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1 Introduction

Extremal charged black branes possess a near-horizon AdSd+1×M throat. Under favorable

circumstances, physics in the throat decouples at low energies, leading to two consequences.

First, from a more practical point of view, the decoupling simplifies the computation of low-

energy S-matrix elements, owing to the high symmetry of AdSd+1. Second, it is generally

believed that gravitational physics in the AdS throat is dual to a d-dimensional conformal

field theory (CFT).
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Extremal rotating black holes have a more complicated near-horizon, known as the

near-horizon extremal Kerr (NHEK) geometry. In four dimensions NHEK is topologically

AdS2 × S2, and its high degree of symmetry also leads to a simplification of low-energy

S-matrix elements. This near-horizon is the main actor in the “Kerr/CFT” correspondence

of [1], the conjecture that quantum gravity on the NHEK geometry has a CFT dual.

At fixed polar angle in the four-dimensional NHEK geometry, one finds an interest-

ing three-dimensional geometry known as warped AdS3 or WAdS3. (It is analogous to a

warped S3, in which the Hopf fiber is either stretched or squashed.) WAdS3 spacetimes

have PSL(2;R) × U(1) isometry, and with suitable boundary conditions, the asymptotic

symmetry group of WAdS3 is enhanced from PSL(2;R) × U(1) to a Virasoro-Kac-Moody

symmetry. In the wake of the Kerr/CFT correspondence, it has also been conjectured

that quantum gravity on WAdS3 spacetimes has a field theory dual, dubbed a “warped

conformal field theory” or WCFT.

The asymptotic symmetries of WAdS3 do not include a boundary Lorentz boost, and

so if a dual WCFT exists, it is not Lorentz-invariant. Thus a putative WCFT/WAdS3

correspondence would be an example of non-relativistic holography.

What is a WCFT? One definition is that it is a two-dimensional theory invariant under

“warped conformal symmetries”. Parameterizing the plane with coordinates x±, which we

refer to as left and right-moving, the warped conformal symmetries are given by

x− = x−(X−) , x+ = X+ + f(X−) , (1.1)

and are generated by a right-moving stress tensor T (x−) and current P (x−) respectively,

leading to a Virasoro-Kac-Moody algebra, rather than the Virasoro2 symmetry of an ordi-

nary 2d CFT. Observe that the transformations of the left-moving direction x+ are gener-

ated by the right-moving current P (x−). The warped symmetries (1.1) exactly match the

asymptotic symmetry group of WAdS3 subject to the boundary conditions of [2].

There has been significant study of both WAdS3 spacetimes and WCFTs. See

e.g. [2–19]. A few results are worth mentioning here. First, using the warped confor-

mal symmetries, Detournay, Hartman, and Hofman [11] have derived a warped analogue

of the Cardy formula. Their result expresses the asymptotic density of states of a general

WCFT in terms of its central charges and the vacuum charges of L0 and J0 on a circle.

The logarithm of this density of states is the high-temperature thermal entropy, expressed

as a function of the charges, and this entropy matches that of WAdS3 black holes. Further,

there is a universal expression [17] for the single-interval entanglement entropy of a WCFT.

Hofman and Rollier [14] constructed the two known examples of Lagrangian WCFT

to date, namely the warped analogue of a Weyl fermion and a warped bc theory. They also

suggested that, just as 2d CFTs naturally couple to Riemannian geometry, WCFTs couple

to a structure they dubbed “warped geometry”. This structure is a variant of Newton-

Cartan geometry, which has received some attention of late in the context of Son’s work

on the fractional quantum Hall effect [20] as well as in non-relativistic holography [21].

There is an expectation that WCFTs are generically non-local. Before the Hof-

man/Rollier theories, the known examples of WCFTs were the IR limits of dipole-deformed

2d CFTs as in [7, 8, 10]. When the parent 2d CFT has a gravity dual, then after turning
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on the dipole deformation, the bulk geometry has a WAdS3 factor. The dipole deformation

breaks locality, and it is not a priori clear whether locality is restored in the IR.

Thinking of x− as “time”, it is clear from (1.1) that WCFTs are non-relativistic theories

with a dynamical critical exponent z = ∞ (meaning that under dilatations time rescales

but space does not). Locality is precarious in any theory with z =∞, as spatial derivatives

do not carry any dimension, and from this alone one might expect that a generic WCFT

is non-local. Due to their high degree of symmetry, WCFTs would then offer perhaps the

most controlled examples of non-local field theories.

In this paper we investigate various aspects of WCFT, focusing on the role of locality

and anomalies. We establish a number of loosely related results. After reviewing prelimi-

nary material in section 2, we write down two new Lagrangian WCFTs in section 3. They

are free scalar analogues of the Hofman/Rollier theories. Basically because WCFTs have

a dynamical exponent z =∞, all of theories possess exactly marginal, non-local deforma-

tions quadratic in the fields. In fact there are an infinite number of such operators, and all

must be tuned away to obtain a local WCFT.

Next in section 4 we use Wess-Zumino consistency to determine the anomalies of local

WCFTs. We find three anomalies. One is the analogue of the usual trace anomaly of

2d CFT, and is governed by the Virasoro central charge. The second is a pure boost

anomaly, which does not have a 2d CFT analogue, and it is governed by the Kac-Moody

central charge. The third is a gravitational anomaly, which is unrelated to the Virasoro

and Kac-Moody central charges.

Much like in 2d CFT, there is a warped analogue of the conformal transformation from

the infinite plane to the thermal cylinder. In section 5 we use this result (combined with

the hydrostatic partition function technology of [22, 23]) to obtain the high-temperature

thermodynamics of any local WCFT. Our result depends on the anomaly coefficients and

on the one-point functions of T and P on the plane, and we recover the warped Cardy

formula of Detournay, Hartman, and Hofman.

Finally we turn our attention to holographic WCFTs, or at least, the putative duals

to theories of gravity on spacelike WAdS3 spacetimes. See section 6. We do not consider

the “lower-spin gravity” of [14]. Spacelike WAdS3 spacetimes have a spatial circle fibered

over AdS2, and the fibration is characterized by a constant α. When α = 1 one has AdS3,

while for α > 1 the circle is “stretched”. We find that spacelike WAdS3 behaves rather

like the AdS2 ×M near-horizon geometry of charged black holes and black branes, and in

particular, the putative dual is semi-local in the sense of [24].1 A scalar field on spacelike

WAdS3 cannot be dual to a local operator. Using the standard holographic dictionary,

Fourier modes around the spatial circle of WAdS3 with momentum k are dual to boundary

operators whose conformal dimension depends on k. (Schrödinger holography has similar

features [5].) We find a number of other results. Spacelike WAdS3 black holes exist when

α > 1, however, we find that in this regime minimally coupled matter fields exhibit a

linearized instability even for pure WAdS3. Modes which carry momentum k along the

circle are unstable for |k| > kc, analogous to the Gregory-Laflamme instability.

1For WCFTs realized as the IR limits of dipole-deformed 2d CFTs with an AdS dual, this shows that

the non-locality persists in the IR.
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Ignoring this instability, there is another issue with matter fields, namely even their

k = 0 modes lead to strong backreaction that destroys the WAdS3 asymptotics, just like

for matter fields in an AdS2 geometry with a finite volume transverse space. So WAdS3

throats with a finite volume spatial circle never truly decouple. With the non-locality

in mind, perhaps the best way to think of the dual to gravity on WAdS3 is as a large

N quantum mechanics with an approximate low-energy conformal symmetry and a U(1)

global symmetry, like the complex Sachdev-Ye-Kitaev models of recent interest.

With the rest of the paper in mind, we also argue that the conformal boundary of

spacelike WAdS3 is equipped with the warped geometry of [14] subject to a constraint

that we discuss. Moreover the anomalies we uncover in section 4 are not matched by

any gravitational theory on WAdS3. This is puzzling. In a local WCFT, the Virasoro

and Kac-Moody central charges are determined by the anomalies, but the authors of [2]

have obtained Virasoro-Kac-Moody symmetry (with nonzero central charges) from gravity.

So here it seems that there is a Virasoro-Kac-Moody symmetry without corresponding

anomalies. We suspect that the resolution to this puzzle is that while anomalies are tied

to central charges in a local theory, perhaps there is no such relation in the absence of

locality, in which case there is no inconsistency.

2 Preliminaries

2.1 WCFTs in flat space

One starting point for the definition of a local WCFT is the following [6]. Consider a

unitary, local quantum field theory in two dimensions; labeling the coordinates of the

plane as x±,2 we assume that the theory is invariant under translations and “right-moving”

dilatations

x± → x± + c± , x− → λx− . (2.1)

As shown in [6], unitarity, locality, and a bounded below spectrum of the dilatation operator

together imply that translations and dilatations are enhanced to an infinite-dimensional

group of symmetries. The enhancement depends on the theory. One possibility is that

the symmetry algebra enhances to two copies of the Virasoro algebra, in which case one

has a conventional CFT. Another is that right dilatations and translations enhance to

a right-moving Virasoro algebra, while left- translations are enhanced to a right-moving

abelian Kac-Moody algebra. This second case is a WCFT.

The global subgroup of the warped conformal symmetries is PSL(2;R) × R when x+

is non-compact, and PSL(2;R)×U(1) when x+ is compact.

The Virasoro and Kac-Moody symmetry currents generate the transformations [6]

x− = x−(X−) , x+ = X+ + f(X−) . (2.2)

There is a stress tensor T (x) which generates the reparameterizations of x−, and a momen-

tum density P (x) which generates the additive reparameterizations of x+. Compactifying

2Despite the suggestive name of the coordinates, we do not presume a Lorentzian structure here or

elsewhere. However we will refer to x− as a “right-moving” direction in analogy with the Lorentzian plane.
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x−, the Virasoro algebra is generated by the modes of T (x) and the Kac-Moody by those

of P (x). The Kac-Moody is a U(1) algebra when x+ is compact — charged states carry

momentum in the + direction — and an R algebra when x+ is non-compact. The two-point

functions of T (x) and P (x) on the infinite plane are

〈T (x)T (0)〉 =
c

2(x−)4
, 〈P (x)P (0)〉 =

k

(x−)2
. (2.3)

c and k are the central charges of the Virasoro and Kac-Moody algebras respectively. Under

the global symmetries (2.2), the stress tensor and momentum transform as [11]

T̂ (X) =

(
∂x−

∂X−

)2 (
T (x)− c

12
{X−(x−), x−}

)
+
∂x−

∂X−
∂x+

∂X−
P (x)− k

4

(
∂x+

∂X−

)2

,

P̂ (X) =
∂x−

∂X−
P (x)− k

2

∂x+

∂X−
.

