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1 Introduction

Conformal higher spin gauge theories attract considerable attention because despite be-

ing non-unitary they give tractable examples of interacting Lagrangian theories extending

conformal gravity and involving higher spin fields. The simplest conformal higher spin

(CHS) fields are totally symmetric tensor fields subject to first order gauge transforma-

tions. These are also known as Fradkin-Tseytlin fields and were originally proposed in [1]

in 4 dimensions and generalized in [2] to higher even dimensions. Interacting theory for

these fields was proposed much later [2, 3] and elaborated further in [4] (see also [5] for a

recent discussion).

CHS fields are intimately related to Fronsdal fields in anti de Sitter space (AdS) of one

extra dimension in the context of AdS/CFT correspondence. More specifically, CHS fields

in n-dimensions can be regarded as leading boundary values of the Fronsdal fields in AdS

space of n+ 1 dimensions. In so doing the CHS Lagrangian arises as the holographic Weyl
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anomaly [6, 7] (see also [8, 9] for the gauge-covariant analysis at the level of equations of

motion).

Wave operators for CHS fields (CHS operators) are of order n − 4 + 2s and were

conjectured [10] to factorize into a product of 2nd order operators when written over the

constant curvature background (see also [11–13] for the relevant earlier contributions). It

turns out that in 4 dimensions the factors have the mass terms identical to those of partially-

massless fields [14, 15] whose order of gauge transformation (known as “depth”) ranges from

1 to s. In higher dimensions in addition to partially-massless-like wave operators one also

finds among the factors the wave operators of certain massive fields [16]. The existence

of the factorized form allows to express the partition function of CHS fields in terms of

the known partition functions of the partially-massless fields [10] (see also [17, 18]). The

manifestly factorized form of the CHS operators was given in [19].

For a scalar (s = 0) conformal field the factorization amounts to the familiar factor-

ization of higher-order conformal operators known in the context of conformal geometry

as GJMS operators [20–22]. These also have a natural generalization [23] to tractor fields

on conformally-Einstein manifolds (for an introduction to tractors see e.g. [24–26]). The

similarity with GJMS operators suggests that tractor technique can be useful in studying

factorization of CHS wave operators as well.

As far as the structure of CHS operators on constant curvature background is concerned

in addition to manifestly-factorized form [19] it is also worth mentioning a suggestive

ordinary derivative Lagrangian formulations proposed in [16]. Furthermore, the manifestly-

conformal formulation of CHS equations was proposed in [8, 9] by employing a version of

the ambient space technique. In our study of the CHS operators we use this formulation

as a starting point.

In this work we are concerned with more general class of the CHS wave operators

for totally symmetric fields, which includes those with gauge invariance of arbitrary order

t6 s and somewhat similar non-gauge conformal fields known as special conformal ones [27].

These operators are of order d−2+2(s−t) and can be considered as those of the boundary

values of depth-t partially-massless fields in AdSn+1. We relate these CHS wave operators

to GJMS ones by constructing a certain embedding of tensor fields into tractors. More

specifically, we realize tractors using the parent-formulation approach [28, 29],1 where the

usual ambient-space construction is employed to describe the tangent space rather than the

spacetime, and demonstrate that CHS fields can be embedded in such a way that GJMS

operators coincides with CHS wave operators. As a byproduct we clarify and elaborate in

some details on the parent approach description of tractors originally put forward in [33].

Constructing the factorized form requires introducing the so-called scale tractor [23]

and a new ingredient — operators Bk, k = 1, 2, . . . . For k = 1 this was already employed in

the literature in the context of tractor description of low spin [34] and higher-spin [33] fields

in constant curvature spaces. In the formulation developped in this paper CHS operator

simply takes a manifestly factorized form Bℓ . . . B1, ℓ =
d−4
2 + s. This representation turns

out to be useful in analyzing gauge invariance. In particular, we show that Bt is the wave

operator of depth-t partially-massless field in traceless gauge.

1See also [30, 31] and [32] for parent formulation of general gauge theories.
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The paper is organized as follows: in section 2 we recall the ambient space formulation

of tractors and GJMS operators. There we also introduce parent formulation technique

which allows to work with fields defined on the conformal space rather than ambient one but

still benefit from the manifest realizations of o(n, 2)-symmetry. In section 3 we introduce

CHS fields, propose a new manifestly o(n, 2)-invariant formulation for them, and construct

the manifestly factorized form. Technical details are relegated to appendices.

2 Ambient space and tractors in the parent approach

2.1 Ambient space

In this work we are concerned with conformal gauge fields defined on the conformally-flat

spaces. The conformal symmetry can be seen as originating from the conformal isometries

which, at the infinitesimal level, are given by conformal Killing vector fields. These form

o(n, 2) algebra, where n is the space-time dimension.

Conformally invariant equations can be described [35] in a manifestly o(n, 2)-invariant

way by employing the ambient space construction (which in turn originates from that of

Klein). An ambient space is a pseudo-Eucledean space R
n,2 equipped with the metric ηAB

of signature (−,+,+ . . . ,+,−). In what follows we use ambient coordinates (X+, Xa, X−)

so the metric has the form

ηABdX
AdXB = 2dX+dX− + ηabdX

adXb . (2.1)

Where ηab is Minkowski metric (n− 1, 1). The cone is a zero locus {X2 = 0}\{0}. In this

picture, the n-dimensional conformal spaceM is the projectivization of the cone (projective

cone in what follows), i.e. the quotient space of X2 = 0 modulo the equivalence relation

XA ∼ λXA, λ ∈ R\{0}. The quotient is equipped with the conformal structure and with a

natural action of o(n, 2) as well as the entire conformal group (in what follows we restrict to

infinitesimal analysis and hence concentrate on the conformal algebra). The action comes

from the standard o(n, 2)-action on the ambient space.

To pick a representative of the equivalence class of metrics on M one can embed M as

a submanifold of X2 = 0 such that each ray intersects M once and only once. The metric

(which is conformally flat by construction) is then obtained by pulling back the ambient

metric to M . Scalar densities of conformal weight w on M can be described ambiently as:

(
X ·

∂

∂X
− w

)
Φ = 0 (2.2a)

Φ ∼ Φ+X2χ , (2.2b)

in terms of the ambient space functions Φ = Φ(X). Here and in what follows · denotes

o(n, 2)-invariant contraction of indices, e.g. Z · W = ηABZ
AWB and X2 = X · X. Be-

cause both the constraint and the equivalence relation are manifestly o(n, 2)-invariant the

conformal algebra act on the space defined by (2.2) (the same applies to the conformal

group).
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In a similar fashion we can consider tensor fields on the ambient space satisfying an

analog of (2.2). If we restrict ourselves to totally symmetric fields it is convenient to work

in terms of generating functions defined on the cotangent bundle over the ambient space

Φ(X,P ) =
∑

i=0

ΦA1...AiPA1
. . . PAi

. (2.3)

Here PA are coordinates on the fibers and we assume Φ to be polynomial in P . It follows

that the space defined by

(
X ·

∂

∂X
− w

)
Φ(X,P ) = 0 (2.4a)

Φ(X) ∼ Φ(X) +X2χ(X,P ) (2.4b)

is that of totally symmetric tractors of weight w, which we denote by E•[w]. Indeed, equa-

tion (2.4b) implies that such tensors are actually defined on the cone X2 = 0 while (2.4a)

says that these are actually defined on the projective cone. It is clear that E•[w] is equipped

with a natural action of o(n, 2) induced by that on the cotangent bundle over the ambient

space.

