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Jereḿıas Aguilera-Damia,a Diego H. Correa,a Francesco Fucito,b

Victor I. Giraldo-Rivera,c Jose F. Moralesb and Leopoldo A. Pando Zayasd,e

aInstituto de F́ısica La Plata, CONICET, Universidad Nacional de La Plata,

C.C. 67, 1900, La Plata, Argentina
bI.N.F.N. — sezione di Roma Tor Vergata,

Via della Ricerca Scientifica, I-00133 Roma, Italy
cInternational Centre for Theoretical Sciences (ICTS-TIFR),

Shivakote, Hesaraghatta Hobli, Bengaluru 560089, India
dMichigan Center for Theoretical Physics,

Randall Laboratory of Physics, The University of Michigan,

Ann Arbor, MI 48109-1040, U.S.A.
eThe Abdus Salam International Centre for Theoretical Physics,

Strada Costiera 11, 34014 Trieste, Italy

E-mail: jeremiasadlp@gmail.com, correa@fisica.unlp.edu.ar,

francesco.fucito@roma2.infn.it, vgiraldo@icts.res.in,

morales@roma2.infn.it, lpandoz@umich.edu

Abstract: We consider a fundamental string in a bubbling geometry of arbitrary genus

dual to a half-supersymmetric Wilson loop in a general large representation R of the SU(N)

gauge group in N = 4 Supersymmetric Yang-Mills. We demonstrate, under some mild

conditions, that the minimum value of the string classical action for a bubbling geometry

of arbitrary genus precisely matches the correlator of a Wilson loop in the fundamental

representation and one in a general large representation. We work out the case in which

the large representation is given by a rectangular Young tableau, corresponding to a genus

one bubbling geometry, explicitly. We also present explicit results in the field theory for a

correlator of two Wilson loops: a large one in an arbitrary representation and a “small”

one in the fundamental, totally symmetric or totally antisymmetric representation.

Keywords: Gauge-gravity correspondence, Matrix Models, Supersymmetric Gauge The-

ory, Wilson, ’t Hooft and Polyakov loops

ArXiv ePrint: 1709.03569

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP12(2017)109

mailto:jeremiasadlp@gmail.com
mailto:correa@fisica.unlp.edu.ar
mailto:francesco.fucito@roma2.infn.it
mailto:vgiraldo@icts.res.in
mailto:morales@roma2.infn.it
mailto:lpandoz@umich.edu
https://arxiv.org/abs/1709.03569
https://doi.org/10.1007/JHEP12(2017)109


J
H
E
P
1
2
(
2
0
1
7
)
1
0
9

Contents

1 Introduction 1

2 Review of bubbling geometries dual to 1
2
-BPS Wilson loops 3

2.1 Charges and representation parameters 5

3 Strings in bubbling geometries 6

3.1 General set up 8

3.2 Strings in genus zero background 9

3.3 Strings in genus one backgrounds 10

3.4 Strings in genus g backgrounds 16

4 Correlator of 1
2
-BPS Wilson loops in N = 4 SYM 20

4.1 The back-reacting Wilson loop 21

4.1.1 Multi-cut Wigner semicircle distribution 24

4.2 Adding a fundamental Wilson loop 25

4.3 Small loops in symmetric or antisymmetric representations 27

4.3.1 Correlator with a totally symmetric Wilson loop 28

4.3.2 Correlator with a totally anti-symmetric Wilson loop 31

4.3.3 Back-reacting Wilson loops in general representations 32

5 Conclusions 34

A Probe brane limit 35

B Contribution from other saddle points 36

C Supersymmetric correlators 38

1 Introduction

In the best understood examples of the AdS/CFT correspondence, the gravity description

is accomplished in terms of strings and D-branes in Anti de Sitter spaces with a constant

dilaton, reflecting the conformal symmetry of the quantum field theory description. Con-

sidering heavy objects on the gravity side naturally leads to backreaction in which case the

isometries of AdS are only preserved asymptotically and the dilaton is no longer constant.

In the quantum field theory description this situation corresponds, typically, to the com-

putation of expectation values, not in the vacuum of the theory, but in some states related

to operators with large quantum numbers. This setup deviates from conformal invariance

and in this manuscript we explore one of its explicit still controlled instances.
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When deviating from strict AdS spaces there are not as many exact results as in confor-

mal situations where one can explore the scenario described in the previous paragraph by

comparing string theory with gauge theory results explicitly. One rare example of such ex-

act results in non-conformal situations is the computation of the partition function, Wilson

loops expectation values and correlators in N = 2∗ super Yang-Mills and its holographic

dual [1–5].

A different setup to study the AdS/CFT correspondence in non-conformal situations,

which we intend to explore in this article, arises with the computation of Wilson loop

correlators in cases where one of them is taken in a large rank representation. On the

gravity side, such large rank representation Wilson loops are described in terms of 1
2 -BPS

backreacted spaces, with isometry group SO(2, 1) × SO(3) × SO(5) and which present a

running dilaton and fluxes turned on. The construction of these bubbling geometries (see [6]

for bubbling geometries associated to the insertion of chiral fields) took various steps [7, 8]

before culminating in [9], where these type IIB supergravity solutions were found in terms

of two harmonic functions on a Riemann surface Σ on whose boundary the dual Wilson

loop representation data is encoded. These supergravity solutions are highly involved and

arguably represent the state-of-the-art as a far as supergravity solutions are concerned.

Strings and minimal area surfaces in this kind of bubbling geometries have been studied

in [10, 11], in order to compute gravitational potential between open strings and to account

for entanglement entropies holographically.

The expectation value of 1
2 -BPS circular Wilson loops for arbitrary representations

can be computed with a Gaussian matrix model. This was first conjectured by Erickson,

Semenoff and Zarembo in [12] and Drukker and Gross in [13], and it was finally proven by

Pestun using supersymmetric localization [14]. Remarkably, if the Wilson loop is taken in

the fundamental representation, the matrix model solution leads to an explicit expression

via orthogonal polynomials which is exact in the ’t Hooft coupling λ as well as in the rank

of the gauge group, N , [13]. For higher rank representations the holographic dictionary was

established in [15, 16], however, with few exceptions [17], exact expressions for generic λ

and N seem currently out of reach. Nevertheless, for totaly symmetric and antisymmetric

representations, it is possible to obtain expressions that hold in the planar and large λ

limit [18], that successfully match the associated D-branes on-shell actions [19, 20], as

predicted by the AdS/CFT correspondence. Later on, localization techniques were used

for other kinds of Wilson loops of arbitrary shapes, preserving less supersymmetry [21–

23] or to account for correlators of supersymmetric Wilson loops [24–28], but most of the

explicit results have been found for the fundamental representation.

When the Wilson loop representation is even larger, for instance, when the associated

Young tableau possesses a number of order N2 boxes, the dual description involves a large

number of D-branes that back-react on the geometry. The corresponding matrix model can

be solved with a saddle point approximation in the large-N limit provided the sizes the of

Young tableau edges {ni, ki} are taken to be of order N [29]. The eigenvalue distribution

can be determined in terms of geometric data on the spectral curve which, moreover, is

identified with the hyperelliptic surface characterizing the bubbling geometry as beautifully

demonstrated in [30].

– 2 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
9

The main purpose of this paper is to compute correlators 〈WRWr〉, between Wilson

loops in large representations R, whose Young tableau edges {ni, ki} are of order N , and

Wilson loops in a “small” representation, let us say, fundamental, completely symmetric

and completely anti-symmetric. We will consider in particular the case in which both

Wilson loops are defined over the coincident circle and coupled to the same scalar, so that

both are invariant under the same set of symmetries and supersymmetry transformations.

This allows to compute the correlator directly in the field theory using the matrix model

that is obtained by supersymmetric localization. The gist of our matrix model calculation

is that the “small” Wilson loop does not back-react on the eigenvalue distribution of the

large representation Wilson loop. Thus, the correlator is eventually given by an expectation

value in the eigenvalue distribution of the large representation Wilson loop.

According to the AdS/CFT correspondence, the correlator of Wilson loops of the form

〈WRWfund〉 can be computed, in the large ’t Hooft coupling λ limit, as the on-shell action

of certain strings in the bubbling geometries found in [9]. Among the many strings that

can propagate in the bubbling geometries, the ones that can be related to the particular

correlator given are those invariant under the same symmetries and supersymmetries of the

background. We demonstrate in this manuscript that there is precise agreement between

the two sides of the correspondence.

The paper is organized as follows. In section 2 we review the bubbling geometries

dual to large representation Wilson loops and the relation between their charges and the

Young tableau parameters. In section 3 we present the minimal area string configurations in

generic bubbling geometries. We consider in detail the case of strings in genus one bubbling

geometries, dual to a Wilson loop in a rectangular Young tableau representation, and give

explicit expressions for the on-shell actions that will be later compared with matrix model

results. At the end of this section, we extend our results to general genus g backgrounds. In

section 4 we turn to the matrix model description of the correlator of Wilson loops. We first

focus on the correlator of a Wilson loop in the fundamental representation and one in a rep-

resentation given by a rectangular Young tableau, but we later consider more generic cases.

We finally conclude and comment our results in section 5. We also include various appen-

dices for the readers interested in further details on the results presented in the main text.

2 Review of bubbling geometries dual to 1
2
-BPS Wilson loops

The general bubbling geometry background corresponds to solutions of type IIB super-

gravity that preserves a SO(2, 1) × SO(3) × SO(5) isometry group and 1/2 of the total

supersymmetry [9]. The resulting metric is the one associated with an H2, S2 and S4

fibration over a 2-dimensional complex Riemann surface Σ. The metric in the Einstein

frame can be written as

ds2 = GEMN dx
M dxN = f2

1ds
2
H2

+ f2
2ds

2
S2 + f2

4ds
2
S4 + dΣ2 . (2.1)

A quite remarkable fact about these solutions is that all the geometric functions and fluxes

are completely determined by two holomorphic functions A and B defined on the Riemann

– 3 –
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surface Σ. Equivalently, the geometry can be specified in terms of four real harmonic

functions defined as

h1 = A+ Ā , h̃1 = i
(
A− Ā

)
,

h2 = B + B̄ , h̃2 = i
(
B − B̄

)
. (2.2)

There are various ways of describing functions on a Riemann surface [31]. For ex-

ample, as functions in the upper half-plane with g + 1 branch cuts satisfying appropriate

boundary conditions. This formulation usually provides a clearer scheme for describing

general properties of the geometry. Alternatively functions h1 and h2 can be represented

in terms of hyperelliptic functions of the 2g-periodic variables (z, z̄) on a genus g Riemann

surface without boundaries. Along this article we will alternate between both descriptions

and refer to the background with metric (2.1) generically as the genus g solution.

Consider Σ to be the half plane described by coordinates (u, ū). The main properties

of an arbitrary genus g solution are encoded in the boundary conditions satisfied by the

harmonic functions over the real axis. More precisely, the h2 function satisfies Dirichlet

boundary conditions all along the boundary of Σ, whereas h1 satisfies alternating Dirichlet

and Neumann boundary conditions. The points where the boundary condition changes are

denoted by ẽa and determine the position of the branch cuts. A genus g solution is obtained

for a Riemann surface Σ with 2g + 2 branch points on its boundary. It is customary to

use conformal symmetry to bring a branch point, let us say ẽ2g+2, to minus infinity and

consider the ordering ẽ2g+2 < . . . < ẽ2 < ẽ1. Additionally, the remaining branch points are

subjected to the constraint
∑2g+1

a=1 ẽa = 0.

The general form of these functions satisfy the following equations

∂uh1(u) =
iP (u)

(u− u0)2 s(u)
, ∂uh2(u) = − i

(u− u0)2
, (2.3)

where u0 is a singular point where the geometry is asymptotically AdS5 × S5, P (u) is a

polynomial of degree g + 1 with real coefficients and

s(u)2 = (u− ẽ1)

g∏
i=1

(u− ẽ2i)(u− ẽ2i+1) . (2.4)

Alternatively, making a conformal transformation one can get rid of the pole at the

singular point. We will denote these coordinates as (v, v̄), for which a direct relation with

the matrix model resolvent w(x) can be established [9, 30].

