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1 Introduction

Following the discovery of neutrino mass and mixing, we are now firmly in the preci-

sion era of measurements. In the standard parametrisation of the lepton mixing ma-

trix [1], all the three lepton mixing angles θ12, θ13 and θ23 and the mass squared differences

∆m2
21 ≡ m2

2 −m2
1 and ∆m2

31 ≡ m2
3 −m2

1 has been precisely measured in a large number of

neutrino oscillation experiments. At present the 3σ ranges of these mixing parameters are

determined to be [2–4]

0.272≤ sin2 θ12≤ 0.346, 0.01981≤ sin2 θ13≤ 0.02436, 0.418≤ sin2 θ23≤ 0.613, (1.1)

6.80×10−5eV2≤∆m2
21≤ 8.02×10−5eV2, 2.399×10−3eV2≤∆m2

31≤ 2.593×10−3eV2 ,

where these results are as quoted in [4] for normal ordering (NO) neutrino mass spectrum,

and similar results are obtained for inverted ordering (IO) spectrum except that the sign

of ∆m2
31 is reversed.

Non-Abelian discrete finite family symmetry groups Gf have been widely used to

explain the lepton mixing angles as well as CP violating phases, see refs. [5–10] for reviews.

One of the most successful and popular model independent approaches is to impose a

discrete family symmetry Gf together with a non-commuting CP symmetry HCP. In the

semi-direct CP approach, the Gf oHCP symmetry is subsequently spontaneously broken,

– 1 –



J
H
E
P
1
2
(
2
0
1
8
)
0
0
3

leaving residual symmetries Gν oHν
CP in the neutrino sector and GloH l

CP in the charged

lepton sector, leading to mixing angle and CP phase predictions. In the present paper we

shall generalise the semi-direct CP approach to a tri-direct CP approach, based on the two

right-handed neutrino seesaw mechanism, as we now discuss.

The most appealing possibility for the origin of neutrino mass seems to be the seesaw

mechanism which, in its original formulation, involves heavy right-handed Majorana neu-

trinos [11–16]. The most minimal version of the seesaw mechanism involves one [17] or two

right-handed neutrinos [18]. In order to reduce the number of free parameters still further

to the smallest number possible, and hence increase predictivity, various approaches to the

two right-handed neutrino seesaw model have been suggested, such as postulating one [19]

or two [20] texture zeroes, however such two texture zero models are now phenomenologi-

cally excluded [21] for the case of a normal neutrino mass hierarchy.

The minimal successful seesaw scheme with normal hierarchy is called the Littlest

Seesaw (LSS) model [22–24]. The LSS model corresponds to a two right-handed neutrino

models with a particularly simple pattern of Dirac mass matrix elements in the basis where

both the charged lepton mass matrix and the two-right-handed neutrino mass matrix are

diagonal. The Dirac mass matrix involves only one texture zero, but the number of pa-

rameters is reduced dramatically since each column of this matrix is controlled by a single

parameter. In practice this is achieved by introducing a Non-Abelian discrete family sym-

metry, which is spontaneously broken by flavon fields with particular vacuum alignments

governed by remnant subgroups of the family symmetry. This leads to a highly constrained

model which is remarkably consistent with current data, but which can be tested in forth-

coming neutrino experiments [25]. The LSS approach may also be incorporated into grand

unified models [26–29].

Originally the LSS model was formulated in the indirect approach based on a family

symmetry to give the required vacuum alignments, but without any residual symmetry in

the neutrino or charged lepton sector [22]. Later it was realised that it preserves a different

residual flavour symmetry for each flavon, in the diagonal mass basis of two right-handed

neutrinos, leading to a highly predictive set of possible alignments [23]. Most recently

it was understood that the LSS model may arise from a semi-direct symmetry approach

corresponding to a different residual flavour symmetry for each charge sector, where a

particular residual flavour symmetry may be assumed in each of the neutrino and charged

lepton sectors. To be precise, in the semi-direct symmetry approach, it was shown that

there is an SU subgroup of S4 in the neutrino sector and the T subgroup of S4 in the

charged lepton sector, leading to a constrained form of TM1 mixing [24] in which the first

column of the tri-bimaximal mixing matrix is preserved, but with the reactor angle and

CP phases fixed by the same two parameters which fix the neutrino masses.

The LSS model is a general and predictive framework for explaining neutrino masses

and lepton mixing, and it is not confined to TM1. For instance, the golden LSS is an another

viable class of LSS models [30], the flavor symmetry group is A5 and it is spontaneously

broken to different residual subgroups in the charged lepton, atmospheric neutrino and

solar neutrino sectors. The golden LSS predicts the lepton mixing is of GR1 form where

the first column of the golden ratio mixing matrix is preserved [30]. In both the original LSS
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Figure 1. A sketch of the tri-direct CP approach for two right-handed neutrino models, where the

high energy family and CP symmetry GfoHCP is spontaneously broken down to GatmoHatm
CP in the

sector of one of the right-handed neutrinos, and Gsol oHsol
CP in the sector of the other right-handed

neutrino, with the charged lepton sector having a different residual flavour symmetry Gl.

and golden LSS models, it was always assumed that there is a high energy CP symmetry

which is completely broken in each of the sectors, with no residual CP symmetry.

In this paper we propose a new tri-direct CP approach for two right-handed neutrino

models based on the idea of spontaneously broken family and CP symmetry, leaving a

different residual flavour symmetry, together with a different residual CP symmetry, in

each of the two right-handed neutrino sectors. In other words, the high energy family and

CP symmetry Gf o HCP is spontaneously broken down to Gatm o Hatm
CP in the sector of

one of the right-handed neutrinos, and Gsol oHsol
CP in the sector of the other right-handed

neutrino, with the charged lepton sector having a different residual flavour symmetry Gl,

as schematically illustrated in figure 1. The tri-direct CP approach is a hybrid of the direct

and indirect approaches. The common residual symmetry of the neutrino sector in the

direct model is splitted into two branches: the residual symmetries associated with the

atmospheric and solar neutrinos. In comparison with the indirect model, the alignments

associated with each right-handed neutrino are enforced by residual symmetry. In such a

tri-direct CP approach the combination of the three residual symmetries provides a new

way of fixing the parameters. To illustrate the approach, we revisit the Littlest Seesaw

(LSS) model based on S4 and show that the tri-direct CP approach uniquely fixes some

parameters of the model.1 Following the tri-direct CP approach, we also propose new

variants of the LSS model which have not so far appeared in the literature, with different

predictions for each variant. We analyse numerically the predictions of the new variants,

and then propose an explicit model which can realise one of the successful benchmark

points, based on the atmospheric flavon vacuum alignment (1, ω2, ω) and the solar flavon

vacuum alignment (1,−7/2,−7/2).

1This is similar to having separate residual symmetries for each right-handed neutrino arising from S4,

as in [23], but here we also impose separate residual CP symmetries.
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The layout of this paper is as follows. In section 2 we propose the tri-direct CP

approach for two right-handed neutrino models. In section 3 we apply the tri-direct CP

approach to the Littlest Seesaw model and see that it reproduces the usual neutrino mass

matrices arising from uniquely fixed vacuum alignments. In section 4 we show how new

variants of the Littlest Seesaw emerge from the tri-direct CP approach, and we perform

a comprehensive numerical analysis of a selection of benchmark points within the LSS

variants arising from S4, in order to determine their viability and predictions. In section 5

the tri-direct CP approach is extended to three right-handed neutrino models. In section 6

we propose an explicit model which can realise one of the successful benchmark points,

based on the atmospheric flavon vacuum alignment (1, ω2, ω) and the solar flavon vacuum

alignment (1,−7/2,−7/2). Section 7 concludes the paper. The appendix A describes the

diagonalization of a general subdiagonal neutrino mass matrix, note that the neutrino mass

matrix predicted in the tri-direct CP approach can always be reduced to a subdiagonal one

by performing a unitary transformation.

2 The tri-direct CP approach

In a two right-handed neutrino model, the light neutrino masses are generated through the

seesaw mechanism, and only two right-handed neutrinos are introduced, denoted here as

N c
atm and N c

sol. In the right-handed neutrino diagonal basis, the most general Lagrangian

can be written as

L = −ylLφlEc − yatmLφatmN c
atm − ysolLφsolN c

sol

− 1

2
xatmξatmN

c
atmN

c
atm −

1

2
xsolξsolN

c
solN

c
sol + h.c. ,

(2.1)

where we use a two-component notation for the fermion fields to keep the formula compact.

The fields L and Ec ≡ (ec, µc, τ c)T stand for the left-handed lepton doublets and the right-

handed charged leptons respectively, the flavons φl, φsol and φatm can be either Higgs fields

or combinations of the electroweak Higgs doublet together with flavons, and the Majoron

flavons ξatm and ξsol are standard model singlets.

In order to predict both neutrino masses and lepton mixing parameters, a non-abelian

discrete flavor symmetry Gf and generalized CP symmetry HCP are imposed on the model.

Both flavor symmetry and the CP symmetry act on the flavor space in a non-trivial way.

