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1 Introduction

The Large Hadron Collider (LHC) programme demands us to refine our understanding

in the calculation of observables in High Energy Physics. The scattering amplitudes are

the backbone of theoretical predictions. They, besides of having practical applications

in particle physics, also have a mathematical elegance, whose properties have allowed to

develop new techniques to perform calculations that a while ago were very cumbersome.

Nevertheless, apart of providing theoretical predictions to phenomenological observ-

ables with the use of these amplitudes, we can use their formal properties. These properties

are in principle hidden at the Lagrangian level but visible in the scattering amplitudes. In

particular, QCD scattering amplitudes can be colour decomposed or simply split into two

pieces, one containing information of the colour structure and other one taking care of

kinematic variables [1–5]. The latter is often called primitive amplitude. An n-point

colour-dressed tree-level amplitude generates n! primitive amplitudes, although, due to

cyclic invariance the number of independent primitive amplitudes is reduced to (n − 1)!.

In the same manner, with a proper choice of the basis for the colour structure [6, 7], the

Kleiss-Kuijf relations [8] reduce the number of independent primitive amplitudes to (n−2)!.
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Figure 1. Colour anti-symmetry relation and Jacobi identity.

Remarkably, it has been found by Bern, Carrasco and Johansson (BCJ) [9, 10] that

scattering amplitudes in gauge theories satisfy a colour-kinematic dual representation. This

representation states that the kinematic part of numerators of Feynman diagrams obeys

Jacobi identities and anti-symmetric relations, similar to the corresponding structure con-

stants and group generators of the colour algebra, see figure 1. Therefore, the rearrange-

ment of numerators, according to these identities, leads to a set of relations between primi-

tive amplitudes, called BCJ relations, reducing further the number of independent primitive

amplitudes to (n− 3)!.

Several calculations have been done with the use of the colour-kinematics du-

ality (CKD), going from supersymmetric theories, up to five-loop level [10–20], to

non-supersymmetric ones, up to two-loop level [21–23]. Similarly, new relations at one-

loop level have been found with a clever use of the BCJ relations with string theory [24–28]

and unitarity based methods [29, 30].

In this paper we follow a diagrammatic approach to construct compact expressions for

off-shell currents built from the Jacobi identity of kinematic numerators. First, we focus

on the 2 → 2 processes considered in ref. [31] by one of the current authors, gg → X

with X = ss, qq̄, gg, finding that CKD can be cast into a systematic representation, whose

shape relies on three-point interactions. These off-shell currents vanish if the external par-

ticles are set on-shell, thus satisfying CKD. A pictorial representation is given in terms of

Feynman rules. This compact representation of off-shell currents allows for a straightfor-

ward generation of CKD tree-level amplitudes, by following the algorithms based on gauge

transformations [31–34].

Later, we investigate the properties of these off-shell currents when they are embedded

in a richer topology, namely higher-multiplicity or multi-loop scattering amplitudes. It

turns out that with a proper decomposition of the four off-shell momenta in on-shell mass-

less ones we find a simple structure that allows to write objects built from CKD off-shell

currents in terms of at most two squared off-shell momenta. We remark that this decom-

position, showing the full off-shell dependence, does not have additional contributions of

squared momenta.

As a byproduct of the off-shell decomposition at one-loop level, we show that new

relations among Feynman integrals with the same number of propagators emerge. In order

to extract these identities, we use the Loop-Tree duality (LTD) formalism [35–39]. To
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this end, we consider, for illustrative reasons, the one-loop process of gg → ss, whose

numerators are built from Jacobi off-shell currents. We note that numerators with higher

rank in the loop momentum are written in terms of lower ones.

Algebraic manipulations have been carried out by using the mathematica packages

FeynArts [40] and FeynCalc [41, 42].

2 Colour-kinematics duality

In this section, we set up the notation and normalisation used throughout this paper. Let

us first consider an m-point tree-level amplitude

Atree
m (1, 2, . . . ,m) =

N
∑

i=1

ci ni

Di
Di =

∏

αi

sαi , (2.1)

where the sum runs over all diagrams i with only cubic vertices, ci are the colour factors,

ni the kinematic numerators, and Di collect the denominators of all internal propagators.

As we shall see in the next section, contact terms are absorbed into cubic diagrams once

they are replaced with numerator factors cancelling propagators, i.e., sα/sα and assigning

their contribution to the proper diagram according to the colour factor.

The main property of the colour factors is that they satisfy the Jacobi identities

−f̃a1a2xf̃a3a4x − f̃a1a4xf̃a2a3x + f̃a1a3xf̃a2a4x = 0 , (2.2a)

−f̃a1a2xT x − T a1T a2 + T a2T a1 = 0 , (2.2b)

where we have adopted the normalisation f̃abc = Tr([T a, T b]T c) = i
√
2fabc and T a =√

2ta, with fabc and ta the standard structure constants and generators of SU(N), to avoid

prefactors in the next calculations.

Furthermore, for any m-point amplitude, we can always find three colour factors built

from (2.2), say

ci = . . . f̃a1a2xf̃a3a4x . . . , cj = . . . f̃a1a4xf̃a2a3x . . . , ck = . . . f̃a1a3xf̃a2a4x . . . , (2.3)

where the ‘. . .’ state for common terms in the three colour factors. Therefore, the Jacobi

identity takes the form

−ci − cj + ck = 0 . (2.4)

Since colour factors and kinematic numerators satisfy anti-symmetry relations under

a swapping of legs, cj → −cj ⇒ nj → −nj , we promote (2.4) to be dual in the kinematic

sector,

− ni − nj + nk . (2.5)

This relation between colour factors and kinematic numerators is referred to as Colour-

Kinematics duality (CKD). CKD is always satisfied for 2 → 2 processes at tree-level.

However, its generalisation for processes at higher-multiplicity or multi-loop level is not

straightforward. In fact, CKD for tree-level amplitudes can always be recovered by re-

arranging numerators but at multi-loop level it has not been proven yet remaining as a

conjecture [43].
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Figure 2. Jacobi combination for gg → X with X = ss, qq̄, gg.

3 Jacobi off-shell currents from the colour-kinematics duality

In this section, we compute off-shell currents built from the Jacobi-like combination of

numerators. We recap the diagrammatic approach of ref. [31], used by one of the current

authors. We find that this combination of numerators for the processes gg → X, with

X = ss, qq̄, gg can always be schematically represented in terms of three-point interaction

Feynman rules.