(2.4)

where

{f(x), x} =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

, (2.5)

is the Schwarzian derivative.

The authors of [11] used the symmetries (2.2) and transformation laws (2.4) to deduce

a modular transformation law of the torus partition function under an “S” transformation

which exchanges thermal and spatial circles. Under some assumptions regarding the vevs

of the stress tensor and momentum current at zero temperature, those authors thereby

obtained a warped analogue of the Cardy formula for 2d CFT.

We revisit WCFT thermodynamics later in section 5. In particular, we show that

infinite-volume WCFT thermodynamics immediately follows from a warped conformal map

from the Euclidean plane to the thermal cylinder.

2.2 Warped geometry

In the same way that many useful properties of ordinary CFT, like its central charges,

are visible when putting it on a fixed spacetime, it is also useful to couple WCFTs to the

warped analogue of a metric.

While ordinary CFTs naturally couple to an external Riemannian metric, WCFTs

naturally couple [14] to a structure known as “Newton-Cartan” (NC) geometry. There

are several versions of NC geometry; some are relevant for Galilean field theory [20, 25],

the Newtonian limit of General Relativity [26], non-relativistic holography [27], or non-

relativistic systems without a boost symmetry. The NC geometry relevant for WCFTs was

worked out in [14] (see also [15, 28]), where it was dubbed “warped geometry”.

In this subsection we review and rewrite warped geometry in a way which will be

useful when we classify the anomalies that arise when a WCFT is coupled to a curved

background. Our approach closely follows that of [15, 28].

Warped geometry is simple. Let M be an orientable manifold on which we will put

a WCFT. We endow M with two nowhere-vanishing, linearly independent one-forms nµ
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and hν subject to two local redundancies: a “Weyl” rescaling and a “boost”. Under these

transformations, nµ and hµ transform as

“Weyl” : nµ → eΩnµ , hµ → hµ ,

“Boost” : nµ → nµ , hµ → hµ − ψnµ ,
(2.6)

where Ω and ψ are functions which characterize the rescaling and boost. Roughly speaking,

n is the more general version of the “right-moving” direction dx−, and h the more general

version of dx+.

From nµ and hν we algebraically obtain two vector fields vµ and wµ satisfying

vµnµ = wµhµ = 1 , vµhµ = wµnµ = 0 . (2.7)

They transform under Weyl rescaling and boosts as

“Weyl” : vµ → e−Ωvµ , wµ → wµ ,

“Boost” : vµ → vµ + ψwµ , wµ → wµ .
(2.8)

We also construct a boost-invariant measure d2x
√
γ with

√
γ =

√
det(γµν) and

γµν ≡ nµnν + hµhν , (2.9)

along with a boost-invariant epsilon tensor

εµν = vµwν − vνwµ =
εµν
√
γ
, εµν = nµhν − nνhµ =

√
γ εµν , (2.10)

where εµν and εµν are epsilon symbols. The measure transforms homogeneously as
√
γ →

eΩ√γ under Weyl rescaling.

A few words are in order regarding the global structure of the geometry. We have

in mind a geometry in which (nµ, hν) are globally-defined and everywhere non-vanishing,

and that the WCFT in question is coupled to these fields in a Weyl and boost-invariant

way. M must then have the topology of a cylinder or a torus. Perhaps one may define the

geometry in such a way that (nµ, hν) are not globally-defined, but instead are sections of

some bundle.

The relation to ordinary NC geometry is the following. The basic building blocks

of NC geometry are the tensors (nµ, hνρ), where nµ is nowhere-vanishing, hµν is a spatial

metric, and the two are constrained so that nµnν+hµν is positive-definite. In two spacetime

dimensions, hµν can be expressed in terms of a one-form via hµν = hµhν . The one-forms

nµ and hµ are those described above.

As for the Weyl and boost symmetries, these also have counterparts in NC geometry.

The NC geometry to which Galilean field theories couple possesses a boost symmetry. This

transformation, known as a Milne boost, leaves nµ invariant but shifts hµν as

hµν → hµν − (nµhνρ + nνhµρ)ψ
ρ + nµnνhρσψ

ρψσ , ψµnµ = 0 . (2.11)

The Milne symmetry is intimately related to Galilean invariance as described in [25]. In

two spacetime dimensions where hµν = hµhν , the Milne boost (2.11) becomes the boost

– 6 –
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in (2.6) with ψ = hµψ
µ. For Weyl, recall that non-relativistic scale-invariant theories are

characterized by a dynamical exponent z. When such a theory is coupled to NC geometry,

the theory is invariant under local “Weyl” rescalings of nµ and hνρ as

nµ → eΩnµ , hµν → e2Ω/zhµν . (2.12)

In two spacetime dimensions with z =∞, this becomes the Weyl rescaling in (2.6).

From the one-forms (nµ, hν) we define a covariant derivative Dµ via the connection

Γµνρ = vµ∂ρnν + wµ∂ρhν . (2.13)

This connection is neither boost nor Weyl invariant. Under an infinitesimal reparameter-

ization ξµ, Weyl rescaling ω, and boost ψ, which we colletively denote as χ = (ξµ, ω, ψ),

the connection one-form Γµν = Γµνρdx
ρ varies as

δχΓµν = £ξΓ
µ
ν + d∂νξ

µ + vµnνdω − wµnνdψ , (2.14)

where in the first term we define the action of the Lie derivative £ξ along ξµ as though

Γµν were a tensor. The derivative Dµ has nonzero torsion but zero curvature,

Rµν = dΓµν + Γµρ ∧ Γρν =
1

2
Rµνρσdx

ρ ∧ dxσ = 0 ,

Tµ =
1

2
Tµνρdx

ν ∧ dxρ = −1

2
Γµνρdx

ν ∧ dxρ = −vµdn− wµdh .
(2.15)

The torsion is determined in terms of the two scalars

N ≡ εµν∂µnν , H ≡ εµν∂µhν . (2.16)

The derivative also fixes (nµ, hν),

Dµnν = Dµhν = 0 . (2.17)

There is a first-order version of this geometry. Because (nµ, hν) are globally defined,

the frame bundle is topologically trivial. We trivialize it by restricting the frame to be

FµA = (vµ, wν). There is no spin connection, and (2.15) follows.

There is another first-order formulation of NC geometry which naturally appears in

Lifshitz holography (see e.g. [21, 27]). Given nµ and the inverse spatial metric hµν , one

takes nµ to be the temporal component of the coframe and decomposes hµν into inverse

spatial vielbeins. This decomposition is invariant under local spatial rotations as well as

under local boosts. Fixing the temporal component of the frame to be vµ, these boosts act

in the same way as a Milne boost. In this way, the local boost symmetry is “absorbed”

into the local redefinitions of frame.

Another form of NC geometry was described in [26], which naturally arises in the

Newtonian limit of General Relativity. Its d = 2 version (which of course has no relation to

General Relativity) consists of (nµ, hν ,Ω, T
ρ) where Tµ is the (dualized) torsion satisfying

nµT
µ = −N , and Ω is a scalar which transforms under infinitesimal boosts as

δψΩ = εµν∂µ(ψhν)− ψhµTµ . (2.18)

One can use Ω to obtain a boost-invariant connection (although not a Weyl-invariant one).

This geometry is interesting and useful, but is unrelated to WCFT for reasons we explain

in the next subsection.
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2.3 WCFTs are Galilean CFTs with z = ∞

As WCFTs couple to the same geometry and possess the same invariances as Galilean

CFTs with dynamical critical exponent z =∞,3 we may as well identify the two.

Before going on, let us argue that the “warped geometry” above is the correct one to

which WCFTs couple. We do so by showing that the transformations (2.2) are exactly

the “warped isometries” of the flat structure n = dx−, h = dx+, and therefore correspond

to global symmetries of the flat-space WCFT. At the infinitesimal level, we need the

combination of a coordinate reparameterization ξµ, Weyl rescaling σ, and boost ψ that

fix the flat background. Collectively notating the transformation as χ = (ξµ, σ, ψ) and its

action as δχ, we have

δχnµ = £ξnµ + σnµ ,

δχhµ = £ξhµ − ψnµ ,
(2.19)

with £ξ the Lie derivative along ξµ. Setting δχnµ = δχhµ = 0 we obtain the warped

isometries. They are parameterized by two free functions of x− as

ξµ∂µ = f1(x−)∂− + f2(x−)∂+ , σ = −f ′1(x−) , ψ = f ′2(x−) , (2.20)

which exponentiate to

x− = x−(X−) , x+ = X+ + f(X−) , eΩ =
∂X−

∂x−
, ψ = f ′(X−) . (2.21)

As claimed, the coordinate transformations are the WCFT symmetries (2.2).

These transformations include ordinary Galilean boosts [14]. To guide the eye, set

x− = t, x+ = x. The symmetry

t = T , x = X − vT , (2.22)

is just a Galilean boost. This also suggests that we ought to identify x− with time and x+

with space.

We record five observations before proceeding.

1. The infinite-dimensional symmetry is not specific to z = ∞. It is easy to show that

a Galilean theory with generic z has a flat-space symmetry group parameterized by

two free functions of x−.

2. Warped geometry has the analogue of “conformal gauge:” one can use the com-

bination of a coordinate transformation, Weyl rescaling, and boost, to locally set

n = dx−, h = dx+.

3. WCFTs do not couple to the version of NC geometry appearing in [26] we mentioned

in the previous subsection; the “warped isometries” of the flat structure of that version

(n = dx−, h = dx+,Ω = 0, Tµ = 0) are not (2.2). For example, Ω is not invariant

under the coordinate transformation x+ = X+ +f(X−) and boost ψ = f ′(X−) which

fix (nµ, hν , T
ρ).

3Here we mean Galilean theories with no particle number symmetry.
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4. In two dimensions, there is an isomorphism between the (massless) Galilean algebra

and the Carroll algebra. (By the massless Galilean algebra we mean the Galilean

algebra without a central extension, and so without a conserved particle number.)

The Carroll algebra arises in the c → 0 limit of relativistic systems. So WCFTs are

also Carrollian CFTs, as pointed out in [15]. Relatedly [15], the warped geometry

above is the “Carrollian geometry” to which Carrollian theories naturally couple.

This point of view is useful as the d > 2 version of warped theories suggested by [14]

are Carrollian.

5. Later, in section 6 when we study gravity on so-called warped AdS3 spacetimes, that

the boundary is equipped with a warped geometry subject to a constraint. The one-

form n is obeys dn = 0, and the allowed Weyl transformations respect wµ∂µΩ = 0.