The flavor symmetry Gf and CP symmetry HCP should be compatible with each other in

the theory, and consequently the following consistency condition has to be satisfied [31–33]

Xrρ
∗
r(g)X†r = ρr(g

′), g, g′ ∈ Gf , (2.2)

where ρr(g) is the representation matrix of the element g in the irreducible representation r

ofGf , andXr is the generalized CP transformation matrix of HCP. The elements g and g′ in

eq. (2.2) are in general different. Hence the mathematical structure of the full symmetry at

high energy scale is in general a semi-direct product of flavor symmetry Gf and generalized

CP symmetry HCP [31]. Moreover, it has been shown that physical CP transformations

always have to be class-inverting automorphisms of Gf [33], namely for any g ∈ Gf , there
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should always exists an element h such that g′ = hg−1h−1. We assign the three generations

of left-handed leptons L to a faithful irreducible three-dimensional representation of Gf ,

the flavons φl, φatm and φsol transform as triplets under the flavor symmetry Gf while

N c
atm and N c

sol are singlets of Gf . The flavons ξatm and ξsol are also singlets under Gf ,

nevertheless they could transform differently under the shaping symmetry. In the present

work, we assume the parent symmetry Gf o HCP is broken down to Gl, Gatm o Hatm
CP

and Gsol o Hsol
CP in the charged lepton, atmospheric neutrino and solar neutrino sectors,

respectively. This paradigm is schematically illustrated in figure 1, and we call it as tri-

direct CP approach. Notice that the tri-direct CP approach has three branches of residual

symmetries, and it is a generalization of the so called direct approach in which the flavor

symmetry is broken to two distinct abelian subgroups Gl and Gν in the changed lepton

and neutrino sectors respectively. Here we require that the residual flavor symmetry Gl
is capable of distinguishing the three generations, i.e., the order of Gl can not be smaller

than 3. The invariance of the charged lepton mass term under the action of Gl leads to

g†lm
†
lmlgl = m†lml, gl ∈ Gl , (2.3)

which implies

[gl,m
†
lml] = 0 , (2.4)

where for simplicity we have used the same notations for the abstract elements of Gf and

the representation matrices in the triplet representation to which the lepton doublets L

are assigned. In addition, the charged lepton mass matrix ml defined in the right-left basis

lcmll. The representation matrix gl can be diagonalized by a unitary transformation Ul, i.e.,

U †l glUl = diag(eiαe , eiαµ , eiατ ) , (2.5)

where eiαe,µ,τ are all roots of unity since gl is an element of the discrete flavor symmetry

group Gf and it is of finite order, and Ul is determined up to exchange of its column and

possible overall phases of the single columns. From eq. (2.4), it follows that the hermitian

combination m†lml is diagonalized by Ul as well.

As regards the atmospheric and solar neutrino sectors, the residual CP symmetry

should be compatible with the residual flavor symmetry. As a consequence, the following

constrained consistency conditions have to be fulfilled,

Xatm
r ρ∗r(g

atm
i )(Xatm

r )−1 = ρr(g
atm
j ), gatmi , gatmj ∈ Gatm , (2.6a)

Xsol
r ρ∗r(g

sol
i )(Xsol

r )−1 = ρr(g
sol
j ), gsoli , gsolj ∈ Gsol . (2.6b)

This implies that the mathematical structure of the subgroup comprising the residual flavor

and CP symmetries is in general a semi-direct product. The semi-direct product structure

will reduce to a direct product if gatmi = gatmj and gsoli = gsolj . In particular, we note

that the reduction of the semidirect product structure to direct product always holds true

for a generic residual Z2 flavor symmetry. For given residual flavor symmetries Gatm and

Gsol, the residual CP symmetries Hatm
CP and Hsol

CP can be easily obtained by solving the

constraints in eqs. (2.6a) and (2.6b). The requirement that the subgroup Gatm oHatm
CP is

– 5 –
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conserved entails that the vacuum expectation value (VEV) of φatm should be invariant

under the symmetry Gatm oHatm
CP , i.e.

gatm〈φatm〉 = 〈φatm〉, gatm ∈ Gatm ,

Xatm〈φatm〉∗ = 〈φatm〉, Xatm ∈ Hatm
CP ,

(2.7)

which allow us to fix the alignment of 〈φatm〉. In the same fashion, for the symmetry

Gsol oHsol
CP to hold, the VEV 〈φsol〉 has to be invariant under Gsol oHsol

CP,

gsol〈φsol〉 = 〈φsol〉, gsol ∈ Gsol ,

Xsol〈φsol〉∗ = 〈φsol〉, Xsol ∈ Hsol
CP .

(2.8)

After the electroweak and flavor symmetry breaking, the flavon VEVs 〈φl〉, 〈φatm〉, 〈φsol〉,
〈ξatm〉 and 〈ξsol〉 are non-vanishing. Then we can read out the neutrino Dirac mass matrix

and the heavy Majorana mass matrix of N c
atm and N c

sol,

mD =
(
yatm〈φatm〉, ysol〈φsol〉

)
, mN =

(
xatm〈ξatm〉 0

0 xsol〈ξsol〉

)
, (2.9)

where we omit the relevant Clebsch-Gordan coefficients which appear in both contractions

yatmLφatmN
c
atm and ysolLφsolN

c
sol in order to form invariants under Gf . Using the seesaw

formula, we can obtain the low energy effective light neutrino mass matrix

mν = − y
2
atm

xatm

〈φatm〉〈φatm〉T

〈ξatm〉
−
y2sol
xsol

〈φsol〉〈φsol〉T

〈ξsol〉
. (2.10)

Since two right-handed neutrinos are introduced in this approach, the lightest neutrino

must be massless. Indeed we find the light neutrino mass matrix satisfy

mν [〈φatm〉 × 〈φsol〉] = (0, 0, 0)T , (2.11)

where 〈φatm〉 × 〈φsol〉 denotes the cross product of 〈φatm〉 and 〈φsol〉. This means that the

column vector 〈φatm〉×〈φsol〉 is an eigenvector of mν with zero eigenvalue, depending on the

modulus of each entry, it can be either the first column or the third column of the neutrino

unitary transformation matrix Uν which diagonalizes mν . Accordingly the neutrino mass

spectrum can be normal order with m1 = 0 or inverted ordering with m3 = 0. The other

two remaining columns of Uν are orthogonal to 〈φatm〉×〈φsol〉, and their exact forms can be

determined for given residual symmetry in a model, as explicitly shown in the following two

sections. We can thus determine the lepton mixing matrix UPMNS = U †l Uν . Furthermore,

we notice that the two columns of the Dirac mass matrix mD would be exchanged if the

roles of Gatm oHatm
CP and Gsol oHsol

CP are switched. Thus the same neutrino mass matrix

would be obtained if one interchanges yatm with ysol and xatm with xsol. The tri-direct

CP approach provides new opportunity for model building, it allows us to construct quite

predictive neutrino mass models as simple as the LSS model.

– 6 –
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3 Littlest Seesaw in the tri-direct CP approach

In this section, we shall show that the original Littlest seesaw model [23, 24] can be repro-

duced from the above tri-direct approach. The flavor symmetry group is chosen to be S4
which has been extensively studied in the literature, see [34, 35] for the group theory of

S4. In the present work, we shall adopt the conventions of [35], and S4 can be generated

by three generators S, T and U , which obey the relations

S2 = T 3 = U2 = (ST )3 = (SU)2 = (TU)2 = (STU)4 = 1 . (3.1)

The S4 group has five irreducible representations: 1, 1
′
, 2, 3 and 3

′
. The one-dimensional

unitary representations are given by,

1 : S = 1, T = 1, U = 1 ,

1
′

: S = 1, T = 1, U = −1 .
(3.2)

In the double representation, we have

S =

(
1 0

0 1

)
, T =

(
ω 0

0 ω2

)
, U =

(
0 1

1 0

)
, (3.3)

with ω = e2πi/3. For the triplet representation 3, in a basis where the element T is diagonal,

the generators are

S =
1

3

−1 2 2

2 − 1 2

2 2 − 1

 , T =

1 0 0

0 ω2 0

0 0 ω

 , U = −

1 0 0

0 0 1

0 1 0

 . (3.4)

In another triplet representation 3′, the generator U is simply opposite in sign with to

that in the 3. We assume that both lepton doublet L and the atmospheric flavon φatm
are assigned to S4 triplet 3, the solar flavon φsol transforms as 3′ while the right-handed

Majorana neutrino N c
atm is 1 and N c

sol is 1′ of S4. The residual flavor symmetry of the

charged lepton sector is taken to be Gl = ZT3 . The most general hermitian matrix m†lml

invariant under ZT3 is diagonal with generic entries, where ml is the charged lepton mass

matrix. As a consequence, the unitary transformation Ul is a unit matrix up to permu-

tations and rephasing of column vectors. The atmospheric and solar residual symmetries

are Gatm = ZU2 and Gsol = ZSU2 with Xatm = Xsol = 1, and they uniquely fix the vacuum

alignments of 〈φatm〉 and 〈φsol〉 as follows

〈φatm〉 = vatm

 0

1

−1

 , 〈φsol〉 = vsol

 1

n

2− n

 , (3.5)

where both vacuum expectation values vatm and vsol are real, and n is a real parameter.

It is interesting to compare the two different residual symmetries here, Gatm = ZU2
and Gsol = ZSU2 of the tri-direct CP approach, to the semi-direct approach of [24] where
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there was a common residual symmetry in both the atmospheric and solar neutrino sec-

tors, namely ZSU2 . In the semi-direct approach [24], the atmospheric alignment 〈φatm〉 ∝
(0, 1,−1)T could not be uniquely fixed by the residual symmetry ZSU2 , and was achieved

through the dynamical terms in the potential of a concrete model. As regards the solar

alignment, ZSU2 enforces 〈φsol〉 ∝ (1, n, 2−n)T with n being generally complex in [24] while

n is a real parameter because of the CP symmetry in the tri-direct CP approach.