These off-shell currents are computed in the axial gauge, in which the polarisation

tensor of the gluon propagator is written as

Παβ (pi, q) = −gαβ +
pαi q

β + pβi q
α

pi · q
, (3.1)

where pi is the momentum of the internal (or off-shell) gluon and q its gauge reference

momentum, such that q2 = 0 and pi·q 6= 0. Throughout this paper the reference momentum

q is chosen to be the same for all internal gluons. Although, this choice of gauge does not

play any role for 2 → 2 processes at tree-level it allows for simplifications when considering

processes with higher-multiplicity at tree or multi-loop level, as we shall observe in section 4.

CKD is studied for the processes depicted in figure 2. We consider quark (anti-quark)

living in the fundamental (anti-fundamental) representation of SU(N), while scalars and

gluons are in the adjoint one.

In figure 2, n(. . .) is understood as the numerator of the Feynman diagram, in which

scalar propagators, 1/p2i , have been removed. Nevertheless, contributions of 1/(pi · q) are
retained in order to work out with same dimensions. The four-point interactions, or simply

contact terms, ssgg and gggg have been rewritten in terms of cubic diagrams only. Thus,

a numerator containing one contact term can be expressed as

n4 = sαin4:ici + sαjn4:jcj + sαk
n4:kck . (3.2)
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We compute the Jacobi off-shell currents for the processes gg → ss, gg → qq̄ and

gg → gg in axial gauge. In order to elucidate the dependence on the gauge, we split the

propagator (3.1) into Feynman and covariant parts, i.e.,

Πµν(pi, q) = Πµν
Fey +Πµν

Ax(pi, q) , (3.3)

with Πµν
Fey = −gµν and Πµν

Ax(pi, q) =
p
µ
i q

ν+pνi q
µ

pi·q
. This splitting allows us to write the Jacobi

off-shell currents as

Jµ1...µ4
x = Jµ1...µ4

x-Fey + Jµ1...µ4

x-Ax , with x=s,q,g . (3.4)

In order to provide a simple and compact representation for the Jacobi off-shell cur-

rents, we use Feynman-like graphs to write them schematically in terms of three-point

interaction Feynman rules. Nevertheless, these expressions do not always obey the usual

properties of the Feynman rules. In fact, the momenta of the three-point interactions are

not related by momentum conservation. Furthermore, these interactions could not cor-

respond to a physical process as we shall see for the process gg → qq̄, that includes the

insertion of an interaction between one quark and two gluons.

In the following, we list the Jacobi off-shell currents.

3.1 gg → ss

We start considering the process gg → ss with gluons and scalars in the adjoint represen-

tation. The Jacobi identity for kinematic numerator takes the form,

Jµ1µ4

s-Fey = pµ1
1

(
p2

p3

p4, µ4

)

− (1 ↔ 4) , (3.5)

Jµ1µ4

s-Ax =
1

q · p14
[Pµ1µ4

1 − (1 ↔ 4)] qσ

(
p2

p3

−p23, σ

)

+
1

q · p23
(

p22 − p23
)

qσ

(
p4, µ4

p1, µ1

−p14, σ

)

,

where pαij ≡ (pi + pj)
α and Pµiµj

i ≡ pµi
i p

µj

i −p2i g
µiµj . The Feynman rules for the three-point

interaction vertices are defined in appendix A.

In eq. (3.5), contributions to Js-Fey do not obey momentum conservation. It only follows

the structure of the Feynman rule for gss, eq. (A.1). On the other hand, contributions to

Js-Ax do obey momentum conservation.

We remark that contributions to Js-Fey come from the three diagrams of figure 2.a,

whereas Js-Ax gets only one contribution from the diagram with an internal gluon. Ad-

ditionally, we note that CKD for the former is satisfied when the external gluons are set

on-shell, or simply ask for transversality condition, ε(pi) ·pi = 0. In the latter, both gluons

and scalars have to be set on-shell, p2i = 0.

– 5 –
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3.2 gg → qq̄

We now consider the process gg → qq̄ with quark (anti-quark) in the fundamental repre-

sentation. The Jacobi off-shell current Jq takes the form,

Jµ1µ4

q-Fey =

[

pµ1
1

(
p2

p3

p4, µ4

)

− (1 ↔ 4)

]

+

[

/p2

(
p4, µ4

p1, µ1

p3

)

+ (2 ↔ 3)

]

,

Jµ1µ4

q-Ax =
1

q · p14

[

Pµ1µ4
1 − (1 ↔ 4)

]

qσ

( p2

p3

−p23, σ

)

+
/p23

q · p23
qσ

( p4, µ4

p1, µ1

−p14, σ

)

. (3.6)

In eq. (3.6) we have included an additional interaction between one quark and two glu-

ons, (A.3). This Feynman rule does not obey momentum conservation and does not have

any physical meaning. It nevertheless allows for a universality in the decomposition of the

off-shell current generated from CKD.

Similar to Js, contributions to Jq-Fey come from the three diagrams of figure 2.b,

whereas, Jq-Ax gets contribution from the diagram with an internal gluon. We also see

that in order to recover CKD the four particles have to be set on-shell. For this case, apart

from asking for transversality conditions of external gluons we also need external quark

(anti-quark) to satisfy Dirac equations, /p2ū(p2) = v(p3)/p3 = 0.

The exchanging (2 ↔ 3) in eq. (3.6) takes also care of the Dirac indices. Hence, any

expression containing gamma matrices should intrinsically be read as follows,

/p2 [γ
µ1 , γµ4 ] ≡ (/p2)i2k̄[γ

µ1 , γµ4 ]k ̄3 , (3.7)

therefore,

/p2 [γ
µ1 , γµ4 ] −→

2↔3
[γµ4 , γµ1 ] /p3 . (3.8)

3.3 gg → gg

As last application, we consider the process of gg → gg. Since there is no mixing between

different kind of particles, we end up with the most compact and symmetric expression for

the Jacobi off-shell current Jg,

Jµ1µ2µ3µ4

g-Fey =
∑

σ∈Z4

p
µσ1
σ1

(

pσ2
, µσ2

pσ3
, µσ3

pσ4
, µσ4

)

,

Jµ1µ2µ3µ4

g-Ax =
∑

σ∈A4

Pµσ1µσ2
σ1

q · pσ1σ2

qα

(

pσ3
, µσ3

pσ4
, µσ4

−pσ3σ4
, α

)

, (3.9)

where the sums run over the all the permutations of the cyclic (Z4) and alternative (A4)

groups, respectively, whose elements are represented by σi.
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As in the previous cases, Jg-Fey comes from the three diagrams of figure 2.c and their

contributions in terms of Feynman rules do not obey momentum conservation as they do

for the ones in Jg-Ax. Furthermore, we observe a similar pattern between Js and Jg. In fact,

the former can be easily recovered from the latter by setting pµ2
i = pµ3

i = 0 and gµ2µ3 = 1,

for i = 1, . . . , 4.

