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structure, the latter is forced to assume the periodicity of the former and the commen-

surate state becomes a thermodynamically preferred one. If instead the two periods are

significantly different, the incommensurate state is formed. It is characterized by a finite

density of solitonic objects — discommensurations — on top of the commensurate state.

In this note I study the properties of discommensurations in holographic model with in-

homogeneous translational symmetry breaking and explain how one can understand the
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Keywords: Holography and condensed matter physics (AdS/CMT), Space-Time Sym-

metries, Solitons Monopoles and Instantons

ArXiv ePrint: 1710.05801

1https://orcid.org/0000-0001-8789-8703.
2On leave from Institute for Theoretical and Experimental Physics (ITEP), B. Cheryomushkinskaya 25,

117218 Moscow, Russia.

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2018)030

mailto:krikun@lorentz.leidenuniv.nl
https://arxiv.org/abs/1710.05801
https://orcid.org/0000-0001-8789-8703
https://doi.org/10.1007/JHEP12(2018)030


J
H
E
P
1
2
(
2
0
1
8
)
0
3
0

Contents

1 Introduction 1

2 The holographic setup 3

3 Full backreacted solutions 5

4 Discommensurations 8

5 Conclusion 13

A Numerical techniques 14

B Precision control 16

1 Introduction

Different kinds of spatially modulated structures which break translation symmetry either

explicitly or spontaneously are abundant in condensed matter systems. It all starts from

the crystal lattice, which forms a basis for any theoretical description of the condensed

matter and breaks translations and rotations down to the discrete groups associated with

Bloch momentum and crystal symmetry. On top of that some most interesting systems,

including high temperature superconductors, demonstrate the spontaneous formation of the

superstructures in the form of charge and spin density waves. Clearly, the interplay between

these explicit and spontaneous mechanisms of translation symmetry breaking is interesting.

In holographic models of condensed matter systems (AdS/CMT) the status of trans-

lation symmetry breaking is different. This is an additional ingredient which one has to

introduce on top of the Lorentz invariant theory of gravity. Firstly, the spontaneous trans-

lation symmetry breaking has been considered in [1–6] and later on the explicit potentials

have also been introduced [7–11]. Only recently the interplay between these different mech-

anisms attracted some attention in the context of pinning of the spontaneous superstruc-

ture, pseudo-Goldstone modes and phonons [12–18]. But more importantly for the present

study, the commensurate lock in between explicit and spontaneous structures have been

studied in [19–21]. In [21] it has been shown that the commensurate state in holographic

model provides a description to the Mott insulator, and the doping can be understood as

departure from the commensurate to incommensurate or higher order commensurate states.

In this note I will study in detail the mechanism behind commensurate/incommensurate

phase transition in the holographic setup of [21].
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Figure 1. Cartoon of discommensurations. Left panel: λk > λp0 , there are more particles then

potential minima, positive discommensuration is formed. Right panel: λk < λp0
, fewer particles

then minima, negative discommensuration is formed. Note in both cases the discommensuration

changes the staggered “red-blue” order in comparison with the “parent” commensurate state.

The paper is organized as follows. In the rest of the Introduction we’ll discuss a toy

model, which will help to set up the necessary notions and intuition. In section 2 the holo-

graphic setup will be introduced and the commensurate state will be discussed. Section 3

is devoted to the discussion of the peculiarities in obtaining the nonlinear incommensurate

solutions. In section 4 I will study the features of the discommensurations and address

their role in commensurate/incommensurate phase transition. Two appendices describe

the numerical techniques and precision control.

The effect of commensurate lock in between two periodic structures is well known

in physics [22–25]. The simplest system which demonstrates it is the Frenkel-Kontorova

model, which considers a set of point particles, connected with springs, lying on top of

the periodic lattice potential. In case when the potential is absent, the springs assume

the normal state and the particles form a periodic structure with spontaneous period λp0 .

Clearly if one turns on the potential with exactly the same period λk = λp0 , the particles

will just fall in the minima of the potential and the springs will not be deformed. The state

where the resulting periods of the explicit and spontaneous structures are equal λk
λp

= 1 is

called the lowest order commensurate. What will happen if the potential has a different

period λk > λp0? Then there are several possibilities. If the potential is strong enough,

then the springs will be forced to stretch, in order that all particles fall into minima, and

assume the modified period λp = λk (figure 1, bottom left). This state is commensurate

and the spontaneous structure is called commensurately locked in by the lattice. If instead

the springs are very strong, and potential relatively weak, then some particles will acquire

the additional potential energy, keeping the springs from stretching (figure 1, top left).