A(v) =
iα′

8 gs
[2 v − w(v)] , B(v) =

iα′ v

4
. (2.5)

In order to follow the same conventions as in [30], we use ea to denote the branch point loca-

tions in (v, v̄) coordinates. Clearly, the use of u or v-coordinates is a matter of taste with no

significant difference in the physical picture. Turning to the (z, z̄) formulation, we can write

dΣ2 = 4σ2dzdz̄, (2.6)

– 4 –
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where the radius σ is a real function of (z, z̄). The warping functions f1, f2, f4, σ and

dilaton Φ are given by1

f4
1 = −4eΦh4

1

W

N1
, f4

2 = 4e−Φh4
2

W

N2
, f4

4 = 4e−ΦN2

W
, σ8 = −WN1N2

h4
1h

4
2

, e2Φ = −N2

N1
,

(2.7)

where

N1 = 2h1 h2|∂h1|2 − h2
1W , W = ∂h1 ∂̄h2 + ∂h2 ∂̄h1 ,

N2 = 2h1 h2 |∂h2|2 − h2
2W , V = ∂h1∂̄h2 − ∂h2∂̄h1 . (2.8)

and ∂ = ∂z, ∂̄ = ∂z̄. Also the NS and RR fluxes can be written in the following way

H3 = dB2 , F3 = dC2 , F5 = dC4 +
1

8
(B2 ∧ F3 − C2 ∧H3) , (2.9)

and the corresponding potentials are

B2 = b1 êH2 , C2 = b2 êS2 , C4 = −4 j1 êH2 ∧ êS2 + 4 j2 êS4 , (2.10)

where êH2 , êS2 and êS4 are the unit volume elements of H2, S2 and S4, respectively and

b1 = −2 i
h2

1 h2 V

N1
− 2h̃2 − b01 ,

b2 = −2 i
h1 h

2
2 V

N2
+ 2 h̃1 − b02 ,

j2 = ih1 h2
V

W
− 3

2

(
h̃1 h2 − h1h̃2

)
+ 3 i

(
C − C̄

)
. (2.11)

with dC = B∂A−A∂B. The integration constants b01, b02 are gauge redundancies that will

be fixed later by requiring that the two-form fluxes precisely vanishes at the AdS5 singular

point, i.e. b1(z0) = b2(z0) = 0. The function j1 can be computed by using the self-duality

of the RR 5-form obtaining

∂j1 = −i
f2

1 f
2
2

f4
4

∂j2 +
1

8
(b1 ∂b2 − b2 ∂b1) . (2.12)

2.1 Charges and representation parameters

To complete the description of the solution we find it convenient to go back to the (u, ū)

formulation. The harmonic function h1 satisfies Dirichlet boundary conditions on the

intervals (ẽ2i+1, ẽ2i) and Neumann boundary conditions on the intervals (ẽ2i, ẽ2i−1) for

i, j = 1, . . . , g + 1. Moreover, the S2 and S4 spheres shrink to zero size along Neumann

and Dirichlet intervals respectively, as can be seen from the relation between the warping

factors fi and the functions hi in eq. (2.7).

The free parameters of the solutions, i.e. the positions and lengths of branch cuts can

be related to the lengths of the rows and columns of the Young tableau associated to the

1Note that conventions in [9, 10] is φ = Φ/2.
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representation of the dual Wilson loop. However, the precise relation is in general very

involved and can be established through flux integrals over the non-trivial cycles of the

geometry. We shall present here some general aspects for arbitrary genus and leave a more

detailed discussion of this relation for the genus one example described in section 3. A

fairly complete treatment of this subject can be found in [9, 10] and we will mainly follow

the ideas presented there.

The geometric structure described so far allows to define a series of non-trivial 3- and

5-cycles encircling either Dirichlet or Neumann type intervals along the boundary of Σ.2

Such 3- and 5-cycles have topology S3 and S5 respectively hence being charged under either

3- or 5-form RR fluxes. More precisely, we define the 5-cycle γi as the fibration of an S4

over the contour surrounding the Neumann interval (ẽ2i, ẽ2i−1). Analogously, the 3-cycle

γ̃j corresponds to an S2 fibration over the contour around the Dirichlet interval (ẽ2i+1, ẽ2i).

The corresponding charges can be computed by the following integrals

QiD3 =

∮
γi

dC4 , (2.13)

QjD5 =

∮
γ̃j

F3 (2.14)

Using the Cauchy theorem and expanding the fluxes near the boundary, the integrals above

can be deformed to the following integrals over the branch cuts [10]:

QiD3 = 12i Vol(S4)

∫ ẽ2i−1

ẽ2i

dC + c.c. , (2.15)

QjD5 = 2i Vol(S2)

∫ ẽ2j

ẽ2j+1

dA+ c.c. , (2.16)

where

dC = B∂A−A∂B. (2.17)

These integrals giving the D5 and D3 RR charges are naturally associated with the Wilson

loop representation parameters (see figure 1) in the following way

QiD3 = (4π2α′)2ni , QjD5 = −(4π2α′)kj (2.18)

3 Strings in bubbling geometries

Let us introduce a fundamental string in the bubbling geometry background just presented

in the previous section and search for minimal area solutions. Our interest in these config-

urations is kindled by the fact that the corresponding on-shell action can be related to the

2There are additional non-trivial 7-cycles given by S2 × γi and S4 × γ̃j warped products which measure

the fundamental string charges of the D-brane configuration [10]. These charges are in turn related to the

number of boxes contained in each sub-diagram of the Young tableau associated to the dual Wilson loop.

– 6 –
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ẽ1ẽ2ẽ3ẽ4ẽ2g+1

γ1γ2γg−1γg γ̃1γ̃g−1γ̃g

n1
k1

n2ng−1
ng

kg−1
kg

Figure 1. Branch cuts and generic Young tableau assigned to the dual Wilson loop. Representation

parameters {kj , ni} are linked to geometric parameters through flux integrals over non-trivial 3-

and 5-cycles γ̃j and γi.

correlator of two Wilson loops, one in the fundamental representation whose dual is the fun-

damental string and the other in some large rank representation whose holographic dual is

the background bubbling geometry itself. More precisely, in the large ’t Hooft coupling limit

〈Wfund〉R =
〈WRWfund〉
〈WR〉

'
∑
{z∗}

e−Son-shell(z
∗) , (3.1)

relating the correlator between the Wilson loops in the large ’t Hooft coupling limit to the

gravity partition function evaluated at the points {z∗} of minimum action for the funda-

mental string in the bubbling background. In general there will be many different classical

string embeddings in a genus g background, which should correspond to different specifi-

cations of the fundamental Wilson loop Wfund, namely different curves and orientations in

the internal space.

Since we would like to eventually compare string theory with matrix model results, we

shall focus on string configurations corresponding to fundamental Wilson loops preserving

the same SO(2, 1) × SO(3) × SO(5) symmetry as the large rank representation one. This

is necessary for the two Wilson loop operators to preserve the same set of supercharges.

The restriction on the symmetries implies that both Wilson loops should be taken on

coincident circles (with one orientation or the other) and with same or opposite internal

space orientations. Therefore, we will in turn restrict our attention to very specific dual

classical string configurations.

To explicitly compare with matrix model results, we will find particular examples of

these configurations and evaluate their on-shell actions. To build up our intuition we first

present the general set up for the calculation and then turn to explicit examples for genus

zero and one.

– 7 –
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3.1 General set up

Our aim is to solve the equations of motion derived from the Nambu-Goto action

S =
1

2πα′

∫
d2σ

√
det(G

(S)
MN∂αX

M∂βXN ) +
1

2πα′

∫
P [B2] , (3.2)

with G
(S)
MN the metric in the string frame related to that one in the Einstein frame via

G(S) = e
Φ
2 G(E). P [B2] is the pull-back of the NS 2-form flux over the worldsheet.3

We consider string world sheets extended all along the H2 factor parameterized by

global coordinates (ρ, φ) such that ds2
H2

= dρ2 + sinh2 ρ dφ2 and sitting at an arbitrary

point on both the S2 and S4. Notice that, given this parametrization for the H2 factor,

the corresponding string describes a circular contour on the AdS boundary.4 Furthermore,

we work in the formulation where Σ is a genus g Riemann surface described by coordinates

(z, z̄) which we further assume can only depend on the worldsheet coordinate ρ. Plug-

ging this ansatz into eq. (3.2) and using the explicit form for both the metric and the

antisymmetric tensor given in eqs. (2.1), (2.10) and (2.11) yields

S =
1

2πα′

∫
dφ dρ sinh ρ e

Φ
2 f2

1

√
1 +

4σ2

f2
1

|z′|2 +
1

2πα′

∫
dφ dρ sinh ρ b1 , (3.3)

with z′ = dz/dρ. The Euler-Lagrange equation becomes

∂z

(
e

Φ
2 f2

1

)√
1 +

4σ2|z′|2
f2

1

+ e
Φ
2 f2

1∂z

√
1 +

4σ2|z′|2
f2

1

+ ∂zb1 =
1

sinh ρ

d

dρ

 2e
Φ
2 σ2z̄′√

1 + 4σ2|z′|2
f2
1

 .

(3.4)

Although finding a general solution to the above equation looks like a daunting task in

the general case, there is a particularly simple solution. Indeed, if there is a point z = z∗

in the Riemann surface such that

∂z

(
e

Φ
2 f2

1

)
= ∂zb1 = 0 , (3.5)

then keeping z = z∗ constant, i.e. z′ = 0, gives a solution of the equations of motion.

Fortunately, solutions with the aforementioned symmetry restrictions will be found within

this class. For these solutions the on-shell action reads

Son-shell =
vol(AdS2)

2πα′

(
e

Φ
2 f2

1 + b1

)∣∣∣∣
z=z∗

= − 1

α′

(
e

Φ
2 f2

1 + b1

)∣∣∣∣
z=z∗

, (3.6)

where we used the regularized volume vol(AdS2) = −2π.

3Being metric independent, the coupling of the string to the B-field in the action remains unchanged in

the new frame.
4Recall that, in global coordinates, the regularized H2 volume is finite and equals to −2π. Should we

have taken the H2 factor in Poincaré coordinates, then the regularized volume would be zero. This last

parametrization is associated to a single straight Wilson line, which has trivial vacuum expectation value

〈W 〉 = 1.

– 8 –
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At this point we would like to come back to the issue of fixing the gauge ambiguity

of the background fluxes. In particular, a gauge transformation of the B-field changes

the string action by a boundary term, thus leaving the classical configurations unaffected

because the equations of motion remain invariant. However, the gauge choice does affect

the evaluation of the on-shell action. As already mentioned, we fix the gauge redundancy

of the B-field by requiring that b1(z0) = 0. This means that the B-field vanishes at the

singular point where the background is asymptotically AdS5 × S5, thus being identified

with the dual CFT vacuum. Otherwise, if b1(z0) were non-vanishing, a non-trivial source

should be turned on at the boundary CFT that would take us away from the vacuum.

In the following subsections we will find classical solutions to the Euler-Lagrange equa-

tions and evaluate the on-shell action for strings in genus zero and genus one supergravity

backgrounds.

3.2 Strings in genus zero background

To familiarize the reader with the details of the presentation of the solution we review the

computation of a minimal string area on AdS5 × S5, which corresponds to the genus zero

background geometry. Despite being a well known result, a reformulation of this problem

in the geometrical language just presented in the previous section would introduce some

hints about the manipulations that we will perform in the genus one case.