From Js,q,g, eq.s (3.5), (3.6) and (3.9), we observe that Jacobi off-shell currents can sys-

tematically be cast into objects whose structure follow the three-point interaction Feynman

rules. We remark that all Jx-Fey are obtained from the Jacobi identity of three kinematic

numerators of eq. (2.5) and their structure, after algebraic manipulations, is always writ-

ten as Feynman rules where momentum conservation is not preserved. Likewise, CKD is

straightforwardly recovered when the four particles in the off-shell currents are set on-shell.

On the other hand, the Feynman rules appearing in all Jx-Ax do obey momentum conserva-

tion and the way how CKD is satisfied is individually at the level of diagrams. It is indeed

for this reason that the single diagram with an internal gluon for gg → ss and gg → qq̄

vanishes by its own when the four particles are set on-shell. In fact, contributions from

the covariant part of the polarisation tensor of the gluon propagator (3.1), qµpν + qνpµ,

manifest the same pattern,

p
µσ1
σ1 p

µσ2
σ1 − p2σ1

gµσ1µσ2 , (3.10)

which vanishes when it is contracted with εµσi (pσi) and on-shellness of pσi is imposed,

p2σi
= 0.

4 Colour-kinematics duality for multi-leg amplitudes

In section 3 we constructed off-shell currents from the Jacobi identity of numerators. Hence,

in order to understand their behaviour when they are embedded in a richer topology, trees

with higher-multiplicity or multi-loop level, we plug external wave functions that do not

necessary have to be on-shell. We find that numerators built from Jacobi off-shell currents,

Js,q,g, are always written in terms of at most the product of two squared momenta. Being

these momenta the ones attached to the off-shell current.

4.1 Momentum decomposition in terms of on-shell momenta

Let us decompose an off-shell momentum pi into two on-shell momenta,

pαi = rαi +
p2i

2q · ri
qα , (4.1)

where ri and q are massless momenta, r2i = q2 = 0, with the condition ri · q 6= 0. For the

purpose of our calculations, q is chosen to be same as the reference momenta of the gluon

propagator in the axial gauge (3.1).

Hence, completeness relations for polarisation vectors, in axial gauge, and spinors take

the form
ds−2
∑

λ=1

εαλ(ds) (pi) ε
∗β

λ(ds)
(pi) = −gαβ +

rαi q
β + rβi q

α

ri · q
+

p2i
(ri · q)2

qαqβ , (4.2)

2(ds−2)/2
∑

λ=1

uλ(ds) (pi) ūλ(ds) (pi) = /ri +
p2i

2ri · q /
q . (4.3)

– 7 –
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The completeness relations (4.2) and (4.3) distinguish between on- and off-shell quan-

tities. The on-shell ones account for the numerator of gluon and fermion propagators,

whereas the off-shell ones take care of contributions coming from p2i only. Therefore, these

completeness relations can be cast into,

ds−2
∑

λ=1

εαλ(ds) (pi) ε
∗β

λ(ds)
(pi) =

ds−2
∑

λi=1

εαi ε
∗β
i +

p2i
(ri · q)2

qαqβ , (4.4a)

2(ds−2)/2
∑

λ=1

uλ(ds) (pi) ūλ(ds) (pi) =
2(ds−2)/2
∑

λi=1

uiūi +
p2i

2ri · q /
q . (4.4b)

Here and in the following we use the abbreviations

εµi ≡ εµ
λi(ds)

(ri) , ūi ≡ ūλi(ds) (ri) , vi ≡ vλi(ds) (ri) . (4.5)

As mentioned above, we have chosen q to be the same for all off-shell momenta. This is

done to remove, as much as possible, redundant terms in the following calculations. Thus,

besides the on-shell conditions ri satisfy, εi · ri = 0 and ūi/ri = /rivi = 0, we also have, as a

consequence of decomposition (4.1), εi · q = εi · pi = 0.

4.2 Construction of numerators from Jacobi off-shell currents

In order to study the behaviour of numerators built from the Jacobi off-shell currents,

we consider

Ns = Nsµ1µ4X
µ1µ4 , Nsµ1µ4 = Jν1ν4

s Πµ1ν1 (p1, q)Πµ4ν4 (p4, q) , (4.6a)

Nq = Nqµ1µ4X
µ1µ4 , Nqµ1µ4 = /p2J

ν1ν4
q /p3Πµ1ν1 (p1, q)Πµ4ν4 (p4, q) , (4.6b)

Ng = Ngµ1...µ4X
µ1...µ4 , Ngµ1...µ4 = Jν1...ν4

g Πµ1ν1 (p1, q) . . .Πµ4ν4 (p4, q) . (4.6c)

The tensors X carry the information related to the kinematic part where the off-shell

currents Js,q,g are embedded. They can generate either tree-level or multi-loop numerators.

In the case that any of the gluons attached to the Jacobi off-shell current is set on-

shell, the polarisation tensor of the gluon should be substituted by the corresponding

polarisation vector. Analogously for quarks, the /pi in eq. (4.6b) should be substituted by

the corresponding spinor.

Let us begin by defining a shorthand notation for the definition of the numerators

Eνiνj
ij ≡

ds−2
∑

λi,λj=1

ενii ε
νj
j , Qνiνj

i ≡
ds−2
∑

λj=1

qνiενj , q
νiνj ≡ qνiqνj , /ri ≡

2(ds−2)/2
∑

λi=1

uiūi . (4.7)

In the following, we list the numerators (4.6) built from the Jacobi off-shell currents.

4.2.1 gg → ss

We start considering the generic structure of numerators built from the Jacobi off-shell

current Js,

Nµ1µ4
s =

∑

i,j=1,4

ǫij p
2
i

(

Aij Eµiµj

ij +Bij Qµiµj

i + Cij p
2
j q

µiµj

)

+
(

p22 − p23
)

Ã14 Eµ1µ4
14 , (4.8)

– 8 –
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with ǫij the Levi-Civita tensor with the signature ǫ14 = +1 and

Aij =
q · (r2 − r3)

q · r23
εi · εj , Bij = − 1

q · ri

[

q · (r2 − r3)

q · r23
εj · ri + εj · (r2 − r3)

]

,

Ã14 =
q · (r1 − r4)

q · r14
ε1 · ε4 , Cij =

q · (r2 − r3)q · (ri − rj)

(q · r1) 2 (q · r4) 2
. (4.9)

From eq. (4.8), we do not get terms proportional to p2i p
2
j with i = 1, . . . , 4, j = 2, 3 and

i 6= j, because q · (p4 − p1) = q · (r4 − r1).