3 Free WCFT

Using their “warped geometry”, Hofman and Rollier [14] have recently obtained the first

Lagrangian examples of WCFTs. They found two free theories: (i.) a Weyl fermion with

a Lorentz-violating mass, and (ii.) a warped analogue of a bc system. We review their

theories, and then go on to construct two different free scalar WCFTs. We find that all of

these WCFTs are perched on the edge of non-locality.

A word about warped dimensional analysis is in order. The warped scaling acts as

x− → λx−, x+ → x+. So we assign x− dimension −1 and x+ dimension 0, and a WCFT

Lagrangian ought to carry dimension 1. Irrelevant operators have dimension greater than

1, relevant less than 1, and exactly marginal carry dimension 1.

3.1 The Hofman/Rollier theories

Let us summarize the free theories constructed in [14] in the language of this paper. The

basic field is a two-component anticommuting field Ψ = (Ψ−,Ψ+) which transforms under

local boosts as

Ψ+ → Ψ+ +
ψ

2
Ψ− , Ψ− → Ψ− . (3.1)

The conjugate field Ψ = (Ψ
−
,Ψ

+
) transforms in the same way,

Ψ
+ → Ψ

+
+
ψ

2
Ψ
−
, Ψ

− → Ψ
−
. (3.2)

For the warped Weyl theory we let Ψ be a complex spinor. The action is

Sweyl =

∫
d2x
√
γ
{
iΨ
−
wµ∂µΨ− +mΨ

−
Ψ−
}
. (3.3)

This theory is manifestly boost-invariant. It is also Weyl-invariant if we assign the trans-

formation law

Ψ− → e−
Ω
2 Ψ− , Ψ

− → e−
Ω
2 Ψ
−
, (3.4)

under Weyl rescalings, i.e. the fermion fields carry a free-field dimension of 1/2.
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For the warped bc theory we let Ψ be a real spinor. The action is

Sbc =

∫
d2x
√
γ
{
iΨ−vµ∂µΨ− − 2iΨ+wµ∂µΨ− − 2mΨ+Ψ−

}
. (3.5)

This action is boost-invariant: the boost variation of the first term is iψΨ−wµ∂µΨ−, which

offsets the variation of the second term upon using that the boost variation of Ψ+ is ψ
2 Ψ−.

The boost variation of the third term vanishes on account of (Ψ−)2 = 0. It is also Weyl-

invariant if we assign

Ψ− → Ψ− , Ψ+ → e−ΩΨ+ , (3.6)

under Weyl rescalings. Notice that Ψ+ is a Legendre multiplier field which enforces the

constraint

wµ∂µΨ− − imΨ− = 0 . (3.7)

In flat space (n = dx− , h = dx+) these theories are simply

Sweyl =

∫
d2xΨ

−
i(∂+ − im)Ψ− ,

Sbc =

∫
d2x

(
Ψ− i∂−Ψ− − 2iΨ+(∂+Ψ− − imΨ−)

)
,

(3.8)

where in the warped bc system Ψ− is a real anticommuting field subject to the con-

straint (3.7). We see that the warped Weyl theory is essentially the theory of an ordi-

nary Weyl fermion χ at chemical potential m. Indeed, the momentum current mΨ
−

Ψ− is

proportional to the U(1) current χ̄χ upon identifying Ψ− → χ.

Now for the punchline of this subsection. Owing to the fact that wµ∂µ is a boost

and Weyl-invariant differential operator, both the warped Weyl fermion and warped bc

system admit an infinite number of exactly marginal deformations. For the Weyl fermion,

the operator iΨ
−

(∂+)nΨ− is boost-invariant and exactly marginal for any n. For the bc

system, the operator that does the job is iΨ
−
∂−(∂+)nΨ− − 2iΨ

+
(∂+)n+1Ψ−. Since there

are exactly marginal deformations with an arbitrarily large number of + derivatives, the set

of these operators may be reexpressed in terms of an infinite number of exactly marginal

operators which are non-local along x+. For the Weyl fermion the operators above are

equivalent to Ψ
−

(x) exp (`∂+) Ψ−(x) which is clearly non-local as well as exactly marginal.

We then see that both of the Hofman/Rollier theories are on the brink of being non-local

in the x+ direction: to obtain them, we must tune away this infinite family of operators.4

Even having tuned away these non-local operators, the Hofman/Rollier WCFTs have a

paucity of relevant deformations. A theory with multiple species of Weyl fermions or several

bc systems will generically have some flavor symmetry. However that flavor symmetry is

always anomalous and so cannot be gauged. Using that the Weyl fermions carry dimension

1/2 while the bc fermions (subject to constraints (3.7)) are dimensionless, we learn that the

classically relevant operators are polynomials in at least two species of bc fermions. There

are also classically marginal operators built from those polynomials times Weyl bilinears.

4It may be that global constraints on a WCFT, like those studied in [16], would disallow these non-local

deformations here, or for the scalar WCFTs we write down below.
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In the remainder of this section we obtain scalar analogues of the Hofman/Rollier

theories. They satisfy the same essential properties we found above: (i.) they too are on

the precipice of non-locality in the + direction, and (ii.) have a similar classification of

relevant and classically marginal operators.

3.2 Scalars, take one

Let us try to write down a WCFT of a free real scalar ϕ in the same vein as the warped

Weyl theory (3.3). It is likely non-unitary.

Using that wµ∂µ is a boost and Weyl-invariant differential operator, we could construct

a theory whose kinetic term is (wµ∂µϕ)2. The unique two-derivative action with this kinetic

term, consistent with the warped symmetries, is

S1 =

∫
d2x
√
γ

{
1

2
(wµ∂µϕ)2 +

1

4

(
wµ∂µN −

N2

2

)
ϕ2 − m2

2
ϕ2

}
(3.9)

Recall N = εµν∂µnν . This action is Weyl and boost-invariant provided that ϕ is boost-

invariant and transforms as

ϕ→ e−
Ω
2 ϕ , (3.10)

under Weyl rescalings, i.e. ϕ carries a free-field dimension of 1/2. The first term in (3.9)

is the scalar kinetic term, the second is the warped analogue of the conformal coupling to

curvature, and the third, despite looking like a mass term, is allowed by the symmetries of

the problem as
√
γϕ2 is Weyl-invariant. In flat space, this action is

S1 =

∫
d2x

{
1

2
(∂+ϕ)2 − m2

2
ϕ2

}
. (3.11)

The field equation for ϕ is solved by

ϕ = ϕ+(x−)eimx
+

+ ϕ−(x−)e−imx
+
. (3.12)

After Wick-rotating x− to obtain a Euclidean version of this theory, the Euclidean ac-

tion (3.9) is not bounded below and so we expect that this theory is non-unitary.

The stress tensor T and momentum P are given by

T =
1

4π
(∂−ϕ∂+ϕ− ϕ∂−∂+ϕ) , P =

1

4π

(
(∂+ϕ)2 −m2ϕ2

)
, (3.13)

satisfying

∂+T = 0 , ∂+P = 0 , (3.14)

on-shell.

Given a complex scalar Φ we can construct an even simpler WCFT,

S2 =

∫
d2x

{
i

2
wµ
(

Φ†∂µΦ− (∂µΦ†)Φ
)

+m|Φ|2
}
, (3.15)

which is invariant under the warped symmetries if Φ is boost-invariant and carries di-

mension 1/2. Observe that this theory has a U(1) flavor symmetry and that the “mass”
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term m|Φ|2 can be absorbed into a background gauge field Aµ which couples to the flavor

symmetry satisfying wµAµ = m. The parameter m sets the Kac-Moody level.

These scalars share two features with the warped Weyl theory: (i.) they admit an

infinite number of exactly marginal non-local deformations, and (ii.) they possess no

classically relevant operators.

3.3 Scalars, take two

Now we build the scalar analogue of the warped bc theory (3.5). Let ϕ and η be real scalars.

Consider the action

S3 =

∫
d2x
√
γ
{

(vµ∂µϕ)(wν∂νϕ) + ηwµ∂µϕ−mHϕ
}
, (3.16)

where we remind the reader that H = εµν∂µhν . The last term can be written after an

integration by parts as mvµ∂µϕ. Note that η is a Lagrange multiplier field enforcing

the constraint

wµ∂µϕ = 0 . (3.17)

The action S3 is invariant under the warped symmetries upon assigning η and ϕ the boost

transformations

η → η + ψm− ψwµ∂µϕ , ϕ→ ϕ (3.18)

and dimensions 1 and 0 respectively. In flat space the action becomes

S3 =

∫
d2x
{
∂−ϕ∂+ϕ+ η∂+ϕ

}
. (3.19)

The equations of motion imply that ϕ and η are chiral,

ϕ = ϕ(x−) , η = η(x−) . (3.20)

This theory is essentially that of two ordinary right-moving scalars, with ϕ linearly

coupled to an external gauge field Aµ under the substitution Aµ → hµ. Indeed, the stress

tensor and momentum current

T =
(∂−ϕ)2 + η∂−ϕ

2π
, P =

m∂−ϕ

2π
, (3.21)

are (ignoring the term coming from η) the stress tensor and conserved current of the real

chiral scalar.

This scalar WCFT shares the same qualitative features as the ones we pointed out

for the warped bc theory: (i.) it admits an infinite number of exactly marginal non-local

deformations, and (ii.) by dimensional analysis the only classically relevant operators are

polynomials in ϕ.
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4 Anomalies

In the previous section we saw that Lagrangian WCFTs require an infinite fine-tuning to

be rendered local. Now we turn to a non-perturbative analysis of local WCFTs via their

‘t Hooft anomalies.5 The goal of this section is three-fold. First, to obtain the anomalies

of local WCFTs, then to derive the anomalous Ward identities, and finally to relate the

anomaly coefficients to the Virasoro and Kac-Moody central charges. Before doing so, we

warn the reader that this section is a bit technical. The anomalies are presented in (4.10),

the Ward identities in (4.22), and the relation to central charges in (4.39).

Throughout, our conventions are that the generating functional of connected, real-time

correlation functions W is given by

W = −i lnZ , (4.1)

with Z the WCFT partition function, and that connected one-point functions of the WCFT

“stress tensor” are obtained by variation of W with respect to the background geometry

(nµ, hν),

δW = − 1

2π

∫
d2x
√
γ
{
N µδnµ +Hµδhµ

}
. (4.2)

Our classification is entirely “local”, insofar as we consider infinitesimal symmetry

transformations. We ignore “global” constraints like the modular constraints on the torus

partition function considered in [16].

