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Abstract: In this note we study two point functions of Coulomb branch chiral ring ele-
ments with large R-charge, in quantum field theories with N = 2 superconformal symmetry
in four spacetime dimensions. Focusing on the case of one-dimensional Coulomb branch, we
use the effective-field-theoretic methods of [1], to estimate the two-point correlation func-
tion Yn ≡ |x− y|2n∆O

〈
(O(x))n (Ō(y))n

〉
in the limit where the operator insertion On has

large total R-charge J = n∆O. We show that Yn has a nontrivial but universal asymptotic
expansion at large J , of the form

Yn = J !

(
|NO|
2π

)2J
J α Ỹn ,

where Ỹn approaches a constant as n→∞, andNO is an n-independent constant describing
on the normalization of the operator relative to the effective Abelian gauge coupling. The
exponent α is a positive number proportional to the difference between the a-anomaly
coefficient of the underlying CFT and that of the effective theory of the Coulomb branch.
For Lagrangian SCFT, we check our predictions for the logarithm Bn = log(Yn), up to and
including order log(J ) against exact results from supersymmetric localization [2–5]. In the
case of N = 4 we find precise agreement and in the case N = 2 we find reasonably good
numerical agreement at J ' 60 using the no-instanton approximation to the S4 partition
function. We also give predictions for the growth of two-point functions in all rank-one
SCFT in the classification of [6–9]. In this way, we show the large-R-charge expansion
serves as a bridge from the world of unbroken superconformal symmetry, OPE data, and
bootstraps, to the world of the low-energy dynamics of the moduli space of vacua.
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1 Introduction

Recently there has been development of the properties of conformal field theories (CFTs)
with global charges, in states of large quantum number [1, 10–32].1 Many large quantum
number analyses have studied the asymptotic expansion of operator dimensions at large

1Another paper involving the subject of conserved charges includes [33]. We thank V. Rychkov for
pointing out this paper to us.
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quantum number J (either an internal symmetry such as spin, or an internal global sym-
metry such as a U(n) or O(n) symmetry), in negative powers of the total charge J . In
many cases these relations have been checked and remarkable agreement has been found
among various methods to study such regimes: conformal bootstrap,2 S-matrix bootstrap,
Monte Carlo simulation, and the use of effective field theory. Also, in [12] three-point func-
tions were studied and a similar expansion was derived for OPE coefficients (equivalently,
three-point functions) where at least one of the operators has large global charge J (and
therefore, automatically, at least two of the operators).

The general pattern emerging from these works is that the behavior of operator dimen-
sions and OPE coefficients becomes simple in the limit of some large quantum number J
even in a strongly coupled system. This pattern is interesting because its robustness appears
to transcend the explanations for it in the analysis of any individual case. In some cases,
such as large spin in a single plane in a CFT, the explanation lies in the conformal bootstrap
and looks particularly intuitive in an AdS holographic dual. For systems with large global
charge carried by bosonic fields, the most readily apparent explanations appear to involve a
large-charge effective field theory, in which the large-J operator is well-approximated by a
smooth classical solution in radial quantization. These large-quantum-number limits them-
selves appear to be special cases of an even more general situation, a “macroscopic limit”
in which one takes pure or mixed states or density matrices into some extreme direction in
Hilbert space. The “eigenstate thermalization hypothesis” [39], when it holds, is perhaps
the most famous example of this behavior.3

In [1] the authors analyzed the large-R-charge expansion for operator dimensions in a
superconformal field theory with a one-complex-dimensional moduli space, and were able
to quantize the effective theory on moduli space in radial quantization, in order to compute
operator dimensions of BPS and near-BPS primary operators of large R-charge J . It was
shown that the basic predictions of superconformal invariance (such as nonrenormalization
of the energies of BPS scalar primaries) can be recovered, and nontrivial predictions about
semi-short states can be made and verified via the superconformal index. Additionally, one
easily derives many nontrivial relations on the asymptotic expansion on the energies of the
low-lying non-BPS states, including nontrivial information about the J -scaling (order J −3)
and sign (negative) of the leading correction to the first non-BPS primary dimension.

It is therefore natural to attempt to make further contact between the large-J expansion
and other methods that make maximal use of superconformal symmetry. To do this, one
would like to find a set of observables associated with states of large R-charge which both has
a nontrivial J −1 expansion, like the non-BPS energies in [1], and is also controlled directly
by exact superconformal symmetry. The obvious candidate is the three-point functions of
two BPS and one anti-BPS chiral primary scalar operators. These three-point functions
are equivalent to OPE coefficients of the chiral ring, and are therefore independent of D-

2For a review of the conformal bootstrap, including the dramatic progress [34–36] of the modern era,
see [37, 38] and references therein.

3We thank D. Jafferis and A. Zhiboedov for bringing this analogy to our attention and for communicating
preliminary results on a bootstrap derivation of some properties of the large-J behavior in [10–12] making
use of Regge theory and the conceptual connection with the ETH [40, 41].
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terms in the effective action. At the same time, they have a nontrivial dependence on J ,
unlike the operator dimensions of BPS states. Due to their independence of D-terms, these
three-point functions can in principle be computed exactly by supersymmetric localization
on S4 and in some cases have been worked out explicitly [2–5, 42–48] (See also an earlier
work [49]).

In this note we will compute three-point functions of chiral ring elements in theories
with N ≥ 2 superconformal symmetry in four spacetime dimensions, with a one-complex-
dimensional Coulomb branch. Such three-point functions are more conveniently expressed
as two-point functions

Yn ≡
〈
OnOn

〉
, (1.1)

where for any operator O we abbreviate

〈OO〉 ≡ |x|+2∆O 〈O(x)O(0)〉IR4 , (1.2)

which is independent of x in a CFT. For a one-complex-dimensional Coulomb branch, its
chiral ring is generated by a single element O, which we take to be of dimension

∆O = |JO| . (1.3)

In equation (1.3) we4 normalize the R-charge J so that the N = 2 supercharges Qiα have
J = −1

2 , the BPS bound for scalar operators is ∆ ≥ |J |, and a free field φ has ∆φ = |Jφ| = 1.
The main focus of this paper is to show the large-n behavior of the function Yn is

universal, behaving asymptotically as

Yn = exp (Bn) ,

Bn = log [J ! ] + b−1 J + α log(J ) +O(n0) ,
(1.4)

where J is the total R-charge J = n |JO| = n∆O of the operator insertion On, and the
remainder is bounded as J → ∞.

The coefficient b−1 is n-independent but depends on the normalization of the metric
on moduli space relative to the normalization of the operator O itself. The constant α is
related to the a-coefficient in the Weyl anomaly. The definition of the normalization of the
anomaly coefficient in turn depends on a convention, but the exponent α has an absolute
meaning, so we should express the value of α in a convention-independent way. The value
of α can be expressed as

α ≡ 5∆a

12 afavm
, (1.5)

where ∆a is the difference between the a-coefficient of the underlying CFT aCFT and the a-
coefficient of the effective theory of massless fields on moduli space, aEFT. The normalization
afavm in the denominator denotes the a-anomaly of a free Abelian vector multiplet of N = 2

supersymmetry. We have expressed the value of α in this form in order to describe it
4Slightly nonstandardly but very conveniently.
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independent of normalization convention. In one commonly used convention of [50] by
Anselmi, Erlich, Freedman and Johansen (AEFJ), the value of afavm is 5/24, and so

α = 2(aCFT − aEFT)[AEFJ] (1.6)

in that convention. In table 1, we give a list of values for the α coefficient in all known
N = 2 superconformal field theories whose moduli space at a generic point has only one
Abelian vector multiplet. For example, N = 4 super-Yang-Mills theory with gauge algebra
su(2), has an α-coefficient α = +1.

As we have seen in [1], the insertion of an operator of large R-charge creates a state of
large R-charge on S3 via radial quantization. Though we will not be using radial quantiza-
tion or the S3 × (time) conformal frame at all in the present paper, the underlying physics
is the same, as is the reason for recovering a semiclassical description: the large-n limit
of two-point functions Yn is a large-J limit, in which the effective theory becomes weakly
coupled on the infrared scale.

The leading term is contributed by the action of the classical solution created by the
insertions (O(x))n(O(y))n, the term b−1J depends on the normalization of the operator
O, and the subleading term α log(J ), is contributed by the Wess-Zumino lagrangian in the
effective theory on the Coulomb branch. The remaining regular terms come from quantum
corrections within the effective theory, as well as explicit higher-derivative terms in the
effective action of the moduli space, with unknown coefficients. (Some low-derivative terms
in effective actions have been constructed [51–54] but still there is no full classification even
at low orders in the derivative expansion, let alone anything known about the coefficients
of higher-derivative terms even for simple N = 2 SCFT.) Quantum corrections within the
effective action itself start only at order J 0; even those are summed up entirely by the free-
field action. That is, the only quantum effects contributing at order J 0 are determinants
in the free effective theory, and these are completely summed up by Wick contractions of
the free abelian vector multiplet scalar describing the Coulomb branch.

2 Large-R-charge expansion of two-point functions

Much of the setup of the calculation is similar to that of [1], and we shall refer the reader
to consult that paper to the extent the two calculations are more or less parallel. Two
differences include the dimensionality of spacetime (D = 4 in the present paper versus
D = 3 in [1]) and the amount of supersymmetry (eight Poincaré supercharges here versus
only four in [1]), but these distinctions make little difference to the structure of the large-J
expansion, and we will mostly just refer to the superspace analysis of [1], drawing attention
to differences as they become relevant.

In particular, the case of eight supercharges in D = 4 can be seen as a special case of
N = 1 SUSY in D = 4, which dimensionally reduces to N = 2 SUSY in D = 3, as in the
case of the model studied in [1].

Our analysis will apply to all superconformal theories in four dimensions with N ≥ 2

SUSY and a one-dimensional Coulomb branch. We will only make use of the N = 2

subalgebra, with N = 3, 4 theories being subsumed as special cases. When we refer to
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dimensions of moduli spaces, we will always be using N = 2 terminology, in terms of which
e.g., the G = SU(N) super-Yang-Mills theory with N = 4 SUSY, can be thought of as an
N = 2 theory with gauge group G and a single adjoint hypermultiplet, so that the moduli
space is described by N − 1 vector multiplets and N − 1 massless neutral hypermultiplets.

