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1 Introduction

Supersymmetric (SUSY) field theories in curved backgrounds [1–3] (see also [4] for a recent

review) have received much attention in recent years, since they provide a playground where

physically interesting, non-perturbative, results can often be obtained through localization

techniques [5, 6].

Formulating consistent SUSY field theories in curved space usually consists of two

steps [1]; the first one is to find the classical supergravity theory (SUGRA) by coupling a

flat-space supersymmetric (SUSY) field theory to the gravity multiplet, and the second one

is to take a rigid limit of SUGRA such that the gravity multiplet becomes non-dynamical,

but maintains a non-trivial background value. Consistency requires that there exists at

least one SUSY transformation of the SUGRA under which this background gravity mul-

tiplet should be invariant, namely

δηe
a
(0)i = 0, δηΨ(0)+i = 0, · · · , (1.1)

where ea(0)i refers to the vielbein and Ψ(0)+i is the gravitino field and η refers to the spinor

parameter of the preserved SUSY. We refer to appendix A and B for notations and

conventions. The requirement that the variation of the bosonic fields vanish is trivially

satisfied on bosonic backgrounds.

One then derives the SUSY transformation of the local operators and the SUSY algebra

in curved space from the corresponding ones of SUGRA. However, they are classical in the

sense that the SUSY transformation laws and algebra derived in this way do not reflect

any quantum effects.

To clarify this point, let us schematically discuss these quantum effects for a theory

with an N = 1 4D superconformal field theory (SCFT) as a UV fixed point. For this aim,

we derive the Ward identities which contain UV data of quantum field theories. These

Ward identities can be obtained in a local renormalization group language [7] without

relying on a classical Lagrangian description, see e.g. section 2.3 in [8] for a recent review.

In N = 1 SCFT, we have two local fermionic transformations, supersymmetry and super-

Weyl, respectively

δε+e
a
(0)i = −1

2
Ψ(0)+iΓ

aε+, δε+Ψ(0)+i = Diε+ + · · · , · · · (1.2a)

δε−e
a
(0)i = 0, δε−Ψ(0)+i = −Γ̂iε− + · · · , · · · (1.2b)

where the ellipses indicate possible contributions from other fields in the gravity multiplet

and higer-order terms in fermions. Requiring the generating functional of connected cor-

relation functions, W [g(0)ij ,Ψ(0)+i, · · · ], to be invariant under these local transformations

up to a possible anomaly, we obtain two local operator equations, namely

1

2
T iaΨ(0)+iΓ

a − Si
←−
D i + · · · = As, (1.3a)

−SiΓ̂(0)i + · · · = AsW, (1.3b)

where T ia and Si refer to the energy-momentum tensor and supercurrent operator, respec-

tively. Note that the Ward identities hold for generic backgrounds, even those where the
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fermionic sources are turned on. Combining these two Ward identities with the parameters

η+ and η−, which satisfy conformal Killing spinor (CKS) condition

δηΨ(0)+i ≡ δη+Ψ(0)+i + δη−Ψ(0)+i = Diη+ − Γ̂iη− = 0, (1.4)

to the lowest order in fermions, we obtain the SUSY-η Ward identity

− 1

2
T iaΨ(0)+iΓ

aη+ +Di(S
i
η+) + · · · = −(Asη+ +AsWη−) ≡ Aη, (1.5)

where the fermionic sources are still turned on, because the CKS equation (1.4) to the

lowest order in fermions does not require the background to be bosonic. One can see from

the operator equation (1.5) that the SUSY-η anomaly Aη should depend on the fermionic

background sources, such as the gravitino field Ψ+i. Therefore, one may not notice the

existence of Aη on a bosonic background.

Ward identities such as (1.5) turn out to be rather useful.1 For instance, they determine

the variation of quantum operators under the corresponding symmetry transformations, see

e.g. (2.3.7) in [9]. It then follows from (1.5) that on (bosonic) supersymmetric backgrounds

the supercurrent operator Si transforms under the SUSY-η transformation as

δηSi
∣∣∣
susy−backgrounds

=
(
− 1

2
T iaΓaη+ −

δ

δΨ(0)+i

Aη + · · ·
)

susy−backgrounds
. (1.6)

We emphasize that the anomalous term δ
δΨ(0)+i

Aη does not appear in the ‘classical’ SUSY

variation of the supercurrent operator Si, and it is non-zero in generic curved backgrounds

admitting a conformal Killing spinor. Moreover, by integrating (1.6) over a Cauchy surface,

one can obtain the commutator of two supercharges (see e.g. (2.6.14) and (2.6.15) in [9])

and find that it is also corrected by the anomalous term.

The upshot is that once the Ward identities (1.3) are found, one can see immediately

all these quantum corrections. The main obstacle in obtaining (1.3) is to find out the

anomalies As and AsW. Fortunately, we have a nice tool for computing the anomalies,

namely the AdS/CFT correspondence [10–12]. The holographic computation of the quan-

tum anomalies, such as the computation of the Weyl anomaly in [13], results in specific

values for the anomaly coefficients. For instance, one gets a = c Weyl anomaly from a

holographic calculation of two-derivative supergravity in AdS5. To obtain the whole class

of anomalies one should consider a higher-derivative action. We emphasize that since the

anomalies belonging to the same multiplet are related by SUSY transformations, the super-

Weyl anomaly AsW obtained by a holographic computation also has specific values for the

anomaly coefficients.

Henceforth, in order to obtain the Ward identities of 4D N = 1 SCFT by AdS/CFT,

we consider a generic N = 2 5D gauged SUGRA, including its fermionic sector, in asymp-

totically locally AdS (AlAdS) spaces, particular examples of which were studied in [14–19].2

1One should keep in mind that the conservation law which allows to construct the conserved supercharge

with non-covariantly-constant rigid parameter η+ is Di(S
i
η+) = 0, not Si

←−
D iη+ = 0.

2Even though the solution considered in [19] is not AlAdS, the general form of the action given there is

the same with the one here.
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More specifically, the SUGRA theory we consider is specified by a scalar superpotential

W and its field content consists of a vielbein, two gravitini, as well as an equal number of

spin-1/2 and scalar fields with negative mass-squared in order for the space to be asymp-

totically AdS. All gauge fields are consistently set to zero for simplicity. We study this

theory up to quadratic order in the fermions. Having a stable AlAdS solution requires that

W has an isolated local extremum. We also demand that W is a analytic function around

that point.

As indicated in [17, 20], the N = 2 5D gauged SUGRA can have a scalar superpo-

tential W in several cases. A typical case is when there are only vector multiplets and a

U(1)R (subgroup of SU(2)R R-symmetry group) is gauged [21]. When there are also hyper-

multiplets, the gauged SUGRA can have a scalar superpotential under a certain constraint

related to the ‘very special geometry’ on the scalar manifold of the vector multiplets, which

we do not discuss here in detail.

As in field theory, renormalization is required also in the bulk holographic computation.

Although it has been studied since the early period of the AdS/CFT correspondence, most

works on holographic renormalization (HR) [13, 22–31] have focused on the bosonic sector.

[18, 19, 32–37] obtained some boundary counterterms for the fermionic sector, but typically

these were limited to either lower dimensional spacetime (mainly 3 or 4 dimensions) or to

homogeneous solutions which do not depend on the transverse directions. We note that in

a context different from this paper, 4D N = 1 SUGRA including the fermionic sector was

treated in [38] by a somehow ad hoc approach.

In this paper we perform HR following the approach of [23, 28, 30, 39]. By formulating

the theory in radial Hamiltonian language, we obtain the radial Hamiltonian, which gives

the first class constraints. From the Hamiltonian constraint we obtain the Hamilton-

Jacobi (HJ) equation, enabling us to determine the divergent counterterms in a covariant

way without relying on a specific solution of the classical SUGRA. We emphasize that the

counterterms, as the solution of HJ equation, should also satisfy the rest of the first class

constraints. General covariance of the counterterms is a necessary and sufficient condition

to satisfy diffeomorphism constraint, which is one of the first class constraints.

Once the counterterms are obtained, one can renormalize the canonical momenta of the

radial Hamiltonian and thus obtain the renormalized canonical momenta. According to the

AdS/CFT dictionary, the renormalized canonical momenta correspond to local operators of

the field theory in the local renormalization group language [7]. The first class constraints

turn out to be relations between local sources and operators, from which we obtain the

Ward identities (see (5.2)) that in fact reflect the symmetries of the dual field theory and

do not rely on a Lagrangian description of the quantum field theory. Since the bulk theory

is a 5D N = 2 SUGRA, the dual field theory has 4D N = 1 superconformal symmetry

and we obtain the corresponding Ward identities. Note that here we cannot see the U(1)R
symmetry because we truncate all gauge fields. In the related work [40] the U(1)R gauge

field is included in the model.

It turns out that the N = 1 superconformal symmetry is broken by anomalies. From

the bulk point of view, these anomalies are due to the fact that some of the first class

constraints are non-linear functions of the canonical momenta, implying that the corre-
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sponding symmetries are broken by the radial cut-off. From the dual field theory point of

view, of course, the global anomalies are a quantum effect. We obtain not only the SUSY-

completion of the trace-anomaly, but also the holographic super-Weyl anomaly,3 which

are rather interesting by themselves, since they can provide another tool for testing the

AdS/CFT correspondence.4 As discussed before, we find that due to the anomaly, certain

operators do not transform as tensors under super-Weyl transformation and the variation

of operators gets an anomalous contribution, see (5.22). Hence, the Q-transformation of

the operators also becomes anomalous, since it is obtained by putting together supersym-

metry and super-Weyl transformations. Here Q refers to the preserved supercharge. This

is rather remarkable, since it implies that the ‘classical’ SUSY variation cannot become

a total derivative in the path integral of SUSY field theories in curved space, unless the

anomaly effects disappear. In this regard, it is shown in [40] that the ‘new’ non-covariant

finite counterterms suggested in [44, 45] should be discarded since they were introduced in

order to match with field theory without taking into account the anomaly-effect. From the

anomalous transformation of the supercurrent operator, we find that the supersymmetry

algebra in curved space is corrected by anomalous terms, see (5.56).

We finally note that the boundary conditions consistent with SUSY should be specified

before the main computation of HR. In this work we always impose Dirichlet boundary

conditions for the metric and the gravitino. As we will see, consistency with SUSY requires

that either Dirichlet or Neumann boundary conditions should be imposed for scalars and

their SUSY-partner spin 1/2 fields, together at the same time.

The rest of this paper is organized as follows. In section 2 we review the generic

N = 2 5D gauged SUGRA action and SUSY variation of the fields. In section 3, we first

present the radial Hamiltonian and other first class constraints. We then systematically

carry out the procedure of holographic renormalization and obtain the flow equations. In

section 4 we determine the divergent counterterms and the possible finite counterterms.

In particular, the complete set of counterterms is obtained explicitly for a toy model. By

means of these counterterms, in section 5 we obtain the holographic Ward identities and

anomalies and show that the anomalies satisfy the Wess-Zumino consistency condition. We

then define constraint functions on the phase space of local sources and operators using

the Ward identities, and we show that the symmetry transformation of the sources and

operators are simply described in terms of the Poisson bracket with the corresponding

constraint functions. Finally, we present the anomaly-corrected supersymmetry algebra on

supersymmetric backgrounds. In section 6 we show that consistency with SUSY requires

that scalars and their SUSY-partner fields should satisfy the same boundary condition. In

appendix A, we describe our notations and present some useful identities. In appendix B

3Notice that the existence of a super-Weyl anomaly is natural, due to the existence of a Weyl anomaly

that is related to the super-Weyl anomaly by a SUSY transformation.
4As we will see in the main text, our result for the super-Weyl anomaly is different from [41], which

was obtained through a field theory calculation using Feynman diagrams. In [42], they tried to obtain the

holographic super-Weyl anomaly , but their work is incomplete since contribution from the Ricci curvature

is missed. In any case, we show that our result satisfies the Wess-Zumino (WZ) consistency conditions.

One can check that the result of [41] does not satisfy the consistency conditions. See [43] for a review of

WZ consistency conditions.
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we carry out some preliminary steps necessary in order to obtain the radial Hamiltonian,

including the ADM decomposition, the strong Fefferman-Graham (FG) gauge, and the

generalized Penrose-Brown-Henneaux (gPBH) transformations. In appendix C, we present

the ADM decomposition of the radial Lagrangian part by part and in appendix D we prove

that the gPBH transformations of the operators can be obtained from the holographic

Ward identities. Finally, in appendix E we derive the anomaly-corrected SUSY algebra in

an alternative way.

2 N = 2 gauged SUGRA action in 5D

The action of gauged (on-shell) (D = d+1 = 5) SUGRA admitting a scalar superpotential,

with all gauge fields consistently truncated, is given by [19]

S = Sb + Sf , (2.1)

where

Sb =
1

2κ2

∫
M
dd+1x

√
−g

(
R[g]− GIJ(ϕ)∂µϕ

I∂µϕJ − V(ϕ)
)
, (2.2)

Sf = − 1

2κ2

∫
M
dd+1x

√
−g
{(

ΨµΓµνρ∇νΨρ −Ψµ
←−
∇νΓµνρΨρ −WΨµΓµνΨν

)
+
(
iGIJζ

I
Γµ
(
/∂ϕJ − GJK∂KW

)
Ψµ − iGIJΨµ(/∂ϕI + GIK∂KW)ΓµζJ

)
+
(
GIJζ

I (
δJK /∇+ ΓJKL[G]/∂ϕL

)
ζK − GIJ

[
ζ
I
/
←−
∇ζJ + ζ

K
(/∂ϕL)ΓJKLζ

I
])

+ 2MIJ(ϕ)ζ
I
ζJ + quartic terms

}
, (2.3)

and the scalar potential and the mass matrix MIJ are expressed in terms of the superpo-

tential as

V(ϕ) = GIJ∂IW(ϕ)∂JW(ϕ)− d

d− 1
W(ϕ)2, (2.4)

MIJ(ϕ) = ∂I∂JW − ΓKIJ [G]∂KW −
1

2
GIJW. (2.5)

Here κ2 is related to the gravitational constant by κ2 = 8πG(d+1). Note that near the

conformal boundary of AlAdS spaces (with radius 1), which we are interested in, the scalar

potential and the superpotential take respectively the form

V(ϕ) = −d(d− 1) +O
(
ϕ2
)
, W(ϕ) = −(d− 1) +O

(
ϕ2
)
. (2.6)

The action (2.1) is, up to boundary terms, invariant under the supersymmetry transfor-

mation5

δεϕ
I =

i

2
ε̄ζI + h.c. =

i

2

(
εζI − ζIε

)
, (2.7a)

δεE
α
µ =

1

2
ε̄ΓαΨµ + h.c. =

1

2

(
εΓαΨµ −ΨµΓαε

)
, (2.7b)

5In [19] the transformation rule of the gravitino field is given by δεΨµ = (∇µ+ 1
6
WΓµ)ε, which is obtained

by setting D = 5 explicitly in (2.8).
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where h.c. refers to hermitian conjugation, and

δεζ
I = − i

2

(
/∂ϕI − GIJ∂JW

)
ε, (2.8a)

δεΨµ =

(
∇µ +

1

2(d− 1)
WΓµ

)
ε. (2.8b)

for any value of d.

Two comments are in order about the action (2.1). Firstly, all the fermions here,

including the supersymmetry transformation parameter ε, are Dirac fermions. In fact, in

N = 2 five-dimensional SUGRA, the gravitino field is expressed in terms of a symplectic

Majorana spinor [46], which can also be described in terms of a Dirac fermion [16]. Other

fermions in the theory can also be expressed in the same way. Secondly, we would like to be

as general as possible and thus, we keep d generic in most of the following computations.

3 Radial Hamiltonian dynamics

According to the holographic dictionary [12] the on-shell action of the supergravity theory is

the generating functional of the dual field theory. Therefore, the first step of the holographic

computation is usually to consider the on-shell action on the bulk side. As is well-known,

this on-shell action always suffers from long-distance divergences, which corresponds to the

UV divergences of the dual field theory. Therefore, we need to renormalize the on-shell

action of the supergravity theory, through holographic renormalization [13, 22–31].

The Hamiltonian formulation of holographic renormalization [23, 28, 30, 39] is ar-

guably the most efficient, and as we will see, it helps make the analysis of the fermions

tractable. The Hamiltonian constraint, one of the first class constraints obtained from the

radial Hamiltonian, gives the Hamilton-Jacobi (HJ) equation by which we can obtain all

the infinite counterterms for generic sources and curved background. Holographic renor-

malization essentially consists in determining all divergent terms in the on-shell action for

generic background and sources in covariant form and subtracting them. Depending on the

problem under consideration one can add some extra finite counterterms which actually

correspond to the choice of renormalization scheme in the boundary field theory.

In this section we obtain the radial Hamiltonian, from which we extract the first class

constraints. Afterwards, we present a general algorithm for obtaining the full counterterms

from the HJ equation. We then obtain the flow equations which are needed to form a

complete set of equations of motion.

3.1 Radial Hamiltonian

The Gibbons-Hawking term [47]

1

κ2

∫
∂M

ddx
√
−γ K, (3.1)

where K is the extrinsic curvature on the boundary ∂M, was introduced to have a well-

defined variational problem for the Einstein-Hilbert action

SEH =
1

2κ2

∫
M
dd+1x

√
−g R. (3.2)

– 6 –
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As indicated in [18, 32–34, 36], for the same reason some additional boundary terms are

needed when the theory involves fermionic fields. For the action (2.1) these fermionic

boundary terms turn out to be (for details, see appendix C.1 and C.2)

± 1

2κ2

∫
∂M

ddx
√
−γ ΨiΓ̂

ijΨj , (3.3a)

± 1

2κ2

∫
∂M

ddx
√
−γ GIJζ

I
ζJ , (3.3b)

where the signs in front of the terms bilinear in fermionic fields fixes which radiality

(see (B.10)) of the fermion should be used as a generalized coordinate. Note, however,

that the sign depends on the mass of the fermions and the choice of boundary condi-

tions [34]. Since the mass of the gravitino Ψµ is (d− 1)/2 > 0, the sign of (3.3a) should be

positive (see also appendix B.3 and B.4). The sign of the mass of ζI changes according to

the model, and thus we cannot choose the sign of (3.3b) a priori.