The AdS5 × S5 solution in the (v, v̄) formulation is obtained by taking

A = − α′

4 gs

√
λ− v2 B = i

α′ v

4
. (3.7)

with α′, λ and gs related to the radiue L, the RR flux N and the dilaton Φ0 of the AdS5×S5

solution via5

L4 = 4πNα′2 , eΦ0 = gs , λ = 4π gsN (3.8)

More precisely, plugging (3.7) one finds the dilaton and warping factors

f2
1 − f2

2 = L2, σ2 =
L2

4|1− v2

λ |
, eΦ = eΦ0 , (3.9)

The gauge fixed B field is vanishing. Note that h1 = A + Ā satisfies Neumann boundary

conditions along the real segment (−
√
λ,
√
λ) and Dirichlet along the remaining segments of

the real axis. Moreover, given (3.9), we note that f1 becomes constant wherever f2 vanishes,

namely for v∗ ∈ [−
√
λ,
√
λ]. Therefore, any point lying on this segment corresponds to a

solution of the equations of motion. Furthermore, all these solutions lead to the same

on-shell action

Son-shell = −e
Φ0
2 f2

1 (v∗)

α′
= −e

Φ0
2 L2

α′
= −
√
λ , (3.10)

From the foliation of the solution it should be clear that the Riemann surface provides

the radial coordinate for AdS5 to be written as a foliation of AdS2 × S2 and the angular

5L4 is proportional to N in the Einstein frame and to λ in the string frame.
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coordinate to write S5 as a foliation of S4. This becomes evident if we perform the following

change of variables

v =
√
λ cosh(η − i θ) , 0 ≤ η <∞ , 0 ≤ θ ≤ π, (3.11)

under which the metric takes the familiar form

ds2 = L2
(
dη2 + cosh2 η ds2

H2
+ sinh2 η ds2

S2 + dθ2 + sin2 θ ds2
S4

)
. (3.12)

On the other hand, the solution segment v∗ ∈ [−
√
λ,
√
λ] gets mapped to the segment

η = 0 , 0 ≤ θ ≤ π thus making manifest that different choices of v∗ correspond to different

polar angles on the S5. In particular the branch points v∗ = ±
√
λ corresponds to the north

and south poles of S5 and solutions placed at these points will be dual to configurations

associated to Wilson loops coupled with opposite orientation in the six-dimensional internal

space.

3.3 Strings in genus one backgrounds

In this section we will consider genus one backgrounds since they can be explicitly realized

in terms of Weierstrass elliptic functions [9]. These geometries arise due to the backreaction

of a Wilson loop in a representaion given by a rectangular Young tableau with n1 = n rows

and k1 = k columns, see figure 2. In this case, the most convenient approach corresponds

to taking Σ as a torus described by coordinates (z, z̄) with periods 2ω1 and 2ω3. The

Weierstrass elliptic functions provide the mapping between the torus and the half complex

plane. In particular, taking z0 = 1, the holomorphic functions take the form

A = iκ1

(
ζ(z − 1) + ζ(z + 1)− 2

ζ(ω3)

ω3
z

)
,

B = iκ2 (ζ(z − 1)− ζ(z + 1)) , (3.13)

where ζ denotes the Weierstrass ζ-function, a primitive of the Weierstrass ℘-function

℘(z) = −ζ ′(z) , (3.14)

satisfying the condition limz→0(ζ(z) − 1/z) = 0. The functions ζ(z) and ℘(z) depend

implicitly on two numbers g2, g3 (or equivalently ẽ1, ẽ2 ) specifying the periods of the

torus. More precisely, ℘(z) can be defined as the solution of the differential equation[
℘′(z)

]2
= 4 [℘(z)]3 − g2 ℘(z)− g3 = 4 [℘(z)− ẽ1] [℘(z)− ẽ2] [℘(z)− ẽ3] , (3.15)

with ẽ1 + ẽ2 + ẽ3 = 0 and

g2 = 2
(
ẽ2

1 + ẽ2
2 + ẽ2

3

)
, g3 = 4ẽ1ẽ2ẽ3 . (3.16)

At the half periods, ωi, one finds ℘(ωi) = ei and ℘′(ωi) = 0, so eq. (3.15) is verified. Given

the branch points ẽ1, ẽ2 one can compute the periods 2ω1 and 2ω3 using the standard

elliptic formulas

ω1 =
K
(
ẽ2−ẽ3
ẽ1−ẽ3

)
√
ẽ1 − ẽ3

, ω3 = i
K
(
ẽ1−ẽ2
ẽ1−ẽ3

)
√
ẽ1 − ẽ3

, ω2 = ω1 + ω3 , (3.17)
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k

n

Figure 2. Number of rows and columns in the tableau are related to the charges Q1
D3 and Q1

D5.

where K is the complete elliptic integral of the first kind. Finally κ1 and κ2 are determined

by requiring that the geometry reduces asymptotically to AdS5 × S5 when z → z0 = 1.

Near this point one finds

A ≈
z→1

iκ1

[
1

(z − 1)
+ ζ(2)− 2

ζ(ω3)

ω3
−
(
℘(2) + 2

ζ(ω3)

ω3

)
(z − 1)− ℘′(2)

2
(z − 1)2 + . . .

]
,

B ≈
z→1

iκ2

(
1

(z − 1)
− ζ(2) + ℘(2)(z − 1) +

℘′(2)

2
(z − 1)2 + . . .

)
. (3.18)

Comparing with eq. (3.7), one finds that the match requires

κ1 =
L2

8
e−

Φ0
2

(
℘(2) +

ζ(ω3)

ω3

)− 1
2

, (3.19)

κ2 =
L2

8
e

Φ0
2

(
℘(2) +

ζ(ω3)

ω3

)− 1
2

. (3.20)

Moreover, requiring that b1 = 0 at z = 1 one finds

b01 = 2κ2

(
℘′(2)

℘(2) + ζ(ω3)
ω3

− 2ζ(2)

)
. (3.21)

The number of rows and columns in a rectangular Young tableau are directly related

to the charges Q1
D3 and Q1

D5 of the supergravity solution, given by the expressions (2.15)

and (2.16) respectively, while the rank N of the gauge group is related to Q0
D3 = Q2

D3+Q1
D3.

Indeed, for the genus one case there are two non-trivial 5-cycles γ1 and γ2 and one non-

trivial 3-cycle γ̃1 (see figure 3), these charges have been computed explicitly [10] obtaining6

N − n=
Q2

D3

(4π2α′)2
,

n=
Q1

D3

(4π2α′)2
=
Nω3

2π i

4

(
ζ(1)− ζ(ω3)

ω3

)
+

(
℘(1) + ζ(ω3)

ω3

)
℘′′(1)− ℘′(1)2(

℘(2) + ζ(ω3)
ω3

)
℘′(1)

 ,

k=−
Q1

D5

4π2α′
=

√
π i

ω3

√
N

gs

(
℘(2) +

ζ(ω3)

ω3

)−1/2

. (3.22)
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ẽ1ẽ2ẽ3−∞← ẽ4

0 ω1

ω2ω3

2ω2

2ω1

2ω3

u = ℘(z)

γ2 γ1γ̃1

u0

1

γ̃1

γ1γ2

Figure 3. Mapping from the torus to the half-plane. The boundary of the fundamental domain of

the Weierstrass elliptic functions delimited by {0, ω1, ω2, ω3} gets mapped to the boundary at the

real axis (℘(ωi) = ẽi).

In what follows let us find the solutions z = z∗ of eq. (3.4) for this particular case.

Recall that we are interested in string configurations preserving the same SO(2, 1)×SO(3)×
SO(5) symmetry as the background. It turns out that the only points on the Riemann

surface consistent with this condition are those where both the S2 and the S4 shrink to

zero size, which corresponds precisely to the branch points where the warping factors f2

and f4 vanish.

In order to show that they actually satisfy eq. (3.5) we consider the expansions of

the holomorphic functions A and B around the four branch points located at z = ωa,

a = 0, 1, 2, 3, with ω0 = 0. Given the periodic property of the elliptic functions ζ(z+2ωi) =

ζ(z) + 2ζ(ωi), formulas (3.13) drastically simplify to

A(z) ≈
z→ωa

cA0 (ωa) + c1(ωa)(z − ωa) + c3(ωa)(z − ωa)3 + . . .

B(z) ≈
z→ωa

cB0 (ωa) + c2(ωa)(z − ωa)2 + c4(ωa)(z − ωa)4 + . . . (3.23)

with7

c1(ωa) = 2 iκ1
ζ(ω3)

ω3
, c3(ωa) = − iκ1

3
℘′′(1 + ωa) ,

c2(ωa) = iκ2 ℘
′(1 + ωa) , c4(ωa) = iκ2 ℘(1 + ωa)℘

′(1 + ωa) ,

cA0 (ωa) = −2 iκ1

(
ζ(ω3)

ω3
ωa + ζ(1− ωa)− ζ(1 + ωa)

)
,

cB0 = − iκ2 (ζ(1 + ωa) + ζ(1− ωa)) . (3.24)

Plugging the expansions (3.23) into the background fields (2.7) and (2.11) we find

e
Φ
2 f2

1 (z) ≈
z→ωa

∣∣∣∣ 2 i c1 c
2
2

2 c2 c3 − c1 c4

∣∣∣∣+O
[
(z − ωa)2

]
,

b1(z) ≈
z→ωa

2 i c1 c
2
2

2 c2 c3 − c1 c4
− b01 − 2 i cB0 +O

[
(z − ωa)2

]
, (3.25)

6Here we used formula D.8 of [10] and the identity ℘(2) = 1
4

(
℘′′(1)
℘′(1)

)2

− 2℘(1).
7We recall that ℘′′(z) = 6℘(z)2 − g2/2.
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showing that z = ωa solves eq. (3.5). Moreover, the on-shell action is8

Son−shell(ωa) =− 1

α′
L2√gs

4
√
℘(2)+ ζ(ω3)

ω3

(
2ζ(2)−2[ζ (1+ωa)+ζ (1−ωa)]− ℘′(2)

℘(2)+ ζ(ω3)
ω3

(3.26)

+

∣∣∣∣∣∣
3℘′ (1+ωa)

(
℘(1+ωa)+ ζ(ω3)

ω3

)
℘′′ (1+ωa)−3℘(1+ωa)

(
℘(1+ωa)+ζ (ω3)

ω3

)
∣∣∣∣∣∣−

3℘′ (1+ωa)
(
℘(1+ωa)+ ζ(ω3)

ω3

)
℘′′ (1+ωa)−3℘(1+ωa)

(
℘(1+ωa)+ζ (ω3)

ω3

)


The string configurations we have found for the genus one case, and eventually their

on-shell actions (3.26) are written as functions of the branch point positions ẽi . In order

to make a comparison with the gauge field theory results it is necessary to express them in

terms of the numbers of rows and columns n and k of the corresponding Young tableau.

To do this we have to invert (3.22) to give the branch points ẽi and the half-periods ωi
in terms of n and k. Although, the relation between the two sets of variables is pretty

involved for generic values of n and k, here, we are interested in the precise regime, for

which n is order N and k is order N or larger.

Accessing the regime of interest requires to take ω3 → 0 and ω1 to approach 2. In

order to implement this limit, it is convenient to introduce

ω1 = 2− x

Λ
, ω3 =

iπ

2Λ
, (3.27)

and consider that Λ is large and x finite. Inverting the formulas for the periods in the

limit, one finds

ẽ1 =
Λ2

3

(
1 + 24 e2x−Λ + 24 e4x−2Λ +O(e6x−3Λ)

)
,

ẽ2 =
Λ2

3

(
1− 24 e2x−Λ + 24 e4x−2Λ +O(e6x−3Λ)

)
, (3.28)

while the Weierstrass elliptic zeta function can be expressed as9

ζ(z) ' −Λ2z

3

(
1− 3

Λz
coth(Λz)

)
+ 8 Λ2 z e4x−8Λ

(
1− sinh (2Λz)

2 Λ z

)
+O(e6x−3Λ) , (3.29)

and ℘(z) = −ζ ′(z). In this limit the charges (3.22) adopt the form

n =
e4x

1 + e4x
N , (3.30)

k =
2e2Λ

√
λ
√

1 + e4x
N . (3.31)

Similarly, if we use the expansions (3.29), for the on-shell actions (3.26) we find

Son−shell(0) = Son−shell(ω3) = −
√
λ√

1 + e4x
+

√
λe2Λe4x

2(1 + e4x)3/2
,

Son−shell(ω1) = Son−shell(ω2) = −
√
λe2x

√
1 + e4x

−
√
λe2Λ

2(1 + e4x)3/2
, (3.32)

8One may use ζ (1 + ωi) = ζ (1− ωi) + 2ζ(ωi).
9Following sub-leading orders would not influence the on-shell evaluation of the action in the regime

considered.
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which can be put in terms of the number of rows and columns using (3.30) and (3.31)

Son−shell(0) = Son−shell(ω3) = −
√
λ
(

1− n

N

)
+
knλ

4N2
, (3.33)

Son−shell(ω1) = Son−shell(ω2) = −
√
λ
n

N
− k(N − n)λ

4N2
. (3.34)

We notice that the pair of solutions with z∗ = 0, ω3 or z∗ = ω1, ω2 share the same on-

shell action. They can be distinguished by the position of the fundamental string on Σ and

we would like to identify which correlators of Wilson loops can be related with each of them,

according to the AdS/CFT correspondence. Because fundamental strings at any of the four

branch points correspond to SO(2, 1)×SO(3)×SO(5) symmetric configurations, they should

correspond to correlators of Wilson loops on the same circle with either the same or the

opposite internal space orientations. In the remaining of this section we will argue that the

contributions of the saddle points z∗ = 0, ω1 has to be taken into account altogether for a

given orientation of the fundamental string, and z∗ = ω2, ω3 for the opposite one.

