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1 Introduction

Supersymmetric (SUSY) field theories in curved backgrounds [1-3] (see also [4] for a recent
review) have received much attention in recent years, since they provide a playground where
physically interesting, non-perturbative, results can often be obtained through localization
techniques [5, 6].

Formulating consistent SUSY field theories in curved space usually consists of two
steps [1]; the first one is to find the classical supergravity theory (SUGRA) by coupling a
flat-space supersymmetric (SUSY) field theory to the gravity multiplet, and the second one
is to take a rigid limit of SUGRA such that the gravity multiplet becomes non-dynamical,
but maintains a non-trivial background value. Consistency requires that there exists at
least one SUSY transformation of the SUGRA under which this background gravity mul-
tiplet should be invariant, namely

5776?0)@' =0, Y4 i=0, -, (1.1)

where e?o)i refers to the vielbein and W g ; is the gravitino field and 7 refers to the spinor
parameter of the preserved SUSY. We refer to appendix A and B for notations and
conventions. The requirement that the variation of the bosonic fields vanish is trivially
satisfied on bosonic backgrounds.

One then derives the SUSY transformation of the local operators and the SUSY algebra
in curved space from the corresponding ones of SUGRA. However, they are classical in the
sense that the SUSY transformation laws and algebra derived in this way do not reflect
any quantum effects.

To clarify this point, let us schematically discuss these quantum effects for a theory
with an A/ = 1 4D superconformal field theory (SCFT) as a UV fixed point. For this aim,
we derive the Ward identities which contain UV data of quantum field theories. These
Ward identities can be obtained in a local renormalization group language [7] without
relying on a classical Lagrangian description, see e.g. section 2.3 in [8] for a recent review.
In /=1 SCFT, we have two local fermionic transformations, supersymmetry and super-
Weyl, respectively

a 1= a
66+e(0)i = _5\:[1(0)+ZF €4, 5€+\I](0)+i = ID)Z‘€+ + - y s (123)
657 6?0)2- = O, 567\:[](0)+i = —FZ‘E_ + e, T (12b)

where the ellipses indicate possible contributions from other fields in the gravity multiplet
and higer-order terms in fermions. Requiring the generating functional of connected cor-

relation functions, W[g(o)ij, W (0)4is -], to be invariant under these local transformations
up to a possible anomaly, we obtain two local operator equations, namely
1. ; _
STaBo) il = 8D+ = A, (1.3a)
~ST ()i + = Asw, (1.3b)

where 7! and S’ refer to the energy-momentum tensor and supercurrent operator, respec-
tively. Note that the Ward identities hold for generic backgrounds, even those where the



fermionic sources are turned on. Combining these two Ward identities with the parameters
n+ and 7_, which satisfy conformal Killing spinor (CKS) condition

~

¥ (0)+i = Ony. Y (0)+i + On_ Y (0)4i = Diny. — Tin— =0, (1.4)

to the lowest order in fermions, we obtain the SUSY-n Ward identity
1 . . — - _
= 5 Ta Y+l e + Di(S ) + - = = (Asiiy + Aswn-) = Ay, (1.5)

where the fermionic sources are still turned on, because the CKS equation (1.4) to the
lowest order in fermions does not require the background to be bosonic. One can see from
the operator equation (1.5) that the SUSY-n anomaly A, should depend on the fermionic
background sources, such as the gravitino field W, ;. Therefore, one may not notice the
existence of A, on a bosonic background.

Ward identities such as (1.5) turn out to be rather useful.! For instance, they determine
the variation of quantum operators under the corresponding symmetry transformations, see
e.g. (2.3.7) in [9]. It then follows from (1.5) that on (bosonic) supersymmetric backgrounds
the supercurrent operator S? transforms under the SUSY-7 transformation as

- 1_. 0
5 SZ == ( - 77-‘1]:10‘ - 77./4 . ') . ]..6
K susy—backgrounds 2°¢ T 6‘IJ(O)+Z K + susy—backgrounds ( )
We emphasize that the anomalous term %An does not appear in the ‘classical’ SUSY
(0)+i

variation of the supercurrent operator S?, and it is non-zero in generic curved backgrounds
admitting a conformal Killing spinor. Moreover, by integrating (1.6) over a Cauchy surface,
one can obtain the commutator of two supercharges (see e.g. (2.6.14) and (2.6.15) in [9])
and find that it is also corrected by the anomalous term.

The upshot is that once the Ward identities (1.3) are found, one can see immediately
all these quantum corrections. The main obstacle in obtaining (1.3) is to find out the
anomalies Ag and Agw. Fortunately, we have a nice tool for computing the anomalies,
namely the AdS/CFT correspondence [10-12]. The holographic computation of the quan-
tum anomalies, such as the computation of the Weyl anomaly in [13], results in specific
values for the anomaly coefficients. For instance, one gets a = ¢ Weyl anomaly from a
holographic calculation of two-derivative supergravity in AdSs. To obtain the whole class
of anomalies one should consider a higher-derivative action. We emphasize that since the
anomalies belonging to the same multiplet are related by SUSY transformations, the super-
Weyl anomaly Agw obtained by a holographic computation also has specific values for the
anomaly coeflicients.

Henceforth, in order to obtain the Ward identities of 4D A" =1 SCFT by AdS/CFT,
we consider a generic N = 2 5D gauged SUGRA, including its fermionic sector, in asymp-
totically locally AdS (AIAdS) spaces, particular examples of which were studied in [14-19].2

1One should keep in mind that the conservation law which allows to construct the conserved supercharge
with non-covariantly-constant rigid parameter ny is D; (317”) =0, not g’ﬁim =0.

2Even though the solution considered in [19] is not A1AdS, the general form of the action given there is
the same with the one here.



More specifically, the SUGRA theory we consider is specified by a scalar superpotential
W and its field content consists of a vielbein, two gravitini, as well as an equal number of
spin-1/2 and scalar fields with negative mass-squared in order for the space to be asymp-
totically AdS. All gauge fields are consistently set to zero for simplicity. We study this
theory up to quadratic order in the fermions. Having a stable AIAdS solution requires that
W has an isolated local extremum. We also demand that WV is a analytic function around
that point.

As indicated in [17, 20], the N' = 2 5D gauged SUGRA can have a scalar superpo-
tential W in several cases. A typical case is when there are only vector multiplets and a
U(1)g (subgroup of SU(2) g R-symmetry group) is gauged [21]. When there are also hyper-
multiplets, the gauged SUGRA can have a scalar superpotential under a certain constraint
related to the ‘very special geometry’ on the scalar manifold of the vector multiplets, which
we do not discuss here in detail.

As in field theory, renormalization is required also in the bulk holographic computation.
Although it has been studied since the early period of the AdS/CFT correspondence, most
works on holographic renormalization (HR) [13, 22-31] have focused on the bosonic sector.
[18, 19, 32-37] obtained some boundary counterterms for the fermionic sector, but typically
these were limited to either lower dimensional spacetime (mainly 3 or 4 dimensions) or to
homogeneous solutions which do not depend on the transverse directions. We note that in
a context different from this paper, 4D N' =1 SUGRA including the fermionic sector was
treated in [38] by a somehow ad hoc approach.

In this paper we perform HR following the approach of [23, 28, 30, 39]. By formulating
the theory in radial Hamiltonian language, we obtain the radial Hamiltonian, which gives
the first class constraints. From the Hamiltonian constraint we obtain the Hamilton-
Jacobi (HJ) equation, enabling us to determine the divergent counterterms in a covariant
way without relying on a specific solution of the classical SUGRA. We emphasize that the
counterterms, as the solution of HJ equation, should also satisfy the rest of the first class
constraints. General covariance of the counterterms is a necessary and sufficient condition
to satisfy diffeomorphism constraint, which is one of the first class constraints.

Once the counterterms are obtained, one can renormalize the canonical momenta of the
radial Hamiltonian and thus obtain the renormalized canonical momenta. According to the
AdS/CFT dictionary, the renormalized canonical momenta correspond to local operators of
the field theory in the local renormalization group language [7]. The first class constraints
turn out to be relations between local sources and operators, from which we obtain the
Ward identities (see (5.2)) that in fact reflect the symmetries of the dual field theory and
do not rely on a Lagrangian description of the quantum field theory. Since the bulk theory
is a 5D N = 2 SUGRA, the dual field theory has 4D N = 1 superconformal symmetry
and we obtain the corresponding Ward identities. Note that here we cannot see the U(1)g
symmetry because we truncate all gauge fields. In the related work [40] the U(1)r gauge
field is included in the model.

It turns out that the A = 1 superconformal symmetry is broken by anomalies. From
the bulk point of view, these anomalies are due to the fact that some of the first class
constraints are non-linear functions of the canonical momenta, implying that the corre-



sponding symmetries are broken by the radial cut-off. From the dual field theory point of
view, of course, the global anomalies are a quantum effect. We obtain not only the SUSY-
completion of the trace-anomaly, but also the holographic super-Weyl anomaly, which
are rather interesting by themselves, since they can provide another tool for testing the
AdS/CFT correspondence.* As discussed before, we find that due to the anomaly, certain
operators do not transform as tensors under super-Weyl transformation and the variation
of operators gets an anomalous contribution, see (5.22). Hence, the Q-transformation of
the operators also becomes anomalous, since it is obtained by putting together supersym-
metry and super-Weyl transformations. Here @) refers to the preserved supercharge. This
is rather remarkable, since it implies that the ‘classical’ SUSY variation cannot become
a total derivative in the path integral of SUSY field theories in curved space, unless the
anomaly effects disappear. In this regard, it is shown in [40] that the ‘new’ non-covariant
finite counterterms suggested in [44, 45] should be discarded since they were introduced in
order to match with field theory without taking into account the anomaly-effect. From the
anomalous transformation of the supercurrent operator, we find that the supersymmetry
algebra in curved space is corrected by anomalous terms, see (5.56).

We finally note that the boundary conditions consistent with SUSY should be specified
before the main computation of HR. In this work we always impose Dirichlet boundary
conditions for the metric and the gravitino. As we will see, consistency with SUSY requires
that either Dirichlet or Neumann boundary conditions should be imposed for scalars and
their SUSY-partner spin 1/2 fields, together at the same time.

The rest of this paper is organized as follows. In section 2 we review the generic
N =2 5D gauged SUGRA action and SUSY variation of the fields. In section 3, we first
present the radial Hamiltonian and other first class constraints. We then systematically
carry out the procedure of holographic renormalization and obtain the flow equations. In
section 4 we determine the divergent counterterms and the possible finite counterterms.
In particular, the complete set of counterterms is obtained explicitly for a toy model. By
means of these counterterms, in section 5 we obtain the holographic Ward identities and
anomalies and show that the anomalies satisfy the Wess-Zumino consistency condition. We
then define constraint functions on the phase space of local sources and operators using
the Ward identities, and we show that the symmetry transformation of the sources and
operators are simply described in terms of the Poisson bracket with the corresponding
constraint functions. Finally, we present the anomaly-corrected supersymmetry algebra on
supersymmetric backgrounds. In section 6 we show that consistency with SUSY requires
that scalars and their SUSY-partner fields should satisfy the same boundary condition. In
appendix A, we describe our notations and present some useful identities. In appendix B

3Notice that the existence of a super-Weyl anomaly is natural, due to the existence of a Weyl anomaly
that is related to the super-Weyl anomaly by a SUSY transformation.

4As we will see in the main text, our result for the super-Weyl anomaly is different from [41], which
was obtained through a field theory calculation using Feynman diagrams. In [42], they tried to obtain the
holographic super-Weyl anomaly , but their work is incomplete since contribution from the Ricci curvature
is missed. In any case, we show that our result satisfies the Wess-Zumino (WZ) consistency conditions.
One can check that the result of [41] does not satisfy the consistency conditions. See [43] for a review of
WZ consistency conditions.



we carry out some preliminary steps necessary in order to obtain the radial Hamiltonian,
including the ADM decomposition, the strong Fefferman-Graham (FG) gauge, and the
generalized Penrose-Brown-Henneaux (gPBH) transformations. In appendix C, we present
the ADM decomposition of the radial Lagrangian part by part and in appendix D we prove
that the gPBH transformations of the operators can be obtained from the holographic
Ward identities. Finally, in appendix E we derive the anomaly-corrected SUSY algebra in
an alternative way.

2 N = 2 gauged SUGRA action in 5D

The action of gauged (on-shell) (D = d+1 = 5) SUGRA admitting a scalar superpotential,
with all gauge fields consistently truncated, is given by [19]

§= 5 +5;, (2.1)
where
1
Sy =152 /M d™ay/=g (Rlg] = Gr1(¢)0ue"0"0” = V(p)) , (2.2)
S, = _i dd+1l‘ S (@ ey . — % TPy — WT TR D )
f 2/{/2 M g = v=Ep 1% v 1% W v

* (Z'QIJZIF“ (Po” = GM0rW) Wy — iGry 0, (P! + G Ok W)FMCJ)

+ (G1sC" (Y + T lG16") K — Gry [T + T (Do),

+ 2M1J(cp)ZIC‘] + quartic terms}, (2.3)
and the scalar potential and the mass matrix Mj; are expressed in terms of the superpo-
tential as

IJ d 2
V(p) = GOW(p)dsW(p) — HW(W) ) (2.4)
1
Mis(p) = 00 W — TG0 W — F91W. (2.5)
Here k2 is related to the gravitational constant by x? = 87G(441).- Note that near the

conformal boundary of AIAdS spaces (with radius 1), which we are interested in, the scalar
potential and the superpotential take respectively the form

V(p)=—d(d-1)+0O (@2) , Wp)=—-d-1)+0 (@2) . (2.6)
The action (2.1) is, up to boundary terms, invariant under the supersymmetry transfor-
mation®
Sepl = %E{I +h.c. = % (ECI — Zle) , (2.7a)
1 1 —
OBy = 5" Wy +he. = 5 (eI'*W, — ¥, %), (2.7b)

®In [19] the transformation rule of the gravitino field is given by 6. ¥, = (Vu+3WT )€, which is obtained
by setting D = 5 explicitly in (2.8).



where h.c. refers to hermitian conjugation, and

5.t = —% (B! — G aW) e, (2.80)

1
(SE\I/H = <V‘u + 2(d—1)WF“> €. (28b)

for any value of d.