This is incommensurate state since the resulting period of the spontaneous structure has

no relation to the lattice spacing λp 6= λk. This incommensurate state is characterized by

the feature that at any large enough sample of the system there are more particles then

the minima of the potential.
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If the potential in the incommensurate state becomes stronger, more and more particles

fall in the minima, locally deforming the springs. Eventually the mismatch in the number

of particles gets localized in the single unit cell of the lattice (figure 1, middle left). The

resulting state looks like the commensurate state everywhere, except around a local defect

where two particles fall in the same potential well. This defect is a discommensuration

— the soliton on top of the commensurate state, which accounts for the mismatch of the

periods of two structures. Clearly, the discommensuration can be defined only if the state

is not too far from commensurate point: λp/λk − 1 � 1,1 otherwise the density of them

gets so high that one can not define a “parent” state. If the particles are charged, then

the discommensuration, having one excess particle in the unit cell, bears positive charge.

In complete analogy one can consider the negative discommensuration, which arises when

λk < λp0 and there are fewer particles then the potential wells (figure 1, right). This one

is seen as an empty potential well and bears a unit negative charge. Interestingly, if we

now introduce the additional Z2 quantum number and assume that the dynamical system

tends to form “anti-ferromagnetic” order, then both types of discommensurations will act

as domain walls in this staggered order.

In what follows I will study the similar features of discommensurations, which arise in

the holographic model with spontaneous and explicit periodic structures.

2 The holographic setup

Consider the model of [26], used in [21]. It includes dynamical gravity with negative

cosmological constant in 3+1 dimensions, U(1) gauge field and a pseudoscalar field, axion,

which is coupled to the θ-term. The action reads [5, 27]:

S =

∫
d4x
√
−g
(
R− 1

2
(∂ψ)2 − τ(ψ)

4
F 2 − V (ψ)

)
− 1

2

∫
ϑ(ψ)F ∧ F (2.1)

Here F = dA is the field strength of the U(1) gauge field A. Following [3, 5, 21, 26, 27],

the couplings are chosen to be

V (ψ) ≡ 2Λ +W (ψ) = −6 cosh(ψ/
√

3), (2.2)

τ(ψ) = sech(
√

3ψ), ϑ(ψ) =
c1

6
√

2
tanh(

√
3ψ).

Note that in these conventions the cosmological constant is Λ = −3 and the mass of the

scalar is m2 = −2.

It was shown in [3, 5, 26, 27] that due to the ϑ-coupling this model develops an in-

stability at low temperature evolving into the spatially modulated ground state, which

breaks translations spontaneously and has a periodic charge density (CDW) with wave-

length λp0 = 2π/p0,
2 where p0(T ) is a temperature dependent thermodynamically pre-

ferred momentum. This is in complete analogy to the system with springs discussed in the

1Strictly speaking, discommensurations can be considered around the other, higher order commensurate

points too, i.e. λp/λk = 2, . . . , but we focus on the leading commensurate case here.
2Here, following [21] we define the wavelength with respect to the charge density modulation, which is

one half of the wavelength of the oscillating current.
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Introduction. Noteworthy, this inhomogeneous state features the oscillating diamagnetic

currents Jy ∼ cos(xp0/2) on the boundary. The features of this state depend on the value

of the coupling c1 in (2.2) and we’ll focus on c1 = 17 used in [21].

Furthermore, one can introduce the background lattice potential, which would break

translations explicitly. Following [8, 28, 29] it can be done by turning on a spatially

modulated chemical potential, At(z = 0, x) = µ(x), with

µ(x) = µ0(1 +A cos(kx)). (2.3)

Featuring two spatial modulation scales: p0 and k, this setup is sufficient to address the

interesting physics of commensurability.

At large temperature in absence of the explicit potential the ground state of (2.1) is

the translational invariant Reissner-Nordström (RN) black hole

ds2 =
1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2 + dy2

)
, A = µ̄(1− z)dt, ψ = 0 (2.4)

where

f = (1− z)
(
1 + z + z2 − µ̄2z3/4

)
(2.5)

with temperature

T =
12− µ̄2

16π
. (2.6)

The conformal boundary is located at z = 0 while the black hole horizon is at z = 1.

Without loss of generality, one can set µ0 = µ̄. We will express the dimensionful parameters

of the model, denoted up until now in bold script, in units of µ̄ by making the replacements

T = T µ̄, k = kµ̄, p = pµ̄ (2.7)

It can be shown that the ansatz

ds2 =
1

z2

(
−Qttf(z)dt2 +Qzz

dz2

f(z)
+Qxx(dx+Qzxdz)2 +Qyy(dy +Qtydt)

2

)
, (2.8)

A = Atdt+Aydy (2.9)

with all unknown functions dependent on the holographic coordinate z and the boundary

coordinate x, is sufficient to obtain the spatially modulated solutions of interest.