2.2 GJMS operators

Representing tractor fields through (2.4) is useful in studying conformally invariant dif-

ferential operators defined on tractors. In particular, in these terms it is easy to define

so-called GJMS-operators. These were originally proposed [22] for scalar densities and

later extended to generic tractors [23, 36] using the Feffermann-Graham construction which

reduces to the above ambient space approach in the conformally flat case.

If tractors are described through (2.4) the GJMS-operators are simply powers of the

ambient Laplacian

P 2ℓ := �
ℓ
X , P 2ℓ : E•

[
ℓ−

n

2

]
7→ E•

[
−ℓ−

n

2

]
, �X :=

∂

∂X
·

∂

∂X
. (2.5)

This operator is well defined on equivalence classes (2.4b) provided the weights are as

above. To see this, it is instructive to exploit that the following 3 operators

H := X ·
∂

∂X
+

n+ 2

2
, E := −

1

2
X2 , F :=

1

2

∂

∂X
·

∂

∂X
, (2.6)

define a representation of sl(2)-algebra on the ambient space functions. For trivial Φ(X) =

X2χ with χ of weight w = ℓ− 2− n
2 one finds

�
ℓ
X(X2χ) = X2

�
ℓ
Xχ+ 4ℓ�ℓ−1

X

(
wχ +

n

2
− ℓ+ 2

)
χ = X2

�
ℓ
Xχ (2.7)

because wχ = wΦ − 2 = ℓ− 2− n
2 .

To write explicit formulas for GJMS operators one chooses local coordinates xµ on M

and particular metric gµν in the conformal class. The first non-trivial example of GJMS

operators is Yamabe operator ∇̄2− (n−2)
4(n−1)R defined on scalar densities of weight 1−n

2 , where
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∇̄ is the Levi-Civita connection determined by g. If one identifies M with flat Minkowski

space then GJMS operators are just ∇̄2ℓ acting on scalar densities of weight w = ℓ− n
2 .

There is a dual description of GJMS operators using the following system [22] (see

also [9]):

�XΦ(X) = 0 ,
(
X ·

∂

∂X
− ℓ+

n

2

)
Φ(X) = 0 ,

Φ(X) ∼ Φ(X) + (X2)ℓχ .

(2.8)

Here χ also satisfies analogous constraints but with −ℓ+ n
2 replaced with ℓ+ n

2 . It follows

this system is equivalent to (2.4) supplemented by �ℓ
XΦ = 0 and with w = ℓ − n

2 . It is

a remarkable property of (2.8) that the first two equations considered in the vicinity of

the hyperboloid X2 = −1 in the ambient space describe the scalar field of mass w(w+ n).

Moreover, this gives a systematic way [8, 9] to describe boundary values of the (A)dS field

on the hyperboloid.

2.3 Thomas-D operator

An important object well-defined on the equivalence classes 2.4 is Thomas D-operator

DA : EB...C [w] 7→ EAB...C [w − 1]. Here we denote by EB...C [w] tensor fields of an arbitrary

symmetry and a rank having the weight w and satisfying:

(
X ·

∂

∂X
− w

)
Φ = 0 (2.9a)

Φ ∼ Φ+X2 χ . (2.9b)

Of course, (2.9) contains (2.4). By slightly abusing notations, Thomas D-operator can be

defined as follows

DAΦ =

(
2

(
X ·

∂

∂X
+

n

2

)
∂

∂XA
−XA�X

)
Φ , (2.10)

where Φ is subject to 2.9. It has the following properties:

• [DA, DB] = 0

• DAD
A = X2�2

X .

Note that the above definition and properties are to be modified in the conformally non-

flat case.

There is a useful relation between GJMS operators and Thomas-D observed in [36]:

DA1
. . . DAℓ

Φ = (−1)kXA1
. . . XAℓ

P 2ℓΦ , Φ ∈ E•
[
ℓ−

n

2

]
. (2.11)

A version of this relation is going to be very useful in what follows.
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2.4 Tractors in parent formulation

The naive ambient construction sketched above is very useful in describing fields on a

conformally-flat background. However, it operates in terms of the equivalence classes of

fields on the ambient space rather then fields explicitly defined on the conformal manifold.

Moreover, ambient description is not directly applicable to a conformally-flat space which

is equivalent to the projective cone only locally.

Although these issues can be resolved by employing a full-scale Fefferman-Graham

construction [37] there is a relatively simple and concise alternative. It is based on re-

formulating the system (2.4) in the so-called parent form [28, 29] in which the ambient

construction is realized in the formal version of the ambient space rather than in the space-

time. Moreover, this approach has proved useful in describing gauge fields including CHS

fields and hence provides a framework to study the structure of the CHS wave operators.

The parent counterpart of the system (2.4) is constructed by first introducing the

formal version of the ambient space with coordinates Y A, where one considers totally

symmetric tensor fields. As before we work with tensors in terms of the generating function

Φ = Φ(Y, P ) . (2.12)

The dependence on Y is assumed formal, i.e. as functions on the formal ambient space

one takes polynomials in P with coefficients in formal series in Y . Given a nonvanishing

ambient vector V A
0 one defines a “twisted” realization [28, 29] of o(n, 2) on the space of

the above functions in Y, P :

ρ(α)Φ = αA
B

[
PA

∂

∂PB
− (Y B + V B

0 )
∂

∂Y A

]
, α ∈ o(n, 2) . (2.13)

Then, the conformal structure on M can be encoded in terms of the vector bundle

V over M whose fiber is a copy of the flat ambient space. More precisely, the bundle is

equipped with the fiber-wise pseudo-Euclidean metric η, nonvanishing section V ∈ Γ(V)

such that η(V, V ) = 0, and an o(n, 2) connection dxµωµ compatible with η and such that

∇V has maximal rank (i.e. seen as a fiber-wise map TM → V(M) it has a vanishing

kernel). As we are now interested in flat conformal structures we restrict ourselves to flat

connections, i.e. dω + ω ∧ ω = 0.

Given this data one can consider an associated bundle whose fibre is the above space

of “functions” in Y, P , where o(n, 2) acts according to the twisted representation (2.13),

where at a given point V0 is just V at this point. Moreover we assume that the local

frame is chosen in such a way that V A is constant. For instance, the associated covariant

derivative of a section Φ is given explicitly by:

∇∇∇µΦ =
∂

∂xµ
Φ+ ωA

µB

[
PA

∂

∂PB
− (Y B + V B)

∂

∂Y A

]
Φ . (2.14)

Here and in what follows we use the local identification of sections of this bundle with

functions in x, P, Y . In particular, for Y -independent sections the usual covariant derivative

is reproduced. In the conformally flat case we are concerned with ∇∇∇ is flat, i.e. ∇∇∇2 = 0.

– 6 –
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The standard choice of the local frame of V(M) is such that:

ω A
µ B =




0 −eµb 0

J a
µ ω a

µ b e a
µ

0 −Jµb 0


 , V A =



V −

V a

V +


 =



0

0

1


 , (2.15)

where eA = ∇V A = ωA
BV

B and J a
µ = eaνJµν with Jµν being the Schouten tensor of the

metric gµν = eAµ e
B
ν ηAB. In dimensions n> 3 the Schouten tensor is defined in terms of the

Ricci tensor and the scalar curvature as Jµν = 1
n−2

(
Rµν −

R
2(n−1)gµν

)
. We denote J to be

the trace of Jµν .