4.1 The classification

Anomalies are strongly constrained by Wess-Zumino (WZ) consistency. Under an infinites-

imal symmetry transformation δχ, we require the integrability condition

[δχ1 , δχ2 ]− δχ[12]
= 0 , (4.3)

that is, the symmetry transformations generate an algebra. What is this algebra? As we

mentioned above, we have

δχnµ = £ξnµ + σ nµ , δχhµ = £ξhµ − ψ nµ . (4.4)

In order for nµ + δχnµ and hν + δχhν to be tensors which transform in the same way as nµ
and hν , e.g.

δχ1

(
δχ2nµ

)
= £ξ1

(
δχ2nµ

)
+ σ1δχ2nµ , (4.5)

the transformation parameters must vary as

δχ1ξ
µ
2 = £ξ1ξ

µ
2 = ξν1∂νξ

µ
2 − ξ

ν
2∂νξ

µ
1 ,

δχ1ψ2 = £ξ1ψ2 −£ξ2ψ1 − σ1 ψ2 + σ2 ψ1 = ξµ1 ∂µψ2 − ξµ2 ∂µψ1 − σ1 ψ2 + σ2 ψ1 ,

δχ1σ2 = £ξ1σ2 −£ξ2σ1 = ξµ1 ∂µσ2 − ξµ2 ∂µσ1 .

(4.6)

5There has been some prior work on anomalies in Galilean field theories, e.g. [29–33]. The anomalies

uncovered in that work however have zero intersection with those found here.
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Then (4.3) holds with χ[12] = (ξµ[12], ψ[12], σ[12]) and

ξµ[12] = £ξ1ξ
µ
2 , ψ[12] = £ξ1ψ2−£ξ2ψ1−σ1 ψ2 +σ2 ψ1 , σ[12] = £ξ1σ2−£ξ2σ1 . (4.7)

In a non-anomalous theory, the generating functional W is invariant under infinitesimal

coordinate reparameterizations, &c, meaning δχW = 0. In an anomalous theory, δχW 6= 0

and the anomalies are specified by this variation. We parameterize

δχW =
1

2π

∫
d2x
√
γ {∂µξνT µν + ψP + ΩA} , (4.8)

where T µν ,P, and A are built from the background fields.

We use a three-step algorithm to classify anomalies: (i.) we parameterize the most

general anomalies, (ii.) use the most general local counterterms to remove terms in δχW ,

and (iii.) impose WZ consistency (4.3).

Anomalies are sensitive to locality precisely because of this second step, the modding

out by local counterterms. After all, anomalies may always be removed by the addition of

non-local counterterms.

As a practical matter, we perform this algorithm order by order in gradients up to two

derivative terms in (T µν ,P,A). In a few places we will use the shorthand notation

Ẋ = vµ∂µX , X ′ = wµ∂µX . (4.9)

This algorithm is straightforward to employ and leads to three anomalies parameterized

by three anomaly coefficients (k̃, c̃1, c̃2). The first is a pure boost anomaly,

δχWk̃ =
k̃

8π

∫
d2x
√
γ ψ , (4.10a)

the second is a mixed boost/Weyl anomaly,

δχW1 =
c̃1

24π

∫
d2x
√
γ

(
−σ̇N +

ψ

2
N2

)
, (4.10b)

and the third is a gravitational anomaly (accompanied by boost and Weyl variations so as

to be WZ consistent)

δχW2 = − c̃2

192π

∫
(∂µξ

νdΓµν − dψ ∧ Γµνw
νnµ + dσ ∧ Γµνv

νnµ) . (4.10c)

Later we will see that k̃ and c̃1 respectively determine the Kac-Moody central charge k and

Virasoro central charge c of the underlying WCFT.

In many ways, the mixed boost/Weyl anomaly is like the ordinary Weyl anomaly of

2d CFT, and the gravitational anomaly like that of the gravitational anomaly of 2d CFT.

Let us show that the anomalies are consistent. We begin with the boost

anomaly (4.10a), whose second variation is

δχ1δχ2Wk̃ =
k̃

8π

∫
d2x
√
γ
(
−£ξ2ψ1 + σ2ψ1

)
. (4.11)
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The commutator of variations is then

[δχ1 , δχ2 ]Wk̃ =
k̃

8π

∫
d2x
√
γ
(
£ξ1ψ2 −£ξ2ψ1 − σ1ψ2 + σ2ψ1

)
=

k̃

8π

∫
d2x
√
γ ψ[12]

= δχ[12]
Wk̃ , (4.12)

where we have used the algebra (4.7) to go from the first line to the second. So the boost

anomaly is consistent.

Now for the mixed boost/Weyl anomaly (4.10b). Its second variation is

δχ1δχ2W1 =
c̃1

24π

∫
d2x
√
γ
{
σ̇2σ

′
1 + vµ∂µ (£ξ2σ1)N + (−£ξ2ψ1 + σ2ψ1)

N2

2

−
(
ψ1σ

′
2 + ψ2σ

′
1

)
N
}
.

(4.13)

The commutator is

[δχ1 , δχ2 ]W1 =
c̃1

24π

∫
d2x
√
γ

{
σ̇2σ

′
1 − σ′2σ̇1 − vµ∂µ (£ξ1σ2 −£ξ2σ1)N ,

+ (£ξ1ψ2 −£ξ2ψ1 − σ1ψ2 + σ2ψ1)
N2

2

}
=

c̃1

24π

∫
d2x
√
γ

{
−vµ∂µ

(
σ[12]

)
N +

ψ[12]

2
N2

}
= δχ[12]

W1 .

(4.14)

In going from the first equality to the second we have used that

σ̇2σ
′
1 − σ′2σ̇1 = εµν∂µσ2∂νσ1 . (4.15)

Observe that the Weyl variation is not itself Weyl-invariant; in this sense this anomaly is

akin to the A-type anomalies of ordinary even-dimensional CFT.

It is amusing to see exactly how the gravitational anomaly obeys WZ consistency. To

do so, we require the infinitesimal variation of the non-tensorial objects,

δχΓµνρ = £ξΓ
µ
νρ + ∂ν∂ρξ

µ − wµnν∂ρψ + vµnν∂ρσ ,

δξ1∂ρ∂νξ
µ
2 = ∂ρ∂νξ

µ
[12] = £ξ1∂ρ∂νξ

µ
2 −£ξ2∂ρ∂νξ

µ
1 = −δξ2∂ρ∂νξ

µ
1 .

(4.16)

Up to boundary terms, the second variation is

δχ1δχ2W2 =− c̃2

192π

{∫
£ξ2d∂µξ

ν
1∧Γµν−d(−£ξ2ψ1+σ2ψ1)∧Γµνw

νnµ−d£ξ2σ1∧Γµνv
νnµ

+{d∂µξν2∧(wµdψ1−vµdσ1)+d∂µξ
ν
1∧(wµdψ2−vµdσ2)}nν (4.17)

+(ψ2dσ1+ψ1dσ2)∧Γµνw
νnµ

}
.
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The second and third lines are symmetric under exchange of χ1 and χ2 and so up to a

boundary term we find

[δχ1 , δχ2 ]W2 = − c̃2

192π

{∫
(−£ξ1d∂µξ

ν
2 + £ξ2d∂µξ

ν
1 ) ∧ Γµν

− d (£ξ1ψ2 −£ξ2ψ1 − σ1ψ2 + σ2ψ1) ∧ Γµνw
νnµ

+ d (£ξ1σ2 −£ξ2σ1) ∧ Γµνv
νnµ

}
= − c̃2

192π

∫ {
∂µξ

ν
[12] ∧ dΓµν − dψ[12] ∧ Γµνw

νnµ + dσ[12] ∧ Γµνv
νnµ

}
= δχ[12]

W2 .

(4.18)

We conclude this subsection with a few comments on the gravitational anomaly (4.10c).

1. The diffeomorphism variation,

δξW2 = − c̃2

192π

∫
∂µξ

νdΓµν ,

is identical in form to the gravitational anomaly in ordinary 2d CFT, with c̃2 = cL−cR
and cL,R the left and right central charges. This anomaly may then be described via

anomaly inflow under a suitable extension of Γµν to a higher-dimensional spacetime.

This inflow does not require a Lorentzian structure, as is already known from the

study of the fractional quantum Hall effect (see e.g. [34]).

2. Concordantly, the diffeomorphism anomaly follows from a descent procedure. The

pure boost and mixed boost/Weyl anomalies do not.

3. In ordinary 2d CFT, one may redefine the CFT currents in such a way as to shift

the gravitational anomaly from a non-diffeomorphism-invariance of the theory to a

non-invariance under local Lorentz rotations [35]. For warped geometry, the frame

bundle may be trivialized and no such redefinition exists.

4.2 Anomalous Ward identities

Under the assumption that there are no anomalies beyond two derivatives, the anomalous

variation of W is given by a sum of the three anomalies we found above,

δχW =
k̃

8π

∫
d2x
√
γ ψ +

c̃1

24π

∫
d2x
√
γ

(
−σ̇N +

ψ

2
N2

)
− c̃2

192π

∫
(∂µξ

νdΓµν − dψ ∧ Γµνw
νnµ + dσ ∧ Γµνv

νnµ) .

(4.19)

In the parameterization (4.8) of δχW , we have

T µν = − c̃2

96
ερσ∂ρΓ

µ
νσ ,

P =
k̃

4
+
c̃1

24
N2 +

c̃2

96
ερσ∂ρ (Γµνσw

νnµ) ,

A =
c̃1

12

(
Ṅ +NH

)
− c̃2

96
ερσ∂ρ (Γµνσv

νnµ) ,

(4.20)

where N and H were defined in (2.16), N = εµν∂µnν , H = εµν∂µhν .
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The background fields (nµ, hν) are conjugate to operators (N µ,Hν) which we define

through variation via (4.2). The reparameterization, boost, and Weyl symmetries lead to

Ward identities.

Plugging (4.4) into (4.2) and integrating by parts, we find up to a boundary term

δχW = − 1

2π

∫
d2x
√
γ

{
σnµN µ − ψnµHµ

+ ξµ
(
εµν(NN ν +HHν)− nµ

1
√
γ
∂ν(
√
γN ν)− hµ

1
√
γ
∂ν(
√
γHν)

)}
.

(4.21)

Because the derivative Dµ has torsion, the last two terms above are not covariant di-

vergences. In any case, setting this equal to the anomalous variation (4.8) we find the

anomalous Ward identities

1
√
γ
∂µ(
√
γN µ)− hµ(NN µ +HHµ) = − 1

√
γ
vµ∂ν(

√
γT νµ) ,

1
√
γ
∂µ(
√
γHµ) + nµ(NN µ +HHµ) = − 1

√
γ
wµ∂ν(

√
γT νµ) ,

nµHµ = P ,
nµN µ = −A .

