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1 Introduction

During the last few years, a number of solutions of 4- and 5-dimensional Super-Einstein-

Yang-Mills theories1 describing extremal black holes, strings and rings with different kinds

of non-Abelian hair have been obtained in completely analytic form [1–7]. The naive form

of their masses and entropies is puzzling, since the non-Abelian hair falls too fast at infinity

to contribute to the mass but it is relevant at the horizon and contributes to the entropy.

Thus, there seemed to be an infinite number of black holes with the same conserved charges

at infinity but completely different entropies.

In order to clarify the situation, the embedding of a specially simple 5-dimensional

black hole with non-Abelian hair in 10-dimensional Heterotic Supergravity was recently

studied in ref. [8]. This embedding leads to the identification of the physical parameters

of the 5-dimensional solution (Abelian charges and moduli) with the numbers of certain

branes of Heterotic String Theory, namely fundamental strings (F1s), solitonic 5-branes

(S5) and wave momentum in a compact direction (W). Furthermore, it was found that a

single gauge 5-brane [9] is responsible for all the black hole’s non-Abelian hair [10] and that

this gauge 5-brane contributes to the same 5-dimensional charge as the S5-branes with 8

units. Thus, this 5-dimensional charge, which occurs in the mass formula, should be split

into two different charges, Abelian and non-Abelian, both of which contribute to the mass.

In this way, all the branes of the solution contribute to the mass, as expected, and the

non-Abelian hair puzzle is solved by the correct stringy identification of the charges.

The solution to this puzzle poses new questions. Many of the non-Abelian (single)

black hole and string solutions we have constructed have very interesting near-horizon

geometries of a new kind that we have called dumbbell solutions in ref. [11] because they

interpolate between two Bertotti-Robinson-like spaces AdSn × Sm [12, 13] with different

1These are the minimal supersymmetrizations of the Einstein-Yang-Mills theories that admit supersym-

metric black-hole solutions. Therefore, they are gauged supergravities with non-Abelian gauge groups and,

due to the last condition, they must have at least 8 supercharges.
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radii. They were first noticed in ref. [14], but they arise for several values of n and m in

near-horizon limits of non-Abelian black holes and black strings. In particular, the near-

horizon geometry of the simple non-Abelian 5-dimensional black hole studied in ref. [8]

interpolates between two AdS2× S3 geometries with different radii which are found in two

different limits, ρ→ 0,∞ of the radial coordinate. One of them contains the contribution

of the non-Abelian hair (i.e. the contribution of the gauge 5-brane) while the other does not

and it is just the AdS2 × S3 one would obtain as the near-horizon geometry of a 3-charge

Abelian black hole.

The existence of this solution suggests its potential use to study the quantum transition

between one AdS2 × S3 vacuum and the other by Euclidean path integral methods,2 if a

suitable instanton associated to this Lorentzian solution can be found. As a matter of

fact, it is easier to work with and interpret the corresponding 10-dimensional solution of

Heterotic Supergravity that one obtains by oxidizing the 5-dimensional dumbbell solution.

In particular, as we are going to argue, in 10-dimensional language, the transition between

the two vacua can be interpreted as a transition between a configuration that includes a

gauge 5-brane and another in which there is no gauge 5-brane but there are 8 additional

S5-branes or, in other words, the decay of a gauge 5-brane into 8 S5-branes (whose overall

charge is the same).

In spite of its simplicity (as compared to the 5-dimensional one), it is very difficult to

Wick-rotate the 10-dimensional solution to obtain the instanton whose Euclidean action we

need to evaluate. We are going to argue that the most serious difficulties stem from the ex-

tremality of the solution. Indeed, the direct evaluation of the Euclidean action of extremal

black holes has well-known problems [16, 17] that do not arise when one deals with the

non-extremal solutions and finds their physical quantities of interest (Hawking temperature

and Bekenstein-Hawking entropy) taking then the extremal limit of these quantities.

Here we propose to use a non-extremal deformation of the solution which is not a

solution: a non-extremal off-shell (NEOS) deformation since all one needs is that the

NEOS configurations interpolate between the same vacua as the original solution (so they

contribute to the path integral for the same process), that they can be Wick-rotated and

that they have finite Euclidean action to take, afterwards, the extremal limit. There is no

systematic prescription to construct the NEOS configuration, but we manage to construct

a one-parameter family with just the right properties and we evaluate its Euclidean action

finding a result that we interpret physically as the amplitude of probability of decay of a

gauge 5-brane into 8 S5-branes in a background containing a number of other branes. The

value of the Euclidean action turns out to be one half of the difference of the entropies of

the non-Abelian and Abelian black holes with those branes.