Although the construction is frame-independent we assume for simplicity that the

frame is chosen as above. Note that it’s also possible to allow for non-constant V A at the

price of extra terms in the covariant derivative, see [28, 29] for more details.

With the above prerequisites we are ready to give a local version of the ambient

definition of tractors. More precisely, consider the following system:

∇∇∇µΦ = 0 ,
(
(Y + V ) ·

∂

∂Y
− w

)
Φ = 0 ,

Φ ∼ Φ+ (Y + V )2χ ,

(2.16)

where χ = χ(x, P, Y ) satisfies analogous system with w replaced by w − 2. The space of

equivalence classes of sections determined by (2.16) is precisely the space of tractors of

weight w that we keep denoting E•[w].

The easiest way to see this is to observe that any Y -independent section Φ0(x, P )

admits a unique (up to an equivalence) lift to Φ(x, P, Y ) satisfying (2.16). Indeed, taking

into account the explicit form (2.15) one finds that the 1-st and the 2-nd equations are

first-order in ya, Y + and hence solution exists and can be constructed recursively.2 The

arbitrariness in the solution at each step is in adding a function in Y − but this arbitrariness

is taken into account by the equivalence relation in the last line of (2.16).

The GJMS operators can also be defined in terms of (2.16) as

P 2ℓΦ(x, P, Y ) = �
ℓΦ(x, P, Y ) , Φ ∈ E•

[
ℓ−

n

2

]
, � :=

(
∂

∂Y
·

∂

∂Y

)
. (2.17)

To recover the previous definition of GJMS operators in terms of Y -independent fields let

Φ(x, P, Y ) be a unique (up to equivalence) solution to (2.16) with w = ℓ − n
2 such that

Φ(x, P, Y )|Y=0 = Φ0(x, P ). Then

P 2ℓΦ0(x, P ) =
(
�

ℓΦ(x, P, Y )
) ∣∣∣

Y=0
. (2.18)

2More precisely, to give a rigorous argument it is useful to introducing Grassmann-odd ghost variables

associated to all the constraints in (2.16) (note that those associated to the components of the covariant

derivative are precisely the basis differentials dx
µ) and to employ the homological perturbation theory. In

this way it is manifest that consistency conditions are fulfilled at each step.

– 7 –
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The parent analog of the system (2.8) describing a scalar of weight ℓ − n
2 subject to

GJMS equation of order 2ℓ reads as

∇∇∇µΦ = 0 ,
(
(Y + V )

∂

∂Y
− ℓ+

n

2

)
Φ = 0 ,

�Φ = 0

Φ ∼ Φ+ (Y + V )2ℓχ ,

(2.19)

where (Y +V )2k := ((Y +V )2)k. In this system the GJMS equation arises at order (Y −)ℓ−1

of (�Φ)
∣∣
Y +=Y a=0

= 0.

There exists a partially gauge-fixed version of (2.16). More precisely, for a given Φ̃

satisfying (2.16) one can construct an equivalent representative Φ of the same equivalence

class such that

�Φ = (Y + V )2(ℓ−1)α (2.20)

for some α(x, P, Y ). It is easy to see that the new representative is defined up to a restricted

equivalence relation:

Φ ∼ Φ+ (Y + V )2ℓχ . (2.21)

More formally, (2.16) is equivalent to the partially gauge-fixed system consisting of the first

two equations of (2.16) supplemented by (2.20) and the new equivalence relation (2.21).

In terms of (2.16), (2.20) the GJMS equation can be written as α = (Y + V )2β for some

β. This makes manifest that GJMS equation shows up at order ℓ − 1 in the expansion of

�Φ in powers of (Y + V )2.

In terms of tractors described through (2.16), Thomas D-operator can be defined as

follows:

DAΦ(x, P, Y ) :=

(
2

(
(Y + V ) ·

∂

∂Y
+

n

2

)
∂

∂Y A
− (Y + V )A �

)
Φ(x, P, Y ) , (2.22)

where Φ ∈ E•[w]. It is easy to check that P · D is a well-defined map E•[w] → E•[w − 1].

The explicit relation between DA and conventional Thomas-D operator defined on tractors

reads as

DAΦ0(x, P ) = (DAΦ(x, P, Y )) |Y=0 , (2.23)

where as usually Φ denotes a lift of Φ0 satisfying (2.16). In particular, this gives an

alternative systematic way to derive the explicit expression for Thomas-D operator. The

details of the derivation as well as the explicit expression for DA are given in appendix A.

Note that a version of this derivation was in [33].

The relation (2.11) between Thomas-D and GJMS operators take the form:

DA1
. . .DAℓ

Φ(x, P, Y ) = (−1)ℓ(Y + V )A1
. . . (Y + V )Aℓ

�
ℓΦ(x, P, Y ) . (2.24)

To complete the discussion of this section let us briefly comment on how the parent

formulation of tractors can be generalized to not necessarily conformally flat backgrounds.

– 8 –
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Underlying the above description is the parent form of the flat ambient space approach. In

the curved case this approach is generalized to the full-scale Fefferman-Graham ambient

metric construction [37, 38] which also encodes tractors in a natural way. In its turn the

parent version of the Fefferman-Graham construction has been proposed recently in [39]

and is expected to determine a curved generalization of the defining system (2.16), where

the covariant derivative are still flat at the price of extra terms of higher order in Y -

variables, which encode the curvature of the linear piece. The structure of this connection

is somewhat analogous to that of the Fedosov nonlinear connection [40, 41] (for more details

in the related context see [39, 42, 43]).

2.5 Scale tractor and factorization of GJMS operators

It is known that the GJMS operator factorises on a conformally-Einstein (in particular,

a conformally-flat) background [23]. This factorization is easy to arrive at explicitly by

making use of additional important ingredient, the so-called scale tractor. By definition, a

scale tractor is a nowhere vanishing weight 0 and rank 1 tractor tensor IA which is parallel,

i.e. satisfying covariant-constancy condition:

∇µI
A = ∂µI

A + ω A
µ BI

B = 0 . (2.25)

In the conformally-Einstein case (2.25) implies that there exists a scalar density σ such

that IA = 1
n
DAσ, where DA is a Thomas-D derivative determined by (2.23). In terms of

components

IA =




σ

∇̄aσ

− 1
n
(J + ∇̄2)σ


 (2.26)

where ∇̄a := eµa∇̄µ. Here ∇̄µ denotes Levi-Civita covariant derivative determined by the

metric gµν = ∇µV
A∇νV

BηAB.

If IA = 1
n
DAσ and ∇µI

A = 0 then σ determines a constant curvature representative

of the conformal equivalence class of the metric. More precisely, gcµν := σ−2gµν is constant

curvature [44]. In the case where gµν is constant curvature from the very beginning one

may simply take σ = 1 so that

IA =




1

0

−J
n


 . (2.27)

Note that V AIA = 1 with this choice. Although all the general constructions of this

and the next section are valid for general parallel IA in all the explicit examples we always

assume that the metric is constant curvature from the very beginning (AdS for definiteness)

and σ = 1.