For the time being, however, let us pick the + sign. As we will discuss in section 6,

picking the − sign corresponds to imposing Neumann boundary conditions on the spin-1/2

field ζI . We emphasize that this choice of sign will not affect our claim later about the

determination of the scalar fields’ leading asymptotics. The whole action including the

terms (3.1) and (3.3) is then given by

Sfull = S +
1

2κ2

∫
∂M

ddx
√
−γ

(
2K + ΨiΓ̂

ijΨj + GIJζ
I
ζJ
)
. (3.4)

The full action Sfull can be written as Sfull =
∫
dr L, where the radial Lagrangian L is

L=
1

2κ2

∫
Σr

ddxN
√
−γ

{
R[γ]−GIJ∂iϕI∂iϕJ−V(ϕ)+(γijγkl−γikγjl)KijKkl

−GIJ
N2

(ϕ̇I−N i∂iϕ
I)(ϕ̇J−N j∂jϕ

J)+
2

N

(
Ψ̇+iΓ̂

ijΨ−j+Ψ−iΓ̂
ijΨ̇+j

)
+

1

N
ėiae

j
b

(
ΨiΓ

abΨj+ΨjΓ
baΨi

)
+

(
K+

1

N
DkN

k

)
ΨiΓ̂

ijΨj+
1

4N
eakė

k
b ΨiΓ{Γ̂ij ,Γab}Ψj

+
1

2N
Kkl

[(
Ψr−N iΨi

)
[Γ̂kj , Γ̂l]Ψj−Ψj [Γ̂

kj , Γ̂l]
(
Ψr−N iΨi

)]
+

1

4N
Ψi

(
2∂kN [Γ̂ij , Γ̂k]−(DkNl)Γ{Γ̂ij , Γ̂kl}

)
Ψj

−N
i

N

(
ΨjΓΓ̂jkDiΨk−Ψj

←−
D iΓΓ̂jkΨk

)
−ΨiΓ̂

ijkDjΨk+Ψi
←−
D jΓ̂

ijkΨk

− 1

N
Ψk
←−
D jΓΓ̂jk

(
Ψr−N iΨi

)
− 1

N

(
Ψr−N iΨi

)
ΓΓ̂jkDjΨk

+
1

N
ΨkΓΓ̂jk

(
DjΨr−N iDjΨi

)
+

1

N

(
Ψr
←−
D j−N iΨi

←−
D j

)
ΓΓ̂jkΨk

+
1

N
W
[(

Ψr−N iΨi

)
ΓΓ̂jΨj+ΨjΓ̂

jΓ
(
Ψr−N iΨi

)]
+WΨiΓ̂

ijΨj

+
2

N
GIJ

(
ζ
I
+ζ̇

J
−+ζ̇

I
−ζ

J
+

)
+

(
K+

1

N
DkN

k

)
GIJζ

I
ζJ− 1

2N
GIJeaiėibζ

I
ΓabΓζJ

+
1

N

(
ϕ̇K−N i∂iϕ

K+N i∂iϕ
K
)
∂KGIJζ

I
ζJ−GIJ

(
ζ
I
Γ̂iDiζJ−ζ

I←−DiΓ̂iζJ
)

– 7 –
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− 1

N
GIJ

[
−1

2
DiNj

(
ζ
I
Γ̂ijΓζJ

)
−N iζ

I
ΓDiζJ+N i(ζ

I←−D i)Γζ
J

]
− i

N
GIJ

[
1

N

(
ϕ̇J−N j∂jϕ

J
)[
ζ
I
(

Ψr−N iΨi+N Γ̂iΓΨi

)
−
(

Ψr−N iΨi+NΨiΓΓ̂i
)
ζI
]

+∂iϕ
J
[
ζ
I
ΓΓ̂i

(
Ψr−N jΨj

)
−
(
Ψr−N jΨj

)
Γ̂iΓζI

]
+N∂iϕ

J
(
ζ
I
Γ̂jΓ̂iΨj−ΨjΓ̂

iΓ̂jζI
)]

+
i

N
∂IW

[
ζ
I
Γ
(
Ψr−N iΨi

)
+
(
Ψr−N iΨi

)
ΓζI+N

(
ΨiΓ̂

iζI+ζ
I
Γ̂iΨi

)]
− 1

N
∂KGIJ

[(
ϕ̇J−N i∂Iϕ

J
)(
ζ
I
ΓζK−ζKΓζI

)
+N∂iϕ

J
(
ζ
I
Γ̂iζK−ζK Γ̂iζI

)]
−2MIJζ

I
ζJ

}
. (3.5)

Given the radial Lagrangian L we can derive the canonical momenta

π ia =
δL

δėai
=
(
δijeak+δikeaj

)√−γ
2κ2

[(
γjkγlm−γjlγkm

)
Klm+

1

2
γjk
(
GIJζ

I
ζJ+ΨpΓ̂

pqΨq

)
− 1

4N

(
Ψp[Γ̂

jp, Γ̂k]
(

Ψr−N lΨl

)
−
(

Ψr−N lΨl

)
[Γ̂jp, Γ̂k]Ψp

)]
(3.6a)

−
√
−γ

2κ2

[
ebi
(

1

4
ΨjΓ{Γ̂jk,Γab}Ψk−

1

2
GIJζ

I
ΓabΓζ

J

)
+eaj

(
Ψ
j
Γ̂ikΨk+ΨkΓ̂

kiΨj
)]
,

πϕI =
δL

δϕ̇I
=

√
−γ

2Nκ2

[
−2GIJ

(
ϕ̇J−N i∂iϕ

J
)
+N∂IGJKζ

J
ζK−N∂KGIJ

(
ζ
J
ΓζK−ζKΓζJ

)
−iGIJ

(
ζ
J
(

Ψr−N iΨi+N Γ̂iΓΨi

)
−
(

Ψr−N iΨi+NΨiΓΓ̂i
)
ζJ
)]
, (3.6b)

πζI =L

←−
δ

δ ˙ζI−
=

√
−γ
κ2
GIJζ

J
+, (3.6c)

πζI =

−→
δ

δζ̇
I
−

L=

√
−γ
κ2
GIJζJ+, (3.6d)

πiΨ =L

←−
δ

δΨ̇+i

=

√
−γ
κ2

Ψ−jΓ̂
ji, (3.6e)

πi
Ψ

=

−→
δ

δΨ̇+i

L=

√
−γ
κ2

Γ̂ijΨ−j . (3.6f)

One should keep in mind that πi
Ψ

and πiΨ have negative radiality, and πζI and πζI have

positive radiality.

From Kij = Kji, we obtain the constraint

0 = Jab ≡
κ2

√
−γ

(eiaπbi − eibπai)−
1

4
ΨjΓ{Γ̂jk,Γab}Ψk +

1

2
GIJζ

I
ΓabΓζ

J

− 1

2
eiae

j
b(ΨiΓ̂jkΨ

k + Ψ
k
Γ̂kjΨi −ΨjΓ̂ikΨ

k −Ψ
k
Γ̂kiΨj), (3.7)
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which, as we will see, corresponds to the local Lorentz generator of the frame bundle on

the slice Σr [36].

Inverting the canonical momenta6 and implementing the Legendre transform we obtain

the radial Hamiltonian

H =

∫
ddx

(
ėaiπ

i
a + ϕ̇IπϕI + πζI ζ̇

I
− + ζ̇

I
−π

ζ
I + πiΨΨ̇+i + Ψ̇+iπ

i
Ψ

)
− L

=

∫
ddx

[
NH+NiHi +

(
Ψr −N iΨi

)
F + F

(
Ψr −N iΨi

)]
, (3.8)

where

H=
κ2

2
√
−γ

[(
1

d−1
eai e

b
j−eaj ebi

)
πiaπ

j
b−G

IJπϕI π
ϕ
J +GIJ

(
πζI /Dπ

ζ
J−π

ζ
I

←−
/DπζJ

)
− 1

2(d−1)

(
eajπia+eaiπja

)[
(d−1)(Ψ+iπΨj+πΨjΨ+i)+πpΨ

(
Γ̂pi−(d−2)γpi

)
Γ̂j

kΨ+k

+Ψ+kΓ̂
k
j

(
Γ̂ip−(d−2)γip

)
πp

Ψ

]
+

1

d−1
eai π

i
a

(
−ζI−π

ζ
I−π

ζ
I ζ
I
−+Ψ+jπ

j

Ψ
+πjΨΨ+j

)
+2GIJΓLJK [G]πϕI

(
ζ
K
−π

ζ
L+πζLζ

K
−

)
+iπϕI

[ 1

d−1

(
ζ
I
−Γ̂iπ

i
Ψ

+πiΨΓ̂iζ
I
−

)
−GIJ

(
πζI Γ̂

iΨ+i+Ψ+iΓ̂
iπζJ

)]
−πkΨ

[(
1

d−1
Γ̂kΓ̂j−γkj

)
/D−
←−
/D
(

1

d−1
Γ̂kΓ̂j−γkj

)]
πj

Ψ

+
i

d−1

(
πζI /∂ϕ

I Γ̂iπ
i
Ψ
−πiΨΓ̂i/∂ϕ

IπζI

)
−2i∂iϕ

I
(
πζIπ

i
Ψ
−πiΨπ

ζ
I

)
+GIMGKN∂iϕJ (∂KGIJ−∂IGKJ)πζM Γ̂iπζN

]
− 1

2
W
(
Ψ+iπ

i
Ψ

+πiΨΨ+i

)
+MIJ

(
GIKπζKζ

J
−+GJKζI−π

ζ
K

)
− i

2
∂IW

[
GIJ

(
Ψ+iΓ̂

iπζJ+πζJ Γ̂iΨ+i

)
+

1

d−1

(
πiΨΓ̂iζ

I
−+ζ

I
−Γ̂iπ

i
Ψ

)]
+

√
−γ

2κ2

[
−R[γ]+GIJ∂iϕI∂iϕJ+V(ϕ)+GIJζ

I
−

(
/D−
←−
/D
)
ζJ−+Ψ+iΓ̂

ijk
(
Dj−

←−
D j

)
Ψ+k

+Dk

(
Ψ+i

(
γjkΓ̂i−γikΓ̂j

)
Ψ+j

)
+iGIJ∂iϕJ

(
ζ
I
−Γ̂jΓ̂iΨ+j−Ψ+jΓ̂

iΓ̂jζI−

)
+∂KGIJ∂iϕJ

(
ζ
I
−Γ̂iζK− −ζ

K
− Γ̂iζI−

)]
, (3.9)

Hi =−eaiDjπ
j
a +(∂iϕI)πϕI +(ζ

I
−
←−
D i)πζI+πζI (D

iζI−)+πjΨ
(
DiΨ+j

)
+
(

Ψ+j
←−
D i
)
πj

Ψ

−Dj(π
j
ΨΨi

++Ψ
i
+π

j

Ψ
), (3.10)

6For instance, the inverse of the canonical momentum πi
Ψ

is Ψ−i = κ2
√
−γ

1
d−1

[Γ̂ij − (d− 2)γij ]π
j

Ψ
.
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F =
2κ2

√
−γ

{
1

4(d−1)
Γ̂iπ

i
Ψ
eajπ

j
a−

1

8
Γaγikπ

k
Ψ
πia−

1

8
eal Γ̂iπ

l
Ψ
πia+

i

4
GIJπϕI π

ζ
J

}
+

1

4
ΓaΨ+iπ

i
a+

1

4
Γ̂iΨ+je

ajπia+
i

2
πϕI ζ

I
−−DiπiΨ−

1

2(d−1)
WΓ̂iπ

i
Ψ
− i

2
∂iϕ

I Γ̂iπζI

− i
2
GIJ∂IWπζJ+

√
−γ

2κ2

(
2Γ̂ijDiΨ+j+WΓ̂iΨ+i+iGIJ∂iϕJ Γ̂iζI−+i(∂IW)ζI−

)
. (3.11)

We note that in the above computations we used the local Lorentz constraint (3.7).

By radiality we split F into two parts

F+≡Γ+F =
κ2

2
√
−γ

[
πjae

ak

(
1

d−1
γjkΓ̂i−

1

2
γijΓ̂k−

1

2
γikΓ̂j

)
πi

Ψ
+iGIJπϕI π

ζ
J

]
(3.12)

− 1

2(d−1)
WΓ̂iπ

i
Ψ
− i

2
GIJ∂IWπζJ+

√
−γ

2κ2

(
2Γ̂ijDiΨ+j+iGIJ∂iϕJ Γ̂iζI−

)
,

and

F− ≡ Γ−F =
1

4

(
Γ̂iΨ+j + Γ̂jΨ+i

)
eajπia +

i

2
πϕI ζ

I
−

− DiπiΨ −
i

2
∂iϕ

I Γ̂iπζI +

√
−γ

2κ2

(
WΓ̂iΨ+i + i∂IWζI−

)
. (3.13)

The canonical momenta for N , Ni and Ψr vanish identically, and it then follows from

Hamilton’s equations that

H = Hi = F− = F+ = 0. (3.14)

These first class constraints reflect respectively radial reparameterization invariance and

diffeomorphism, supersymmetry and super-Weyl invariance along the radial slice Σr, which

can be seen by comparing with (B.38).

Inserting (3.6) in (3.7), we obtain

0 = eiaπbi − eibπai +
1

2
ζ
I
−Γabπ

ζ
I −

1

2
πζIΓabζ

I
− −

1

2
πiΨΓabΨ+i +

1

2
Ψ+iΓabπ

i
Ψ
, (3.15)

which reflects the local frame rotation symmetry of the theory according to (B.38). We

emphasize that at the bosonic level this local Lorentz constraint reduces to

eiaπbi = eibπai, (3.16)

which implies that we can define a symmetric canonical momentum for the metric through

the relations
δ

δγ̇ij
LB ≡ πij =

1

2
eaj

δ

δėai
LB. (3.17)

Here LB denotes bosonic part of the radial Lagrangian (3.5).

We emphasize that the linearity of the constraints Hi = F− = 0 and the local Lorentz

constraint reflect the fact that their corresponding symmetries are not broken by the radial

cut-off. Meanwhile, the constraints H = 0 and F+ = 0 are quadratic in the momenta,

implying that in fact the cut-off breaks these symmetries, though they are non-linearly

realized in the bulk.
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3.2 Hamilton-Jacobi equations and the holographic renormalization

The HJ equations are obtained by inserting the expressions

π i
a =

δ

δeai
S, πϕI =

δ

δϕI
S, πζI = S

←−
δ

δζI−
, πζI =

−→
δ

δζ
I
−
S, πiΨ = S

←−
δ

δΨ+i
, πi

Ψ
=

−→
δ

δΨ+i

S

(3.18)

for the canonical momenta in the first class constraints (3.14). Here S[e, ϕ, ζ−,Ψ+] is

Hamilton’s principal functional.

Hamilton’s principal functional S is particularly important since it can be identified

with the on-shell action evaluated with a radial cut-off Σr. Holographically renormalizing

the on-shell action only requires solving these HJ equations for S up to the finite terms,

without relying on the specific solution of the equations of motion. Since this asymptotic

solution of the HJ equations is obtained in covariant form for generic sources, we can

identify the divergent terms with the sought after boundary counterterms, which cancel

the divergences of the on-shell action as well as of all correlation functions.

As pointed out in [48], the constraint Hi = 0 and the local Lorentz constraint (3.15)

which reflects the bulk diffeomorphism invariance along the transverse direction is automat-

ically satisfied as long as we look for a local and covariant solution. Hence, the equations

we have to solve are the constraints H = F− = F+ = 0.

Let us briefly review the algorithm of solving the HJ equation in AlAdS geometry. In

general, the Hamiltonian constraint is solved asymptotically by using the formal expansion

of S with respect to the dilatation operator δD [30] (see section 5.2 of [8] for a recent review)

δD =

∫
ddx

∑
Φ

(∆Φ − d)
δ

δΦ
, (3.19)

where Φ refers to every field in the theory and ∆Φ denotes the scaling dimension of the

operator dual to Φ. The solution takes form of

S =

∫
Σr

ddx
√
−γ L =

∫
Σr

ddx
√
−γ

(
L[0] + L[1] + · · ·+ L̃[d] log e−2r + L[d] + · · ·

)
, (3.20)

where

δDL[n] = −nL[n], 0 ≤ n < d, δDL̃[d] = −dL̃[d]. (3.21)

Since the dilatation operator δD asymptotically coincides with the radial derivative

∂r =

∫
Σr

ddx
∑

Φ

Φ̇
δ

δΦ
, (3.22)

in AlAdS, one can see that L[n] for n < d and L̃[d] are asymptotically divergent, and can

therefore be identified with the boundary counterterms, namely

Sct = −
∫

Σr

ddx
√
−γ

(
L[0] + L[1] + · · ·+ L̃[d] log e−2r

)
. (3.23)

By construction, this is the full set of all possible divergent terms.
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This general argument of finding Sct is not suitable in our case, since the operator

δD requires knowledge of all scaling dimensions in the theory from the onset. Since we

do not want to specify the scaling dimension of the scalars ϕI and of the fermions ζI in

advance, we will instead seek a solution for S in an expansion in eigenfunctions of the

alternative operator

δe =

∫
ddx

(
eai

δ

δeai
+

1

2
Ψ+i

δ

δΨ+i

+
1

2

←−
δ

δΨ+i
Ψ+i

)
, (3.24)

rather than δD [39, 48], since we know that the scaling dimension of the operators dual

to eai and Ψ+i in AlAdS are d + 1 and d + 1/2 respectively, see appendix B.3. Note that

δe basically counts powers of the vielbein and the gravitino. The formal expansion of

Hamilton’s principal function S[e, ϕ, ζ−,Ψ+] with respect to δe is thus

S = S(0) + S(1) + S(2) + · · · , S(k) ≡
∫
ddx L(k), (3.25)

where δeS(k) = (d− k)S(k). This implies that

πi(k)ae
a
i +

1

2
πi(k)ΨΨ+i +

1

2
Ψ+iπ

i
(k)Ψ

= (d− k)L(k) + ∂iv
i
(k), (3.26)

for certain vi(k). However, the Lagrangian L(k) is defined up to a total derivative, and thus

we can put [39]

πi(k)ae
a
i +

1

2
πi(k)ΨΨ+i +

1

2
Ψ+iπ

i
(k)Ψ

:= (d− k)L(k). (3.27)

As we will see later, this identification of L(k) greatly simplifies the HJ equation and makes

it almost algebraic.

By using (3.27) we can solve the HJ equation recursively, but this procedure stops at

S(d), which has δe weight zero. The reason why higher-order terms, which are finite in

r → ∞ limit, cannot be determined in this recursive procedure is that they are related

to the arbitrary integration constants which form a complete integral together with the

integration constants from the flow equations, see [39] for explanation in more detail.

Assuming that the all scalar and spin-1/2 operators are not irrelevant, we find that any

term with negative δe weight should have negative dilatation weight, see (3.19). This implies

that all the divergent terms appear up to S(d) so that we can identify the counterterms as

Sct = −
2d∑
k=0

S(k/2), (3.28)

Note that the logarithmically divergent terms are distributed in almost all of the S(k)s with

0 ≤ k ≤ d. Since our radial slice is four-dimensional, these terms appear with the pole

1/(d− 4). Converting this pole by (dimensional regularization) [30, 39]

1

d− 4
→ −1

2
log e−2r, (3.29)
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and summing up all of them, we obtain the logarithmically divergent terms L̃[d]. We

emphasize that the two algorithms we described in fact give the same result for Sct.