4.2.2 gg → qq̄

We now turn our attention to numerators built from the Jacobi off-shell current Jq,

Nν1ν4
q =

{

p21

[

/r2/q/r3
q ·r23

(

ε1 ·ε4Eν1ν4
14 − ε4 ·r1

q ·r1
Qν1ν4

4 +p24
q ·r23 q ·(r1−r4)

(q ·r1)2(q ·r4)2
q
ν1ν4

)

+
1

q ·r1

(

/r2/ε4/r3+p22
/q/ε4/r3
2q ·r2

+p23
/r2/ε4/q

2q ·r3

)

Qν1ν4
4

]

−(1↔ 4)

}

+

{

p22
2

[

/ε1/ε4/p3E
ν1ν4
14 +

[

/ε1,/q
] /r3
q ·r4

p24Qν4ν1
1

−2ε1 ·ε4q ·r1
(

/r3
q ·r23

+p23
/q

4(q ·r2)(q ·r3)

)

Eν1ν4
14 −(1↔ 4)

]

+(2↔ 3)

}

. (4.10)

Unlike the case of theNs, we do not get a simple structure. This behaviour is because we are

basically mixing two kind of particles, gluons in the adjoint and quarks in the fundamental

representation. The former are governed by Lorentz indices whereas the latter accounts

for Dirac ones. However, we see that numerators Nq can generically be decomposed as

Nq =
4

∑

i=1

ci p
2
i +

4
∑

i,j=1
i 6=j

cij p
2
i p

2
j , (4.11)

with c, coefficients depending on the kinematics where the off-shell current Jq is embedded

in. On top of it, we note a difference with numerators Ns, since now all powers of p2i p
2
j , for

i, j = 1, . . . , 4 with i 6= j, are present.

4.2.3 gg → gg

As last application, we now consider numerators built from the Jacobi off-shell current

Jg. Since we are working with particles of the same kind, the numerator Ng is compactly

expressed as,

Nν1...ν4
g =

1

2

4
∑

i,j,k,l=1

ǫijkl p
2
i

(

Aijkl Eνiνj
ij Eνkνl

kl +Bijkl Eνjνk
jk Qνiνl

l +Cijkl p
2
j q

νiνjEνkνl
kl

)

, (4.12)
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with ǫijkl the Levi-Civita tensor with the signature ǫ1234 = +1 and

Aijkl =
q · (rk − rl)

q · (rk + rl)
εi · εjεk · εl ,

Bijkl = −εj · εk
q · ri

[

q · (rj − rk)

q · (rj + rk)
εl · ri + εl · (rj − rk)

]

,

Cijkl =
q · (ri − rj)q · (rk − rl)

(q · ri) 2 (q · rj) 2
εk · εl . (4.13)

We also observe that numerators built from Jg contain all possible combinations of p2i p
2
j ,

similarly to Nq in eq. (4.11).

We notice from the above results that, because of the way the off-shell wave-functions

are parametrised, there are no terms proportional to p2i p
2
jp

2
kp

2
l or p

2
i p

2
jp

2
k. This is indeed due

to the choice of a unique reference momentum q in the definition of internal propagators

and wave-functions. Therefore, we can claim that any numerator built from the off-shell

currents Js,q,g is written in terms of at most the product of two squared momenta, p2i p
2
j .

Although this observation was done in [31], it is not completely true for the general case

where all reference momenta for the internal gluons are chosen to be different. In fact, after

the off-shell momenta are decomposed according to eq. (4.1), with q = qi, contributions of

the product of three and four squared momenta arise. In particular, scalar products εi · qj
for i 6= j are non-vanishing anymore.

There are particular cases where CKD can be immediately satisfied for multi-leg pro-

cesses. This is the case of the three-gluon vertex contributions to Xµ1...µ4 , in the Feynman

gauge. In fact, if the fouth leg, a gluon, of any Jacobi off-shell current is set off-shell, we

can end up with

Jµ1...ν45
x-Fey (p1, p2, p3, p45)V

µ4µ5
gggν45

(−p45, p4, p5) εµ4 (p4) εµ5 (p5) = 0 , (4.14)

Jµ1...ν45
x-Fey (p1, p2, p3, p45) ū (p4)Vgqq̄ν45 (−p45, p4, p5)u (p5) = 0 , (4.15)

with Vggg and Vgqq̄ the standard three-gluon and quark-anti-quark-gluon vertices.

It turns out that for Jµ1...ν45
x-Fey , with x=s,g, we can generate (up to) eight-point numer-

ators built from these off-shell currents. Whereas, for Jµ1...ν45
q-Fey we can do the same for

(up to) six-point numerator. We do not recover this kind of identity for the emission of

a gluon from a fermion line, since we get, as expected from the above discussion, a term

proportional to squared momenta.

We stress that X’s made of three-gluon vertices miss all the contributions from contact

terms. Nevertheless, adding these contact terms spoils the generation of a numerator

satisfying CKD. This is due to the fact that diagrams containing a contact term have to

be slightly modified in order to be consequent with the definition of three-point vertices.

Indeed, those diagrams have one propagator less and are naively restored by inserting

factors of p2i /p
2
i . The proper insertion of contact terms allows for a generation of numerators

satisfying CKD from construction, as was done in ref. [44] for Yang-Mills theories.

In the same manner, when considering theories with particles living in different repre-

sentations, like gluons and quarks in QCD, it has been shown that the arbitrary procedure
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Figure 3. Jacobi combinations for 2 → 2 processes at one-loop.

of rearranging diagrams with contact terms does not allow a systematic generation of nu-

merators satisfying CKD. In particular, ref.s [45–48] discuss the automatic generation of

dual numerators. This relation is straightforwardly satisfied when in the generation of

the kinematic numerators there are true three-point vertices, i.e. no contact terms. The

latter relies on the emission of single gluons. In order to compute processes with mostly

quarks one could take advantage of Melia’s formalism [45]. This formalism allows us to

compute processes with quarks of different flavours and generalise this result to the case of

a single one.

In the next section, we discuss the generation of one-loop numerators from the Jacobi

off-shell currents of section 3. In order to do so, we rely on the Loop-Tree duality formalism.

5 Colour-kinematics duality for 2 → 2 processes at one-loop

In this section, we study the one-loop 2 → 2 processes when a numerator is built from the

Jacobi off-shell currents (3.5), (3.6) and (3.9). We discuss that at integral level, because of

the decomposition shown in section 4, a new set of relations is generated. In order to see

the structure of these relations, we elaborate on the one-loop process of gg → ss.

5.1 Integral relations

At one-loop level we have to deal with objects of this form,

Im =

∫

ℓ

(

m
∏

i=1

GF (qi)

)

N (ℓ, {pk}) , (5.1)

where
∫

ℓ
= −ı

∫

ddℓ/ (2π)d , GF (qi) =
(

q2i + ı0
)−1

are massless Feynman propagators, and

N (ℓ, {pk}) is the numerator built from the Jacobi off-shell currents Js,q,g. The natural

study of this object is considering its behaviour when it is embedded in one-loop topologies

with two and three internal propagators, as depicted in figure 3.