This paper is organized as follows: in section 2 we describe the solutions we are going

to work with. In section 3 we compute the above-mentioned amplitude, setting up the

calculation in section 3.1, rewriting it in section 3.2 to make the Wick rotation easier,

introducing the NEOS configuration in section 3.3 and computing its Euclidean action in

section 3.4. In section 4 we discuss our results.

2See, for instance, the collection of reprints [15].
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2 Black holes with non-Abelian hair

In this work we are going to study solutions of 10-dimensional Heterotic Supergravity with

just one set of SU(2) gauge fields. Its action, in the string frame, is given by

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g|e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 − α′FAFA

]
, (2.1)

where the 2- and 3-form field strengths FA and H are defined as

FA = dAA +
1

2
εABCAB ∧AC , (2.2)

H = dB + 2α′
(
FA ∧AA − 1

3!
εABCAA ∧AB ∧AC

)
, (2.3)

α′ = l2s where ls is the string length and the 10-dimensional Newton constant G
(10)
N is given

in terms of this string length and the string coupling constant gs by

G
(10)
N = 8π6g2

s l
8
s . (2.4)

The string coupling constant gs is equal to the vacuum expectation value of the expo-

nential of the dilaton gs =<eφ>. In asymptotically-flat solutions, this should also be the

value of the dilaton at infinity, and, therefore, in these solutions gs = eφ∞ .

This action is part of the low-energy effective field theory action of any of the two

Heterotic Superstrings at first order in α′ since SU(2) is contained in both of their gauge

groups. From the supersymmetry point of view, this action is complete, i.e. the bosonic part

of a complete locally supersymmetric action. There is, however, another term which enters

the action at first order in α′, proportional to R2
− where R− is the Lorentz curvature 2-form

of one of the torsionful spin connections Ωab
±µ = ωabµ ± 1

2H
ab
µ . Also the Bianchi identity of the

3-form field strength H has another term to first order in α′, proportional to Tr (R− ∧R−).

Introducing these terms alone would break the supersymmetric completeness of the action

(a quartic term would be required to restore it [18]) and this is the reason why we are

not including them because we rely on supersymmetric solution-generating techniques to

obtain solutions. However, in order to consider the solutions of this action as legitimate

solutions of the full Heterotic String effective action to first order in α′ expansion, one has

to show that the terms quadratic in the curvature, evaluated on the solutions, are much

smaller than those we have kept. In the solutions that we are going to consider (eq. (2.10))

the Tr (R− ∧R−) and other R2
− terms are of higher order in α′.3

3From the point of view of α′ corrections, the vector fields in the Heterotic action may be used to suppress

the terms coming from the torsionful spin connection. In our case, the torsionful spin connection associated

to the S5-brane equals the SU(2) connection of the BPST instanton, so it is natural to use non-Abelian

fields. However, also Abelian bundles at large charge have been used in the literature in order to suppress

the R2
− terms [19, 20].
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In ref. [8] we obtained the following solution of SU(2) Heterotic Supergravity:

ds2 =
2

Z−
du

(
dv − Z+

2
du

)
− Z̃0

[
dρ2 + ρ2dΩ2

(3)

]
− dyidyi ,

e2φ = e2φ∞ Z̃0

Z−
,

B = − 1

Z−
dv ∧ du− Q̃0

4
cos θ dψ ∧ dϕ ,

AA = − ρ2

κ2 + ρ2
vAL ,

(2.5)

where dΩ2
(3) is the metric of the unit, round S3, vAL are the 3 left-invariant Maurer-Cartan

1-forms of SU(2), the coordinates yi, i = 6, 7, 8, 9 parametrize a T 4 and the Z functions

are given by

Z̃0 = 1 +
Q̃0

ρ2
+ 8α′

ρ2 + 2κ2

(κ2 + ρ2)2
, Z± = 1 +

Q±
ρ2

, (2.6)

where, in their turn, κ is the size parameter of a SU(2) BPST instanton and the charges

Q̃0, Q− and Q+ are related, respectively, to the number of solitonic five-branes, NS5, the

number of fundamental strings, NF1, and the number of units of momentum flowing along

the compact direction u of radius Rz, NW , by

Q̃0 = l2sNS5 , Q− = l2sg
2
sNF1 , Q+ =

l4sg
2
s

R2
z

NW . (2.7)

Apart from the S5, F1 and W (“Abelian”) constituents, there is a single gauge 5-brane

NG5 = 1 sourced by the SU(2) instanton [9].