Because I commutes with ∇µ, it also commutes with Thomas D: [IA, DB] = 0. It

is easy to see that IAPA satisfies (2.16) with w = 0 and hence IA also commutes with

DB. It means that the formula for GJMS operator (2.11), (2.24) can be written slightly

differently [23]:

P 2ℓΦ(x, P ) = (−1)ℓIA1DA1
. . . IAℓDAℓ

Φ(x, P ) , (2.28)

– 9 –
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Note that Φ(x, P ) is to be understood as a tractor field of weight w = ℓ − n
2 . Note also

that (I · D)Φ(x, P ) has weight w − 1.

Using (2.28) one can obtain explicit formulas for GJMS operators. Indeed, for a tractor

field Φw(x, P ) of generic weight w one has

(I · D)Φw(x, P ) = −

{
∇2 +

2J

n
(n+ w − 1)(w)

}
Φw(x, P ) . (2.29)

Here and in what follows ∇2 = gµν∇µ∇ν where by slight abuse of notations we denote by

∇µ the covariant derivative extended to tensors with values in symmetric tractors (identified

with polynomials in PA). For instance, for Aν = Aν(x, P ) one has ∇µAν = ∇∇∇µAν −

Γρ
µνAρ, where ∇∇∇ is given by (2.14) and Γρ

µν are coefficients of the Levi-Civita connection.

Combining this with (2.28) one gets:

ℓ−1∏

i=0

{
∇2 +

2J

n

(
ℓ+

n

2
− i− 1

)(
ℓ−

n

2
− i

)}
Φ(x, P ) = P 2ℓΦ(x, P ) . (2.30)

According to (2.29) the order of terms entering (2.30) is the following: the term with i = 0

acts first, then i = 1, and so on.

3 Conformal higher spin fields

There exist conformally invariant equations for totally symmetric tensor fields proposed

originally by Fradkin and Tseytlin [1] in 4 dimensions and extended to all even dimensions

in [2]. The equations are Lagrangian and possess gauge invariance. In Minskowski space

the equations and gauge transformations have the following structure:

(∂2)
n−4

2
+sφa1...as + . . . = 0 , δφa1...as = ∂(a1ǫa2...as) + η(a1asωa3...as) , (3.1)

where. . . denote terms proportional to ∂a1φa1...as and φa1
a1...as

. The algebraic gauge sym-

metry with parameter ω can be employed to set φa1
a1...as

= 0. In what follows we always

assume this gauge condition.

CHS fields can be seen as a linearization of the nonlinear CHS theory proposed in [2, 3]

(see also [4, 5]) around a Minkowski space vacuum (see also [43, 45] for the discussion of

curved vacua). The respective action functional arises as an induced action for the scalar

field in the higher-spin background. It is remarkable, that the consistency of the scalar

in higher-spin background naturally determines nonlinear gauge transformations for the

background higher-spin fields, giving the gauge symmetries of the induced action [2].

In addition to CHS fields whose gauge transformations are of first order in derivatives

there are conformal gauge fields whose gauge transformations are of order t6 s in deriva-

tives, which we refer to as depth-t CHS fields. The law-spin fields of this type were already

in [14, 46, 47] while higher spin ones were described much later [9, 17, 48, 49]. In what

follows we use the term “CHS fields” for the entire family including Fradkin-Tseytlin fields,

their depth-t generalizations and so-called special conformal fields [27], which correspond to

s+16 t6 n−4
2 + s. Note that higher-depth CHS fields in n-dimensions are somewhat simi-

lar to so-called partially-massless fields [14, 15] and in fact can be understood as boundary
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values of the partially-massless fields on AdSn+1 [9] while special conformal fields can be

seen as boundary values of special massive bulk fields. It is also worth mentioning that in

addition to totally symmetric fields there exist mixed symmetry CHS fields [49, 50] which

remain beyond the scope of the present work.

3.1 Manifestly o(n, 2)-invariant description of CHS fields

Our goal is to study the structure of CHS equations and, in particular, the factorization

of the CHS wave operators. As a starting point of our analysis we use the ambient space

formulation of the CHS equations, which is available in the literature. More precisely, CHS

equations of motion can be encoded in the following system [8, 9] (see also [50]):

∇∇∇Φ = 0,

(
(Y + V ) ·

∂

∂Y
+

n

2
− ℓ

)
Φ = 0, (Y + V ) ·

∂

∂P
Φ = 0 ,

∂

∂Y
·

∂

∂P
Φ = 0 ,

∂

∂P
·
∂

∂P
Φ = 0, P ·

∂

∂P
Φ = sΦ ,

(3.2)

�Φ = 0 , (3.3)

Φ ∼ Φ+ (Y + V )2ℓχ , (3.4)

which is formulated in the setting of section 2.4 and where ℓ = n
2 +s−t−1. The equivalence

relation is to be understood as follows: two configurations are equivalent if their difference

can be represented as (Y +V )2ℓχ for some χ. Note that it’s not difficult to extract explicitly

the conditions χ ought to satisfy: these also have the form (3.2), (3.3) but with ℓ replaced

with −ℓ.

In terms of the above representation the CHS gauge transformations can be written

as follows:

δΦ =

(
P ·

∂

∂Y

)t

ǫ , (3.5)

where ǫ = ǫ(x, P, Y ) is subject to the analogous system with ℓ replaced by ℓ+ t and s with

s − t. For t = 1 system (3.2)–(3.5) describes the usual CHS fields while for t = 2, . . . , s

their higher-depth generalizations. The system is manifestly o(n, 2) invariant.

Strictly speaking system (3.2)–(3.5) is not equivalent to CHS equations of motion and

gauge symmetries. More precisely, in addition to CHS equations it also encodes conformal

gauge conditions which, however, can be consistently removed in one or another way, giving

an equivalent formulation of CHS fields (see [8, 9, 50] for more details).

To see how exactly CHS equations are encoded in the above system let us consider (3.2)

supplemented with

�Φ = (Y + V )2(ℓ−1)α (3.6)

in place of (3.3). By rephrasing the analysis of [8, 9, 50] in the present terms one finds that

any traceless φ(x, p) can still be lifted to Φ(x, P, Y ) satisfying not only (3.2) but also (3.6).

Moreover, the condition that

α = (Y + V )2β (3.7)
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for some β encodes CHS equation and conformal gauge conditions. Here α is understood

as a function of φ and its xµ-derivatives obtained by solving (3.2), (3.6).

It turns out that just CHS equations can be written as

α
∣∣
Y=P±=0

= 0 . (3.8)

The equation α
∣∣
Y=0

= 0 is conformal by construction. To check the conformal invariance

of (3.8) one observes that the equation sitting at P± = 0 is of order 2ℓ while the equations

in different components are of higher order and hence their conformal transformations can’t

compensate the transformations of (3.8) so that (3.8) should be conformally invariant [50].

Their gauge invariance can also be shown on general grounds following [9, 29, 50]. In any

case in this work we give an independent proof of the gauge invariance.

It is also worth mentioning that if one drops the equivalence relation in (3.2), takes V

such that V 2 = −1, and takes as Φ a field on AdSn+1 rather than n-dimensional conformal

space, the above system is precisely the one from [51] see also [28, 52], which describes

partially-massless fields on AdSn+1. In this form it is manifest that depth-t FT fields in

n-dimensions are boundary values of the partially-massless fields on AdSn+1.