2.1 Basics

Two-point functions as three-point functions. For N = 2, D = 4 superconformal
theories with one-dimensional Coulomb branch coordinatized by the chiral primary operator
O, the nonvanishing three-point functions are

Cn1, n2, n1+n2 ≡
〈
On1On2 On1+n2

〉
, (2.1)

where we have suppressed the position dependence on the positions of the amplitude, as it
is determined uniquely by the conformal Ward identity and the dimensions ni ∆O ≡ ni |JO|
of the operators. Explicitly, we have used the abbreviation〈
On1On2 On1+n2

〉
≡ |x1 − y|+2n1∆O |x2 − y|+2n2∆O

〈
On1(x1)On2(x2)On1+n2(y)

〉
(2.2)

Chiral primaries (with the same sign of the R-charge) have the special property that their
OPE is nonsingular, and therefore their three-point functions can be reduced immediately
to two-point functions, by taking the two like-charge chiral primaries in the correlator, to
lie at the same point, and we have

Yn ≡ Cn′, n−n′, n̄ =
〈
OnOn

〉
≡ |x|2n∆O

〈
On(x)On(0)

〉
, (2.3)

independent of n′.
At first sight, the notion of a meaningful normalization for a conformal two-point

function seems unfamiliar, because one generally thinks of two-point functions as simply
being equal to 1. However this normalization convention, while widely used, is not the
natural one for elements of the chiral ring. Once a set of generators for the chiral ring has
been chosen, the higher operators generated from them algebraically, are defined principle
by associativity, including their normalization. That is, if one fixes the normalizations
of chiral ring elements χ1 and χ2, one no longer has the freedom to unit-normalize the
product χ3 ≡ χ1χ2.

In the case of a one-dimensional chiral ring, the normalization of the generator O is
arbitrary, but once it has been chosen, one no longer has the freedom to rescale the operators
On, and their two-point functions Yn have nontrivial dependence on n which is an output
of the dynamics of the theory, related via (2.3) to three-point functions.

2.2 Free-field approximation

Two-point functions on IR4. In the introduction we mentioned some differences from
the case of [1], such as the amount of SUSY and the number of spacetime dimensions, that
do not much alter the structure of the calculation. A more relevant difference, is that we
will perform our computation directly as a two-point correlator on flat space IR4, rather
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than in radial quantization as we did in [1]. This is because the observable we are studying,
the norm of the state itself, is harder to see directly in radial quantization, as the Hilbert
space formalism normally begins by taking the norm of the state as an input. Thus radial
quantization is more directly useful for computing the power law in the two-point function
— i.e., the energy of the state — than for computing the overall normalization of the two-
point function. We could of course compute these same observables in radial quantization
as three-point functions, as was done for the O(2) model or other CFT described at large
charge by a conformal goldstone EFT, as described in generality in [12]. Checking that these
two methods produce the same result for Yn would be a valuable check on the consistency
of our approach, but we will not pursue it in the present article.

Free effective field. By assumption, our effective action contains a single vector multi-
plet, plus possibly massless hypermultiplets. We shall ignore the latter for the moment, as
they will not affect the classical solution that controls the leading terms in the two-point
function. In discussing the vectormultiplet effective action, we will mostly5 follow the con-
ventions of [55, 56], and give explicit translation of other quantities into the normalizations
of [55, 56]. The complexified gauge coupling τ is

τeff ≡
4πi

g2
eff

+
θeff

2π
. (2.4)

The degrees of freedom in a vector multiplet are an abelian gauge field, and neutral fermions
and a neutral complex scalar A. In terms of the field A, the coupling τeff is given by

τeff = F ′′eff(A) , (2.5)

where F is the effective holomorphic prepotential for the Abelian vector multiplet based
on A.

The kinetic term for A contains nontrivial dynamical information and is related to the
abelian gauge coupling, but we do not know anything a priori about the kinetic term for A,
other than that it respects the symmetries of the system. The combination of R-symmetry
and scale-invariance force metric on moduli space to be flat. Then the kinetic term for A
has to be

Sfree ≡
∫

d4xLfree ,

Lfree =
Im(τeff)

4π
(∂µA)(∂µĀ) = g−2

eff (∂µA)(∂µĀ).

(2.6)

The complexified effective gauge coupling is related to the effective prepotential by (2.5) and
must be constant as a function of A in a conformal theory, so the effective prepotential is

F(A) =
τeff A

2

2
. (2.7)

5With one particular exception: for the microscopic holomorphic gauge coupling in conformal N = 2

SQCD, the references [55, 56] define τ = 8πi
g2YM

+ θ
π

for reasons to do with duality and Dirac quantization

condition. We will however use the convention τ = 4πi
g2

+ θ
2π

for all gauge couplings, both microscopic and
effective, uniformly in the representation of the hypermultiplets. This convention is more commonly used
recently, particularly in the literature on localization, e.g. [57] and works making use of it.
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The parameter τeff can depend on any marginal coupling parameters that may be present,
but not on the dynamical field A.

We can define a field with unit kinetic term by

φunit = g−1
eff A =

√
Im(τeff)

4π
A (2.8)

so that the kinetic term is

Lfree ≡ |∂φunit|2 = (∂µφ̄unit)(∂µφunit) . (2.9)

Note that the transformation (2.8) is holomorphic in A and φ but not in the background
couplings controlling τeff . We will drop the subscript unit for the remainder of this article
except when potentially unclear.

Normalization of the effective scalar. In order to evaluate the n+1 term in Bn ≡
log(Yn), one would need to relate the vector multiplet scalar A(x), to the generator O(x) of
the Coulomb branch chiral ring, of whose nth powers we are taking the two-point function.
We must have

O ≡ (MO A)∆O , (2.10)

for some constant MO, where ∆O is the conformal dimension of O. The change of variables
is locally holomorphic as a function of A, and the normalization constant MO should be
holomorphic in all background fields as well, such a any marginal directions in the space
of couplings:

MO = MO(τ) ,
∂M(τ)

∂τ̄
= 0 . (2.11)

Defining NO ≡ NO(τ, τ̄) such that

NO φ = MO A , (2.12)

the quantities NO and MO are related by

NO = geff MO =

√
4π

Im(τ)
MO . (2.13)

Since we are assuming φ has unit kinetic term in the Lagrangian, we cannot absorb NO
into the definition of φ. We could of course absorb NO into the definition of O, but we might
want to normalize O in some other way. For instance, we might want to take O itself to
have unit two-point function Y2. For general N = 2 theories with one-dimensional Coulomb
branch, we do not know a simple way to calculate NO given some preferred normalization
of O: this is an interesting problem for future investigation of the large-R-charge limit. For
particular theories, namely those with a marginal coupling τ ≡ τYM, we shall be able to
say more, and we will come to this situation in a later section.

For now, however, we leave MO unspecified. In terms of this factor, the map between
O and φ can be written

O = (NO)J φJ = (geff MO)J φJ =

(√
4π

Im(τ)
MO

)J
φJ . (2.14)

– 7 –



J
H
E
P
1
2
(
2
0
1
7
)
1
3
5

Multivaluedness of the map between O and φ. Note that the map between O and
A or φ is not one to one in general. If ∆ is an integer, then the map from φ to O is single
valued, but it is only one-to-one if ∆O = 1 which holds only in a free theory. If ∆O is not
an integer, the map from φ to O is not even single-valued.6

The coordinate φ or A should be thought of only as a local holomorphic coordinate here.
As long as we are away from the origin where the effective theory is valid, the singularity
should not affect the validity of the effective action.

Treating a or φunit as a local coordinate should not affect the validity of our use of the
effective field theory, as it does not in the usual manipulations of Seiberg-Witten theory.
In the case where ∆O is noninteger, we may for simplicity restrict ourselves to the case,
where J is integer, so that our Wick-contraction of J free fields is a fully well-defined
notion.7 However we may always perform a further transformation to a logarithmic field
L ≡ log(φ), in which the calculation may be performed even for J /∈ Z; a similar point was
made in [1]. For the purpose of computing operator dimensions as in [1], the existence of
the logarithmic superfield is a convincing reason to believe there is no room for irregular
behavior depending on the fractional part of J . On the other hand, the calculation of two-
point functions is slightly different, as the non-single-valuedness of the map may become
relevant to the dynamics at the point of insertion of the operator O. We will leave this
an open question, and for the present paper we will simply choose n such that J is an
integer. In all Lagrangian theories, at any rate, ∆O is always an integer, with the Coulomb
branch chiral ring being generated by traces of powers of the nonabelian vector multiplet
scalar. For a rank-one Lagrangian theory, ∆O is always 2, and O lies in the multiplet of
the marginal operator cotangent to the microscopic coupling τ .

Calculation of the free-field contribution. With all this in mind, we can now write
the leading approximation to the two-point correlator. Choosing n so that k = n∆ is an
integer and Wick contracting J complex free fields, we have

Yn '
〈
OnOn

〉
free

= PJ (J )! , (2.15)

where

P = (2π)−2 |NO|2 =
g2
eff

4π2
|MO|2 =

1

π Im(τeff)
|MO|2 , (2.16)

where the (2π)−2 comes from the normalization of the free propagator with unit kinetic
term, (A.4).

This is simply the free approximation, of course, and is not exact in n. However in sub-
sequent sections we shall now show that interaction terms have n-suppressed contributions

6Though ∆O is integer in Lagrangian theories, there are various non-Lagrangian rank-one theories (so-
called Argyres-Douglas theories [58–60]) with fractional ∆O. See, e.g. table 1 of [8].

7It is believed that the conformal dimensions of chiral primary operators in four-dimensional N = 2

superconformal field theories are always rational. This is true automatically in Lagrangian theories and
in all known non-Lagrangian N = 2 theories as well. As evidence in the rank one case, all models in the
general classification [6–9] have rational conformal dimensions.
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in the quantum effective action Bn, using arguments parallel to those of [1] (also similar
arguments in nonsupersymmetric examples [10–15, 27–29]).

In order to see this, we must relate our two-point function to a classical solution corre-
sponding to the saddle point of the CFT action with sources corresponding to the logarithms
of the operator insertions. Doing this we shall check that the classical approximation to Bn
matches (2.15) up to terms of order log(J ) and smaller, which come from quantum effects
in the path integral over the (free-field) action with (nonlinear) sources.

2.3 Classical solution with operator insertions

Large-J insertions as classical sources. The measure for the free Euclidean path
integral is of course DφDφ̄ exp (−Sfree), so the path integral with insertions is equivalent
to a path integral with sources given by the negatives of the logarithms of the insertions,〈∏

i

Oi

〉
≡ 〈1〉−1

∫
DφDφ̄ exp (−Sfull) =

∫
DφDφ̄ exp (−(Sfree + Ssource)) ,

Ssource ≡ −
∑
i

log(Oi) .
(2.17)

For us,

O1 = [O(x1)]J = (NO)J φJ (x1) , O2 ≡
[
O(x2)

]J
= (N∗O)J φ̄J (x2) , (2.18)

where we have used (2.10) and defined

J ≡ n∆O = n|JO| , (2.19)

This quantity J ≡ n∆O is the U(1)R R-charge J of the operator On.
The full free classical action with sources, is then

Sfree+sources = −J log
(
|NO|2

)
+

∫
d4xLdyn ,

Ldyn ≡
(
∂µφ̄

)
(∂µφ)− J log(φ)δ(x− x1)− J log

(
φ̄
)
δ(x− x2) ,

(2.20)

so the EOM is

∂2φ̄ = −J
φ
δ(x− x1) , ∂2φ = −J

φ̄
δ(x− x2) . (2.21)

Solution to the EOM. The classical solution is not unique: it has a U(1)R phase zero
mode but no scaling zero mode.8 The phase zero mode is an R-symmetry goldstone of the

8The phase zero mode only contributes a finite (J-independent) factor to the two-point function, as can
be seen from the free case. This is not immediately apparent because the solution is complex and the con-
tour of integration for the phase zero mode is not a priori obvious. The correct contour of integration and
the finiteness of the phase zero mode integral, can be understood more easily by organizing the calculation
in terms of coherent states and extracting Fock states from them, which under the state-operator correspon-
dence is equivalent to adding linear rather than logarithmic sources and then performing a contour integral
over the strength of the linear source. For our purposes all this is irrelevant because the determinantal
factors are unchanged from the free case at the order of interest.