From figure 3 we note that at one-loop level we have an off-shell current attached to

two off- and two on-shell momenta. Hence, we recall the results of section 4.2 for Nµ1...µ4
s,q,g ,

whose decomposition in terms of off-shell momenta allows to provide relations at integral

level. It turns out that if the numerator (5.1) belongs to a triangle or bubble diagram, it
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collapses into

I3 =

∫

ℓ

N3

ℓ2(ℓ+ p3)2(ℓ+ p34)2
(5.2a)

=

∫

ℓ







Ã11 I



p1

p2

p3

p4



+ Ã12 I



p2

p3

p4

p1



+ C̃11 I





p3
p2

p4
p1











,

and

I2 =

∫

ℓ

N2

ℓ2(ℓ+ p34)2

=

∫

ℓ







Ã21 I





p2

p3
p4

p1


+ Ã22 I





p4

p1
p2

p3


 + C̃11 I
[

p4

p3 p2

p1
]







. (5.2b)

Here, I[· · · ] states for the integrand of the topology, Ã and C̃ are polynomials in the loop

momentum ℓ, whose structure follows the results of section 4.2.

We observe that the r.h.s. of eq. (5.2) corresponds to topologies that integrate to zero

in dimensional regularisation, massless bubbles and tadpoles. Therefore, because of the

Jacobi numerators (4.8), (4.10) and (4.12), we obtain relations between integrals with the

same number of loop propagators, three and two. These relations play a fundamental role

when calculating an amplitude through the Loop-Tree duality (LTD) formalism. This is

because different combinations of integrals can vanish by means of the outcome of CKD.

We remark that apart of performing the single cuts given by the prescriptions of LTD we

also integrate out the expressions. It is indeed for this reason that the use of relations (5.2)

before integrating increases the efficiency in the evaluation of any amplitude, since terms

that seem to have a cumbersome structure at integrand level can be replaced by others

holding a simpler structure.

The recent work of ref.s [26, 27] has addressed an alternative study of numerators built

from the off-shell current Jg. The approach of the authors is based on monodromy relations

in string theory. In particular, with the limit α′ → 0, the expansion of monodromy relations

in terms of cubic diagrams turns out to be a linear combination of Jacobi identities.

For the sake of simplicity, let us recall the results of ref. [27, eq. (4.12)] for 2 → 2

processes, which, in the notation of the current paper, become

0=

∫

ℓ

{

1

ℓ2(ℓ+p12)2(ℓ−p4)2
n







p1

p2 p3

p4

J






−

1

ℓ2(ℓ+p2)2(ℓ+p23)2
n







p4

p1

p2

p3

J







+
1

ℓ2(ℓ+p2)2(ℓ−p4)2
n







p3

p1

p4

p2

J






+

1

s12ℓ2(ℓ+p12)2
n







p2

p1

p3

p4

J






(5.3)

−
1

s23(ℓ+p1)2(ℓ−p4)2
n







p4

p1

p2

p3

J






+

1

s24(ℓ+p2)2(ℓ−p4)2
n







p3

p1

p4

p2

J







}

.

The +ı0 prescription of the Feynman propagators is implicitly understood.
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From the diagrammatic and deep study of the Jacobi off-shell currents provided in

sections 3 and 4, we observe that the very same behaviour of eq. (5.3) is recovered in

decompositions (4.8), (4.10) and (4.12). Moreover, the difference relies on the fact that we

know apriori the structure of any object built from the off-shell currents Js,q,g. Therefore,

we can eliminate topologies that at this point do not contribute and generate redundant

contributions. This set of 2 → 2 massless processes do not show any difficulty in the

calculation, since grouping integrands according to Jacobi identities satisfies CKD at inte-

gral level.

5.2 gg → ss at one-loop

In this section, we provide an application of CKD for one-loop 2 → 2 processes. To this

end, we embed the Jacobi off-shell currents in a one-loop topology. Since for this set up

two particles are on- and the other two are off-shell, we consider, without loss of generality,

the off-shell current Jg. This is because the behaviour of the complete numerator Ng will

be the same as for Ns and Nq when two of the four particles attached to the Jacobi off-shell

current are set on-shell, as shown in section 4.2. This calculation is made in the framework

of the LTD.

In order to write numerators as simple as posible we decompose them in terms of form

factors by using Lorentz invariance. In fact, the recent work of [49] deals with the Higgs

production via gluon fusion, gg → H using LTD formalism. We can extend this set up for

the current calculation. This is due to the fact that the particles carrying the information

of the process are external gluons.

Let us consider a one-loop object

|M(1)
gg→ss〉 = ig4s ε

µ1 (p1) ε
µ2 (p2)A(1)

µ1µ2
, (5.4)

where A is built from the Jacobi off-shell current Jg. As mentioned above, because of

Lorentz invariance, this tensor is given by

A(1)
µ1µ2

=

10
∑

i=1

A
(1)
i T i

µ1µ2
, (5.5)

with Ai the form factors or scalar functions of the Maldestam variables s12, s23 and of the

dimension d, and T the tensor basis

Tµ1µ2
i =

{

gµ1µ2 − 2 pµ2
1 pµ1

2

s12
, gµ1µ2 ,

2 pµ2
1 pµ1

3

s13
,
2 pµ1

2 pµ2
3

s23
,
2 s12 p

µ1
3 pµ2

3

s23s13
,

2 pµ1
1 pµ2

2

s12
,
2 pµ1

1 pµ2
1

s12
,
2 pµ1

2 pµ2
2

s12
,
2 pµ1

1 pµ2
3

s23
,
2 pµ2

2 pµ1
3

s13

}

, (5.6)

with s13 = −s12 − s23.

Since external gluons obey the transversality condition, pi ·ε(pi) = 0, we only compute

the first five contributions of (5.5). These scalar coefficients are extracted by applying ap-

propriate projecting operators on the tensor (5.5), such that Pµν
i A(1)

µν = A
(1)
i . All projectors

are collected in appendix B.
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In section 4.2 we studied the general case of the four off-shell legs attached to the Jacobi

off-shell currents. For the one-loop case we are considering, with two off-shell particles, the

parametric decomposition (4.12) takes the form,

Ng = c2 (ℓ+ p34)
2 + c3 ℓ

2 + c23 ℓ
2 (ℓ+ p34)

2 , (5.7)

with c scalar coefficients depending on the external and internal momenta, and ℓ the

internal loop momentum. Since this numerator is sat either in two or three loop massless

propagators, we can independently elaborate on each coefficient. This is done because each

coefficient together with the set of propagators vanishes in dimensional regularisation as

depicted in eq. (5.2).