Two comments are in order about the action (2.1). Firstly, all the fermions here,
including the supersymmetry transformation parameter ¢, are Dirac fermions. In fact, in
N = 2 five-dimensional SUGRA, the gravitino field is expressed in terms of a symplectic
Majorana spinor [46], which can also be described in terms of a Dirac fermion [16]. Other
fermions in the theory can also be expressed in the same way. Secondly, we would like to be
as general as possible and thus, we keep d generic in most of the following computations.

3 Radial Hamiltonian dynamics

According to the holographic dictionary [12] the on-shell action of the supergravity theory is
the generating functional of the dual field theory. Therefore, the first step of the holographic
computation is usually to consider the on-shell action on the bulk side. As is well-known,
this on-shell action always suffers from long-distance divergences, which corresponds to the
UV divergences of the dual field theory. Therefore, we need to renormalize the on-shell
action of the supergravity theory, through holographic renormalization [13, 22-31].

The Hamiltonian formulation of holographic renormalization [23, 28, 30, 39| is ar-
guably the most efficient, and as we will see, it helps make the analysis of the fermions
tractable. The Hamiltonian constraint, one of the first class constraints obtained from the
radial Hamiltonian, gives the Hamilton-Jacobi (HJ) equation by which we can obtain all
the infinite counterterms for generic sources and curved background. Holographic renor-
malization essentially consists in determining all divergent terms in the on-shell action for
generic background and sources in covariant form and subtracting them. Depending on the
problem under consideration one can add some extra finite counterterms which actually
correspond to the choice of renormalization scheme in the boundary field theory.

In this section we obtain the radial Hamiltonian, from which we extract the first class
constraints. Afterwards, we present a general algorithm for obtaining the full counterterms
from the HJ equation. We then obtain the flow equations which are needed to form a
complete set of equations of motion.

3.1 Radial Hamiltonian

The Gibbons-Hawking term [47]

1

= diz/—y K, (3.1)
K* Joam

where K is the extrinsic curvature on the boundary M, was introduced to have a well-
defined variational problem for the Einstein-Hilbert action

1
SEH = 272 dd+1$\/—g R. (32)
K= Jm



As indicated in [18, 32-34, 36], for the same reason some additional boundary terms are
needed when the theory involves fermionic fields. For the action (2.1) these fermionic
boundary terms turn out to be (for details, see appendix C.1 and C.2)

+ ﬁ » o=y U,T W, (3.3a)
1 —I
53 d*z/=y Grs¢ ¢, (3.3b)
2K OM

where the signs in front of the terms bilinear in fermionic fields fixes which radiality
(see (B.10)) of the fermion should be used as a generalized coordinate. Note, however,
that the sign depends on the mass of the fermions and the choice of boundary condi-
tions [34]. Since the mass of the gravitino ¥, is (d —1)/2 > 0, the sign of (3.3a) should be
positive (see also appendix B.3 and B.4). The sign of the mass of ¢! changes according to
the model, and thus we cannot choose the sign of (3.3b) a priori.

For the time being, however, let us pick the + sign. As we will discuss in section 6,
picking the — sign corresponds to imposing Neumann boundary conditions on the spin-1/2
field ¢!. We emphasize that this choice of sign will not affect our claim later about the
determination of the scalar fields’ leading asymptotics. The whole action including the
terms (3.1) and (3.3) is then given by

1 o~ _
Stan =S + 21%2/ ddX\/—’y <2K + \IJZTZJ\I’J‘ + QUCICJ) . (3.4)
oM
The full action Spy can be written as Sgy = f dr L, where the radial Lagrangian L is
1 . g o
L= 27 ), ddﬂ?Nv—’Y{R[’Y]—QIJaisﬁlazGOJ—V(@)+(7”’Ykl—VZkVﬂ)Kinkl
911 (61 Nouh) (@~ N0y”) 2 (T T 4 T
Ng( ") (97 — A4 )+N +i —j ¥ +3
! T, 4+ 0,00, ) 4 ( K L DeNF ) G000+ e T, T (T, 7Y
+N€a€b( + ) +N k i j+m€ak€b 3 { y } 7

+%Kkl (T = NG [P, 1) 0,0 [0, 7] (9, — V') |
+ oW (20N T — (DN (P T )

JX; (q, TT*Dw, — ¥, DTy \Pk) —T D, W4 T D TR
- N@ﬁjrfjk (U, — N W) —% (T, — N'T;) TT9*D; W,
+%@;Ffjk (D; ¥, — N'D; 0,) +% (%, D,- N, D) v,
+%W [(@r—]\ﬂ@i) INRAPERH (\yr_Niq;i)} TWETH Y,

+%QU (ZI+¢£+E£<+> (K+ Dka> G1,C ¢! _7gIJeazeb< Ipabpe

1 ) ) _ I~ .
o (@5 = N0 + N0 01cG1 ' ¢! Gy (CTDi¢T - i)



G [—;DZNJ- (¢'Tore) —N%IFM’+N1'<<IB»P¢J}

- %gl J [;f (¢7=N0;7) [¢ (0r = N'w - NDTW, ) - (U, - N+ NTTTY ) |
+007 [Z“’rfi (U, — NIW) - (T, — NI, firgq +N&p’ (Zlfjfiqu —Ejfifjgf) ]

oW [T (0, - N1 + (T~ NTT) TN (T4 )|

—%OKQU [(ng—Ni@[cpJ) (ZIFCK—ZKFCI)+N8WJ (ZlfiCK_ZKfiCI)]

—2MU§I¢J}. (3.5)

Given the radial Lagrangian L we can derive the canonical momenta

i 0L i i - ik m ___jl_km L L B
mi = 5ar = Ojeartiien) Y (474" =A195) K+ 577 (615" ¢+ T, 070w, )
1 /o _ N o~
_ Jjp Tk _al o _arl ip Tk
o~ (\I:p[r ,r}(qf,. N\Ill) (qf N@,) i ,I‘]‘I/p> (3.6)
e (1 1. i P
- 2/{27 e <4\I!jF{FJk,Fab}\I/k—2gug FabFCJ>+€aj (‘If]FZk\Ifk—l-\I/ka’\Iﬂ) ,
0L /= . ; —J —J —K
o_ 0L _ _ J_nrigoJ K_ K_ J
"= 5 = o 2010 (87 - N0e”) + NoyGiC ¢ = NowGry (et ~re?)
—iGry (E" (\Ifr—Ni\I'iJeril“\Ili) _ (@—N@ﬁN@Fﬁ) ¢’ ) } , (3.6b)
%
5 =y, =
¢_ _
W]—Lg—vglJC% (3.6¢)
n$=—L=Y"1G,¢], (3.6d)
5w
e
. S Ve
wy=L—— =Yg T (3.6¢)
oWy K
Oy K

One should keep in mind that 71% and ﬂfp have negative radiality, and 7r§ and 7T§ have
positive radiality.
From K;; = Kj;, we obtain the constraint

2

K . . 1— . 1 =
0= jab = \/_—7(627%1‘ - ezﬂ'ai) - Z\I’jr{rjkarab}\yk + §gIJ< FabFCJ
1 . .~ R N N
— sehep (T 0" + Ty, U — 0,15 0F — U7, 0,), (3.7)



which, as we will see, corresponds to the local Lorentz generator of the frame bundle on
the slice X, [36].

Inverting the canonical momenta® and implementing the Legendre transform we obtain
the radial Hamiltonian

H = /ddx <éal-ﬂ'ai + @Iﬂ'}p + 7T§C£ +E£7T§ + Ffi,@.;,.i +¢+i77%> —L
= / A’z [NH + NjH + (U, — NG, F + F (¥, — N'T;)] (3.8)
where

2

K (I
(oo o4

(a]7r +ea27r] [d 1 \II-HW\IJ +7T\11]\I/+1)—|—7T‘11( (d 2)7pz)r Uk

_2(
+\I/+kf ( —(d— 2fylp>7r%}+

et <—ZI,7T§—7T§C£ —i—@ﬂﬂ%—i-ﬂ&,ﬁ/ﬂ)
1 /p~ . o

— (D +miLict )

_gIJ (ngi\ll+i+@+ifi7r§)} —71'\];, |:<d 1FkF 'Yk]) D—D < Fkl“ ’ykj)] ﬂ%

i . N
+ﬂ< §(§9¢1F17r%—7r31,1“i¢’94p17r[> 22&@ (WIFE—W\I,Té)

d—1
+2gIJF6K[g]W[ (C 7TL+7TLC ) }0[

+G"™MGEN 007 (0K Gry—01GK 5) W%fzﬂgv]

1 1z
— W (Tl i)+ Mug (67?4679 )

v (g 1. ¢, (i 1 in AT AN
—S0W (g (V4TS +mST m+i)+ﬂ(wri@+<,rm@)
v

+ 2K2

. _ e — o~
— RR)+ G106 00" +V(0)+G1sC. (B—1) ¢ +T T (0, - D) wo

+ Dy, (@-H (’yjkfi —’yikfj> \I/+j) —|—iQU8,-<pJ (Zifjfzq/_w —@_H‘fifjé{)

+orGrsone’ (¢ TTCK ¢ Tic!) (3.9)
Hi = " Dmd + (9 )r? + (¢ D)as xS (DicT )+ '(Diqx+j)+(ﬁﬂ-ﬁi) i
—Dj(wfl,\lli—f—v_,ﬁ%), (3.10)

. 2 ~ .
%For instance, the inverse of the canonical momentum 75 is ¥_; = ;jyﬁ[l"ij = (d = 2)vi5|me



2/@2 1 j 1 a ki 1 oS 1 i i 1J o €
}“:F 4(d—1)F \I,ejﬂa—gf %kﬂiﬂa—éelfiﬂjﬂa—i—zg i
1 _
AT e S LDy LW et

o (QFlJ]D) U AW +iGy 010 T L +z(81W)CI) . (3.11)

We note that in the above computations we used the local Lorentz constraint (3.7).
By radiality we split F into two parts

K2 , 1 ~ 1 =~ 1 =\, . 7
]:+ = F+]:: 2\/?7 Wéeak <d_1’y]kfl—2%jfk—2%kfj> W%—{—ZgIJT('}OTFE (312)
1 ~ A/ —
mwr *_7gIJa W7TJ+ 2 < PZ']D \Il+j +Zg]]8l80 FZCI>

and

1 /~ .
Fo=DF=; (Powey + D0 ) emt + Sl

oy ~ 7 = . .
— Dy — 20ip' T + s (Wr’qfﬂ- +iopwel ) (3.13)

The canonical momenta for N, N; and ¥, vanish identically, and it then follows from
Hamilton’s equations that

H=H =F_=F;=0. (3.14)

These first class constraints reflect respectively radial reparameterization invariance and
diffeomorphism, supersymmetry and super-Weyl invariance along the radial slice X, which
can be seen by comparing with (B.38).

Inserting (3.6) in (3.7), we obtain

, . lor. 7 1 1, 1— .
0= el my — ehmai + ig_rabﬁ - §7r§f‘ab§£ — 5l Wi+ 5 Loy, (3.15)

which reflects the local frame rotation symmetry of the theory according to (B.38). We
emphasize that at the bosonic level this local Lorentz constraint reduces to

ey = eiﬂai, (3.16)

which implies that we can define a symmetric canonical momentum for the metric through
the relations

5 5 @ (3.17)
Here L denotes bosonic part of the radial Lagrangian (3.5).

We emphasize that the linearity of the constraints H’ = F_ = 0 and the local Lorentz
constraint reflect the fact that their corresponding symmetries are not broken by the radial
cut-off. Meanwhile, the constraints H = 0 and F; = 0 are quadratic in the momenta,
implying that in fact the cut-off breaks these symmetries, though they are non-linearly
realized in the bulk.
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3.2 Hamilton-Jacobi equations and the holographic renormalization

The HJ equations are obtained by inserting the expressions

i_iS @_LS C_Sz Z—?S i_S% i ?S
W“_ée“i R 7= B B 7o R 7 BT WG_C@H
(3.18)

for the canonical momenta in the first class constraints (3.14). Here Sle, p,(—, V4] is
Hamilton’s principal functional.

Hamilton’s principal functional S is particularly important since it can be identified
with the on-shell action evaluated with a radial cut-off ¥,. Holographically renormalizing
the on-shell action only requires solving these HJ equations for S up to the finite terms,
without relying on the specific solution of the equations of motion. Since this asymptotic
solution of the HJ equations is obtained in covariant form for generic sources, we can
identify the divergent terms with the sought after boundary counterterms, which cancel
the divergences of the on-shell action as well as of all correlation functions.

As pointed out in [48], the constraint H? = 0 and the local Lorentz constraint (3.15)
which reflects the bulk diffeomorphism invariance along the transverse direction is automat-
ically satisfied as long as we look for a local and covariant solution. Hence, the equations
we have to solve are the constraints H = F_ = F = 0.

Let us briefly review the algorithm of solving the HJ equation in AlAdS geometry. In
general, the Hamiltonian constraint is solved asymptotically by using the formal expansion
of S with respect to the dilatation operator dp [30] (see section 5.2 of [8] for a recent review)

5p = /ddac > (Mg - d)d%, (3.19)
P

where ® refers to every field in the theory and Ag denotes the scaling dimension of the
operator dual to ®. The solution takes form of

S = / dix/— L = g dda\/—v ([,[0] + L+ + Z[d] loge %" + Lig+--- ), (3.20)

where

0pLip) = —nLy), 0<n<d,  dply =—dLy. (3.21)

Since the dilatation operator dp asymptotically coincides with the radial derivative
.0
a9, = [ & d—, 3.22
RN 6.2

in AIAdS, one can see that Ly, for n < d and E[d} are asymptotically divergent, and can
therefore be identified with the boundary counterterms, namely

Sct = —/ dd;pw/—f}/ (‘C[O] + [’[1] + -+ Z[d] log 6727‘) . (323)

T

By construction, this is the full set of all possible divergent terms.
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This general argument of finding Sc; is not suitable in our case, since the operator
dp requires knowledge of all scaling dimensions in the theory from the onset. Since we
do not want to specify the scaling dimension of the scalars ¢! and of the fermions ¢! in
advance, we will instead seek a solution for S in an expansion in eigenfunctions of the
alternative operator

5—/dd ai_i_}@ L_,_}lq; (3.24)
e = z %56? 5 H(S@H 260 +i | .

rather than 6p [39, 48], since we know that the scaling dimension of the operators dual
to e? and Wy; in AIAdS are d + 1 and d + 1/2 respectively, see appendix B.3. Note that
0. basically counts powers of the vielbein and the gravitino. The formal expansion of
Hamilton’s principal function Sle, ¢, (_, ¥ ] with respect to d. is thus

where 6.S() = (d — k)S(x). This implies that

for certain Ufk)' However, the Lagrangian L) is defined up to a total derivative, and thus
we can put [39]
. 1 . 1
Te)a€i T 5T yw¥ri + 5 Tpim

As we will see later, this identification of L) greatly simplifies the HJ equation and makes

it almost algebraic.