– 9 –



J
H
E
P
1
2
(
2
0
1
7
)
1
3
5

solution, which acts as a constant shift of the axionic superpartner of the dilaton τ. An
effective action including this degree of freedom has been studied, with the R-symmetry
Goldstone identified as the β field of [61]. At higher order in J the integral over the β
zero mode generates corrections to the quantum effective action through its measure, but
these are suppressed and only contribute at order J 0 or smaller. As we are computing the
quantum effective action only up to and including order log(J ) in this article, we need not
consider such effects.

So then the solution is of the form

φ(x) =
cφ

(x− x2)2
, φ̄(x) =

cφ̄
(x− x1)2

, (2.22)

and the equation of motion (2.21) is equivalent to

cφ ∂
2
[
(x− x2)−2

]
= −J

φ̄
δ(x− x2) , cφ̄ ∂

2
[
(x− x1)−2

]
= −J

φ
δ(x− x1) . (2.23)

Using the normalization of the δ-function (A.5), this gives

−(2π)2 cφ δ(x− x2) = −J
φ̄
δ(x− x2) , −(2π)2 cφ̄ δ(x− x1) = −J

φ
δ(x− x1) , (2.24)

which is true if and only if

(2π)2 cφ φ̄(x2) = (2π)2 cφ̄ φ(x1) = J . (2.25)

Plugging the parametrized solution (2.22) back into (2.25) shows both EOM are satisfied if
and only if

(2π)2
cφcφ̄

(x1 − x2)2
= J (2.26)

This is equivalent to

cφ = eiβ0 c0, cφ̄ = e−iβ0 c0, c0 ≡
|x1 − x2|

2π

√
J . (2.27)

So the general solution is

φ(x) =
cφ

(x− x2)2
=
e+iβ0 |x1 − x2|
2π (x− x2)2

√
J ,

φ̄(x) =
cφ̄

(x− x1)2
=
e−iβ0 |x1 − x2|
2π (x− x1)2

√
J .

(2.28)

The magnitude of φ is

|φ| ≡ (φφ̄)
1/2 =

√
J

2π

|x1 − x2|
|x− x1| |x− x2|

, (2.29)
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Value of the action at the saddle point. To evaluate the classical action, discard
total derivatives to rewrite the unit kinetic term as

|∂φ|2 = −1

2
φ∂2φ̄− 1

2
φ̄ ∂2φ , (2.30)

and the Lagrangian density then vanishes on the saddle point, except for delta-function
contributions at the source terms:

|∂φ(x)|2 = +
J
2
δ(4)(x− x1) +

J
2
δ(4)(x− x2) . (2.31)

So the Lagrangian with sources (2.20) can be reduced to

Ldyn ' −J
(

log(φ) +
1

2

)
δ(4)(x− x1)− J

(
log
(
φ̄
)

+
1

2

)
δ(4)(x− x2) (2.32)

where the ' indicates that we have discarded total derivatives. The action of the classical
solution at the saddle point is therefore

Sdyn =

∫
d4xLdyn = −J log

∣∣φ(x1)φ̄(x2)
∣∣+ J . (2.33)

Plugging in the solution (2.28), we have∣∣φ(x1)φ̄(x2)
∣∣ =

J
(2π)2 |x1 − x2|2

, (2.34)

which gives

Sdyn = J [− log(J ) + 1 + 2 log |x1 − x2|+ 2 log(2π) ] . (2.35)

at the saddle point.

Classical approximation to the free two-point function. We see that the total clas-
sical action goes as J (with a crucial logarithmic enhancement in the source contribution),
where from (2.19) J is the total R-charge of the operator On. Thus the total R-charge J of
the operator acts as an inverse Planck constant ~−1, and suppresses quantum fluctuations
of any operator product

∏
i
O(other)
i insterted into the two-point function. In particular, the

field φ in the nonlinear source term, could be divided into their classical value plus fluctua-
tion piece, φ = φcl +φfluc, and J acts as a parameter suppressing nonlinear quantum effects
relative to the classical partition function Zcl ≡ exp(−Sfree+sources). That is, we expect

log(Zfree+sources) ' log(Zfree+sources, classical) = −Sfree+sources , (2.36)

with errors of relative order J −1.
Let us check this explicitly, to verify that J really does act as a quantum loop-

suppressing parameter. Since the exact classical partition function Zfree+sources is given
exactly by the Wick contraction formula, we only have to compute the saddle-point value
of the classical free action with sources, and compare it to the asymptotic expansion of the
logarithm of the Wick-contraction result (2.15).
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Adding the constant piece −kJ log
(
|NO|2

)
to the dynamical action, we have the value

of the full free action with sources (2.20) at the saddle point:

Sfree+sources = −J log
(
|NO|2

)
+ Sdyn , (2.37)

with Sdyn given in (2.37).
Defining Zn to be the full CFT path integral with sources, then

Z−1
0 Zn ' exp (−Sfree+sources) = (2π)−2J |x1 − x2|−2J |NO|2J J J e−J , (2.38)

Then using our definition (1.1), (1.2) of the rescaled two-point function and the result (2.15),
we have

Yn ' (2π)−2J |NO|2J J J e−J , J = n∆O . (2.39)

in the classical approximation to free field theory. This approximation can be interpreted
as the normalization factor |NO|2J , times Stirling’s approximation to the Wick-contraction
(2π)−2J J ! of J = n∆O free fields separated by unit distance.

So we have verified that the total R-charge J really is acting as a loop-suppressing
parameter, as expected. We will now see that this is a useful point of view for bounding
the size of subleading corrections to Bn at large J . If we intended to stop at this level
of accuracy, order J and J log(J ), the saddle point estimate (2.39) would be a rather
clumsy way to approximate a free-field correlation function; if the action were exactly free,
then we would just use the more accurate exact formula (2.15). However the estimate of
the large-n Wick contraction by a classical saddle point, makes it possible to go beyond
free-field approximations, and include the effects of interaction terms. In the next section
we turn to the inclusion of interaction terms, in particular searching for interaction terms
that make contributions to Bn = log(Yn) that are larger than order J 0.

3 Contributions of interaction terms

In equation (2.39) we have written an estimate for the two-point function Yn, with the
symbol ' indicating that we have ignored terms beyond the free-field action on moduli
space. We would like to know how accurate an approximation that ' actually represents.
In order to do so, we must estimate the size of interaction terms at large n. Since n
controls the size of the vev of |φ| in the classical solution, with the magnitude of |φ| going
as |φ| ∝

√
J , we can estimate the n-scaling or equivalently the J -scaling of the leading

contribution of an individual term in the action, by estimating its |φ|-scaling.

3.1 J-scalings and the dressing rule

By the |φ|-scaling of a term in the effective action on moduli space, we mean simply the
number of φ’s and φ̄’s appearing in the numerator of the term, minus the number of φ’s
and φ̄’s appearing in the denominator. In the denominator, the fields can only appear
undifferentiated. This rule, long (correctly) treated as self-evident for study of moduli
space effective actions, has its origin in the nontrivial fact that moduli spaces exist, and
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so the leading term in the denominator in an effective action for moduli, must be an
undifferentiated field, in contrast to cases such as [10–12, 28, 62–64] in which the dressing
for singular terms is a differentiated field.

More generally, in any effective field theory spontaneously breaking scale invariance, the
dressing field appearing in the denominator of a term must be a dimensionful field which has
an expectation in the spontaneously broken vacuum, and functions as an (exponentiated)
effective dilaton.

The spontaneously broken scale invariance and R-symmetry give quite powerful selec-
tion rules on terms that can appear in the effective action, even without using the full power
of superconformal invariance. The most important point is that, since φ and φ̄ themselves
are the lowest-dimension fields with vevs, they are the unique dressing fields to render a
term scale invariant and R-symmetry invariant. For instance, if (term)undressed is some
monomial in ∂kφ, ∂kφ̄, the abelian gauge field strength Fµν , and its derivatives, and the
fermions ψ, ψ̄ in the vector multiplet and their derivatives, then the term has a unique
scale-invariant and U(1) R-symmetry-invariant dressing by φ and φ̄:

(term)dressed = φ−` φ̄−
˜̀
(term)undressed ,

` =
1

2

(
∆undressed + Jundressed

)
, ¯̀=

1

2

(
∆undressed − Jundressed

)
,

(3.1)

where ∆undressed and Jundressed are the dimension and R-charge of the undressed term.
The latter can be seen more clearly by organizing terms into superspace integrals,

over all the Grassman variables (N = 2 D-terms) or a subset (N = 2 F -terms and θ6-
integrals). Then the term is guaranteed to be supersymmetric assuming the F -term or θ6-
integrand satisfies the appropriate restriction of being invariant already under the SUSYs
corresponding to the unintegrated Grassman variables. The dressing rule can then be
implemented at the level of the superspace integrands themselves, taking into account
the contributions of the superspace measure to the conformal dimension and R-charge of
the operator.

Representing the effective vector multiplet as the superfield Φ whose lowest component
is φ, the dressing rules translate into a the need to dress each derivative ∂µ or Di

α, D̄
i
α̇

to be scale-invariant and U(1)R-invariant, using undifferentiated Φ’s and Φ̄’s themselves.
Each ∂ must be compensated by a dressing (ΦΦ̄)−

1
2 and each Di

α or D̄i
α must be cancelled

by a Φ−1/2 or Φ̄−1/2, respectively. Since it is the total number of Φ and Φ̄ that determine
the overall J-scaling of a term, it is the dimension of the undressed term that determines
the overall J-scaling of the dressed term, with U(1)R-symmetry invariance entering as an
additional condition determining the individual number of Φ’s and Φ̄’s.

Before starting to classify terms, we mention several caveats for the reader to bear
in mind:

• Dressing with the correct number of Φ and Φ̄ in the denominator, is necessary but
obviously far from a sufficient criterion for a term that can appear in the effective
action: apart from supersymmetry and rigid scale invariance, we are ignoring many
other symmetries such as SU(2) R-symmetry and also Weyl-covariance on curved
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backgrounds. These restrict terms very severely, but as we shall see supersymmetry,
U(1) R-symmetry, and scale invariance alone eliminate all possible contributions from
superconformal interaction terms up to order J 0.