Applying the seesaw formula and multiplying L3 by a minus sign, we obtain the effec-

tive light neutrino mass matrix2

mν = ma

0 0 0

0 1 1

0 1 1

+mse
iη

 1 n− 2 n

n− 2 (n− 2)2 n(n− 2)

n n(n− 2) n2

 . (3.6)

As shown in [24, 25], the benchmark values of n = 3 and η = 2π/3 can give a phenomeno-

logically successful description of neutrino masses and lepton mixing parameters, e.g.

ma = 26.691meV, ms = 2.673meV, sin2 θ13 = 0.0223 ,

sin2 θ12 = 0.318, sin2 θ23 = 0.488, δCP =−0.517π, β=−0.402π ,

m1 = 0meV, m2 = 8.563meV, m3 = 49.993meV, mee = 2.673meV ,

(3.7)

where mee is the effective mass in neutrinoless double beta decay. Notice that the predic-

tions in eq. (3.7) generally receive subleading corrections in a concrete model. Since the

charged lepton masses are not constrained in this approach, the lepton mixing matrix is

determined up to all possible row permutations. In other words, the neutrino mass matrix

mν in eq. (3.6) can be multiplied by any permutation matrix from the left and right sides

simultaneously. If the second and third rows and columns of mν are exchanged [24, 25],

we obtain a second form of the Littlest seesaw model with

mν = ma

0 0 0

0 1 1

0 1 1

+mse
iη

 1 n n− 2

n n2 n(n− 2)

n− 2 n(n− 2) (n− 2)2

 . (3.8)

The phase value η = −2π/3 is preferred in the case of n = 3. Excellent agreement with

experimental data can be achieved, and a numerical benchmark is

ma = 26.688meV, ms = 2.674meV, sin2 θ13 = 0.0223 ,

sin2 θ12 = 0.318, sin2 θ23 = 0.512, δCP =−0.483π, β= 0.402π ,

m1 = 0meV, m2 = 8.565meV, m3 = 49.991meV, mee = 2.674meV .

(3.9)

For both versions of Littlest seesaw, the neutrino mass matrix leads to the trimaximal TM1

mixing [23–25], in which the first column of the mixing matrix is fixed to be that of the

tri-bimaximal mixing matrix. See [23, 24] for exact expressions of light neutrino masses

and lepton mixing parameters.

2The effective light neutrino Majorana mass matrix given by the Lagrangian Leff = − 1
2
νLi(mν)ijνLj +

h.c. in two-component notation.
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4 Littlest Seesaw variants in the tri-direct CP approach

Following the framework of tri-direct CP approach presented in section 2, we find that many

new mixing patterns compatible with experimental data can obtained from the S4 flavor

symmetry group and CP [36]. In order to illustrate how the neutrino mass and mixing

parameters are predicted in the tri-direct CP approach, as an example, we shall show a new

Littlest seesaw model which can be achieved from the S4 flavor symmetry in combination

with the generalized CP symmetry HCP, where HCP is the collection of the generalized CP

transformations Xr. In our working basis, the generalized CP transformation compatible

with S4 turns out to be of the same form as flavor symmetry transformation [35, 37], i.e.

Xr = ρr(h), h ∈ S4 , (4.1)

where h can be any element of S4. The three left-handed leptons L are assigned to S4
triplet 3, the atmospheric flavon φatm and solar flavon φsol transform as 3 and 3′ respec-

tively, and the two right-handed neutrinos N c
atm and N c

sol are S4 singlets 1 and 1′ respec-

tively. We assume that the S4 and CP symmetries are broken down to ZT3 , ZTST
2

2 ×Hatm
CP

and ZU2 ×Hsol
CP in the charged lepton, atmospheric neutrino and solar neutrino sectors, re-

spectively. Since the representation matrix T is diagonal in the working basis, the residual

symmetry Gl = ZT3 would determine that the hermitian combination m†lml is diagonalized

by a unit matrix up to permutations and phases of its column vectors. Notice that no

new constraint is obtained even if the possible residual CP symmetry in the charged lepton

sector is further taken into account [38].

The residual symmetry ZTST
2

2 ×Hatm
CP in the atmospheric neutrino sector should be well

defined such that the constrained consistency condition in eq. (2.6a) has to be satisfied, i.e.

Xatm
r ρ∗r(TST

2)(Xatm
r )−1 = ρr(TST

2) . (4.2)

It is easy to check that Xatm
r can only take the following eight possible values,

Hatm
CP = {ρr(SU), ρr(T

2), ρr(ST
2S), ρr(T

2STU), ρr(U), ρr(ST
2), ρr(T

2S), ρr(TST
2U)} .

(4.3)

For the first four CP transformations of Hatm
CP , the vacuum alignment 〈φatm〉 which pre-

serves ZTST
2

2 ×Hatm
CP is of the following form

〈φatm〉 = vatm
(
1, ω2, ω

)T
, (4.4)

where the parameter vatm is real. If Xatm
r is one of the last four CP transformations in

Hatm
CP (e.g. Xatm = U), the VEV 〈φatm〉 is enforced to be the form

〈φatm〉 = ivatm
(
1, ω2, ω

)T
, (4.5)

with vatm being real. The above two vacuum configurations in eq. (4.4) and eq. (4.5) differ

from each other in the overall factor i which can be compensated by shifting the sign of the

coupling xatm. Without loss of generality, in the following we shall take the atmospheric

vacuum in eq. (4.4) and the corresponding residual CP is Xatm = SU . As regards the
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solar neutrino sector. the residual CP transformation Xsol
r of Hsol

CP is determined by the

consistency condition

Xsol
r ρ∗r(U)(Xsol

r )−1 = ρr(U) . (4.6)

We find the allowed values of Hsol
CP are

Hsol
CP = {ρr(1), ρr(U), ρr(S), ρr(SU)} . (4.7)

For the case of Xsol
r = ρr(1), ρr(U), the vacuum configuration 〈φsol〉 invariant under

ZU2 ×Hsol
CP is of the form

〈φsol〉 = vsol (1, x, x)T , (4.8)

where the VEV vsol is real and x is in general a dimensionless real number. For the re-

maining choices Xsol
r = ρr(S), ρr(SU), the subgroup ZU2 ×Hsol

CP is preserved only if 〈φsol〉
is aligned along the following direction,

〈φsol〉 = vsol (1 + 2ix, 1− ix, 1− ix)T , (4.9)

with both parameters vsol and x being real. However, detailed numerical analysis reveals

that the experimentally favored neutrino masses and mixing angles can not be obtained

for the solar flavon VEV shown in eq. (4.9). Hence we shall focus on the residual CP

transformation Xsol = U and the resulting vacuum alignment 〈φsol〉 ∝ (1, x, x) in this work.

It is useful to remind the S4 singlet contraction rules for 3⊗3→ 1 and 3⊗3′ → 1′ [35],

(αβ)1 = α1β1 + α2β3 + α3β2 ,

(αγ)1′ = α1γ1 + α2γ3 + α3γ2 ,
(4.10)

where α = (α1, α2, α3)
T and β = (β1, β2, β3)

T are S4 triplet 3, and γ = (γ1, γ2, γ3)
T

transforms as 3′. When the flavor fields φatm and φsol acquire a non-vanishing VEV as

shown in eq. (4.4) and eq. (4.8) respectively, from the Lagrangian of eq. (2.1), we can read

out the Dirac neutrino mass matrix mD as well as a diagonal right-handed neutrino mass

matrix mN

mD =

 yatmvatm ysolvsol
ωyatmvatm xysolvsol
ω2yatmvatm xysolvsol

 , mN =

(
Matm 0

0 Msol

)
, (4.11)

with Matm = xatm〈ξatm〉 and Msol = xsol〈ξsol〉. The light neutrino mass matrix is given by

the seesaw formula,

mν = −mDm
−1
N mT

D = ma

 1 ω ω2

ω ω2 1

ω2 1 ω

+ eiηms

1 x x

x x2 x2

x x2 x2

 , (4.12)

where a physically irrelevant overall phase factor is dropped, ma = |y2atmv2atm/Matm|,
ms = |y2solv2sol/Msol| and the relative phase η = 2arg(ysolvsol)−2arg(yatmvatm)+arg(Matm)−
arg(Msol). We see that mν depends on four parameters ma, ms, η and x to describe the
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neutrino masses and mixing parameters, consequently this model is quite predictive. More-

over, we shall fix x and η to certain values in a concrete models. It is easy to check that

the above neutrino mass matrix mν fulfills

mν

−i
√

3x

x− ω2

−x+ ω

 =

 0

0

0

 . (4.13)

This implies that the column vector (−i
√

3x, x−ω2,−x+ω)T is an eigenvector of mν with

zero eigenvalue. As a consequence, the neutrino mass matrix mν can be block diagonalized

by the following unitary transformation

Uν1 =


− i

√
3x√

5x2+2x+2

√
2(x2+x+1)
5x2+2x+2

0

x−ω2
√
5x2+2x+2

− i
√
3x(x−ω2)√

2(x2+x+1)(5x2+2x+2)

x−ω2√
2(x2+x+1)

ω−x√
5x2+2x+2

i
√
3x(x−ω)√

2(x2+x+1)(5x2+2x+2)

x−ω√
2(x2+x+1)

 . (4.14)

Then mν becomes

m′ν = UTν1mνUν1 =

0 0 0

0 y z

0 z w

 , (4.15)

with

y =
5x2 + 2x+ 2

2 (x2 + x+ 1)
(ma + eiηms) ≡ |y|eiφy ,

z = −
√

5x2 + 2x+ 2

2 (x2 + x+ 1)

[
(x+ 2)ma − x(2x+ 1)eiηms

]
≡ |z|eiφz ,

w =
1

2(x2 + x+ 1)

[
(x+ 2)2ma + x2 (2x+ 1)2 eiηms

]
≡ |w|eiφw . (4.16)

Since m′ν is essentially a two by two complex symmetric matrix, it can be exactly diago-

nalized, as shown in detail in [39],

UTν2m
′
νUν2 = diag(0,m2,m3) . (4.17)