Following the standard AdS/CFT prescription, the boundary values of the holographic

fields are dual to the one-point functions in the boundary theory:

Qtt = 1 + z2Q
(2)
tt (x) + z3Q

(3)
tt (x) +O(z4) (2.10)

At = µ(x)− zρ(x) +O(z2) (2.11)

Ay = zJy(x) +O(z2), (2.12)

ε(x) = 2 +
µ̄2

2
− 3Q

(3)
tt (x) (2.13)

where µ is a spatially modulated chemical potential, ρ is a charge density, Jy — diamagnetic

current and ε — the energy density.
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We look for finite temperature solutions, therefore near horizon all functions must be

regular. In addition, the equations of motion require Qtt(1, x) = Qzz(1, x), which in turn

implies that the surface gravity is constant and given by (2.6), see e.g. [8].

It is relatively easy to construct the commensurate state. One starts from the sponta-

neous solution at certain finite temperature T (in this note I will consider fixed T = 0.01)

with thermodynamically preferred momentum p = p0(T ) and then turn on the explicit

lattice with exact same momentum k = p. Then the two structures will be commensurate

by construction. One can use the standard DeTurck method [30, 31] in the periodic com-

putation domain with period λ = 4π/k.3 As it has been shown in detail in [21], this state

is the holographic analogue of the Mott insulator. This will be the “parent” commensurate

state, mentioned in the Introduction. The features of this 1/1 state are mostly similar to

those of the pure spontaneous crystal: the staggered diamagnetic currents are seen and the

charge modulation is present as well [21].

The focus of this note is on the thermodynamic stability of this state and its transition

to the incommensurate one. But in order to study thermodynamic stability, we need to

construct the competing incommensurate solutions first and compare the spatially averaged

thermodynamic potential, given by

Ω(x) = ε(x)−Ts(x)− µ(x)ρ(x) (2.14)

where s is the entropy density.

3 Full backreacted solutions

In order to study the thermodynamically preferred phases one has to construct fully back-

reacted nonlinear solutions corresponding to the coexisting ionic lattice and spontaneous

crystal structures. There is a peculiar technical difficulty, which arises as soon as one ad-

dresses the nonlinear solutions. In [20] the spontaneous striped instability was considered

in the perturbative regime. At the linear order we were able to introduce the continuous

“Bloch momentum”, characterizing the spontaneous structure which had not be propor-

tional to the lattice period in any way. In case of finite amplitude of the striped structure

this can not be done anymore. The technical reason is that the eipx multipliers can not be

factored out from the nonlinear equations of motion and one has to rely on the position

space representation, where the spontaneous structure is characterized by a certain period

λp, which is not necessarily equal to the period of the ionic lattice λk.

In order to set up the numerical Partial Differential Equation (PDE) solver procedure

one has to specify only one scale corresponding to the size of the computation domain with

periodic boundary conditions. At this point we see, that in practice one can only access

the values λp which are the rational multiples of λk:

λp =
Nk

Np
λk, Nk, Np ∈ N. (3.1)

3Note here once again that we are working with the momenta of the charge modulation, which are twice

larger then the momenta of the current/axion modulation. Therefore one actually needs to consider the

computation domain of twice the period of the CDW in order to accommodate one period of the current.
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In this case one can choose the computation domain of the size Nkλk equal to the integer

number of lattice periods, which would simultaneously accommodate Np periods of stripes.4

We see here that the accessible range of spontaneous structure wave-vectors p is now

discrete and the density of them is limited by the maximal size of the computation domain,

which we can handle in our numerical analysis. In what follows I will use the computation

domains including up to Nk = 20 periods of the lattice or up to Np = 40 periods of the

spontaneous CDW,5 which allows to achieve reasonably dense mesh in our plots for the

thermodynamic potential of these solutions (see figure 2).

One might object that this technicality immediately renders it impossible to access the

true incommensurate solutions in the mathematical sense, where λp/λk must be irrational

number. But I would stress that due to the density of the rational numbers, in physics there

is no way to distinguish between high order rational and irrational number. The practical

definition of the commensurate (and higher order commensurate) state in this case will

be the state where both numbers Np and Nk are small integers. To certain extend in

reality the maximum value of Nk is restricted by the quality of the crystal, i.e. the size

of the patch of a crystal lattice without defects, or the correlation length of the spatial

order. In this regard having Nk ≈ 20 gives us a reasonable approximation to physically

incommensurate numbers.