• Our classification of terms is done in flat space; we should be careful because this clas-
sification can underestimate the J -scaling of a term in a general curved background.
There can be super-Weyl-invariant terms involving curvatures, where the J-scaling
of the curvature-dependent piece is actually larger than the J-scaling of the Weyl-
completion in flat space. One such example occurs even in the simple example of the
large-charge effective theory of the O(2) model, in which the Weyl-invariant term

|∂χ| Ric3 + 2
(∂|∂χ|)2

|∂χ|
(3.2)

has a curvature-dependent piece scaling as J
1
2 , and a Weyl-completion scaling only

as J −1/2 for a helical solution in flat space.

• To classify terms systematically including their Weyl-invariant curvature completions,
one ought to use a superconformal generalization of the formalism of [12]. This
beautiful formalism can be used in large-J effective theories such as [1, 10–13, 15] to
classify terms efficiently in goldstone boson actions when nontrivial combinations of
global charge and conformal invariance can be preserved with the rest spontaneously
broken.9 For N = 2 superconformal theories in D = 3, for instance, a suitably
adapted conformal supergravity formalism such as [67] would be tantamount to a
superconformal extension of [12] and indeed the formalism of [67] was used in [1] to
construct the first subleading large−J correction to the moduli space effective action.

• However in the present effective theory it is easy to see that the only possible scale-
and U(1)R-invariant curvature-dependent term scaling as greater than J 0, is the term
(Ric)4 |φunit|2. This curvature-dependent term is simply the usual conformal coupling
that Weyl-completes the flat-space kinetic term |∂φunit|2, with coefficient 1/6. Adding
even one more curvature would require an additional |φ|−2 in the dressing if the
curvature invariant is a scalar. Nonscalar curvature terms are not dangerous either:
the upper Ricci tensor, for instance, has weight +4 under a rigid Weyl rescaling, and
would have to be cancelled with (∂µφ∂ν φ̄)/|φ|2 in order to have weight 4, making
the total J -scaling vanish. Curvature invariants with more free indices, have even
higher Weyl weight, and need even more undifferentiated |φ|’s to make a term of total
weight 4 after contracting with derivatives of the fields. We will organize our search
for terms, therefore, around superconformal terms in the flat-space Lagrangian.

9While expanding the previous scope of the CCWZ formalism [65, 66], the formalism of [12] still requires
a translationally invariant ground state to be applied straightforwardly. It would be quite interesting to
understand how to generalize the method of [12] to cases in which the unbroken symmetry group does not
act transitively on spacetime events, as in such examples as [14, 29], or the separate case of a conformal
striped phase, in which the inhomogeneity would be at the scale defined by the charge density.
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• This procedure for classifying terms applies only to superconformal terms in the Wilso-
nian action, i.e. terms that are themselves invariant under the Weyl and R-symmetries.
Since the underlying CFT is invariant modulo the anomaly, so must the effective ac-
tion be invariant, modulo the underlying anomaly, which is partially expressed by
Wess-Zumino terms compensating the anomaly between the underlying CFT and the
effective theory of moduli space. The coefficients of these terms are c-numbers, inde-
pendent of the state, so the coefficient cannot have any J-dependence and the only
independent Wess-Zumino term occurs at order J0 in flat space, with an enhancement
to log(J) in the presence of curvature.

3.2 Dressing and J-scaling of superconformal interaction terms

Now we shall consider superconformal interaction terms. We shall show that no supercon-
formal interaction term can give a contribution of order n0 or larger in Bn at classical level.
Since loop contributions of any such terms must be even further suppressed by powers of n,
we will know that we can obtain an estimate for Bn accurate up to order n0 if we exclude
interaction corrections appearing as superconformal terms, leaving only the Wess-Zumino
term as a candidate contribution larger than n0.

Higher-derivative terms for vector multiplets. As noted in the introduction, quan-
tum and classical effects coming from N = 2 superconformal higher-derivative operators,
are no larger than order n0. The analysis is parallel with that in [1]: each Dα or D̄α deriva-
tive in a superspace action must be dressed with at least one φ−

1
2 or φ̄−

1
2 , and each ∂µ must

be dressed with at least one |φ|−1, in order to preserve scale invariance. The full-superspace
measrure d8θ has dimension 4, and so a full superspace integrand must have

D-term dressing: Nφ+φ̄ = −N∂ −
1

2
ND+D̄ ,

D-term J-scaling:
1

2
Nφ+φ̄ = −1

2
N∂ −

1

4
ND+D̄ .

(3.3)

Therefore, even a full-superspace integrand with no derivatives would have to have scaling
J0. The only superconformal full-superspace integrand would therefore be the identity,
which vanishes when integrated over superspace. Any nonvanishing full-superspace integral
must have negative J-scaling.

A half-superspace integrand (F -term) has dimension two, so

F -term dressing: Nφ+φ̄ = 2−N∂ −
1

2
ND+D̄ ,

F -term J-scaling:
1

2
Nφ+φ̄ = 1− 1

2
N∂ −

1

4
ND+D̄ .

(3.4)

The F -term integrand with zero derivatives is just the classical kinetic F -term proportional
to φ2. The next term has been found [51–54] to have N∂ = 2 as a half-superspace integrand,
given in equation (5.13) of [51]. The integrand is proportional to G[φ](∂φ)(∂φ) for some
holomorphic function G(φ). This integrand must have dimension 2, so the only allowed
term is G[φ] = φ−2. However the R-charge of any F-term integrand must be the same as
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that of φ2, namely JF = 2 in our R-charge normalization convention whereas the R-charge
of φ−2 (∂φ)(∂φ) vanishes, and it is therefore not an admissible term. It follows that any
contributing superconformal F -term in the Coulomb branch effective theory, must have
strictly negative J-scaling.

Inclusion of neutral massless hypers. The above argument holds for pure Coulomb
branches, with no massless hypermultiplets present. If there are massless hypermultiplets,
the analysis is slightly subtler, because there can be higher-derivative effective terms con-
taining both vector and hypermultiplet degrees of freedom. Such terms can even come in
the form of integrals over six of the eight supercharges. Such a θ6 integrand has

θ6-term dressing: Nφ+φ̄ = 1−N∂ −
1

2
ND+D̄ −Nh ,

θ6-term J-scaling: Nφ+φ̄ =
1

2
− 1

2
N∂ −

1

4
ND+D̄ −

1

2
Nh .

(3.5)

where Nh is the number of powers of hypermultiplets appearing in the term.
The classical solution has a VEV only for the vector multiplet scalar, because the

classical solution involves only sources for the vector modulus φunit, and the moduli space
metric factorizes between vector multiplet and hypermultiplet factors. In the classical
solution, all degrees of freedom in the hypermultiplets are set to zero and so the only terms
that can contribute with the maximal J -scaling of the term, are those containing only vector
multiplet degrees of freedom. In other words, the only terms that contribute classically are
those with Nh = 0, and these can have J -scaling at most J 1/2. However any term in
the component action containing only vector multiplets, would be supersymmetric on its
own, and would correspond to one of the pure vector-multiplet/pure Coulomb-branch terms
in [51]. And according to the results of [51], there are no θ6 terms whose integrands have
N∂ + 1

2ND+D̄ = 1, only ordinary F - and D-terms. We have already considered such terms
in the previous discussion, and shown that they contribute only smaller than order J 0.
Mixed vector-hyper terms can appear, of course, but their classical value is zero and they
only contribute through their quantum effects. Each quantum loop gives an additional
suppression of 1/J , relative to the maximum J -scaling given by eq. (3.5). This can be
thought of as coming from the need to Wick-contract at least two hypermultiplet degrees of
freedom in the term. So any mixed-branch terms in [51] which are not pure vector-multiplet
terms, must have Nh at least 1, and therefore negative J -scaling.

Order log(J) term from Wess-Zumino coupling. The analysis above would seem
to rule out any possible effect larger than O(J0), with only the determinant in the free
theory contributing at that order. This is not quite accurate however, as we have so far
considered only terms that are manifestly superconformal terms in a Wilsonian effective
action. This is not quite the case, however: there is a unique interaction term in the effective
Lagrangian that does not correspond to a superconformal term, namely the four-derivative
Wess-Zumino term in the bosonic action [68, 69] and its supersymmetric completion. This
term makes contributions of order log(J ) and J 0. This is the only term, therefore, that can
contribute a power-law factor J α to the amplitude Yn, and its coefficient α is determined
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by the coefficient of the a-anomaly. Since we are only computing log(Yn) up to the order
log(J ), the Wess-Zumino term is the only interaction term we will need to consider, and
only its classical effect will be important, with its quantum effect contributing to log(Yn)

at order J −1 and smaller.
The only log(J ) piece of the Wess-Zumino term is in the coupling of the dynamical

effective dilaton to the euler density of the background metric; all other terms contribute
strictly J 0 classically, and smaller quantum-mechanically. This term is invisible in the IR4

conformal frame and we must transform to the S4 frame in order to see it clearly. We shall
explain why this is necessary this in section 3.4.

3.3 Structure of the asymptotic expansion at large n

Before evaluating the Wess-Zumino contribution at order log(J ), we would like to express
the structure of the asymptotic expansion of Bn = log(Yn) as we have understood it so far.

We now have all the information we need to write the leading terms in the asymptotic
expansion of Bn up to order log(J ). The amplitude Yn can be thought of as a partition
function with sources −n log(O), normalized by the partition function without sources,
which is just the sphere partition function:

Yn = exp (Bn) = |x− y|2J Z−1
0 Zn , (3.6)

where Zn is the path integral with integrand exp(−S(full)
n ),

S(full)
n ≡ SCFT − n log(O(x))− n log(O(y)) . (3.7)

At large n, the path integral is dominated by the saddle point described by the classical
solution (2.28) in which 〈φ〉 is large and conformal invariance is spontaneously broken. In
this regime we approximate SCFT by its moduli space effective action and identify O with
NO φunit. Then the quantity Bn is simply the difference in the quantum effective action
with sources n from that with vanishing sources:

Bn = − log(Zn) + log(Z0) + 2J log |x− y| . (3.8)

From this point of view, it is natural that Bn should have a well-behaved 1/n expansion
at large n, since it is a sum of connected Feynman diagrams in a path integral whose action
is proportional to J = n∆O. Indeed the only surprise is that there should be any terms
nonanalytic in n at all. The nonanalytic terms cannot arise from infrared-singular dynamics
of the effective theory, for the effective theory is infrared-free. The origin of the nonanalytic
terms going as log(n) and n log(n) is more banal: they appear because of the explicit
nonanalyticity of the source term as a function of φ: since φ scales as J 1/2 and there is an
explicit n∆O log(φ) term in the action S(full)

n , there is a classical n log(n) term as well as
a log(n) term, where the latter can be thought of as a one-loop effect in quantizing around
the classical saddle point, or more efficiently as a subleading term in the large-n expansion
of log[(n∆O)!] by Stirling’s formula.