The procedure for diagonalization of the neutrino mass matrix m′ν is given in appendix A,

and the explicit forms of Uν2, m2 and m3 can be found there. Because the charged lepton

mass matrix m†lml is a diagonal, the lepton mixing completely arises from the neutrino

sector. Thus the lepton mixing matrix is derived as

UPMNS =Uν1Uν2

=
1√
2


√
6x√

5x2+2x+2
2i
√

x2+x+1
5x2+2x+2

cosθ 2i
√

x2+x+1
5x2+2x+2

eiψ sinθ√
2(x2+x+1)
5x2+2x+2

−e−iψ sinθ− i
√
3xcosθ√

5x2+2x+2
cosθ− i

√
3xeiψ sinθ√
5x2+2x+2√

2(x2+x+1)
5x2+2x+2

e−iψ sinθ− i
√
3xcosθ√

5x2+2x+2
−cosθ− i

√
3xeiψ sinθ√
5x2+2x+2

Pν , (4.18)
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up to possible row permutations, where Pν = diag(1, ei(ψ+ρ)/2, ei(−ψ+σ)/2) is a diagonal

phase matrix, and an overall phase of each row has been absorbed by the charged lepton

fields. The expressions for the parameters θ, ψ, ρ and σ are given in appendix A. Comparing

with the standard parametrization of the lepton mixing matrix [1],

UPMNS =

 c12c13 s12c13 s13e
−iδCP

−s12c23−c12s13s23eiδCP c12c23−s12s13s23eiδCP c13s23
s12s23−c12s13c23eiδCP −c12s23−s12s13c23eiδCP c13c23

diag(ei
α
2 ,ei

β
2 ,1) ,

(4.19)

where cij ≡ cos θij , sij ≡ sin θij , and the Majorana phase α is unphysical since m1 = 0, we

can extract the results for the lepton mixing angles and find

sin2 θ13 =
2
(
x2 + x+ 1

)
sin2 θ

5x2 + 2x+ 2
,

sin2 θ12 = 1− 3x2

3x2 + 2 (x2 + x+ 1) cos2 θ
,

sin2 θ23 =
1

2
+
x
√

3 (5x2 + 2x+ 2) sin 2θ sinψ

2 [3x2 + 2 (x2 + x+ 1) cos2 θ]
, (4.20)

and for the CP invariants we obtain

JCP =

√
3x
(
x2 + x+ 1

)
sin 2θ cosψ

2 (5x2 + 2x+ 2)3/2
, I1 =

(
x2 + x+ 1

)2
sin2 2θ sin(ρ− σ)

(5x2 + 2x+ 2)2
. (4.21)

The Jarlskog invariant JCP [40] and the Majorana invariant I1 [41–44] related to the Ma-

jorana phase β are defined in the usual way

JCP ==(UPMNS,11UPMNS,33U
∗
PMNS,13U

∗
PMNS,31) =

1

8
sin2θ12 sin2θ13 sin2θ23 cosθ13 sinδCP ,

I1 ==(U2
PMNS,12U

∗2
PMNS,13) =

1

4
sin2 θ12 sin2 2θ13 sin(β+2δCP) . (4.22)

From the expressions of mixing angles in eq. (4.20), we easily see that the solar mixing

angle θ12 and the reactor mixing angle θ13 fulfill the following sum rules

cos2 θ12 cos2 θ13 =
3x2

5x2 + 2x+ 2
. (4.23)

This implies that θ13 and θ12 are strongly correlated with each other, as shown in figure 2.

Inserting the 3σ allowed regions 0.272≤sin2 θ12≤0.346 and 0.01981≤sin2 θ13≤0.02436 [4],

we find that the parameter x should be in the interval −5.481 ≤ x ≤ −1.223. Notice that

the value of x is also subject to the constraints from the measured values of θ23 and neutrino

mass squared differences. If all the four input parameters ma, ms, η and x are treated as

free parameters and both lepton mixing angles and the mass splittings ∆m2
21 and ∆m2

31

are required to be in the experimentally favored 3σ ranges, we find the solar mixing angle

is allowed in a narrow region 0.329 ≤ sin2 θ12 ≤ 0.346 which is represented by the orange

in figure 2. The forthcoming JUNO experiment will be capable of reducing the error of
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Figure 2. Correlation between sin2 θ12 and sin2 θ13 given by eq. (4.23) for various values of x.

The gray bands represent the experimentally preferred 3σ ranges of sin2 θ13 and sin2 θ12 adapted

from [4]. The orange area denotes the most generally allowed regions of sin2 θ13 and sin2 θ12 in

the new Littlest seesaw model, where the four input parameter ma, ms, η and x are randomly

chosen and the resulting mixing angles and mass squared differences are required to lie in the

experimentally preferred 3σ regions [4].

sin2 θ12 to about 0.1◦ or around 0.3% [45]. Therefore we can expect JUNO to identify with

considerable confidence if the present model is compatible with experimental data.

It is notable that all the three mixing angles and Jarlskog invariant JCP depend on

only two parameters θ and ψ. As a consequence, we can express the Dirac CP phase δCP

in terms of the mixing angles,

cos δCP =
cot 2θ23

[
3x2 −

(
4x2 + x+ 1

)
cos2 θ13

]
√

3 |x| sin θ13
√

(5x2 + 2x+ 2) cos2 θ13 − 3x2
,

sin δCP = sign(x cosψ) csc 2θ23

√
1 +

(x2 + x+ 1)2 cot2 θ13 cos2 2θ23
3x2 [3x2 tan2 θ13 − 2 (x2 + x+ 1)]

. (4.24)

For maximal atmospheric mixing angle θ23 = π/4, we have cos 2θ23 = 0 and csc 2θ23 = 1.

Then this sum rule gives cos δCP = 0 and sin δCP = ±1 which implies maximal Dirac phase

δCP = ±π/2. We show the contour plot of δCP/π in the plane sin2 θ23 versus sin2 θ13 in

figure 3 for x = −7/2,−4,−9/2,−5. It is remarkable that the Dirac CP violation phase

δCP is predicted to lie in a narrow range around −0.5π.

Furthermore we perform a comprehensive numerical analysis. The input parameters

x, r = ms/ma and η are treated as random real numbers in the ranges x ∈ [−6,−1],

r ∈ [0, 10] and η ∈ [0, 2π], then we calculate the values of mixing angles sin2 θij , the CP
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Figure 3. Contour plot of δCP/π in the sin2 θ13 − sin2 θ23 plane for the benchmark values of

x = −7/2,−4,−9/2,−5. The contour lines are obtained by using the sum rule in eq. (4.24). The

gray bands represent the experimentally preferred 3σ ranges of the mixing angles adapted from [4].

The red areas in the plane are the most generally allowed regions of sin2 θ13 and sin2 θ23 for given

value of x, where the four input parameter ma, ms and η are randomly chosen and the resulting

mixing angles and mass squared differences are required to lie in the experimentally preferred

3σ regions [4].

violation phases δCP and β and the mass ratio m2
2/m

2
3 for each value of the input parameters

x, r and η. We require sin2 θij and m2
2/m

2
3 to lie in their 3σ regions obtained in the global

analysis of neutrino oscillation data [4]. In order to accommodate the present experimental

data, we find the allowed region of the parameter x is −5.475 ≤ x ≤ −3.370. Regarding

the predictions for the mixing angles, we find that all values of sin2 θ13 in its 3σ range are

allowed, sin2 θ23 is constrained to lie in the interval 0.418 ≤ sin2 θ23 ≤ 0.584, and the solar

angle is found to lie in a narrow interval around its 3σ upper bound 0.329 ≤ sin2 θ12 ≤ 0.346.

What concerns the CP phases, the values of δCP lie around −π/2, in the range −0.629π ≤
δCP ≤ −0.371π, and the allowed range of the Majorana phase is −0.571π ≤ β ≤ 0.571π.

These predictions may be tested at future long baseline experiments, as discussed in [25].
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In order to quantitatively measure how well the present model can describe the exper-

imental data, we define a χ2 function to estimate the goodness-of-fit of a chosen values of

the input parameters ma, r, η and x,

χ2 =
5∑
i=1

(
Pi(ma, r, η, x)−Oi

σi

)2

, (4.25)

where Oi ∈ {sin2 θ12, sin
2 θ23, sin

2 θ13,∆m
2
21,∆m

2
31} are the global best fit values of the ob-

servable quantities, and σi denote the 1σ deviations of the corresponding quantities. The

values of Oi and σi are taken from the global data analysis [4]. Pi is the theoretical pre-

dictions for the mixing angles sin2 θij and the mass splittings ∆m2
21 and ∆m2

31 as complex

nonlinear functions of the free parameters of the model. Notice that the value of Dirac

phase δCP is less constrained at present, consequently its contribution is not included in the

χ2 function. Since the number of free parameters is less than the number of observables, it is

not completely evident that the model can successfully fit the data. For each value of the in-

put parameters, we can obtain the predicted values Pi and the corresponding χ2, and the op-

timum input parameters yield the lowest χ2. We have carried out the χ2 minimization, we

find the minimum of χ2 is χ2
min = 3.957, and values of the input parameters at the χ2

min read

ma = 3.709 meV, r = 0.537, η = 1.055π, x = −3.556 . (4.26)

The predictions for various observable quantities obtained at the best fit point are

sin2 θ13 = 0.0222, sin2 θ12 = 0.332, sin2 θ23 = 0.515,

δCP = −0.478π, β = 0.0574π, m1 = 0 meV ,

m2 = 8.604 meV, m3 = 49.938 meV, mee = 1.778 meV . (4.27)

We plot the best fit values of χ2 as a function of η in figure 4, where five typical

values of x = −7/2,−4,−9/2,−5,−11/2 are chosen for illustration. We notice that low

χ2 values such as χ2 < 10 can be achieved. It is obvious that the values of χ2 is quite

sensitive to the phase η, and the model can give very good fits to the leptonic mixing

angles and the neutrino masses for certain values of η. We see that the experimental data

can be described very well for x = −7/2 and η around π. In table 1, we show the best

fit values of the mixing parameters and neutrino masses for some benchmark values of x

and η. Once the values of x and η are fixed, the light neutrino mass matrix mν would

depend on only two free parameters ms and ma whose values can be determined by the

neutrino mass squared differences ∆m2
21 and ∆m2

31, then three lepton mixing angles and

CP violation phases δCP and β can be predicted. We see that the effective Majorana mass

mee is in the range of 1 and 3 meV such that it is impossible to be measured in foreseeable

future. An particularly interesting example is the case of x = −7/2 and η = π, it predicts

maximal atmospheric mixing angle θ23 = π/4 and maximal Dirac phase δCP = −π/2 which

are favored by the present data from T2K and NOνA [46, 47]. The reason is because the

general neutrino mass mν shown in eq. (4.12) has a accidental µτ reflection symmetry in

the case of η = π [48].
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Figure 4. Variation of χ2 with respect to the phase η for the typical values of x = −7/2, −4,

−9/2, −5, −11/2.