At this point it is worth mentioning that because the striped structure is spontaneous,

unlike the externally sourced lattice, one does not have a direct control over it’s shape,

including the number of periods and the relative phase (shift) between the stripe and the

lattice. In principle the energetically preferred values are set by the dynamics and should

be achieved by following the trajectories prescribed by the equations of motion. This is

true for the relative shift, which is a continuous parameter. We observe that if we start

computation with the different seeds corresponding to different alignments of the stripe

and lattice structures, the numerical procedure always converges to the same solution,

corresponding to the preferred value of the relative shift. But due to the above mentioned

effect, the set of accessible values of the wave-vector is discrete and the system can not

smoothly propagate between them. By choosing the initial seed solution with a given

periodicity, regarding the numerical relaxation procedure (see appendix A) as adiabatic

process, we ensure that the system will converge to the state with prescribed number of

the spontaneous periods. This state though is only a local minimum of the thermodynamic

potential and may be a false vacuum, so one has to construct the solutions with all possible

numbers of spontaneous periods and compare their thermodynamic potentials in order to

find the true ground state. See figure 2.

Practically, in order to construct the solution with Np CDW periods on top of the Nk

lattice cells with period λk and amplitude A we first find the spontaneous stripe solution

with specific period λp from (3.1) on top of the translationary symmetric background. Then

we catenate Np copies of these stripes fitting them in the enlarged calculation domain. At

4This situation is completely analogous to the “magnetic unit cell” phenomenon, which arises when one

considers a crystal in external magnetic field. The unit cell in this case must simultaneously accommodate

integer number of the crystal plaquetes and magnetic fluxes, and can become substantially large [32].
5Note once again, that this corresponds to 20 periods in the diamagnetic currents.
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Figure 2. Thermodynamic potential of different incommensurate solutions, measured with respect

to the lattice without spontaneous structure at different amplitudes of the lattice. For temperature

T = 0.01 the spontaneous momentum is p0(T ) = 1.28. Upper panel shows the case when the lattice

momentum is smaller: k = 1.06 < p0, Lower panel — larger k = 1.53 > p0. Red diamonds show

the thermodynamically stable solutions. Both cases demonstrate incommensurate to commensurate

phase transition when the lattice gets stronger.

this point we turn on Nk periods of the background lattice by slowly changing the boundary

condition for the chemical potential, eventually achieving the desired value of A in (2.3).

This adiabatic process preserves the initial number of the CDW periods what we check

numerically at every stage by counting the number of zeros of the oscillating Ay field at

the horizon (see figure 3).

In complete analogy with the perturbative study of [20], in order to explore the phase

diagram at given temperature we first choose the period and the amplitude of the explicit

lattice. Then we construct a set of nonlinear solutions, corresponding to the spontaneous
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structures with different wave-vectors λp on top of this lattice. We calculate the thermody-

namic potential (2.14) for these solutions Ω(λk) and we find the one which is thermodynam-

ically preferred. The sample of the Ω(λk) curves, which we get, is shown on figure 2. As an

example throughout this note I will use two values of the lattice momentum: k = 1.06 and

k = 1.53. At the temperature under consideration T = 0.01 the spontaneous momentum

of the CDW is p0(T ) = 1.28. Therefore the former lattice has longer wavelength then

the CDW, promoting positive discommensurations and the latter has shorter wavelength,

promoting negative discommensurations.

There are several features on figure 2, worth noticing. Firstly, at A = 0 the solutions

follow the curve which one would obtain for the spontaneous striped solutions on the

homogeneous RN background [3, 5, 27]. I’ve checked that for c1 = 9.9 the results coincide

with figure 2 in [27], which is a valuable check of the numerical method.

As the amplitude of the lattice is increased, the Ω(λk) curves start to deviate smoothly

from the RN case. Interestingly, on both of the plots “one half” of the curve at finite A is

missing. In case k < p0 it is the part of the curve with 2πλ−1p < k, in case k > p0 — the one

with 2πλ−1p > k. The technical reason is that in these cases as we turn on finite amplitude of

the chemical potential for a prescribed number of stripes in the seed solution, the numerical

procedure does not converge, or converges to the solution with different number of stripes.

More precisely, if for k = 1.06 (upper panel) we choose a seed with 10 CDWs and turn on

11 periods of the lattice (this would correspond to the point on the “missing” left shoulder

Np/Nk = 10/11 < 1 on the plot), we will see that the resulting solution has 12 CDWs

(now sitting on the right shoulder Np/Nk = 12/11 > 1). Effectively, one period of the

CDW is created dynamically and we can not construct the desired solution with Np = 10.

In principle this kind of behavior is allowed since the stripes are completely spontaneous.

The phenomenon is quite robust: we observe the disappearance of one half of the curve

everywhere in the parameter space, which we study. I will address the physical reason

behind it in the following section.

As one can see, even though we have access only to the discrete set of values, they lie

on the smooth curves which have well defined minima. There are two distinct possibilities:

the minimum thermodynamic potential is achieved for the period of the stripe close to its

spontaneous value λp0 , or for the period which is proportional to the lattice spacing.6 The

former possibility defines the incommensurate state, the latter — commensurate lock in.