By considering an AdS5 × S5 limit of the bubbling geometry, it is possible to argue

that strings at z∗ = 0 and z∗ = ω3 are the dual description of correlators in which the

fundamental Wilson loops have opposite internal space orientations. More precisely, we

consider the large ω1 limit, which corresponds to the collapse of one of the branch cuts

(namely ẽ2 → ẽ1). In this limit, when the usual AdS5 × S5 background is restored (see

appendix A), z∗ = 0 and z∗ = ω3 become the antipodal points on the S5, and strings

located there correspond to fundamental Wilson loops which couple to the scalars with

opposite orientation in the internal space. Therefore, for the correlator of a back-reacting

Wilson loop with a fundamental one with the same internal space orientation, either z∗ = 0

or z∗ = ω3 has to be considered but not both.

The existence of four saddle point solutions is a non-trivial consequence of the genus

one geometry. We will argue that for the dual one type of correlator (same or opposite

internal space orientation) z∗ = ω1 has to be taken into account altogether with z∗ = 0,

while z∗ = ω3 has to be taken into account altogether with z∗ = ω2. This is related to

the non-trivial topology of the target space. In particular, the definition domain of the

generating functions is two-sheeted and then we need a two-fold boundary condition in

order to have a well defined variational problem. Evidence that z∗ = 0 and z∗ = ω1

corresponds to the same correlator in the dual CFT comes from the fact that z∗ = 0 and

z∗ = ω1 configurations are related by a large gauge transformation. If we consider for

instance the transformation z → z + ωi, the holomorphic functions A and B change as

A(z, z0)→ A(z, z0 + ωi) + αi , α1 = α2 = i
πκ1

|ω3|
, α3 = 0 ,

B(z, z0)→ B(z, z0 + ωi) + βi , βi = i 2κ2ζ(ωi) , (3.35)

where we slightly changed the notation to make the position of the singular point manifest.

The singular point can be shifted by a conformal transformation of the target space and,

since ζ(ω1) is real, the configurations at ω0 = 0 and ω1 are related by an imaginary shift

of the holomorphic functions. Imaginary shifts on the holomorphic functions are related
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R

R̄

n1

n2

n3

k1

k2

k3

N − n

n = n1 + n2 + n3

R

R̄

Figure 4. Young tableaux for R and R̄ and associated Maya diagrams.

to large gauge transformations of the background fluxes which induce redefinitions of the

charges, since they are fluxes integrals over non-trivial cycles. The relation of these gauge

transformations to the Hanany-Witten effect is discussed in [10]. Since invariance under

this kind of gauge transformations is expected, both configurations z∗ = 0 and z∗ = ω1

should contribute to the saddle point dual to a given Wilson loops correlator. An analogous

relation is found for ω2 and ω3.

This gauge transformation of the background can be associated to a symmetry already

present in the dual gauge theory. For a generic Wilson loop representation R, this sym-

metry is the invariance under the change of R by its complex conjugate R̄. The conjugate

representation is obtained by inverting the Maya diagram assigned to a given tableau [8, 29]

(see figure 4). Black segments in the Maya diagram are a direct representation of the cuts

of the density of eigenvalues ρ(x) in the associated matrix model that will be encountered

in next section.

In the gravity description, this conjugation symmetry can be interpreted as viewing

the geometry from either one or the other Riemann sheet (see figure 5) and the roles played

by branch point ẽ4 = −∞ (z = 0) and ẽ1 (z = ω1) are exchanged; the same occurs with

the roles played by ẽ2 (z = ω2) and ẽ3 (z = ω3). Additionally, the non-trivial cycles get

interchanged, giving rise to the usual n→ N − n transformation.

Collecting the two contributions together and defining ν = n
N we can write the final

AdS/CFT result for the correlator

〈Wfund〉R ≈ e
√
λ(1−ν)− kνλ

4N + e
√
λ ν+

k(1−ν)λ
4N (3.36)

As a final remark, we notice that the result is invariant under n→ N −n when also taking

k → −k, suggesting that the conjugation of the representation is related to a different

choice of orientations of the brane system.

So far, as it has been stressed before, the string configurations we have found are the

dual description of correlators between two Wilson loops defined along the same circular

contour with either the same or the opposite orientations in the internal space. How-

ever, this does not exhaust all the possible configurations consistent with the symmetry
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γ1

ẽ4 ẽ3 ẽ2 ẽ1

γ2

γ1

ẽ4 ẽ3 ẽ2 ẽ1

γ2

2nd Sheet

1st Sheet

γ1

ẽ4ẽ3ẽ2ẽ1

γ2

Figure 5. Left: red lines denote the branch cuts and dotted blue lines indicate that cycles are

closing on the second sheet of the Riemann surface. Right: branch points and cycles interchange

roles when viewing from one sheet or the other.

SO(2, 1)×SO(3)×SO(5). Indeed, we should allow for the possibility of correlators between

two Wilson loops defined along circular contours with opposite space-time orientations with

either the same or the opposite internal space orientations.

The dynamics of a string dual to a Wilson loop with opposite space-time orientations

is governed by a similar Nambu-Goto action, but with a sign changed in front of the B-field

term. Interestingly, the configurations at the points z = ωa also satisfy the Euler-Lagrange

of this alternative problem. The on-shell actions for these strings with opposite space-time

orientations are

S̃on−shell(0) = S̃on−shell(ω3) = −
√
λ
(

1− n

N

)
− knλ

4N2
, (3.37)

S̃on−shell(ω1) = S̃on−shell(ω2) = −
√
λ
n

N
+
k(N − n)λ

4N2
. (3.38)

Reasoning as before, one can conclude that z∗ = 0 and z∗ = ω1 or z∗ = ω2 and z∗ =

ω3 contribute to this other type of correlators, depending on the relative internal space

orientation. Thus, the AdS/CFT result for this other type of correlators is

〈 W̃fund 〉R ≈ e
√
λ(1−ν)+ kνλ

4N + e
√
λ ν− k(1−ν)λ

4N . (3.39)

We will find in the next section that the matrix model computation matches the result

above, giving an indirect support to our interpretation. In appendix C we study the

supersymmetric properties of this configuration of Wilson loops from the field theory side.

3.4 Strings in genus g backgrounds

Finally, we consider a fundamental string in a general genus g background. We work in the

half-plane formulation, where the supergravity solution is specified by a single holomorphic

function w(v) in the upper half-plane with g + 1 cuts along the real line. This function

can be identified with the resolvent of the dual matrix model description [30]. We will first

prove that, given a genus g background geometry, fundamental strings sitting at any of the

2g+ 2 branch points ea give rise to solutions of the Euler-Lagrange equations and then we

will evaluate the action of the fundamental string at these points.
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In the v-plane, the functions A and B are given by

A(v) =
iα′

8 gs
[2 v − w(v)] , B(v) =

iα′ v

4
. (3.40)

In these coordinates the AdS5 × S5 asymptotic region is approached as v → ∞. The

asymptotic behavior of the holomorphic function w(v) is given by

w(v) =
λ

v
+
λw1

v2
+O(v−3) . (3.41)

Plugging (3.40) and (3.41) into the gravity solution one finds that the potential b1 vanishes

for v →∞ provided b01 = α′w1.

Let us now consider the string action in the vicinity of the branch points ea. Expansions

of h1 and h2 near the real line have been performed in [9]. If we write v = x + i y and

expand all functions near the boundary y ≈ 0, we get

h1 = A+ Ā = a0(x) + a1(x)y + a2(x)y2 + a3(x)y3 +O(y4) ,

h2 = B + B̄ = −α′ y
2
. (3.42)

The coefficient a2k and a2k+1 are completely determined in terms of a0 and a1 respectively

by means of the harmonic equation (∂2
x + ∂2

y)h1 = 0. In particular

a2(x) = −1

2
a′′0(x) , a3(x) = −1

6
a′′1(x) , (3.43)

and so on. Moreover, along the real line, h1 satisfies either Neumann or Dirichlet boundary

conditions and therefore either a0(x) or a1(x) vanish along the real line. So one can write

h1(x+ iy) =

{
a0(x) + a2(x)y2 + . . . N : x ∈ (e2i, e2i−1)

a1(x)y + a3(x)y3 + . . . D : x ∈ (e2j+1, e2j)
(3.44)

For example, approaching the real line along an interval with Neumann boundary condi-

tions, using (3.42)–(3.44), we obtain the expansions

W = α′
a′′0(x) y

4
+O(y3) , V = −α′ ia

′
0(x)

4
+O(y2) , (3.45)

N1 = −α′ a0(x)

4

[
a′0(x)2 + a0(x) a′′0(x)

]
y +O(y3) , N2 = −(α′)3

16
a0(x)y +O(y3) . (3.46)

leading to

e
Φ
2 f2

1 = α′

∣∣∣∣∣
√
a0(x)3 a′′0(x)

a′0(x)2 + a0(x) a′′0(x)

∣∣∣∣∣+O(y2) ,

b1 = α′x− α′ a0(x) a′0(x)

a′0(x)2 + a0(x) a′′0(x)
− b01 +O(y2) , (3.47)

At the branch points, h1 satisfies both Neumann and Dirichlet boundary conditions and

therefore we impose a0 to vanish there. Moreover, A has to develop a branch cut discon-

tinuity at those points. Taking

a0(x) = (x− ea)
1
2
[
Ca,0 + Ca,1 (x− ea) + Ca,2 (x− ea)2 +O(x− ea)3

]
, (3.48)
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where Ca,i are numerical coefficients. Expanding (3.47) around these points we find

e
Φ
2 f2

1 = α′

∣∣∣∣∣ Ca,04Ca,1
− 3

8C2
a,1

(C2
a,1 + 2Ca,0Ca,2)(x− ea)

∣∣∣∣∣+O(x− ea)2 +O(y)2 , (3.49)

b1 = α′

[
e1 −

Ca,0
4Ca,1

+
3

8C2
a,1

(C2
a,1 + 2Ca,0Ca,2)(x− ea)

]
− b01 +O(x− ea)2 +O(y)2 ,

We therefore see that branch points are minima of the action if the expansion coefficients

satisfy the relation

C2
a,1 + 2Ca,0Ca,2 = 0 . (3.50)

We will verify in a particular regime that this relation is satisfied. The corresponding

on-shell action becomes

Son-shell(ea) = − 1

α′

(
e

Φ
2 f2

1 + b1

)∣∣∣
v=ea

= −ea +
Ca,0

4Ca,1
−
∣∣∣∣ Ca,04Ca,1

∣∣∣∣+
b01
α′
. (3.51)

The general results above can be made more precise in a special limit of the underlying

genus g surface where the physics becomes more transparent and a concrete expression for

w(v) can be proposed. In particular we consider the limit where intervals with Neumann

boundary conditions or branch cuts are sufficiently far away from each other. Thus, in

the surroundings of a particular branch cut, the information about the other cuts can be

dismissed and h1 behaves essentially as in the genus zero case. In the dual matrix model

description some analogous implication will be observed for the dual resolvent function

w(v) in the limit where the dual Young tableau is made of large blocks.