By using (3.27) we can solve the HJ equation recursively, but this procedure stops at
S(a), which has d. weight zero. The reason why higher-order terms, which are finite in
r — oo limit, cannot be determined in this recursive procedure is that they are related
to the arbitrary integration constants which form a complete integral together with the
integration constants from the flow equations, see [39] for explanation in more detail.

Assuming that the all scalar and spin-1/2 operators are not irrelevant, we find that any
term with negative . weight should have negative dilatation weight, see (3.19). This implies
that all the divergent terms appear up to S(gy so that we can identify the counterterms as

2d
Set = — Z S(k/2)» (3.28)
k=0

Note that the logarithmically divergent terms are distributed in almost all of the S;)s with
0 < k < d. Since our radial slice is four-dimensional, these terms appear with the pole
1/(d —4). Converting this pole by (dimensional regularization) [30, 39]

1 1 —2r
m — —5 ].Oge y (329)
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and summing up all of them, we obtain the logarithmically divergent terms /j[d]. We
emphasize that the two algorithms we described in fact give the same result for Sg.

Once the local counterterms S.; are obtained, we renormalize the on-shell action by

Sren = lim (Shun + Set) = lim dlz Ly, (3.30)

r—+00 s,

The canonical momenta are automatically renormalized by S, namely

~ 5
72 =n% 4+ 5*(1)5@, for every field @, (3.31)

and the variation of the renormalized on-shell action under any variation of fields is given

by the chain rule

68 = lim | d% (w 5ed + 77807 + ¢ 7 + 7So¢T 4 00, 7Y + %épdxlfﬂ-) . (3.32)

r—-+00

3.3 Flow equations and leading asymptotics

The flow equations are obtained by substituting (3.18) into Hamilton’s equations

6l = gz il = —gg, (3.33a)
¢ = ;Z{Ip i = —(‘;51, (3.33b)
¢ = ;T§H 5= —H(Sg_, ¢ = H(sfrg 5= _551H’ (3.33¢)
¥, = &régH’ i, = —H“‘Li, U, = H(s(sz, il = _6\112- H. (3.33d)
The resulting flow equations are
s K2 L oab ab 1 aj —
él = 2\/7{2 <1ez~ e; —€j ez> 7Tb me J [(d = D)(Vyimg; + 7oy W)
— 7 [P = (d = 200 g + T[T — (d = 2yl + (i )]
+ di 16;-1 (—ZIJTI — WICI + \I’+J7T—+ W,I,\I’_H) }, (3.34)
G = j_%g” [ 78 4 T 10) (nc + T ) — £ (WSFW 4 Ty ]
;2( ! 3 (< Tirt + 74T gf) (3.35)
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. K2 1 . . 1 . PN
Vi =3 =12 <5f€a] + ’ijeg) T Uyj + TG MY+t iy Tict

1 aj, 1 al,__j T T .k g 1.¢
_ m (e I, +e ﬂ'fl) (I’u —(d— 2)%‘[) L",, — ﬁfiﬁgo T
2 (p S\ kd 4 i A 1
_ ﬁ (Fijk — (d — 2)’}/2'ij> D 71']54- 2281'(,0 Wﬂ — §W\I’+i
i N
— 9wyt 3.36
2(d—1) VTG (3.36)
and
: )2 = .z 1 ,
C=5= [29”]1%?} + G — —eimicl + 268 TGl
— Z'g[‘]ﬂ'ifi\lbri — 21'8@'()0]71'% + gIMgKNaiQDJ(aKgJM — 8MQKJ)IA“Z7er
+ MG - %BIWfi\If+i. (3.37)

Here for simplicity we choose the gauge (B.13), which reduces the radial Hamiltonian H
to H = [d%c H. We emphasize that the flow equations (3.34), (3.35), (3.36) and (3.37),
together with the HJ equations, form a complete set of equations of motion of the theory.”

4 Solution of the Hamilton-Jacobi equation

To solve the HJ equation efficiently we divide Hamilton’s principal function into several
parts according to the structure of the various terms. Namely, we first split S into two
sectors: SP, the purely bosonic part, and S¥, which is quadratic in fermions. The terms
in S¥ are further split into three parts: S°¢ which contains quadratic terms in ¢Ls, S¥¥

containing quadratic terms in ¥, ; and S¢¥, containing bilinears in ¢! and ¥_;. In total,
S =8P +8% + ST 57, (4.1)

Due to radiality and the Lorentz structure of the fermionic sources, the asymptotic expan-
sion of SB, S¢¥, S¢¢ and SY¥ should be

SP =Sf, + S8 +SGh +- (4.2a)
SCY — 8%3\52) + S@I}Q) +oen (4.2b)
S¢¢ — gglﬁ) + g%) + ng) +en (4.2¢)
SYY B 4 SEY 4 (4.2d)

How to solve the HJ equation for the bosonic sector has been discussed in the liter-
ature [30, 39, 49], though it is difficult to solve the HJ equation for a completely general

"One can use the flow equations (3.36) and (3.37) to determine the asymptotic behavior of ¥ ; and ¢Z,
as is done in appendix B.3, instead of using the Euler-Lagrange equations (B.19) and (B.20).

— 14 —



model.® The key feature is that after finding the solution of the HJ equation to lead-
ing order, we only need to solve a (almost algebraic) first-order differential equation for
the higher orders, thanks to the relation (3.27). Nevertheless, these first-order differential
equations are not easy to solve at the first attempt.

Here we have another set of first-order differential equations, namely F_ = F, = 0.
These are relatively simpler than the Hamiltonian constraint H = 0, so one can try to
solve these constraints first. Not surprisingly, it works well, in particular for the fermionic
sector, and the solution is totally consistent with the other constraints, as we will see soon.

4.1 Bosonic sector

Let us first consider the bosonic sector. The corresponding Hamiltonian constraint H = 0 is
K2 4 r 5SB 5B LI 5SB 5B
2\/_77 d_ 171]'7kl Yik Y5l 57@'3’ . 590[ 590‘]

\gj (=R[Y] + Grs0i0" 007 + V() = 0. (4.3)

One can readily see that the HJ equation for S is
2

1 0S¢y 0S 0S(gy 0S —
. [4 < Vij Vil — 'Vik'le) 0) 920) _ o17 U}) (3)} \/? y
2/— d—1 5vij 0 5ol 5 o7

The leading term of S, S(g), should not contain any derivatives and must be purely

+

() =0. (44

bosonic so that its ansatz becomes
1
S0 =~ [ 4oy V(o). (15)

Substituting this ansatz into the constraint F_ = 0, we obtain

L= r a‘éS(O) \/j’y Ial
7 (riqfﬂ + Pj\hi) eI =0 + LW =0, (4.6)

and find the unique solution for U(y) given by U = W(y), or

1
S(O) = —? /ddl'\/ - W. (4.7)

As promised, we obtain (4.7) regardless of the sign of (3.3b). It follows that the leading
asymptotics of the scalar field ! is also determined, independently of the sign chosen
in (3.3b), as we see in (4.8c). From (4.7) we can now determine the leading asymptotics of
the fields by using the above flow equations, namely

el (r,) ~ €"efy); (), (4.82)
Uoy(r,x) ~ 2 4i(z), (4.8b)
Sb[ ~ g[JaJW’ or SOI ~ 6*//*[7”(‘0{0)7 (48C)
. 1
(L~ =5+ (G 0,06W)¢ o (L Wb (4.8d)

where ;! stands for the radial weight of ¢! when the scalars are properly diagonalized.

80ne might try to solve the HJ equation for the general scalar-gravity model by using the argument
in [39)].

~15 —



Now let us go to the next order of the bosonic sector. The HJ equation for 8(2) is then

2
d—1

5 .
S(Q) + ﬁ (_R[’Y] + guaz‘cpl(?zgo]) =0. (4.9

0 B 1J

The most general ansatz for Sg) is as follows:

1 = i
G == / 'z =7 (E(p)R + Ars(9) 9" 007 . (4.10)
Then,
0 op _ V/—yd—2 Iai Jy_ V=7 -
Yij 5%7-8( )= (ER+ Ar0ip' 0'¢”) — 5 (d—1)0E, (4.11)
5 5 _ VT (ppm Z. 2.
55750 = " (ROE+ 0,410 90" —2D; (Asx0'0")) (4.12)

where we used the relation
’yij(SRij = DiDj(S’yij - ’yijD (5’)’@') . (4.13)

One can notice from (4.11) that

Vo ; 2(d—1
]L(%) = i <ER + Ars0ip ' — (d— 5 )DE> . (4.14)

Therefore, (4.9) becomes

d d—2
0= R<_d—WH[1 —I—QIJOIWGJH—)-F@SOI@Z J( ﬂWAIJ‘Fm/VaI@JE (4.15)

+GRPOLWOK ALy —2G" O WOr AL+ 591‘]) +20p" (WOE—G7% 0, WA LK),

and we obtain the equations for Z and Ay

d—2_ 1

0=--—5+ vigr= - oL (4.16a)
0=— ;l 1A[J+V OxArg +01VEA g +0,VE AIK—i-—gU, (4.16b)
0=0;2—V’ Ay, (4.16¢)

where i .
= 50" o (4.17)

Note that Ay should satisfy the condition
Or(VEA ) = 0;(VEArk). (4.18)

We emphasize that we do not discuss the existence of a solution for A;; and = here.

Nevertheless, equations (4.16) are useful for determining S%f), SEI;‘)I’ and S%;Q)
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SB

(2n) (n > 2) is obtained by the following recursive equation

2 ..

ngWf(Zm)Wf(an)] '

|: ( ’Yz] Ykl — 'Vzk’)/]l) B(2m) 7-‘-B(Qn 2m)

In particular, when d = 4 the inhomogeneous terms on the r.h.s. become
2

K 1 ko V"V =2 d 2 i
L ) - = —2 42
2 %_7 <d _ 17]’7]{1 'Yk'}/]l) ( )7T(2) 2 2(d — I)R RklR ( O)

where

2= 2(611_2) + O(4?), (4.21)

is the solution of (4.16a), while other inhomogeneous terms are asymptotically suppressed.
4.2 Fermionic sector

After substituting the leading order solution (4.7) into the Hamiltonian constraint (3.9),
we get the following first-order differential equation for S=s-— S(0)

U o il 1
— a 7 \I] i
0 W( T TtV R ) (d_l)w(\lx+m,+m +)+W<

2
_ K 1 i i Sz pry
x(ciwgﬂggf) Q\ﬁ{(d 16?62—63-‘6?) wéﬂf,—Q”ﬂfﬂf+g”( §rs — I@Wg)
T 1
— 274 [(\I/_:,_ﬂr\yj—i-ﬁ\yj\lf_;_z) i 1’/’("1, (F (d 2)7;,2)1“ \Ij+k
orw I = =~
j (CI_I‘m’E,—i—w(},Fin)]

W
81WC1 fk

+o= 1‘I’+kF (z‘p—(d—Q)%'p)Tr@—i

2 . =T
d 1 Z] <—<7T§ CI +\I’+k7T\I;+7T\I/\IJ+k—Z

gIL K ¢
N [QUQLM@JgMK—aMgJK)—WaK (W” #f (Chmg i )
: L oors i T T
Vi [d 3 (g_rmwm,ng_)
~ . 1 ~ ~ —/ 1 ~ ~ :
-g" (”grz‘l’ﬂ‘“l’ﬂrz”g)} —7g [<dlrkrj_’)/kj) p-p (CHFij—%j)] T
_|_L< Ca If.,,-ri _ﬂ—i f@ I_¢ —92i0: I 7TC7Ti _,R_i 7TC>
d—1 oy Lily wlile Ty i el vy

+GMGEN 9,07 (0K G — 01Gk ) 5, Ty }

N
2K2

Dy, (Ui (VT T W5 ) +iG 0507 Zifjfi‘l’ﬂ—ﬁﬂfifjd
J

_|_

, _ Y o
—R[’Y]+91J3i<ﬂ13ZSOJ+QIJCI_ (M)— M)) ¢I 4+, Tk (Dj —ﬁj) Uik
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+0K G107 (Zf_f"{f—ffff"d) —2iV; (Zl_fij]D)i\I’+j +E+jﬁifij<£>

+ViG ki’ (Cl_fin—Cl_(fid)] ; (4.22)
where . .
, oS S
oo v
From this one could write a recursive equation for every S(;). However, it looks too com-

plicated, and thus we first write down the equations for ng), Sg}?) and SEIQ)I’, namely

¢ 1 =I ¢ =I ¢ ¢¢
_WL(1)+W{ 2(d—1) <<(5C1+6C1 CI)+6 VJ (C(SC‘I—F&C‘] CI) }S
— _ 7 T~ KA
+“27[gu (CI—M)CZ_C{M)CZ>+(VIgJK+8KgIJ) T (CI F’CK—QI_{F’CI)] (4.24a)
i -3 1 =I 0 =L ¢ 194
0=~ WL(3/2)+W[V’81+2(CH) <§5§1+5C, <I>+8 vE <g5<K+5CKcL>] Sy
+\g: [ 2Vi (Cl—ﬁjDi‘Iﬂﬁﬁﬂﬁif”d)+QIJ (Zl_fjaw‘]‘lf+j—@+j$w‘]fjd)},
(4.24b)

d—2 g
DS (F T )

where we used (3.27).
While (4.24a) and (4.24b) are not so easy to treat at first sight, the solution of (4.24c)
is obvious once we take into account (4.16a), namely

V=[G, i T (D AT
Ly = —\/’;: T, T (D, — ﬁj)\llw% + Dy <\I’+z‘(’YﬂT - kP])‘I’Jrj)} - (429)

Instead of solving (4.24a) and (4.24b) directly, we now try to solve the F constraint (3.13),
which requires much less effort. They are respectively at the order 1 and 3/2

z'g“alwéggff) . WFZ Mi Sty = \/jigljai@ingi, (4.26a)
d WFZ 55 Sty +iG" afwég Sty = \/I;F”]D) Uy (4.26b)
The solution (4.25) allows us to solve (4.26b) immediately and we obtain
55 SGy) = \/’j (—281521,?”&\1/“ + A[le,fiﬁcp‘]\lfﬂ) : (4.27)
One can readily see that
S /;2 / ddxﬁ[QaIE (@iﬁjfiﬂ’gi el fijDi\I/H)

+ Ap (zf_ Tigo’ U, — @ia(pffigi) ] : (4.28)
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In the same way, we find from (4.26a) that

1 —I oy =1
Sff) =3 /ddw\/ —y (AIJgf(]D — B¢ + (0sAL — 31AJK)C7$90KCf> . (4.29)
Moreover, we can confirm that the solutions (4.29) and (4.28) satisfy the Hamiltonian
constraints (4.24a) and (4.24b) respectively. That is not the whole story, however, and
one has to convince themselves that the F_ = 0 constraint also holds for these solutions.
From (3.13), we obtain

0 quw i 0w T 0 B
0=D; 5T T S( )+ 8 r 5C S(% 1/2) Fi\:[/+j5 ”S(%), (4.30a)
0= D2 —— S +38~<pfr’ 0 s¢¢ fgf (4.30b)
5\11 (2k—1/2) T o™ 5C (2k—1) ) :

where k is an arbitrary positive integer. It is not so difficult to check that the solutions we
obtained satisfy the constraints (4.30b) and (4.30a) for & = 1, implying that the combina-
tion

B \1/\11 ¢¢ Q'
S2) +S2) +8i) + 832

(4.31)
is (e4) supersymmetric.