Once the local counterterms Sct are obtained, we renormalize the on-shell action by

Ŝren = lim
r→+∞

(Sfull + Sct) = lim
r→+∞

∫
Σr

ddx L[d]. (3.30)

The canonical momenta are automatically renormalized by Sct, namely

π̂Φ ≡ πΦ +
δ

δΦ
Sct, for every field Φ, (3.31)

and the variation of the renormalized on-shell action under any variation of fields is given

by the chain rule

δŜren = lim
r→+∞

∫
ddx

(
π̂iaδe

a
i + π̂ϕI δϕ

I + δζ
I
−π̂

ζ
I + π̂ζI δζ

I
− + δΨ+iπ̂

i
Ψ + π̂iΨδΨ+i

)
. (3.32)

3.3 Flow equations and leading asymptotics

The flow equations are obtained by substituting (3.18) into Hamilton’s equations

ėai =
δH

δπia
, π̇ia = −δH

δeai
, (3.33a)

ϕ̇I =
δH

δπϕI
, π̇ϕI = − δH

δϕI
, (3.33b)

ζ̇I− =
δ

δπζI
H, π̇ζI = −H δ

δζ−
, ζ̇

I
− = H

δ

δπζI

, π̇ζI = − δ

δζ
I
−
H, (3.33c)

Ψ̇+i =
δ

δπiΨ
H, π̇iΨ = −H δ

δΨ+i
, Ψ̇+i = H

δ

δπi
Ψ

, π̇i
Ψ

= − δ

δΨ+i

H. (3.33d)

The resulting flow equations are

ėai =
κ2

2
√
−γ

{
2

(
1

d− 1
eai e

b
j − eaj ebi

)
πjb −

1

2(d− 1)
eaj
[
(d− 1)(Ψ+iπΨj + πΨjΨ+i)

− πpΨ[Γ̂pi − (d− 2)γpi]Γ̂j
kΨ+k + Ψ+kΓ̂

k
j [Γ̂ip − (d− 2)γip]π

p

Ψ
+ (i↔ j)

]
+

1

d− 1
eai

(
−ζI−π

ζ
I − π

ζ
I ζ
I
− + Ψ+jπ

j

Ψ
+ πjΨΨ+j

)}
, (3.34)

ϕ̇I =
κ2

√
−γ
GIJ

[
− πϕJ + ΓKJL[G]

(
πζKζ

L
− + ζ

L
−π

ζ
K

)
− i

2

(
πζJ Γ̂iΨ+i + Ψ+iΓ̂

iπζJ

)]

+
κ2

√
−γ

i

2(d− 1)

(
ζ
I
−Γ̂iπ

i
Ψ

+ πiΨΓ̂iζ
I
−

)
, (3.35)
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Ψ̇+i =
κ2

2
√
−γ

[
− 1

2

(
δki e

aj + γjkeai

)
πkaΨ+j +

1

d− 1
eajπ

j
aΨ+i + iπϕI Γ̂iζ

I
−

− 1

2(d− 1)

(
eajπla + ealπja

)(
Γ̂il − (d− 2)γil

)
Γ̂j

kΨ+k −
i

d− 1
Γ̂i/∂ϕ

IπζJ

− 2

d− 1

(
Γ̂ijk − (d− 2)γijΓ̂k

)
Dkπj

Ψ
+ 2i∂iϕ

IπζI

]
− 1

2
WΨ+i

− i

2(d− 1)
∂IWΓ̂iζ

I
−, (3.36)

and

ζ̇I− =
κ2

2
√
−γ

[
2GIJ /DπζJ + ∂iGIJ Γ̂iπζJ −

1

d− 1
eai π

i
aζ
I
− + 2GLJΓIJK [G]πϕLζ

K
−

− iGIJπJϕΓ̂iΨ+i − 2i∂iϕ
Iπi

Ψ
+ GIMGKN∂iϕJ(∂KGJM − ∂MGKJ)Γ̂iπζN

]
+MJKGIKζJ− −

i

2
∂IWΓ̂iΨ+i. (3.37)

Here for simplicity we choose the gauge (B.13), which reduces the radial Hamiltonian H

to H =
∫
ddx H. We emphasize that the flow equations (3.34), (3.35), (3.36) and (3.37),

together with the HJ equations, form a complete set of equations of motion of the theory.7

4 Solution of the Hamilton-Jacobi equation

To solve the HJ equation efficiently we divide Hamilton’s principal function into several

parts according to the structure of the various terms. Namely, we first split S into two

sectors: SB, the purely bosonic part, and SF , which is quadratic in fermions. The terms

in SF are further split into three parts: Sζζ which contains quadratic terms in ζI−s, SΨΨ

containing quadratic terms in Ψ+i and SζΨ, containing bilinears in ζI− and Ψ+i. In total,

S = SB + Sζζ + SΨΨ + SζΨ. (4.1)

Due to radiality and the Lorentz structure of the fermionic sources, the asymptotic expan-

sion of SB, SζΨ, Sζζ and SΨΨ should be

SB = SB(0) + SB(2) + SB(4) + · · · , (4.2a)

SζΨ = SζΨ(3/2) + SζΨ(7/2) + · · · , (4.2b)

Sζζ = Sζζ(1) + Sζζ(3) + Sζζ(5) + · · · , (4.2c)

SΨΨ = SΨΨ
(2) + SΨΨ

(4) + · · · . (4.2d)

How to solve the HJ equation for the bosonic sector has been discussed in the liter-

ature [30, 39, 49], though it is difficult to solve the HJ equation for a completely general

7One can use the flow equations (3.36) and (3.37) to determine the asymptotic behavior of Ψ+i and ζI−,

as is done in appendix B.3, instead of using the Euler-Lagrange equations (B.19) and (B.20).
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model.8 The key feature is that after finding the solution of the HJ equation to lead-

ing order, we only need to solve a (almost algebraic) first-order differential equation for

the higher orders, thanks to the relation (3.27). Nevertheless, these first-order differential

equations are not easy to solve at the first attempt.

Here we have another set of first-order differential equations, namely F− = F+ = 0.

These are relatively simpler than the Hamiltonian constraint H = 0, so one can try to

solve these constraints first. Not surprisingly, it works well, in particular for the fermionic

sector, and the solution is totally consistent with the other constraints, as we will see soon.

4.1 Bosonic sector

Let us first consider the bosonic sector. The corresponding Hamiltonian constraint H = 0 is

κ2

2
√
−γ

[
4

(
1

d− 1
γijγkl − γikγjl

)
δSB

δγij

δSB

δγkl
− GIJ δS

B

δϕI
δSB

δϕJ

]
+

√
−γ

2κ2

(
−R[γ] + GIJ∂iϕI∂iϕJ + V(ϕ)

)
= 0. (4.3)

One can readily see that the HJ equation for S(0) is

κ2

2
√
−γ

[
4

(
1

d− 1
γijγkl − γikγjl

)
δS(0)

δγij

δS(0)

δγkl
− GIJ

δS(0)

δϕI
δS(0)

δϕJ

]
+

√
−γ

2κ2
V(ϕ) = 0. (4.4)

The leading term of S, S(0), should not contain any derivatives and must be purely

bosonic so that its ansatz becomes

S(0) = − 1

κ2

∫
ddx
√
−γ U(ϕ). (4.5)

Substituting this ansatz into the constraint F− = 0, we obtain

1

4

(
Γ̂iΨ+j + Γ̂jΨ+i

)
eaj

δS(0)

δeai
+

√
−γ

2κ2
WΓ̂iΨ+i = 0, (4.6)

and find the unique solution for U(ϕ) given by U =W(ϕ), or

S(0) = − 1

κ2

∫
ddx
√
−γ W. (4.7)

As promised, we obtain (4.7) regardless of the sign of (3.3b). It follows that the leading

asymptotics of the scalar field ϕI is also determined, independently of the sign chosen

in (3.3b), as we see in (4.8c). From (4.7) we can now determine the leading asymptotics of

the fields by using the above flow equations, namely

eai (r, x) ∼ erea(0)i(x), (4.8a)

Ψ+i(r, x) ∼ er/2Ψ(0)+i(x), (4.8b)

ϕ̇I ∼ GIJ∂JW, or ϕI ∼ e−µIrϕI(0), (4.8c)

ζ̇I− ∼ −
1

2
ζI− + (GIK∂J∂KW)ζJ−, or ζI− ∼ e−(µI+ 1

2
)rζI−(0), (4.8d)

where µI stands for the radial weight of ϕI when the scalars are properly diagonalized.

8One might try to solve the HJ equation for the general scalar-gravity model by using the argument

in [39].
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Now let us go to the next order of the bosonic sector. The HJ equation for SB(2) is then

− 2

d− 1
Wγij

δ

δγij
SB(2) + GIJ∂IW

δ

δϕJ
SB(2) +

√
−γ

2κ2

(
−R[γ] + GIJ∂iϕI∂iϕJ

)
= 0. (4.9)

The most general ansatz for SB(2) is as follows:

SB(2) =
1

κ2

∫
ddx
√
−γ
(
Ξ(ϕ)R+AIJ(ϕ)∂iϕ

I∂iϕJ
)
. (4.10)

Then,

γij
δ

δγij
SB(2) =

√
−γ
κ2

d− 2

2

(
ΞR+AIJ∂iϕ

I∂iϕJ
)
−
√
−γ
κ2

(d− 1)�Ξ, (4.11)

δ

δϕJ
SB(2) =

√
−γ
κ2

(
R∂JΞ + ∂JAIK∂iϕ

I∂iϕK − 2Di

(
AJK∂

iϕK
))
, (4.12)

where we used the relation

γijδRij = DiDjδγij − γij� (δγij) . (4.13)

One can notice from (4.11) that

LB(2) =

√
−γ
κ2

(
ΞR+AIJ∂iϕ

I∂iϕJ − 2(d− 1)

d− 2
�Ξ

)
. (4.14)

Therefore, (4.9) becomes

0 =R

(
−d−2

d−1
WΞ[1]+GIJ∂IW∂JΞ− 1

2

)
+∂iϕ

I∂iϕJ
(
− d−2

d−1
WAIJ+2W∂I∂JΞ (4.15)

+GKL∂LW∂KAIJ−2GKL∂KW∂IALJ+
1

2
GIJ
)

+2�ϕI
(
W∂IΞ−GJK∂JWAIK

)
,

and we obtain the equations for Ξ and AIJ

0 = −d− 2

d− 1
Ξ + V I∂IΞ−

1

2W
, (4.16a)

0 = −d− 2

d− 1
AIJ + V K∂KAIJ + ∂IV

KAJK + ∂JV
KAIK +

1

2W
GIJ , (4.16b)

0 = ∂IΞ− V JAIJ , (4.16c)

where

V I ≡ 1

W
GIJ∂JW. (4.17)

Note that AIJ should satisfy the condition

∂I(V
KAJK) = ∂J(V KAIK). (4.18)

We emphasize that we do not discuss the existence of a solution for AIJ and Ξ here.

Nevertheless, equations (4.16) are useful for determining Sζζ(1), S
ΨΨ
(2) and SζΨ(3/2).
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SB(2n) (n ≥ 2) is obtained by the following recursive equation

0 = − 2

d− 1
WγijπB(2n)ij +WV IπB(2n)I (4.19)

+
κ2

2
√
−γ

n−1∑
m=1

[
4

(
1

d− 1
γijγkl − γikγjl

)
πijB(2m)π

kl
B(2n−2m) − G

IJπ
B(2m)
I π

B(2n−2m)
J

]
.

In particular, when d = 4 the inhomogeneous terms on the r.h.s. become

2
κ2

√
−γ

(
1

d− 1
γijγkl − γikγjl

)
πij(2)π

kl
(2) =

√
−γ
κ2

Ξ2

(
d

2(d− 1)
R2 − 2RklR

kl

)
, (4.20)

where

Ξ =
1

2(d− 2)
+O(ϕ2), (4.21)

is the solution of (4.16a), while other inhomogeneous terms are asymptotically suppressed.

4.2 Fermionic sector

After substituting the leading order solution (4.7) into the Hamiltonian constraint (3.9),

we get the following first-order differential equation for S̆ ≡ S− S(0)

0 =W
(
− 1

d−1
eai π̆

i
a+V I π̆ϕI

)
− 1

2(d−1)
W
(
Ψ+iπ

i
Ψ+πiΨΨ+i

)
+W

(
1

2(d−1)
δJI +∂IV

J

)
×
(
ζ
I
−π

ζ
J+πζJζ

I
−

)
+

κ2

2
√
−γ

{(
1

d−1
eai e

b
j−eaj ebi

)
π̆iaπ̆

j
b−G

IJ π̆ϕI π̆
ϕ
J +GIJ

(
πζI /Dπ

ζ
J−π

ζ
I

←−
/DπζJ

)
−2π̆ij

[
(Ψ+iπΨj+πΨjΨ+i)+

1

d−1
πpΨ

(
Γ̂pi−(d−2)γpi

)
Γ̂j

kΨ+k

+
1

d−1
Ψ+kΓ̂

k
j

(
Γ̂ip−(d−2)γip

)
πpΨ−i

∂IW
W

γjk

(
ζ
I
−Γ̂iπ

k
Ψ+πkΨΓ̂iζ

I
−

)]
+

2

d−1
γij π̆

ij

(
−ζI−π

ζ
I−π

ζ
I ζ
I
−+Ψ+kπ

k
Ψ+πkΨΨ+k−i

∂IW
W

ζ
I
−Γ̂kπ

k
Ψ−i

∂IW
W

πkΨΓ̂kζ
I
−

)
+

[
GIJGLM (∂JGMK−∂MGJK)−W∂K

(
GIL

W

)]
π̆ϕI

(
ζ
K
−π

ζ
L+πζLζ

K
−

)
+iπ̆ϕI

[ 1

d−1

(
ζ
I
−Γ̂iπ

i
Ψ+πiΨΓ̂iζ

I
−

)
−GIJ

(
πζJ Γ̂iΨ+i+Ψ+iΓ̂

iπζJ

)]
−πkΨ

[(
1

d−1
Γ̂kΓ̂j−γkj

)
/D−
←−
/D
(

1

d−1
Γ̂kΓ̂j−γkj

)]
πjΨ

+
i

d−1

(
πζI /∂ϕ

I Γ̂iπ
i
Ψ−πiΨΓ̂i/∂ϕ

IπζI

)
−2i∂iϕ

I
(
πζIπ

i
Ψ−πiΨπ

ζ
I

)
+GIMGKN∂iϕJ (∂KGIJ−∂IGKJ)πζM Γ̂iπζN

}

+

√
−γ

2κ2

[
−R[γ]+GIJ∂iϕI∂iϕJ+GIJζ

I
−

(
/D−
←−
/D
)
ζJ−+Ψ+iΓ̂

ijk
(
Dj−

←−
D j

)
Ψ+k

+Dk

(
Ψ+i

(
γjkΓ̂i−γikΓ̂j

)
Ψ+j

)
+iGIJ∂iϕJ

(
ζ
I
−Γ̂jΓ̂iΨ+j−Ψ+jΓ̂

iΓ̂jζI−

)
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+∂KGIJ∂iϕJ
(
ζ
I
−Γ̂iζK− −ζ

K
− Γ̂iζI−

)
−2iVI

(
ζ
I
−Γ̂ijDiΨ+j+Ψ+j

←−
D iΓ̂

ijζI−

)
+VIGJK∂iϕJ

(
ζ
I
−Γ̂iζK− −ζ

K
− Γ̂iζI−

)]
, (4.22)

where

π̆ia ≡
δS̆
δeai

, π̆ϕI ≡
S̆
δϕI

. (4.23)

From this one could write a recursive equation for every S(k). However, it looks too com-

plicated, and thus we first write down the equations for Sζζ(1), S
ζΨ
(3/2) and SΨΨ

(2) , namely

0 =−WLζζ(1)+W

{
V I∂I+

1

2(d−1)

(
ζ
I
−

δ

δζ
I

−

+
←−
δ

δζI−
ζI−

)
+∂IV

J

(
ζ
I
−

δ

δζ
J

−

+
←−
δ

δζJ−
ζI−

)}
Sζζ(1)

+
√
−γ

2κ2

[
GIJ

(
ζ
I
− /DζJ−−ζ

I
−
←−
/D ζJ−

)
+(VIGJK+∂KGIJ)∂iϕ

J
(
ζ
I
−Γ̂iζK− −ζ

K
− Γ̂iζI−

)]
. (4.24a)

0 =−d−
3
2

d−1
WLζΨ(3/2)+W

[
V I∂I+

1

2(d−1)

(
ζ
I
−

δ

δζ
I

−

+
←−
δ

δζI−
ζI−

)
+∂LV

K

(
ζ
L
−

δ

δζ
K

−

+
←−
δ

δζK−
ζL−

)]
SζΨ(3/2)

+
√
−γ

2κ2 i
[
−2VI

(
ζ
I
−Γ̂ijDiΨ+j+Ψ+j

←−
D iΓ̂

ijζI−

)
+GIJ

(
ζ
I
−Γ̂j/∂ϕJΨ+j−Ψ+j/∂ϕ

J Γ̂jζI−

)]
,

(4.24b)

0 =−d−2

d−1
WLΨΨ

(2) +GIJ∂IW
δ

δϕJ
SΨΨ

(2)

+
√
−γ

2κ2

[
Ψ+iΓ̂

ijk(Dj−
←−
D j)Ψ+k+Dk

(
Ψ+i(γ

jkΓ̂i−γikΓ̂j)Ψ+j

)]
, (4.24c)

where we used (3.27).

While (4.24a) and (4.24b) are not so easy to treat at first sight, the solution of (4.24c)

is obvious once we take into account (4.16a), namely

LΨΨ
(2) = −

√
−γ
κ2

Ξ
[
Ψ+iΓ̂

ijk(Dj −
←−
D j)Ψ+k +Dk

(
Ψ+i(γ

jkΓ̂i − γikΓ̂j)Ψ+j

)]
. (4.25)

Instead of solving (4.24a) and (4.24b) directly, we now try to solve the F+ constraint (3.13),

which requires much less effort. They are respectively at the order 1 and 3/2

iGIJ∂IW
δ

δζ
J
−
Sζζ(1) +

1

d− 1
WΓ̂i

δ

δΨ+i

SζΨ(3/2) =

√
−γ

2κ2
iGIJ∂iϕJ Γ̂iζI−, (4.26a)

1

d− 1
WΓ̂i

δ

δΨ+i

SΨΨ
(2) + iGIJ∂IW

δ

δζ
J
−
SζΨ(3/2) =

√
−γ
κ2

Γ̂ijDiΨ+j . (4.26b)

The solution (4.25) allows us to solve (4.26b) immediately and we obtain

δ

δζ
I
−
SζΨ(3/2) = i

√
−γ
κ2

(
−2∂IΞζ

I
−Γ̂ijDiΨ+j +AIJζ

I
−Γ̂i/∂ϕJΨ+i

)
. (4.27)

One can readily see that

SζΨ(3/2) =
i

κ2

∫
ddx
√
−γ
[
2∂IΞ

(
Ψ+i
←−
D jΓ̂

ijζI− − ζ
I
−Γ̂ijDiΨ+j

)
+AIJ

(
ζ
I
−Γ̂i/∂ϕJΨ+i −Ψ+i/∂ϕ

I Γ̂iζJ−

) ]
. (4.28)
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In the same way, we find from (4.26a) that

Sζζ(1) =
1

κ2

∫
ddx
√
−γ

(
AIJζ

I
−(/D−

←−
/D )ζJ− + (∂JAIk − ∂IAJK)ζ

I
−/∂ϕ

KζJ−

)
. (4.29)

Moreover, we can confirm that the solutions (4.29) and (4.28) satisfy the Hamiltonian

constraints (4.24a) and (4.24b) respectively. That is not the whole story, however, and

one has to convince themselves that the F− = 0 constraint also holds for these solutions.

