368

1 0 1536 288768 23427072 1353129984 64724846592 2742129192960
2 0 0 17280 23427072 7040804352 1086348288000 114929521132032
3 0 0 0 244224 1353129984 1086348288000 366458865408000
4 0 0 0 0 3772608 64724846592 114929521132032
5 0 0 0 0 0 62805504 2742129192960
N4, do,o | d1 =0 1 2 3 4 5 6
dag =0 864 9576 133920 2053872 34018272 592976376
1 0 1152 186624 14379264 808399872 38013725952 1591301187072
2 0 0 13248 16001280 4557463488 680963318784 70502641947072
3 0 0 0 190080 952611840 726901318656 237300376059648
4 0 0 0 0 2965896 46471290624 78693300038592
5 0 0 0 0 0 49723776 1996675868160
Ngy.dy,12 | d1 =0 1 2 3 4 5 6
da =0 384 3744 47232 670272 10462080 173868768
1 0 1152 144384 9550848 484282368 21085670400 830565021696
2 0 0 13536 13876224 3520402176 481923477504 46543883110656
3 0 0 0 196992 868847616 604424810496 183229432704000
4 0 0 0 0 3102336 43639176192 68385638021376
5 0 0 0 0 0 52343424 1911564171264
Ndy . dy22 | d1 =0 1 2 3 4 5 6
da =0 0 0 0 0 0 0
1 0 768 49152 2224128 86114304 3039080448 100762681344
2 0 0 9792 6549504 1255686144 138466443264 11215284827136
3 0 0 0 149760 470679552 260967776256 66108681437184
4 0 0 0 0 2432064 25592586240 33057039737856
5 0 0 0 0 0 41881344 1181761830912
Fp =8*® Oy (1)®2: (x0,x1,x2) = (2, —80, 364)
Intersection numbers a% = 86, Ufog = 55, a%n = 66, 0%7'12 =42, af’rz =17, 0’% =37,

o10271 = 41, 0'27'12 =25, o212 =10, <717'i3 =18, o1miT2 =9, T{l =4, 7'1272 =2, 7'22 =2

Ng,,dy,11 | d1 =0 1 2 3 4 5 6

— 492 —




do =0 496 244 0 0 0 0
1 0 1312 38880 238740 605136 785832 546816

2 0 44 41500 3158040 65572008 586267944 2862291270

3 0 0 760 1641368 253291560 11296776072 221197911448

4 0 0 0 23284 88370324 21272865380 1596400086708

5 0 0 -592 863776 5440233652 1834451480648
Ndy,ds,o | d1 =0 3 4 5 6
do=0 292 140 0 0 0 0
1 0 880 24204 144470 361496 466204 323180

2 0 34 27450 2002612 40636882 358061288 1731003173

3 0 556 1087240 162344808 7095866952 137011548860

4 0 16830 58584756 13723707354 1011627956132

5 0 -440 622184 3609161614 1188798184500
Ndy.dy,12 | d1 =0 3 4 5 6
doa =0 168 72 0 0 0 0
1 0 1176 23688 119628 271752 328080 216216

2 0 72 37524 2229240 39561432 317016480 1428444174

3 0 0 1056 1492992 191488464 7501134312 133180541856

4 0 0 0 31128 80807544 16742371056 1125010922424

5 0 0 0 -864 1140240 4994099532 1482866868960
Ng, . dy22 | d1 =0 1 2 3 4 5 6
do =0 0 0 0 0 0 0
1 0 1040 10516 37316 66648 66648 37316

2 0 112 31924 1296048 17835110 117630928 452438518

3 0 0 1356 1271728 125327752 4009228688 60469656020

4 0 0 0 37768 69214312 11674274648 663812607488

5 0 0 0 -1184 1367852 4298534956 1076178498476
Ndy do,r di =0 1 2 3 4 5 6
do =0 0 0 0 0 0 0
1 0 320 4618 18418 34404 34404 18418

2 0 28 10858 522792 7879519 55031576 219730439

3 0 0 382 432616 47989060 1663887680 26568226946

4 0 0 0 11040 23512884 4349537480 265076269952

5 0 0 0 -320 402214 1457274582 393989709022

Fy = (59728 Oy (1): (x0,x1,x2) = (2,-62,202)