(4.22)

The boost and Weyl Ward identities fix nµHµ and nµN µ in terms of the spacetime back-

ground. So there are two free components of (N µ,Hµ), namely

T̃ ≡ hµN µ , P̃ ≡ hµHµ . (4.23)

Soon, we will see that these operators are the T and P of a WCFT.

In flat space with n = dx−, h = dx+, the anomalous Ward identities become

∂+T̃ = 0 , ∂+P̃ = 0 , H− =
k̃

4
, N− = 0 , (4.24)

so that T̃ = N+ and P̃ = H+ are right-moving.

4.3 The relation to central charges

In 2d CFT, the anomaly coefficients are related to central charges. The Weyl and grav-

itational anomaly coefficients determine the Virasoro central charges, and the anomalies

of any global symmetries determine the levels of the corresponding Kac-Moody algebras.

There are many ways to derive these relations. One is to compute the variation of operators

under anomalous symmetry transformations, and specialize to the symmetry transforma-

tions which take flat space to itself. For the stress tensor, this anomalous transformation

law recovers the Schwarzian derivative, and so matches anomalies to central charges.

We adapt this approach to relate the WCFT anomalies to its central charges. The final

result is given in (4.39). Along the way we find the warped analogue of the Polyakov action.

As we mentioned in subsection 2.1, the transformation of T and P under the WCFT

global symmetries

x− = x−(X−) , x+ = X+ + f(X−) ,
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was previously computed in [11]. It is

T̂ (X) =

(
∂x−

∂X−

)2 (
T (x)− c

12
{X−(x−), x−}

)
+
∂x−

∂X−
∂x+

∂X−
P (x)− k

4

(
∂x+

∂X−

)2

,

P̂ (X) =
∂x−

∂X−
P (x)− k

2

∂x+

∂X−
,

where

{f(x), x} =
f ′′′(x)

f ′(x)
− 3

2

(
f ′′(x)

f ′(x)

)2

,

is the Schwarzian derivative.

We wish to recover these transformations using the anomalous symmetries. To do

so, consider W on a particular, fixed background (nµ, hν) described with coordinates xµ.

Consider another fixed background (n̂µ, ĥν), described with coordinates Xµ, which can be

reached by a coordinate reparamterization, followed by Weyl rescaling τ , followed by a

boost Ψ, all of which are continuously connected to the identity. In other words,

xµ = xµ(Xν) , n̂µ(X) = eτnν
∂xν

∂Xµ
, ĥµ(X) = (hν −Ψeτnν)

∂xν

∂Xµ
, (4.25)

with the transformations non-singular. Then denoting

Ŵ = W
[
n̂µ, ĥµ;Xρ

]
, W = W [nµ, hν ;xρ] , (4.26)

we have

Ŵ = W +W , (4.27)

where W accounts for the anomalies. Essentially, the anomalous variation integrates to

W. W is a particular Wess-Zumino term for the anomalies, fixed by the requirement that

it vanishes for xµ = Xµ, τ = Ψ = 0. Alternatively, it is an anomaly effective action. In

appendix A we find

W =
k̃

8π

∫
d2x
√
γΨeτ+

c̃1

24π

∫
d2x
√
γ

{
−τ̇N+

1

2
τ̇ τ ′+

Ψeτ

2

(
N−τ ′

)2}
+

c̃2

192π

{
N3(g)+

∫
dgµν(g−1)νρ∧Γρµ (4.28)

+

∫
{(vν+Ψeτwν)nµdτ−wνnµd(Ψeτ )}∧

(
Γµν+dgµρ(g

−1)ρν
)}

,

where we denote

gµν =
∂xµ

∂Xν
, (g−1)µν =

∂Xµ

∂xν
, (4.29)

and N3 is the usual Wess-Zumino term for a gravitational anomaly. To write it covariantly,

we extend the spacetime manifold M to a three-manifold N with M as its boundary, and

further extend gµν to a map on N . N3 is a topological term on N ,

N3(g) =
1

3

∫
N

tr
(
dg g−1

)3
. (4.30)
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To proceed, we vary Ŵ with respect to (nµ, hν),

δŴ = − 1

2π

∫
d2X

√
γ′
{
N̂ µδn̂µ + Ĥµδĥµ

}
= − 1

2π

∫
d2x
√
γeτ

{
eτδnµ g

µ
νN̂ ν + (δhµ −Ψeτδnµ) gµνĤν

}
.

(4.31)

By (4.27) this is equal to the variation of W +W. Decomposing

δW = − 1

2π

∫
d2x
√
γ
{
N µ
Aδnµ +HµAδhµ

}
, (4.32)

which gives the transformation laws of the currents (N µ,Hν) to be

gµνN̂ ν(X) = e−2τ
(
N µ(x) +N µ

A

)
+ e−τΨ

(
Hµ(x) +HµA

)
,

gµνĤν(X) = e−τ
(
Hµ(x) +HµA

)
.

(4.33)

Contracting these vectors with hµ−Ψeτnµ and using the anomalous Ward identities (4.22)

we have

ˆ̃T (X) = e−2τ
(
T̃ (x) + hµN µ

A

)
+ e−τΨ

(
P̃ (x) +A− nµN µ

A + hµHµA
)
−Ψ2

(
P + nµHµA

)
,

ˆ̃P (X) = e−τ
(
P̃ (x) + hµHµA

)
−Ψ

(
P + nµHµA

)
. (4.34)

We compute the currents (N µ
A,HνA) in appendix A. For the transformations which

take the flat structure n = dx−, h = dx+ to itself, which we remind the reader are given

in (2.21),

x− = x−(X−) , x+ = X+ + f(X−) , eτ =

(
∂x−

∂X−

)−1

, Ψ =
∂x+

∂X−
,

these currents simplify to

N µ
A = − k̃

4
Ψeτvµ +

c̃1

12

(
εµν∂ν τ̇ +

τ̇2

2
wµ
)
,

HµA = − k̃
4

Ψeτwµ .

(4.35)

In particular,

hµN µ
A = − c̃1

12

(
τ̈ − τ̇2

2

)
= − c̃1

12
{X−(x−), x−} . (4.36)

Using that P = k̃
4 and A = 0 in flat space, (4.34) becomes

ˆ̃T (X) =

(
∂x−

∂X−

)2(
T̃ (x)− c̃1

12
{X−(x−), x−}

)
+
∂x−

∂X−
∂x+

∂X−
P̃ (x)− k̃

4

(
∂x+

∂X−

)2

,

ˆ̃P (X) =

(
∂x−

∂X−

)
P̃ (x)− k̃

2

∂x+

∂X−
.

(4.37)
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This matches the transformations (2.4) of T and P once we identify

T̃ = T , P̃ = P , (4.38)

and match the central charges as

k̃ = k , c̃1 = c . (4.39)

This is the main result of this subsection.

Note that the gravitational anomaly coefficient c̃2 completely drops out of the warped

transformation law (4.37).

5 Thermodynamics

We continue with a discussion of the thermodynamics of local WCFTs. Much of it involves

the hydrostatic partition function [22, 23] (see also refs. [36, 37] which adapt the hydrostatic

machinery to Galilean theories).

Our main result in this section is to use the warped anomalies obtained in section 4 to

derive the warped thermodynamics. Because we use the anomalies, our analysis holds for

local WCFTs. We thereby derive the warped “Cardy formula” for local WCFTs, recovering

the result of Detournay, Hartman, and Hofman previously obtained in [11].

Before proceeding, should we regard x− or x+ as the “time direction?” Meaning, is the

Hamiltonian that appears in the Boltzmann weight exp(−βH) the generator of translations

in x− or in x+? On the one hand, the flat space Ward identities

∂+T = ∂+P = 0 ,

suggest that x+ should be regarded as “time”. Relatedly, the Virasoro and Kac-Moody

modes Ln and Jn may be obtained by from the modes of T and P around a compact x−

circle. On the other hand, in Galilean theories, it is natural to identify time from n = dx−.

Further, correlation functions have polynomial falloff in the x− direction, as they do in

conformal quantum mechanics.

We proceed by being agnostic and covering both possibilities. Consider a thermal state

characterized by an (unnormalized) density matrix

ρ = e−β
(
a−P−+a+P+

)
, (5.1)

where P± generates translations in x±. When a− is nonzero, we may always perform a

Galilean boost to eliminate a+:

ρ→ ρ′ = e−βa
−P ′− . (5.2)

However, when a− vanishes,

ρ = e−βa
+P+ , (5.3)

is boost-invariant. The density matrices (5.2) and (5.3) correspond respectively to x− and

x+ being the “time direction”.
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The latter is problematic. When the x− circle is compact with length 2π, P+ is the

zero mode of the Kac-Moody algebra,

P+ =
1

2π

∫ 2π

0
dx−P (x) = J0 , (5.4)

whose spectrum is generally not bounded below.

Given a theory with a functional integral description, the thermal partition function

is related to a suitable Euclidean partition function. The Boltzmann weight exp(−βH)

generates a translation β in imaginary time. Its trace corresponds to the functional integral

on a Euclideanized spacetime where imaginary time is compacitified with periodicity β.

For a theory with a gravity dual, the imaginary time circle is contractible in the dual

(Euclidean) black hole geometry, shrinking to zero size at the Euclideanized horizon.

In their derivation of a warped analogue of the Cardy formula, Detournay, Hartman,

and Hofman [11] studied thermal states of the form (5.2) rather than (5.3). They also

considered asymptotically warped AdS3 black holes putatively dual to WCFTs at nonzero

temperature, for which the x− circle is contractible in the dual geometry.

Given the problem with the mixed state (5.3) and in order to make contact with

Detournay, Hartman, and Hofman, we treat x− as the time direction and consider thermal

states of the form ρ = exp(−βP−).

More generally, we consider hydrostatic states. These are spatially varying, but time-

independent equilibria supported by a time-independent, but spatially varying background

spacetime. The equilibrium state is hydrostatic when the spatial variations are much longer

than the inverse temperature. Suppose that the correlation length of the WCFT is finite

(later we will see that this assumption is correct). Then the Euclidean partition function in

the time independent background — the hydrostatic partition function — can be written

locally on a constant time slice in a gradient expansion. See [22, 23, 36, 37] for details.