We have seen how to obtain Hamilton’s principal function in the fermionic sector from
its bosonic supersymmetric partner, but at the lowest order. It was relatively easy because
we could give the most general ansatz for Sg) which has a small number of terms. To go
further we should first determine Sa), Sg), --- and obtain their SUSY partners by using
the above trick. The ansatz for Sgn) (n > 2), however, has lots of terms and is complicated,
hence finding its SUSY partner is too tedious.

Although we stop finding the general solution of the HJ equations in the fermionic
sector here, we remark that the solution we have found is almost sufficient for providing
the divergent counterterms in the low dimensions, say, d = 4. This is because in the
generic case that there are no scalar fields dual to marginal operators, Sff) and S§7 /2) are
asymptotically suppressed in 4 dimensions. As a result, what remains in the case d = 4

S‘IZI’, corresponding to the logarithmically divergent terms, which are

is only to determine
directly related to the holographic Weyl anomaly [13].

We should emphasize that from the general analysis here the divergent counterterms
(except Afor S(0)) always satisfy the constraint 7 = 0 and so does the renormalized on-shell
action Sren.

We finish this subsection by presenting the recursive relation obtained from (3.12),

namely
0= ———WIm; —iG" o, Wr 2 LI G
= d TG (n—1/2) VT f 1y T V= P [ g m) T J(n—2m—1)
+ W‘ng) (Cli17jkfi - ’Yz‘jfk> Wi@(n_m_l/z)}, (4.32)

where (integer or half-integer) n > 4. This will be useful for determining the super-Weyl
anomaly in section 5.1.2.
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4.3 Logarithmically divergent terms in 4D

As mentioned in subsection 3.2, every S, in the asymptotic expansion (3.25) with respect
to the operator . contains poles related to logarlthmlcally divergent terms. Let us denote
such terms by S( k). Whereas S( 1) and S( 4) are purely gravitational (meaning that they
are related only to the metric and the gravitino field) and universal, g(l) 8811/2) Sg) and
ggg’ are model-dependent. We first discuss the former and then study the latter for a
simple model.

gﬁ) is easily obtained from (4.19) and (4.20), namely

8(4 /d T/ — 7£(4) loge™2"

— dd — 2 » i ) 1 —2r 4.
4%2((1—2)2/ T/ 7(4(d—1)R Ri;R > oge ", (4.33)

which is already well-known. Meanwhile, AS&%’ is determined by the inhomogeneous terms
of the Hamiltonian constraint (4.22) at order 4, namely”

ga‘)l’z /ddx\/—vfa‘)ll loge 2"

2
Y L ~ij ak 1 ~ij o B Dk (2, _(2FED
/d x4 _V{Q (d_l’y”"ykl ’ylk’yﬂ> ( )6 s (2)—7['(2)(\If+kr]r i +7r%.1“ F]\P+k)

1 l
0y (Pt Tuh ) +

S d-1

1 i oy _op
+§(7T\(I,2) IDW%)—W\(I?) }Dﬂgg)}loge 2

2(d—1)(7r‘(1’2) I’kml‘ng)]—ﬂ'&?) FkM)I’jﬂ'g)J)

1 = e _ .y
:g(d_w/ddl’v_7{(d—3)R(‘1’+z‘FJij‘I’Jrk—‘I/HﬁjFjk‘hk)

[ (79T — J”ffi)\hk}—(d—4)R(@+ififjijqf+k—@iﬁjfijf’mk)

[\Il VD — U P4 — Ty DA+ T ﬂszmk}
+QRkl[ il(4PT - zkfp)Dl—ﬁl(’Yipfk—’kafi)]‘I’er—@Jrz‘fifﬂqu’i+Eiﬁjfljfi‘1’+z‘
— DT, TR T TR, T (PP o ITP P T Pl fk)‘l'w]}
2(d—2)?

_ ~ .~ _ ~
— (T D, DpTHD, 0y, T, D, TV PTHD, v

_ ~ e~ _ ~ =
(T, D TPEPT D, 0~ T, D TP BT D, 0 ) } loge™?". (4.34)

Although nontrivial, one can show that gﬁ) + ga‘;’ satisfies the constraints H = F_ =

9When the boundary metric is flat, (4.34) matches with the result in [18].
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F+ =0 (i.e. conformal, supersymmetry and super-Weyl invariance), namely

(_
A B B 5
0= <€i (576? + 5\11-1-1(5@7—” + (5\:[/7_“ ) 8(4) 5 (435&)
_n 0 B 0 ISVAY
0= fifLSﬁg. (4.35¢)
0V

4.4 Generic finite counterterms in 4D and summary

Up to now we obtained the generic part of the divergent counterterms. Sg can involve
additional finite terms which satisfy the first class constraints (3.14), though.'® The possible
bosonic finite counterterms are the Euler density and the Weyl invariant in 4D, namely,

ijkl ij 2 ijkl 2
E(4) 64 <RJ Rzgkl 4R]Rij + R ) s 1(4) = 64 (R] Rz]kl — 2RY RZJ + 3R

(4.36)
The integral of the Euler density E 4 by itself satisfies all the first class constraints, since
it is a topological quantity, any local variation of which vanishes. Therefore, we find that
the possible supersymmetric finite counterterms are a linear combination of

X1 =641 g)+(d—3) R(T  ,T*D; 0~ T D Tkw )
d I
to—{BD; [\Ij-i-i(’ywrk_’}’]krl)\PJrk}
(d—4)R(T T T*D, Wy~ Ty D, TR, )
(d 2)*
d—1
2Ry [\11+Z-[(¢Pfk—ryikfp)u)>l ~ DT AP D, T TTYD, v+ T D T T,

7~ _ _ ~. .
R [wirﬂmk\yﬂ TP DT+ T \11%}

—D‘[ﬁl fkji‘l/+i_@+ifijk\pl _@Jri(,yjk,yplfi_,yjk,yilfp_i_,yjp,yilfk_,ypl,yijfk)qj+p]:|

d—2)
_(dl (@D TPt D~ D, Y BT D, W)
_o(W,, B Pt v T, B, TP BT D, 0 ), (4.37)

and

1 ..
XE = E(4), Xp =P = aeljklRiquRklpq, (438)

where P is the Pontryagin density. Notice that the integral of P is a topological quantity
and thus can be a finite counterterm as in the case of the Euler density, as long as there is
no other symmetry which prevents its appearance.

00therwise, these finite terms would generate trivial cocycle terms, which do not have any physical
implication.
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In summary, collecting all of these finite counterterms and the previous divergent ones
we obtain

Set = — (S(o) + S(l) + 8(2)) — (gﬁ) + ASZ;{) + -
1 d - Tai J =1 ST
=3 d xV—V{W —ER— A1j0;9' 0"’ — Ay (_ (B — P)¢?
By Ak — O A )P — 2i0,=(T L DT — T TUDw,)
— iAIJ(ZifiﬁcpJ\IfH — TP i) + Eﬁwfijk(]@j - Ej)‘IUrk
4T, (00T — afzfi)\lzﬂ-}

(4.39)

~ ~ 1
—Sﬁ) —SEIQ)P-FKQ/ddﬂZ\/—’y(a[X[-f—OéEXE-FOZPXP)+"' )

where ga) and §E1:1‘)1’ are given in (4.33) and (4.34) and a7, ap and ap are arbitrary con-
stants. Here the ellipses stand for model-dependent terms, which we discuss in section 4.5

for a simple toy model.

4.5 Application to a toy model

For completeness, we present an application of our general procedure to a simple toy model.

In the toy model there is only one scalar field, which corresponds to an operator with
the scaling dimension A = d — 1 with d = 4. In principle, there are two possibilities for the
coefficient of p2-term of the bulk superpotential W; —% corresponds to deformation, and
—% corresponds to RG-flow due to giving a VEV [49]. However, as we have seen, SUSY
requires that the counterterm should be the same as the bulk superpotential W, and thus

we just need to consider the —% case. It follows that

1
W= —(d—1) = 3¢ + ks’ + hap" + O(¢%), (4.40)
where k3 and k4 are arbitrary constants, and therefore the solution of (4.16a), (4.16b)
and (4.16¢) becomes

1 1 1, 11

“9d—2) d—4 1d-n¥ T Ay=—g—3 3+ (4.41)

[1]

The divergent counterterms that we need, other than those in (4.39), are only the loga-
rithmically divergent terms. Following the argument in section 3.2 again we can determine
them from the poles (when d = 4) in = and A;; and are responsible for additional loga-
rithmically divergent terms.

We thus obtain

QB —1/ d — 1 2 . i —2r

S = 12 d*z\/—v 2(d_1)g0 R+0;90"¢ | loge ", (4.42a)

s~ L[ C_B¢_+h.c.)loge™ 4.42b
=15z | TV (P Fhe)loge™, (4.42D)
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ey i . 2 o~ B
ng =13 / da/— <grlawﬂ—(d_l)@gr”D,-xIJHJrh.c.) loge 2", (4.42¢)
~ 1 1 (1 o— = A

Sty = ~1z / de/— 1 (2(p2\11+irl]k]D)j\I/+k+(p\I’+ialg0F] q/+j+h.c.) loge 2.

(4.42d)

One can easily check that g(BQ) + g%f) + g%;Q) + ’gg\)p again satisfies the constraints H =
F_=FL=0.

Besides X and Xp, the possible finite counterterms (conformal and e, supersymmet-
ric) are

Xo = P’ R+ 0,00" ¢ + C_B¢ +iC_T'Pp (4.43)

2d— 1)
21

1-1 ¢ TD U, —

1 N N 1 — PN
m@Q\I’+in]kﬂ)jq]+k - ﬁcpllfﬂaztpl—‘]\lfﬂ + h.C.7

and the finite term k4p* in W should be in the counterterms without any ambiguity, due
to the F_ constraint.
In total, the divergent counterterms for the toy model are

ngv = — (S(o) + S(l) + S(3/2) + S(Q)) - /ddﬂf\/—’y 2[4] log 6727", (4.44)
where the logarithmically divergent counterterms are
[ dtav=y Eyloge™ =8 + 54, + 55, + S5 + 55, + 8. (a9)

Adding possible finite ones, the whole counterterms are

_ 1 A — L, 3 1 1

1 o~ ~ op
+ m‘l’_ﬂlﬂjk(]@] - ﬁ])q]_;'_k] - /Cldl’\/ - 5[4] loge 2 (446)

1
+ Iiz/ddxv_’y (ar X1+ apXp +apXp + apXp),

where ap, aj, ap and ag are arbitrary constants and determine the renormalization
scheme.

5 Holographic dictionary and Ward identities

Now that all the counterterms are determined, we can relate by the holographic dictio-
nary [12] the renormalized canonical momenta to the renormalized local operators of the
boundary field theory, namely

. ) 1 . 0S¢t 1 ;
T} = — lim pldt)r = <7T2 4 =¢ > = — It 5.1a
r—00 v =Y oed ’8(0)’ ( )

)
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1 ¢ 1
O7 = lim eldtulr <7T}p + 05t = ——1I17 (5.1b)

r—00 — dp leq)]
a 1 = 05, 1 b
O = lim e@rr'+ar —_ [ 78 4 it = 1S, (5.1¢c)
r—09 — ¢ (o)l
, 1 , oS 1 .
St = lim e(+a)r —_ (TFZ—{— ot > = I, 5.1d
r—+00 V= U ey, leqoyl ¥ (5.1d)

where T is the energy-momentum tensor,'! S¢ is the supercurrent!? and €)= det(e‘(lo)i).
We note that since these local renormalized operators are obtained in the presence of arbi-
trary sources we can obtain higher-point functions simply by taking functional derivatives

of them with respect to the sources.

5.1 Ward identities and anomalies

One can find from the computation of section 4 and 4.5 that S¢; satisfies the first class
constraints H! = F_ = 0 and the local Lorentz constraint (3.7), and so does the renormal-
ized on-shell action §ren. This is also related to the fact that these constraints are linear
functional derivative equations.