There exist a “dual” system that also describes CHS fields but where the harmonicity

condition is replaced by
(

∂
∂Y

· ∂
∂Y

)ℓ
Φ(x, P, Y ) = 0:

∇∇∇Φ = 0,

(
(Y + V ) ·

∂

∂Y
+

n

2
− ℓ

)
Φ = 0, (Y + V ) ·

∂

∂P
Φ = 0 ,

∂

∂Y
·
∂

∂P
Φ = 0 ,

∂

∂P
·
∂

∂P
Φ = 0 , P ·

∂

∂P
Φ = sΦ ,

(3.9)

�
ℓΦ = 0 , (3.10)

Φ ∼ Φ+ (Y + V )2α . (3.11)

Note that (3.9) is identical to (3.2).

In what follow it is useful to introduce a natural map L−1 that sends elements of E•[w]

(in particular solutions to (3.9)) to tensor fields on M . In terms of generating function

Φ(x, P, Y ) it is given by

L−1Φ = Φ
∣∣
Y=P±=0

. (3.12)

We have the following:

Proposition 3.1. For all ℓ > 0 or all non-integer ℓ any φ(x, p) satisfying ∂
∂p

· ∂
∂p
φ = 0 and

p · ∂
∂p
φ = sφ can be lifted to Φ(x, P, Y ) satisfying (3.9) and such that φ = L−1Φ. The lift

is unique if one takes into account the equivalence relation (3.11).

The statement can be inferred from the analysis of [8, 9, 50]. Some details of the proof

are also given in appendix B.

Proposition 3.2. Let Φ(x, P, Y ) be a lift of φ(x, p) as described in proposition 3.1 with

ℓ = n
2 + s− t− 1, then the operator defined by

As,tφ = L−1
(
�

ℓΦ
)

(3.13)

is well-defined on equivalence classes (3.11) and coincides with CHS wave operator.
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Proof. Operator As,t is clearly well-defined on equivalence classes Φ ∼ Φ+ (Y + V )2α and

hence determines an operator of derivative order 2ℓ on totally symmetric traceless tensor

fields.

To explicitly relate As,t to CHS operator we first note that for any Φ0 satisfying (3.9)

one can find an equivalent element Φ = Φ0 + (Y + V )2 . . . such that

�Φ = (Y + V )2(ℓ−1)α . (3.14)

Indeed, this is achived by taking

Φ(x, P, Y ) =
l−1∑

k=0

(Y + V )2kΦk

Φk = −
1

4k(ℓ− k)
�Φk−1 .

(3.15)

Note that the residual equivalence relation is precisely (3.4). In this way we have found

that the system (3.2), (3.4), (3.6) results from (3.9), (3.11) by partially taking into account

the equivalence relation (3.11) and hence these systems are equivalent.

Finally, applying �ℓ−1 to both sides of (3.14) and setting to zero Y, P+, P− one finds

L−1(�ℓΦ) = r L−1(α) (3.16)

where r is a non-vanishing coefficient and hence equation L−1(�ℓΦ) = 0 is equivalent to

CHS equations (3.8).

Let us comment on the relation between the above description of CHS fields and

tractors. In contrast to tractor fields, which can be seen as certain tensor fields on the

n + 2-dimensional ambient space restricted to n-dimensional submanifold, CHS fields (at

the off-shell level, i.e. before imposing CHS equations of motion) are tensor fields (more

precisely, tensor densities) in n-dimensions on which the action of gauge transformations

and conformal transformations is defined. Equations (3.9), (3.11) can be seen as a mean

to embedd off-shell CHS fields as a subspace of tractor fields in such a way that the GJMS

operator produces the CHS equations of motion through (3.13).

3.2 Modified system and factorization of CHS operators

It turns out that it is useful to employ a certain modification of the system (3.9), (3.11).

In particular, the gauge invariance of the CHS equations is conveniently analysed in the

modified formulation. Consider the following system:

∇∇∇Φ = 0,

(
(Y + V ) ·

∂

∂Y
− w

)
Φ = 0, (Y + V ) ·

∂

∂P
Φ = 0

D ·
∂

∂P
Φ = 0 ,

∂

∂P
·
∂

∂P
Φ = 0, P ·

∂

∂P
Φ = sΦ ,

(3.17)

Φ ∼ Φ+ (Y + V )2χ , (3.18)
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where χ(x, P, Y ) satisfies (3.17) with w replaced by w − 2. We denote by S[s, w] the

space of equivalence classes determined by this system. The gauge transformations can be

now defined as δΦ = (P · D)tǫ, where ǫ also satisfies (3.17), (3.18) with w, s replaced with

w+t, s−t so that (P ·D)t determines a well-defined map S[s−t, w+t] → S[s, w], w = s−t−1.

It is easy to check that for w 6= −n
2 equations (3.17) are equivalent to (3.9). Indeed,

assuming all the other constraints in (3.17) but D · ∂
∂P

satisfied one finds:

D ·
∂

∂P
= (2w + n)

∂

∂P
·

∂

∂Y
. (3.19)

In particular, for w = ℓ−n
2 if Φ(x, P, Y ) satisfying (3.17) denotes a lift of φ(x, p)

(
∂
∂p
· ∂
∂p

)
φ =

0 then (3.13) defines CHS wave operator.

For the special value w = −n
2 any φ(x, p) satisfying ∂

∂p
· ∂
∂p
φ = 0 can be lifted to

Φ(x, P, Y ) satisfying (3.17). However, in contrast to (3.9) the lift is not unique even if

one takes into account the equivalence relation (3.18). The uniqueness can be restored by

introducing the following additional equivalence relation:

Φ ∼ Φ+ ((Y + V ) · P )β . (3.20)

Assuming that definiton of S[s, w] in the case of w = −n
2 also involves (3.20) we conclude

that for w> − n
2 , the space S[s, w] is one-to-one with that of totally symmetric traceless

tensor fields on M .

The apparent disadvantage of defining CHS operator through (3.13) is that it requires

extracting particular components of �ℓΦ. This can be cured as follows: pick a particular

metric in the conformal class and consider the following operator defined on S[s, s−k−1]:

Bk := I · D −
1

k
(P · D)

(
I ·

∂

∂P

)
. (3.21)

Indeed, it is well defined on the equivalence classes (3.18) for these values of parameters.

If Φ(x, P, Y ) ∈ S[s, s− k− 1], then (BkΦ)(x, P, Y ) ∈ S[s, s− k− 2], so that Bk determines

a well defined map S[s, s− k− 1] → S[s, s− k− 2]. Note that in contrast to the operators

employed above Bk is not o(n, 2)-invariant because it contains the scale tractor that breaks

o(n, 2)-symmetry. With our choice of IA the residual symmetry is just (A)dS-isometries.

Note that for k = 1 this operator was employed in [33], while for k = 1 and s = 1, 2 it was

in [34].

One can also define powers of Bk as follows: Bℓ
k := Bk+l−1 ◦ . . . ◦ Bk which act on

Φ ∈ S[s, s − k − 1] according to Bℓ
k : Φ 7→ (Bℓ

kΦ) ∈ S[s, s − k − 1 − ℓ]. We have the

following:

Proposition 3.3. Let Φ(x, P, Y ) ∈ S[s, w] with w = ℓ − n
2 , ℓ = n−2

2 + s − t be a lift of

φ(x, p), i.e. L−1Φ = φ. Then an equation Bℓ
tΦ

∣∣
Y=0

= 0 is equivalent to As,tφ = 0 and

hence is a CHS equation formulated in terms of S[s, w].