It is noteworthy that the cases predicting inverted neutrino masses can also be achieved

from the tri-direct CP approach, although the neutrino mass spectrum is determined to

be normal ordering in the present Littlest Seesaw variants, as shown in table 1. In the

following, we shall present an example giving inverted neutrino masses, for more other

examples see [36]. Analogous to the above Littlest Seesaw variants, both lepton doublet L

and the atmospheric flavon φatm are assigned to S4 triplet 3, the solar flavon φsol transforms

as 3′ while the right-handed neutrino N c
atm is 1 and N c

sol is 1′ of S4. The residual flavor

symmetry of the charged lepton sector is taken to be Gl = ZT3 . The residual symmetries

of the atmospheric neutrino and the solar neutrino sectors are ZU2 ×Hatm
CP and ZTU2 ×Hsol

CP

respectively with Hatm
CP = {1, U} and Hsol

CP = {U, T}. Then it is easy to check that the

alignments of φatm and φsol are 〈φatm〉 ∝ (0, 1,−1)T and 〈φsol〉 ∝
(
1, xω, xω2

)T
respectively,

where x is a real parameter. As a consequence, the neutrino mass matrix is of the form

mν = ma

0 0 0

0 1 − 1

0 − 1 1

+mse
iη

 1 xω2 xω

xω2 x2ω x2

xω x2 x2ω2

 , (4.28)

where ma and ms are real parameters. We find the lepton mixing matrix is given by

UPMNS =
1√
2


2e−iψ sin θ√

2+x2
2 cos θ√
2+x2

−
√
2x√

2+x2

− cos θ − xe−iψ sin θ√
2+x2

eiψ sin θ − x cos θ√
2+x2

−
√
2√

2+x2

cos θ − xe−iψ sin θ√
2+x2

− eiψ sin θ − x cos θ√
2+x2

−
√
2√

2+x2

Pν , (4.29)
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x η ma(meV) r χ2
min sin2 θ13 sin2 θ12 sin2 θ23 δCP/π β/π m2(meV) m3(meV) mee(meV)

−4

3π
4 3.723 0.419 7.703 0.0226 0.336 0.440 −0.588 −0.264 8.603 49.939 2.843

5π
4 3.723 0.419 6.130 0.0226 0.336 0.560 −0.412 0.264 8.603 49.939 2.843

4π
5 3.690 0.425 12.206 0.0204 0.338 0.450 −0.577 −0.211 8.577 49.974 2.591

6π
5 3.691 0.425 10.716 0.0204 0.338 0.550 −0.423 0.211 8.578 49.973 2.591

7π
9 3.706 0.422 8.135 0.0213 0.337 0.446 −0.583 −0.234 8.592 49.954 2.701

11π
9 3.706 0.422 6.588 0.0213 0.337 0.555 −0.417 0.234 8.593 49.953 2.701

−5

3π
5 3.737 0.264 13.077 0.0211 0.345 0.423 −0.622 −0.423 8.625 49.914 3.558

7π
5 3.736 0.264 11.693 0.0211 0.345 0.577 −0.378 0.422 8.623 49.916 3.557

4π
7 3.738 0.262 11.547 0.0226 0.344 0.422 −0.619 −0.452 8.586 49.962 3.647

10π
7 3.737 0.263 10.201 0.0226 0.344 0.578 −0.381 0.452 8.585 49.964 3.646

5π
9 3.736 0.262 14.269 0.0234 0.344 0.421 −0.618 −0.469 8.559 49.999 3.694

13π
9 3.735 0.262 12.937 0.0234 0.344 0.579 −0.382 0.469 8.557 50.001 3.693

− 7
2

π 3.720 0.553 4.528 0.0227 0.332 0.5 −0.5 0 8.622 49.918 1.663

8π
9 3.750 0.546 12.130 0.0241 0.331 0.470 −0.542 −0.117 8.663 49.871 1.955

10π
9 3.750 0.546 11.158 0.0241 0.331 0.530 −0.458 0.117 8.663 49.870 1.955

9π
10 3.744 0.547 10.125 0.0238 0.331 0.473 −0.538 −0.105 8.656 49.878 1.903

11π
10 3.745 0.547 9.248 0.0238 0.331 0.527 −0.462 0.105 8.657 49.878 1.904

− 9
2

2π
3 3.724 0.329 9.712 0.0217 0.341 0.429 −0.610 −0.352 8.605 49.937 3.288

4π
3 3.724 0.329 8.224 0.0217 0.341 0.571 −0.390 0.352 8.604 49.938 3.287

5π
8 3.732 0.326 15.464 0.0239 0.340 0.424 −0.610 −0.396 8.566 49.990 3.454

11π
8 3.731 0.326 14.061 0.0239 0.340 0.576 −0.390 0.396 8.564 49.992 3.454

7π
10 3.708 0.332 17.788 0.0199 0.342 0.433 −0.607 −0.317 8.610 49.931 3.147

13π
10 3.708 0.332 16.242 0.0199 0.342 0.567 −0.393 0.317 8.610 49.932 3.147

Table 1. The best fit values of the lepton mixing angles, CP violation phases δCP and β, and the

neutrino masses m2 and m3 for some typical values of x and η in new variants of Littlest seesaw

model arising from the tri-direct CP approach with S4. The predictions for the effective Majorana

mass mee are listed in the last column. We would like to remind that the lightest neutrino is

massless m1 = 0 for each case.

with

Pν = diag
(
ei(ψ+ρ)/2, ei(−ψ+σ)/2, 1

)
. (4.30)

The three lepton mixing angles can be read off as,

sin2 θ13 =
x2

2 + x2
, sin2 θ12 = cos2 θ , sin2 θ23 =

1

2
. (4.31)

It is notable that the atmospheric mixing angle θ23 is exactly maximal. Moreover, the two

CP rephasing invariants are given by

JCP = −x sin 2θ sinψ

2 (2 + x2)3/2
, I1 = −sin2 2θ sin(ρ− σ)

(2 + x2)2
. (4.32)
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The experimentally measured values of lepton mixing angles and neutrino masses can be

accommodated well in this case, e.g.

x=−0.213, η=−0.0171π, ma = 25.670meV, r= 1.823 ,

sin2 θ13 = 0.0223, sin2 θ12 = 0.307, sin2 θ23 = 0.5, δCP/π= 0.975, β/π=−0.174,

m1 = 49.193meV, m2 = 49.940meV, m3 = 0, mee = 46.579meV .

(4.33)

From the examples of Littlest Seesaw model and its variants studied above, we see that the

light neutrino mass matrix mν is generally predicted to depend on four parameters ma, ms,

x and η in the tri-direct CP approach, and mν would depend on only two parameters ma

and ms once x and η are fixed to certain simple regular values by explicit superpotential

alignment terms in a concrete model. Nevertheless, the neutrino mass matrix mν generally

involve six complex parameters in the original two right-handed neutrino model. Obviously

the tri-direct CP model is rather predictive beyond all doubt.

5 Extending the tri-direct CP approach to three right-handed neutrino

models

Motivated by the principle of minimality and the idea of constrained sequential dominance,

in section 2 we have assumed that there are only two right-handed neutrinos and the third

one is approximately decoupled. In fact, the tri-direct CP approach is a general paradigm of

neutrino mass model building, and it is not mandatory to have two right-handed neutrinos.

This approach can be straightforwardly extended to the conventional seesaw model with

three right-handed neutrinos denote as N c
atm, N c

sol and N c
dec. Then the Lagrangian for the

charged lepton and neutrino masses takes the form

L = −ylLφlEc − yatmLφatmN c
atm − ysolLφsolN c

sol − ydecLφdecN c
dec −

1

2
xatmξatmN

c
atmN

c
atm

− 1

2
xsolξsolN

c
solN

c
sol −

1

2
xdecξdecN

c
solN

c
dec + h.c. , (5.1)

where two additional terms related to N c
dec appear in comparison with eq. (2.1). The field

φdec can be either Higgs fields or combination of the electroweak Higgs doublet together

with flavons, and it transform as triplet under the flavor symmetry Gf . The Majoron

flavon ξdec are standard model and Gf singlet. Similar to section 2, we assume that the

residual subgroups Gl, Gatm o Hatm
CP , Gsol o Hsol

CP and Gdec o Hdec
CP are preserved by the

Yukawa interaction terms of the charged leptons Ec, the atmospheric neutrino N c
atm, the

solar neutrino N c
sol and the decoupled neutrino N c

dec respectively. The vacuum alignments

〈φatm〉, 〈φsol〉 and 〈φdec〉 are dictated by the residual flavor and CP symmetries, and they

constitute three columns of the Dirac neutrino mass matrix,

mD =
(
yatm〈φatm〉, ysol〈φsol〉, ydec〈φdec〉

)
,

mN =

xatm〈ξatm〉 0 0

0 xsol〈ξsol〉 0

0 0 xdec〈ξdec〉

 . (5.2)
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The light neutrino mass matrix given by the seesaw formula is

mν = − y
2
atm

xatm

〈φatm〉〈φatm〉T

〈ξatm〉
−
y2sol
xsol

〈φsol〉〈φsol〉T

〈ξsol〉
−
y2dec
xdec

〈φdec〉〈φdec〉T

〈ξdec〉
. (5.3)

In the limit 〈ξdec〉 � 〈ξatm〉, 〈ξsol〉, it reduces to the setup discussed in section 2. Here

we shall give an example for illustration. The lepton doublet L, the atmospheric flavon