Let us denote the g + 1 branch cuts by Li and consider they are centered at ci and

with lengths 2µi. In other words, the 2g+ 2 branch points are located at e2i = ci − µi and

e2i−1 = ci + µi. Then we propose the following expressions for w over the real axis, valid

for cuts well separated, i.e. |ci − cj | � 1. For x ∈ Li or ci − µi < x < ci + µi

w(x) = 2(x− ci)− 2i
√
µ2
i − (x− ci)2 + 2

i−1∑
k=1

(
x− ck +

√
(x− ck)2 − µ2

k

)

+ 2

g+1∑
k=i+1

(
x− ck −

√
(x− ck)2 − µ2

k

)
. (3.52)

While for x between two cuts, i.e. ci+1 + µi+1 < x < ci − µi

w(x) = 2
i∑

k=1

(
x− ck +

√
(x− ck)2 − µ2

k

)
+ 2

g+1∑
k=i+1

(
x− ck −

√
(x− ck)2 − µ2

k

)
. (3.53)

Therefore, in the vicinity of the branch cut Li, and provided that |ci − cj | � 1, we have

w(x) ≈


2(x− ci) + 2

√
(x− ci)2 − µ2

i x < ci − µi
2(x− ci)− 2i

√
µ2
i − (x− ci)2 ci − µi < x < ci + µi

2(x− ci)− 2
√

(x− ci)2 − µ2
i x > ci + µi

(3.54)
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where ≈ means that we are discarding terms of order O
(

1
ci−cj

)
. Note moreover that, when

taking x→∞, we have

w(x) =
1

x

g+1∑
i=1

µ2
i +

1

x2

g+1∑
i=1

ciµ
2
i +O(x−3) , (3.55)

thus, our requirement that b1 has to vanish in the region asymptotically AdS5×S5 implies

that

b01 = α′
∑g+1

i=1 ciµ
2
i∑g+1

i=1 µ
2
i

. (3.56)

At this point we should express the branch point parameters {ci, µi} in terms of the

brane fluxes, which are directly related to the integers {ni, kj} specifying the representation

of the dual Wilson loop. These relations can be obtained from (2.15)–(2.18), which gives

(4π2α′)2ni = 32π2 i

∫ e2i−1

e2i

dC + c.c. =
4π2 (α′)2

gs
i

∫ e2i−1

e2i

w(x)dx+ c.c. , (3.57)

(4π2α′)kj = −8π i

∫ e2j

e2j+1

dA(x) + c.c. = −π α
′

gs

∫ e2j

e2j+1

d [w(x)− 2x] + c.c. , (3.58)

where in the first line we integrated by parts and used the fact that xw(x) is real once

evaluated at the branch points. If we now use (3.54) and since the integral is defined

slightly above the real axis, we obtain

ni ≈
1

2π2gs

∫ ci+µi

ci−µi

√
µ2
i − (x− ci)2 =

N

λ
µ2
i , (3.59)

kj ≈ −
1

4πgs

∫ e2j

e2j+1

d [w(x)− 2x] + c.c. =
4N

λ
(cj − cj+1) . (3.60)

We now define νi = ni
N and Kj =

∑g
i=j ki, so that we can write kj = Kj − Kj+1 and

conclude that µi =
√
λνi and ci = λKi

4N + c0. Since
∑g+1

i=1 νi = 1 the gauge fixing constant

becomes

b01 = α′
g+1∑
i=1

ciνi . (3.61)

In order to obtain an explicit evaluation of (3.6) we need the coefficients Ca,n of the

expansion of a0(x). For the proposal (3.54) and for x ∈ Li we have

a0(x) =
α′

2gs

√
µ2
i − (x− ci)2 , (3.62)

Moreover, expanding around the right endpoint of the cut x ≈ e2i−1 = ci + µi we obtain

an expansion of the form (3.48) with

C2i−1,0 =
iα′

gs

√
µi
2
, C2i−1,1 =

C2i−1,0

4µi
, C2i−1,2 = −C2i−1,0

32
. (3.63)
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We notice that these coefficients satisfy the relation (3.50) and the on-shell string ac-

tion (3.49) at the branch point reduces to

Son−shell(e2i−1) = −e2i−1 +
b01
α′

= −ci − µi +
1

λ

g+1∑
j=1

ciµ
2
i

= −
√
λνi −

λ

4N

Ki −
g∑
j=1

Kjνj

 . (3.64)

Notice that going from the first to the second line, the dependence on the arbitrary constant

c0 cancels out, thus implying that the on-shell action is invariant under rigid translations

of the branch cuts.

On the other hand, the coefficients for the expansion around the left endpoint of the

cut x ≈ e2i = ci − µi are

C2i,0 =
α′

gs

√
µi
2
, C2i,1 = −C2i,0

4µi
, C2i,2 = −C2i,0

32
. (3.65)

They also satisfy the relation (3.50), but the on-shell string action (3.49) is in this case

Son−shell(e2i) = −ci + µi −
∣∣∣∣ C2i,0

2C2i,1

∣∣∣∣+
b01
α′

= −ci − µi +
b01
α′

= −e2i−1 +
b01
α′
. (3.66)

Similar results are obtained using the expansion along the interval with Dirichlet

boundary conditions. In analogy with the genus one case, configurations at the endpoints

of the same brunch cut have identical on-shell actions but only g + 1 configurations will

contribute to the saddle point approximation that computes the dual correlator of Wilson

loops,

〈Wfund〉R ≈
g+1∑
i=1

e−Son−shell(e
∗
i ) =

g+1∑
i=1

e
√
λνi+

λ
4N (Ki−

∑g
j=1 Kjνj), (3.67)

where {e∗i } is the subset of branch points corresponding to the compatible string embed-

dings. For the genus one case we have seen that {e∗i } = {e1, e4}.
As discussed above, for the correlator of Wilson loops with opposite orientations we

have to change the sign in the b1 contribution to the on-shell action. Repeating the same

analysis as before we obtain

〈W̃fund〉R ≈
g+1∑
i=1

e−Son−shell(e
∗
i ) =

g+1∑
i=1

e
√
λνi− λ

4N (Ki−
∑g
j=1 Kjνj). (3.68)

4 Correlator of 1
2
-BPS Wilson loops in N = 4 SYM

We now turn to the dual field theory description of the object we have been considering,

i.e., the correlator of 1
2 -BPS Wilson Loops in N = 4 super Yang-Mills. Specifically, we will

consider the correlator of two Wilson loops

〈Wr 〉R =
〈WRWr 〉
〈WR 〉

, (4.1)
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with the Wilson loops defined as

WR = trRP exp

[∮
C
ds
(

iAµẋ
µ + ~n · ~Φ|ẋ|

)]
. (4.2)

The two Wilson loops in the correlator will be taken over the same circle, i.e. one on top

of each other sharing the orientation in the internal space, namely be ~n(τ) = ~n0 with ~n0 a

constant unitary vector in the six-dimensional internal space. By R and r we mean large

and small rank representations respectively. As small representations we will successively

consider the fundamental, the totally symmetric and totally anti-symmetric. We notice that

the correlator 〈Wr 〉R is dimensionless, and there are no other scales besides the radius of

the loop, so the result should be a radius-independent function of the coupling constant.

A remarkable fact is that the expectation value of operators (4.2) is given in terms of

expectation values in a Gaussian matrix model obtained through localization [14]. When

the rank of the representation R is very large, the insertion of this Wilson loop competes

with the quadratic terms of the matrix model. This backreaction in the eigenvalue distribu-

tion is the field theory counterpart of the gravitational backreaction, as the dual geometry

is no longer AdS5×S5 [9, 30]. This suggests 〈Wfund 〉R should be compared with the string

theory result (3.67).

To be more specific, we are interested in computing the correlator between a Wilson

loop that backreacts on the geometry and another which does not. We are going to use

the intuition of [30], to first consider the correlator between backreacting Wilson loop

in a representation given by a large rectangular Young tableau and a Wilson loop in the

fundamental. Finally we will consider the case where the light Wilson loops is in the totally

symmetric or totally antisymmetric representations by generalizing the approach of [18].

We further extend all results to the case in which the backreacting Wilson loop is in an

arbitrary large representation of the gauge group.

4.1 The back-reacting Wilson loop

In this section we review the computation of a Wilson loop in an arbitrary representation

R of the gauge group [30]. First, we consider the result for representations of U(N) and

then comment on how to obtain the result for SU(N). The expectation value of a circular

Wilson loop in N = 4 is computed by the localization formula

〈WR 〉 =
1

Z

∫
da∆(a) e−

2N
λ

∑
r a

2
r trRe

a , (4.3)

with

Z =

∫
da∆(a) e−

2N
λ

∑
r a

2
r , (4.4)

and da =
∏N
r=1 dar, ∆(a) =

∏
r<s(ar − as)2 is the Vandermonde determinant and ar the

eigenvalues of the matrix a in the fundamental representation. A representation R of U(N)

is specified by the Dynking labels λ = (λ1, λ2, . . . λN−1), or equivalently by a Young tableau

with rows of length `r given by

`r = 1 +

N−1∑
s=r

λs r = 1, . . . N . (4.5)
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It is convenient to associate to any representation a Young tableau with an extra column

of length N . We introduce the orthonormal basis {er} with er ∈ RN and write the U(N)

simple roots as αr = er − er+1 for r = 1, . . . N − 1. The character of a representation is

given by the Weyl formula

trR e
a =

∑
α∈R

ea·α =
detr,se

ar(`s+N−s)

detr,sear(N−s)
, (4.6)

with the sum running over the set of weights {α} defining the representation R. The

determinant in the numerator can be written as

detr,s e
ar(`s+N−s) =

∑
σ∈SN

(−1)σ
N∏
r=1

eaσ(r)(`r+N−r) , (4.7)

while the one in the denominator can be explicitly written in the form

detr,s e
ar(N−s) =

∏
r<s

(ear − eas) . (4.8)

Alternatively the denominator can be written as∏
r<s

(ear − eas) = (−1)σ
∏
r<s

(eaσ(r) − eaσ(s)) . (4.9)

with σ ∈ SN an arbitrary permutation. Eq. (4.6) can then be rewritten as

trR e
a =

∑
σ∈SN

∏N
r=1 e

aσ(r)(`r+N−r)∏
r<s (eaσ(r) − eaσ(s))

. (4.10)

Plugging (4.10) into (4.3) and renaming the dummy variables aσ(r) → ar one finds that

any element in the sum over σ gives the same result. Discarding the R-independent N !

factor we obtain

〈WR 〉 =
1

Z

∫
da∆(a) e−

2N
λ

∑
r a

2
r

∏N
r=1 e

ar(`r+N−r)∏
r<s (ear − eas)

=
1

Z

∫
da∆(a) e

∑
r

(
−Na

2
r

2λ
+ar `r

) ∏
r<s

(
1− eas−ar

)−1
. (4.11)

In the limit where the t’Hooft coupling λ is large, the main contributions come from ar
large, so assuming ar > as for r < s the exponential terms can be dropped leading to

〈WR 〉 =
1

Z

∫
da∆(a) e

∑
r(−

2N
λ
a2
r+ar `r) . (4.12)

Taking the Wilson loops made of blocks of ni rows of length Ki and exponentiating the

Vandermonde determinant one finds

〈WR 〉 =
1

Z

∫
da exp

−2N

λ

∑
r

a2
r +

∑
r<s

log(ar − as)2 +

g+1∑
i=1

Ki

∑
r∈Ii

ar

 , (4.13)
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R R
K1n1

K2k1

ng

kg

Kg−1

Kg

ng+1

N

Figure 6. A general representation R with steps given ni and ki, in the right a decomposition of

the representation in g rectangles of edges ni, Ki =
∑g
j=i kj , all of order N .

where we have split the range of r ∈ [1, N ] into segments Ii, of length ni, I1 = [1, n1],

I2 = [n1 + 1, n1 + n2] and so on. Notice that ng+1 = N − (n1 +n2 + . . . ng) and Kg+1 = 0.

We display the generic Young tableau in figure 6.

Completing the squares in (4.13), one can write the expectation value of the Wilson

loop as

〈WR 〉 =
vR
Z

∫
da exp

−2N

λ

∑
i

∑
r∈Ii

(ar − ci)2 +
∑
r<s

log(ar − as)2

 , (4.14)

with10

ci =
Ki λ

4N
, vR = exp

(∑
i

niK
2
i λ

8N

)
(4.15)

We are interested in the limit of large N with Ki, ni ≈ N . In this limit all contributions in

the sum are of order N2 and cannot be dropped when using the saddle point approximation.