Intersection numbers | o"l1 =92, 0%02 = 58, 0'5137'1 =92, 0'%7'12 = 80, T2 =19, o'% = 40,
o10271 = 56, 027'12 =46, o027 = 22, Jlrf’ =56, o17T17T2 = 32, Tf = 32, 19 =19, 7'22 =13
g, .dy,11 | d1 =0 1 2 3 4 5 6
do =0 180 0 0 0 0 0

1 0 1280 11520 0 0 0 0
2 0 180 39420 725760 1285920 110180 -36660
3 0 0 11520 1981440 54604800 288737280 294952960
4 0 0 0 725760 127668480 4632572700 44638440480
5 0 0 0 0 54604800 9651020800 425483704320
Ndy .de,oc | d1 =0 2 3 4 5 6
do =0 90 0 0 0 0 0
1 0 800 6560 0 0 0 0
2 0 130 24730 428000 729020 59850 -19710
3 0 0 7840 1244480 32729280 167506560 166957440
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4 0 0 482400 80204960 2803401590 26273744220

5 0 0 0 35821760 6063510400 259122088640

Ng, . dy,12 | d1 =0 2 3 4 5 6

do =0 60 0 0 0 0 0

1 0 1280 7680 0 0 0 0

2 0 300 39420 562560 846120 58940 -18660

3 0 0 15360 1981440 45327360 209679360 192616960

4 0 0 0 888960 127668480 4000335300 34440454440

5 0 0 0 0 63882240 9651020800 376969835520

Ngy . dy22 | d1 =0 1 2 3 4 5 6

do =0 0 0 0 0 0 0

1 0 1280 3840 0 0 0 0

2 0 480 37200 360960 439440 19040 -5520

3 0 0 19200 1835520 32509440 125291520 98252800

4 0 0 0 1013760 117776640 3046100640 22457270160

5 0 0 0 0 69619200 8892083200 297725928960

N, do,r di =0 1 2 3 4 5 6

do =0 0 0 0 0 0 0

1 0 560 2480 0 0 0 0

2 0 160 17200 207920 270080 14280 -4140

3 0 0 7600 863840 17630880 73506240 60984000

4 0 0 0 425520 55648880 1598550680 12693468720

5 0 0 0 0 30000800 4206510400 153166332320
Fp = (S)%% (x0,x1,x2) = (2,-22,132), (N4, dy,22 = Ny, dy 115 dy do,r = Ndy,dy0)

Intersection numbers | 0‘11 =102, O‘%O’Q = 63, 0':1)”7'1 =120, 0%7'12 =128, 0%7’2 =72, a% =45,

o021 = 72, 027’12 =72, o272 = 36, am’f’ =120, o1miT2 =72, T{l =102, 7127-2 =63, 722 =45

Ny ,do,11 | d1 =0 1 2 3 4 5 6

do =0 0 0 0 0 0 0

1 0 960 1200 0 0 0 0

2 0 420 20160 42300 600 0 0

3 0 0 22800 668160 1867200 197520 0

4 0 0 210 1206540 28032600 94238940 29975670

5 0 0 0 91440 67122240 1368583200 5269901040

Nd, . dy,o | d1 =0 1 2 3 4 5 6

do =0 0 0 0 0 0

1 0 540 540 0 0 0 0

2 0 270 11340 21330 270 0 0

3 0 0 14580 382320 984960 95580 0

4 0 0 135 756270 16113600 50752710 15091785

5 0 0 0 58860 41366160 787977720 2873723940

Nd,.dy,12 | d1 =0 1 3 4 5 6

do =0 0 0 0 0 0

1 0 960 720 0 0 0 0

2 0 720 20160 31920 360 0 0

3 0 31920 679680 1547760 137280 0

4 0 360 1547760 28646400 81883440 22591320

5 0 0 0 137280 81883440 1400849280 4715787120

Table 8. Genus-0 invariants of determinantal 4-folds in (A.8) with V' = G(2,6).
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