From (3.13), we obtain

0 = Di
δ

δΨ+i

SΨΨ
(2k) +

i

2
∂iϕ

I Γ̂i
δ

δζ
I
−
SζΨ(2k−1/2) − Γ̂iΨ+j

δ

δγij
SB(2k), (4.30a)

0 = Di
δ

δΨ+i

SζΨ(2k−1/2) +
i

2
∂iϕ

I Γ̂i
δ

δζ
I
−
Sζζ(2k−1) −

i

2
ζI−

δ

δϕI
SB(2k), (4.30b)

where k is an arbitrary positive integer. It is not so difficult to check that the solutions we

obtained satisfy the constraints (4.30b) and (4.30a) for k = 1, implying that the combina-

tion

SB(2) + SΨΨ
(2) + Sζζ(1) + SζΨ(3/2), (4.31)

is (ε+) supersymmetric.

We have seen how to obtain Hamilton’s principal function in the fermionic sector from

its bosonic supersymmetric partner, but at the lowest order. It was relatively easy because

we could give the most general ansatz for SB(2) which has a small number of terms. To go

further we should first determine SB(4), S
B
(6), · · · and obtain their SUSY partners by using

the above trick. The ansatz for SB(2n) (n ≥ 2), however, has lots of terms and is complicated,

hence finding its SUSY partner is too tedious.

Although we stop finding the general solution of the HJ equations in the fermionic

sector here, we remark that the solution we have found is almost sufficient for providing

the divergent counterterms in the low dimensions, say, d = 4. This is because in the

generic case that there are no scalar fields dual to marginal operators, Sζζ(3) and SζΨ(7/2) are

asymptotically suppressed in 4 dimensions. As a result, what remains in the case d = 4

is only to determine SΨΨ
(4) , corresponding to the logarithmically divergent terms, which are

directly related to the holographic Weyl anomaly [13].

We should emphasize that from the general analysis here the divergent counterterms

(except for S(0)) always satisfy the constraint F− = 0 and so does the renormalized on-shell

action Ŝren.

We finish this subsection by presenting the recursive relation obtained from (3.12),

namely

0 = − 1

d− 1
WΓ̂iπ

i
Ψ(n−1/2)

− iGIJ∂IWπζJ(n−1) +
κ2

√
−γ

bn2 c−1∑
m=1

[ i
2
GIJπϕI(2m)π

ζ
J(n−2m−1)

+ πjk(2m)

(
1

d− 1
γjkΓ̂i − γijΓ̂k

)
πi

Ψ(n−2m−1/2)

]
, (4.32)

where (integer or half-integer) n ≥ 4. This will be useful for determining the super-Weyl

anomaly in section 5.1.2.
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4.3 Logarithmically divergent terms in 4D

As mentioned in subsection 3.2, every S(k) in the asymptotic expansion (3.25) with respect

to the operator δe contains poles related to logarithmically divergent terms. Let us denote

such terms by S̃(k). Whereas S̃B(4) and S̃ΨΨ
(4) are purely gravitational (meaning that they

are related only to the metric and the gravitino field) and universal, S̃ζζ(1), S̃
ζΨ
(3/2), S̃

B
(2) and

S̃ΨΨ
(2) are model-dependent. We first discuss the former and then study the latter for a

simple model.

S̃B(4) is easily obtained from (4.19) and (4.20), namely

S̃B(4) ≡
∫
ddx
√
−γ L̃B(4) log e−2r

=
1

4κ2(d− 2)2

∫
ddx
√
−γ
(

d

4(d− 1)
R2 −RijRij

)
log e−2r, (4.33)

which is already well-known. Meanwhile, S̃ΨΨ
(4) is determined by the inhomogeneous terms

of the Hamiltonian constraint (4.22) at order 4, namely9

S̃ΨΨ
(4) ≡

∫
ddx
√
−γ L̃ΨΨ

(4) loge−2r

=

∫
ddx

κ2

4
√
−γ

{
2

(
1

d−1
γijγkl−γikγjl

)
π̃ij(2)e

akπlΨa(2)−π̃
ij
(2)(Ψ+kΓ̂jΓ̂

kπ
(2)

Ψi
+π

(2)
Ψi Γ̂

kΓ̂jΨ+k)

− 1

d−1
γij π̃

ij
(2)

(
Ψ
k
+Γ̂klπ

l
(2)Ψ

+π
(2)l
Ψ Γ̂lkΨ

k
+

)
+

1

2(d−1)
(π

(2)k
Ψ Γ̂k /DΓ̂jπ

(2)j

Ψ
−π(2)k

Ψ Γ̂k
←−
/D Γ̂jπ

(2)j

Ψ
)

+
1

2
(π

(2)i
Ψ

/Dπ(2)

Ψi
−π(2)i

Ψ

←−
/Dπ(2)

Ψi
)

}
loge−2r

=
1

8(d−2)2κ2

∫
ddx
√
−γ

{
(d−3)R(Ψ+iΓ̂

ijkDjΨ+k−Ψ+i
←−
D jΓ̂

ijkΨ+k)

+
d

d−1
RDj

[
Ψ+i(γ

ijΓ̂k−γjkΓ̂i)Ψ+k

]
−(d−4)R(Ψ+iΓ̂

iΓ̂jkDjΨ+k−Ψ+i
←−
D jΓ̂

ijΓ̂kΨ+k)

+
(d−2)2

d−1
R
[
Ψ
k
+Γ̂jDkΨ+j−Ψ

i
+ /DΨ+i−Ψ+i

←−
D kΓ̂iΨ+k+Ψ

k
+

←−
/DΨ+k

]
+2Rkl

[
Ψ+i[(γ

ipΓ̂k−γikΓ̂p)Dl−
←−
D l(γipΓ̂k−γpkΓ̂i)]Ψ+p−Ψ+iΓ̂

iΓ̂jlDjΨk
++Ψ

k
+

←−
D jΓ̂

ljΓ̂iΨ+i

−Dj [Ψ
l
+Γ̂kjiΨ+i−Ψ+iΓ̂

ijkΨl
+−Ψ+i(γ

jkγplΓ̂i−γjkγilΓ̂p+γjpγilΓ̂k−γplγijΓ̂k)Ψ+p]
]

− 2(d−2)2

d−1
(Ψ+i

←−
D jΓ̂

ij /DΓ̂klDkΨ+l−Ψ+i
←−
D jΓ̂

ij
←−
/D Γ̂klDkΨ+l)

−2(Ψ+p
←−
D qΓ̂

pqi /DΓ̂i
jkDjΨ+k−Ψ+p

←−
D qΓ̂

pqi
←−
/D Γ̂i

jkDjΨ+k)

}
loge−2r. (4.34)

Although nontrivial, one can show that S̃B(4) + S̃ΨΨ
(4) satisfies the constraints H = F− =

9When the boundary metric is flat, (4.34) matches with the result in [18].
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F+ = 0 (i.e. conformal, supersymmetry and super-Weyl invariance), namely

0 =

(
eai

δ

δeai
+

1

2
Ψ+i

δ

δΨ+i

+

←−
δ

δΨ+i
Ψ+i

)
S̃ΨΨ

(4) , (4.35a)

0 = Γ̂iΨ+j
δ

δγij
S̃B(4) + Di

δ

δΨ+i

S̃ΨΨ
(4) , (4.35b)

0 = Γ̂i
δ

δΨ+i

SΨΨ
(4) . (4.35c)

4.4 Generic finite counterterms in 4D and summary

Up to now we obtained the generic part of the divergent counterterms. Sct can involve

additional finite terms which satisfy the first class constraints (3.14), though.10 The possible

bosonic finite counterterms are the Euler density and the Weyl invariant in 4D, namely,

E(4) =
1

64

(
RijklRijkl − 4RijRij +R2

)
, I(4) = − 1

64

(
RijklRijkl − 2RijRij +

1

3
R2

)
.

(4.36)

The integral of the Euler density E(4) by itself satisfies all the first class constraints, since

it is a topological quantity, any local variation of which vanishes. Therefore, we find that

the possible supersymmetric finite counterterms are a linear combination of

XI = 64I(4)+(d−3)R(Ψ+iΓ̂
ijkDjΨ+k−Ψ+i

←−
D jΓ̂

ijkΨ+k)

+
d

d−1
RDj

[
Ψ+i(γ

ijΓ̂k−γjkΓ̂i)Ψ+k

]
−(d−4)R(Ψ+iΓ̂

iΓ̂jkDjΨ+k−Ψ+i
←−
D jΓ̂

ijΓ̂kΨ+k)

+
(d−2)2

d−1
R
[
Ψ
k
+Γ̂jDkΨ+j−Ψ

i
+ /DΨ+i−Ψ+i

←−
D kΓ̂iΨ+k+Ψ

k
+

←−
/DΨ+k

]
+2Rkl

[
Ψ+i[(γ

ipΓ̂k−γikΓ̂p)Dl−
←−
D l(γipΓ̂k−γpkΓ̂i)]Ψ+p−Ψ+iΓ̂

iΓ̂jlDjΨk
++Ψ

k
+

←−
D jΓ̂

ljΓ̂iΨ+i

−Dj [Ψ
l
+Γ̂kjiΨ+i−Ψ+iΓ̂

ijkΨl
+−Ψ+i(γ

jkγplΓ̂i−γjkγilΓ̂p+γjpγilΓ̂k−γplγijΓ̂k)Ψ+p]
]

− 2(d−2)2

d−1
(Ψ+i

←−
D jΓ̂

ij /DΓ̂klDkΨ+l−Ψ+i
←−
D jΓ̂

ij
←−
/D Γ̂klDkΨ+l)

−2(Ψ+p
←−
D qΓ̂

pqi /DΓ̂i
jkDjΨ+k−Ψ+p

←−
D qΓ̂

pqi
←−
/D Γ̂i

jkDjΨ+k), (4.37)

and

XE = E(4), XP = P =
1

64
εijklRijpqRkl

pq, (4.38)

where P is the Pontryagin density. Notice that the integral of P is a topological quantity

and thus can be a finite counterterm as in the case of the Euler density, as long as there is

no other symmetry which prevents its appearance.

10Otherwise, these finite terms would generate trivial cocycle terms, which do not have any physical

implication.
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In summary, collecting all of these finite counterterms and the previous divergent ones

we obtain

Sct = −
(
S(0) + S(1) + S(2)

)
−
(
S̃B(4) + S̃ΨΨ

(4)

)
+ · · ·

=
1

κ2

∫
ddx
√
−γ
{
W − ΞR−AIJ∂iϕI∂iϕJ −AIJζ

I
−(/D−

←−
/D )ζJ−

− (∂JAIK − ∂IAJK)ζ
I
−/∂ϕ

KζJ− − 2i∂IΞ(Ψ+i
←−
D jΓ̂

ijζI− − ζ−Γ̂ijDiΨ+j)

− iAIJ(ζ
I
−Γ̂i/∂ϕJΨ+i −Ψ+i/∂ϕ

I Γ̂iζJ−) + ΞΨ+iΓ̂
ijk(Dj −

←−
D j)Ψ+k

+ Ψ+i(∂
iΞΓ̂j − ∂jΞΓ̂i)Ψ+j

}
− S̃B(4) − S̃ΨΨ

(4) +
1

κ2

∫
ddx
√
−γ (αIXI + αEXE + αPXP ) + · · · ,

(4.39)

where S̃B(4) and S̃ΨΨ
(4) are given in (4.33) and (4.34) and αI , αE and αP are arbitrary con-

stants. Here the ellipses stand for model-dependent terms, which we discuss in section 4.5

for a simple toy model.

4.5 Application to a toy model

For completeness, we present an application of our general procedure to a simple toy model.

In the toy model there is only one scalar field, which corresponds to an operator with

the scaling dimension ∆ = d−1 with d = 4. In principle, there are two possibilities for the

coefficient of ϕ2-term of the bulk superpotential W; −1
2 corresponds to deformation, and

−d−1
2 corresponds to RG-flow due to giving a VEV [49]. However, as we have seen, SUSY

requires that the counterterm should be the same as the bulk superpotential W, and thus

we just need to consider the −1
2 case. It follows that

W = −(d− 1)− 1

2
ϕ2 + k3ϕ

3 + k4ϕ
4 +O(ϕ5), (4.40)

where k3 and k4 are arbitrary constants, and therefore the solution of (4.16a), (4.16b)

and (4.16c) becomes

Ξ =
1

2(d− 2)
− 1

d− 4
· 1

4(d− 1)
ϕ2 + · · · , AIJ = − 1

d− 4
· 1

2
+ · · · . (4.41)

The divergent counterterms that we need, other than those in (4.39), are only the loga-

rithmically divergent terms. Following the argument in section 3.2 again we can determine

them from the poles (when d = 4) in Ξ and AIJ and are responsible for additional loga-

rithmically divergent terms.

We thus obtain

S̃B(2) =
1

4κ2

∫
ddx
√
−γ
(

1

2(d−1)
ϕ2R+∂iϕ∂

iϕ

)
loge−2r, (4.42a)

S̃ζζ(1) =
1

4κ2

∫
ddx
√
−γ (ζ− /Dζ−+h.c.) loge−2r, (4.42b)
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S̃ζΨ(3/2) =
i

4κ2

∫
ddx
√
−γ
(
ζ−Γ̂i/∂ϕΨ+i−

2

(d−1)
ϕζ−Γ̂ijDiΨ+j+h.c.

)
loge−2r, (4.42c)

S̃ΨΨ
(2) =− 1

4κ2

∫
ddx
√
−γ 1

d−1

(
1

2
ϕ2Ψ+iΓ̂

ijkDjΨ+k+ϕΨ+i∂
iϕΓ̂jΨ+j+h.c.

)
loge−2r.

(4.42d)

One can easily check that S̃B(2) + S̃ζζ(1) + S̃ζΨ(3/2) + S̃ΨΨ
(2) again satisfies the constraints H =

F− = F+ = 0.

Besides XI and XE , the possible finite counterterms (conformal and ε+ supersymmet-

ric) are

X0 =
1

2(d− 1)
ϕ2R+ ∂iϕ∂

iϕ+ ζ− /Dζ− + iζ−Γ̂i/∂ϕΨ+i (4.43)

− 2i

d− 1
ϕζ−Γ̂ijDiΨ+j −

1

2(d− 1)
ϕ2Ψ+iΓ̂

ijkDjΨ+k −
1

d− 1
ϕΨ+i∂

iϕΓ̂jΨ+j + h.c.,

and the finite term k4ϕ
4 in W should be in the counterterms without any ambiguity, due

to the F− constraint.

In total, the divergent counterterms for the toy model are

Sdivct = −
(
S(0) + S(1) + S(3/2) + S(2)

)
−
∫
ddx
√
−γ L̃[4] log e−2r, (4.44)

where the logarithmically divergent counterterms are∫
ddx
√
−γ L̃[4] log e−2r = S̃ζζ(1) + S̃ζΨ(3/2) + S̃B(2) + S̃ΨΨ

(2) + S̃B(4) + S̃ΨΨ
(4) . (4.45)

Adding possible finite ones, the whole counterterms are

Sct =
1

κ2

∫
ddx
√
−γ
[
− (d− 1)− 1

2
ϕ2 + k3ϕ

3 + k4ϕ
4 − 1

2(d− 2)
R

+
1

2(d− 2)
Ψ+iΓ̂

ijk(Dj −
←−
D j)Ψ+k

]
−
∫
ddx
√
−γ L̃[4] log e−2r

+
1

κ2

∫
ddx
√
−γ (αIXI + αEXE + αPXP + α0X0),

(4.46)

where αE , αI , αP and α0 are arbitrary constants and determine the renormalization

scheme.

5 Holographic dictionary and Ward identities

Now that all the counterterms are determined, we can relate by the holographic dictio-

nary [12] the renormalized canonical momenta to the renormalized local operators of the

boundary field theory, namely

T ia = − lim
r→∞

e(d+1)r 1√
−γ

(
πia +

δSct

δeai

)
:= − 1

|e(0)|
Πi
a, (5.1a)

– 23 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
7

OϕI = lim
r→∞

e(d+µI)r 1√
−γ

(
πϕI +

δSct

δϕI

)
:=

1

|e(0)|
Πϕ
I , (5.1b)

OζI = lim
r→∞

e(d+µI+ 1
2

)r 1√
−γ

(
πζI +

δSct

δζ
I

)
:=

1

|e(0)|
Πζ
I , (5.1c)

Si = lim
r→∞

e(d+ 1
2

)r 1√
−γ

(
πi

Ψ
+

δSct

δΨ+i

)
:=

1

|e(0)|
Πi

Ψ
, (5.1d)

where T ia is the energy-momentum tensor,11 Si is the supercurrent12 and e(0) = det(ea(0)i).

We note that since these local renormalized operators are obtained in the presence of arbi-

trary sources we can obtain higher-point functions simply by taking functional derivatives

of them with respect to the sources.

5.1 Ward identities and anomalies

One can find from the computation of section 4 and 4.5 that Sct satisfies the first class

constraints Hi = F− = 0 and the local Lorentz constraint (3.7), and so does the renormal-

ized on-shell action Ŝren. This is also related to the fact that these constraints are linear

functional derivative equations.

Since H and F+ are not linear constraints, one should expect that the countert-

erms do not satisfy the constraints H = 0 and F+ = 0 in general and thus generate

non-trivial cocycle terms, which appear in the constraints for the renormalized on-shell

action. Also, the poles appearing in solving the constraints contribute to the corre-

sponding anomaly. In total, after removing all divergent counterterms, the first class

constraints (3.12), (3.13), (3.9), (3.10) and (3.15) are reduced into

0 = −1

2
ΓaΨ(0)+iT ia +

i

2
ζI(0)−O

ϕ
I −

i

2
/∂ϕI(0)O

ζ
I − DiSi, (5.2a)

AsW = −iGIJ∂IWOζJ + Γ̂iSi, (5.2b)

AW = ea(0)iT
i
a − GIJ∂IWO

ϕ
J −

1

2

(
Ψ(0)+iS

i + h.c.
)

+

(
1

2
δJI − ∂I∂JW

)(
ζ
I
(0)−O

ζ
J + h.c.