The saddle point equations then read

− 4N

λ
(ar − ci) + 2

∑
s 6=r

1

ar − as
= 0 , r ∈ Ii , (4.16)

or in its continuous version11

− 4N

λ
(x− ci) + 2N

∫
dy

ρ(y)

x− y
= 0 , ci − µi < x < ci + µi , (4.17)

10Note that the centers ci of the matrix model branch cuts are intimately related to the centers of the

branch cuts of the supergravity solution introduced in section 3 up to an arbitrary constant c0 which in the

matrix model is completely fixed.
11Here ρ(x) = 1

N

∑
r δ(x− ar).
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with µi > 0 some real numbers. These equations are solved [30] by taking the matrix model

resolvent w(x)

w(z) = λ

∫ ∞
−∞

ρ(y)

z − y
, (4.18)

to be given by the integral

w(z) =

∫ z

∞
α , (4.19)

of a meromorphic one form

α(z) = 2

(
1− ag+1(z)√

H2g+2(z)

)
, (4.20)

defined on the hyperelliptic curve y2 = H2g+2(z) with H2g+2(z) and ag+1(z) polynomials

of order 2g + 2 and g + 1 respectively. The parameters specifying these polynomials are

uniquely given in terms of Ki and ni. By considering integrals of (4.19) and (4.20) over

non-trivial cycles on the hyperelliptic surface, one finds constraints analogous to the ex-

pressions (3.57) and (3.58) giving the supergravity charges of the dual bubbling geometry.

Then, it is natural to identify the matrix model resolvent with the holomorphic function

introduced in (2.5) as proposed in [30].

4.1.1 Multi-cut Wigner semicircle distribution

To make an explicit comparison with string theory results, here we focus on the case where

the distances between the cuts are large. First, we observe that for a single cut, (4.17)

is solved by taking ρ(y) = 2
π µ

√
µ2 − y2. In the limit where the interactions between the

eigenvalues within different intervals can be neglected, the solution to (4.17) can be found

as12

ρ(x) =

{
2
π λ

√
µ2
i − (x− ci)2 , ci − µi < x < ci + µi,

0 , otherwise ,
(4.22)

with centers and half-lengths given by

ci =
Ki λ

4N
, µi =

√
λνi for i = 1, . . . g + 1

Kg+1 = 0 , νg+1 = 1−
g∑
i=1

νi , (4.23)

where we have defined νi = ni
N and normalised the eigenvalues distributions as∫ ci+µi

ci−µi
ρ(x) dx = νi (4.24)

12Note this eigenvalue distribution is in complete agreement with the proposed gravity solution in terms

of the w function (3.52), (3.53), if we further identify this function with the resolvent of the matrix model,

namely

w(z) = λ

∫
ρ(y)

z − y ≈
2

π

g+1∑
i=1

∫ ci+µi

ci−µi

√
µ2
i − (y − ci)2

z − y . (4.21)
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Finally, the expectation value (4.14) evaluated in the multi-cut eigenvalue distribution

reduces to 〈
W

U(N)
R

〉
≈ exp

(
λ

8N

g∑
i=1

niK
2
i

)
, (4.25)

where ≈ here implies we are discarding subleading contributions of order N2 log λ.

In the case of SU(N) there is an additional factor of (det(eM ))−
|R|
N in the matrix

model integral with |R| = N
∑g

i=1Ki νi. This insertion results simply into a rigid shift of

all centers by − |R|λ
4N2 or equivalently

Ki → Ki −
g∑
j=1

Kj νj . (4.26)

For the expectation value of the Wilson loop one finds

〈
W

SU(N)
R

〉
≈ exp

 λ

8N

g∑
i=1

ni

Ki −
g∑
j=1

Kj νj

2 . (4.27)

After having reviewed the distribution of eigenvalues found in [30], we proceed to compute

correlators with other Wilson loops, by evaluating expectation values of appropriate inser-

tions. We will first consider the correlator with a fundamental Wilson loop and then move

to the cases of correlators with totally symmetric and anti-symmetric Wilson loops.

4.2 Adding a fundamental Wilson loop

Computing the correlator between a large Wilson loop and a Wilson loop in the funda-

mental representation translates in the matrix model to evaluating the expectation value

of the operator
∑N

r=1 e
ar in the matrix model integral (4.14)

〈WRWfund 〉 =
1

Z

∫
da∆(a) e−

2N
λ

∑
r a

2
r trR e

a trfund e
a ,

=
vR
Z

∫
da

g+1∑
i=1

∑
r∈Ii

e−Sr (4.28)

with

Sr =
2N

λ

g+1∑
i=1

∑
s∈Ii

(as − ci)2 −
∑
s<t

log(as − at)2 − ar , (4.29)

This insertion is not back-reacting in the sense that it does not modify the ρ-distribution

discussed in the previous subsection. Taking the ratio with 〈WR 〉, the factor vR cancels

between numerator and denominator, and after the large N limit one finds

〈 Wfund 〉R =

∫ ∞
−∞

dx ρ(x) ex ≈ 2

π λ

g+1∑
i=1

∫ ci+µi

ci−µi
dx
√
µ2
i − (x− ci)2 ex , (4.30)
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where ≈ denotes the approximation where centers are far away from each other, i.e. Ki −
Kj � N and the interactions between the regions Ii have been neglected. By doing the

integrals we get the typical Bessel functions,

〈 Wfund 〉R ≈
g+1∑
i=1

2µi
λ
eci I1(µi) ≈

g+1∑
i=1

eci+µi . (4.31)

For comparison with the string theory results in the context of the AdS/CFT corre-

spondence, we should focus on the SU(N) matrix model. In that case

〈 W SU(N)
fund 〉R ≈

g+1∑
i=1

e
√
λνi+

λ
4N (Ki−

∑g
j Kjνj) . (4.32)

that matches precisely the AdS/CFT prediction (3.67).

For instance, in the case of a representation given by a rectangular Young tableau, the

position of the centers are

c
SU(N)
1 =

k λ

4N
(1− ν) , c

SU(N)
2 = −k ν λ

4N
, (4.33)

and (4.32) yields

〈 W SU(N)
fund 〉R ≈ e

√
ν λ+

k(1−ν)λ
4N + e

√
λ(1−ν)− k ν λ

4N , (4.34)

that matches the result (3.36).

Before moving to correlators in more general representations, let us consider the cor-

relator with another fundamental Wilson loop that can also be computed with the matrix

model. At the end of section 3 we considered the possibility of a correlator of two loops

with opposite spatial orientations. It turns out, as shown in appendix C, that if the internal

orientation is also opposite, the two loops are invariant under the same set of supersym-

metries and therefore their correlator can be accounted for by an expectation value in the

Gaussian matrix model. Since the internal space orientation is opposite, the matrix model

computation is in this case

〈 W̃fund 〉R ≈
∫ ∞
−∞

dx ρ(x) e−x . (4.35)

For the case of the SU(N) matrix model, we get now

〈 W̃ SU(N)
fund 〉R ≈

g+1∑
i=1

2µi
λ
e−ci I1(µi) ≈

g+1∑
i=1

e−ci+µi

≈
g+1∑
i=1

e
√
λνi− λ

4N (Ki−
∑g
j Kjνj) . (4.36)

Once again this is in agreement with the AdS/CFT prediction (3.68). If we restrict our-

selves to the case of a representation given by a rectangular Young tableau, the result

becomes

〈 W̃ SU(N)
fund 〉R ≈ e

√
ν λ− k(1−ν)λ

4N + e
√
λ(1−ν)+ k ν λ

4N , (4.37)

thus matching the explicit result (3.39).
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⊗ = ⊕ ⊕ ⊕ . . .

Figure 7. Tensor product between a ‘large’ representation and a fundamental one.

R

ẽ2g+1 ẽ2g−1 ẽ7 ẽ6 ẽ5 ẽ4 ẽ3 ẽ2 ẽ1

Figure 8. One of the diagrams depicted in figure 7 of a general bubbling geometry with an

additional box in red. From the gravity side, the additional red box corresponds to the collapse of

one branch cut in a genus g + 1 geometry. This is pictorially interpreted as the additional red cut

that collapses and approaches ẽ5 in the figure.

So far we have computed correlators of Wilson loops defined over coincident circular

contours. This amounted to compute the expectation value of the product trRe
M trre

M .

However, there is an alternative and interesting point of view, which arises from the ring

structure of the characters of the gauge group representations, namely

trRe
M trre

M = trR⊗re
M =

∑
Ri∈irreps

CRrRi trRie
M , (4.38)

where CRrRi are the multiplicities and “irreps” denote the irreducible components of R⊗r.

For the products we have considered in this section, R is a ‘large’ back-reacting represen-

tation associated to a Young diagram made of g blocks and r is the fundamental one. In

this case, the decomposition is rather simple, leading to a sum of g + 1 irreps all of them

with multiplicities CRrRi equal to 1, as schematically depicted in figure 7.

Note that this exactly coincides with the number of saddles points we considered in our

string theory computation, and also with the number of contributions that appeared in the

matrix model computation. This field theory remark also suggests and interpretation for

each saddle point contribution in string theory, as coming from a g + 1 bubbling solution

where one of the branch cuts is collapsing (see figure 8).

4.3 Small loops in symmetric or antisymmetric representations

In this section we consider other examples of correlators of a backreacting rectangular

Young tableau representation Wilson loop with non backreacting Wilson loops in the totally
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symmetric and totally antisymmetric representation. We write

〈Wr 〉R =
〈WRWr 〉
〈WR 〉

=

∫ ∞
−∞

ρ(x)Ωr(x) , (4.39)

where Ωr(x) is some function corresponding to the insertion Wr in the continuous large

N limit and the eigenvalue distribution, ρ(x), is given by the two-cuts case of (4.22).

We stress, again, that this distribution is reliable in the limit where both semicircles are

sufficiently far away from each other, that is, when kλ
4N is sufficiently large.

The normalized correlator with (anti)-symmetric Wilson loops can be written com-

pactly using the generating function of characteristic polynomials as in [18]:

〈WSl,Al〉R =
1

dimSl,Al

∮
Γ

dt

2π i

1

tl+1
exp

(
∓N

∫ ∞
−∞

dxρ(x) log(1∓ t ex)

)
, (4.40)

where we take the − sign for the totally symmetric representation, Sl, and the + sign for

the totally anti-symmetric representation, Al. The contour Γ encloses the pole at t = 0.

We want to evaluate the integral (4.40) for large N , and for a general (anti)-symmetric

representation even when l is large, but not as large that can possibly back-react on the

eigenvalue distribution.

4.3.1 Correlator with a totally symmetric Wilson loop

We start by considering the totally symmetric case. We have to evaluate the integral (4.40)

for the two-cut density distribution (4.22). It is convenient to change variables x→ ci−aix
along each cut Ii in such a way as to bring the x-integrals to the intervals [−1, 1]∫ ∞

−∞
dxρ(x) log(1− t ex) =

2∑
i=1

µi

∫ 1

−1

√
1− x2 log(1− e−µix+cit) . (4.41)

It is also convenient to change the t variable, t = ez, which yields

∮
Γ̃
dz exp

−N
 2∑
i=1

2µ2
i

πλ

1∫
−1

dx
√

1− x2 log(1− e−µ1x+ci+z) + f z

 , (4.42)

where f = l
N . The integral above has two branch cuts in z due to the log. They are given by

−µi − ci ≤ z ≤ µi − ci with i = 1, 2 . (4.43)

The contour Γ̃ is picking now the pole at infinity, so it can be deformed to pass just above

and below the cuts. Using Jordan Lemma the contour integral reduces to the discontinuity

across the cuts of the integral:

〈WSl〉R≈
1

π
Im

{
2∑
j=1

−cj+µj∫
−cj−µj

dz exp

[
− N
λ

( 2∑
i=1

2µ2
i

π

1∫
−1

dx
√

1−x2 log(1−e−µix+ci+z)+f λz

)]}
(4.44)

= Im

{
2∑
j=1

µj
π

1∫
−1

dz exp

[
− N
λ

( 2∑
i=1

2µ2
i

π

1∫
−1

dx
√

1−x2 log(1−e−µix+ci−cj+µjz)+f λ(µj z−cj)
)]}

,
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where in the second line we made the change of variables z → µjz − cj . The x-integrals

here are formal because the integrand has branch cuts along the integration region. A way

to cure this is to give z a small imaginary part i ε, so we are passing through a line slightly

above the real axis. The integrals for j = 1, 2 can be evaluated separately using the large-N

saddle point method. The z-integral is dominated by the region z ≈ z∗ extremizing the

exponential term. Let us consider the case j = 1 and take c1−c2 � 1. In this limit, only the

i = 1 term in the sum contributes. To compute the saddle equations it is convenient to break

the x-integral into pieces such that the argument of the log is always positive. We write