In order to explain how integral relations are obtained, let us first consider the case

when the numerator (5.7) is sat in three loop propagators (see figure 3.a). We find, for the

form factor A1 two independent identities,1

∫

ℓ

c
(1)
2 (ℓ+p34)

2

ℓ2(ℓ+p3)2(ℓ+p34)2
=

∫

ℓ

{

δ(k1)
(2k1 ·p1+s23)

(2k1 ·p4)

[

(k1 ·p1)
(

−
(

s212+s12s23−s223
)

(k1 ·p3)

+s23
(

s212+4s12s23+2s223−s13 (k1 ·p4)
)

+s12s13 (k1 ·p2)
)

+s213 (k1 ·p2)(k1 ·p34+2s23)−s12s23 (k1 ·p1)2

+s12
(

−s13 (k1 ·p3)2+(k1 ·p3)(−s13 (k1 ·p4)+s23(3s12+4s23))−s23s13 (k1 ·p4+s23)
)

]

−δ(k3)
(k3 ·p1+s23)

(2k3 ·p4)

[

(k3 ·p1)
(

−2
(

s212+s12s23−s223
)

(k3 ·p3) (5.8a)

+2s12s13 (k3 ·p2)+2s23s13 (k3 ·p4)+s23(s12+2s23)(3s12+2s23)
)

−2s12s23 (k3 ·p1)2+(−s13 (k3 ·p2)+s12 (k3 ·p3))
(

−2s13k3 ·(p3−p4)+(s12+2s23)
2
)

]}

=0 ,

∫

ℓ

c
(1)
3 ℓ2

ℓ2(ℓ+p3)2(ℓ+p34)2
=

∫

ℓ

{

δ̃(k1)(2k1 ·p1−s13)

8(2k1 ·p3)

[

(k1 ·p1)
(

2s12s13 (k1 ·p2)+2s23s13 (k1 ·p4)

−2
(

s212+3s23s12+s223
)

(k1 ·p3)−s23 (s12+2s23)(3s12+2s23)
)

−2s12s23 (k1 ·p1)2+s13 (k1 ·p2)
(

(s12+2s23)
2−2s13 (k1 ·p3+k1 ·p4)

)

+s12
(

−(k1 ·p3)
(

−2s13k1 ·p34+s212+2s23s12+2s223
)

−s13s23 (s12+2s23)
)

]

(5.8b)

+
δ̃(k2)(k2 ·p1−s13)

4(2k2 ·p3)

[

(k2 ·p1)
(

−2s12s13 (k2 ·p2)−2s23s13 (k2 ·p4)

+2
(

s212+s23s12−s223
)

(k2 ·p3)+s23 (s12+2s23)(3s12+2s23)
)

+2s12s23 (k2 ·p1)2+(s12 (k2 ·p3)−s13 (k2 ·p2))
(

2s13k2 ·(p3−k2)+(s12+2s23)
2
)

]}

=0 ,

1The scalar coefficients c
(j)
i follow the structure of the ones of eq. (5.7) and account for the information

of the projectors Pµν
j of eq. (B.1).
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Terms proportional to ℓ2 (ℓ+ p34)
2 do not appear in this analysis.

Similarly for A2,

∫

ℓ

c
(2)
2 (ℓ+p34)

2

ℓ2(ℓ+p3)2(ℓ+p34)2
=

∫

ℓ

{

δ̃(k1)(2(k1 ·p1)+s23)

(2k1 ·p4)

[

(k1 ·p1)
(

−s13s23 (k1 ·p4)+s12s13 (k1 ·p2)

−
(

s212+s23s12−s223
)

(k1 ·p3)+s12s
2
23

)

−s12s23 (k1 ·p1)2−s13 (k1 ·p2)(s12s23−s13 (k1 ·p34))

+s12 (−s13 (k1 ·p4)(k1 ·p3+2s23)+(k1 ·p3)(s23 (4s12+5s23)−s13 (k1 ·p3))+s12s13s23)

]

+
δ̃(k3)(k3 ·p1+s23)

(2k3 ·p4)

[

(k3 ·p1)
(

2s12s13 (k3 ·p2)+2s23s13 (k3 ·p4)

−2
(

s212+s23s12−s223
)

(k3 ·p3)+s12s23 (s12+2s23)
)

+2s12s13 (k3 ·p4)(k3 ·p3+s23)+s12 (k3 ·p3)
(

−2s13 (k3 ·p3)+s212+6s23s12+6s223
)

−2s12s23 (k3 ·p1)2−s13 (k3 ·p2)(s12 (s12+2s23)−2s13k3 ·(p3−p4))

]}

=0 , (5.9a)

∫

ℓ

c
(2)
3 ℓ2

ℓ2(ℓ+p3)2(ℓ+p34)2
=

∫

ℓ

{

δ̃(k1)(2(k1 ·p1)−s13)

2(2k1 ·p3)

[

(k1 ·p1)
(

2s12s13 (k1 ·p2)+2s23s13 (k1 ·p4)

−2
(

s212+3s23s12+s223
)

(k1 ·p3)−s12s23 (s12+2s23)
)

+s12
(

2s13 (k1 ·p3)2−(k1 ·p3)
(

s212−2s13 (k1 ·p4)
)

−s13s23 (2(k1 ·p4)+s12)
)

−2s12s23 (k1 ·p1)2+s13 (k1 ·p2)(s12 (s12+2s23)−2s13 (k1 ·p3+k1 ·p4))
]

+
δ(k2)(k2 ·p1−s13)

(2k2 ·p3)

[

(k2 ·p1)
(

−2s12s13 (k2 ·p2)−2s23s13 (k2 ·p4)

+2
(

s212+s23s12−s223
)

(k2 ·p3)+s12s23 (s12+2s23)
)

−2s12s13 (k2 ·p4)(k2 ·p3−s23)+s12 (k2 ·p3)
(

2s13 (k2 ·p3)+s212+6s23s12+6s223
)

+2s12s23 (k2 ·p1)2−s13 (k2 ·p2)(2s13 (k2 ·p3−k2 ·p4)+s12 (s12+2s23))

]}

=0 , (5.9b)

where δ̃(ki) = 2π ı δ(+)(k2i ) and ki are defined as follows,

k1 = ℓ+ p4 , k2 = ℓ+ p34 , k3 = ℓ , (5.10)

whose on-shell loop energies are given by

k
(+)
1,0 =

√

(ℓ+ p4)
2, k

(+)
2,0 =

√

(ℓ+ p34)
2, k

(+)
3,0 =

√

ℓ2 , . (5.11)
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In eq.s (5.8) and (5.9) we observe relations between integrals that appear from different

cuts. Nevertheless, for these 2 → 2 processes it is convenient to work in the center-of-mass

frame, because of the additional constraint k
(+)
2,0 = k

(+)
3,0 = ℓ

(+)
0 , which turns out to be

equivalent to δ̃(k2) = δ̃(k3) = δ̃(ℓ). This constraint allows us to combine both results, for

instance the two identities in eq.s (5.8) or (5.9), to express the integrals that depend on

δ̃(k1) in terms of simpler ones.