In the previous sections we have shown that the explicit superconformal interaction
terms never contribute larger than n0 in the quantum effective action even through their
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classical value; their quantum effects are even smaller. The only term making a contribution
larger than n0 is the Wess-Zumino term, which contributes at order log(n) with a coefficient
is proportional to an anomaly mismatch ∆a ≡ aCFT − aEFT.

So altogether, up to order n0 terms, we have

Bn = log[(J )!] + b−1 J + α log(J ) +O(n0) , b−1 ≡ 2 log

(
|NO|
2π

)
, (3.9)

and α determined by the conformal anomaly via the Wess-Zumino term. Exponentiating,

Yn = J !

(
|NO|
2π

)2J
(J )α Ỹn , (3.10)

where Ỹn approaches a constant as n→∞, andNO is an n-independent constant describing
on the normalization of the operator relative to the effective Abelian gauge coupling. The
exponent α is a positive number proportional to the difference between the a-anomaly
coefficient of the underlying CFT and that of the effective theory of the Coulomb branch.
In section 4, we will calculate of the coefficient α in terms of the conformal a-anomaly.

Sum and product rules. Despite the simplifications ofN = 2 superconformal symmetry
for chiral primary correlation functions, the computation of two-point functions is still
nontrivial and not solved except in some simple cases. For some theories, we may be able
to obtain only numerical or approximate data, against which we may want to check our
predictions at large n. In such cases, it is useful to express the properties of the asymptotic
expansion in the form of sum rules for B, or equivalently product/quotient rules for Yn,
which isolate particular terms in the asymptotic expansion combining adjacent terms at
large n.

The simplest rules are simply limits for Bn,

Bn
log[(J )!]

= 1 +O

(
1

log(J )

)
. (3.11)

The error comes from the operator-normalization-dependent term b−1J . The inverse of
a logarithm falls off very slowly, so it would be better not to have this term present. Of
course, if we already know the normalization NO we could write the more precise limit

Bn − b−1 J
log[(J )!]

= 1 +O(n−1) . (3.12)

However it is cumbersome to extract the normalization of b−1 = log[NO/(2π)]: this coef-
ficient depends on the normalization of the operator O itself and so combines information
from many choices of conventions that are not straightforward to compare among defini-
tions of O. It is more convenient to find sum rules that cancel the factor NO, so that we
do not have to bother matching it with any other normalization.

The most straightforward such sum rule is

nBn+1 − (n+ 1)Bn = J −
(
α+

1

2

)
log (J ) +O

(
n0
)
. (3.13)

– 18 –



J
H
E
P
1
2
(
2
0
1
7
)
1
3
5

This version of the sum rule looks particularly stringent, because the individual terms on
the l.h.s. scale as n2 log(n) while the error on the l.h.s. scales as n0, and yet |NO| drops
out of the rule completely, making it convenient to check.

Extracting the logarithm may be cumbersome analytically or costly computationally, so
it may in some cases be better to check product rules rather than sum rules. Exponentiating
the sum rule (3.13) directly gives

(Yn+1)n

(Yn)n+1 =
exp (J )

(J )α+ 1
2

·
[
O(n0) +O(n−1) + · · ·

]
. (3.14)

The difficulty of this sum rule is that it involves raising numbers of order (J )! to the
(n+ 1)th power and taking ratios of them; both numerator and denominator have of order
n2 log(n) digits, which cancel with a precision of O(n) digits, so a great many significant
figures of precision are wasted.

A product rule or corresponding sum rule can evade this difficulty and still cancel the
normalization factor NO, by using three adjacent neighboring values, raised only to the
power 1 or −2 in the product rule, so that both numerator and denominator of the product
have only O(n) digits each. We have:

Yn+2 Yn
Y2
n+1

= exp

(
∆O
n
−

∆O + 1
2 + α

n2

)[
1 +O(n−3)

]
, (3.15)

equivalent to a sum rule for Bn approximating a discretized second derivative,

Bn+2 + Bn − 2Bn+1 =
∆O
n
− 1

n2

(
∆O +

1

2
+ α

)
+O(n−3) . (3.16)

This rule, (3.16), is somehow the most convenient expression of the asymptotic expansion for
verifying the formula, because it allows us to perform three independent consistency checks,
at orders n0,−1,−2, respectively, without great computational difficulty given the coefficients
Bn, and does not require knowledge of the normalization |NO|. The independent checks
can be expressed as:

lim
n→∞

(Bn+2 + Bn − 2Bn+1) = 0 , (3.17)

lim
n→∞

n (Bn+2 + Bn − 2Bn+1) = ∆O , (3.18)

lim
n→∞

[
n2 (Bn+2 + Bn − 2Bn+1)− n∆O

]
= −

(
∆O +

1

2
+ α

)
. (3.19)

The multiplicative version of the rule is

Yn+2Yn
Y2
n+1

= 1 +
∆O
n

+
1

2

(
∆2
O − 2∆O − 1− 2α

)
n−2 +O(n−3) , (3.20)
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whose individual components are

lim
n→∞

Yn+2Yn
Y2
n+1

= 1 , (3.21)

lim
n→∞

n

(
Yn+2Yn
Y2
n+1

− 1

)
= ∆O , (3.22)

lim
n→∞

n2

(
Yn+2Yn
Y2
n+1

− 1− ∆O
n

)
=

1

2

(
∆2
O − 2∆O − 1− 2α

)
. (3.23)

In section 5 we shall check (3.16) and (3.20) in two cases with ∆O = 2 using results from
supersymmetric localization, after computing the value of α in terms of the conformal
a-anomaly.

3.4 Correlators on IR4 vs. S4

The evaluation of the log(n) contribution to the quantum effective action, will be the main
nontrivial part of the effective field theory calculation. Our next step should be to Weyl-
transform the solution to the sphere S4, because the log(n) term is invisible in flat space.

Why should we need to consider S4 at all? Before doing so, though, we should
explain briefly why one must consider the S4 conformal frame at all. After all, our basic
paradigm is to quantize the effective theory in the background of the classical solution, and
this should in principle work equally well on IR4 as on S4. In other words, if the log(J )

term is invisible on IR4, then where is it and why can’t we see it?
To understand why the calculation does not work simply on IR4, let us recall the basic

framework for understanding quantum corrections to large-J observables in effective field
theory, as done in [1, 10, 12]. As in [1, 10, 12] one can regularize and renormalize the
effective action at an energy scale Λ parametrically below the UV scale EUV, while keeping
Λ larger than the infrared scale. The theory then has a 1/J expansion as long as

EUV � EIR , (3.24)

which is satisfied so long as

EUV = J pEIR, p > 0 . (3.25)

In the present theory, we have

EUV = 〈|φ|〉 . (3.26)

On IR4, the only infrared scale is

EIR = |x1 − x2|−1 , (3.27)

so our criterion (3.24) becomes

〈|φ|〉 � |x1 − x2|−1 . (3.28)
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By taking J large, we can indeed make 〈|φ|〉 as large as desired in the region containing
the points x1 and x2, as we can see from the classical solution (2.28). However we must
be cautious: the VEV of |φ| is a local, rather than a global quantity, and in the classical
solution (2.28), the VEV 〈|φ|〉 falls to zero far enough away from the sources. The effective
theory cannot be used straightforwardly, because the space IR4 is never entirely in the
regime of validity of the effective theory by the criterion (3.28).

But this is not fatal: the criterion (3.28) is only a sufficient criterion, not a necessary
one. In a conformal theory, there is clearly a looser criterion that is still sufficient to render
the amplitude under control at large J . We can control large-J corrections so long as
the criterion (3.28) holds in any conformal frame at all, not necessarily the IR4 conformal
frame. In particular, if we conformally transform to a sphere of radius r & |x1 − x2|, in
which the points x1 and x2 have an O(1) angular separation, then criterion (3.28) holds in
the conformally transformed frame, which includes a Weyl transformation of the field φ:

φS4 =

[
det

(
∂x′

∂x

)]−1

φIR4 , (3.29)

where x′ are the coordinates on the sphere and x are the coordinates on IR4.
If we were to calculate Bn up to and including terms of order J 0, we would need

to perform the conformal transformation explicitly, in order to compute the fluctuation
determinant of fluctuations around the classical solution, and to compute the integral of
the Wess-Zumino term. Since we only want to compute up to order log(J ), the situation is
simpler. In the conformal frame of IR4, the Wess-Zumino term is singular at infinity; in the
conformal frame of the sphere, the contributions to the log(J ) term from the Wess-Zumino
term and determinant are manifestly finite with higher corrections under control by 1/J
suppression. It is clear, now, what must have happened to the log(J ) term in flat IR4: it is
hiding in the determinant, in the region where the effective theory has broken down. But
we can recover it by conformally transforming to S4.

Note that the superconformal S4 we will be using is the maximally supersymmetric one
preserving the full SU(2) × U(1) R-symmetry and the entire conformal SO(5, 1) isometry
group, rather than the smaller group preserved by the D-term deformation used to compute
the vacuum S4 partition function by localization in [57] and used to compute correlators
in [2–5, 42, 44–47]. While we make use of the results from these methods later in the paper
to check our large-n predictions, we will never deform the supergravity background from
the maximally symmetric one. Therefore there is no curvature-dependent contact-term
ambiguity in the structure of our chiral ring; our S4 background is simply equivalent to
IR4 by a change of variables, not by a nontrivial D-term deformation. The only change
in the effective Lagrangian induced by the Weyl transformation of the background, apart
from the curvature of the sphere, is the direct curvature coupling ∆L = 1

6Ric4 |φunit|2 for
a scalar field.

Rather than working out the solution φS4 directly on the sphere, we simply refer to the
formula (3.29) for the conformally transformed solution on IR4. We would need the detailed
form of the expression in the S4 frame in order to compute the order n0 terms in Bn, but
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since we are only computing to order log(J ) in the present article, we shall need to under-
stand only certain qualitative features of the solution, and the expression (3.29) suffices.

4 Anomaly terms

In section 3.2, we found that no superconformal effective term can contribute larger than
J 0. However the Wess-Zumino terms cannot be written as superconformal terms in the
effective action, and they evade the analysis in section 3.2. There are Wess-Zumino terms
for the Weyl symmetry and U(1) R-charge, which are needed to compensate the difference
between the anomaly coefficients of the underlying CFT and the effective theory of the
Coulomb branch. They cannot be written as superconformal terms (or conformal terms at
all) in superspace, because they explicitly break the Weyl symmetry and R-symmetry of
the action, in order to compensate the variation of the path-integral measure of those same
symmetries (though see [70] for an explicitly supersymmetrization of the anomaly terms in
flat space.)

In order to compute to O(log(J )) accurately, then, we must write the Wess-Zumino
terms with some care paid to their normalization. We will focus solely on the normalization
of the coefficient of the O(log(J )) contribution to the quantum effective action. There is
also an order J0 term, given by a nontrivial integral. Since we will only calculate up to
and including order log(J ) in the effective action in the present article, this integral will
be unnecessary. We will see that the form of the order logJ term is simple and comes only
from the background curvature in the form of the Euler density.