It is clear that Bℓ
t is well defined on S[s, w] in this case. The proof that it indeed

determines CHS wave operator is relegated to appendix C.
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It follows from the identification of S[s, s−k−1] with totally symmetric tensor densities

that Bk defines an operator on tensor densities. More precisely, if Ls,w denote a map that

sends φ(x, p) to Φ(x, P, Y ) satisfying (3.17) and L−1 the map defined by L−1Φ = Φ
∣∣
Y A,P±=0

then for φ = φ(x, p) of rank s and weight s− k − 1

B̄kφ = L−1BkLs,s−k−1φ (3.22)

is a second order differential operator on tensor densities. Representing As,t as

As,tφ = (−1)ℓL−1Bℓ
tLs,s−t−1 =

(−1)ℓ(L−1Bt+ℓ−1Ls,s−t−ℓ)(L
−1 . . . Ls,s−t−2)(L

−1BtLs,s−t−1) (3.23)

one finds

As,tφ = (−1)ℓB̄t+ℓ−1 . . . B̄tφ . (3.24)

In other words we have arrived at the manifestly factorized form of the CHS wave operator.

Note that although all the above arguments apply to generic conformally-flat background

metric gµν operators B̄k in general depend on scale σ so that only on constant curvature

spaces where one can take σ = 1 this gives a genuine factorization of CHS wave operator

into natural second-order operators.

3.3 Explicit form of the factors

Now we are ready to give an explicit component expressions for the CHS operators and

the operators B̄k in terms of tensor densities on M . Leaving the detailed computations for

the appendix B we get

B̄kφ(x, p) = L−1BkLs,s−k−1φ(x, p) =

−

{
∇̄2 +

2J

n
(−s+ (n+ s− k − 2)(s− k − 1))−

n+ 2s− 4

k(n+ 2s− k − 3)
(p · ∇̄)

(
∂

∂p
· ∇̄

)

+
1

k(n+ 2s− k − 3)
p2

(
∂

∂p
· ∇̄

)2
}
φ(x, p) . (3.25)

It follows from the structure of the mass-like term in the above operator that it coin-

cides with the one of the partially-massless field of spin s and depth k. More precisely, Bk

explicitly coincides with the partially massless operator provided both are written in the

gauge where
(

∂
∂p

· ∇̄
)
φ(x, p) = 0.

Now the expression (3.24) for the CHS wave operator takes the form:

As,tφ(x, p) =

n−4

2
+s−t+1∏

i=1

{
∇̄2 +

2J

n
(−s+ (n+ s− t− i− 1)(s− t− i))

−
n+ 2s− 4

(t+ i− 1)(n+ 2s− t− i− 2)
(p · ∇̄)

(
∂

∂p
· ∇̄

)

+
1

(t+ i− 1)(n+ 2s− t− i− 2)
p2

(
∂

∂p
· ∇̄

)2
}
φ(x, p) ,

(3.26)
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where the operator with i = 0 acts first, then the operator with i = 1 and etc. In the

special case w = s− 2 we get the result obtained by Nutma and Taronna [19]:

As,1φ(x, p) =

i=n−4

2
+s∏

i=1

{
∇̄2+

2J

n
(−s+(n+s− i−2)(s− i−1))

−
n+2s−4

i(n+2s− i−3)
(p · ∇̄)

(
∂

∂p
· ∇̄

)
+

1

i(n+2s− i−3)
p2

(
∂

∂p
· ∇̄

)2
}
φ(x, p) .

(3.27)

Note that although the formulas coincide in our derivation we assumed that φ is traceless.

3.4 Gauge invariance

Now we are ready to analyse gauge invariance of the CHS equations using its factorized

representation in terms of Bk.

Proposition 3.4. For any ǫ ∈ S[s− t, s− 1], t6 s

Bℓ
t (P · D)tǫ = 0 . (3.28)

As S[s− t, s−1] is one-to-one with traceless tensor densities on M , (P ·D)t determines

a gauge symmetry of the CHS equations.

Proof. Observe that

Bt(P · D)tǫ(x, P, Y ) =

(
I · D −

1

t
(P · D)

(
I ·

∂

∂P

))
(P · D)tǫ(x, P, Y )

= −
1

t
(P · D)t+1

(
I ·

∂

∂P

)
ǫ(x, P, Y ) .

(3.29)

Applying Bt+1 we get (P · D)t+2
(
I · ∂

∂P

)2
ǫ(x, P, Y ) and so on. Because ǫ is of rank s− t,

this procedure gives zero after s − t + 1 iterations. CHS operator Bℓ
t , ℓ = n−2

2 + s − t

contains at least s − t + 1 factors (for n> 4) and hence (P · D)tǫ(x, P, Y ) is in the kernel

of Bℓ
t .

To make sure that the gauge transformation δΦ = (P · D)tǫ indeed coincides with the

standard gauge transformation for CHS fields, one can check that L−1(P ·D)tΦ is traceless

by construction and the leading term is proportional to (p · ∇̄)t as it should be for CHS

fields of this type. In case of s+16 t6 n−4
2 +s we are dealing with special conformal fields,

with no gauge symmetry of the form (3.28).

The above technique can be also used to study gauge invariance of Bk. Suppose that

we subject the gauge parameter ǫ ∈ S[s− k, s− 1] to the extra condition I · ∂
∂P

ǫ = 0 which

encodes that L−1ǫ satisfies ∂
∂p

·∇̄(L−1ǫ) = 0. Then Bt(P ·D)tǫ = (P ·D)t+1I · ∂
∂P

ǫ = 0. This

gives an additional argument that for Φ ∈ S[s, s − k − 1] equation BkΦ = 0 is a partially

gauge-fixed version of the equations of motion of the partially-massless field of spin s and

depth k. Examples can be found in appendix D.
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3.5 CHS equations in terms of tractors

Although we have described CHS fields and found the factorized form of the CHS equations

by employing the parent formalism, it turns out that the resulting formulas can be written

in terms of usual tractor fields. To see this let us find the conditions satisfied by Φ0(x, P ) =

(Ls,wφ(x, p))
∣∣
Y=0

. These can be easily obtained by setting Y A = 0 in (3.17), giving

V ·
∂

∂P
Φ0 = 0 , P ·

∂

∂P
Φ0 = sΦ0 ,

∂

∂P
·
∂

∂P
Φ0 = 0 ,

∂

∂P
·D Φ0 = 0 ,

(3.30)

where DA is the usual Thomas-D derivative whose definition and explicit expression are

given in respectively (2.23) and (A.4).

It turns out, that for relevant values of w one can avoid constructing Φ = Ls,wφ and

obtain Φ0 directly by solving (3.30) with boundary condition Φ0

∣∣
P±=0

= φ(x, p). More

precisely, with our choice of V the first equation implies ∂
∂P+Φ0(x, P ) = 0 and hence

the last one uniquely fixes the P− dependence. Indeed, for w 6= −n
2 the last equation

is equivalent to
(

∂
∂P−

(
w − 1 + n+ s− P− ∂

∂P−

)
+ ∂

∂p
· ∇̄

)
Φ(x, P ) = 0 and hence always

admits a unique solution if w corresponds to a CHS field.