)
, (5.2c)

0 = eai(0)DjT ja + ∂iϕI(0)O
ϕ
I +

(
ζ
I
(0)−
←−
D iOζI + h.c.

)
+
(

Ψ(0)+j
←−
D iSj + h.c.

)
−Dj

(
Ψ
i
(0)+Sj + h.c.

)
, (5.2d)

0 = e(0)aiT ib − e(0)biT ia +
1

2

(
ζ
I
(0)−ΓabOζI + Ψ(0)+iΓabSi + h.c.

)
, (5.2e)

where AsW and AW are the super-Weyl and Weyl anomaly densities respectively. In (5.2)

we keep only up to quadratic order and zero order in ϕI in the Taylor expansion of W and

GIJ respectively.

11The definition of the energy-momentum tensor is modified when the vielbein is used instead of the

metric, see e.g. (2.198) in [50].
12The spinor index of the supercurrent Si is implicit.
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We identify the constraints (5.2) with the Ward identities, which relate the local sources

and their dual operators of the field theory. These Ward identities play a key role in the

following discussion and reflect the remaining local symmetries of the bulk SUGRA after

fixing the strong FG gauge (B.14), on which we did HR for the bulk theory in section 4.

The remaining local symmetry transformations of SUGRA are called generalized Penrose-

Brown-Henneaux (gPBH) transformations, whose action on the sources is carefully treated

in appendix B.4. The resulting expressions are (B.38). Before discussing the gPBH action

on the renormalized canonical momenta, let us first determine the anomalies explicitly in

the case of d = 4.

5.1.1 Weyl anomaly

Although there are many ways to find the Weyl anomaly, a direct way is to read it from

the HJ equation. One can see that in (4.22) at order 4 the first linear terms are indeed

the r.h.s. of the trace Ward identity (5.2c) and the rest of the terms give part of the trace

anomaly. The terms with the pole 1/(d− 4) which appeared in the HJ equations for S(1),

· · · , S(4) are also inherited into (4.22) for S[4]. These non-homogeneous terms are already

identified with the logarithmically divergent terms and thus we only need to multiply them

by 2 to obtain the trace anomaly [8]. For the metric and gravitino parts the trace anomaly

density is13

A(G)
W [e,Ψ+] =

1

4(d− 2)2κ2

{
d

2(d− 1)
R2 − 2RijR

ij

+ (d− 3)R(Ψ+iΓ̂
ijkDjΨ+k −Ψ+i

←−
D jΓ̂

ijkΨ+k)

+
d

d− 1
RDj

[
Ψ+i(γ

ijΓ̂k − γjkΓ̂i)Ψ+k

]
− (d− 4)R(Ψ+iΓ̂

iΓ̂jkDjΨ+k −Ψ+i
←−
D jΓ̂

ijΓ̂kΨ+k)

+
(d− 2)2

d− 1
R
[
Ψ
k
+Γ̂jDkΨ+j −Ψ

i
+ /DΨ+i −Ψ+i

←−
D kΓ̂iΨ+k + Ψ

k
+

←−
/DΨ+k

]
+ 2Rkl

[
Ψ+i[(γ

ipΓ̂k − γikΓ̂p)Dl −
←−
D l(γipΓ̂k − γpkΓ̂i)]Ψ+p

−Ψ+iΓ̂
iΓ̂jlDjΨk

+ + Ψ
k
+

←−
D jΓ̂

ljΓ̂iΨ+i −Dj [Ψ
l
+Γ̂kjiΨ+i −Ψ+iΓ̂

ijkΨl
+

−Ψ+i(γ
jkγplΓ̂i − γjkγilΓ̂p + γjpγilΓ̂k − γplγijΓ̂k)Ψ+p]

]
− 2(d− 2)2

d− 1
(Ψ+i

←−
D jΓ̂

ij /DΓ̂klDkΨ+l −Ψ+i
←−
D jΓ̂

ij
←−
/D Γ̂klDkΨ+l)

− 2(Ψ+p
←−
D qΓ̂

pqi /DΓ̂i
jkDjΨ+k −Ψ+p

←−
D qΓ̂

pqi
←−
/D Γ̂i

jkDjΨ+k)

}
. (5.3)

The holographic computation of the supersymmetric Weyl anomaly in 4D is quite

remarkable; even though its bosonic part has already been known for a long time, it seems

13The SUSY completion of the Weyl anomaly in a 4 dimensional supersymmetric theory was obtained

in [51, 52] by using the superspace formalism. To get the fermionic sector explicitly, however, one has yet

to expand it further around the bosonic coordinates.
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really tough to obtain its SUSY partner terms by means of giving an ansatz and finding

out the coefficients, whereas holography enables us to compute them directly.

We comment that although the bosonic sector of AGW is the sum of the a anomaly

density E(4) and c anomaly I(4), the fermionic sector is in fact the SUSY partner of the c

anomaly density up to a total derivative. This is because the integral of E(4) is supersym-

metric by itself, as mentioned before.

For the toy model of section 4.5, we have an additional contribution to the Weyl

anomaly density, which is

A(model)
W [Φ] =

1

2κ2

(
1

2(d−1)
ϕ2R+∂iϕ∂

iϕ+ζ− /Dζ−+iζ−Γ̂i/∂ϕΨ+i−
2i

d−1
ϕζ−Γ̂ijDiΨ+j

− 1

2(d−1)
ϕ2Ψ+iΓ̂

ijkDjΨ+k−
1

d−1
ϕΨ+i∂

iϕΓ̂jΨ+j+h.c.

)
. (5.4)

The total Weyl anomaly density is thus given by14

AW [Φ] =A(G)
W [Φ]+A(model)

W [Φ] (5.5)

=A(G)
W +

1

2κ2

(
1

2(d−1)
ϕ2R+∂iϕ∂

iϕ+ζ− /Dζ−+iζ−Γ̂i/∂ϕΨ+i

− 2i

d−1
ϕζ−Γ̂ijDiΨ+j−

1

2(d−1)
ϕ2Ψ+iΓ̂

ijkDjΨ+k−
1

d−1
ϕΨ+i∂

iϕΓ̂jΨ+j+h.c.

)
.

5.1.2 Super-Weyl anomaly

Here we compute the super-Weyl anomaly for the toy model. As pointed out in sec-

tion 4.2, (4.26b) holds up to the finite order. For the toy model, it means that the r.h.s.

of (4.26b) is not canceled out and an additional finite term

+

√
−γ
κ2

ϕ2

2(d− 1)
Γ̂ijDiΨ+j , (5.6)

comes out from the l.h.s. of (4.26b). As in the case of the Weyl anomaly, we thus get

from (4.32)

−iGIJ∂JWπζ(7/2)I−
1

d−1
WΓ̂iπ

i
(4)Ψ

(5.7)

=− κ2

√
−γπ

jk
(2)

(
1

d−1
γjkΓ̂i−γijΓ̂k

)
πi

(2)Ψ
−
√
−γ

2κ2 i∂iϕΓ̂iζ−+
√
−γ
κ2

ϕ2

2(d−1)
Γ̂ijDiΨ+j

=
√
−γ
κ2

[
1

4(d−2)2

(
d

d−1
RΓ̂kl−2Ri

kΓ̂il+2Ri
lΓ̂ik

)
DkΨ+l−

i

2
∂iϕΓ̂iζ−+

1

2(d−1)
ϕ2Γ̂ijDiΨ+j

]
,

14It seems that the bosonic sector of the conformal anomaly density A here is different from the one

given in [8] (see (162) there), because of the ϕ4 term in L̃(4). However, one can easily check that it actually

vanishes, taking into account (2.4). This is because in our model the superpotential W is analytic in ϕ by

construction, while a non-zero ϕ4 term in L̃(4) requires that the solution W of (2.4) contains logϕ terms.
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or

AsW[Φ] =
1

κ2

[
1

4(d− 2)2

(
d

d− 1
RΓ̂kl − 2Ri

kΓ̂il + 2Ri
lΓ̂ik

)
DkΨ+l−

− i

2
∂iϕΓ̂iζ− +

1

2(d− 1)
ϕ2Γ̂ijDiΨ+j

]
.

(5.8)

Notice that the terms in the first bracket

A(G)
sW [e,Ψ+] =

1

κ2

1

4(d− 2)2

(
d

d− 1
RΓ̂kl − 2Ri

kΓ̂il + 2Ri
lΓ̂ik

)
DkΨ+l, (5.9)

are universal, in the sense that they do not depend on the model.

5.1.3 Wess-Zumino consistency condition

From the relation (4.35a) and corresponding equation for the toy model we find that the

Weyl anomaly (5.3) and (5.5) satisfies the Wess-Zumino (WZ) consistency condition, which

can be seen as follows. Defining the Weyl transformation operator δσ by

δσ ≡
∫
∂M

ddx
∑
Φ(0)

δσΦ(0)
δ

δΦ(0)
, (5.10)

where Φ(0) refers to the source for every field Φ, the WZ consistency condition becomes

[δσ1 , δσ2 ]Sren = 0. This is equivalent to demanding that δσ1

∫
ddx AWσ2 be symmetric in

σ1 and σ2, which can be seen from (4.35a) since∑
Φ(0)

δσ1Φ(0)
δ

δΦ(0)

∫
ddy AWσ2 = σ1∂

i(T∂iσ2), (5.11)

for a certain scalar function T . We note that the SUSY and super-Weyl invariance of

the Weyl anomaly follows from (4.35b) and (4.35c), which can be thought as the WZ

consistency checks.

In order to see that the super-Weyl anomaly (5.8) satisfies the WZ consistency condi-

tion, first we need to find the algebra of relevant symmetries. From (B.38), one can readily

see that15

[δε+ , δε′− ]eai = (δσ + δλ)eai , [δε+ , δε′− ]ϕI = (δσ + δλ)ϕI , (5.12)

with the parameters σ = 1
2ε
′
−ε+, λ = 1

2ε
′
−Γabε+. Notice that in our analysis it is im-

possible to see the above commutator for the fermionic sources, since our consideration

is limited to quadratic order in fermions. However, (5.12) provides the WZ consistency

condition for the super-Weyl anomaly, namely(
δε+

∫
ddx|e(0)|ε′−AsW[Φ(0)]

)∣∣∣
bosonic

=
(

[δε+ , δε′− ]Sren

)∣∣∣
bosonic

=−
∫
ddx|e(0)|σA

(B)
W [Φ(0)],

(5.13)

15Here the subscript o is omitted again, which was used to denote the leading asymptotics of the variation

parameters in appendix B.4.
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since δλSren = 0. Here A(B)
W refers to the bosonic sector of the Weyl anomaly. In the

following we show (5.13) in detail, namely

δε+

∫
ddx
√
−γ ε′−AsW =

=
1

κ2

∫
ddx
√
−γε′−

[ 1

4(d− 2)2

(
d

d− 1
RΓ̂kl − 2Ri

kΓ̂il + 2Ri
lΓ̂ik

)
DkDlε+

− 1

4
∂iϕΓ̂iΓ̂j∂jϕε+ +

1

2(d− 1)
ϕ2Γ̂ijDiDjε+

]
=

1

κ2

∫
ddx
√
−γ ε′−

[ 1

32(d− 2)2

(
d

d− 1
RΓ̂kl − 2Ri

kΓ̂il + 2Ri
lΓ̂ik

)
RmnklΓ̂

mn

− 1

4
∂iϕ∂

iϕ+
1

16(d− 1)
ϕ2Γ̂ijΓ̂klRijkl

]
ε+

=
1

κ2

∫
ddx
√
−γ ε′−

[ 1

32(d− 2)2

(
− 2d

d− 1
R2 + 8RijR

ij

)
− 1

4
∂iϕ∂

iϕ− 1

8(d− 1)
ϕ2R

]
ε+

= −
∫
ddx
√
−γ σA(B)

W , (5.14)

where again σ = 1
2ε
′
−ε+. In the above computation we omitted the subscript (0) for simplic-

ity. In the same spirit, one can find another WZ consistency condition for the super-Weyl

anomaly from

[δε− , δε′− ]eai = [δε− , δε′− ]ϕI = 0. (5.15)

We therefore have (
[δε− , δε′− ]Sren

) ∣∣∣
bosonic

= 0, (5.16)

which can be shown in the same way.

5.2 SUSY transformation of operators

Now that the Ward identities are completely determined, we can use (5.2) to derive the

gPBH transformation of the renormalized canonical momenta, without using the FG ex-

pansions of the induced fields [31, 53, 54]. In order to describe the gPBH transformation

of the induced fields and their renormalized canonical momenta in an integrated way, we

introduce the concept of a generalized Poisson bracket, which is defined by (see e.g. (6.30)

in [53])

{A[Φ(0),Π
Φ],B[Φ(0),Π

Φ]}≡
∫
∂M

ddx
∑
Φ(0)

(
δA

δΦ(0)

δB

δΠΦ
− δB

δΦ(0)

δA

δΠΦ

)
(5.17)

=

∫
∂M

ddx

(
δA

δea(0)i

δB

δΠi
a

− δB

δea(0)i

δA

δΠi
a

+
δA

δϕI(0)

δB

δΠϕ
I

− δB

δϕI(0)

δA

δΠϕ
I

+A

←−
δ

δΨ(0)+i

−→
δ

δΠi
Ψ

B−B
←−
δ

δΨ(0)+i

−→
δ

δΠi
Ψ

A+A

←−
δ

δζI(0)−

−→
δ

δΠζ
I

B−B
←−
δ

δζI(0)−

−→
δ

δΠζ
I

A

+B

←−
δ

δΠi
Ψ

−→
δ

δΨ(0)+i

A−A
←−
δ

δΠi
Ψ

−→
δ

δΨ(0)+i

B+B

←−
δ

δΠζ
I

−→
δ

δζ
I
(0)−

A−A
←−
δ

δΠζ
I

−→
δ

δζ
I
(0)−

B

)
,
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where A[Φ(0),Π
Φ] and B[Φ(0),Π

Φ] are arbitrary functions on the phase space (Φ(0), ΠΦ).

The Ward identities (5.2) then allow us to define a constraint function on the phase space

C[ξ, σ, ε±, λ] ≡
∫
∂M

ddx

{
ξi

(
eai(0)DjΠ

j
a − (∂iϕI(0))Π

ϕ
I − (ζ

I
(0)−
←−
D i)Πζ

I −Πζ
I(D

iζI(0)−)

−Πj
Ψ

(
DiΨ(0)+j

)
−
(

Ψ(0)+j
←−
D i
)

Πj

Ψ
+Dj(Π

j
ΨΨi

(0)+ + Ψ
i
(0)+Πj

Ψ
)
)

+ σ
[
− ea(0)iΠ

i
a − GIJ∂IWΠϕ

J −
1

2
(Ψ(0)+iΠ

i
Ψ

+ h.c.)

+
(1

2
δJI − ∂I∂JW

)(
ζ
I
(0)−Πζ

J + h.c.
)
− |e(0)|AW[Φ(0)]

]
+ ε+

(
− 1

2
ΓaΨ(0)+iΠ

i
a −

i

2
ζI(0)−Πϕ

I +
i

2
/∂ϕI(0)Π

ζ
I + DiΠi

Ψ

)
+
(1

2
Πi
aΨ(0)+iΓ

a +
i

2
Πϕ
I ζ

I
(0)− +

i

2
Πζ
I
/∂ϕI(0) + Πi

Ψ

←−
D i

)
ε+

+ ε−

(
iGIJ∂IWΠζ

J − Γ̂iΠ
i
Ψ

+ |e(0)|AsW[Φ(0)]
)

+
(

Πi
ΨΓ̂i − iGIJ∂IWΠζ

J + |e(0)|AsW[Φ(0)]
)
ε−

− λab
[
e(0)[aiΠ

i
b] +

1

4

(
ζ
I
(0)−ΓabΠ

ζ
I + Ψ(0)+iΓabΠ

i
Ψ

+ h.c.
)]}

, (5.18)

which generates the gPBH transformation B.4 through the Poisson bracket16

δσ,ε±,λΦ(0) = {C[σ, ε±, λ],Φ(0)}, δσ,ε±,λΠΦ = {C[σ, ε±, λ],ΠΦ}, (5.19a)

δ
(cgct)
ξ Φ(0) = {C[ξ],Φ(0)}, δ

(cgct)
ξ ΠΦ = {C[ξ],ΠΦ}. (5.19b)

Here δ
(cgct)
ξ refers to the covariant general coordinate transformation (see e.g. section 11.3

of [46]), under which variation of the fields is given by

δ
(cgct)
ξ ea(0)i = Diξ

a, δ
(cgct)
ξ ϕI(0) = ξa∂aϕ

I
(0) ≡ ξ

i∂iϕ
I
(0), (5.20a)

δ
(cgct)
ξ Ψ(0)+i = ξjDjΨ(0)+i + (Diξ

j)Ψ(0)+j , δ
(cgct)
ξ ζI(0)− = ξaDaζI(0)− ≡ ξ

iDiζI(0)−, (5.20b)

where ξa ≡ ξiea(0)i. Meanwhile, δξ given in B.4 is the general coordinate transformation

and it is related to δ
(cgct)
ξ by

δ
(cgct)
ξ = δξ − δλab=ωjabξj . (5.21)

The reason why diffeomorphisms and local Lorentz transformations appear in a mixed way

is that the constraint function and the Poisson bracket can only give a covariant quantity

but δξ in (B.38) is not covariant by itself. Moreover, SUSY transformations require the

sources to be covariant and thus we are forced to see the covariant general coordinate

transformation rather than the general coordinate transformation.

16It is obvious that the gPBH transformation of the sources can be obtained through this Poisson bracket.