φatm and the flavon φdec are assumed to transforms as 3 under S4, the solar flavon φsol
transforms as 3′ while the right-handed neutrinos N c

atm and N c
dec are S4 singlet 1 and N c

sol is

1′ under S4. The flavor group S4 and CP symmetry are broken to Gl = ZT3 in the charged

lepton sector. The residual symmetries of the atmospheric neutrino, the solar neutrino and

the decoupled neutrino sectors are ZU2 ×Hatm
CP , ZSU2 ×Hsol

CP and ZTST
2

2 ×Hdec
CP respectively,

where the residual CP symmetries are given by Hatm
CP = {1, U}, Hsol

CP = {1, SU} and

Hdec
CP = {SU, T 2STU}. The vacuum alignments of φatm, φsol and φdec are constrained by

the residual symmetry to take the following form

〈φatm〉 ∝ (0, 1,−1)T , 〈φdec〉 ∝
(
1, ω2, ω

)T
, 〈φsol〉 ∝ (1, 3,−1)T . (5.4)

Then we can read out the light neutrino mass matrix

mν = ma

0 0 0

0 1 − 1

0 − 1 1

+mar1e
iη1

 1 −1 3

−1 1 −3

3 −3 9

+mar2e
iη2

 1 ω ω2

ω ω2 1

ω2 1 ω

 , (5.5)

where ma, r1, r2, η1 and η2 are real. Excellent agreement with experimental data can be

achieved in this scenario, and a numerical benchmark is

ma = 26.707meV, r1 = 0.101, r2 = 0.00300, η1 = 2π/3, η2 = 0 ,

sin2 θ13 = 0.0221, sin2 θ12 = 0.318, sin2 θ23 = 0.486 ,

δCP =−0.519π, α21 =−0.533π, α31 =−0.135π ,

m1 = 0.120meV, m2 = 8.601meV, m3 = 49.942meV, mee = 2.648meV . (5.6)

It is interesting to perform a comprehensive study of lepton mixing patterns which can

be obtained from S4 and other flavor groups from the tri-direct CP approach with three

right-handed neutrinos. The phenomenological implications and model building aspects of

such a scheme also deserve further investigation. These topics goes far beyond the scope

of this paper since they deserve a dedicated full work of its own.

Before closing this section, we would like to compare the tri-direct CP approach with

other flavor symmetry model building schemes such as direct approach, semidirect approach

and indirect approach. In common with the indirect approach [7], each column of the

Dirac neutrino mass matrix is effectively promoted to a flavon field which transforms as a

triplet under the flavor symmetry Gf . The tri-direct CP approach generalizes the indirect

approach to constrain the vacuum alignment by residual flavor and CP symmetries. As

regards the direct [7] and semidirect models [31, 35], a residual symmetry Z2×Z2 or Z2×CP
is preserved by the neutrino mass matrix, the lepton mixing matrix is fully determined by
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residual symmetry or determined in terms of a single real parameter θ while neutrino masses

are not constrained [7, 31, 35]. In direct and semidirect models, only the structure of flavor

symmetry group and the remnant symmetries are assumed, the neutrino mass generation

mechanism and the breaking mechanism of flavor and CP symmetries are irrelevant such

that one can analyze the predictions for lepton mixing parameters in a model-independent

way [7, 31, 35]. Similar to the semidirect models with residual symmetry Z2 × CP , the

assumed residual symmetry of tri-direct CP approach fixes one column of the neutrino

mixing matrix to be 〈φatm〉 × 〈φsol〉 which could depend on a real parameter x. However,

there is no common residual symmetry of the light neutrino mass matrix in the tri-direc

CP approach since the residual symmetries GatmoHatm
CP and GsoloHsol

CP of the atmospheric

and solar neutrino sectors are generally different. In contrast with direct and semidirect

approaches, the tri-direct CP approach can predict neutrino masses. As shown in sections 3

and 4, the light neutrino mass matrix mν generally depends on only four real parameters

ma, ms, x and η such that lepton mixing angles, CP phases and neutrino masses are

strongly correlated with each other in tri-direct CP models. We remark that the tri-direct

CP approach assumes type-I seesaw mechanism for neutrino mass generation, consequently

it is not applicable in radiative neutrino mass models and so on.

6 A concrete model

In this section, we shall construct an explicit model based on the model independent anal-

ysis in section 4. The flavor symmetry S4 together with CP symmetry is imposed in the

model. The auxiliary symmetry is taken to be Z5 × Z6 × Z8 to ensure the needed vacuum

alignment and to forbid unwanted couplings. The auxiliary symmetry Z6 is helpful to

reproduce the observed charged lepton mass hierarchies, and it imposes different powers of

flavon fields for the electron, muon and tauon terms. The shaping symmetry Z8 disentan-

gles the charged lepton sector from the neutrino sector, and Z5 further distinguishes the

atmospheric neutrino sector from the solar neutrino sector. Moreover, it is straightforward

to show that such a symmetry is sufficient to suppress higher dimensional terms. The spon-

taneous breaking of S4 and CP symmetries to the residual symmetries ZT3 , ZTST
2

2 ×Xatm

and ZU2 ×Xsol in the charged lepton, atmospheric neutrino and solar neutrino sectors are

achieved in the model, where the residual CP transformations Xatm = SU and Xsol = U .

As a consequence, the desired vacuum configurations in eqs. (4.4), (4.8) are naturally pro-

duced. The solar alignment parameter is fixed to be x = −7/2 with η = π through the

dynamical terms in the potential. We formulate our model in the framework of supersym-

metry since the minimization of the scalar potential would be considerably simplified. The

three generations of left-handed lepton doublets L are embedded into a triplet 3, while

the right-handed charged leptons ec, µc and τ c all transform as 1 yet they carry different

charges of shaping symmetry. The two right-handed neutrinos νcatm and νcsol are assigned

to 1 and 1′ of S4 respectively. The S4 flavor symmetry is then broken by suitable flavons

which are singlets under the standard model gauge group. The fields of the model and

their classification under the symmetry are summarized in table 2. Similar to other flavor

models in the literature [5–10], additional flavon fields besides the necessary flavons φa,
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L ec µc τ c νcatm νcsol Hu,d ηl φl ξa φa ξs ζs ηs χs ψs ϕs φs ξ0l φ0l ξ0a φ0a κ0 ρ0 σ0 η0 χ0 φ0s ξ0s

S4 3 1 1 1 1 1′ 1 2 3 1 3 1 1 2 3′ 3′ 3′ 3′ 1 3′ 1 3′ 1 2 2 2 3′ 3′ 1

Z5 1 1 1 1 1 ω4
5 1 1 1 1 1 ω2

5 ω5 ω5 ω
2
5 ω4

5 ω3
5 ω5 1 1 1 1 ω4

5 ω5 ω
2
5 ω3

5 ω5 ω
3
5 ω3

5

Z6 1 ω3
6 ω4

6 ω5
6 ω6 1 1 ω6 ω6 ω4

6 ω5
6 1 1 1 1 1 1 1 ω4

6 ω4
6 ω2

6 ω2
6 1 1 1 1 1 1 1

Z8 1 1 1 1 ω8 ω2
8 1 1 1 ω6

8 ω7
8 ω4

8 ω4
8 ω8 ω8 ω8 ω8 ω

6
8 1 1 ω2

8 ω2
8 ω6

8 ω6
8 ω6

8 ω6
8 ω6

8 ω6
8 ω4

8

Table 2. Fields and their transformation properties under the flavor symmetry S4×Z5×Z6×Z8,

where the phases are ω5 = e2πi/5, ω6 = eπi/3 and ω8 = eπi/4.

φs, ξa and ξs are required in order to achieve the desired vacuum configuration. Their

transformation properties are shown in table 2. We would like to remind the readers that

we adopt the convention of [35] for the S4 group, and all the Clebsch-Gordan coefficients

have been listed in the appendix of [35].

6.1 Vacuum alignment

We will use the supersymmetric F -term alignment mechanism to generate the flavon VEVs

in eqs. (4.4) and (4.8). A U(1)R symmetry related to R-parity and the presence of driving

fields in the flavon superpotential are common features of this mechanism. The driving

fields indicated with the superscript “0” and the symmetry assignments are collected in

table 2. As usual, the VEVs of the driving fields are assumed to be vanishing. In the

supersymmetric limit, the F -terms of the driving fields have to vanish such that the vacuum

of the flavons gets aligned. The minimization equation of the scalar potential for the

charged lepton, atmospheric neutrino and solar neutrino sectors are separated from each

other at the renormalizable level.

At leading order, the most general driving superpotential wd invariant under S4×Z5×
Z6 × Z8 is given by

wd = wld + watm
d + wsol

d , (6.1)

where the three parts wld, w
atm
d and wsol

d read

wld = g1ξ
0
l (ηlηl)1+g2ξ

0
l (φlφl)1+g3

(
φ0l (ηlφl)3′

)
1
+g4

(
φ0l (φlφl)3′

)
1
,

watm
d =Mξaξ

0
aξa+h1ξ

0
a (φaφa)1+h2

(
φ0a (φaφa)3′

)
1
,

wsol
d = f1κ

0(χsψs)1+f2κ
0(ϕsϕs)1+f3

(
ρ0 (χsχs)2

)
1
+f4

(
σ0 (ψsψs)2

)
1
+f5

(
η0 (ηsηs)2

)
1

+f6
(
η0 (ϕsψs)2

)
1
+f7

(
χ0 (χsχs)3′

)
1
+f8

(
χ0 (ηsϕs)3′

)
1
+f9

(
φ0s (ψsϕs)3′

)
1

+f10ζs
(
φ0sφs

)
1
+Mξsξ

0
sξs+f11ξ

0
s (φsφs)1 , (6.2)

where (. . .)r refers to a contraction of the S4 indices into the representation r. All the

coupling constants are real parameters since the theory is required to be invariant under

the generalized CP transformations. The driving superpotential wld is responsible for the

alignment of ηl and φl. The equations for the vanishing of the derivatives of wld with respect
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to each component of the driving fields ξ0l and φ0l are