One can see that as the amplitude rises the minimum smoothly shifts from the incommen-

surate to commensurate point. Henceforth by rising the amplitude we observe the smooth,

at least second order phase transition.

4 Discommensurations

Let’s now consider the incommensurate state. As mentioned earlier, the numerical com-

putation in this case is technically more involved, as the numbers of periods in (3.1) can

become large. It is instructive to start the discussion by focusing on the solution which is

6For the parameters region which we are considering the leading commensurate point is order 1, corre-

sponding to Np/Nk = 1.
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Figure 3. Bulk profile of a discommensuration. Shown is the density of electric field in the bulk

∂zA0, corresponding to the charge density on UV boundary (bottom). The excess/lack of one

period of the spontaneous structure is clearly seen near horizon (top). Outside the core of a disc.

the profile of the solution is identical to that of the commensurate state.

closest to commensurate
Np

Nk
= 1

1 value. Given that∣∣∣∣Np

Nk
− 1

1

∣∣∣∣ =
|Np −Nk|

Nk
, (4.1)

I will choose Nk = Np − 1 and maximal Nk reachable by my numerics Nk <= 19. As we

learned in the previous sections, in the commensurate state there is one period of the lattice

potential per one period of the spontaneous CDW. One can say that the incommensurate

solution with 20 CDW’s per 19 lattice periods would have exactly one excess period of spon-

taneous CDW structure per 19 unit cells as compared to the commensurate state on top of

the same lattice. By inspecting this solution (figure 3, top) we see, that the solution profile

coincides with the commensurate state almost everywhere except from the finite size region

in the core, where this excess of 1 period of the spontaneous structure is accounted for.

We can also study the TD potential and charge density of such solutions as compared

to the pure commensurate “parent” state. Figure 4 shows clearly that this incommensurate

solution can be seen as a commensurate state with one localized discommensuration(disc.)

on top of it. Similarly, the solution with 18 CDW’s per 19 unit cells includes a single

discommensuration with deficiency of 1 CDW. As seen on figure 5, the size of a disc. does

indeed decrease when the lattice gets stronger as anticipated from our toy model.

From this point of view the discommensuration is a soliton on the commensurate back-

ground with a topological charge ±1, coinciding with the number of missing/excess periods
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the parent commensurate state. The distributions clearly show that the discommensuration is a

local object. The positive disc. is considered at A = 1, the negative — at A = 2. The charge is

manifestly positive for positive disc. and manifestly negative for negative one, in analogy with the

toy model.
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Figure 5. Size of the discommensuration, obtained as a width at 0.1 height of the charge density

(see figure 4), depending on the amplitude of the lattice. As the lattice becomes stronger, the

discommensuration localizes, in complete analogy with the toy model.

of the spontaneous charge modulation in the domain. We observe both of these types of dis-

commensurations in our model. The positive disc. appears when one considers wavelengths

of the ionic lattice, larger then the wavelength of the spontaneous crystal λk > λp0 , and

the preferred commensurate fractions Np/Nk are larger then 1. The negative discommen-

suration is seen when Np/Nk < 1. Both types are direct analogues of discommensuration

studied in the context of charge density waves in [23].

From figure 4 it is apparent that the discommensuration carry a manifestly positive

(negative) electric charge. The important difference between the holographic discommen-

suration and the trivial example discusse din the Introduction is that its charge is not fixed

and varies smoothly, see figure 6. To complete the comparison of the holographic discom-

mensuration with the toy model expectations, let’s consider the current profile of these

solutions, figure 7. Clearly, disc. serves as a domain wall in the staggered current order.
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Figure 6. Charge of a single discommensuration measured with respect to the “parent” commen-

surate state, depending on the amplitude of the lattice. There are no preferred values, as opposed

to the naive expectations.
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Figure 7. Current profile a discommensuration (blue curves) as compared to the current profile

of the “parent” commensurate state (yellow curves). Both cases clearly show a domain wall, which

shift the staggered A−B order by half of a period. The positive disc. is considered at A = 1, the

negative — at A = 2.

At this moment we can understand the absence of one shoulder in the Ω(λp) curves,

observed in section 3. Indeed, starting from the commensurate point one can move to

higher stripe wave vectors by adding charge +1 disc., or to lower wave vectors by adding

charge −1 disc. For any given set of the background parameters only one of them is

dynamically stable. This can be understood from the simple energy balance argument:

for k > p0 the CDW in commensurate state has higher wave vector then the spontaneous

one, hence lowering the wave vector by negative charge disc. would lower the potential

energy. From the other hand, the shape of the disc. as a localized object contributes to

kinetic energy. The balance between these contributions would stabilize the soliton with

charge −1. If now one would consider the positive charge disc. on the same background,

one would see that it rises the stripe wave vector, hence the potential energy is also rising,

while the contribution from the kinetic energy is always positive. Hence there is no way

the different energy contributions can be balanced in the soliton and it is not stable.