Since H and F; are not linear constraints, one should expect that the countert-
erms do not satisfy the constraints H = 0 and F; = 0 in general and thus generate
non-trivial cocycle terms, which appear in the constraints for the renormalized on-shell
action. Also, the poles appearing in solving the constraints contribute to the corre-
sponding anomaly. In total, after removing all divergent counterterms, the first class
constraints (3.12), (3.13), (3.9), (3.10) and (3.15) are reduced into

1, i i d ;
0= =T Td + 5¢(0)-OF — §$¢{0)0§ —- DS, (5.2a)
Agw = -G owos + T8, (5.2b)
. 1 — ,
Aw = efo)Ta = G OWOT = 5 (¥ (045" + hoc))
Loy J = nC
+ (251 — 313 W> (C(O)—OJ + hC) N (520)
ai j i =1 in¢ T i Qj
0 = e\ DiTd + 00l 0f + (Clo)- DOF +hc.) + (T D87 + e
— Dj (@20)4_8]‘ + hC) s (52(31)
A 1 g = ;
0=caiTy —eopiTa + 5 (C(O)_Fab(9§ + U0yl apS" + h-C-) : (5.2e)

where Agw and Ay are the super-Weyl and Weyl anomaly densities respectively. In (5.2)
we keep only up to quadratic order and zero order in ¢! in the Taylor expansion of YW and
Gy respectively.

" The definition of the energy-momentum tensor is modified when the vielbein is used instead of the
metric, see e.g. (2.198) in [50].
12The spinor index of the supercurrent S° is implicit.
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We identify the constraints (5.2) with the Ward identities, which relate the local sources
and their dual operators of the field theory. These Ward identities play a key role in the
following discussion and reflect the remaining local symmetries of the bulk SUGRA after
fixing the strong FG gauge (B.14), on which we did HR for the bulk theory in section 4.
The remaining local symmetry transformations of SUGRA are called generalized Penrose-
Brown-Henneaux (gPBH) transformations, whose action on the sources is carefully treated
in appendix B.4. The resulting expressions are (B.38). Before discussing the gPBH action
on the renormalized canonical momenta, let us first determine the anomalies explicitly in
the case of d = 4.

5.1.1 Weyl anomaly

Although there are many ways to find the Weyl anomaly, a direct way is to read it from
the HJ equation. One can see that in (4.22) at order 4 the first linear terms are indeed
the r.h.s. of the trace Ward identity (5.2c) and the rest of the terms give part of the trace
anomaly. The terms with the pole 1/(d — 4) which appeared in the HJ equations for Sy,
-+, S(4) are also inherited into (4.22) for Sp4. These non-homogeneous terms are already
identified with the logarithmically divergent terms and thus we only need to multiply them
by 2 to obtain the trace anomaly [8]. For the metric and gravitino parts the trace anomaly
density is'?

(@) — 1 d 2 _op. pij
Awle el = 37 2)252{2@— 2k

4 (d - 3)R(T DD, — Ty D TR D)

d _ R o
R, [Ty TTH = A/ D)0

d—1
—(d— HRT DD, 0,y — T D, TT 0y

d—2)% ko, — — ~i —k
+ (d_l)R[\I/+FJDk\II+j T PO, — T DT, + \D+M>\Il+k]

+ 2Ry [@H[(’Yipfk —REPD! — DI (T - AT,
~ T DD,k o+ T D T, — D[, T, - T TR
= T PITE — A7 TP 4 TP — Py TR

2(d — 2)2 _ ~ e~ _ ~
a (d_)(\I’Jriﬁijkale\I’_g_l — \IIHBJ-F” M)FM]Dk\II_H)
_ ~ o~ _ ~
(T, D TPPT D Wy, — qf+pﬁqrpqzm>riﬂk®jm+k)}. (5.3)

The holographic computation of the supersymmetric Weyl anomaly in 4D is quite
remarkable; even though its bosonic part has already been known for a long time, it seems

13The SUSY completion of the Weyl anomaly in a 4 dimensional supersymmetric theory was obtained
in [51, 52] by using the superspace formalism. To get the fermionic sector explicitly, however, one has yet
to expand it further around the bosonic coordinates.
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really tough to obtain its SUSY partner terms by means of giving an ansatz and finding
out the coefficients, whereas holography enables us to compute them directly.

We comment that although the bosonic sector of A\(z;v is the sum of the a anomaly
density E(4) and ¢ anomaly [(4), the fermionic sector is in fact the SUSY partner of the ¢
anomaly density up to a total derivative. This is because the integral of E 4 is supersym-
metric by itself, as mentioned before.

For the toy model of section 4.5, we have an additional contribution to the Weyl
anomaly density, which is

(model) 1 1 2 i - = 2 - ~ii
ol=— ;i _C- TPV i ———pC_TYD; W,
A 10= 5 <2(d_1)90 R4-0:00" o+ (P +iC T PpW 45— ——C +
- 1 - =
_ 2(d_ 1) (,02\11"""1_‘ Jij\If_‘_k—id_l SO\II—Ha (PFJ\IJ+j+h.C.> ) (54)
The total Weyl anomaly density is thus given by
Aw (@] = AL @]+ AG @] (5.5)

— 49 i 1 2 ) 7 = Y, '
_AW +2H2 (2(d—1)(‘0 R—*—@(p@ 90"‘{7@(7-1%{,1—‘ @(,D\I/ﬂ

2 o~ 1 o~ 1 — . AL
—d_l(pcFZ]DZ'\Pﬂ_2(d_1)902\1’+irkaJ'\p+k_d_lSO‘I’JrialgDF]‘I’Jrj—Fh-C-) .

5.1.2 Super-Weyl anomaly

Here we compute the super-Weyl anomaly for the toy model. As pointed out in sec-
tion 4.2, (4.26b) holds up to the finite order. For the toy model, it means that the r.h.s.
of (4.26b) is not canceled out and an additional finite term

VI _ P Tip,g,,, (5.6)

T2 2(d—1)

comes out from the L.h.s. of (4.26b). As in the case of the Weyl anomaly, we thus get
from (4.32)

LT < 1 ~
i’Lg aJWW(7/2)I*ﬂWFiWE4)@ (57)
2 ik 1 = =~ . —~ . ~ — 2 ..
=75 (ﬂ%kri_%ﬁk) WZQ)@——QZ&WZCA T L U Dily
= {j [ R ( T RTM —2Rik1‘”+2RilF’k) Dy 4y — 50,01 ¢+ T P TD, ]

141t seems that the bosonic sector of the conformal anomaly density A here is different from the one
given in [8] (see (162) there), because of the ¢* term in 5(4). However, one can easily check that it actually
vanishes, taking into account (2.4). This is because in our model the superpotential W is analytic in ¢ by
construction, while a non-zero p? term in £~<4) requires that the solution W of (2.4) contains log ¢ terms.
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or

Asw|[®] = % [4<d i 77 (df 1Rfkl — 2R T 4 2Rilfik> Dy —
A (5.8)
- % D¢ + m@QﬁjDi‘Ifﬂ' :
Notice that the terms in the first bracket
Al e, w,] = 5124(61 i 77 <d f 1Rfkl —2RFT 4 2RJf“€> DU, (5.9)

are universal, in the sense that they do not depend on the model.

5.1.3 Wess-Zumino consistency condition

From the relation (4.35a) and corresponding equation for the toy model we find that the
Weyl anomaly (5.3) and (5.5) satisfies the Wess-Zumino (WZ) consistency condition, which
can be seen as follows. Defining the Weyl transformation operator d, by

50:/ dx Z5<I>

@ (o)

(5.10)

where @) refers to the source for every field ®, the WZ consistency condition becomes
(061, 005]Sren = 0. This is equivalent to demanding that d,, [ d%z Awosy be symmetric in
o1 and o9, which can be seen from (4.35&) since

Zéglé(o) 5(1)( /ddy AVVUQ = Jlai(TaiO'Q), (5.11)
®(0)

for a certain scalar function 7. We note that the SUSY and super-Weyl invariance of
the Weyl anomaly follows from (4.35b) and (4.35c), which can be thought as the WZ
consistency checks.

In order to see that the super-Weyl anomaly (5.8) satisfies the WZ consistency condi-
tion, first we need to find the algebra of relevant symmetries. From (B.38), one can readily
see that'®

Bcs 0o 1o = (85 + 0)€l,  [Fess0er Jo! = (85 + O0), (5.12)

with the parameters o = € e, A = & I'e;. Notice that in our analysis it is im-
possible to see the above commutator for the fermionic sources, since our consideration
is limited to quadratic order in fermions. However, (5.12) provides the WZ consistency
condition for the super-Weyl anomaly, namely

<5€+/ddx’€(0)’€/Asw[@(o)])

15Here the subscript o is omitted again, which was used to denote the leading asymptotics of the variation

= ([8ey 102 1Sten)

bosonic bosonic

—/ddx]e(o)]UAg)[é(o)],
(5.13)

parameters in appendix B.4.
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since 0)Sren = 0. Here Ag/g) refers to the bosonic sector of the Weyl anomaly. In the
following we show (5.13) in detail, namely

Oe, / dix/ =y €_Agw =

- dd — Fkl —9 ikrll ) ilrlk D.D
RZ/ o 76*[4(@1—2)2 <d—1R il v 2k R
1 mm ~..
— 28057 H. 2T TY.T) -
10T 00, + 50T DZDJGJ
S —75’[ ! ©_REH 2R 4 2RI ) Ry
K2 “132d—2)2 \d—1 ‘ ’ ikl
1 ; 1 273 T3k
— Z9;00" — O TYTMR,;.
40<p390+16(d_1)90 R]kz]6+
1 2d N1 1
— [ d? R? 4+ 8Ry;RY | — 9,000 — ———¢*R
/ v 32(d 2)2 ( da—1" Tt ) 1779 T 8@ -® ]“
= —/dd:L' —y UAW , (5.14)

where again o = %E’_ €+. In the above computation we omitted the subscript (o) for simplic-
ity. In the same spirit, one can find another WZ consistency condition for the super-Weyl
anomaly from

0,60 Jet = [0, 00 Jp" = 0. (5.15)

We therefore have
=0, (5.16)

bosonic

(18— 6. 15ven

which can be shown in the same way.

5.2 SUSY transformation of operators

Now that the Ward identities are completely determined, we can use (5.2) to derive the
gPBH transformation of the renormalized canonical momenta, without using the FG ex-
pansions of the induced fields [31, 53, 54]. In order to describe the gPBH transformation
of the induced fields and their renormalized canonical momenta in an integrated way, we
introduce the concept of a generalized Poisson bracket, which is defined by (see e.g. (6.30)
in [53])

SA 8B 6B bA
Al® o, 121, B[® (o, TI®} = d - 1

_/ ddx< JA 6B 6B 0A A §B B 6A
oM

a 7,+ B
defyy; 01T, el 01T, diply OTI7  diply OTIF

— — — -
5?BBé?AA5?B<5?A

+A — B— — A+ —-B
OW (0)4; 011y, OW (0)4; 611y, 0C (g OI1 0C{py_ OI1
— — — —

B2 A il A AR ? B),
0L 0W ()14 0L 0W ()14 HC 64(0 STIS 6C o)
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where A[®(q),II*] and B[®(q),II*] are arbitrary functions on the phase space (@), II*).
The Ward identities (5.2) then allow us to define a constraint function on the phase space

ai j i =1 iNTTS i
ClE,0,ex,N] = /3/\4 ddiﬁ{fi (e(o)DjHa] — (0'p(oy)TI7 — (C(o)—E I — TG, )

— I, (D (g)45) — <@(0)+jﬁi) M2+ D; (T, Wiy, + F&o)#%))
Yo [ — ety T — GH I — %@(O)HHZ’a +h.c.)

+ (%5{ — 9;0'W) (Clo)_TTS + huc.) — lego) yAW[cp(O)]}

+ E+( - %Fa‘l’(owﬂi - %C{o)—ﬂf + %$¢f0>H§ + Diﬂ%)

- (%Hﬁ(o)ﬂ»r“ + %Hfffo)_ + %H%ga{o) +11, D)) e

e (367 oI — DTl + le) | Aaw [ (o))

+ ( T —ig" oy + Ie(o>|ﬁsw[‘1><0)])€—

a i L (. i
—\eb |:€(O)[aiHb] + Z(C(O),Fabﬂg + \Il(O)HI“abH@ + hc)} }, (5.18)

which generates the gPBH transformation B.4 through the Poisson bracket!'6

(50,63:,)\(1)(0) = {C[0'7 €+, )\]7 @(0)}7 5U,Ei,)\H(I> = {C[Ua €+, >‘]7 H(I)}J (5193‘)
55V = {Cle, By}, VT = {Cle) T} (5.19b)

Here 5éCgCt) refers to the covariant general coordinate transformation (see e.g. section 11.3
of [46]), under which variation of the fields is given by

5.5 el = Dic”, 5 olyy = £ 0utply) = E'Diplyy.  (5.200)

ST 0y s = ED W0y + (Di€) 01y 65y = € Datyy— = EDicy_, (5.20b)

where £% = fie?o)i. Meanwhile, d¢ given in B.4 is the general coordinate transformation

and it is related to 6§CgCt) by

R (5.21)

ab:wjabéj ’

The reason why diffeomorphisms and local Lorentz transformations appear in a mixed way
is that the constraint function and the Poisson bracket can only give a covariant quantity
but ¢ in (B.38) is not covariant by itself. Moreover, SUSY transformations require the
sources to be covariant and thus we are forced to see the covariant general coordinate
transformation rather than the general coordinate transformation.

161t is obvious that the gPBH transformation of the sources can be obtained through this Poisson bracket.
In appendix D we show that the same holds for the canonical momenta.
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The useful variations of renormalized canonical momenta extracted from (5.19) are

) 1 .
56_’_1_[% = (S\I;Z)_FC[EJJ = §H2Fa6+ (522&)
5T — — % e =2 /ddye | Ao [®0)]
e ll=— — €| = — T 0 sW 0)]€—
AT OW (0)+i © ©
le)| 1 2, ik ki ik
-T2 §Dk (L&R(O)F(O) — R); 11(6) + Ry, F(é)]5—> -
a )
e, I = ——Cley] = §er+, (5.22¢)
0C(0)—
O H§ = —7 C[e_] = — ddg;‘e(o)‘ ASW[(I)(O)]E— = — R(z) iaiga(o)r(o)é_, (5.22(21)
6C(0)— 6C0)—
) 1 ~
55+H? = ﬁc[eJr] = —581 (H§F26+) s (5226)
¥(0)
0 . 0 —
b 117 = ——Cle-] = ~i0(G7 KO W)ITGe_ + ™ / d?z|e )| Asw [P ))e—
¥(0) ¥(0)
_ i+ €O |; T o4 DT e (5.22f)

where R(q), R(O)ij and IA”@ denote the Ricci scalar, Ricci tensor, the Gamma matrix and the
determinant of the metric for the vielbein e‘(lo)l.. Here the underlined terms are computed
specifically for the toy model. Notice that due to the super-Weyl anomaly, the ¢_ variation
of the renormalized canonical momenta contains bosonic anomalous terms, which have a
similar origin as the Schwarzian derivative appearing in the conformal transformation of
the energy-momentum tensor of 2D CFT.