It follows (3.30) determines a particular embedding of totally symmetric traceless ten-

sor densities into traceless symmetric tractors. Identifying off-shell CHS fields with the

weight w = s− t− 1 tractor fields satisfying (3.30) the CHS equations of motion take the

following form:

B
ℓ
tΦ(x, P ) = 0, l =

n− 2

2
+ s− t , (3.31)

where Bt = I ·D − 1
t
(P ·D)(I · ∂

∂P
) is just a tractor version of Bt, i.e. where D is replaced

with the conventional Thomas-D operator, and B
ℓ
t := Bt+ℓ−1 ◦Bt+ℓ−2 . . .◦Bt. The operator

Bt is well-defined on (3.30) for w = s− t− 1, i.e BtΦ0 satisfies (3.30) for w = s− t− 2. For

t6 s the gauge transformations are given by

δΦ0 = (P ·D)tǫ (3.32)

where ǫ is a weight-s−1 and rank-s−t tractor field satisfying (3.30) with s replaced by s−t.

Let us consider as a simple example Maxwell field in 4 dimensions, i.e. n = 4, s = t = 1.

Solving (3.30) with the initial condition Φ0

∣∣
P±=0

= φapa and analogous equations for the

gauge parameter ǫ (these are satisfied trivially) gives:

ΦA
0 =




0

φa

−1
2∇̄aφ

a


 , DAǫ =




0

2∇̄aǫ

−∇̄2ǫ


 . (3.33)

Restricting for simplicity to the flat case and computing B1Φ0 gives

(B1Φ0)
A =




0

∂2φa − ∂a∂bφ
b

0


 (3.34)

so that in accord with our general statements we indeed get just Maxwell equations.
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If instead of B1Φ0 we consider ∇2Φ0 (which is precisely (�Φ(x, P, Y ))|Y=0) we arrive

at [53]

∇2Φ =




0

∂2φa − ∂a∂bφ
b

−1
2∂

2∂aφ
a


 . (3.35)

The second slot still contains Maxwell equations themselves, while the last one is the

conformal gauge [53] also known as Eastwood-Singer gauge. Of course, this is the same

gauge as encoded in the system (3.2), (3.3), (3.4) for s = 1, t = 1 on top of the Maxwell

equations. For general CHS fields one gets higher-spin analogs of this gauge.
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A Component expressions

Here we compute an explicit expression for B̄s−w−1 = L−1Bs−w−1Ls,wφ. To this end we

first compute DAΦ(x, P, Y )|Y=0 where Φ(x, P, Y ) is a solution to (2.16) with the initial

condition Φ|Y=0 = Φ0(x, P ). By using the freedom described by the equivalence relation

in (2.16) Φ can be assumed Y −-independent. From the first equation in (2.16) one may

obtain Y a-derivatives:
(

∂

∂Y a
Φ

)∣∣∣∣
Y=0

= eµa∇µΦ0

(�Φ)
∣∣
Y=0

=

(
∂

∂Y a

∂

∂Ya
Φ

)∣∣∣∣
Y=0

= (gµν∇µ∇ν + wJ)Φ0 ,

(A.1)

where eaµe
ν
a = δνµ. Recall that ∇µ is the covariant derivative extended to tensors with values

in tractors and components of ωA
µB introduced in (2.15) are given by:

ωa
µ+ = eaµ, ωa

µ− = Ja
µ , ω−

µb = −eµb, ω+
µb = −Jµa . (A.2)

The second equation determines Y +-derivatives:

∂

∂Y +
Φ

∣∣∣∣
Y=0

= wΦ0(x, P ) . (A.3)

Using (A.1), (A.3), (A.2) one finds (Here we retained derivatives in Y −. One may

observe that they vanish in the following expression):

(DAΦ)
∣∣∣
Y=0

=

[
(n+ 2w − 2)

∂

∂Y A
− VA

(
∇2 + Jw + (n+ 2w − 2)

∂

∂Y −

)]
Φ
∣∣∣
Y=0

=




(n+ 2w − 2)w

(n+ 2w − 2)∇a

−(∇2 + Jw)


Φ0 . (A.4)
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The last expression is precisely the component form of Thomas-D derivative of Φ0 so that

indeed (2.23) reproduces Thomas-D derivative.

Let now Φ(x, P, Y ) = Ls,wφ for some φ = φ(x, p) satisfying p· ∂
∂p
φ = sφ and ∂

∂p
· ∂
∂p
φ = 0.

Of course, Φ still satisfies (2.16) as (2.16) is just a part of (3.17). Setting P± = 0 in (A.4)

and using extra constraints present in (3.17) one gets

(DAΦ)
∣∣∣
Y=P±=0

=




(n+ 2w − 2)w

(n+ 2w − 2)
(
eµa∇̄µ + pa

∂
∂P−

)

−
(
�† + wJ − 2J

n
s
)


Φ(x, P, Y = 0)

∣∣∣
P±=0

, (A.5)

where �† = ∇̄2 + 2(p · ∇̄) ∂
∂P− + p2

(
∂

∂P−

)2
. Here and below we again abuse notations by

identifying expansion coefficients in pa as tensor field on which ∇̄ acts as a Levi-Civita

covariant derivative. Note that ∂
∂P+Φ(x, P, Y = 0) = 0.

To compute (P · D)
(
I · ∂

∂P

)
Φ note that I · ∂

∂P
: S[s, w] 7→ S[s, w − 1] is a well-defined

map, and I · ∂
∂P

Φ|Y=0 =
∂

∂P−Φ(x, P, Y = 0). Using this and (A.5) one finds

L−1(P · D)

(
I ·

∂

∂P

)
Φ =

(n+ 2w − 2)

((
p · ∇̄

∂

∂P−
+ p2

∂2

(∂P−)2

)
Φ(x, P, Y = 0)

)∣∣∣∣
P±=0

. (A.6)

For w 6= −1
2n from 1st, 2nd, 3rd, and 4th equations in (3.17) one finds P− dependence:

Φ(x, p, P−) =
s∑

k=0

(P−)k

k!
Φk(x, p) (A.7)

[
∂

∂P−

(
n+s+w−P−

∂

∂P−

−1

)
+

∂

∂p
·∇̄

]
Φ(x, p, P−) = 0 (A.8)

Φ1 = −
1

n+s+w−2

(
∂

∂p
·∇̄

)
φ(x, p) (A.9)

Φ2 =
1

(n+s+w−3)(n+s+w−2)

(
∂

∂p
·∇̄

)2

φ(x, p) .

(A.10)

Finally, one finds

L−1Bs−w−1Ls,wφ(x, p) = −

{
∇̄2 +

2J

n
(−s+ (n+ w − 1)w)

−
n+ 2s− 4

(s− 1− w)(n+ s+ w − 2)
(p · ∇̄)

(
∂

∂p
· ∇̄

)

+
1

(n+ s+ w − 2)(s− 1− w)
p2

(
∂

∂p
· ∇̄

)2
}
φ(x, p) .