In appendix D we show that the same holds for the canonical momenta.
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The useful variations of renormalized canonical momenta extracted from (5.19) are

δε+Πi
Ψ

=
δ

δΨ(0)+i

C[ε+] =
1

2
Πi
aΓ

aε+ (5.22a)

δε−Πi
Ψ

=
δ

δΨ(0)+i

C[ε−] =
δ

δΨ(0)+i

∫
ddx|e(0)| AsW[Φ(0)]ε−

= −
|e(0)|
κ2

1

8
Dk
([2

3
R(0)Γ̂

ik
(0) −R(0)j

kΓ̂ij(0) +R(0)j
iΓ̂kj(0)

]
ε−

)
−

−
|e(0)|
κ2

1

6
Γ̂ijDj(ϕ2

(0)ε−), (5.22b)

δε+Πζ
I =

δ

δζ
I
(0)−
C[ε+] =

i

2
Πϕ
I ε+, (5.22c)

δε−Πζ
I =

δ

δζ
I
(0)−
C[ε−] =

δ

δζ
I
(0)−

∫
ddx|e(0)| AsW[Φ(0)]ε− = −

|e(0)|
κ2

i

2
∂iϕ(0)Γ̂

i
(0)ε−, (5.22d)

δε+Πϕ
I =

δ

δϕI(0)

C[ε+] = − i
2
∂i

(
Πζ
I Γ̂

iε+

)
, (5.22e)

δε−Πϕ
I =

δ

δϕI(0)

C[ε−] = −i∂I(GJK∂KW)Πζ
Jε− +

δ

δϕI(0)

∫
ddx|e(0)| AsW[Φ(0)]ε−

= iΠζε− +
|e(0)|
κ2

1

3
ϕ(0)Ψ(0)+j

←−
D iΓ̂

ji
(0)ε−, (5.22f)

where R(0), R(0)i
j and Γ̂i(0) denote the Ricci scalar, Ricci tensor, the Gamma matrix and the

determinant of the metric for the vielbein ea(0)i. Here the underlined terms are computed

specifically for the toy model. Notice that due to the super-Weyl anomaly, the ε− variation

of the renormalized canonical momenta contains bosonic anomalous terms, which have a

similar origin as the Schwarzian derivative appearing in the conformal transformation of

the energy-momentum tensor of 2D CFT.

5.3 BPS relations

A bulk (bosonic) BPS configuration, which is a bosonic solution of the classical SUGRA

action as well as is invariant under bulk SUSY transformation with a certain parameter,

corresponds to a supersymmetric vacuum state of the dual field theory. Since the vacuum

expectation value (vev) of many observables is computed in SUSY field theories, it is

necessary to pay special attention to the bulk BPS solutions. The existence of a bulk

BPS configuration implies that there exists a boundary SUSY parameter, under the gPBH

transformation with which the fermionic sources are invariant, namely17

δηΨ(0)+i ≡ δη+Ψ(0)+i + δη−Ψ(0)+i = Diη+ − Γ̂(0)iη− = 0, (5.23a)

δηζ
I
(0)− = − i

2
Γ̂i(0)∂iϕ

I
(0)η+ + iGIJ∂JWη− = 0, (5.23b)

17Here we do not discuss the integrability condition of (5.23). For a discussion of the geometry of (5.23a),

which is also known as the twistor equation, see e.g. section 3.1 in [3].
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where the first equation is usually referred to as the conformal Killing spinor (CKS) con-

dition. Actually, the rigid supersymmetry of the boundary field theory is found by solv-

ing (5.23) [1, 3, 55].18

Now we show that the η-variation of any renormalized canonical momentum vanishes

on a BPS solution, i.e.

δηΠ
Φ
∣∣∣
BPS
≡ δη+ΠΦ

∣∣∣
BPS

+ δη−ΠΦ
∣∣∣
BPS

= 0, for any source Φ(0), (5.24)

where for the fermionic operators we have from (5.22)

δηΠ
i
Ψ

=
1

2
Πi
aΓ

aη+ +
δ

Ψ(0)+i

∫
Σr

ddx|e(0)| AsW[Φ(0)]η−, (5.25a)

δηΠ
ζ
I =

i

2
Πϕ
I η+ +

δ

δζ
I
(0)−

∫
Σr

ddx|e(0)| AsW[Φ(0)]η−. (5.25b)

This is the holographic version of the fact that the vev of any Q-exact operator vanishes

on SUSY vacua. We only need to consider the variation of the fermionic canonical momenta,

since the η-variation of the bosonic canonical momenta trivially vanishes on a bosonic

solution. One can in principle see (5.24) by expanding the bulk BPS equations. But since

we have the SUSY and super-Weyl Ward identities, the form of which is the same for all

SCFTs, we take advantage of the Ward identities (5.2a) for η+ and (5.2b) for η−.

Taking into account the CKS condition (5.23), we obtain from the Ward identities that

0 =

∫
∂M

ddx

[(
− 1

2
Ψ(0)+iΓ

aΠi
a −

i

2
ζ
I
(0)−Πϕ

I −
i

2
Πζ
I
/∂ϕI(0) −Πi

Ψ

←−
D i

)
η+

+
(
iGIJ∂IWΠζ

J −Πi
ΨΓ̂(0)i − |e(0)|AsW[Φ(0)]

)
η−

]

=

∫
∂M

ddx
(
− 1

2
Ψ(0)+iΓ

aΠi
aη+ −

i

2
Πϕ
I ζ

I
(0)−η+ − |e(0)|AsW[Φ(0)]η−

)
. (5.26)

We emphasize that because the Ward identities are valid for any background, (5.26) holds

at least to linear order in fermions for any value of Ψ(0)+i and ζ
I
(0)− as long as the bosonic

sources admit a CKS. There might be a correction at order of O
(

(Ψ(0)+)2, (ζ(0)−)2
)

,

though. Note that non-trivial dependence of bosonic momenta Πi
a and Πϕ

I on the fermionic

sources occurs from the quadratic order in fermions, i.e.

δ

δΨ(0)+i

Πi
a

∣∣∣∣∣
Ψ(0)+i=ζ

I
(0)−=···=0

= 0, (5.27)

and so on. Therefore, by taking the functional derivative of (5.26) with respect to the

fermionic sources and evaluating on a (bosonic) supersymmetric background, we obtain

18More precisely, most of the rigid N = 1 SUSY field theories on curved backgrounds require a U(1)

R-symmetry gauge field to be turned on. In this case, which is discussed in [40], the covariant derivative

Di in (5.23a) becomes Di + igAi, where g is the R-charge of the corresponding field.
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the (bosonic) identities

1

2
Πi
aΓ

aη+ +
δ

Ψ(0)+i

∫
Σr

ddx|e(0)| AsW[Φ(0)]η− = 0, (5.28a)

− i
2

Πϕ
I η+ −

δ

δζ
I
(0)−

∫
Σr

ddx|e(0)| AsW[Φ(0)]η− = 0, (5.28b)

where we used (3.17). Therefore, we find that on BPS backgrounds

δηΠ
i
Ψ

= 0, δηΠ
ζ
I = 0, (5.29)

which confirms our claim.

Note that from the field theory point of view (5.24) is quite natural, since supersym-

metric vacua are annihilated by the preserved supercharge Q.

In order to convince ourselves, let us check (5.24) for the toy model. First, let us recall

that in the toy model, d = 4 and scaling dimension of ϕ is 3. Then, (5.28)s become

0 =−Γaη+Πi
a+
|e(0)|
κ2

1

4(d−2)2
Dk
[(

d

d−1
R(0)Γ̂

ki
(0)−2R(0)j

kΓ̂ji(0)+2R(0)j
iΓ̂jk(0)

)
η−

]
+
|e(0)|
κ2

1

2(d−1)
ϕ2

(0)Γ̂
ij
(0)Djη−, (5.30)

0 =− i
2
η+Πϕ+

|e(0)|
κ2

i

2
Γ̂i(0)η−∂iϕ(0). (5.31)

By combining (5.31) with the conformal Killing spinor equation for the toy model

Diη+ = Γ̂(0)iη−, (5.32a)

1

2
Γ̂i(0)∂iϕ(0) η+ + ϕ(0)η− = 0, (5.32b)

we get

− ϕ(0)Π
ϕ +
|e(0)|
2κ2

∂iϕ(0)∂
iϕ(0) = 0. (5.33)

This formula can be verified in the toy model by using the bulk BPS equation.

From the bulk BPS equation for ζ with the bulk SUSY parameter ε̂

δε̂ζ =
(
/∂ϕ−W ′

)
ε̂ = 0, W ′ ≡ d

dϕ
W(ϕ), (5.34)

one can obtain

ϕ̇ = −
√

(W ′)2 + ∂iϕ∂iϕ, (5.35)

where we fix the sign from leading asymptotics of ϕ. It then follows from the definition of

πϕ that

πϕ = −
√
−γ
κ2

ϕ̇ =

√
−γ
κ2

√
(−W ′)2 + ∂iϕ∂iϕ. (5.36)

On the other hand, the full bosonic counterterms are given by

Sct =
1

κ2

∫
ddx
√
−γ
[
W − 1

4
R− 1

2
log e−2r

(1

6
ϕ2R+ ∂iϕ∂

iϕ+ · · ·
)]
, (5.37)

– 32 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
7

where the ellipses denote the terms which do not depend on ϕ. The counterterms for the

canonical momenta πϕct are then given by

πϕct =
δ

δϕ
Sct =

√
−γ
κ2

[
− (−W ′)− 1

2
log e−2r

(1

3
ϕR− 2�ϕ

)]
. (5.38)

Furthermore, from the conformal Killing spinor condition (5.23), we obtain

0 =
(
�(0)ϕ(0) −

1

6
ϕ(0)R(0)

)
η+, (5.39)

which implies that the logarithmically divergent terms in (5.38) actually do not contribute

to the counterterms. Eventually, the renormalized canonical momentum Πϕ becomes

Πϕ =
1

κ2
lim

r→+∞
e−3r√−γ ∂iϕ∂

iϕ√
(−W ′)2 + ∂iϕ∂iϕ+ (−W ′)

=
|e(0)|
2κ2

∂iϕ(0)∂
iϕ(0)

ϕ(0)
, (5.40)

which confirms the result (5.33) as well as the anomalous SUSY variation of the renormal-

ized canonical momenta (5.22).

5.4 Conserved charges and supersymmetry algebra with anomaly correction

We recall that given a Killing vector ξi which satisfies the Killing condition19

Lξg(0)ij = D(0)iξj +D(0)jξi = 0, (5.41a)

LξϕI(0) = ξi∂iϕ
I
(0) = 0, (5.41b)

LξζI(0)− = ξiD(0)iζ
I
(0)− +

1

4
D(0)iξjΓ̂

ij
(0)ζ

I
(0)− = 0, (5.41c)

LξΨ(0)+j = ξiD(0)iΨ(0)+j + (D(0)jξi)Ψ
i
(0)+ +

1

4
D(0)kξlΓ̂

kl
(0)Ψ(0)+j = 0, (5.41d)

we obtain a conservation law by combining (5.2d) with (5.2e), namely

Di

[
eaj ξ

jΠi
a + ξj(Πi

ΨΨ+j + Ψ+jΠ
i
Ψ

)
]

= 0. (5.42)

Note that we use the Kosmann’s definition for the spinorial Lie derivative (see e.g. [56] and

(A.11) of [2]20) and the Lie derivative is related to gPBH transformations by

Lξ = δ
(cgct)
ξ + δ

λab=−eiae
j
bD[iξj]

. (5.43)

We emphasize that (5.42) holds for any background that admits a Killing vector.

The conservation law (5.42) allows us to define a conserved charge associated with ξi,

namely [57, 58]

Q[ξ] ≡
∫
∂M∩C

dσi
(
eajΠ

i
a + Πi

ΨΨ+j + Ψ+jΠ
i
Ψ

)
ξj , (5.44)

19g(0)ij ≡ ea(0)ie(0)aj is the induced metric on the boundary ∂M.
20In the literature, including [56], the spinoral Lie derivative is defined by Lξζ = ξiDiζ− 1

4
DiξjΓ̂

ijζ. The

sign of the last term is minus, since the Gamma matrices there satisfy a Grassman algebra in Euclidean

signature, while here we use the Minkowskian signature.
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which is independent of the choice of Cauchy surface C. Note that the conserved charge

Q[ξ] is related to the constraint function by

Q[ξ] = C[ξ, λab = −eiae
j
bD[iξj]]. (5.45)

We also have the conservation laws

Di(Π
i
Ψη+) = Di(η+Πi

Ψ
) = 0, (5.46)

which follow from the SUSY and super-Weyl Ward identities (5.2a) and (5.2b) for the

CKS parameters η+ and η+. Note that the conservation laws (5.46) hold only on bosonic

backgrounds. This allows us to define the conserved supercharges

Qs[η+] ≡
∫
∂M∩C

dσi Πi
Ψη+, Qs[η+] ≡

∫
∂M∩C

dσi η+Πi
Ψ
. (5.47)

On a bosonic background we can identify these conserved charges with the constraint

functions, namely

Qs[η+] = C[η+, η−], Qs[η+] = C[η+, η−]. (5.48)

It then follows from (5.22) that on a bosonic background we have

{Qs[η+], Qs[η+]}
∣∣∣
Bosonic

=

∫
∂M∩C

dσi η+{C[η+, η−],Πi
Ψ}
∣∣∣
Bosonic

(5.49)

=

∫
∂M∩C

dσi

[
1

2
Πi
aη+Γaη+ + η+

( δ

δΨ(0)+i

∫
∂M

ddx|e(0)|AsWη−

)]
Bosonic

.

In the case where the conformal Killing vector21

Ki ≡ iη+Γ̂iη+, (5.50)

becomes a Killing vector, we can see that on a bosonic background the above commutator

becomes

{Qs[η+],Qs[η+]}=− i
2
Q[K]+

∫
∂M∩C

dσi η+

( δ

δΨ(0)+i

∫
∂M

ddx|e(0)|AsWη−

)
. (5.51)

Not surprisingly, the super-Weyl anomaly corrects the supersymmetry algebra, too.

We can obtain other commutators such as {Q[ξ], Qs[η+]}. It is possible because Q[ξ]

for the Killing vector ξi is conserved for any background so that∫
∂M∩C

dσi {Q[ξ],Πi
Ψ}η+ =

∫
∂M∩C

dσk {C[ξ,λab =−eiae
j
bD[iξj]],Π

k
Ψ}η+

=

∫
∂M∩C

dσi

[
−Πi

ΨLξη++Dj [(ξ
jΠi

Ψ−ξiΠ
j
Ψ)η+]+ξiDj(Π

j
Ψη+)

]
,

where the second term vanishes by using Stokes’ theorem. The third term is also zero on

a bosonic background, due to the conservation law. Therefore, we have

{Q[ξ], Qs[η+]} = −
∫
∂M∩C

dσi Πi
ΨLξη+ = −Qs[Lξη+], (5.52)

21One can easily check that Ki satisfies the conformal Killing condition, by using (5.23).
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and in the same way

{Q[ξ], Qs[η+]} = −
∫
∂M∩C

dσi (η+

←−
L ξ)Πi

Ψ
= −Qs[η+

←−
L ξ], (5.53)

since Lξη+ and η+

←−
L ξ become conformal Killing spinors [56], i.e.

Di(Lξη+) =
1

d
Γ̂iΓ̂

jDj(Lξη+), (η+

←−
L ξ)
←−
D i =

1

d
(η+

←−
L ξ)
←−
D jΓ̂

jΓ̂i. (5.54)

We note that (5.52) and (5.53) can be obtained in the other way, namely by computing

{Qs[η+], eajΠ
i
a + Πi

ΨΨ+j + Ψ+jΠ
i
Ψ
}, {Qs[η+], eajΠ

i
a + Πi

ΨΨ+j + Ψ+jΠ
i
Ψ
}. (5.55)

In summary, the supersymmetry algebra on a curved (bosonic) background is

{Qs[η+], Qs[η+]} = − i
2
Q[K] +

∫
∂M∩C

dσi η+

( δ

δΨ(0)+i

∫
∂M

ddx|e(0)|AsWη−

)
,

{Q[ξ], Qs[η+]} = −Qs[Lξη+],

{Q[ξ], Qs[η+]} = −Qs[η+

←−
L ξ].

(5.56)

(5.56) closely resembles the SUSY algebra presented in the literature (see e.g. [1, 59, 60]),

except for the super-Weyl anomaly-effect term.

We comment that (5.56) can be obtained without using the Poisson bracket, but in

an equivalent and rather simple way. Recall that a symmetry of the field theory leads to a

conservation of the corresponding (anomalous) Noether current J i (with the anomaly AJ)

DiJ
i = AJ , (5.57)

from which we derive the variation of any operator O under the symmetry transformation

(see e.g. (2.3.7) in [9]), namely

δO(x) +

∫
∂M

ddy [DiJ
i(y)−AJ(y)]O(x) = 0, (5.58)

where the second term can be computed by differentiating the relevant Ward identities

with the source dual to operator O(x). Now one can readily see that the commutator of

charges becomes

{Q1, Q2} =

∫
∂M∩C

dσi (δ1J
i
2) = −

∫
∂M∩C

dσi

(∫
∂M

ddy [DjJ
j
1(y)−AJ(y)]J i2

)
, (5.59)

and this prescription gives the same result with (5.56). See e.g. appendix E for derivation

of {Q[ξ], Qs[η+]}.
Now that we know from the last section that the l.h.s. of (5.51) vanishes on BPS

backgrounds, we can conclude that the conserved charge associated with Ki on BPS back-

grounds is totally fixed to be a functional derivative of the fermionic anomaly, namely

Q[K]
∣∣∣
BPS

= −2i

∫
∂M∩C

dσi η+

{
δ

δΨ(0)+i

∫
∂M

ddx|e(0)|AsWη−

}
. (5.60)
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Depending on the theory, Ki can be a combination of other Killing vectors such as ∂t and

∂ψ, where ψ refers to an angular coordinate. If this is the case, (5.60) can be regarded as

a relation of the conserved charges on the supersymmetric background, but accompanied

with an anomalous contribution. A similar relation is found in [40], which explains the

discrepancy of the BPS condition (see e.g. (C.16) of [45])

〈H〉+ 〈J〉+ γ 〈Q〉 = 0, (5.61)

for pure AdS5 is precisely due to the anomalous contribution coming from the fermionic

anomalies.

6 Neumann boundary conditions

Most of the computations so far are for the plus sign choice of (3.3b) at the beginning of

section 3. This plus sign is actually equivalent to imposing Dirichlet boundary conditions

on the spin 1/2 field ζ. Independently from this choice, we could determine the leading

asymptotics of the scalar field, as emphasized before. This allows us to use the result of

appendix B.3 and B.4 to conclude that the minus sign choice can be supersymmetric only

when mass of its scalar SUSY-partner field belongs to the window [61–63]

−
(
d

2

)2

≤ m2 ≤ −
(
d

2

)2

+ 1. (6.1)

In this window (3.3b) is already finite, implying that the canonical momentum of ζ− is

not renormalized. Since ζ+ by itself becomes the renormalized canonical momentum, the

change of the sign from plus to minus is in fact a Legendre transformation of the renormal-

ized on-shell action Ŝren, which is equivalent to imposing Neumann boundary conditions on

ζ− [64]. We have seen that Ŝren in the case of the plus sign choice is (ε+) supersymmetric

(Dirichlet boundary conditions for scalar the field were implicitly imposed). Therefore, in

order to preserve SUSY, one can expect that the boundary conditions for the scalar field

should also be changed from Dirichlet to Neumann by a Legendre transformation.