5.3 BPS relations

A bulk (bosonic) BPS configuration, which is a bosonic solution of the classical SUGRA
action as well as is invariant under bulk SUSY transformation with a certain parameter,
corresponds to a supersymmetric vacuum state of the dual field theory. Since the vacuum
expectation value (vev) of many observables is computed in SUSY field theories, it is
necessary to pay special attention to the bulk BPS solutions. The existence of a bulk
BPS configuration implies that there exists a boundary SUSY parameter, under the gPBH
transformation with which the fermionic sources are invariant, namely'”

~

677@(0)4-72 = 677+ \IJ(O)-H; + 5"7—‘11(0)+i = ID)ZU+ — ]__‘(0)17]_ = O7 (5233)
i~ ,
o) = —5 o) 0isp(oyne +G" 0 W =0, (5.23b)

"Here we do not discuss the integrability condition of (5.23). For a discussion of the geometry of (5.23a),
which is also known as the twistor equation, see e.g. section 3.1 in [3].
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where the first equation is usually referred to as the conformal Killing spinor (CKS) con-
dition. Actually, the rigid supersymmetry of the boundary field theory is found by solv-
ing (5.23) [1, 3, 55).18

Now we show that the n-variation of any renormalized canonical momentum vanishes
on a BPS solution, i.e.

@ — P P
5,11 aps = oy, 10 Py +6,_II ‘BPS =0, for any source @, (5.24)

PS

where for the fermionic operators we have from (5.22)

; 1_. ) _
onllg = ST N4 + = / ddl"e(o)\ Asw [ (0)]7- (5.25a)
2 Y 0y+i /5,
Tt ) _
0,115 = ST + (SCI/ d*xle o) Asw[®o)]n-- (5.25b)
(0)— ==

This is the holographic version of the fact that the vev of any ()-exact operator vanishes
on SUSY vacua. We only need to consider the variation of the fermionic canonical momenta,
since the n-variation of the bosonic canonical momenta trivially vanishes on a bosonic
solution. One can in principle see (5.24) by expanding the bulk BPS equations. But since
we have the SUSY and super-Weyl Ward identities, the form of which is the same for all
SCFTs, we take advantage of the Ward identities (5.2a) for 4 and (5.2b) for n_.

Taking into account the CKS condition (5.23), we obtain from the Ward identities that

1— - 1 :
_ d T R v rla I T )
o_/{wd x[< STl Th — 5C(o) 117 — STdey) HQEJW
+ (Z-gIJaIWHS — /{Pf(o)i — |6(0)|Asw[¢(0)]>77_]

l< ayTi bl =
= /a/w ddl‘( = 5 Y+l “Tan+ = 517 o)+ — |6(o)|¢4sw[‘1>(0)]777)- (5.26)

We emphasize that because the Ward identities are valid for any background, (5.26) holds
at least to linear order in fermions for any value of @(O)H and me_ as long as the bosonic
sources admit a CKS. There might be a correction at order of O((‘IJ(O)+)2, (C(O)_)2>,

though. Note that non-trivial dependence of bosonic momenta I}, and II7 on the fermionic
sources occurs from the quadratic order in fermions, i.e.

) .
e I
(0)+1_C(0)__ =0
and so on. Therefore, by taking the functional derivative of (5.26) with respect to the
fermionic sources and evaluating on a (bosonic) supersymmetric background, we obtain

8More precisely, most of the rigid N' = 1 SUSY field theories on curved backgrounds require a U(1)
R-symmetry gauge field to be turned on. In this case, which is discussed in [40], the covariant derivative
D; in (5.23a) becomes D; + igA;, where g is the R-charge of the corresponding field.
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the (bosonic) identities

1_. 1 _
§Hﬁwh+—k) Ed%m@p%w@@m,za (5.28a)
0)+17 r
1 ) _
—5 U - 54_1/ d'zle )| Asw(®)]n- =0, (5.28Db)
(0)— 7>r

where we used (3.17). Therefore, we find that on BPS backgrounds

5,15 =0, 6,15 =0, (5.29)

which confirms our claim.

Note that from the field theory point of view (5.24) is quite natural, since supersym-
metric vacua are annihilated by the preserved supercharge Q.

In order to convince ourselves, let us check (5.24) for the toy model. First, let us recall
that in the toy model, d = 4 and scaling dimension of ¢ is 3. Then, (5.28)s become

i leol 1 d ki kT Tk
el 1 2 Tij
i EOIEES
02—5774_]:[904- 52 if(o)n_ 7,90(0) (531)

By combining (5.31) with the conformal Killing spinor equation for the toy model

Dy = L gyin-, (5.32a)
1/\2'
210990 1+ en- =0, (5.32b)
we get
o leo P
— el + 5 57009 ¢(0) = 0. (5.33)

This formula can be verified in the toy model by using the bulk BPS equation.

From the bulk BPS equation for ¢ with the bulk SUSY parameter €
- d
5¢ = (P —W)e=0, M/Ea?N@L (5.34)

one can obtain

b=~/ W)+ B, (5.35)

where we fix the sign from leading asymptotics of . It then follows from the definition of
¥ that

V. VY :
= Y= (=W")2 + 0;p0%p. (5.36)
On the other hand, the full bosonic counterterms are given by
1 d 1 1 o (L o i
Sct:? dx\/—’y{W—ZR—iloge (64;3 R+8i<p8g0+~~-)}, (5.37)
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where the ellipses denote the terms which do not depend on . The counterterms for the
canonical momenta 77 are then given by

0 Sct = 7

S 2

Y _
Tt =

1 1
- (W) - 5 loge™ (§¢R —200p) . (5.38)
Furthermore, from the conformal Killing spinor condition (5.23), we obtain

1
0= (D(O)S"(O) - 690(0)3(0))7”, (5.39)

which implies that the logarithmically divergent terms in (5.38) actually do not contribute
to the counterterms. Eventually, the renormalized canonical momentum II¥ becomes

% — & lim e 9y=y ai@ai(p. = ’6(0)’8i¢(0)8i¢(0)7 (5.40)
% rboo VEWPE 0000 + (-W) 26 e

which confirms the result (5.33) as well as the anomalous SUSY variation of the renormal-
ized canonical momenta (5.22).

5.4 Conserved charges and supersymmetry algebra with anomaly correction

We recall that given a Killing vector ¢ which satisfies the Killing condition®®

Leg0yij = D(o>i€j + Dy j& =0, (5.41a)
Lew(oy = £'0i(o) (5.41b)
EEC(O) = 52 C -+ D(O)z&] (0) C(o (5.41c¢)
‘Cﬁll’(o f ]D) \IJ(O)Jrj ( &) (0)+ D(O)kglfl(gé)q’(o)+j =0, (5.41(1)

we obtain a conservation law by combining (5.2d) with (5.2e), namely
D; [ef¢IT, + & (I Wy + W T12)] = 0. (5.42)

Note that we use the Kosmann’s definition for the spinorial Lie derivative (see e.g. [56] and
(A.11) of [2]?Y) and the Lie derivative is related to gPBH transformations by

Le =075 45 L (5.43)

Aap=—¢€} €] D&

We emphasize that (5.42) holds for any background that admits a Killing vector.
The conservation law (5.42) allows us to define a conserved charge associated with &,
namely [57, 58]

Ql¢] = / do; (eI, + Mg W + Uy I0%) &, (5.44)
oMNC

lgg(o)ij = e(“o)ie(o)aj is the induced metric on the boundary OM.

20In the literature, including [56], the spinoral Lie derivative is defined by L¢¢ = £'D;¢ — 2 D;&;T%¢. The
sign of the last term is minus, since the Gamma matrices there satisfy a Grassman algebra in Euclidean
signature, while here we use the Minkowskian signature.
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which is independent of the choice of Cauchy surface C. Note that the conserved charge
Q[¢] is related to the constraint function by

Ql¢] = Cl&, Aap = —eieZD[ifﬂ]. (5.45)
We also have the conservation laws
D;i(Ilyny) = Dy(7, 1) = 0, (5.46)

which follow from the SUSY and super-Weyl Ward identities (5.2a) and (5.2b) for the
CKS parameters 74 and 7. Note that the conservation laws (5.46) hold only on bosonic
backgrounds. This allows us to define the conserved supercharges

@l = [ doyne Q= [ dovm g (5.47)
oMNC oMNC

On a bosonic background we can identify these conserved charges with the constraint
functions, namely

Q°n+] =Clny,n-], Q%04 = Cly,7-]. (5.48)

It then follows from (5.22) that on a bosonic background we have

@l @mn), = [ dnn ) |, (5.49)
Bosonic OMNC Bosonic
1 i — a — J d I
= doi | ST T +77+( — d l‘!e(o)!«‘lswﬁf)
oMNC 51’(0)‘5‘1 oM Bosonic
In the case where the conformal Killing vector?!
K! = in Tiny, (5.50)

becomes a Killing vector, we can see that on a bosonic background the above commutator
becomes

@@ =50kl [ dm. (5

/ddm|e(0)yAsWn_). (5.51)
(0)+i JoM

Not surprisingly, the super-Weyl anomaly corrects the supersymmetry algebra, too.
We can obtain other commutators such as {Q[¢], Q*[n+]}. It is possible because QJ¢]
for the Killing vector ¢! is conserved for any background so that

/ do; {Q[€], 1y In+ :/ doy {C[§, Aap = —GQGZD[ifj]LH]&/}m
AMNC aMNC
= / do; [—H3£§W++Dj[(§jﬂfp —5iH{y)77+]+§iDj(H§ﬂ7+)] ;
aMNC

where the second term vanishes by using Stokes’ theorem. The third term is also zero on
a bosonic background, due to the conservation law. Therefore, we have

(I, @[]} = — / do; Ty Lenny = —Q°[Leny ], (5.52)

oMnNC

210ne can easily check that K satisfies the conformal Killing condition, by using (5.23).
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and in the same way

S[= _ <5 7 S[= ey
Q. @mly =~ [ do(n, ey = -l Tdl, (5.53)
oMNC
since L¢n4 and 7 +(Z§ become conformal Killing spinors [56], i.e.
1~ ~. R 1, <« PPN
Di(Len+) = STV D;(Lens), (m, LoD = 70+ L¢)D,T. (5.54)

We note that (5.52) and (5.53) can be obtained in the other way, namely by computing
{Q°[n4], €510, + Mg Vo + T}, {Q° [, ], ef T, + Ty Uy + Uy 115} (5.55)

In summary, the supersymmetry algebra on a curved (bosonic) background is

S _
d 2‘7 — dd AS - )
o 77*(5\1'(0)“- /aM zle() [Aswn )

@l Qm) = -5+ [
{Q[f], QS["HU’ = —QS[EHHL
{018, @[]} = —~Q°[7, Le.

(5.56) closely resembles the SUSY algebra presented in the literature (see e.g. [1, 59, 60]),
except for the super-Weyl anomaly-effect term.

(5.56)

We comment that (5.56) can be obtained without using the Poisson bracket, but in
an equivalent and rather simple way. Recall that a symmetry of the field theory leads to a
conservation of the corresponding (anomalous) Noether current J* (with the anomaly A )

D;J' = Ay, (5.57)

from which we derive the variation of any operator O under the symmetry transformation
(see e.g. (2.3.7) in [9]), namely

50(x) + /8 % D) = A )]OG) =0, (5.58)

where the second term can be computed by differentiating the relevant Ward identities
with the source dual to operator O(z). Now one can readily see that the commutator of
charges becomes

{Q1,Q2} = do; (61J3) = —/

omne amne i (/aM dy [D; ]} (y) — AJ(Q)]J§> . (5.59)

and this prescription gives the same result with (5.56). See e.g. appendix E for derivation

of {Q[¢], Q°[n+1}-
Now that we know from the last section that the Lh.s. of (5.51) vanishes on BPS

backgrounds, we can conclude that the conserved charge associated with K¢ on BPS back-
grounds is totally fixed to be a functional derivative of the fermionic anomaly, namely

J _
K = 92 do; 4 — d? Acwn_ 5. 5.60
o]] ]‘BPS l/axvmc o U+{5qj(0)+i /8/\/1 zle o) [Aswn } (5.60)
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Depending on the theory, K¢ can be a combination of other Killing vectors such as d; and
0Oy, where 1) refers to an angular coordinate. If this is the case, (5.60) can be regarded as
a relation of the conserved charges on the supersymmetric background, but accompanied
with an anomalous contribution. A similar relation is found in [40], which explains the
discrepancy of the BPS condition (see e.g. (C.16) of [45])

(H) +(J) +7(Q) =0, (5.61)

for pure AdS5 is precisely due to the anomalous contribution coming from the fermionic

anomalies.

6 Neumann boundary conditions

Most of the computations so far are for the plus sign choice of (3.3b) at the beginning of
section 3. This plus sign is actually equivalent to imposing Dirichlet boundary conditions
on the spin 1/2 field (. Independently from this choice, we could determine the leading
asymptotics of the scalar field, as emphasized before. This allows us to use the result of
appendix B.3 and B.4 to conclude that the minus sign choice can be supersymmetric only
when mass of its scalar SUSY-partner field belongs to the window [61-63]

_ <g>2§m2§—<g>2+1. (6.1)

In this window (3.3b) is already finite, implying that the canonical momentum of {_ is
not renormalized. Since (y by itself becomes the renormalized canonical momentum, the
change of the sign from plus to minus is in fact a Legendre transformation of the renormal-
ized on-shell action §ren, which is equivalent to imposing Neumann boundary conditions on
¢_ [64]. We have scen that Sye, in the case of the plus sign choice is (e4) supersymmetric
(Dirichlet boundary conditions for scalar the field were implicitly imposed). Therefore, in
order to preserve SUSY, one can expect that the boundary conditions for the scalar field
should also be changed from Dirichlet to Neumann by a Legendre transformation.