5.1 Hydrostatic equilibria

Hydrostatic states are characterized by time-independent geometries. More covariantly,

there is a timelike vector field Kµ (timelike means Kµnµ > 0 in this context) and boost

ψK which generates a symmetry of the background:

δKnµ = £Knµ = 0 ,

δKhµ = £Khµ − ψKnµ = 0 .
(5.5)

We can always pick a choice of coordinates (t, x) such that Kµ∂µ = ∂t and a boost “gauge”

so that ψK = 0. In this “static gauge” the background is explicitly time-independent,

nµdx
µ = n0(x)(dt+ a(x)dx) ,

hµdx
µ = u(x)n0(x)(dt+ a(x)dx) + h1(x)dx ,

(5.6)

and we take n0, h1 > 0. The Euclideanized theory lives on this background after Wick-

rotating t = itE and identifying tE ∼ tE + β. The Euclidean partition function ZE =

ZE [n0, a, u, h1] may be understood as an ordinary thermal partition function

ZE = tr
(
e−βH

)
, (5.7)
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where H generates translations in t. The hydrostatic generating functional is

Whydrostatic = − lnZE , (5.8)

and the currents of the hydrostatic state are obtained by functional variation.

The static gauge does not completely fix the coordinate/boost/Weyl gauge. The resid-

ual freedom is the combination of the time-independent coordinate transformation

x = x(X) , t = T + f(X) , (5.9)

along with time-independent boost/Weyl rescalings. Under spatial reparameterizations

x = x(X), (n0, a, u) are invariant while h1 transforms like a measure. Under additive

reparameterizations of time (a “thermal Kaluza-Klein” U(1) transformation) t = T +f(x),

(n0, u, h1) are invariant while a transforms like a connection,

a(x)→ a(x) + ∂xf(x), . (5.10)

Under boosts and Weyl rescalings, we have

Boost: u→ u− ψ ,
Weyl: n0 → eσn0 , u→ e−σu ,

(5.11)

with all other fields neutral.

Most of this may be understood in a manifestly covariant way. Defining a local tem-

perature TL (as opposed to T , which we are using to notate the stress tensor) and velocity

uµ (satisfying uµnµ = 1),

TL =
1

βnµKµ
, uµ =

Kµ

nνKν
, (5.12)

we see that n0 and u are spacetime scalars,

n0 =
1

βTL
, u = uµhµ . (5.13)

Meanwhile, under the convention that n0, h1 > 0,

√
γ = n0h1 , (5.14)

so h1 gives a good measure for spatial integrals.

5.2 The hydrostatic partition function and equilibrium currents

Whydrostatic is strongly constrained by the symmetries of the problem. First, it may be

written locally in x in a gradient expansion,

Whydrostatic = β

∫
dx
√
γ (L0 + L1 + . . .) , (5.15)

where (up to anomalies) Ln are boost/KK-invariant scalars containing n derivatives which

scale with weight −1 under Weyl rescalings. Second, under time-independent symmetry
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transformations, it ought to reproduce the anomalies of the microscopic theory. Parame-

terizing the anomalies as in (4.8), we have

δχWhydrostatic =
β

2π

∫
dx
√
γ {∂µξνT µν + ψP + σA} , (5.16)

where the anomalies (T µν ,P,A) are evaluated in the hydrostatic background (5.6).

Following previous work (e.g. [38, 39]), we decompose the hydrostatic generating func-

tional into a sum of three therms:

Whydrostatic = W0 +WA +Wtrans . (5.17)

The microscopic anomalies are reproduced by the functional WA, Wtrans refers to the set

of Chern-Simons terms on a constant time slice, and W0 to everything else. In relativistic

field theory, Wtrans is fixed by the underlying anomalies and its variations encode “tran-

scendental anomaly-induced transport”. We find a similar story for WCFT shortly.

Let us parameterize the most general Whydrostatic to zeroth order in derivatives. The

“anomaly action” WA has three parts, one for each anomaly. It is

WA = −kβ
8π

∫
dx
√
γ u+O(∂2) . (5.18)

The unique Chern-Simons term on the constant-time slice is

Wtrans =
C̃

2πβ

∫
dx a , (5.19)

where C̃ is a real constant and the factor of β follows from dimensional analysis. Finally,

W0 =
β

2π

∫
dx
√
γ (pTL) +O(∂) , (5.20)

where p is a real constant.

The real-time currents of the hydrostatic state are

T (x) = −C̃T 2
L + pTLu−

k

4
u2 +O(∂) ,

P (x) = −pTL +
k

2
u+O(∂) .

(5.21)

In flat space with constant TL, u, we extract the expectation values of the zero-modes

L0 and J0 of the Virasoro and Kac-Moody algebras by integrating −T and P over the

thermal circle,

L0 −
c

24
= C̃T 2

L − pTLu+
k

4
u2 ,

J0 =
k

2
u− pTL .

(5.22)
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We also obtain the hydrostatic entropy current sµ,6

sµ = − p

2π
uµ +

C̃

π
TLw

µ . (5.24)

5.3 From the plane to the cylinder and the warped Cardy formula

The constants (p, C̃) are a priori unrelated to the anomaly coefficients. However, as in 2d

CFT, there is a conformal transformation from the plane (which here is n = dx−, h = dx+)

to the thermal cylinder. It is

x− =
β

2π
exp

(
2πitE
β

)
, x+ = x− iutE , (5.25)

where tE ∼ tE + β. The resulting thermal state has a temperature TL = 1/β and carries

a velocity u.7 One expects the currents T and P to generally vanish on the plane, but for

certain theories it could be that they do not, in which case we can parameterize them as

〈T (x−)〉 =
`

(x−)2
, 〈P (x−)〉 = − iq

x−
. (5.26)

(We have in mind that q is pure imaginary. Bear with this unusual convention for a mo-

ment.) When then obtain T and P on the thermal cylinder from the warped transformation

law (4.37). Analytically continuing back to real time we have

T̂ (x) = 4π2
( c

24
− `
)
T 2
L + 2πiqTLu−

k

4
u2 ,

P̂ (x) =
k

2
u− 2πiqTL .

(5.27)

Matching to (5.21) we see that (p, C̃) are fixed as

p = 2πiq , C̃ = 4π2
( c

24
− `
)
. (5.28)

In fact, any hydrostatic background (in infinite volume) can be reached from the com-

bination of the map (5.25) from the plane to the cylinder, followed by a time-independent

Weyl transformation and boost. The hydrostatic partition function and hydrostatic cur-

rents can thereby be obtained by integrating the phase picked up by the partition function

under this sequence of maps.

Fixing p and C̃ as in (5.28), the WCFT hydrostatic partition function is

Whydrostatic =
2π

β

( c
24
− `
)∫

dx a + iqβ

∫
dx
√
γ TL +

kβ

8π

∫
dx
√
γ u+O(∂) , (5.29)

6This entropy current, stress tensor, and momentum current saturate the local Second law

TL
1
√
γ
∂µ(
√
γsµ) +DT + uDP ≥ 0 , (5.23)

where DT and DP are the Ward identities (4.22) involving the divergence of Nµ = −Avµ + T (x)wµ and

Hµ = Pvµ + P (x)wµ respectively.
7The velocity u corresponds to −2α in [11].
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and the entropy current in the thermal state is

sµ = −quµ + 4π
( c

24
− `
)
TLw

µ +O(∂) . (5.30)

These results hold in infinite volume, or in finite volume and high-temperature. Normal-

izing the spatial volume to be 2π, the total entropy flux in flat space is S = 2πsµhµ =

−2πqu+ 8π2
(
c

24 − `
)
TL, which after using (5.22) can be expressed in the microcanonical

ensemble as

S = 4π

√(
c

24
− `+

q2

k

)(
L0 −

J2
0

k
− c

24

)
− 4πiJ0q

k
. (5.31)

Observe that for a WCFT which is translationally invariant in the plane, both ` and q

vanish, in which case this becomes the standard Cardy formula for a chiral CFT with a

U(1) global symmetry,

S → 4π

√
c

24

(
L0 −

J2
0

k
− c

24

)
. (5.32)

This result is precisely the warped Cardy formula obtained by Detournay, Hartman,

and Hofman [11],

SDH2 = 4π

√
−
(
Lvac0 − (Jvac0 )2

k

)(
L0 −

J2
0

k
− c

24

)
− 4πiJ0J

vac
0

k
, (5.33)

where Lvac0 and Jvac0 are the expectation values of L0 and J0 in the vacuum on a cylinder,

with the identification

Lvac0 = `− c

24
, Jvac0 = q . (5.34)

They further argue that

` =
q2

k
, (5.35)

so that the asymptotic entropy is

SDH2 → 2π

√
c

6

(
L0 −

J2
0

k
− c

24

)
− 4πiqJ0

k
. (5.36)

Note that, in terms of an entropy current, this is really the entropy flux rather than

the entropy.

We conclude this section with two minor comments. In writing a local hydrostatic

partition function we assumed that the correlation length was finite. Observe that the

connected one-point functions of the stress tensor and momentum in a general hydrostatic

state may be obtained by the combination of the warped map to the cylinder, followed

by a time-independent Weyl rescaling and boost. These one-point functions are the func-

tional variations of the Wess-Zumino term W that reared its head in subsection 4.3; they

are completely local. So, as far as the stress tensor and momentum are concerned, the

correlation length of a WCFT is not merely finite, it vanishes.

Second, to obtain the constants p and C̃ we used that the plane is conformal to the

cylinder. If the WCFT is translationally invariant in the plane, then ` = q = 0 and the

– 25 –



J
H
E
P
1
2
(
2
0
1
7
)
1
1
1

coefficients p and C̃ are fixed by the underlying anomalies. A similar computation in 2d

CFT fixes the pressure and the analogue of C̃ in terms of the total central charge cL + cR
and gravitational anomaly cL− cR respectively (see e.g. [40]). Recently, the authors of [41]

(see also [42, 43]) have pointed out that (the fractional part of) the 2d CFT version of C̃

is also fixed by a global gravitational anomaly, and we expect a similar phenomenon here.

The above results for the hydrostatic partition function, hydrostatic currents, and

entropy have all been obtained on symmetry grounds alone and so hold for any local

WCFT, including the free-field theories presented in section 3.

6 Holography

In this section we consider WCFTs dual to gravity on so-called warped AdS3 spacetimes.

We find three main results. First, the boundary of these spacetimes is not equipped with

warped geometry, but instead a variant with dn = 0. Second, these holographic WCFTs

do not possess the warped anomalies we found in section 4. Finally, these WCFTs are

non-local, and in fact are semi-local in the same sense as in [24]

6.1 General WAdS3 spacetimes

We consider spacelike warped AdS3 spacetimes, where a spatial line or circle is fibered over

AdS2. There are also timelike and null warped AdS3 spacetimes that we do not consider,

as gravity on those spacetimes does not appear to be dual to a WCFT.