One can see that the further deviation from the commensurate point 1/1, according

to (4.1), is achieved by rising the density of discommensurations (disc.) of the particular
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Figure 8. Thermodynamic potential as a function of the density of discommensurations, measured

with respect to the commensurate state at different amplitudes of the lattice. For temperature

T = 0.01 the spontaneous momentum is p0(T ) = 1.28. Upper panel shows the case when the

lattice momentum is smaller: k = 1.06 < p0, and positive discommensurations increase the total

momentum of the incommensurate solution. Lower panel — the lattice momentum is larger k =

1.53 > p0 and negative discommensurations reduce the momentum of incommensurate solution.

The slopes of the dashed lines correspond to the mass of a single discommensuraton. When this

slope becomes negative, the commensurate state is unstable and the discommensurations proliferate.

type, i.e. considering one disc. per fewer lattice periods. In this regard we can re-analyze

the data which we obtained in section 3. Figure 8 shows the thermodynamic potential

of the state, measured w.r.t. the thermodynamic potential of the commensurate state, as

a function of the density n of disc. While the density is low enough, and the separation

between the solitons is much larger then their size, the apparent linear dependence of Ω(n)

just follows from the fact that the isolated soliton has a certain fixed “mass”, which is given
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Figure 9. Mass of an isolated discommensuration, depending on the amplitude of the lattice. At

small amplitude the mass is negative signaling that the commensurate state is unstable. At large

amplitude discommensurations become massive and the pure commensurate state stabilizes.

by the slope of the Ω(n) curve at n→ 0. The field profiles in this regime look as the domains

of commensurate solutions separated by the evenly spaced lattice of discommensurations.

It is also evident that the “mass” of a soliton depends on the parameters of the solutions

and can be negative as well as positive, see figure 9. The positive mass would mean that the

creation of disc. costs energy and the commensurate state is therefore energetically stable.

The negative mass, on the contrary, signals the instability of the commensurate state.

The solitons start to proliferate and their density rises, forming the increasingly dense

discommensuration lattices and driving the state further from the commensurate value of

1/1. As the density rises, the distance between the solitons becomes smaller and they start

to interact. The repulsion between disc. limits the energetically preferred density from

above and in this way the system assumes the stable incommensurate stripe wavelength.

5 Conclusion

In this note I studied in detail the new solitonic object — discommensuration — which

appears in the holographic model as soon as one considers the strong interplay between

explicit and spontaneous symmetry breaking. I demonstrated that in many regards these

holographic discommensurations conform the naive expectations obtained from the classical

toy model: they are localized objects, which are responsible to the mismatch between the

periods of the explicit and spontaneous structures; they carry charge and they realize the

domain walls in the staggered order parameter. The important difference however is the

absence of the preferred value of charge, which would be discrete in the classical model.

Discommensurations play an important role in the commensurate/incommensurate

phase transition. The commensurate state is stable as long as the mass of disc. is positive.

Once the strength of the lattice is lowered, the mass goes negative and discommensurations

proliferate, forming the incommensurate state.

The involved numerical analysis is needed to study discommensurations. Given that

they are solitons on top of the nonlinearly constructed ground state, it would be interesting

to find out whether any analytic control over them is possible. The examples of the
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analytical treatment of the similar solutions include [33, 34]. Also, to some extend they

are similar to the Abrikosov vortices in the superconducting condensate. The latter can be

analyzed perturbatively near the critical temperature, when the condensate itself is small.

It would be interesting to consider the similar approach to discommensurations.
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A Numerical techniques

The present study relies heavily on numerical analysis of the holographic nonlinear so-

lutions. Moreover, in order to study the phase diagram and cover the parameter space

several thousands of the solutions to equations of motion have been obtained, with some of

them requiring quite large calculation grids in the spatial direction. This situation puts a

very strict requirements on the numerical techniques which are used and the precision and

accuracy of the results. In this appendix I review the key features of the numerical setup,

used in the present study.

Roughly speaking, the process of the numerical solution of the system of nonlinear

PDEs consists of a few key steps [35]:

1. Given an approximation to the solution (in the form of the values of functions at the

grid nodes), evaluate the derivatives of the functions. This step requires choosing the

appropriate discretization scheme.

2. Given the values of functions and derivatives at the nodes, calculate the coefficients in

the linearized equations and the values of the full nonlinear equations. For nonlinear

problem one has to evaluate these coefficients anew at every step. This operation

requires as many evaluations as the number of nodes and thus deserves optimization.

3. At this moment the problem can be written as system of linear algebraic equations.

One can solve it either exactly by computing the inverse of the linear operator matrix

(this corresponds to the Newton-Raphson method), or approximately, using some

kind of “relaxation” scheme: the various options include (preconditioned) Richardson

relaxation, Gauss-Seidel iterations or ILU decomposition.
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4. Once the inverse is computed, the increment in the functional variables can be eval-

uated, which is used to construct the next approximation to the solution.