To see this, one has to prove that the total Legendre transformation action

SL = −
∫

Σr

(π̂ζζ− + ζ−π̂
ζ + ϕπ̂ϕ), π̂ζ =

√
−γ
κ2

ζ+, (6.2)

is invariant under an ε+ transformation. Note that the variation of Πζ
I gives directly

how gPBH transformations act on ζ+. We again consider only one scalar field, and it is

straightforward to extend the result here to the case for several scalar fields. From (5.22),

one can find that the action of ε+ on SL gives

δε+SL ∼ −
∫

Σr

( i
2
π̂ϕζ−ε+ −

i

2
∂iϕε+Γ̂iπ̂ζ − i

2
π̂ϕζ−ε+ −

i

2
ϕ∂i(ε+Γ̂iπ̂ϕ) + h.c.

)
= 0.

This confirms that the total action S + SL for the Neumann boundary condition is still

invariant under an ε+ transformation.
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When it comes to the ε− variation of SL, one finds that all the momentum-related

terms are canceled, as before. The anomalous terms in the ε− variation of the renormalized

canonical momenta, however, are not canceled but contribute to the ε− anomaly of S+SL,

together with AsW. Namely, we obtain for the toy model that

δε−(S + SL) ∼
∫

Σr

ddx
√
−γ ε−

(
A(G)

sW −
1

6κ2
ϕ2Γ̂ijDiΨ+j

)
≡
∫

Σr

ddx
√
−γ ε−ANsW, (6.3)

where the super-Weyl anomaly for Neumann boundary conditions is

ANsW = A(G)
sW −

1

6κ2
ϕ2Γ̂ijDiΨ+j . (6.4)

7 Concluding remarks

In this work we have considered a generic N = 2 5D supergravity theory with its fermionic

sector in the context of holographic renormalization, through which we have obtained a

complete set of supersymmetric counterterms. We have also found that scalars and their

superpartners should satisfy the same boundary conditions in order for the theory to be

consistent with SUSY.

The Ward identities (5.2) and the anomalies lead to rather remarkable consequences.

By means of them, we showed that the SUSY transformation of local operators and the

SUSY algebra of a theory which has N = 1 4D SCFT in curved space as a UV fixed point

become anomalous at the quantum level, see (5.25) and (5.56). We comment that once

the R-symmetry gauge field is turned on, the R-charge and the related terms appear on

r.h.s. of the first line (5.56), see [40]. Note that the anomalous terms are non-vanishing in

general on curved backgrounds, even where all anomalies vanish.

We emphasize that our whole analysis here crucially relies on the existence of a scalar

superpotential W, in terms of which the Lagrangian is expressed. If the theory does not

possess any superpotential, one could introduce a local and approximate superpotential

which is sufficient for reproducing all divergent terms of the scalar potential, as done

in [65]. Now one can see that the approximate superpotential should meet more restrictive

criteria for the supersymmetric holographic renormalization. To make this point clear, let

us discuss the approximate superpotential suggested in [65], see (5.15) there. One can find

from the BPS equations (3.20) and (3.25) and the algebraic equation (3.26) in [65] that

the BPS solution’s flow to leading order is

dψ

dr
∼ −ψ, (7.1a)

dϕ

dr
∼ −

(
2ϕ+

√
2

3
ψ2

)
, (7.1b)

dχ

dr
∼ −2χ

(
1 +

ψ2

√
6ϕ

)
, (7.1c)

where the r.h.s. of the last equation is a non-analytic function of ϕ around ϕ = 0. Hence

it is impossible to find a analytic and approximate superpotential consistent with the BPS
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flow equations, which means that we need a more generic N = 2 gauged SUGRA model to

study [65]. Notice that this inconsistency of the approximate superpotential with the BPS

flow equations implies that the superpotential suggested in [65] is not approximate for the

fermionic sector of SUGRA.

As long as there exists a superpotential (or at least an approximate one for the whole

sector of SUGRA), many of our results here can be extended straightforwardly to other

dimensions. A direct application of the analysis of this paper to other dimensions is to

obtain the 2D super-Virasoro algebra with a central extension. Let us explain this here

schematically. The super-Weyl anomaly in 2D SCFT can be easily found by using the trick

of section 5.1.3, namely that the SUSY variation of the super-Weyl anomaly is equal to

the Weyl anomaly. Since the Weyl anomaly is eai T ia = c
24πR, we see immediately that the

super-Weyl anomaly in 2D is ΓiSi ∼ i c
24πΓijDiΨj up to a constant coefficient, depending

on the convention. It follows that the anomalous variation of the super-current operator is

δηSi = − i
4

ΓaηT ia −
ic

48π
Γ̂ijΓ̂kDjDkη, (7.2)

where η is the 2D CKS, satisfying the condition

Diη =
1

2
Γ̂iΓ̂

jDjη, or Γ̂jΓ̂iDjη = 0. (7.3)

Note that the anomalous term in (7.2) vanishes only when the 2D Ricci scalar R = 0 and η

is a spinor, all second derivatives of which vanish. Since (7.3) admits an infinite number of

solutions, as 2D conformal Killing vector equation, one gets infinite number of conserved

super-charges Gr, which are added to the Virasoro algebra to form the super-Virasoro

algebra. Now one can see that the central extension in (see e.g. (10.2.11b) in [66])

{Gr, Gs} = 2Lr+s +
c

12
(4r2 − 1)δr,−s (7.4)

of the super-Virasoro algebra in 2D flat background is derived from the anomalous term

of (7.2).

One should keep in mind, however, that since the representation of the spinor fields

strongly depends on the dimension of spacetime it might not be easy to put the SUGRA

action into the form of (2.1) in other (especially odd) dimensions.
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A Notation, conventions for Gamma matrices and useful identities

Throughout this paper Greek indexes µ, ν and α, β, · · · refer to the coordinate and flat

directions in the bulk respectively, and the Latin indexes i, j,m, n, p, q, · · · and a, b, · · ·
refer to the coordinate and flat directions on the radial slice respectively. The flat indices
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which correspond to radial-like and time-like directions are special, so we denote them by

r̄ and t̄ respectively. The capital Latin letters A,B, · · · indicate the coordinate directions

on the scalar and hyperino manifold. ∇µ, Di and Di refer to the covariant derivative in

the bulk and the covariant derivatives of the bosonic and fermionic fields on the radial

slice respectively.

We use the hermitian representation of the Lorentzian Gamma matrices, following the

convention in [46]. Γα and Γa indicate the Gamma matrices along the flat directions in the

bulk and the boundary, while Γµ and Γ̂i refer to the Gamma matrices along the coordinate

directions in the bulk and the boundary. The relations between these Gamma matrices are

provided in appendix C. Both in the bulk and on the boundary the hermitian conjugation

of the Gamma matrix is given by

Γµ† = Γt̄ΓµΓt̄, Γ̂i† = ΓtΓ̂iΓt̄. (A.1)

The following formulas, which hold in any D dimensional spacetime (see e.g. section 3

in [46]), are frequently used in this paper.

Γµνρ =
1

2
{Γµ,Γνρ}, (A.2a)

Γµνρσ =
1

2
[Γµ,Γνρσ], (A.2b)

ΓµνρΓστ = Γµνρστ + 6Γ[µν
[τδ

ρ]
σ] + 6Γ[µδν [τδ

ρ]
σ], (A.2c)

ΓµνρσΓτλ = Γµνρστλ + 8Γ[µνρ
[λδ

σ]
τ ] + 12Γ[µνδρ[λδ

σ]
τ ], (A.2d)

[Γµν ,Γρσ] = 2(gνρΓµσ − gµρΓνσ − gνσΓµρ + gµσΓνρ), (A.2e)

ΓµνρΓρ = (D − 2)Γµν , (A.2f)

ΓµνρΓρσ = (D − 3)Γµνσ + 2(D − 2)Γ[µδν]
σ, (A.2g)

Γµν∇µ∇νζ = −1

4
Rζ, (A.2h)

Γµνρ∇ν∇ρζ = −1

4
(RΓµ − 2Rν

µΓν)ζ, (A.2i)

where δ refers to the Kronecker delta.

There are left and right acting functional derivatives with respect to fermionic variable

ψ, namely −→
δ

δψ
,

←−
δ

δψ
, (A.3)

and in most cases the rightarrow symbol → is omitted. Here ψ denotes the Dirac adjoint

of the spinor ψ, namely

ψ ≡ ψ†(iΓt̄). (A.4)

The affine connection Γµνρ is related to the spin connection by (see e.g. (7.100) in [46])

Γρµν = Eρα(∂µE
α
ν + ωµ

α
βE

β
ν ). (A.5)

In this work we consider the supergravity theory in the second order formalism. This means

that our theory is torsionless and thus the spin connection can bre expressed in terms of
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the vielbein as

ωµαβ = Eνα∂µE
ν
β + ΓρµνEραE

ν
β . (A.6)

The variation of the torsionless spin connection is

δωµαβ = Eν[αDµδEβ]ν − Eν[αDνδEβ]µ + eραE
ν
βEγµD[νδE

γ
ρ]. (A.7)

which is useful for many of our computations. The covariant derivatives of the fermionic

fields are given by

∇µΨν = ∂µΨν +
1

4
ωµαβΓαβΨν − ΓρµνΨρ, (A.8)

∇µζI = ∂µζ
I +

1

4
ωµαβΓαβζI . (A.9)

B ADM decomposition and generalized PBH transformation

A preliminary step of the Hamiltonian analysis of the gravitational theory is to decompose

the variables of theory including the metric (or the vielbeins) into a radial-like (or time-like)

direction and the other transverse directions (a.k.a. ADM decomposition [67]). Coupling

gravity to spinor fields requires vielbeins to appear in the action explicitly and thus the

ADM decomposition of the vielbeins instead of the metric should be done.

The ADM decomposition brings us a natural choice of gauge for the variables of the

theory, which is referred to as the Fefferman-Graham (FG) gauge. In the FG gauge, the

Hamiltonian analysis becomes much simpler.

B.1 ADM decomposition of vielbein and the strong Fefferman-Graham gauge

We begin with picking a suitable radial coordinate r and doing the ADM decomposition

of the metric to run the Hamiltonian formalism. Since the vielbein explicitly appears in

the action through the covariant derivative of the spinor fields we need to decompose the

vielbein itself rather than the metric.

Choosing the radial coordinate r, we describe the bulk space as a foliation of the

constant r-slices, which we denote by Σr. Let Eα be the vielbeins of the bulk and we

decompose them as

Eα =
(
Nnα +N jeαj

)
dr + eαj dx

j , (B.1)

such that

gµν = EαµE
β
ν ηαβ , γij = eαi e

β
j ηαβ , nαe

α
i = 0, ηαβn

αnβ = 1, (B.2)

where α, β are bulk tangent space indices and η = diag (1,−1, 1, . . . , 1) (where ηt̄t̄ = −1).

Note thatN andNα are known as lapse and shift functions respectively. One can check that

ds2 ≡ gµνdxµdxν = (N2 +N iNi)dr
2 + 2Nidrdx

i + γijdx
idxj , (B.3)

which usually appears in textbooks. The inverse vielbeins are then given by

Erα =
1

N
nα, Eiα = eiα −

N i

N
nα. (B.4)
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It follows that

Γr = ΓαErα =
1

N
nαΓα ≡ 1

N
Γ. (B.5)

The extrinsic curvature on the radial slice Σr is defined as

Kij ≡
1

2N
(γ̇ij −DiNj −DjNi) (B.6)

and K ≡ γijKij . Moreover,

Γi = ΓαEα
i = Γ̂i − N i

N
Γ, (B.7)

where Γ̂i ≡ Γαeiα. These vielbeins satisfy the relation

eiαe
β
i + nαn

β = δβα. (B.8)

One can also see that the Γ̂is satisfy the Clifford algebra on the slice and Γ anticommutes

with all Γ̂is, i.e.

{Γ̂i, Γ̂j} = 2γij , {Γ̂i,Γ} = 0. (B.9)

It follows that the matrix Γ can be used to define the ‘radiality’ (see e.g. [38]) on the slice,

so that a generic spinor ψ on the slice can be split into two by radiality,22

ψ± ≡ Γ±ψ, (B.10)

where Γ± ≡ 1
2 (1± Γ).

We recall that splitting spinor fields by their radiality is inevitable because different

radiality leads to different asymptotic behavior [32, 33] as well as the constraints that

relate the fermionic fields and their conjugate momenta should be solved in a Lorentz

invariant way [36]. Remind that the fermionic fields that follow the first-derivative principle,

differently from the bosonic fields that follow the second-derivative one, are related to their

conjugate momenta by definition. Taking the Dirac Lagrangian as an example, we find that

LDirac = −ΨΓµDµΨ−mΨΨ =⇒ ΠΨ ≡ LDirac

←−
δ

δΨ̇
= −ΨΓr. (B.11)

In order to simplify the calculations that follow it is convenient to pick a particular

vielbein frame so that

nα = (1, 0), eir̄ = 0, eri = 0, (B.12)

and eai becomes the vielbein on the slice Σr. We will call the gauge (B.12) combined with

the traditional Fefferman-Graham (FG) gauge

N = 1, N i = 0, Ψr = 0, (B.13)

as the strong FG gauge. Namely, the strong FG gauge refers to

E r̄r = 1, Ear = 0, Eri = 0, Ψr = 0. (B.14)

22When d = D − 1 is even number, radiality can be regarded as chirality.
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B.2 Decomposition of the covariant derivatives

We obtain (see also (88) and (89) in [36])

ωrαβ = n[αṅβ] + ei[αėβ]
i + 2n[αeβ]

i
(
∂iN −N jKji

)
−DiNje[α

ieβ]
j , (B.15)

ωiαβ = nα∂inβ + ejα∂ieβ
j + Γkij [γ]ekαeβ

j + 2Kj
i ej[αnβ], (B.16)

where we have used the Christoffel symbols

Γrrr =N−1
(
Ṅ+N i∂iN−N iN jKij

)
,

Γrri =N−1
(
∂iN−N jKij

)
,

Γrij =−N−1Kij ,

Γirr =−N−1N iṄ−NDiN−N−1N iN j∂jN+Ṅ i+N jDjN
i+2NN jKi

j+N
−1N iNkN lKkl,

Γirj =−N−1N i∂jN+DjN
i+N−1N iNkKkj+NK

i
j ,

Γkij = Γkij [γ]+N−1NkKij .

Denoting the spin connection on the radial cut-off as ω̂iab, we get

ω̂iab = eja∂ie
j
b +Γkij [γ]ekae

j
b =ωiab, (B.17a)

ωiαβΓαβ = ω̂iabΓ
ab+2Kjie

j
αnβΓαβ = ω̂iabΓ

ab+2KjiΓ̂
jΓ, (B.17b)

ωrαβΓαβ = eiaė
i
bΓ

ab+2ΓΓ̂i
(
∂iN−N jKji

)
−Γ̂ijDiNj , (B.17c)

∇iΨj =DiΨj+
1

2
KliΓ̂

lΓΨj+
1

N
Kij(Ψr−NkΨk), (B.17d)

∇iΨr =DiΨr+
1

2
KjiΓ̂

jΓΨr−ΓjirΨj−ΓrirΨr, (B.17e)

∇rΨi = Ψ̇i+
1

4

[
eaiė

i
bΓ
ab+2ΓΓ̂j

(
∂jN−N lKlj

)
−Γ̂jlDjNl

]
Ψi−ΓjirΨj−ΓrirΨr, (B.17f)

∇iζ =Diζ+
1

2
KjiΓ̂

jΓζ, (B.17g)

∇rζ = ζ̇+
1

4

[
eaiė

i
bΓ
ab+2ΓΓ̂j

(
∂jN−N lKlj

)
−Γ̂jlDjNl

]
ζ, (B.17h)

where

DiΨj = ∂iΨj +
1

4
ω̂iabΓ

abΨj − Γkij [γ]Ψk, (B.18a)

DiΨr = ∂iΨr +
1

4
ω̂iabΓ

abΨr, (B.18b)

Diζ = ∂iζ +
1

4
ωiabΓ

abζ, (B.18c)

are the covariant derivatives of the spinors on the slice Σr. Note that in the final compu-

tations we used the gauge (B.12).

B.3 Equations of motion and leading asymptotics of fermionic fields

In order to discuss with the transformation law of the induced fields, we first study the

leading asymptotic behavior of the fields, which can be understood from equations of
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motion. For Ψµ and ζI they are respectively,

Γµνρ∇νΨρ −WΓµνΨν −
i

2
GIJ

(
/∂ϕI + GIK∂KW

)
ΓµζJ = 0, (B.19)

and

GIJ
(
δJK /∇+ ΓJKL[G]/∂ϕL

)
ζK +MIJ(ϕ)ζJ +

i

2
GIJΓµ

(
/∂ϕJ − GJK∂KW

)
Ψµ = 0. (B.20)

Extracting the relevant terms, we obtain in the gauge (B.13)

0 ∼ − Γ̂ij
(

Ψ̇+j −
1

2
Ψ+j

)
+ Γ̂ij

(
Ψ̇−j +

2d− 3

2
Ψ−j

)
+ Γ̂ijkDj(Ψ+k + Ψ−k), (B.21)

0 ∼ ζ̇+ +

(
d

2
+Mζ

)
ζ+ − ζ̇− −

(
d

2
−Mζ

)
ζ− + Γ̂iDiζ+ − Γ̂iDiζ− +

i

2
(ϕ̇+ µϕ)Γ̂iΨ+i

+
i

2
Γ̂iΓ̂j∂jϕΨ+i, (B.22)

where we assume that there is only one scalar ϕ and one spin-1/2 field ζ for simplicity, and

Mζ which is the mass of ζ and µ are respectively

µ = −∂ϕ∂ϕW
∣∣∣
ϕ=0

, Mζ =Mϕϕ

∣∣∣
ϕ=0

, (B.23)

under the assumption that the scalar manifold metric is canonically normalized. µ and Mζ

are related by

Mζ = −µ+
d− 1

2
. (B.24)

When d > 2, the leading asymptotics of Ψ+i and Ψ−i are

Ψ+i(r, x) ∼ e
r
2 Ψ(0)+i(x), (B.25)

Ψ−i(r, x) ∼ −1

2
e−

1
2
r

(
d− 2

d− 1
Γ̂(0)

iΓ̂
(0)kl − Γ̂(0)

i
kl

)
D(0)
k Ψ(0)+l(x), (B.26)

where we used eai (r, x) ∼ erea(0)i(x) in AlAdS geometry, and Γ(0)i and D(0) refer to the

Gamma matrices and the covariant derivative with respect to ea(0)i.