The metric on the analogue of the Poincare patch for WAdS3 is

GWAdS3 = L2

(
dr2

r2
− r2(dx−)2 + α2(dx+ + r dx−)2

)
, (6.1)

where L is a radius and α the warping parameter. For α2 = 1 this spacetime is the Poincaré

patch of AdS3 with a radius of curvature L2/4, written as an R bundle over AdS2. For

α2 > 1 the fiber is stretched, and for α2 < 1 it is squashed. There are spacelike warped

black holes for α2 > 1. In the next subsection we will see that the dual to gravity on

WAdS3 is semi-local, and further that there are dynamical instabilities whenever α2 > 1.

Spacelike WAdS3 appears as a solution of IIB string theory via a TsT transformation

and dimensional reduction of its AdS3 × S3 ×M4 vacuum [11]. It is also a solution to

topologically massive gravity in three dimensions with

STMG =
1

16πG

{∫
d3x
√
−g (R+2)− 1

6ν

∫
d3x
√
−g εµνρ

(
Γαβµ∂νΓβαρ+

2

3
ΓαβµΓβγνΓγαρ

)}
,

(6.2)

and [3, 44]

L2 =
1

ν2 + 3
, α2 =

4ν2

ν2 + 3
. (6.3)

Perhaps most interestingly, global spacelike WAdS3 arises as a submanifold inside the

near-horizon geometry of the extremal Kerr black hole [45, 46] at fixed polar angle.
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The “Poincare patch” of spacelike WAdS3 has PSL(2;R) × R isometry, which is the

global subgroup of the warped conformal symmetry. Uncovering the Virasoro and Kac-

Moody symmetries requires more work; one must define boundary conditions on the asymp-

totic form of the metric so that the asymptotic symmetry algebra is that of a Virasoro

algebra and abelian Kac-Moody algebra. This was done in [2].

In the usual AdS3/CFT2 dictionary, the CFT dual to gravity on AdS3 is coupled to an

external metric gµν in the following way. Given an asymptotically locally AdS3 spacetime,

the conformal boundary is endowed with a conformal structure, which is the equivalence

class of g under Weyl rescaling. For WAdS3 spacetimes we expect a similar story where

the bulk metric induces a “warped conformal structure” on the boundary, a representative

of which is given by two independent one-forms (nµ, hν).

The natural way to accomplish this is to pass to a first-order formalism in the bulk as

has been done for Lifshitz holography in e.g. [21] (and substantially generalized in [27]).

Rewrite the WAdS3 metric in terms of a coframe eA = eAMdx
M with xM = (xµ, r) as

GWAdS3 = ηABe
AeB , (6.4)

with

e0 = rLdx− , e1 = αL(dx+ + r dx−) , e2 =
L

r
dr . (6.5)

In this form, it appears that the bulk coframe induces two one-forms on the boundary

which here would be dx− and dx+, and it would be tempting to identify these as the n

and h of a warped geometry. However this does not quite work.

To see this, recall a minor result we obtained at the end of subsection 2.3: every

warped geometry is equivalent to the flat one n = dx−, h = dx+ by the combination

of a coordinate transformation, Weyl rescaling, and boost. If a bulk coframe on WAdS3

induces a warped conformal structure on its boundary, then there must be a way to use a

bulk diffeomorphism and local Lorentz rotation to induce the most general n and h on its

boundary, and further to identify the gravity dual of a Weyl rescaling and boost.

Fortunately, we already know how to get the gravity dual of the boundary symmetry

transformations, whether they be diffeomorphisms, boosts, or otherwise. After fixing a

radial gauge (the analogue of the choice of Fefferman-Graham coordinates in an asymp-

totically AdS spacetime) and the large−r falloffs of the coframe, one solves for the most

general asymptotic form of a bulk diffeomorphism and local Lorentz rotation that is consis-

tent with the gauge choice and falloffs. These are the so-called Penrose-Brown-Henneaux

(PBH) transformations [47].

For the case at hand we pick a gauge so that e2 = Ldr/r always, and that e0 and e1

have no components along dr. Further, we require that e0 and e1 grow as r in a parallel

way, i.e. that they satisfy the boundary condition that

e0 = rL
(
nµ(xν) + . . .

)
dxµ , e1 = αLr

(
nµ(xν) + . . .

)
dxν , (6.6)

where the dots indicate terms that vanish as r tends to infinity. In this way the asymptotic

growth of the coframe only encodes one one-form on the boundary. (The other boundary
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condition where e0 and e1 grow as r in different directions leads to an asymptotically AdS3

spacetime instead.)

In this context, a PBH transformation is a bulk diffeomorphism and Lorentz rotation

consistent with this gauge choice and boundary condition. It is easy to show that at the

infinitesimal level, under which the bulk coframe varies as

δeA = £Ξe
A − vABeB , (6.7)

with ΞM a bulk diffeomorphism and vAB a bulk Lorentz rotation, a PBH transformation

of pure WAdS3 (6.5) is parameterized by a vector field ξµ(xν), a Weyl rescaling σ(xµ), and

boost ψ(xµ), and is given by8

Ξ− = ξ− +
∂+σ

r
− ∂−σ

2r2
,

Ξ+ = ξ+ +
α2 − 1

α2
(ln r)∂+σ +

∂−σ

r
,

Ξr = r σ ,

v0
1 = −αψ

r
,

v0
2 = ∂+σ −

∂−σ

r
,

v1
2 = −∂+σ

α
.

(6.8)

Under it the bulk coframe varies as

δe0 = L

[
r(dξ− + σdx−) + α2ψ

(
dx− +

dx+

r

)
+ d(∂+σ)− d(∂−σ)

2r

]
, (6.9)

δe1 = αL

[
r
(
dξ− + σdx−

)
+
(
dξ+ − ψdx−

)
+

(
α2 − 1

α2
ln r + 1

)
d(∂+σ) +

d(∂−σ)

2r

]
.

Observe that if we fix e0 to O(r) and e1 to O(r0) as boundary conditions, the PBH

transformations consistent with those boundary conditions are

ξ− = ξ−(x−) , ξ+ = f(x−) , σ = −∂−ξ− , ψ = ∂−f , (6.10)

which exponentiate to (in the r →∞ limit)

x− = x−(X−) , x+ = X+ + f(X−) . (6.11)

Subject to these boundary conditions, these diffeomorphisms generate the asymptotic sym-

metry group of WAdS3. We recognize them as the warped conformal symmetries of a

WCFT as we discussed in section 2.1.

It is tempting to identify a boundary nµ and hν from the O(r) part of e0 and the O(r0)

part of e1 respectively. (More precisely, to identify hµ from the r →∞ limit of e0 − αe1.)

The O(r) part of δe0 is exactly how the one-form nµ of a warped geometry varies under a

8We are grateful to J. Hartong for pointing out an error in a previous version of this computation.
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diffeomorphism ξµ, Weyl rescaling σ, and boost ψ when it is initially n = dx−. The second

set of parenthesis in δe1 in (6.9) is exactly how hµ varies under the same transformation

when it is initially dx+. However, the logarithm in δe1 spoils this identification (note

that there is no logarithm when α2 = 1: however in this case the geometry becomes

asymptotically AdS3 rather than WAdS3).

In fact the situation is worse. Exponentiating the PBH transformation, the logarithmic

term exponentiates to a power of r that depends on ∂+σ.

In order to identify two boundary one-forms from the bulk coframe, we then require

the additional condition that the PBH transformations satisfy ∂+σ = 0 so that there is no

logarithmic term in e1. Comparing the variation δe0 and the identification of the boundary

nµ from the asymptotic growth of the coframe as in (6.6), this extra condition amounts to

dn = 0 , (6.12)

and further that Weyl rescalings σ retain dn = 0.

We can then identify two boundary one-forms (nµ, hν) via

e0 = rL (nµ(xν)dxµ + . . .) , e1 = Lα (r nµ(xν)dxµ + hµ(xν)dxµ + . . .) . (6.13)

All in all we see that a WAdS3 geometry does not induce a warped geometry on its bound-

ary, but something else. It induces a Newton-Cartan structure (nµ, hν) subject to dn = 0,

along with a Weyl rescaling symmetry Ω (satisfying wµ∂µΩ = 0, where wµnµ = 0 and

wµhµ = 1) and a boost symmetry ψ under which

n→ eΩn , h→ h− ψ n . (6.14)

This structure is identical to warped geometry, up to the condition that dn = 0.

6.2 Anomaly non-matching

In section 4 we found that WCFTs possess a boost anomaly and a mixed Weyl/boost

anomaly, respectively fixed by the Kac-Moody and Virasoro central charges. Setting dn =

0, as is relevant for the putative dual to gravity on WAdS3, our analysis still applies,

although now the Weyl/boost anomaly identically vanishes. The boost anomaly does not:

under a boost ψ, the generating function varies by

δχWk =
k

8π

∫
d2x
√
γ ψ . (6.15)

For gravity on warped AdS3 spacetimes, we identified the boost in the previous subsection

as a bulk local Lorentz rotation which falls off near the boundary as v0
1 = −αψ/r. How-

ever, there does not seem to be any gravitational theory on WAdS3 which realizes (6.15).

Any sensible bulk theory is locally Lorentz invariant up to a boundary term. So the

anomaly (6.15) could only arise in one of two ways: from a bulk Chern-Simons term, or

from a counterterm added in the course of holographically renormalizing the bulk. But the

gravitational Chern-Simons does not lead to the variation (6.15), and it is easy to check

that there is no local boundary counterterm which realizes (6.15).
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We conclude that the putative dual to gravity on WAdS3 does not possess the warped

anomalies of section 4. This is somewhat puzzling, and we refer the reader to our com-

ments on the matter in the Introduction. We suspect that this anomaly non-matching

is an indirect consequence of the fact that the putative dual is also non-local, which we

demonstrate presently.

6.3 Semi-locality

Consider a minimally coupled scalar ϕ of mass m2 on WAdS3,

Smatter = −
∫
d3x
√
−g
(

1

2
(∂ϕ)2 +

m2

2
ϕ2

)
. (6.16)

In a pure WAdS3 background we can solve for the asymptotic behavior of ϕ near the

boundary by Fourier transforming in the x± directions. Denoting

ϕ(x, r) =

∫
dωdk

(2π)2
e−iωx

−+ikx+
ϕ̃(ω, k, r) , (6.17)

a quick computation shows that ϕ̃ behaves at large r as

ϕ̃(ω, k, r) ∼ a1(ω, k)r−1+∆(k) + a2(ω, k)r−∆(k) , (6.18)

with

∆(k) =
1

2
+

√
1 + 4m2L2 + 1−α2

α2 k2

2
. (6.19)

By the usual holographic dictionary, the Fourier modes of ϕ at fixed k would be dual to

an operator of dimension ∆(k). Two results immediately follow:

1. Since the dimension depends on the wavenumber of the mode, we see that ϕ is not

dual to a local operator in the putative dual. Here is the non-locality we were after.