To see this, one has to prove that the total Legendre transformation action

V=

K2

Cts (6.2)

is invariant under an e, transformation. Note that the variation of H§ gives directly
how gPBH transformations act on (;. We again consider only one scalar field, and it is
straightforward to extend the result here to the case for several scalar fields. From (5.22),
one can find that the action of €, on Sy, gives
5., S0 ~ — / (377C_cs — poupe T30 — LR _er — Loi(e.T'7%) +he) =0,
2,

This confirms that the total action S + Sy, for the Neumann boundary condition is still
invariant under an e transformation.
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When it comes to the e_ variation of S, one finds that all the momentum-related
terms are canceled, as before. The anomalous terms in the e_ variation of the renormalized
canonical momenta, however, are not canceled but contribute to the e_ anomaly of S+ .57,
together with Agw. Namely, we obtain for the toy model that

1

(st~ [ devTe (A9 - o

i

<p2fijDi‘11+j> = / dey/=re Ay, (63)

where the super-Weyl anomaly for Neumann boundary conditions is

7 Concluding remarks

In this work we have considered a generic N' = 2 5D supergravity theory with its fermionic
sector in the context of holographic renormalization, through which we have obtained a
complete set of supersymmetric counterterms. We have also found that scalars and their
superpartners should satisfy the same boundary conditions in order for the theory to be
consistent with SUSY.

The Ward identities (5.2) and the anomalies lead to rather remarkable consequences.
By means of them, we showed that the SUSY transformation of local operators and the
SUSY algebra of a theory which has A/ =1 4D SCFT in curved space as a UV fixed point
become anomalous at the quantum level, see (5.25) and (5.56). We comment that once
the R-symmetry gauge field is turned on, the R-charge and the related terms appear on
r.h.s. of the first line (5.56), see [40]. Note that the anomalous terms are non-vanishing in
general on curved backgrounds, even where all anomalies vanish.

We emphasize that our whole analysis here crucially relies on the existence of a scalar
superpotential W, in terms of which the Lagrangian is expressed. If the theory does not
possess any superpotential, one could introduce a local and approrimate superpotential
which is sufficient for reproducing all divergent terms of the scalar potential, as done
in [65]. Now one can see that the approximate superpotential should meet more restrictive
criteria for the supersymmetric holographic renormalization. To make this point clear, let
us discuss the approximate superpotential suggested in [65], see (5.15) there. One can find
from the BPS equations (3.20) and (3.25) and the algebraic equation (3.26) in [65] that
the BPS solution’s flow to leading order is

dy

"~ -, (7.1a)
dp 2 9

dx  _ v

o~ =2 (1 + \/&) : (7.1c)

where the r.h.s. of the last equation is a non-analytic function of ¢ around ¢ = 0. Hence
it is impossible to find a analytic and approrimate superpotential consistent with the BPS
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flow equations, which means that we need a more generic N’ = 2 gauged SUGRA model to
study [65]. Notice that this inconsistency of the approximate superpotential with the BPS
flow equations implies that the superpotential suggested in [65] is not approzimate for the
fermionic sector of SUGRA.

As long as there exists a superpotential (or at least an approximate one for the whole
sector of SUGRA), many of our results here can be extended straightforwardly to other
dimensions. A direct application of the analysis of this paper to other dimensions is to
obtain the 2D super-Virasoro algebra with a central extension. Let us explain this here
schematically. The super-Weyl anomaly in 2D SCFT can be easily found by using the trick
of section 5.1.3, namely that the SUSY variation of the super-Weyl anomaly is equal to

= _c

T 24nm
super-Weyl anomaly in 2D is I;§* ~ i5-I'"ID;¥; up to a constant coefficient, depending

the Weyl anomaly. Since the Weyl anomaly is egﬁ R, we see immediately that the

on the convention. It follows that the anomalous variation of the super-current operator is

%yz—immj—

ic

487Tfijfk]Dj]DkT], (72)

where 7 is the 2D CKS, satisfying the condition
1~ s
Din = iFiI‘J]D)jn, or IVI"Djn=0. (7.3)

Note that the anomalous term in (7.2) vanishes only when the 2D Ricci scalar R = 0 and 7
is a spinor, all second derivatives of which vanish. Since (7.3) admits an infinite number of
solutions, as 2D conformal Killing vector equation, one gets infinite number of conserved
super-charges (., which are added to the Virasoro algebra to form the super-Virasoro
algebra. Now one can see that the central extension in (see e.g. (10.2.11b) in [66])

c

{GT7 Gs} = 2L7‘+s + 12

(472 — 1)5, s (7.4)

of the super-Virasoro algebra in 2D flat background is derived from the anomalous term
of (7.2).

One should keep in mind, however, that since the representation of the spinor fields
strongly depends on the dimension of spacetime it might not be easy to put the SUGRA
action into the form of (2.1) in other (especially odd) dimensions.
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A Notation, conventions for Gamma matrices and useful identities

Throughout this paper Greek indexes u,v and «, f3,--- refer to the coordinate and flat
directions in the bulk respectively, and the Latin indexes i,j,m,n,p,q,--- and a,b,---
refer to the coordinate and flat directions on the radial slice respectively. The flat indices
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which correspond to radial-like and time-like directions are special, so we denote them by
7 and t respectively. The capital Latin letters A, B, --- indicate the coordinate directions
on the scalar and hyperino manifold. V,, D; and D; refer to the covariant derivative in
the bulk and the covariant derivatives of the bosonic and fermionic fields on the radial
slice respectively.

We use the hermitian representation of the Lorentzian Gamma matrices, following the
convention in [46]. I'* and I'* indicate the Gamma matrices along the flat directions in the
bulk and the boundary, while I'* and T refer to the Gamma matrices along the coordinate
directions in the bulk and the boundary. The relations between these Gamma matrices are
provided in appendix C. Both in the bulk and on the boundary the hermitian conjugation
of the Gamma matrix is given by

et = pipert, T = rirre. (A1)

The following formulas, which hold in any D dimensional spacetime (see e.g. section 3
in [46]), are frequently used in this paper.

1
Die = {04,177, (A.22)

1
LHee = [0 1), (A.2b
DHPT e = TP 4 6T 6°) ) + 6T 6Y 671 (A.2c
THPOT = THVP7 Ly 4 8T 671 ) 4 12706, 670, (A.2d

[Fuw Fpo] = 2(gupr;w - gupruo - guarup + guarup)a (
FW’T,, = (D —2)rH, (A.2f

[HPT,, = (D — 3)T", + 2(D — 2)THe"] (A.2g

1
MYV = = R, (A.2h
THPY,V ¢ = —i(RP“ — 2R, MTV)C, (A.2i)

where ¢ refers to the Kronecker delta.
There are left and right acting functional derivatives with respect to fermionic variable

75
5@5 511}7

and in most cases the rightarrow symbol — is omitted. Here v denotes the Dirac adjoint

1, namely
(A.3)

of the spinor v, namely )
¥ = T(irh). (A.4)
The affine connection I'}, is related to the spin connection by (see e.g. (7.100) in [46])

I, = EG(OuE] + WuaﬁEg)- (A.5)

In this work we consider the supergravity theory in the second order formalism. This means
that our theory is torsionless and thus the spin connection can bre expressed in terms of
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the vielbein as
Whaf = EyaﬁuEE + PZyEpaEE~ (A.6)

The variation of the torsionless spin connection is

Spas = B, DudEg), — Bl Dy Eg), + ef, B4 Ey, Dy, 0 E) (A7)

[a N

which is useful for many of our computations. The covariant derivatives of the fermionic
fields are given by

1

V.U, = 8,0, + waraﬁqu — T, 0, (A.8)
1 «

Vil =0, + waﬁr Bel. (A.9)

B ADM decomposition and generalized PBH transformation

A preliminary step of the Hamiltonian analysis of the gravitational theory is to decompose
the variables of theory including the metric (or the vielbeins) into a radial-like (or time-like)
direction and the other transverse directions (a.k.a. ADM decomposition [67]). Coupling
gravity to spinor fields requires vielbeins to appear in the action explicitly and thus the
ADM decomposition of the vielbeins instead of the metric should be done.

The ADM decomposition brings us a natural choice of gauge for the variables of the
theory, which is referred to as the Fefferman-Graham (FG) gauge. In the FG gauge, the
Hamiltonian analysis becomes much simpler.

B.1 ADM decomposition of vielbein and the strong Fefferman-Graham gauge

We begin with picking a suitable radial coordinate r and doing the ADM decomposition
of the metric to run the Hamiltonian formalism. Since the vielbein explicitly appears in
the action through the covariant derivative of the spinor fields we need to decompose the
vielbein itself rather than the metric.

Choosing the radial coordinate r, we describe the bulk space as a foliation of the
constant r-slices, which we denote by Y,. Let E* be the vielbeins of the bulk and we
decompose them as

E* = (Nn® 4+ Nef) dr + e da?, (B.1)

such that
= EYES = e’ @ =0 anf =1 B.2
Guv = L Ly Nap,  Yig = €;€;MNag, Nab; =U, Tognt 1= =1, ( . )

where «, § are bulk tangent space indices and n = diag (1,—1,1,...,1) (where nz = —1).
Note that N and N® are known as lapse and shift functions respectively. One can check that

ds® = Gudatdr” = (N2 + ]\”’Ni)dr2 + 2N;drdxt + %jdxidxj, (B.3)

which usually appears in textbooks. The inverse vielbeins are then given by

1 . .
E, = e E;, =e, — ~ N (B.4)
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It follows that ] )
I'"=T°E] = Nnafo‘ = N
The extrinsic curvature on the radial slice X, is defined as

T. (B.5)

.
Kij = 557 (%ij = DilNj — DjN;) (B.6)

and K =~ K;;j. Moreover,

) . o~ Nt
I"=T°E,)'=1"— W1“, (B.7)

where [ = I'@e! . These vielbeins satisfy the relation
ehel +non’ =88 (B.8)

One can also see that the s satisfy the Clifford algebra on the slice and I" anticommutes
with all I'%s, i.e.
{0, P} =299, {1} =0. (B.9)

It follows that the matrix I' can be used to define the ‘radiality’ (see e.g. [38]) on the slice,
so that a generic spinor 1 on the slice can be split into two by radiality,??

%Z)i = Fi¢7 (B]'O)

where I'y = 1 (1+T).

We recall that splitting spinor fields by their radiality is inevitable because different
radiality leads to different asymptotic behavior [32, 33] as well as the constraints that
relate the fermionic fields and their conjugate momenta should be solved in a Lorentz
invariant way [36]. Remind that the fermionic fields that follow the first-derivative principle,
differently from the bosonic fields that follow the second-derivative one, are related to their
conjugate momenta by definition. Taking the Dirac Lagrangian as an example, we find that

<_
_ _ ) _
Loiree =~V DW= mTY = Ty = Lpjgaeo = — 1. (B.11)

In order to simplify the calculations that follow it is convenient to pick a particular
vielbein frame so that

ne = (1,0), et=0, e =0, (B.12)

and e becomes the vielbein on the slice 3,. We will call the gauge (B.12) combined with
the traditional Fefferman-Graham (FG) gauge

N=1, N'=0, ¥,=0, (B.13)
as the strong FG gauge. Namely, the strong FG gauge refers to

El=1, E*=0, E =0, ¥,.=0. (B.14)

22When d = D — 1 is even number, radiality can be regarded as chirality.
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B.2 Decomposition of the covariant derivatives
We obtain (see also (88) and (89) in [36])
Wrap = Nalg + ijata) + 20y’ (N — NV Kji) — DiNje,'eg)’,
WiaB = Na0ing + ejaaiegj + Ffj [fy]ekaegj + QKfej[anﬁ],
where we have used the Christoffel symbols
I =N~ (N+Ni8iN—NiNjKij) :
I, =N"1(;N-NK;),

Il =—-N"'Kj,

(B.15)
(B.16)

I, =—N"'N'N-ND'N-N"'N'NIO;N+ N+ N/D;N'+2NN K+ N"'N*N*N'K},,

Il =—N"'N'9;N+D;N'+N'N'N*K};+ NK,
I} =T5]+N'NFEK;;.
Denoting the spin connection on the radial cut-off as W;qp, we get
Biab = €jadie] +1%; [Y]erae] = wia,
WiagT? = Bigp T+ 2K jieIngl® = G0y T +2K ;; 17T,
Wrapl? = €T+ 2IT" (9;N — N7 K j;) T D; N,
Vi, = Di‘llj—i—%Kliflf\llj—i—%f(ij(\llr—]\fk\ﬂk),

1 . 4
Villy =D+ 5 Kyl T, 1), 0 T

.1 . . . .
VAR [eaiézfab—kQFW (ajN—NlKlj> —rﬂDle] L .

4
1
Vi = DiCJriniTJFQ

1 . . .
Vi(=(tg leaiéi T +2TTY (9N~ N'K; ) ~T9'D; N ¢,
where
1. ab k
D W5 = 0,05 + 2 Biap ™ W5 — Ty [7] W,
1.
]D)i\pr — 81\1’7" + Zwiabrabq]m

1
;¢ = 0;¢ + ZwiabfabC,

(B.18a)
(B.18b)

(B.18c)

are the covariant derivatives of the spinors on the slice ¥,. Note that in the final compu-

tations we used the gauge (B.12).