4.1 Form of the Wess-Zumino terms

Let us start with the Wess-Zumino effective action which captures the conformal and U(1)R-
symmetry anomalies in general N = 1 theories [61, 68, 69, 71]. The explicit form of the
action in Lorentzian signature is given by [61]

SWZ =

∫
√
g d4xLWZ , (4.1)

with

LWZ ≡ τ
(

∆c[KS]W 2(g)−∆a[KS]E4(g)− 6∆c[KS]F 2
)

+ β
[
2
(

5∆a[KS] − 3∆c[KS]
)
FF̃ +

(
∆c[KS] −∆a[KS]

)
RR̃
]

−∆a[KS]
[
4

(
Rµν(g)− 1

2
R(g)gµν

)
∂µτ∂ντ− 2 (∂τ)2

(
2�τ− (∂τ)2

)]
,

(4.2)

where in our context ∆c ≡ cCFT−cEFT and ∆a ≡ aCFT−aEFT. Note that the normalization
of the a- and c-coefficients used here and in [61, 68, 69, 71], which we denote by the
superscript [KS], differs from the one used in (1.6) and the reference [50]. The realtionship
between the two (see section A.3 of the appendix) is a factor of 16π2, i.e.,

(a, c)[KS] =
1

16π2
(a, c)[AEFJ] . (4.3)
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In the expression (4.2), we have only written the bosonic component of these terms, rather
than a fully supersymmetric contribution to the Lagrangian. It has been argued [69, 70]
that such terms can be written as manifestly supersymmetric but Weyl- and R-symmetry-
violating terms in superspace. The fermionic contributions are suppressed by powers of
MUV ∝ |φ|2 ∝ J , and so do not contribute even at order J 0.

4.2 Evaluating the Wess-Zumino term on S4

So now let us evaluate the contribution of the Wess-Zumino term on S4 directly. As we
explained above, this rather than the calculation on IR4, is the perturbatively controlled
calculation.

Euler coupling of the modulus on S4. On S4 it is clear that there is only one contri-
bution to the log(J ) term, and it is topological, just being proportional to a constant times
the Euler density. In order to compute the correct normalization of the contribution of the
Euler term to the anomaly, we will use a few facts about the geometry of the four-sphere,
which we have written in the appendix A.2.

The natural normalization of the Euler density would be the “integer normalization”
EZ

4 , in which the integral of the Euler density is simply the Euler number χ of the space:∫
d4x

√
|g|EZ

4 = χ ∈ Z , (4.4)

which equals +2 for the sphere S4, so the numerical value of EZ
4 for a sphere must be

EZ
4 =

2

Area(S4)
=

3

4π2r4
, (4.5)

where we have used the formula for the area of a four-sphere of radius r, Area(S4) =

8π2r4/3. For better or worse, the integer-normalization convention for the Euler density is
not much used. In [68], the normalization of the Euler density is defined as

E
[KS]
4 ≡ RµνρσRµνρσ − 4RµνR

µν +R2, (4.6)

of which the numerical value for the four-sphere is

E
[KS]
4 ≡ 24

r4
= 32π2EZ

4 . (4.7)

so the relation between the two normalizations is

E
[KS]
4 = 32π2EZ

4 , EZ
4 =

1

32π2
E

[KS]
4 . (4.8)

Rewriting the Wess-Zumino coupling10 of [68] in terms of the somewhat more intuitive EZ
4 ,

the Euler coupling term of the dilaton is, in Euclidean signature,

LEuler couplingWZ = +1 ∆a[KS]E
[KS]
4 τ = 32π2 ∆a[KS]EZ

4 τ = 2 ∆a[AEFJ]EZ
4 τ. (4.9)

10We have also changed the sign of the term, which in [68] was written as a term in a Lorentzian action,
as appropriate to the context of dilaton scattering studied in that paper. For the purposes of a path
integral on S4, the relevant action is the Euclidean one, which is the negative of the Lorentzian action after
Wick-rotation.
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Here ∆a is the difference between the a-anomaly coefficient of the full interacting CFT,
and that of the infrared-free effective theory on the moduli space of supersymmetric vacua,
∆a ≡ aCFT− aEFT. By virtue of the Komargodski-Schwimmer a-theorem, this number ∆a

is always positive. The dilaton τ is normalized in [68] such that exp(−τ) transforms as a
scalar of dimension +1; in a supersymmetric moduli space in four dimensions, then, the
field exp(−τ) is the modulus |φ| = |φunit| that spontaneously breaks the scale invariance,
giving us the identification

τ = − log
|φ|
µ
, (4.10)

where µ is an arbitrary mass scale.

Boundedness of the O(J 0) term. In order to compute the full contribution of the
Wess-Zumino coupling including the J 0 term, we would need to compute the entire profile of
τ, given by substituting the classical solution (2.28) Since we are not attempting to compute
the order n0 term, we will not need to do the integral at all: The classical solution (2.28)
for |φ| has a fixed scaling limit as J → ∞, and so its logarithm can be decomposed as the
sum of an x-independent piece, and a piece bounded by order |J |0:

|φ| = J
1
2 |φ̂| , (4.11)

where |φ̂| is of order J 0 in the S4 conformal frame, away from the singularity at the
insertion points.

The singularities at the insertion points x and y at first sight seem like they might cause
the large-J expansion to break down, but they do not. In general, ultraviolet singularities
should never be a problem, as we regularize and renormalize our theory at a distance
scale Λ−1 � |φ|−1. In this case, that is not even necessary: due to cancellations of the
most naively singular terms and the fact that the solution is complex rather than real, the
integrated Wess-Zumino action does not diverge at the insertion points, and the integral is
finite as the regulator is removed.

Thus using (4.11) we find that the Wess-Zumino Lagrangian density can be written as

LWZ = LEuler couplingWZ +O(J 0) , (4.12)

where the O(J 0) piece is finite, and we can discard it at our desired order of precision.
Then, combining (4.10) with the decomposition (4.11) gives

τ = −1

2
log(J ) +O(J 0) , (4.13)

and further using (4.9) and the fact that the Euler number of the sphere is χS4 = +2,
we have

SWZ = −α log(J ) +O(J 0) , (4.14)

where

α = 2 (aCFT − aEFT)[AEFJ] . (4.15)
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So then the Euclidean path integral gets a multiplicative contribution of Z classical
WZ

,

Zn = Z leading
factors

·
[
O(n0) +O(n−1)

]
,

Z leading
factors

≡ Z free-fieldZ classical
WZ

, exp
(
−S classical

Euclidean WZ

)
= J α ·O(n0),

(4.16)

and so

Zn = J α Z free-field [O(n0) +O(n−1)
]

=

(
|N|O

2π|x− y|

)2J
(J )!J α

[
O(n0) +O(n−1)

]
,

(4.17)

where Zn is the full CFT path integral with sources (2.17), and Z free-field
n is the corre-

sponding free-field approximation to the path integral for the two-point functions in the
effective theory.

5 Localization in rank-1 theories with marginal couplings

Following [2–5] we briefly review how to compute by supersymmetric localization two-point
functions of various four-dimensional N ≥ 2 superconformal field theories in R4. We
will then apply the results of [2–5] to Lagrangian conformal theories with gauge group
SU(2) (or SO(3)), and compare with our asymptotic expansion of Yn. The two interacting
conformal theories with marginal couplings are N = 4 super-Yang-Mills with gauge group
SU(2) (or SO(3)), and superconformal QCD with four hypermultiplets in the fundamental
representation 2 of SU(2), Nf = 4.

5.1 Relation of conventions

For rank-one theories with ∆O = 2, our Yn depends on the marginal parameter τ, τ̄ and is
identified with the two-point function G2n(τ, τ̄), up to powers of a normalization factor we
denote by K such that

Ohere = K∆O · Oref [2–5]
2 , (5.1)

The dimension of the generator O is ∆O = 2 for the two theories we consider in this
section. With the relative normalizations defined this way, the relationship of the two-
point functions is

Yn = Yn(τ, τ̄) = exp (Bn(τ, τ̄)) = |K|4nG2n(τ, τ̄). (5.2)

With this identification we will review the computation of correlation functions in [2–5] and
then compare with our own results when n is large.

5.2 Method of [2–5]

To calculate two-point functions on IR4, one first needs the S4 partition function ZS4(τ, τ̄)

associated with the N ≥ 2 SCFT action SSCFT deformed by the chiral ring generators Oi,

SSCFT → SSCFT −
1

32π2

(∫
d4x d4θ E

∑
i

τiOi + c.c.

)
, (5.3)
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where E is the chiral density of N = 2 supergravity and τi are holomorphic coupling con-
stants. Since this deformed theory preserves osp(2|4), the massive N = 2 supersymmetry
algebra on S4, the associated partition function can be computed exactly by localization.

In the case of theories with one-dimensional Coulomb branch,11 the two-point functions
of the chiral ring operators defined by

G2n (τ, τ̄) :=
〈
On(0)Ōn(∞)

〉
, Ōn(∞) := lim

|x|→∞
|x|2n∆O Ōn(x), (5.4)

can be computed systematically in the following way. First, one computes derivatives of
ZS4(τ, τ̄) and constructs a matrix M whose (m,n)-entry (m,n = 0, 1, 2, · · · ) is given by

Mm,n :=
1

ZS4(τ, τ̄)
∂mτ ∂

n
τ̄ ZS4(τ, τ̄). (5.5)

Then, the two-point functions (5.4) can be obtained as12

G2n(τ, τ̄) = 16n
detM(n)

detM(n−1)
, n = 1, 2, 3, · · · , (5.6)

where M(n) is the upper-left (n+ 1)× (n+ 1) submatrix of M .

5.3 The case of SU(2) N = 4 SYM

N = 4 super-Yang-Mills with gauge group SU(2) has a very simple partition function [57],

ZN=4
S4 (τ, τ̄) =

1

4π (Im τ)
3/2
, (5.7)

where in this case τ is the complexified Yang-Mills coupling13

τ =
θYM
2π

+
4πi

g2
. (5.8)

From (5.7) one deduces

G2n(τ, τ̄) =
(2n+ 1)!

(Im τ)2n , Yn = |K|4nG2n =

(
|K|2

Im τ

)2n

(2n+ 1)! . (5.9)

At large n, the logarithm of G2n(τ, τ̄) becomes

log [G2n(τ, τ̄)] = 2n log n+ n (2 log 2− 2− 2 log (Im τ)) +
3

2
log n+O(1). (5.10)

This matches our prediction (3.10) up to the order to which we were retaining terms,
order n0.