A similar study, even though it is not that illuminating for the purpose of this example,

can be done for the other form factors, Ai, with i = 3, 4, 5, as well as for the case of the

numerator (5.7) with two loop propagators, which is depicted in figure 3.b. The difference

with the above example relies on the rank of the numerators, since for this one we obtain

a polynomial in ℓ with at most rank two. However, in order to get further simplifications

in the integral relations, contributions of 3.b do have to be taken into account.

6 Conclusions

In this paper, we have studied the colour-kinematics duality (CKD) at tree and one-loop

level. We have computed the off-shell currents in the Feynman and axial gauges from the

Jacobi-like combinations of numerators. We have considered the QCD processes gg →
ss, qq̄, gg, finding that the most compact form for these off-shell currents can always be

written in terms of three-point interaction Feynman rules. Although, these interactions

do not always obey the usual properties of the Feynman rules, they allow for a universal

representation in terms of three-point interactions. We have also seen that these off-shell

currents vanish if the external particles are set on-shell, satisfying CKD.

Consequently, we have embedded the off-shell currents in a richer topology, at tree

level with higher-multiplicity or one-loop, obtaining that with a decomposition of the four

momenta entering to the off-shell currents in terms of on-shell massless ones, any object

built from these currents can be written as a linear combination of at most two of the four

squared momenta, p2i p
2
j . This outcome has been achieved as a byproduct of the choice of

the gauge, since the reference momentum has chosen to be the same for all internal gluons.

The decomposition of one-loop numerators has been extended, finding relations be-

tween integrals with the same number of propagators. For the 2 → 2 case, we have written

relations for Feynman integrals with two and three loop propagators. In the same manner

and in the framework of the Loop-Tree duality formalism, we have considered the particular

example of gg → ss showing that higher rank numerators can be replaced by lower ones.

This outcome indeed allows for an optimisation in the evaluation of Feynman integrals.

Furthermore, we have observed that monodromy relations obtained in ref. [27] in tan-

dem with the structure of numerators built from the Jacobi off-shell currents play a very

important role for finding integral relations for 2 → n processes with n > 2. In partic-

ular, the linear combination of Jacobi identities in the kinematical sector, provided by

monodromy relations, generates all posible integral relations. However, several topologies

turn out to be redundant, since the Jacobi identity of kinematic numerators shows the

same pattern we have discussed through this paper in which their contribution vanish

upon integration.
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Future work could include the consequences of these integral relations at higher loop

orders, in particular if the calculation of Integration-by-parts identities [50–52] gets opti-

mised when there is a new ingredient provided by CKD.
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A Three-point interaction Feynman rules

In this appendix, we collect the colour stripped Feynman rules of section 2,

p2

p3

p1, µ1
= (p2 − p3)

µ1 , (A.1)

p2

p3

p1, µ1
= γµ1 , (A.2)

p4, µ4

p1, µ1

p2
=

1

2
[γµ4 , γµ1 ] , (A.3)

p1, µ1

p2, µ2

p3, µ3
= gµ1µ2 (p1 − p2)

µ3 + gµ2µ3 (p2 − p3)
µ1 + gµ3µ1 (p3 − p1)

µ2 . (A.4)

B Projectors

In this appendix, we collect the projectors used to extract the form factors Ai of section 5.2

Pµ1µ2
1 =

1

2(d−3)

[

gµ1µ2− (d−2)pµ2

1 p
µ1

2

s12
+

(d−4)pµ2

3 p
µ1

2

s23
+

(d−2)s13p
µ2

2 p
µ1

2

s12s23
+

(d−2)s23p
µ1

1 p
µ2

1

s12s13

− (d−2)pµ1

1 p
µ2

2

s12
+

(d−4)pµ2

1 p
µ1

3

s13
− (d−2)pµ1

1 p
µ2

3

s13
− (d−2)pµ2

2 p
µ1

3

s23
− (d−4)s12p

µ1

3 p
µ2

3

s13s23

]

,

(B.1a)

Pµ1µ2
2 =

1

2(d−3)

[

gµ1µ2+
(d−4)pµ2

1 p
µ1

2

s12
− (d−2)pµ2

3 p
µ1

2

s23
− (d−4)s13p

µ2

2 p
µ1

2

s12s23
− (d−4)s23p

µ1

1 p
µ2

1

s12s13

+
(d−4)pµ1

1 p
µ2

2

s12
− (d−2)pµ2

1 p
µ1

3

s13
+

(d−4)pµ1

1 p
µ2

3

s13
+

(d−4)pµ2

2 p
µ1

3

s23
+

(d−2)s12p
µ1

3 p
µ2

3

s13s23

]

,

(B.1b)
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Pµ1µ2
3 =

1

(d−3)

[

gµ1µ2− (d−2)pµ2

1 p
µ1

2

s12
− (d−2)pµ2

3 p
µ1

2

s23
+

(d−2)s13p
µ2

2 p
µ1

2

s12s23
+

(d−2)s23p
µ1

1 p
µ2

1

s12s13

− (d−2)pµ1

1 p
µ2

2

s12
− (d−2)pµ2

1 p
µ1

3

s13
+

(d−4)pµ1

1 p
µ2

3

s13
+

(d−4)pµ2

2 p
µ1

3

s23
− (d−4)s12p

µ1

3 p
µ2

3

s13s23

]

,

(B.1c)

Pµ1µ2
4 =− 1

(d−3)

[

gµ1µ2− (d−2)pµ2

1 p
µ1

2

s12
+

(d−4)pµ2

3 p
µ1

2

s23
+

(d−2)s13p
µ2

2 p
µ1

2

s12s23
+

(d−2)s23p
µ1

1 p
µ2

1

s12s13

− (d−2)pµ1

1 p
µ2

2

s12
− (d−2)pµ2

1 p
µ1

3

s13
− (d−2)pµ1

1 p
µ2

3

s13
+

(d−4)pµ2

2 p
µ1

3

s23
+

(d−2)s12p
µ1

3 p
µ2

3

s13s23

]

,

(B.1d)

Pµ1µ2
5 =

1

(d−3)

[

gµ1µ2− (d−2)pµ2

1 p
µ1

2

s12
− (d−2)pµ2

3 p
µ1

2

s23
+

(d−2)s13p
µ2

2 p
µ1

2

s12s23
+

(d−2)s23p
µ1

1 p
µ2

1

s12s13

− (d−2)pµ1

1 p
µ2

2

s12
+

(d−4)pµ2

1 p
µ1

3

s13
+

(d−4)pµ1

1 p
µ2

3

s13
− (d−2)pµ2

2 p
µ1

3

s23
+

(d−2)s12p
µ1

3 p
µ2

3

s13s23

]

.