∂wld
∂ξ0l

= 2g1ηl1ηl2 + g2
(
φ2l1 + 2φl2φl3

)
= 0 ,

∂wld
∂φ0l1

= g3(ηl1φl2 − ηl2φl3) + 2g4
(
φ2l1 − φl2φl3

)
= 0 ,

∂wld
∂φ0l2

= g3(ηl1φl1 − ηl2φl2) + 2g4
(
φ2l2 − φl1φl3

)
= 0 ,

∂wld
∂φ0l3

= g3(ηl1φl3 − ηl2φl1) + 2g4
(
φ2l3 − φl1φl2

)
= 0 . (6.3)

These equations are satisfied by the alignment

〈ηl〉 = (0, vηl)
T , 〈φl〉 = (0, vφl , 0)T , with vφl =

g3
2g4

vηl , (6.4)

where vηl is undetermined. In the atmospheric neutrino sector, the F -flatness condition of

the driving fields ξ0a and φ0a leads to

∂watm
d

∂ξ0a
= Mξaξa + h1

(
φ2a1

+ 2φa2φa3

)
= 0 ,

∂watm
d

∂φ0a1

= h2
(
2φ2a1

− 2φa2φa3

)
= 0 ,

∂watm
d

∂φ0a2

= h2
(
2φ2a2

− 2φa1φa3

)
= 0 ,

∂watm
d

∂φ0a3

= h2
(
2φ2a3

− 2φa1φa2

)
= 0 , (6.5)

from which we can extract the vacuum expectation values of ξa and φa,
3

〈ξa〉 = vξa , 〈φa〉 = vφa
(
1, ω2, ω

)T
, with v2φa = −

Mξa

3h1
vξa . (6.6)

We see that the desired atmospheric flavon alignment of φa in eq. (4.4) is realized, and

it preserves the subgroup ZTST
2

2 . Moreover, the ratio v2φa/vξa = −Mξa
3h1

contributing to

the parameter ma is determined to be real. Then we proceed to derive the solar flavon

alignment in a short sequence of steps. The F -term conditions of the driving field ρ0 and

σ0 read

∂wsol
d

∂ρ01
= f3

(
2χs1χs2 + χ2

s3

)
= 0 ,

∂wsol
d

∂ρ02
= f3

(
2χs1χs3 + χ2

s2

)
= 0 ,

∂wsol
d

∂σ01
= f4

(
2ψs1ψs2 + ψ2

s3

)
= 0 ,

∂wsol
d

∂σ02
= f4

(
2ψs1ψs3 + ψ2

s2

)
= 0 .

(6.7)

3The alignment of φa can also be along the direction (1, 1, 1)T and it is related to the chosen one in

eq. (6.6) by a T transformation.
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A solution to this set of equations is given by

〈χs〉 = vχs(1, 0, 0)T , 〈ψs〉 = vψs (1,−2,−2)T . (6.8)

Subsequently the F -flatness of the driving field η0 and χ0 leads to

∂wsol
d

∂η01
= f5η

2
s1 + f6(ϕs1ψs2 + ϕs2ψs1 + ϕs3ψs3) = 0 ,

∂wsol
d

∂η02
= f5η

2
s2 + f6(ϕs1ψs3 + ϕs2ψs2 + ϕs3ψs1) = 0 ,

∂wsol
d

∂χ0
1

= 2f7
(
χ2
s1 − χs2χs3

)
+ f8(ηs1ϕs2 + ηs2ϕs3) = 0 ,

∂wsol
d

∂χ0
2

= 2f7
(
χ2
s2 − χs1χs3

)
+ f8(ηs1ϕs1 + ηs2ϕs2) = 0 ,

∂wsol
d

∂χ0
3

= 2f7
(
χ2
s3 − χs1χs2

)
+ f8(ηs1ϕs3 + ηs2ϕs1) = 0 , (6.9)

which generate the alignment

〈ηs〉 = vηs (1, 1)T , 〈ϕs〉 = vϕs (1,−1,−1)T , (6.10)

with

vϕs =
f5v

2
ηs

f6vψs
, v2χs =

f5f8v
3
ηs

f6f7vψs
. (6.11)

Furthermore, we notice that the contraction of 〈ψs〉 and 〈ϕs〉 to an S4 triplet 3′ is of

the form

(〈ψs〉〈ϕs〉)3′ ∝

−2

7

7

 . (6.12)

Here we have used the S4 contraction rule for 3′ ⊗ 3′ → 3′: (αβ)3′ = (2α1β1 − α2β3 −
α3β2, 2α3β3 − α1β2 − α2β1, 2α2β2 − α1β3 − α3β1)

T , where α = (α1, α2, α3)
T and β =

(β1, β2, β3)
T transform as 3′ [35]. Therefore the solar flavon alignment arises from the φ0s

dependent driving terms f9
(
φ0s (ψsϕs)3′

)
1

+ f10ζs
(
φ0sφs

)
1
, and accordingly the minimiza-

tion equations of the scalar potential are given by

∂wsol
d

∂φ0s1
= f10ζsφs1 + f9(2ϕs1ψs1 − ϕs2ψs3 − ϕs3ψs2) = 0 ,

∂wsol
d

∂φ0s2
= f10ζsφs3 + f9(−ϕs1ψs3 + 2ϕs2ψs2 − ϕs3ψs1) = 0 ,

∂wsol
d

∂φ0s3
= f10ζsφs2 + f9(−ϕs1ψs2 − ϕs2ψs1 + 2ϕs3ψs3) = 0 , (6.13)

which uniquely determine the solar alignment,

〈ζs〉 = vζs , 〈φs〉 = vφs (1,−7/2,−7/2)T , with vφs =
2f9vϕsvψs
f10vζs

. (6.14)
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Finally the F -term conditions of κ0 and ξ0s are

∂wsol
d

∂κ0
= f1(χs1ψs1 + χs2ψs3 + χs3ψs2) + f2(ϕ

2
s1 + 2ϕs2ϕs3) = 0 ,

∂wsol
d

∂ξ0s
= Mξsξs + f11

(
φ2s1 + 2φs2φs3

)
= 0 , (6.15)

which together with eq. (6.11) lead to the following relations among the VEVs vξs , vηs ,

vχs , vψs , vϕs and vφs

v5χs = − f1f5f
3
8

3f2f6f37
v5ηs , vϕs =

f7v
2
χs

f8vηs
, vψs =

f5f8v
3
ηs

f6f7v2χs
, v2φs = −

2Mξsvξs
51f11

. (6.16)

Notice that the vacuum configurations of ηs, χs, ψs, ϕs and φs preserve the subgroup

ZU2 . In addition, the ratio v2φs/vξs = −2Mξs
51f11

which contributes to the parameter ms is real

because of the CP symmetry.

As regards the higher order corrections to the driving superpotential wd, we note the

operators comprising one driving field and three flavons are forbidden for the assignments

in table 1. The subleading contributions to wld which can shift the vacuum of ηl and φl in

eq. (6.4) contain five flavons, and they are highly suppressed by 1/Λ3 with respect to the

renormalizable terms. The subleading terms of watm
d and wsol

d involve four flavon fields,4

the resulting corrections are suppressed by 1/Λ2 compared to the contribution from the

leading order terms and therefore can be safely neglected.

6.2 The structure of the model

The lowest dimensional Yukawa operators invariant under the family symmetry S4 ×Z5 ×
Z6 × Z8, responsible for the charged lepton masses, are given by

wl =
yτ
Λ

(Lφl)1 τ
cHd +

yµ1

Λ2
(L (ηlφl)3)1 µ

cHd +
yµ2

Λ2
(L (φlφl)3)1 µ

cHd

+
ye1
Λ3

(Lφl)1 (ηlηl)1 e
cHd +

ye2
Λ3

((Lφl)2 (ηlηl)2)1 e
cHd +

ye3
Λ3

((Lηl)3 (φlφl)3)1 e
cHd

+
ye4
Λ3

((Lηl)3′ (φlφl)3′)1 e
cHd +

ye5
Λ3

(Lφl)1 (φlφl)1 e
cHd +

ye6
Λ3

((Lφl)2 (φlφl)2)1 e
cHd

+
ye7
Λ3

((Lφl)3 (φlφl)3)1 e
cHd +

ye8
Λ3

((Lφl)3′ (φlφl)3′)1 e
cHd , (6.17)

where all couplings are real since generalized CP symmetry is imposed on the model.

Because the contraction (φlφl)3 vanishes due to the antisymmetry of the associated Clebsch-

Gordan coefficients, the terms proportional to yµ2 , ye3 and ye7 give null contributions.

Plugging the VEVs of ηl and φl in eq. (6.4) into the above superpotential wl, we find the

charged lepton mass matrix is diagonal and the three charged lepton masses are

me =

∣∣∣∣∣(ye6 − 2ye8 − 2ye4vηl/vφl + ye2v
2
ηl
/v2φl

) v3φl
Λ3

∣∣∣∣∣ vd,
mµ =

∣∣∣yµ1

vηlvφl
Λ2

∣∣∣ vd, mτ =
∣∣∣yτ vφl

Λ

∣∣∣ vd , (6.18)

4A single operator (σ0φ3
s)1 is allowed by the symmetry of the model at order O(1/Λ). However, this

term vanishes exactly when the vacuum alignment of φs in eq. (6.14) is inserted.
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where vd = 〈Hd〉. Note that auxiliary symmetry Z5 × Z6 × Z8 imposes different powers

of ηl and φl for the electron, muon and tau lepton mass terms. As a result, the electron,

muon and tau masses arise at order (〈Φl〉/Λ)3, (〈Φl〉/Λ)2 and 〈Φl〉/Λ respectively, where

Φl is either φl or ηl. The realistic mass hierarchy can be reproduced if 〈Φl〉/Λ is of order

λ2, where λ ' 0.23 denotes the Cabibbo angle. Moreover, the subleading operators related

to ec, µc and τ c comprise five flavons and consequently are suppressed by 1/Λ5. Such

corrections have a minor impact on the results for the charged lepton masses and lepton

mixing parameters and can be neglected.