11For theories with multi-dimensional Coulomb branch, see [4, 5].
12Equation (5.6) satisfies the tt∗ equation [2, 49].
13Again, we note we use this convention regardless of matter content, our sole deviation from the con-

ventions of [55, 56], who define τN=2 SQCD = θYM
π

+ 8πi
g2YM

.
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5.4 Numerical analysis of SQCD with Nf = 2Nc = 4

One would like to find as many other rank-one superconformal N = 2 theories as possible
for which we could compare our general results with two-point functions computed via
localization. Unfortunately, there are not many examples in the literature that have been
worked out already. In [2, 3, 5] the authors study the example of SU(2) N = 2 SQCD with
four doublet hypermultiplets. Even for that relatively simple theory the sphere partition
function and G2n for low values of n, have a complex τ dependence with a nonperturbative
definition via an integral, but not one that is simple to write in closed form. It is possible
however, to evaluate the two-point function Yn numerically for any value of τ , to good
enough accuracy to extract the coefficients of the large-n expansion of log(Yn) with some
precision. In particular, we are able to extract the coefficient α of log(n) and compare it to
the prediction of the EFT analysis.

The sphere partition function of SU(2) N = 2 SQCD with four fundamental hyper-
multiplets is given by [72, 73]

ZN=2
S4 (τ, τ̄) =

∫ ∞
−∞

daa2e−4a2 Im τ |G(1 + 2ia)|4

|G(1 + ia)|16 |Zinst(ia, τ)|2, (5.11)

where the function G(x) is the Barnes G-function [74], and Zinst(a, τ) is the instanton
partition function, which is expanded as14

Zinst(ia, τ) = 1 +
1

2

(
a2 − 3

)
e2πiτ +O

(
e4πiτ

)
. (5.12)

For the sake of simplicity we concentrate on the region Im τ ≥ 1 and ignore all the instanton
corrections. The zero-instanton sector of the sphere partition function does not depend on
Re τ . Using (5.5) and (5.6), we evaluate the two-point functions G2n up to an arbitrary
order in n for any value of Im τ . In figure 3 we have plotted a particular combination of
logarithms of G2n that comprise the left-hand side of the sum rule (3.19), approximating
the S4 partition function with the perturbative part alone. The asymptotic value should be
−4 for any value of τ , if we start the recursion relations with the full S4 partition function
with instanton corrections included. That is, in the fully instanton-corrected theory we
should have (5.21).

5.5 Comparison of exact results with the large-J expansion

Now we will compare results, using the value of the α-coefficient computed in the appendix.
In eq. (A.33). we computed the α-coefficient for N = 4 super-Yang-mills with gauge group
SU(2), and we found

αN=4 SYM, G=SU(2) = 1 . (5.13)

We therefore expect

Yn = n+1 (2n)!

(
|NO|
2π

)2n [
O(n0) +O(n−1) + · · ·

]
. (5.14)

14See e.g. [75] for higher order terms in this expansion.
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The exact formula (5.9) can be written as

G2n = n+1 (2n)!

(
|N̂O|
2π

)2n(
2 +

1

n

)
, (5.15)

which agrees with the form of our asymptotic expansion, with

∆O = 2 , α = +1 , Ỹn = 2 +
1

n
, N̂O ≡ K−1NO . (5.16)

The case of N = 2 SQCD with Nf = 2Nc = 4. For conformal SQCD with Nf =

2Nc = 4, we have ∆O = 2 and in equation (A.35) of the appendix we have calculated

αSCQCD, G=SU(2) =
3

2
. (5.17)

In this case, our data is only numerical, derived from recursion relations starting from the
perturbative approximation to the S4 partition function. Therefore it is easier to check
the accuracy of the sum/product rules of section 3.3 than to fit the data to a curve. We
expect the two-point functions to obey the sum and product rules (3.16) and (3.20) with
∆O = 2, α = 3/2,

Bn+2 + Bn − 2Bn+1 =
2

n
− 4n−2 +O(n−3) , (5.18)

which imply the individual limits

lim
n→∞

(Bn+2 + Bn − 2Bn+1) = 0 , (5.19)

lim
n→∞

n (Bn+2 + Bn − 2Bn+1 ) = 2 , (5.20)

lim
n→∞

[
n2 (Bn+2 + Bn − 2Bn+1 )− 2n

]
= −4 , (5.21)

In figures 1, 2, 3 we plot the l.h.s. of equations (5.19), (5.20), (5.21), up to n = 30, for
various (purely imaginary) values of τ . These values have been calculated by the recursion
relations of [2–5], approximating the sphere partition function by its perturbative piece
alone. Even in this approximation, the large-n prediction (5.21) is close to −4 for n of
order 30. Note that the agreement is best at τ = i, which is expected to have the lowest
threshold for the applicability of the large-J approximation, as the gap above the massless
sector is highest there. We do not know whether the omission of instanton corrections affects
the true asymptotic value of the l.h.s. of the sum rule (5.21), or whether the sum rule would
indeed converge to −4 for sufficiently large R-charge, even without instanton corrections.

6 Conclusions

Other theories with one-dimensional Coulomb branch. There are many other the-
ories with one dimensional Coulomb branch (or more generally with a single vector multiplet
and massless hypers) without marginal coupling. Since these do not have marginal cou-
plings, they are harder to do explicit calculations with and we do not have results in the
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Figure 1. Approximate values of the l.h.s. of sum rule (5.19) in conformal SQCD with G = SU(2)

and Nf = 4, calculated via recursion relations from the S4 partition function, with instanton
corrections omitted.

5 10 15 20 25 30

0.5

1.0

1.5

2.0

Figure 2. Approximate values of the l.h.s. of sum rule (5.20) in conformal SQCD with G = SU(2)

and Nf = 4, calculated via recursion relations from the S4 partition function, with instanton
corrections omitted.

literature with which we can easily compare. In order to predict correlation functions of
(O)n for large n, we must know the dimension of the generator O, the a-coefficient of the
full CFT, and the massless content of the effective theory on moduli space.

Rank-one SCFT have been the subject of intensive recent study by [6–9], in which
theories with one-dimensional Coulomb branch were classified under broad conditions.

Here we make use of the beautiful results [6–9] on the classification of rank-one super-
conformal field theories. Actually we will do more than just “make use of” them: table 1 is
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Figure 3. Approximate values of the l.h.s. of sum rule (5.21) in conformal SQCD with G = SU(2)

and Nf = 4, calculated via recursion relations from the S4 partition function, with instanton
corrections omitted. For the exact S4 partition function, with all instanton corrections, our analysis
predicts the l.h.s. of (5.21) should approach −4 for any τ , as n goes to infinity. It would appear
unlikely that the asymptotic value of the sum rule is truly −4 for the no-instanton approximation
to the S4 partition function, but at present the authors have no theory of the error.

created by directly15 copying a table from [8], but with our own additional columns, giving
data on the Wess-Zumino term and the value of the α-coefficient of the theory.

Conclusions. In this paper we have analyzed the large-quantum-number expansion of
two-point functions of operators On∆, where O∆ is the holomorphic generator of a Coulomb
branch chiral ring in a rank-one superconformal field theory. To do this, we have followed
earlier works and used the effective field theory governing the large-J sector of the Hilbert
space. As in the previous paper [1] on the superconformal large-J expansion, the relevant
EFT is the effective dynamics of the supersymmetric moduli space, which is governed by
spontaneously broken superconformal symmetry. We have used the Coulomb-branch EFT
to expand the two-point function

Yn ≡ |x− y|2J
〈
(O(x))n (Ō(y))n

〉
at large R-charge, i.e., for n� 1. The EFT predicts that Yn has an asymptotic expansion
at large n, behaving as

Yn = (J )!

(
|NO|
2π

)2J
J α Ỹn ,

15This table was created in part by copying the LATEX code of table 1 of [8]. We are doing so with the
intention of communicating our results for the α-coefficients and their relation to [8], in a context that is
most easily understood by the reader. We do not claim as original work the creation of the content or
appearance of our table 1 insofar as it overlaps with table 1 of [8]. According to our best understanding,
this is a legitimate use of the work [8] under the arXiv non-exclusive license to distribute, https://arxiv.
org/licenses/nonexclusive-distrib/1.0/license.html.
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Coulomb branch: higgs massless Central charges: Wess-Zumino term: α-coefficient:
singul.
type ∆O br. dim hypers 24a 12c 24aEFT 24∆a α = 2∆a

II∗ 6 29 0 95 62 5 90 15/2

III∗ 4 17 0 59 38 5 54 9/2

IV ∗ 3 11 0 41 26 5 36 3

I∗0 2 5 0 23 14 5 18 3/2

IV 3/2 2 0 14 8 5 9 3/4

III 4/3 1 0 11 6 5 6 1/2

II 6/5 0 0 43/5 22/5 5 18/5 3/10

I 1
se
ri
es

I1 1 0 0 6 3 5 1 1/12

II∗ 6 16 5 82 49 10 72 6

III∗ 4 8 3 50 29 8 42 7/2

IV ∗ 3 4 2 34 19 7 27 9/4

I∗0 2 0 1 18 9 6 12 1I 4
se
ri
es

I4 1 0 0 6 3 5 1 1/12

II∗ 6 9 4 75 42 9 66 11/2

III∗ 4 ? 2 45 24 7 38 19/6

IV ∗ 3 0 1 30 15 6 24 2

I
∗ 1
se
ri
es

I∗1 2 0 0 17 8 5 12 1

II∗ 6 ? 3 71 38 8 63 21/4

III∗ 4 0 1 42 21 6 36 3

I
V

∗ Q
=

1
se
r.

IV ∗Q=1 3 0 0 55/2 25/2 5 45/2 9/4

I∗0 2 0 1 18 9 6 12 1

I 2
se
r.

I2 1 0 0 6 3 5 1 1/12

Table 1. Argyres, Lotito, Lü and Martone’s partial list of rank-1 N = 2 SCFTs. This table has
been copied directly (at the level of the LATEX code even) from [8], to clarify the identification
of theories, which are labelled exactly as in that reference. We have added the three columns
on the right, including the α-coefficient. The column ‘massless hypers’ denotes the number of
hypermultiplets massless at a generic point on the Coulomb branch, a situation referred to in [8] as
an ‘enhanced Coulomb branch’ (ECB) if the number is nonzero.

where Ỹn approaches a constant as n→∞, andNO is an n-independent constant depending
on the normalization of the operator relative to the effective Abelian gauge coupling geff .
We have calculated the exponent α and found that it is computed entirely by the coupling
between the Euler density of the sphere and the logarithm of the scalar modulus |φ|. This
coupling is fixed by anomaly matching to be proportional to the difference between the
a-anomaly coefficient of the underlying CFT and that of the EFT of massless moduli. In
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the conventions of [50], this is

α = 2 (aCFT − aEFT)[AEFJ] .