B.3 Equations of motion and leading asymptotics of fermionic fields

In order to discuss with the transformation law of the induced fields, we first study the

leading asymptotic behavior of the fields, which can be understood from equations of
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motion. For ¥, and ¢ I they are respectively,
DOV, — WIRE, = <Gy (D + G 0iw) 1¢” = 0, (B.19)
and
1
Grr (SkY +Tr[G1dp") ¢* + Mrs(o)¢! + 5611 (P’ — " 0xW) W, = 0. (B.20)

Extracting the relevant terms, we obtain in the gauge (B.13)

/. 1 e 2d — 3 .
0~ —TY (q]+j — 2\I’+j> + I <\IJ] —+ 5 \I’J> + Fz]ij(‘If+k + \If_k), (BQl)

- d d T i i T
0~ + (2 + M<> Cr— ¢ — < - Mg) - +I"Di¢y — I"DiC- + 5(@ + pp) I
=+ %fifjajcp\luﬂ», (B22)

where we assume that there is only one scalar ¢ and one spin-1/2 field ¢ for simplicity, and
M. which is the mass of ¢ and p are respectively

= —0,0,V , Me= My, ) (B.23)
»=0 =0
under the assumption that the scalar manifold metric is canonically normalized. p and M,
are related by
d—1
M= —p+ — (B.24)
When d > 2, the leading asymptotics of ¥,; and ¥_; are

yi(r,x) ~ 62‘1’(0)+z($ , (B.25)

2 ~
U_i(r,z) N—fe (d : OL. r(0>ikl>D$)\1/(0)+l(x), (B.26)

where we used ¢f(r,z) ~ €"¢(; () in AIADS geometry, and r©: and DO refer to the
Gamma matrices and the covamant derivative with respect to e(o)i.

We need to be more careful, regarding (. First, we note that since we would like to turn
on an arbitrary source for the scalar field, the leading asymptotics of ¢ should always be
@(r,z) ~ e * ) (x) as can be seen from (4.8c). Therefore, the final two terms in (B.22)
can be discarded from the argument. Now there are 3 cases to consider:

1. M¢>1/2 (oru<f—1)
The leading asymptotics of (— and (4 are respectively

1
C—(wa) ~ e_(u+§)7n<(0)—(x)v (B27)
1 _ 3 73(0): 7~ iS00V
C(r @) pt3 <€ G2 T OO ) () - §F(0) L9500 (x)\I}(O)—i-i(x)) '
2

(B.28)
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2. My < —1/2 (or > %)

Here the behavior of (_ and (4 is opposite to the first case, namely

—(d—p—Lyp
o (rz) ~ e ¢ (2), (B.29)
1 —(d—p+3)r7(0)d
C_(T',.T) ~ me (d MJF;) F(O) DEO)C(O)JF(CC) (BSO)
2

3.1/2>Mc>—1/2(or $>p>9-1)

This case actually coincides with the double quantization window [61-63] of the scalar
field. The leading asymptotics are

¢ (r,x) ~ e D¢ (a), (B.31)
Ci(ry3) ~ e T (). (B.32)

B.4 Generalized PBH transformations

Let us find the most general bulk symmetry transformations that preserve the strong FG
gauge (B.14), which we refer to as the generalized Penrose-Brown-Henneaux (gPBH) trans-
formations [68-70]. We can immediately see that the local symmetries of the bulk SUGRA
action (2.1) are diffeomorphisms, local Lorentz and supersymmetry transformations. Their
infinitesimal action on the bulk fields takes the form

1 _
e neEY = E"0,ES + (0,6")Ey — N*gEf + 5 (0, =T, I%), (B.33a)
1 1
65»)\,6\Il,u == éyay\:[]ll + (aufu)qjy - ZAQ’BPaﬁ\pH + (Vu + mwru)ﬁ, <B33b)
T, I
Se e’ = E"up" + 5(6C1 —(e), (B.33c)
1 7
5§,A,6CI = f“aufl - Z)\aﬁFaBCI - i(asﬂl — g”aJW)é, (B.33d)

with parameters £#, A*8 ()\aﬁ = —/\50‘) and e respectively. The condition that imposes the
strong FG gauge is then

0=2¢", (B.34a)
0=¢Eed — N\, (B.34b)
i} 1 _ _
0= 8257" — )\Tae? + §(€—\Ij+i + U e —e, ¥, — \I/_iﬁ_;_), (B.34C)
. 1 A 1
O=ér+é- +& W+ V) + Zemézbf‘ab(&r +e-)+ Q(T_UW(@ —e-), (B.34d)

— 44 —



and its solution is
&'=o(x), (B.35a)

. . r .. 1 — —
é—z (T,x):é_é (IE)—/ dr/ ,71] (T’,CL') |:8JO'—|—2 (G\I’+j+‘lj+j€—€+\l’j—\lfj€+):| s (B35b)

)\FUL — eai |:a7,0'+; (E_\IJ_H'—"W_H‘G_ —E+\I’_i—@_i6+) y (B35C)
A =% ()4, (B.35d)
[r [ W+(d-1) L ipab
€4 (r,r) =exp _24—/ dr’ (—2((1_1)+’y] (r',z) @U—Zeaiebf +0 (\112)” €ot (),
(B.35¢)
e_(r,r)=exp _—;+/ dr’ <W —|—’yij(r',:13)8jo'—ieaiéZI‘ab—i—O(\Iﬂ))] €o— (),
(B.35¢)

where o (z), (), A\%(z) and €,4(x) are ‘integration constants’ which depend only on
the transverse coordinates. Taking into account the leading behavior of the vielbeins and
the gravitino one can see that the integral terms are subleading in (B.35). It follows that
the leading asymptotics of the generalized PBH transformations are parameterized by the
arbitrary independent transverse functions

U(.T), fé(-f), )‘Oab(x)a eoi($)7 (B36)

which in fact correspond to the local conformal, diffeomorphism, Lorentz, SUSY, and super-
Weyl transformations of the induced fields on the radial slice X, respectively, as we will
see Soon.

Extracting the leading terms in (B.33) and taking into account the asymptotic behavior
of the induced fields, we obtain how the sources transform, namely (from now on and also
in the main text we do not write the subscript o)

. . 1
deaeei ~ §10jef + 0i&lef +efo — A%l + 5 (€41 ; + h.c.), (B.37a)

1 ) . ~ 1
557)\76\114_1' ~ 5‘1’4_2'0 + fjaj\l’+i + (aif])‘l’+j + Djer — e — EA“bFab\IJH, (B37b)
)

Sernep! ~ =G o Wo + 10,07 + 5

(£:¢! +he) + % (f-¢! +he), (B.37¢)
where we do not write down the variation of W_; since unlike ¥; its leading term (B.26)
does not transform as a source so that it cannot be used as a generalized coordinate [34].

As for ¢!, we need a careful discussion, since its leading behavior changes according to
its mass. In the first case where M, > 1/2, CJIF cannot be treated as a source, like the case
of gravitino W_;. We also find that in the second case where Mg < —1/2 (B.37c) is not
consistent with the leading behavior of ¢ ~ e " due to the term %(é_Ci+h.c.) ~ e_(d_“l)r,
which implies that Ci cannot be turned on as a source, in order for the theory to be

supersymmetric. In the final case where 1/2 > M > —1/2, both Ci and ¢L can be used as
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sources. The transformation law in this case is discussed in section 6. In summary, what
we obtain is

: ~ 1
O¢eneei ~ & 0jef +0;&7 e?—l—e?a—)\abef—i—i (€410 ;+h.c.), (B.38a)
1 . ) ~ 1
O e Wpi~ Wi+ 805U 4i+ (0:€7 ) Uy +Dier —Lie — Zz\abFab\IfH, (B.38b)
: i
dencp! ~ GO Wo+E 00"+ (€L +hc), (B.38¢)

d . . 1
SeneCl ~— <25§(—QUMJK> Koot +ig!7 o, We_ — %Flaicple_,_ - varabd,
(B.38d)

where we inverted the mass of ¢ into the (scalar) o-manifold language.

C Decomposition of the action and the fermion boundary terms
In this appendix we decompose the terms in the fermionic sector of the action (2.1).

C.1 Decomposition of the kinetic action of the hyperino field

The kinetic term for ¢! in the action (2.1) is decomposed as
=1 =1
G1s (ST, = (VL)
=G1,C (79, + T'Vi¢!) = 6T V.77 — 61T VT

1 . 1 . ~ . .
=G1,C [Nrc’ +-—T (em-ézr“" + 20T (;N — NV K ;) — F”D@-Nj) ¢’

AN
~. Nt ;1 PO
+ (I‘Z - NF) <D¢C + S KyTIIC )]
=1 1= -i ab T j Tij Lo
~ 61| -5 [eaiebf +2IT (9N — N'K;;) — T Dl-Nj} ¢
—T 1 —Is; ~ N°
-G (C b, - 3 Kii¢ FJF) <Fl - NF) ¢’

1 7 . I - - 1 .
=01 (CI_C.{ e+ cid) + ﬁguem»egg’rrab&
1 o _ e
— 5 DN T + 61y (S ~ B¢
N _

- 01 (! ~ T Bire?), (CBY

where the terms in the first bracket can be recast into
Gry (ZI_C.{—ZiCZ —EI_CiJrziCZ) =G0, (Zl_d +Zid> —2QIJZ£L¢£ —2gufl_ci
1 _ _
= =0 (91VT ) = (NE+DeN ) 61T !

— (@K = N0 oK + N'9,o") 0 G1,C ¢! —261,¢1 ¢ —2G1,¢ ¢ (C.2)
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Finally, the hyperino kinetic terms are decomposed into
G1y (Zfr“vucf - (v SHree?)
2 I : =T 1 _
=~ F or (V=7 61" ¢7) = <61 (S48 + L) - (K + NDka) G1,C'¢!
s iFl pmabp g L
- 2NQIJ€az€bC rr¢ N (
+Grs (ZlfiDiCJ - Zlﬁ%fﬂf‘])

Pf — N'9;p" + N0;™) Ok GriC ¢’

1 1 I~ _ o
+ <1 [—2D1Nj (C'T7r¢’) - NCTDi¢T + NZ(CIE-)FCJ} . (C:3)
C.2 Gravitino part

Repeating the same computation for the kinetic terms for gravitino as before, we obtain

(T 9,0, - 0,7, 00w,) + gy W O Y,
1 o~ 2 s~ o~
= N0 (v=rwlie,) - = (0 D0+ T T )

1 — 1 e
- (K + NDka> U, T7W; — meakeb’wir{r”,rab}%

1 _ ~ o~ g o~ s ~pe A~
+ KT, (N[F“W, TUr + NI[DR | TV — NI [Tk, Fl])\pj

2N
1 o~ o~ e o~
+ 5K (qu [T, T, — T, [T, F’“]xpj)
L (.9 iy, + 3.1 .11 5. .7
= (0, DT, + ¥, 1D, - T,I T D0, — T, DI w,;)
1 . o _ SN S
- W (\Izrrr@\m + \pirlmr) - (2a,€N[F”, T+ — (DkNl)F{F”,F“}> U
1 s o .
+ 05 (NI — NITT — NI — NFTTV) D,
1 . e o .
+ N\I/kﬁi (N9 — NITT — NTT — NETTY ) W,
1 _ ~. . o~ L~
- WY (NF” — N'TTV + NJITZ) ;. (C.4)

C.3 Decomposition of the other terms

For the other terms, we get
iGr,C TH (D’ =GR OkW) W, —iGr 1T (D" +G K oW TH¢!
7g1 J{ (7 —Ni9j”) [Zl (\Ilr—Ni\I/iJrNIA“iF\I!Z-) - @T—N@ﬁ]\@rﬁ) gf]
+0;p” [erfi (U, — NIW) - (@—N@j)firgq LNl (Zlfjfl —, T f'gf)}

- %afw T (= N'W) + (T, = N'T) T+ N (BT 4T ) | (C.5)
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and
Gry [ZI (T ™) & — e (DL de") CI}
1 , _ _ I~ K~
= 0k (7 = Norg”) (CT¢K = T T¢t) + Now? (CTCK - TTiT)] L (o)
D Variation of the canonical momenta under the generalized PBH trans-
formation

By chain rule,

5Ssen = /dd:c > %o, (D.1)
P
and let us define a symmetry transformation of §ren by
0

5 = [ d° 5 ® : D.2
e~/ P ) g (D.2)

Let us also assume that this symmetry has an anomaly, i.e.
3¢ Sren = / d'z Y %6 = / d?zleq)| €A (D.3)

P

Then, the definition of the constraint function C[¢] (5.18) can be written as

Cl¢] = - /ddx (Z I%5:® — |eg)| §A5> . (D.4)
(]

Now we derive how the &-symmetry acts on IT®. It is

50 5 5
~ %5a(a) 50(z) 50(x)

, )
/ Z < 55@ )) % (z) + M/ddquo)l A
_<I>(:):)/d y > (I¥(y)5cd' (y) — le()léAe)
>

= {C[f],ﬂq)}, (D.5)
which confirms (5.19).

~

551_[(1) ($) §ren = |:5§7 :| §ren + 5§Sren

E Derivation of the SUSY algebra without using Poisson bracket

In this appendix we compute the anticommutator {Q[¢], Q%[n+]}. By differentiating the
diffeomorphism Ward identity (5.2d) in the integral form with respect to ¥ (y), we get

ai 1 7 =1 i c i
0= [t &[e D12~ @ty — Sy B - 5Dl )

10 (D'W(0)-) (@(O)Hﬁi) T2+ D; (I Wiy, + @éoﬂﬂé)} xﬂg(y)

+ (6115 Dity) - D" (). (E.1)
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From the local Lorentz Ward identity (5.2e), we obtain

N A | 7 o= . 1
o d ab 7 ¢ 7 k abyrk
0 = /aM d T )\ |:€(0)[ai b] + Z (C(O)FabH[+‘ll(0)+’LFabH\Ij+hC>:| H\IJ (y) — ZA H\IIFab(y)

xT

(E.2)
Summing these two expressions for the parameter A\, = ezeiD[iﬁj], we obtain
0= /E)M d'z D; [fi(eaiﬂzb + T, U g4 + @(o)ﬂ'r%)} N 15 (y)
i j 1 Tij
+ (6115) Dity) - DM (v) - { DGTET (). (E:3)

It follows from (5.59) that

(Ol Q*lns]} = — /

douly) | DI I+ T+ T (),
OMNC oM

; ) 1 Py
= / doy, [(g H{},) ﬁi—ngng—ZDing@r J} i
oMNC
= dor. | D; (€10, — ¢F1IT8 KD (IF.n,) — 115 L
o | Di(§'Thyny — " yny) + £ D; (I ny) wLent
oMNC

= _QS[£577+]7 (E4)

where the first term in the third line is zero by Stokes’ theorem and the second term vanishes

due to the conservation law. One can confirm that the other commutators in (5.56) can be

obtained in the same way.
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