1∫
−1

dx
√

1−x2 log(1−eµ1(z−x)) =

z∫
−1

dx
√

1−x2 log(eµ1z−eµ1x)+

1∫
z

dx
√

1−x2 log(eµ1x−eµ1z)

+iπ

z∫
−1

dx
√

1−x2 . (4.45)

We are going to look for solutions when Re(z) < −1 in this case the saddle equation

becomes13

2µ1

π

1∫
−1

dx

√
1− x2

1− eµ1(x−z) + 4 iµ1

√
1− z2 + λ f = 0. (4.46)

In this domain, the integral term in eq. (4.46) can be discarded when µ1 is large and the

saddle point equation reduces to

4 iµ1

√
1− z2 + λ f = 0 , (4.47)

with solution

z∗ = −
√

1 + κ2
1 , with κ1 =

fλ

2µ1
=

l

2N

√
λ

ν
. (4.48)

Evaluating (4.45) at the saddle point z∗ and discarding eµ1z-terms inside of the logs one

finds14

1∫
−1

dx
√

1− x2 log(1− eµj(z∗−x)) ≈
µi→∞

2iπ

z∗∫
−1

dx
√

1− x2

= π
(

arccosh z∗ − z∗
√

(z∗)2 − 1
)

(4.50)

To get the contribution from this saddle point we need to evaluate the exponential in (4.44)

at z∗. Strictly speaking this quantity is not well defined due to the branch cuts of the ex-

ponent and for that we have added an small imaginary part to z, so, we will do the same

13For Re(z) > 1 there are no solutions to the saddle equation.
14The integral is computed using

i

∫ z

−1

√
1− x2dx = −

∫ arccosh z

0

sinh2 y dy =
1

2
(y − sinh y cosh y)

∣∣∣∣arccosh z

0

=
1

2

(
arccosh z− z

√
z2 − 1

)
.

(4.49)
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for z∗, indeed, the well defined quantity is the imaginary part (4.44), we essentially need to

evaluate the right hand side of (4.50) taking into account this imaginary shift, and evaluate

the full answer with this small deformation. Taking z∗ = −
√

1 + κ2
1 + iε one finds

i

z∗∫
−1

dx
√

1− x2 =
1

2

(
κ1

√
1 + κ2

1 − arcsinhκ1

)
+ imaginary part . (4.51)

Plugging the solution into (4.44) one finally finds for the contribution of the first saddle

point

〈WSl〉
(1)
R ≈ exp

[
2N µ2

1

λ

(
κ1

√
1 + κ2

1 + arcsinhκ1

)
+N f c1

]
, (4.52)

where we have discarded a large N phase in the result above. For j = 2, one follows the

same steps but now we have an extra contribution coming from the term with i 6= j given by

2µ2
1

π

1∫
−1

dx
√

1− x2 log(1− e−µ1x+c1−c2+µ2z) ≈ µ2
1 (c1 − c2 + µ2z) . (4.53)

The saddle point equation now becomes

4 iµ2

√
1− z2 + λ f + µ2

1 = 0 . (4.54)

The solution is now given by

z∗ = −
√

1 + κ2
2, with κ2 =

λf

4µ2
+

µ2
1

4µ2
=

f
√
λ

4
√

1− ν
+

√
λ

4

ν√
1− ν

. (4.55)

Plugging this into (4.44)

〈WSl〉
(2)
R ≈ exp

[
2Nµ2

2

λ

(
κ2

√
1 + κ2

2 + arcsinhκ2

)
+N(1 + f)c2

]
, (4.56)

where the Nc2 term comes from the extra term −N µ2
1(c1 − c2)/λ. Finally, the total

contribution to the correlator with the Sl representation adds up to,

〈WSl〉R ≈ exp

[
2N(1− ν)

(
κ2

√
1 + κ2

2 + arcsinhκ2 −
1 + f

1− ν
kλ

8N
ν

)]

+ exp

[
2Nν

(
κ1

√
1 + κ2

1 + arcsinhκ1 + f
1− ν
ν

kλ

8N

)]
. (4.57)

A comment is in order, in [18] there was an additional solution to the saddle point

equations which in the large λ regime and κi fixed or l
N fixed, was sub-leading with respect

to the contribution of the saddle point considered here. We report these contributions in

the appendix B.
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4.3.2 Correlator with a totally anti-symmetric Wilson loop

Let us now turn our attention to the correlator with a Wilson loop in a totally anti-

symmetric representation which is given by (4.40) with the two-cut distribution given

in (4.22). Performing the transformation t = eµ2z−c2 and defining f = l
N the integral

above can be rewritten as

〈WAl〉R ≈
∫

Γ̃
dz exp

[
2N

λπ

(
µ2

2

1∫
−1

dx
√

1− x2 log
(

1 + e−µ2(x−z)
)

(4.58)

+ µ2
1

1∫
−1

dx
√

1− x2 log
(

1 + e−µ1x+µ2z+(c1−c2)
)
− πλ

2
(µ2z − c2)f

)]
.

Note that the branch cuts of the integrand are now along the horizontal segments [−1 +

iπ, 1 + iπ] and [− 1
µ2

(c1 − c2)− µ1

µ2
+ iπ,− 1

µ2
(c1 − c2) + µ1

µ2
+ iπ], together with the images

obtained by shifting the imaginary part by multiples of 2π. As in the symmetric case, we

deform the contour Γ̃ to lay along the real axis and approximate the integral by its large N

saddle point. Unlike the previous case, the saddle point value is not located over any branch

cut, making the evaluation much more straightforward. The saddle point equation reads

µ2
2

∫ 1

−1
dx

√
1− x2

1 + eµ2(x−z) + µ2
1

∫ 1

−1
dx

√
1− x2

1 + eµ1x−µ2z−(c1−c2)
− πλ

2
f = 0 . (4.59)

Now we search for solutions in the large µi regime. It turns out that the solutions can only

be placed along the segments [−1, 1] and [− 1
µ2

(c1− c2)− µ1

µ2
,− 1

µ2
(c1− c2)+ µ1

µ2
]. Otherwise,

the integrals in (4.59) become z-independent thus not having any solution there.

Let us first consider the region −1 < z < 1. Taking into account that c1−c2 = kλ
4N � 1,

equation (4.59) reduces to

µ2
2

∫ z

−1
dx
√

1− x2 +
πµ2

1

2
− πλ

2
f = 0 , (4.60)

which yields

arccos(z)− z
√

1− z2 = π

(
1 +

µ2
1

µ2
2

− λ

µ2
2

f

)
. (4.61)

The solution is z = cos θ2 with θ2 such that

θ2 − sin θ2 cos θ2 = π

(
1 +

µ2
1

µ2
2

− λ

µ2
2

f

)
= π

(
1 +

ν

1− ν
− l

N(1− ν)

)
, (4.62)

and then the integral (4.58) results in

〈WAl〉
(2)
R ≈ exp

[
2N

λπ

(
µ3

2

∫ cos θ2

−1
dxx

√
1− x2 +

πµ2
1

2
(c1 − c2) +

πλ

2
fc2

)]
, (4.63)

= exp

[
N

(
2
√
λ

3π

(√
1− ν sin θ2

)3
+ (1− f)

kνλ

4N

)]
. (4.64)
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There is an additional saddle point sitting on the interval [− 1
µ2

(c1− c2)− µ1

µ2
,− 1

µ2
(c1−

c2) + µ1

µ2
]. In this case, the first integral on equation (4.59) vanishes, whereas the second

one only receives contributions from 0 < x < z̃ with

z̃ =
1

µ1
(µ2z + c1 − c2) , −1 < z̃ < 1 , (4.65)

thus obtaining the following equation

arccos(z̃)− z̃
√

1− z̃2 = π

(
1− λ

µ2
1

f

)
, (4.66)

which is solved in this other case by z̃ = cos θ1 such that

θ1 − sin θ1 cos θ1 = π

(
1− λ

µ2
1

f

)
= π

(
1− l

Nν

)
. (4.67)

The integral (4.58) evaluated at this saddle contributes as

〈WAl〉
(1)
R ≈ exp

[
2N

πλ

(
µ3

1

∫ cos θ1

−1
dxx

√
1− x2(−µ1x+ c1 − c2) +

πλ

2
fc2

)]
, (4.68)

= exp

[
N

(
2
√
λ

3π

(√
ν sin θ1

)3
+ f

k(1− ν)λ

4N

)]
. (4.69)

Hence, the result for the correlator from both saddle points is

〈WAl〉R ≈ exp

[
N

(
2
√
λ

3π

(√
ν sin θ1

)3
+ f

k(1− ν)λ

4N

)]

+ exp

[
N

(
2
√
λ

3π

(√
1− ν sin θ2

)3
+ (1− f)

kνλ

4N

)]
. (4.70)

It is worth noting that implementing the following conjugation, ν → 1−ν and l→ N−l
in (4.62) and (4.67) we find that, θ1 → π−θ2 and θ2 → π−θ1 thus leaving (4.70) invariant.

4.3.3 Back-reacting Wilson loops in general representations

We can go further and generalize our results (4.57) and (4.70) for correlators of Wilson

loops in symmetric and anti-symmetric representations with a general large representation

R dual to a genus g bubbling geometry. In order to do so we have to make use of the general

multi-cut eigenvalue distribution (4.22) proposed previously, together with the definitions

of the µi and ci given there.

Let us consider first the symmetric case. We deform the contour of the z variable to

lay over the g + 1 branch cuts of the integrand, thus obtaining the natural generalization

of integral (4.44)

〈WSl〉R≈ Im

g+1∑
i

µi
π

∫ ci+µi

ci−µi
exp

[
− 2N

πλ

(
µ2
i

∫ 1

−1

√
1−x2 log

(
1−e−µi(x−z)

)
+
πλ

2
f(µiz−ci)

+
∑
j 6=i

µ2
j

∫ 1

−1

√
1−x2 log

(
1−e−µjx+µiz+cj−ci)

))]
. (4.71)

– 32 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
9

For the i-th term, the saddle point is located at the left of the i-th branch cut, but still

to the right of the (i+ 1)-th one.15 Thus, from the sum in the second line, only the terms

with center cj > ci contribute. In our notation, this implies j < i, and the saddle point

equations are solved by

z∗i = −
√

1 + κ2
i , with κi =

λf

4µi
+

1

4µi

∑
j<i

µ2
j . (4.72)

The integral evaluated at these saddle points result

exp

[
2Nµ2

i

λ

(
κi

√
1 + κ2

i + arcsinhκi

)
+ 4Nµiκici −

N

λ

∑
j<i

µ2
jcj + iφi

]
, (4.73)

where φi denotes an irrelevant phase. Taking the imaginary part and collecting all together

we obtain

〈WSl〉R ≈
g+1∑
i

exp

[
2Nµ2

i

λ

(
κi

√
1 + κ2

i + arcsinhκi

)
+ 4Nµiκici −

N

λ

∑
j<i

µ2
jcj

]
. (4.74)

Finally, let us now turn to the antisymmetric case. Making the change of variable

t = ecg+1−µg+1z, expression (4.40) can be taken to the form

〈WAl〉R ≈
∫

Γ̃
dz exp

[
2N

λπ

(
µ2
g+1

1∫
−1

dx
√

1− x2 log
(

1 + e−µg+1(x−z)
)

(4.75)

+

g∑
i

µ2
i

1∫
−1

dx
√

1− x2 log
(

1 + e−µix+µg+1z+(ci−cg+1)
)
− πλ

2
(µg+1z − cg+1)f

)]
.

As for the genus one case, the contour can be deformed to run along the real axis and the

integral can be approximated by evaluating the integrand at the g+1 saddle points sitting at

z∗i =

[
1

µg+1
(cg+1 − ci − µi),

1

µg+1
(cg+1 − ci + µi)

]
, i = 1, . . . , g + 1 . (4.76)

Defining z̃∗i = 1
µi

(µg+1z
∗
i + ci − cg+1), the solution to the saddle point equations can be

written as z̃∗i = cos θi with θi such that

θi − sin θi cos θi = π

1 +
∑
j<i

µ2
j

µ2
i

− λ

µ2
i

f

 , (4.77)

hence the result for the correlator can be written as

〈WAl〉R ≈
g+1∑
i

exp

[
N

 2

3πλ
(µi sin θi)

3 + fci +
∑
j<i

µ2
j

λ
(cj − ci)

]. (4.78)

15Provided the cuts are far away from each other, this is guaranteed.
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Furthermore, it can be seen that the last expression is manifestly invariant under conju-

gation of the representation R. Indeed, under conjugation νi → νg+2−i and ki → kg+1−i
together with f → 1− f , so from (4.77) it can be shown that

θi → π − θg+2−i , (4.79)

and from the definition of the centers, it can be shown that ci → −cg+2−i. This together

with the property ci +
∑

j>i νj(cj − ci) = −
∑

j<i νj(cj − ci) shows that (4.78) is invariant

under conjugation.