In theories with a marginal coupling, we have used results from localization [2–5] to test
our predictions. In the case of N = 4 SYM with gauge group SU(2) (or more properly
gauge algebra su(2) in general), the exact result can be expressed in closed form, and our
asymptotic expansion for the logarithm of the two point function agrees precisely with the
exact result to the precision to which we have calculated, i.e. up to and including the order
log(J ) term in Bn = log(Yn). In the case of superconformal SQCD with Nf = 2Nc = 4,
we compare our large-J expansion with the output of the recursion relations carried to
J ' 60, with the J = 0 expression approximated by the zero-instanton part of the S4

partition function. We find precise numerical agreement for the two leading-order behaviors,
and good agreement for the sub-subleading order behavior, dictated by the α-coefficient
α = +3

2 , which predicts a value −4 for the l.h.s. of the sum rule (5.21) at large n. Though
it is not clear we should expect the sum rule to approach −4 precisely for the zero-instanton
approximation to the initial condition ZS4 , the sum rule for τ = i appears to asymptote
to a value at most ' −3.8, to within our numerical precision. It would be desirable to
have a robust theory of the error at large J , given an approximate initial condition for the
recursion relation.16 It may be a useful direction to study the recursion relations directly in
a 1
J expansion, to understand to what extent the large-J behavior is determined by initial

condition ZS4(τ, τ̄) and to what extent it is guided by attractor phenomena inherent to the
recursion relations themselves.

In summary, we have shown that it is practical to use the large-J expansion as a bridge
from the world of unbroken conformal symmetry, OPE data, and bootstraps, to the world
of the low-energy dynamics of the moduli space of vacua.

Acknowledgments

The authors note helpful discussions with Philip Argyres, Nozomu Kobayashi, Markus Luty,
Mauricio Romo, Vyacheslav Rychkov, Masataka Watanabe, and Alexander Zhiboedov. We
thank Zohar Komargodski and Kyriakos Papadodimas for reading the manuscript and for
valuable comments. We are particularly grateful to Daniel Jafferis for early discussions on
the relationship between the large R-charge limit and the dynamics of moduli space, as
well as bringing refs. [2–5] to our attention as a possible check on the large-J expansion
beyond the free-field approximation. The work of SH is supported by the World Premier
International Research Center Initiative (WPI Initiative), MEXT, Japan; by the JSPS
Program for Advancing Strategic International Networks to Accelerate the Circulation of
Talented Researchers; and also supported in part by JSPS KAKENHI Grant Numbers
JP22740153, JP26400242. SM acknowledges the support by JSPS Research Fellowship for
Young Scientists. SH also thanks the Walter Burke Institute for Theoretical Physics at
Caltech, the Stanford Institute for Theoretical Physics, and the Harvard Center for the
Fundamental Laws of Nature, for hospitality while this work was in progress.

16We thank Z. Komargodski for correspondence on this point.

– 32 –



J
H
E
P
1
2
(
2
0
1
7
)
1
3
5

A Normalizations and conventions

A.1 Massless scalar propagator

Define the free massless complex scalar field φunit to have kinetic term

L = +1 |∂φunit|2 , (A.1)

in Euclidean signature, where ∂2 ≡ ∂µ∂µ and |∂φ|2 ≡ (∂µφ)(∂µφ̄). The massless euclidean
scalar propagator on IR4 is defined as

∆unit(x, y) ≡
〈
φunit(x) φ̄unit(y)

〉
IR4 . (A.2)

Given (A.1), the Ward identity yields the equation of motion for the propagator

∂2
x∆unit(x, y) = ∂2

y∆unit(x, y) = −δ(4)(x− y) (A.3)

so the propagator for the unit scalar has normalization

∆unit(x, y) = +(2π)−2 |x− y|−2 (A.4)

where we have used the identity

∂2
x |x− y|

−2 = −(2π)2δ(4)(x− y) (A.5)

on IR4. More generally, for a massless complex scalar field normalized as

L2
M = M2 |∂µφ|2 , (A.6)

the scalar propagator is 〈
φ(x) φ̄(y)

〉
IR4 = (2π)−2 M−2 |x− y|−2 (A.7)

for any positive real M. In particular, for the A-field of the effective Abelian vector multi-
plet, whose kinetic term is (2.6), the two-point function is

〈
A(x) Ā(y)

〉
IR4 =

g2
eff

(2π)2
|x− y|−2 =

1

π Im(τ)
|x− y|−2. (A.8)

A.2 Geometry of the four-sphere

The four-sphere is a symmetric space, so its Riemann tensor satisfies

Rabcd =
1

r2
(gacgbd − gadgbc) . (A.9)

So for a general D-dimensional sphere we have

Rac = gbdRabcd =
1

r2
(D − 1)gac , R = gacRac =

D(D − 1)

r2
. (A.10)

– 33 –



J
H
E
P
1
2
(
2
0
1
7
)
1
3
5

Now let us calculate the Euler density, according to Komargodski-Schwimmer’s normaliza-
tion convention (4.6). The square of the Riemann tensor is

R2
abcd ≡ gaa

′
gbb
′
gcc
′
gdd
′
RabcdRa′b′c′d′ = 2

D(D − 1)

r4
(A.11)

and the squares of the Ricci tensor and Ricci scalar are

Rab =
D − 1

r2
gab , R2

ab ≡ gacgbdRabRcd =
D(D − 1)2

r4
. (A.12)

The Ricci scalar and its square are

R =
D(D − 1)

r2
, R2 =

D2(D − 1)2

r4
. (A.13)

The case of interest to us is D = 4, in which

(R2
abcd)D=4 =

24

r4
, (R2

ab)D=4 =
36

r4
, (R2)D=4 =

144

r4
. (A.14)

Komargodski-Schwimmer’s normalization of the Euler density, in their equation (A.4), is

E
[KS]
4 ≡ R2

abcd − 4R2
ab +R2 , (A.15)

which for the four-sphere of radius r, is given by

E
[KS]
4 =

24

r4
. (A.16)

A.3 Conventions and values for the a-anomaly coefficient

In this part of the appendix, we compare two conventions for the normalization of the
a-anomaly coefficient (also the c-anomaly coefficient), and we give values for the anomaly
in various N = 2 SCFT of interest. We also give a definition of the α-coefficient that is
independent of the normalization of the a-anomaly.

Translation between Weyl-anomaly normalization conventions in [68] vs. [50].
The a- and c-anomalies are normalized differently in different parts of the literature. We
can match by comparing anomalies for a given physical system across conventions. The
simplest case is a scalar field.

In [68] the anomalies are normalized so that the contributions of a single real massless
scalar field, are

a
[KS]
real massless scalar =

1

90(8π)2
, c

[KS]
real massless scalar =

1

30(8π)2
. (A.17)

This normalization is given below equation (A.6) of [68]. In [50], the authors give the
anomalies of a single real massless scalar field, as

a
[AEFJ]
real massless scalar =

1

360
, c

[AEFJ]
real massless scalar =

1

120
. (A.18)

The relation between the two normalizations is therefore

a[KS] =
1

16π2
a[AEFJ] , c[KS] =

1

16π2
c[AEFJ]. (A.19)

In the body of the paper we indicate our conventions to avoid ambiguity, but we shall use
the convention of [50], since it is normalized such that the anomalies of free fields, and of
all N = 2 SCFT, are rational numbers.
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Values of the anomaly coefficient in various N = 2 SCFT in D = 4. We have
defined the exponent α, which appears in the factor J α in the asymptotic formula for the
two-point function, in terms of the a coefficient in the Weyl anomaly. The Weyl anomaly
does not have a universally used normalization in the literature. So in order to find actual
values for α, we need to use some particular conventions.

The a-coefficients for many Lagrangian and non-Lagrangian theories, have been given
in e.g. [50, 76], and we collect the relevant results here. Those authors normalize the
a-coefficient according to the widely-used convention in [50], in which we have

a
[AEFJ]
favm =

5

24
, a

[AEFJ]
fhm =

1

24
, a[AEFJ]

vmG
=

5

24
dim(G) , a

[AEFJ]
hmR

=
1

24
dimC(R) . (A.20)

Value of the a-coefficient for N = 4 SYM. Organizing into N = 4 vectormultiplets,
we have

a
[AEFJ]
N=4 favm = a

[AEFJ]
favm + a

[AEFJ]
fhm =

1

4
, a

[AEFJ]
N=4 vmG

=
1

4
dim(G) . (A.21)

The N = 4 theory with gauge group G has microscopic a-coefficient

a
[AEFJ]
CFT, N=4 =

1

4
dim(G) (A.22)

and its moduli space effective theory has

a
[AEFJ]
EFT, N=4 =

1

4
rank(G) (A.23)

so

∆a
[AEFJ]
N=4 =

1

4
( dim(G)− rank(G) ) . (A.24)

For SU(Nc) gauge group, we have

∆a
[AEFJ]
N=4, G=SU(Nc)

=
1

4
(N2

c −Nc) . (A.25)

In particular, for Nc = 2 we have

∆a
[AEFJ]
N=4, G=SU(2) =

1

2
. (A.26)

Value of the a-coefficient for superconformal N = 2 SQCD. For N = 2 SQCD
with gauge group SU(Nc) and Nf fundamental flavors at weak coupling, we have

a
[AEFJ]
UV, SQCD =

5

24
dim(G) +

1

24
dimC(R) =

5

24
(N2

c − 1) +
1

24
NfNc . (A.27)

In the superconformal case, Nf = 2Nc we have

a
[AEFJ]
CFT, SCQCD =

5

24
dim(G)+

1

24
dimC(R) =

5

24
(N2

c −1)+
1

12
N2
c =

7

24
N2
c −

5

24
. (A.28)
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The moduli space effective theory consists of rank(G) free abelian vector multiplets and no
hypers, so we have

a
[AEFJ]
EFT, SCQCD =

5

24
rank(G) , (A.29)

which for G = SU(N), is

a
[AEFJ]
EFT, SCQCD =

5

24
(Nc − 1) . (A.30)

So the difference in central charge is

∆a
[AEFJ]
SCQCD = a

[AEFJ]
CFT, SCQCD − a

[AEFJ]
EFT, SCQCD =

1

24

(
7N2

c − 5Nc

)
. (A.31)

Value of the α-coefficient for N = 4 SYM. So for N = 4 we have

αN=4 =
1

2
(N2

c −Nc) . (A.32)

In particular, for G = SU(2) we have

αN=4, G=SU(2) = +1 . (A.33)

Value of the α-coefficient for N = 2 superconformal SQCD. For superconformal
QCD (that is, Nf = 2Nc), we have

αSCQCD =
1

12

(
7N2

c − 5Nc

)
, (A.34)

and in particular for G = SU(2) with Nf = 2Nc = 4, we have

αSCQCD, G=SU(2) =
3

2
(A.35)

Convention-independent formula for the α-coefficient. We would like to define the
α-coefficient in a convention-independent way, as a ratio of a-anomalies. Our convention-
independent formula is:

α =
5

12

aCFT − aEFT

afavm
, (A.36)

where afavm is the unit of a-anomaly contribution carried by a free N = 2 vector multiplet
for a U(1) gauge group. In order to actually compute the value of α for some theories
of interest, we must pick an actual normalization convention. The value of α in the [50]
convention is

α = 2
(
a

[AEFJ]
CFT − a[AEFJ]

EFT

)
, (A.37)

and in the [68] convention it is

α =
1

8π2

(
a

[KS]
CFT − a

[KS]
EFT

)
. (A.38)
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