5. The iterations continue until some criterion of the accuracy or precision of the current

approximation is fulfilled.

In order to build an efficient solver one needs to choose carefully the tactics at every step.

Starting with the discretization scheme of step 1 one usually chooses between pseu-

dospectral collocation [36] and FDD (finite difference derivative) of a certain order. The

advantage of pseudospectral scheme is its improved accuracy, hence one needs much less

grid points in order to approximate the solution well. In some cases this method also

demonstrates the exponential convergence. Pseudospectral discretization works perfectly

in the periodic spatial direction, where the solution is smooth and is well approximated by

a Fourier series. The drawback is the efficiency of the scheme on the finite interval of the

holographic coordinate. Here one has to use the smooth Chebyshev polynomials, which

are not suitable for approximation of the non-analytic behavior near the UV boundary

and IR horizon. This mismatch thwarts the exponential convergence and may lead to the

breakdown of the whole scheme. The FDD approach doesn’t suffer from this drawback but

requires much more grid points to reach the comparable accuracy. This has undesirable

side effects on steps 2 and 3, when the number of evaluations of coefficients and the size

of the linear matrix to be inversed are increased, correspondingly. It is worth mentioning

though, that FDD scheme leads to much sparser linear matrix on the step 3. If one chooses

to inverse the matrix exactly, this task is next to impossible for sizable grids in the pseu-

dospectral case, where the differentiation matrices are dense. The compromise would be

to use several patches along the holographic direction [28], using pseudospectral approxi-

mation in the interior and FDD near the boundaries. After experimenting with all three

options, see below, I’ve chosen a single patch pseudospectral scheme in the holographic

direction, which proved to be quite robust in practice.

I use Wolfram Mathematica,Mathematica10 in order to implement the numerical al-

gorithm. It may have the disadvantage in speed, when one compares it to the lower level

computing languages like C++ or FORTRAN, but as long as one uses the high level effi-

cient precompiled routines like: LinearSolve, NDSolve‘FiniteDifferenceDerivative,

and sparse matrix operators the difference in speed becomes less obvious. The elementwise

operations required at step 2 can be efficiently compiled with Compile, which brings up a

spectacular acceleration. In the end of the day, the most important limitation of Mathe-

matica is the necessity to work with MachinePrecision numbers in the compiled function,

which eventually limits the precision of the results, as discussed below.

As we’ve discussed already, the direct inversion (Newton-Raphson method) in case

of pseudospectral discretization is extremely demanding for the large grid which we use.

Moreover, since we are solving the nonlinear problem, which inevitably requires an iterative

procedure, obtaining very precise result for the matrix inverse at step 3 doesn’t make much

sense. That’s why we use a relaxation scheme instead. The speed of convergence of a

relaxation scheme is defined by the highest eigenvalues of the linear operator matrix. In

order to make the process more efficient one uses the preconditioning, i.e. one multiplies the
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operator by the preconditioner matrix, which brings all the eigenvalues to the same scale.

The ideal preconditioner is the inverse of the operator itself, but a reasonable approximation

to it will also work fine. I use the differential operator evaluated in the low order FDD

scheme, as a preconditioner. It approximates the highest eigenvalues very well and is

relatively easy to invert, being very sparse. The result is a nonlinear Richardson relaxation

with Orszag preconditioning (see section 15.14 and eq. (15.115) in [35]). One can also view

this approach as a pseudo-Newton method, where the approximation to Jakobian is used

instead of the exact one. It should be stressed here, that even though a low order FDD

scheme is used in the construction of the linear operator, the equations to be solved use the

full pseudospectral approximation to the derivatives, thence the pseudospectral accuracy

is achieved by iteratively inverting the sparse operator on a relatively coarse grid. The

relaxation scheme requires, in principle, more iteration steps than the Newton-Raphson,

so effectively the memory consumption is excanged with the CPU time. Altogether for the

hardware which I used the relaxation procedure turned out to be an order of magnitude

faster then the analogous Newton-Raphson scheme.

As mentioned already, the high eigenvalues of the linear operator are well approximated

using the low level FDD preconditioner. This is not true for the lowest eigenvalues, which

define the long-wavelength errors with slowest relaxation rate. One can fight these ones and

further improve the efficiency of the numerical scheme by using multigrid technique [38]. In

practice I found that without multigrid the solutions converge already after ∼ 20 steps. In

this situation the overhead of transitioning between fine and coarse grids becomes relatively

significant and I found no improvement of the overall efficiency in full multigrid method.