This particular form of non-locality is the same as what one finds in fields propagating

in the near-horizon AdS2 ×Rd−1 geometry of an extremal Reissner-Nordstrom black

brane, and so the dual to gravity on WAdS3 is semi-local in the same sense that the

dual to gravity on AdS2 × Rd−1 is semi-local [24].9 This should not be surprising,

given that WAdS3 is a line or circle fibration over AdS2.

2. When the fiber is stretched α2 > 1, ∆(k) becomes complex for sufficiently large

|k|. This indicates a dynamical instability whenever α2 > 1: matter fields on the

background will condense, destroying the WAdS asymptotics. Further, modes with

larger momentum condense more strongly than those with smaller momentum. Recall

that there are spacelike WAdS3 black holes only when α2 > 1. This result tells us

that these black holes are always unstable.

9The word “semi” is used because the dependence of the dimension ∆(k) on momentum at small k is

weak, ∆ =
1+
√

1+4m2L2

2
+ O(k2), and so the dual is approximately local over distances which are much

longer than the WAdS scale L.
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6.4 Backreaction and NAdS2 holography

To conclude, a few words are in order about the AdS2 factor in spacelike WAdS3. Famously,

AdS2 cannot support finite energy excitations, and thus strictly speaking, AdS2/CFT1

holography does not exist. The backreaction of matter fields destroys the AdS2 asymp-

totics. Instead one can formulate a NAdS2/NCFT1 correspondence [48–51], where the “N”

stands for “nearly”, and the bulk geometry is (asymptotically) AdS2 with a linear dilaton.

There is a connection to spacelike WAdS3. Suppose we compactify x+ and take α2 < 1

so that matter fields are stable. Then another problem rears its head. Reducing to two

dimensions, we obtain an AdS2 spacetime with a constant electric field and a constant

dilaton. Any matter fields will backreact strongly and destroy these asymptotics, so that

spacelike WAdS3 throats do not admit a decoupling limit, just like any AdS2 throat with

a finite volume transverse space. Consequently, these putative holographic WCFTs should

be understood as nearly conformal theories, much the same way as the duals to NAdS2

gravity. Further, they should be governed by the same low-energy “Schwarzian action” [52]

as NAdS2 gravity [49–51], supplemented with an additional phase field to account for the

conserved momentum along the circle [53].
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A W and its variations

In subsection 4.3 we computed the transformations of the WCFT currents N µ and Hµ

under a general coordinate transformation, Weyl rescaling, and boost. Therein we used the

functional W which encodes the difference between W evaluated on a background (nµ, hν)

using coordinates xρ, and the generating functional on another background (n̂µ, ĥν) using

coordinates Xρ related by an anomalous symmetry transformation,

Ŵ [n̂µ, ĥ
′
ν ;Xρ]−W [nµ, hν ;xρ] =W .

The background (n̂µ, ĥν) is related to (nµ, hν) by a coordinate transformation xµ = xµ(Xν)

(with gµν = ∂xµ

∂Xν ), followed by a Weyl rescaling τ , then a boost Ψ,

n̂µ(X) = eτnνg
ν
µ , ĥµ(X) = (hν −Ψeτnν)gνµ .

In this appendix we derive the expression (4.28) forW and compute its variations with

respect to the background (nµ, hν).

The functional W is uniquely fixed by two constraints:

1. It vanishes when xµ = Xµ, τ = 0, and Ψ = 0.
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2. It is a Wess-Zumino term for the anomalies. Under the transformation δ̂χ which fixes

(nµ, hν ;xρ) and implements an infinitesimal transformation on (n̂µ, ĥν ;Xρ), that is

δ̂χnµ(x) = δ̂χhµ(x) = 0 , δ̂χx
µ = 0 , (A.1a)

along with

δ̂χX
µ = −ξµ ,

δ̂χn̂µ = £ξn̂µ + σn̂µ ,

δ̂χĥµ = £ξĥµ − ψn̂µ ,

(A.1b)

W varies in such a way as to reproduce the anomalies of Ŵ ,

δ̂χW = δ̂χŴ , (A.2)

which given (4.10) we record here as

δ̂χŴk̃ = − k̃

8π

∫
d2X

√
γ̂ ψ ,

δ̂χŴ1 = − c̃1

24π

∫
d2X

√
γ̂

(
−N̂ v̂µ∂µσ +

ψ

2
N̂2

)
,

δ̂χŴ2 = − c̃2

192π

∫ (
∂µξ

νdΓ̂µν − dψ ∧ Γ̂µνŵ
ν n̂µ + dσ ∧ Γ̂µν v̂

ν n̂µ

)
,

(A.3)

with

N̂ = N − τ ′ , Γ̂µν = v̂µdn̂ν + ŵµdĥν . (A.4)

The hatted transformation (A.1) is equivalent to (A.1a) and

δ̂χg
µ
ν = gµρ∂νξ

ρ , δ̂χτ = σ , δ̂χΨ = ψ − σΨ . (A.5)

We now show that the expression (4.28) for W does the job. To proceed, we split W
into three parts, one for each anomaly,

W =Wk̃ +W1 +W2 , (A.6)

with

Wk̃ = − k̃

8π

∫
d2x
√
γΨeτ = − k̃

8π

∫
d2X

√
γ̂Ψ , (A.7)

accounting for the boost anomaly (4.10a), and

W1 = − c̃1

24π

∫
d2x
√
γ

{
−Nτ̇ +

1

2
τ̇ τ ′ +

Ψeτ

2
(N − τ ′)2

}
(A.8)

the mixed boost/Weyl anomaly (4.10b). The term that accounts for the gravitational

anomaly (4.10c) contains a non-abelian WZ term and so cannot be written covariantly in
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two dimensions. As we described in subsection 4.3, that WZ term includes an integral on

a three-manifold N with the spacetime manifold M as its boundary. We find

W2 =
c̃2

192π

{
1

3

∫
N

tr
(
dg g−1

)3
+

∫
dgµν(g−1)νρ∧Γρµ

}
− c̃2

192π

∫
{(vν+Ψeτwν)nµdτ−wνnµd(Ψeτ )}∧

(
Γµν+dgµρ(g

−1)ρν
)

(A.9)

=
c̃2

192π

{1

3

∫
N

tr
(
dg g−1

)3−∫ (gµρΓ̂ρσ(g−1)σν−dgµρ(g−1)ρν

)
∧
(
Γνµ+dgνα(g−1)αµ

)}
.

Each of these satisfies the first requirement: W vanishes when gµν = δµν , τ = Ψ = 0.

So it remains to check that these functionals satisfy (A.2) with (A.3). We begin with the

pure boost anomaly. Its variation is

δ̂χWk̃ = − k̃

8π

∫
d2X

√
γ̂ ψ , (A.10)

as it ought. The variation of W1 gives (using N̂ = N − τ ′)

δ̂χW1 = − c̃1

24π

∫
d2x
√
γ

{
−(N − τ ′)(vµ + Ψeτwµ)∂µσ +

ψeτ

2
(N − τ ′)2

}
= − c̃1

24π

∫
d2X

√
γ̂

{
−N̂ v̂µ∂µσ +

ψ

2
N̂2

}
.

(A.11)

Finally, using

δ̂χ
(
dgµρ(g

−1)ρν
)

= gµρ d∂σξ
ρ (g−1)σν , (A.12)

and

Γ̂µν = (g−1)µρΓ
ρ
σg

σ
ν + (g−1)µρdg

ρ
ν + (g−1)µρ

(
(vρ + Ψeτwρ)nσdτ − wρnσd (Ψeτ )

)
gσν ,

(A.13)

we obtain the variation of W2 (up to a now-ubiquitous boundary term),

δ̂χW2 =
c̃2

192π

{∫
d∂µξ

ν ∧
(
(g−1)µρΓ

ρ
σg

σ
ν + (g−1)µρdg

ρ
ν

)
+ d∂µξ

ν ∧
(

(vµ + Ψeτwµ)nνdτ − wµnνd (Ψeτ )
)

+ dψ ∧ eτnµ
(
Γµν + dgµρ(g

−1)ρν
)
wν

− dσ ∧ nµ
(
Γµν + dgµρ(g

−1)ρν
)

(vν + Ψeτwν)

}
= − c̃2

192π

∫ (
∂µξ

νdΓ̂µν − dψ ∧ Γ̂µνŵ
ν n̂µ + dσΓ̂µν v̂

ν n̂µ

)
.

(A.14)

Having computed the functional W, we compute its variations with respect to the

background fields (nµ, hν) in order to obtain the “anomalous currents” (N µ
A,HνA). We also

decompose these into three parts, one for each anomaly:

N µ
A = N µ

k̃
+N µ

1 +N µ
2 , HµA = Hµ

k̃
+Hµ1 +Hµ2 . (A.15)
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The variations of Wk̃ give

N µ

k̃
= − k̃

4
Ψeτvµ ,

Hµ
k̃

= − k̃
4

Ψeτwµ ,

(A.16)

and the variations of W1 give

N µ
1 = − c̃1

12

{
τ̇Nvµ − τ̇2

2
wµ + Ψeτ

(
τ ′2 −N2

2
vµ + τ̇(N − τ ′)wµ

)}
− c̃1

12
εµν∂ν

(
Ψeτ (N − τ ′)− τ̇

)
,

Hµ1 = − c̃1

12

{
τ ′Nvµ − τ ′2

2
vµ − (N − τ ′)2

2
Ψwµ

}
.

(A.17)

The variations of W2 are rather complex. Rather than present them, let us argue

that they vanish in the flat “Cartesian” background n = dx−, h = dx+ for the warped

conformal transformations (2.21). We begin with the expression for W2 given in the last

line of (A.9). In this background and choice of coordinates, dnµ = dhν = 0 and Γµν = 0.

Similarly, in the transformed background we have dn̂µ = dn̂ν = 0 and Γ̂µν = 0. Moreover,

the variations of Γµν and Γ̂µν are total derivatives:

δflatΓ
µ
ν = d

(
vµδnν + wµδhν

)
, δflatΓ̂

µ
ν = d

(
v̂µδn̂ν + ŵµδĥν

)
, (A.18)

where the “flat” subscript that these equalities hold in the flat background with “Cartesian”

coordinates. After an integration by parts, the variation of the expression for W2 in the

last line of (A.9) is proportional to

dgµν ∧ d(g−1)νρ . (A.19)

However, given that dgµν ∝ dX− for the transformation at hand, we see that this wedge

product vanishes and so the functional variation of W2 does too. So, for the warped

conformal symmetries (2.21) and flat background, we find

N µ
2 =flat 0 , Hµ2 =flat 0 . (A.20)
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