5 Conclusions

We have found classical fundamental string solutions in the background of bubbling geome-

tries dual to Wilson loops in large rank representations. For a general genus g background

we have shown that minimal area configurations are found at the points z = z∗ of the Rie-

mann surface Σ that minimize both the area (given by the product of the dilaton and the

warping factor e
Φ
2 f2

1 ) and the B-field component b1. We have also found that the critical

points, in the upper half-plane coordinates, are precisely located at the branch points ea.

Furthermore, we have argued that g + 1 out of the 2g + 2 solutions correspond to

string configurations preserving the same symmetries and supersymmetries as the bubbling

geometries. Thus, only the former have to be taken into account in the saddle point

approximation that is related to the strong coupling limit of the correlator between a large

representation Wilson loop and a fundamental Wilson loop.

In order to write down the explicit expressions for the corresponding on-shell actions,

we have considered in great detail the case of strings in genus one backgrounds. In this case

the on-shell actions display quite a non-trivial structure, since two classical configurations

contribute to the saddle point approximation.

In the case of genus one background, the dual large representation Wilson loop is char-

acterized by a rectangular Young tableau. The matrix model computation we performed

for its correlator with a fundamental Wilson loop is valid in the large-N limit and requires
kλ
4N � 1 as well. Remarkably, the large λ limit of this correlator, given in terms of a

combination of two Bessel functions, was shown to be in perfect agreement with the two

contributions to the string theory saddle point approximation.

In addition, the correlator of a fundamental and a generic Young tableau representation

Wilson loop was similarly solved in the large-N limit, provided the edges of the tableau

are all size of order N . The resulting expression for the correlator is again given by a

combination of g + 1 Bessel functions. Finally, we went on to compute correlators of

more general configurations including, for instance, a large rectangular representation with

totally symmetric and totally anti-symmetric representations.

Let us close with some comments about open problems that could be interesting com-

plements of the results presented in this article. Our computation for correlators between

rectangular and totally symmetric/anti-symmetric representation Wilson loop provides a

prediction for probes D3 and D5 branes in the bubbling geometry background. Thus,

it would be interesting to find those D-brane configurations and evaluate their on-shell

actions.
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Alternatively, it would be interesting to consider the gravity picture suggested by the

product of characters formula in the field theory side, and check that each saddle point in

the on-shell string action indeed coincides with a bubbling geometry of one genus higher,

in a limit where one branch cut collapses.

Our work, together with the very interesting results of [32] where correlators of large

Wilson loops with local operators were discussed, creates a platform for the computation

of more general correlators. Following some of the development in [33], it seems now

feasible to tackle more complicated insertions, for example, two Wilson loops and a local

operator. Clearly, one of our driving motivations has been a concrete exploration of non-

conformal gauge/gravity pairs. However, we secretly hope that some thread of the beautiful

integrability techniques that have been so successful in understanding the structure of

three-point correlators [34, 35] might still be extracted from our explicit computations.

Finally, and certainly more ambitiously, there is the question of sub-leading corrections

on both sides of the correspondence. On the field theory side, there are well established

techniques to go beyond the large-N limit and they have been applied to the computation

of Wilson loops in the context of the Gaussian matrix model [5, 36, 37]; there are also

techniques to explore the large λ expansion in some cases [38, 39]. It will be instructive to

extend these computations to correlators of Wilson loops. The holographic computation,

although conceptually clear [40–42], seems more daunting at the moment.
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A Probe brane limit

As was mentioned in section 3, the genus one geometry has two free parameters, ω1 and

ω3, which are in turn related to the parameters of the Wilson loop representation, or alter-

natively to the number of D3 and D5 branes in the dual back-reacting brane configuration.

In this appendix we consider the ω1 →∞ regime, which corresponds to the collapse of one

of the [ẽ1, ẽ2] segments and the consequent recovering of the AdS5 × S5 geometry [9, 10].

For this we expand the Weierstrass elliptic functions for large ω1

℘(z) ' − π2

12ω2
3

1 +
3

sinh2
(

iπz
2ω3

)
 , (A.1)
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0 ω1

ω2ω3 θ = π

θ = 0
η →∞

ω1 →∞

Figure 9. Points at z = {0, ω3} are mapped to θ = {0, π} in the limit ω1 →∞.

ζ(z) ' π2z

12ω2
3

+
iπ

2ω3
coth

(
iπz

2ω3

)
. (A.2)

In this limit, the ω3 dependence is completely artificial and does not enter in any geometrical

quantity. In fact, it is possible to get rid of it by a holomorphic redefinition of the variables

which, precisely for being holomorphic, does not alter the geometry. The precise form of

this transformation is

z =
|ω3|
π

log

1 + i sinh
(

π
|ω3| + η + i θ

)
cosh π

|ω3| + i sinh(η + i θ)

 , (A.3)

under which the functions h1 and h2 become

h1 =
L2

4
√
gS

cosh(η + i θ) + c.c. , (A.4)

h2 =
L2√gS

4
sinh(η + i θ) + c.c. , (A.5)

leading to the usual AdS2 × S2 × S4 fibration metric of AdS5 × S5

ds2 = L2
(
cosh2 ηds2

AdS2
+ sinh2 ηdΩ2

2 + dη2 + dθ2 + sin2 θdΩ2
4

)
. (A.6)

Therefore, in this limit, the fundamental domain of the Weierstrass functions is mapped

to the semi-infinite strip described by 0 ≤ η <∞ and 0 ≤ θ ≤ π (see figure 9 ). Moreover,

it is easy to see that the z = 0 and z = ω3 are mapped to antipodal points (η = 0, θ = 0)

and (η = 0, θ = π), respectively.

B Contribution from other saddle points

We will now find a second saddle that contributes for to 〈WSl〉R in section 4.3.1. The first

integral is

µ1

π

1∫
−1

dz exp

[
− 2N

πλ

(
µ2
1

z∫
−1

dx
√

1−x2 log(eµ1z−eµ1x)+µ2
1

1∫
z

dx
√

1−x2 log(eµ1x−eµ1z) (B.1)

+iµ2
1π

z∫
−1

dx
√

1−x2 +µ2
2

1∫
−1

dx
√

1−x2 log(1−e−µ2x+c2−c1+µ1z)+
πλ

2
(µ1z−c1)f

)]
.
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We will find an additional solution to the saddle point equations proceeding as in [18],

namely taking the large λ limit before finding the saddle point equations. Therefore we have

− 2N

πλ

µ3
1z

z∫
−1

dx
√

1− x2 + µ3
1

1∫
z

dxx
√

1− x2 + iµ2
1π

z∫
−1

dx
√

1− x2 +
πλ

2
(µ1z − c1)f

 ,
(B.2)

yielding

µ3
1

λ

z∫
−1

dx
√

1− x2 + i
µ2

1

λ
π
√

1− z2 +
π

2
µ1f ≈

µ3
1

λ

z∫
−1

dx
√

1− x2 +
π

2
µ1f = 0 , (B.3)

where in the expression in the r.h.s. we have discarded the term proportional
µ2

1
λ since it

is sub-leading in the large λ limit. The resulting equation is completely analogous to the

one found in [18], and has complex solutions parametrized by

z̃1 = cosψ1 ∈ C , (B.4)

with ψ1 satisfying

π

(
f + ν

ν

)
= ψ1 − cosψ1 sinψ1 . (B.5)

The evaluation of the integral in this saddle point gives the following contribution,

〈WSl〉
(1)
R

∣∣∣∣
sub

≈ exp

(
− 2N

3π

√
λRe(

√
ν sinψ1)3 +Nc1f

)
,

= exp

(
− 2N

3π

√
λRe(

√
ν sinψ1)3 +

k(1− ν)

4
λf

)
. (B.6)

Similarly the second integral in eq. (4.44), in this approximation has a saddle point equation

of the form
2

π

∫ z

1

√
1− x2 +

µ2
1 + 1

µ2
2

f =
2

π

∫ z

1

√
1− x2 +

f + ν

1− ν
= 0 , (B.7)

with solutions parameterized by the complex angle ψ2 satisfying

π

(
f + 1

1− ν

)
= ψ2 − cosψ2 sinψ2 , (B.8)

therefore,

〈WSl〉
(2)
R

∣∣∣∣
sub

≈ exp

(
− 2N

3π

√
λRe(

√
1− ν sinψ2)3 −N µ2

1

λ
(c1 − c2) +Nc2f

)
,

= exp

(
− 2N

3π

√
λRe(

√
1− ν sinψ2)3 − kν

4
(f + 1)λ

)
. (B.9)

Finally, the total contribution from these saddle points is

〈WSl〉
sub
R ≈ exp

(
− 2N

3π

√
λRe(

√
ν sinψ1)3 +

k(1− ν)

4
λf

)
+ exp

(
− 2N

3π

√
λRe(

√
1− ν sinψ2)3 − kν

4
(f + 1)λ

)
, (B.10)

The extension to the computation of these other contributions in the general back-reacting

case is straightforward.
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C Supersymmetric correlators

Let us find what conditions the circular curves and the internal space orientations have to

fulfill in order for the correlator in the field theory to be supersymmetric. The supersym-

metry variation of the N = 4 Wilson loop (4.2) is given by [43]:

δεWR = trR P

∫
C
dsΨ̄( i Γµẋµ + ρini|ẋ|)ε(x(s))WR . (C.1)

Therefore, we can say that it preserves some amount of supersymmetry if there is a solution

to,

( i Γµẋµ + ρini|ẋ|)ε(x(s)) = 0 , (C.2)

here we use conventions of [44] for Dirac matrices Γ and ρ, and ε(x), is the most general

spinor parameter generating superconformal transformations,

ε(x) = ε0 + xµΓµε1 , (C.3)

where ε0 and ε1 are constant spinors.

For the correlator of two Wilson loops we have

δε
(
WR1WR2

)
= trR1 P

∫
C1

dsΨ̄( i Γµẋµ + ρin
(1)
i |ẋ|)ε(x(s))WR2

+WR1trR2 P

∫
C2

dsΨ̄( i Γµẋµ + ρin
(2)
i |ẋ|)ε(x(s)) . (C.4)

Therefore for this correlator to be supersymmetric we need both,

( i Γµẋ1µ + ρin
(1)
i |ẋ1|)ε(x1(s)) = 0 and ( i Γµẋ2µ + ρin

(2)
i |ẋ2|)ε(x2(s)) = 0 . (C.5)

The unit vectors ni are interpreted holographically as coordinates in S5 [45]. We are

interested in coincident 1
2 -BPS circular Wilson loops, but allowing the possibility for the

curves to have different orientations. Thus, we consider xµa(s) = (0, cos s, sa sin s, 0), sa =

±1 (a = 1, 2). Furthermore we allow the possibility of operators having the same or the

opposite internal space orientation, so we choose n
(a)
i = (ra, 0, 0, 0, 0, 0) with ra = ±1. For

these particular choices, the supersymmetric constraints (C.5) become

(− i Γ1 sin s+ i saΓ
2 cos s+ raρ1)(ε0 + cos sΓ1ε1 + sa sin sΓ2ε1) = 0 . (C.6)

It is straightfoward to see that these two equations, for a = 1, 2, are satisfied for any value

of the parameter s if we one imposes

− i Γ1ε0 + saraρ1Γ2ε1 = 0 , (C.7)

hence, if sara = 1, both Wilson loop operators preserve the same set of supercharges, thus

leading to a supersymmetric correlator . Note that this implies, besides the obvious option,

r1 = r2 and s1 = s2 for which the spatial and the internal orientations are coincident,

another possibility is given by r1 = −r2 and s1 = −s2, for which the spatial and the

internal orientations are simultaneously opposite.
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