In the end of the day the calculation scheme was optimized to the extent when it takes

about half an hour to obtain the precise solution on the largest grid of size ∼ 330x × 80z
(pseudospectral) using a single core of a laptop CPU (Intel Core i7-5600U @ 2.60GHz) and

about 3 Gb of RAM.

B Precision control

As one can see from the results, figure 2, the difference between the TD potentials of the

solution with spontaneous structure and without it is just of order of few percents of the

TD potentials themselves. That means that in order to reliably study this difference, the

potentials must be evaluated with accuracy of at least 10−4. This puts a challenge to the

numerical scheme and renders the strict precision control a necessity.

The accuracy of the numerical results depends substantially on the size of the grid. On

one hand, it is clear that the denser grid delivers higher accuracy, i.e. the closer approx-

imation of the real result of continuum limit. On the other hand, very dense grids bring

up numerical precision issues, when the rounding errors play a dominant role in the calcu-

lation of the derivatives. Thus the grid size must be optimized maximizing the accuracy

while keeping the rounding errors below the certain value. This study also helps to choose

between different methods of discretization in the holographic direction, discussed earlier.

In 2-dimensional problem the grid size has to be optimized in two directions: Nx and

Nz. As an example we use a sample solution describing the commensurate stripe on top
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Figure 10. Precision of the thermodynamic potential limited by the rounding errors for different

Chebyshev grid sizes.

of the lattice with amplitude A = 1., lattice wave-vector k = 1.5 at temperature T = 0.01.

We perform a relaxation of this solution on the set of grids with Nx = {9, 17, 33, 65, 129}
and Nz = {20, 30, 40, 60, 80} (in pseudospectral case) or Nz = {40, 80, 120, 160, 240, 320}
(in FDD case). For every calculation we keep track of the following convergence criteria:

max |df | : Maximum value of the functional increment at every iteration step

max |
√
ξ2| : Local norm of the DeTurck vector

max |Gµµ| : Local trace of the Einstein equation

dΩ/Ω : Relative increment of the mean thermodynamic potential at every step

Each time the iteration procedure is run until max |df | hits the MachinePrecision

bound ∼ 10−11, while the values of the functions are of order one. Due to the numeri-

cal rounding errors the precision of the solution can not be improved after this bound is

reached. By studying the value of dΩ/Ω at this point one can estimate the highest precision

of the physical observables, which can be obtained on a given grid. On figure 10 the relative

precision of the thermodynamic potential is shown for various grid sizes in pseudospectral

approach. One can see that for dense grids Ny > 80, the relative error is increasing. No

similar effect is seen for the dense Nx grid. This important observation tells us that with

given MachinePrecision there is no reason to use the grids with Ny > 80 and also that

the numerical precision of the thermodynamical potential, which we calculate is not better

then 10−8.

In principle, the accuracy of the numerical results must increase with increasing grid

size, giving the exact match in continuum limit. In order to estimate the exact result Ω∞ we

evaluate the thermodynamic potential for a set of increasing grid sizes and then extrapolate

to infinity. The accuracy for a given grid is then defined by |Ω−Ω∞|/Ω∞. As one can see

from figure 11, the optimal accuracy reached at Ny = 80 is of order 10−7. As to the spatial

grid resolution, one can see that already for Nx = 33 the result is close enough to Ω∞, i.e.

already at Nx = 33 the accuracy is controlled by the holographic axis resolution Nz.

In the end of the day it’s clear that for a single patch Chebyshev grid the maximum

Ny resolution is limited by the rounding errors at Ny = 80. The accuracy of the thermo-
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Figure 11. Accuracy of the thermodynamic potential depending on the size of grid in holographic

(Ny) and spacial (Nx) direction.

dynamical potential for a grid of this size is about 10−7. I use this value as a numerical

error estimate throughout the present study and it proves to be quite enough for the main

results. Also, the x-axis resolution can safely be set to Nx = 33 points per one period

of the CDW, without affecting the accuracy of result. It should be noted here that the

comparable accuracy in FDD approach is reached for Ny ≈ 320. Using the grid of this

large size is disadvantageous on the other stages of calculation, therefore I rely on the pseu-

dospectral approach instead. I’ve also checked that the patching technique doesn’t bring

any significant improvement of the accuracy.

One should keep in mind that in the numerical procedure the DeTurck equations are

solved, so it must be checked that the Einstein equations are satisfied. This is done by

the two independent measures: max |Gµµ| and max |
√
ξ2|. For not very low temperatures

T > 0.01 at the grids which were used these values are both of order 10−7, which is

quite satisfactory. However, at lower temperatures they increase and the use of higher

Ny-resolution grid is necessary. As stated above, the Ny-resolution is bounded by the

rounding errors and MachinePrecision, henceforth with the present numerical scheme I

can not reliably access extremely low temperatures. Nonetheless, this drawback has little

impact on the results of the present study.
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