In the neutrino sector, the leading order operators contributing to the neutrino

masses are

wν =
ya
Λ

(Lφa)1Huν
c
atm +

ys
Λ

(Lφs)1′ Huν
c
sol + xaν

c
atmν

c
atmξa + xsν

c
solν

c
solξs , (6.19)

where the coupling constants ya, ys, xa and xs are real parameters because of the imposed

CP symmetry. The neutrino Dirac mass matrix mD arises from the first two terms in

eq. (6.19). With the vacuum alignments of φa and φs given in eq. (6.6) and eq. (6.14), we

find mD takes the following form

mD =

 yavφa ysvφs
ωyavφa − 7

2ysvφs
ω2yavφa − 7

2ysvφs

 vu
Λ
, (6.20)

where vu = 〈Hu〉. When the singlet flavons ξa and ξs obtain VEVs, the last two terms of

wν lead to a diagonal right-handed neutrino mass matrix

mN =

(
xavξa 0

0 xsvξs

)
. (6.21)

Using the seesaw relation mν = −mDm
−1
N mT

D, we can read off the light neutrino Majorana

mass matrix

mν = ma

 1 ω ω2

ω ω2 1

ω2 1 ω

+mse
iη

 1 − 7/2 − 7/2

−7/2 49/4 49/4

−7/2 49/4 49/4

 , (6.22)

with

ma = −
y2av

2
φa

xavξa

v2u
Λ2
, mse

iη = −
y2sv

2
φs

xsvξs

v2u
Λ2

. (6.23)

We see that the resulting neutrino mass matrix in eq. (6.22) is of the same form as eq. (4.12)

but with fixed value x = −7/2. Moreover, both ratios v2φa/vξa and v2φs/vξs can be expressed

in terms of the parameters of the driving superpotential and thus they are real, as shown

in section 6.1. As a consequence, the relative phase η is either 0 or π. The desired value

η = π can be achieved for h1f11xaxsMξaMξs < 0.

Following the procedure outline in section 4, we find the lepton mixing matrix for

η = π takes the following form

UPMNS =
1

5
√

6

7
√

2 − 2
√

13 i cos θ 2
√

13 sin θ√
26 7i cos θ − 5

√
3 sin θ − 7 sin θ + 5

√
3 i cos θ√

26 7i cos θ + 5
√

3 sin θ − 7 sin θ − 5
√

3 i cos θ

 , (6.24)
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with

sin 2θ =
10|14r − 1|

13
√

289r2 + 32r + 4
, cos 2θ =

3 (57r + 8)

13
√

289r2 + 32r + 4
, (6.25)

where r = ms/ma. Then the analytical expressions for the lepton mixing angles can be

extracted,

sin2 θ13 =
26

75
sin2 θ, sin2 θ12 =

26 cos2 θ

62 + 13 cos 2θ
, sin2 θ23 =

1

2
. (6.26)

We see that the atmospheric angle θ23 is maximal, the solar and the reactor mixing angles

fulfill the sum rule

cos2 θ12 cos2 θ13 =
49

75
. (6.27)

Using the 3σ interval 0.01981 ≤ sin2 θ13 ≤ 0.02436 [4], from eq. (6.26) we find the allowed

range of the parameter r is 0.448 ≤ r ≤ 0.634 and the exact sum rule in eq. (6.27) gives

0.330 ≤ sin2 θ12 ≤ 0.333 which can be tested by JUNO in near future [45]. For the CP

invariants, we get

JCP = − 91

750
√

3
sin 2θ, I1 = 0 . (6.28)

Therefore the Dirac phase δCP is maximal and the Majorana phase β is trivial with

δCP = −0.5π, β = 0 . (6.29)

Furthermore, we report the exact results for the neutrino masses

m2
2 =

9

8
m2
a

(
289r2 − 18r + 4− |2− 17r|

√
289r2 + 32r + 4

)
,

m2
3 =

9

8
m2
a

(
289r2 − 18r + 4 + |2− 17r|

√
289r2 + 32r + 4

)
, (6.30)

with the lightest neutrino massless m1 = 0. For the best fit values of ma = 3.720 meV and

r = 0.553, the neutrino masses m2 and m3 are

m2 = 8.622 meV, m3 = 49.918 meV , (6.31)

as given in table 1. We note that the next-to-leading operators of wν are νcatmν
c
atm(φ2a)1,

νcsolν
c
sol(φ

2
s)1 and νcatmν

c
sol(φaφs)1′ . The contributions of the first two terms can be absorbed

via a redefinition of the parameters xa and xs since both v2φa/vξa and v2φs/vξs are real. The

last term will generate off-diagonal elements of the right-handed neutrino mass matrix.

The corresponding corrections to the leading order results for the mixing parameters are

of relative order λ2. In summary, we have reproduced the benchmark model of the new

LSS variants highlighted in table 1.

7 Conclusion

In this paper we have proposed a new tri-direct CP approach for two right-handed neutrino

models based on the idea that the high energy family and CP symmetry Gf oHCP is spon-

taneously broken down to Gatm oHatm
CP in the sector of one of the right-handed neutrinos,
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and Gsol oHsol
CP in the sector of the other right-handed neutrino, with the charged lepton

sector having a residual flavour symmetry Gl, as illustrated in figure 1.

In such a tri-direct CP approach we have shown that the combination of the three

residual symmetries provides a new way of fixing the parameters. In particular it can lead

to vacuum alignments in the neutrino sector which are uniquely fixed by symmetry, unlike

the semi-direct CP approach where not all such vacuum alignments are uniquely fixed.

To illustrate the approach, we have revisited the Littlest Seesaw model based on S4 and

shown that the tri-direct CP approach based on Gatm = ZU2 and Gsol = ZSU2 uniquely

fixes alignments which are not uniquely fixed in the semi-direct CP approach based on a

common residual symmetry Gν = ZSU2 in the neutrino sector.

Following the tri-direct CP approach, we have also proposed new variants of the Littlest

Seesaw model which have not so far appeared in the literature, with different predictions

for each variant. We have performed a comprehensive numerical analysis of a selection

of benchmark points within the LSS variants arising from S4, in order to determine their

viability and predictions. Although the benchmarks within most of the variants have a

larger χ2 than the original LSS model, which provides an excellent agreement with exper-

imental data, one of the benchmarks has a relatively low χ2 ≈ 4.5. We have proposed an

explicit model which can realise this successful benchmark point, based on the atmospheric

flavon vacuum alignment (1, ω2, ω) and the solar flavon vacuum alignment (1,−7/2,−7/2).

The model has exact accidental µτ reflection symmetry [48] and hence predicts maximal

atmospheric mixing and maximal Dirac CP violation.

Although the flavor symmetry and CP symmetry are completely broken in the whole

neutrino sector, the tri-direct CP models are rather predictive. The light neutrino mass ma-

trix is generally predicted to depend on only four parameters ma, ms, x and η, and the last

two parameters x and η can be fixed to certain benchmark values by explicit superpotential

alignment terms in a concrete model. The cross product 〈φatm〉 × 〈φsol〉 is an eigenvector

of mν with zero eigenvalue, and neutrino mass spectrum can be either normal ordering or

inverted ordering. Finally we note that the tri-direct CP approach can be extended to the

case of three right-handed neutrinos, then the flavons associated with each right-handed

neutrino in the Yukawa couplings preserve different residual symmetries. Such a scenario

can also lead to phenomenologically viable lepton mixing angles and neutrino masses.
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A Diagonalization of the neutrino mass matrix m′
ν

In this appendix, we will present the results for the diagonalization of m′ν . From eqs. (4.15)

and (4.16), we find the neutrino mass matrix m′ν can be written as

m′ν =

0 0 0

0 |y|eiφy |z|eiφz
0 |z|eiφz |w|eiφw

 , (A.1)

where the parameters y, z, w, φy, φz and φw are given in eq. (4.16). The neutrino mass

matrix m′ν can be exactly diagonalized by a unitary matrix Uν2 [39],

UTν2m
′
νUν2 = diag(0,m2,m3) . (A.2)

The light neutrino masses m2 and m3 are given by

m2
2 =

1

2

[
|y|2 + |w|2 + 2|z|2 − |w|

2 − |y|2

cos 2θ

]
, m2

3 =
1

2

[
|y|2 + |w|2 + 2|z|2 +

|w|2 − |y|2

cos 2θ

]
,

(A.3)

where the rotation angle θ is specified by

sin 2θ =
2|z|
√
|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)√

(|w|2 − |y|2)2 + 4|z|2 [|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)]
,

cos 2θ =
|w|2 − |y|2√

(|w|2 − |y|2)2 + 4|z|2 [|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)]
. (A.4)

The unitary matrix Uν2 in eq. (A.2) takes the following form,

Uν2 =

1 0 0

0 cos θ ei(ψ+ρ)/2 sin θ ei(ψ+σ)/2

0 − sin θ ei(−ψ+ρ)/2 cos θ ei(−ψ+σ)/2

 , (A.5)

where the phases ψ, ρ and σ are expressed in terms of model parameters as

sinψ =
−|y| sin(φy − φz) + |w| sin(φw − φz)√
|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)

,

cosψ =
|y| cos(φy − φz) + |w| cos(φw − φz)√
|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)

,

sin ρ = − (m2
2 − |z|2) sinφz + |y||w| sin(φy + φw − φz)

m2

√
|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)

,

cos ρ =
(m2

2 − |z|2) cosφz + |y||w| cos(φy + φw − φz)
m2

√
|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)

,

sinσ = − (m2
3 − |z|2) sinφz + |y||w| sin(φy + φw − φz)

m3

√
|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)

,

cosσ =
(m2

3 − |z|2) cosφz + |y||w| cos(φy + φw − φz)
m3

√
|y|2 + |w|2 + 2|y||w| cos(φy + φw − 2φz)

. (A.6)
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