We need to be more careful, regarding ζ. First, we note that since we would like to turn

on an arbitrary source for the scalar field, the leading asymptotics of ϕ should always be

ϕ(r, x) ∼ e−µrϕ(0)(x) as can be seen from (4.8c). Therefore, the final two terms in (B.22)

can be discarded from the argument. Now there are 3 cases to consider:

1. Mζ > 1/2 (or µ < d
2 − 1)

The leading asymptotics of ζ− and ζ+ are respectively

ζ−(r, x) ∼ e−(µ+ 1
2

)rζ(0)−(x), (B.27)

ζ+(r, x) ∼ − 1

µ+ 3
2

(
e−(µ+ 3

2
)rΓ̂(0)iD(0)

i ζ(0)−(x)− i

2
Γ̂(0)iΓ̂(0)j∂jϕ(0)(x)Ψ(0)+i(x)

)
.

(B.28)
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2. Mζ < −1/2 (or µ > d
2)

Here the behavior of ζ− and ζ+ is opposite to the first case, namely

ζ+(r, x) ∼ e−(d−µ− 1
2

)rζ(0)+(x), (B.29)

ζ−(r, x) ∼ 1

d− µ+ 1
2

e−(d−µ+ 1
2

)rΓ̂(0)iD(0)
i ζ(0)+(x). (B.30)

3. 1/2 ≥Mζ ≥ −1/2 (or d
2 ≥ µ ≥

d
2 − 1)

This case actually coincides with the double quantization window [61–63] of the scalar

field. The leading asymptotics are

ζ−(r, x) ∼ e−(µ+ 1
2

)rζ(0)−(x), (B.31)

ζ+(r, x) ∼ e−(d−µ− 1
2

)rζ(0)+(x). (B.32)

B.4 Generalized PBH transformations

Let us find the most general bulk symmetry transformations that preserve the strong FG

gauge (B.14), which we refer to as the generalized Penrose-Brown-Henneaux (gPBH) trans-

formations [68–70]. We can immediately see that the local symmetries of the bulk SUGRA

action (2.1) are diffeomorphisms, local Lorentz and supersymmetry transformations. Their

infinitesimal action on the bulk fields takes the form

δξ,λ,εE
α
µ = ξν∂νE

α
µ + (∂µξ

ν)Eαν − λαβEβµ +
1

2
(εΓαΨµ −ΨµΓαε), (B.33a)

δξ,λ,εΨµ = ξν∂νΨµ + (∂µξ
ν)Ψν −

1

4
λαβΓαβΨµ + (∇µ +

1

2(d− 1)
WΓµ)ε, (B.33b)

δξ,λ,εϕ
I = ξµ∂µϕ

I +
i

2
(εζI − ζIε), (B.33c)

δξ,λ,εζ
I = ξµ∂µζ

I − 1

4
λαβΓαβζ

I − i

2
(/∂ϕI − GIJ∂JW)ε, (B.33d)

with parameters ξµ, λαβ (λαβ = −λβα) and ε respectively. The condition that imposes the

strong FG gauge is then

0 = ξ̇r, (B.34a)

0 = ξ̇ieai − λar̄, (B.34b)

0 = ∂iξ
r − λr̄aeai +

1

2
(ε−Ψ+i + Ψ+iε− − ε+Ψ−i −Ψ−iε+), (B.34c)

0 = ε̇+ + ε̇− + ξ̇i(Ψ+i + Ψ−i) +
1

4
eaiė

i
bΓ
ab(ε+ + ε−) +

1

2(d− 1)
W(ε+ − ε−), (B.34d)
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and its solution is

ξr =σ (x) , (B.35a)

ξi (r,x) = ξio (x)−
∫ r

dr′ γij
(
r′,x

)[
∂jσ+

1

2

(
ε−Ψ+j+Ψ+jε−−ε+Ψ−j−Ψ−jε+

)]
, (B.35b)

λr̄a = eai
[
∂iσ+

1

2

(
ε−Ψ+i+Ψ+iε−−ε+Ψ−i−Ψ−iε+

)]
, (B.35c)

λab =λo
a
b (x)+· · · , (B.35d)

ε+ (r,x) = exp

[
r

2
+

∫ r

dr′
(
−W+(d−1)

2(d−1)
+γij

(
r′,x

)
∂jσ−

1

4
eaiė

i
bΓ
ab+O

(
Ψ2
))]

εo+ (x) ,

(B.35e)

ε− (r,x) = exp

[
−r

2
+

∫ r

dr′
(
W+(d−1)

2(d−1)
+γij(r′,x)∂jσ−

1

4
eaiė

i
bΓ
ab+O(Ψ2)

)]
εo−(x),

(B.35f)

where σ(x), ξio(x), λo
a
b(x) and εo±(x) are ‘integration constants’ which depend only on

the transverse coordinates. Taking into account the leading behavior of the vielbeins and

the gravitino one can see that the integral terms are subleading in (B.35). It follows that

the leading asymptotics of the generalized PBH transformations are parameterized by the

arbitrary independent transverse functions

σ(x), ξio(x), λo
a
b(x), εo±(x), (B.36)

which in fact correspond to the local conformal, diffeomorphism, Lorentz, SUSY, and super-

Weyl transformations of the induced fields on the radial slice Σr respectively, as we will

see soon.

Extracting the leading terms in (B.33) and taking into account the asymptotic behavior

of the induced fields, we obtain how the sources transform, namely (from now on and also

in the main text we do not write the subscript o)

δξ,λ,εe
a
i ∼ ξj∂jeai + ∂iξ

jeaj + eai σ − λabebi +
1

2
(ε+ΓaΨ+i + h.c.) , (B.37a)

δξ,λ,εΨ+i ∼
1

2
Ψ+iσ + ξj∂jΨ+i + (∂iξ

j)Ψ+j + Diε+ − Γ̂iε− −
1

4
λabΓabΨ+i, (B.37b)

δξ,λ,εϕ
I ∼ −GIJ∂JWσ + ξi∂iϕ

I +
i

2

(
ε+ζ

I
− + h.c.

)
+
i

2

(
ε−ζ

I
+ + h.c.

)
, (B.37c)

where we do not write down the variation of Ψ−i since unlike Ψ+i its leading term (B.26)

does not transform as a source so that it cannot be used as a generalized coordinate [34].

As for ζI , we need a careful discussion, since its leading behavior changes according to

its mass. In the first case where Mζ ≥ 1/2, ζI+ cannot be treated as a source, like the case

of gravitino Ψ−i. We also find that in the second case where M I
ζ ≤ −1/2 (B.37c) is not

consistent with the leading behavior of ϕ ∼ e−µr due to the term i
2(ε−ζ

I
++h.c.) ∼ e−(d−µI)r,

which implies that ζI+ cannot be turned on as a source, in order for the theory to be

supersymmetric. In the final case where 1/2 > Mζ > −1/2, both ζI+ and ζI− can be used as
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sources. The transformation law in this case is discussed in section 6. In summary, what

we obtain is

δξ,λ,εe
a
i ∼ ξj∂jeai +∂iξ

jeaj +eai σ−λabebi+
1

2
(ε+ΓaΨ+i+h.c.) , (B.38a)

δξ,λ,εΨ+i∼
1

2
Ψ+iσ+ξj∂jΨ+i+(∂iξ

j)Ψ+j+Diε+−Γ̂iε−−
1

4
λabΓabΨ+i, (B.38b)

δξ,λ,εϕ
I ∼GIJ∂JWσ+ξi∂iϕ

I+
i

2

(
ε+ζ

I
−+h.c.

)
, (B.38c)

δξ,λ,εζ
I
−∼−

(
d

2
δIK−GIJMJK

)
ζK− σ+ξi∂iζ

I
−+iGIJ∂JWε−−

i

2
Γ̂i∂iϕ

Iε+−
1

4
λabΓabζ

I
−,

(B.38d)

where we inverted the mass of ζI− into the (scalar) σ-manifold language.

C Decomposition of the action and the fermion boundary terms

In this appendix we decompose the terms in the fermionic sector of the action (2.1).

C.1 Decomposition of the kinetic action of the hyperino field

The kinetic term for ζI in the action (2.1) is decomposed as

GIJ
(
ζ
I
Γµ∇µζJ − (∇µζ

I
)ΓµζJ

)
=GIJζ

I (
Γr∇rζJ + Γi∇iζJ

)
− GIJζ

I←−∇rΓ
rζJζJ − GIJζ

I←−∇ iΓ
iζJ

=GIJζ
I

[
1

N
Γζ̇J +

1

4N
Γ
(
eaiė

i
bΓ
ab + 2ΓΓ̂i

(
∂iN −N jKij

)
− Γ̂ijDiNj

)
ζJ

+

(
Γ̂i − N i

N
Γ

)(
DiζJ +

1

2
KijΓ̂

jΓζJ
)]

− GIJ

[
ζ̇
I − 1

4
ζ
I
[
eaiė

i
bΓ
ab + 2ΓΓ̂i

(
∂iN −N jKij

)
− Γ̂ijDiNj

] ] 1

N
ΓζJ

− GIJ
(
ζ
I←−D i −

1

2
Kijζ

I
Γ̂jΓ

)(
Γ̂i − N i

N
Γ

)
ζJ

=
1

N
GIJ

(
ζ
I
−ζ̇

J
+ − ζ

I
+ζ̇

J
− − ζ̇

I
−ζ

J
+ + ζ̇

I
+ζ

J
−

)
+

1

2N
GIJeaiėibζ

I
ΓΓabζJ

− 1

2N
DiNjGIJζ

I
ΓΓ̂ijζJ + GIJ

(
ζ
I
/DζJ − ζI

←−
/D ζJ

)
− N i

N
GIJ

(
ζ
I
ΓDiζJ − ζ

I←−D iΓζ
J
)
, (C.1)

where the terms in the first bracket can be recast into

GIJ
(
ζ
I
−ζ̇

J
+−ζ

I
+ζ̇

J
−−ζ̇

I
−ζ

J
++ζ̇

I
+ζ

J
−

)
=GIJ∂r

(
ζ
I
−ζ

J
++ζ

I
+ζ

J
−

)
−2GIJζ

I
+ζ̇

J
−−2GIJ ζ̇

I
−ζ

J
+

=
1√
−γ

∂r

(
GIJ
√
−γζIζJ

)
−
(
NK+DkN

k
)
GIJζ

I
ζJ

−
(
ϕ̇K−N i∂iϕ

K+N i∂iϕ
K
)
∂KGIJζ

I
ζJ−2GIJζ

I
+ζ̇

J
−−2GIJ ζ̇

I
−ζ

J
+. (C.2)
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Finally, the hyperino kinetic terms are decomposed into

GIJ
(
ζ
I
Γµ∇µζJ − (∇µζ

I
)ΓµζJ

)
=

1

N
√
−γ

∂r

(√
−γ GIJζ

I
ζJ
)
− 2

N
GIJ

(
ζ
I
+ζ̇

J
− + ζ̇

I
−ζ

J
+

)
−
(
K +

1

N
DkN

k

)
GIJζ

I
ζJ

+
1

2N
GIJeaiėibζ

I
ΓabΓζJ − 1

N

(
ϕ̇K −N i∂iϕ

K +N i∂iϕ
K
)
∂KGIJζ

I
ζJ

+ GIJ
(
ζ
I
Γ̂iDiζJ − ζ

I←−DiΓ̂iζJ
)

+
1

N
GIJ

[
−1

2
DiNj

(
ζ
I
Γ̂ijΓζJ

)
−N iζ

I
ΓDiζJ +N i(ζ

I←−D i)Γζ
J

]
. (C.3)

C.2 Gravitino part

Repeating the same computation for the kinetic terms for gravitino as before, we obtain(
ΨµΓµνρ∇νΨρ −Ψµ

←−
∇νΓµνρΨρ

)
+

1

(D − 2)
ΨµΓµνρ (WΓν) Ψρ

=
1

N
√
−γ

∂r

(√
−γΨiΓ̂

ijΨj

)
− 2

N

(
Ψ̇+iΓ̂

ijΨ−j + Ψ−iΓ̂
ijΨ̇+j

)
−
(
K +

1

N
DkN

k

)
ΨiΓ̂

ijΨj −
1

4N
eakė

k
b ΨiΓ{Γ̂ij ,Γab}Ψj

+
1

2N
KlkΨi

(
N [Γ̂ikj , Γ̂l]Γ +N i[Γ̂kj , Γ̂l]−N j [Γ̂ki, Γ̂l]

)
Ψj

+
1

2N
Kki

(
Ψj [Γ̂

ij , Γ̂k]Ψr −Ψr[Γ̂
ij , Γ̂k]Ψj

)
+

1

N

(
Ψj
←−
D iΓΓ̂ijΨr + ΨrΓΓ̂ijDiΨj −ΨjΓΓ̂ijDiΨr −Ψr

←−
D iΓΓ̂ijΨj

)
− 1

N
W
(

ΨrΓΓ̂iΨi + ΨiΓ̂
iΓΨr

)
− 1

4N
Ψi

(
2∂kN [Γ̂ij , Γ̂k]− (DkNl)Γ{Γ̂ij , Γ̂kl}

)
Ψj

+
1

N
Ψj

(
N Γ̂jik −N jΓΓ̂ik −N iΓΓ̂kj −NkΓΓ̂ji

)
DiΨk

+
1

N
Ψk
←−
D i

(
N Γ̂jik −N jΓΓ̂ik −N iΓΓ̂kj −NkΓΓ̂ji

)
Ψj

− 1

N
WΨi

(
N Γ̂ij −N iΓΓ̂j +N jΓΓ̂i

)
Ψj . (C.4)

C.3 Decomposition of the other terms

For the other terms, we get

iGIJζ
I
Γµ
(
/∂ϕJ−GJK∂KW

)
Ψµ−iGIJΨµ(/∂ϕI+GIK∂KW)ΓµζJ

=
i

N
GIJ

{
1

N

(
ϕ̇J−N j∂jϕ

J
)[
ζ
I
(

Ψr−N iΨi+N Γ̂iΓΨi

)
−
(

Ψr−N iΨi+NΨiΓΓ̂i
)
ζI
]

+∂iϕ
J
[
ζ
I
ΓΓ̂i

(
Ψr−N jΨj

)
−
(
Ψr−N jΨj

)
Γ̂iΓζI

]
+N∂iϕ

I
(
ζ
I
Γ̂jΓ̂iΨj−ΨjΓ̂

iΓ̂jζI
)}

− i

N
∂IW

[
ζ
I
Γ
(
Ψr−N iΨi

)
+
(
Ψr−N iΨi

)
ΓζI+N

(
ΨiΓ̂

iζI+ζI Γ̂iΨi

)]
, (C.5)

– 47 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
7

and

GIJ
[
ζ
I (

ΓJKL/∂ϕ
L
)
ζK − ζK

(
ΓJKL/∂ϕ

L
)
ζI
]

=
1

N
∂KGIJ

[(
ϕ̇J −N i∂Iϕ

J
) (
ζ
I
ΓζK − ζKΓζI

)
+N∂iϕ

J
(
ζ
I
Γ̂iζK − ζK Γ̂iζI

)]
. (C.6)

D Variation of the canonical momenta under the generalized PBH trans-

formation

By chain rule,

δŜren =

∫
ddx

∑
Φ

ΠΦδΦ, (D.1)

and let us define a symmetry transformation of Ŝren by

δξ =

∫
ddx

∑
Φ

δξΦ(x)
δ

δΦ(x)
. (D.2)

Let us also assume that this symmetry has an anomaly, i.e.

δξŜren =

∫
ddx

∑
Φ

ΠΦδξΦ =

∫
ddx|e(0)| ξAξ. (D.3)

Then, the definition of the constraint function C[ξ] (5.18) can be written as

C[ξ] = −
∫
ddx

(∑
Φ

ΠΦδξΦ− |e(0)| ξAξ

)
. (D.4)

Now we derive how the ξ-symmetry acts on ΠΦ. It is

δξΠ
Φ(x) = δξ

δ

δΦ(x)
Ŝren =

[
δξ,

δ

δΦ(x)

]
Ŝren +

δ

δΦ(x)
δξŜren

= −
∫
ddy

∑
Φ′

(
δ

δΦ(y)
δξΦ

′(x)

)
ΠΦ′(x) +

δ

Φ(x)

∫
ddy|e(0)| ξAξ

= − δ

δΦ(x)

∫
ddy

∑
Φ′

(
ΠΦ′(y)δξΦ

′(y)− |e(0)|ξAξ
)

= {C[ξ],ΠΦ}, (D.5)

which confirms (5.19).

E Derivation of the SUSY algebra without using Poisson bracket

In this appendix we compute the anticommutator {Q[ξ], Qs[η+]}. By differentiating the

diffeomorphism Ward identity (5.2d) in the integral form with respect to Ψ+k(y), we get

0 =

∫
∂M

ddx ξi

[
eai(0)DjΠ

j
a − (∂iϕI(0))Π

ϕ
I − (ζ

I
(0)−
←−
D i)Πζ

I −Πζ
I(D

iζI(0)−)

−Πj
Ψ

(
DiΨ(0)+j

)
−
(

Ψ(0)+j
←−
D i
)

Πj

Ψ
+Dj(Π

j
ΨΨi

(0)+ + Ψ
i
(0)+Πj

Ψ
)
]
x
Πk

Ψ(y)

+
(
ξiΠk

Ψ

)←−
D i(y)−Djξ

kΠj
Ψ(y). (E.1)
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From the local Lorentz Ward identity (5.2e), we obtain

0 =

∫
∂M

ddxλab
[
e(0)[aiΠ

i
b]+

1

4

(
ζ
I
(0)−ΓabΠ

ζ
I+Ψ(0)+iΓabΠ

i
Ψ

+h.c.
)]

x

Πk
Ψ(y)− 1

4
λabΠk

ΨΓab(y).

(E.2)

Summing these two expressions for the parameter λab = eiae
j
bD[iξj], we obtain

0 =

∫
∂M

ddx Dj

[
ξi(eaiΠj

a + Πj
ΨΨ(0)+i + Ψ(0)+iΠ

j

Ψ
)
]
x

Πk
Ψ(y)

+
(
ξiΠk

Ψ

)←−
D i(y)−Djξ

kΠj
Ψ(y)− 1

4
DiξjΠ

k
ΨΓ̂ij(y). (E.3)

It follows from (5.59) that

{Q[ξ], Qs[η+]} = −
∫
∂M∩C

dσk(y)

∫
∂M

ddxDj [ξ
i(eaiΠj

a + Πj
ΨΨ(0)+i + Ψ(0)+iΠ

j

Ψ
)]x(Πk

Ψη+)y

=

∫
∂M∩C

dσk

[(
ξiΠk

Ψ

)←−
D i −Djξ

kΠj
Ψ −

1

4
DiξjΠ

k
ΨΓ̂ij

]
η+

=

∫
∂M∩C

dσk

[
Di(ξ

iΠk
Ψη+ − ξkΠi

Ψη+) + ξkDj(Π
j
Ψη+)−Πk

ΨLξη+

]
= −Qs[Lξη+], (E.4)

where the first term in the third line is zero by Stokes’ theorem and the second term vanishes

due to the conservation law. One can confirm that the other commutators in (5.56) can be

obtained in the same way.
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