(A.11)

Now one can easily obtain (3.26) using (3.24) and (A.11) for weight w = s− t− 1.
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B Lifts and obstructions

Here we verify that the system (3.2) (and hence (3.17) unless w 6= −n
2 ) is off-shell, i.e.

it does not impose any equations on φ(x, p) = Φ(x, P, Y )
∣∣
Y=P±=0

besides p · ∂
∂p
φ = sφ

and ∂
∂p

· ∂
∂p
φ = 0. To this end for a given φ(x, p) we construct a particular lift Φ(x, P, Y )

satisfying (3.2). More precisely, we choose Φ(x, p, P−, Y −, P+ = Y a = Y + = 0) to be

Y −-independent and observe that Φ0 = Φ|Y=0 satisfies (A.8) as a consequence of the 4th

equation in (3.2). It is easy to check that unless w = t+1− s−n, t = 1, 2, . . . , s (A.8) has

a solution. Then by expansion in powers of Y a, Y +, P+ the 1st, 2nd, and 3rd equations

can be solved order by order, giving Φ(x, P, Y ). It is then a matter of direct check that

such Φ(x, P, Y ) satisfies the 4th equation.

If w = t + 1 − s − n, t = 1, 2, . . . , s the system (3.2) is not off-shell. Equation (A.8)

clearly implies the following condition on φ(x, p):

(
∂

∂p
· ∇̄

)t

φ(x, p) = 0 . (B.1)

This has a simple meaning: if Ψ(x, P, Y ) satisfying (3.2) represents CHS field of rank s

and depth t its weight is w = s − t − 1 and �ℓΦ has precisely the weight t + 1 − s − n

so that the l.h.s. of CHS equation (�ℓΨ)
∣∣
Y=P±=0

= 0 satisfies (B.1). This is known as

partial conservation condition originally discussed in [54]. It can either be understood as a

condition on the r.h.s. of the CHS equation: As,tψ(x, p) = j(x, p) or as an equations satisfied

by a subleading boundary value of the depth-t partially-massless field in AdSn+1 [9].

C Proof of proposition (3.3)

Let us first prove the following lemma:

Lemma C.1. Let

Cα1α2...αℓ
:=

(
I · D − α1P · DI ·

∂

∂P

)
· . . . ·

(
I · D − αℓP · DI ·

∂

∂P

)
, (C.1)

where αi ∈ R are parameters, be an operator defined on S
[
s, ℓ− n

2

]
and Φ ∈ S

[
s, ℓ− n

2

]

be a lift of φ(x, p), i.e. Φ = Ls,ℓ−n
2
φ. Then

(−1)ℓL−1Cα1α2...αℓ
Φ = As,tφ . (C.2)

Proof. For α1 = . . . = αℓ = 0 the statement os obvious as C0...0Φ = (I · D)ℓΦ = (−I · (Y +

V ))ℓ�ℓΦ and hence coincides with As,tφ upon setting to zero Y A, P±.

For non-vanishing αi let us show that all the terms proportional in Cα1α2...αℓ
to α are

also proportional to P− and hence do not contribute to L−1Cα1α2...αℓ
. To this end observe

that I · ∂
∂P

Φ has the same weight as Φ and (Cα2...αℓ
Φ(x, P, Y )) is of weight w = 1− n

2 . The

following equality holds:

L−1(I · D)Cα2...αℓ
Φ = L−1Cα1α2...αℓ

Φ , (C.3)
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because
(
(P · D)

(
I · ∂

∂P

)
Cα2...αℓ

Φ(x, P, Y )
) ∣∣

Y=0
is proportional to P− thanks to the form

of D (2.22) for w = 1− 1
2n.

Next, observe that

(I · D)Cα2...αk
Φ =

(
I · D − α2(P · D)

(
I ·

∂

∂P

))
(I · D)Cα3...αℓ

Φ (C.4)

because I · D commutes with every term in Cα1...αℓ
. It follows the term containing α2 is

proportional to P− at Y = 0 and hence

L−1(I · D)(I · D)Cα3...αk
Φ = L−1Cα1α2...αk

Φ . (C.5)

Repeating the above steps ℓ− 2 times one finds:

L−1(I ·D)ℓΦ(x, P, Y ) = L−1Cα1α2...αℓ
Φ(x, P, Y ) . (C.6)

Let us return to the proof of proposition 3.3. Consider Bℓ−1
t Φ(x, P, Y ) ∈ S

[
s, 1− n

2

]

and let φ̃(x, p) = L−1Bℓ−1
t Φ. The analysis of appendix B shows that φ̃ = 0 is equivalent

to Bℓ−1
t Φ = 0.

However, that equation L−1Bℓ
tΦ = 0 is equivalent to Bℓ

tΦ
∣∣
Y=0

= 0 is not obvious.

To see that it is nevertheless the case let us denote Ψ = Bℓ−1
t Φ, Ψ ∈ S

[
s, 1− 1

2n
]
. The

equation BmΨ = 0, m = s − 2 + n
2 can be regarded in n = 4 as a maximal depth CHS

equation while in n > 4 as the equation of motion for the special CHS field. Let us now

find terms in BmΨ|Y=0, proportional to P−. The result is

BmΦ|Y=0 =
s∑

k=0

(
k

m
− 1

)
(P−)kL−1

(
∂

∂P−

)k ( ∂

∂Y
·

∂

∂Y

)
Φ . (C.7)

One can check that in addition to CHS equations the additional ones, i.e. conformal gauge

conditions, appear only in dim n = 4 and are proportional to (P−)s [9, 50] but the coefficient

vanishes in this case. In this way we conclude that L−1Bℓ
tΦ = 0 and Bℓ

tΦ
∣∣
Y=0

= 0 are

equivalent, giving the statement of proposition 3.3.

D Partially gauge-fixed PM operators

Some of the operators entering factorized FT equation are known in the literature [55, 56].

Namely, the equation B̄1Φ = 0, Φ ∈ S[s, s− 2] in terms of tensor fields reads as:

{
∇̄2 +

2J

n
(−s+ (n+ s− 3)(s− 2))

−(p · ∇̄)

(
∂

∂p
· ∇̄

)
+

1

n+ 2s− 4
p2

(
∂

∂p
· ∇̄

)2
}
φ(x, p) = 0 . (D.1)
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It is easy to check that this is precisely the Fronsdal equations in the gauge where φ(x, p)

is traceless, i.e. ∂
∂p

· ∂
∂p
φ(x, p) = 0. The residual gauge transformations are

δΦ(x, p) = p · ∇̄ ξ(x, p) , (D.2)

where ξ is a subject to the following constraints:

∂

∂p
· ∇̄ ξ(x, p) = 0 ,

∂

∂p
·
∂

∂p
ξ(x, p) = 0 . (D.3)

In a similar fashion we may write (some of) the gauge transformations for B̄t:

δΦ(x, p) = {(p · ∇̄)t + . . .}λ(x, p) ,

∂

∂p
· ∇̄ λ(x, p) = 0,

∂

∂p
·
∂

∂p
λ(x, p) = 0 .

(D.4)

In particular, for s = 2, n = 4 one has:

B̄1φ(x, p) = 0, δφ(x, p) = p · ∇̄λ1(x, p),
∂

∂p
· ∇̄ λ1 = 0 ,

B̄2φ(x, p) = 0, δφ(x, p) =

(
(p · ∇̄)2 −

1

4
p2∇̄2

)
λ2(x) .

(D.5)
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