(B.1e)
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[41] R. Mertig, M. Böhm and A. Denner, FEYN CALC: Computer algebraic calculation of

Feynman amplitudes, Comput. Phys. Commun. 64 (1991) 345 [INSPIRE].

[42] V. Shtabovenko, R. Mertig and F. Orellana, New Developments in FeynCalc 9.0,

Comput. Phys. Commun. 207 (2016) 432 [arXiv:1601.01167] [INSPIRE].

[43] Z. Bern, J.J.M. Carrasco, L.J. Dixon, H. Johansson and R. Roiban, The Complete Four-Loop

Four-Point Amplitude in N = 4 super-Yang-Mills Theory, Phys. Rev. D 82 (2010) 125040

[arXiv:1008.3327] [INSPIRE].

[44] M. Tolotti and S. Weinzierl, Construction of an effective Yang-Mills Lagrangian with

manifest BCJ duality, JHEP 07 (2013) 111 [arXiv:1306.2975] [INSPIRE].

– 20 –

https://doi.org/10.1103/PhysRevLett.117.211601
https://arxiv.org/abs/1608.01665
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01665
https://doi.org/10.1007/JHEP10(2017)105
https://arxiv.org/abs/1707.05775
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.05775
https://arxiv.org/abs/1706.00640
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.00640
https://doi.org/10.1103/PhysRevD.93.065047
https://arxiv.org/abs/1601.00235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.00235
https://doi.org/10.1007/JHEP04(2016)125
https://arxiv.org/abs/1602.03161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.03161
https://doi.org/10.1016/j.physletb.2015.11.084
https://arxiv.org/abs/1507.07532
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07532
https://doi.org/10.1103/PhysRevD.82.065003
https://arxiv.org/abs/1004.0693
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0693
https://doi.org/10.1007/JHEP06(2012)061
https://arxiv.org/abs/1203.0944
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0944
https://doi.org/10.1007/JHEP06(2013)017
https://arxiv.org/abs/1212.3473
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.3473
https://doi.org/10.1088/1126-6708/2008/09/065
https://arxiv.org/abs/0804.3170
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.3170
https://doi.org/10.1007/JHEP10(2016)162
https://arxiv.org/abs/1608.01584
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01584
https://doi.org/10.1007/JHEP08(2016)160
https://arxiv.org/abs/1604.06699
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.06699
https://doi.org/10.1007/JHEP02(2016)044
https://arxiv.org/abs/1506.04617
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.04617
https://doi.org/10.1140/epjc/s10052-017-4833-6
https://arxiv.org/abs/1510.00187
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.00187
https://doi.org/10.1016/S0010-4655(01)00290-9
https://arxiv.org/abs/hep-ph/0012260
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0012260
https://doi.org/10.1016/0010-4655(91)90130-D
https://inspirehep.net/search?p=find+J+%22Comput.Phys.Commun.,64,345%22
https://doi.org/10.1016/j.cpc.2016.06.008
https://arxiv.org/abs/1601.01167
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01167
https://doi.org/10.1103/PhysRevD.82.125040
https://arxiv.org/abs/1008.3327
https://inspirehep.net/search?p=find+EPRINT+arXiv:1008.3327
https://doi.org/10.1007/JHEP07(2013)111
https://arxiv.org/abs/1306.2975
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2975


J
H
E
P
1
2
(
2
0
1
7
)
1
2
2

[45] T. Melia, Dyck words and multiquark primitive amplitudes, Phys. Rev. D 88 (2013) 014020

[arXiv:1304.7809] [INSPIRE].

[46] T. Melia, Getting more flavor out of one-flavor QCD, Phys. Rev. D 89 (2014) 074012

[arXiv:1312.0599] [INSPIRE].

[47] H. Johansson and A. Ochirov, Pure Gravities via Color-Kinematics Duality for Fundamental

Matter, JHEP 11 (2015) 046 [arXiv:1407.4772] [INSPIRE].

[48] H. Johansson and A. Ochirov, Color-Kinematics Duality for QCD Amplitudes,

JHEP 01 (2016) 170 [arXiv:1507.00332] [INSPIRE].

[49] F. Driencourt-Mangin, G. Rodrigo and G.F.R. Sborlini, Universal dual amplitudes and

asymptotic expansions for gg → H and H → γγ in four dimensions, arXiv:1702.07581

[INSPIRE].

[50] F.V. Tkachov, A Theorem on Analytical Calculability of Four Loop Renormalization Group

Functions, Phys. Lett. B 100 (1981) 65 [INSPIRE].

[51] K.G. Chetyrkin and F.V. Tkachov, Integration by Parts: The Algorithm to Calculate

β-functions in 4 Loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[52] S. Laporta, High precision calculation of multiloop Feynman integrals by difference equations,

Int. J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

– 21 –

https://doi.org/10.1103/PhysRevD.88.014020
https://arxiv.org/abs/1304.7809
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7809
https://doi.org/10.1103/PhysRevD.89.074012
https://arxiv.org/abs/1312.0599
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.0599
https://doi.org/10.1007/JHEP11(2015)046
https://arxiv.org/abs/1407.4772
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.4772
https://doi.org/10.1007/JHEP01(2016)170
https://arxiv.org/abs/1507.00332
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00332
https://arxiv.org/abs/1702.07581
https://inspirehep.net/search?p=find+EPRINT+arXiv:1702.07581
https://doi.org/10.1016/0370-2693(81)90288-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B100,65%22
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B192,159%22
https://doi.org/10.1016/S0217-751X(00)00215-7
https://arxiv.org/abs/hep-ph/0102033
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0102033

	Introduction
	Colour-kinematics duality
	Jacobi off-shell currents from the colour-kinematics duality
	gg –> ss
	gg–>q bar(q)
	gg –> gg

	Colour-kinematics duality for multi-leg amplitudes
	Momentum decomposition in terms of on-shell momenta
	Construction of numerators from Jacobi off-shell currents
	gg –> ss
	gg –> q bar(q)
	gg –> gg


	Colour-kinematics duality for 2 –> 2 processes at one-loop
	Integral relations
	gg –> ss at one-loop

	Conclusions
	Three-point interaction Feynman rules
	Projectors