When compactified on T 4 × S1, this solution describes a five-dimensional black hole

with non-Abelian hair, whose entropy and mass read

S = 2π
√
NS5NF1NW , (2.8)

M =
R2
z

l2sg
2
s

(NS5 + 8NG5) +
Rz
l2s
NF1 +

1

Rz
NW . (2.9)

The objects we have referred to as “Abelian” source Abelian 1-forms in the

5-dimensional theory and their charges contribute both to the mass and entropy. The

non-Abelian gauge 5-brane manifests itself as a globally regular gravitating instanton [10]

which contributes to the mass as 8 solitonic 5-branes would, but does not contribute to

the entropy at all. This makes this solution less thermodynamically favored than another

one with N ′S5 = NS5 + 8 solitonic 5-branes and no gauge 5-branes, which would have ex-

actly the same mass, the same Abelian charges and moduli at infinity but larger entropy

S′ = 2π
√

(NS5 + 8)NF1NW > S, suggesting that the spontaneous decay of a gauge 5-brane

into 8 solitonic 5-branes is thermodynamically possible.

However, the decay of a gauge 5-brane into 8 solitonic 5-branes can never take place

perturbatively, as the SU(2) instanton is protected by topology and it can only occur

non-perturbatively, by quantum tunneling.
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In order to study this decay, it is convenient to consider a related solution, obtained

by removing the 1’s from the functions Z0±, which can be seen as the near-horizon limit

of the above solution. This solution reads explicitly

ds2 =
2ρ2

Q−
dudv − Q+

Q−
du2 −R2

(
dρ2

ρ2
+ dΩ2

(3)

)
− dyidyi ,

e2φ = e2φ∞ R2

Q−
,

B = − ρ2

Q−
dv ∧ du− Q̃0

4
cos θdψ ∧ dϕ ,

AA = − ρ2

κ2 + ρ2
vAL ,

(2.10)

where R2 is the function

R2 = Q̃0 + 8α′
ρ2(ρ2 + 2κ2)

(κ2 + ρ2)2
. (2.11)

In the absence of non-Abelian fields, this solution would just be AdS3×S3×T4, globally.

This is the near-horizon geometry of the S5-F1-W brane configuration. However, the above

solution, with the non-Abelian fields switched on, interpolates between two AdS3×S3×T4

geometries of different radii:4

• In the ρ→ 0 limit the squared radius of the AdS3 × S3 factor5 is R2
0 = Q̃0.

• In the ρ→∞ limit the squared radius is R2
∞ = Q̃0 + 8α′.

Furthermore, the gauge fields are also different in these two limits:

• In the ρ→ 0 limit AA0 = 0.

• In the ρ→∞ limit AA∞ = −vAL , which is a pure gauge configuration.

In order to compare the two limits, we must gauge-transform AA∞ so that it also vanishes

identically, AA ′∞ = 0. After this gauge transformation, the 2-form B, which transforms

simultaneously via Nicolai-Townsend transformations due to the presence of the Chern-

Simons 3-form, takes the form

B′ = − ρ2

Q−
dv ∧ du− Q̃0 + 8α′

4
cos θdψ ∧ dϕ , (2.13)

which, on account of the first of eqs. (2.7), tells us that the asymptotic geometry contains

N ′S5 = NS5 + 8 S5-branes.

4The metric of the AdS3 factor appears in a somewhat unconventional form

ds2AdS3
=

2ρ2

Q−
dudv − Q+

Q−
du2 −R2

0,∞
dρ2

ρ2
, (2.12)

but it can be checked that the Riemann curvature tensor corresponds to an AdS3 space of radius R0,∞.
5The radius of the AdS3 and S3 factors are equal, and we refer to this common value as the radius of

the product geometry.
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We conclude that the complete solution eq. (2.10) can be interpreted as an interpolation

between the near-horizon geometries of a configuration with NS5 S5-branes and NG5 = 1

gauge 5-brane and another configuration with N ′S5 = NS5 + 8 S5-branes and NG5 = 0

gauge 5-branes.

3 Tunneling amplitude from the Euclidean path integral

3.1 Setting up the calculation

According to the Euclidean path integral approach, given an initial and a final state at

fixed Euclidean times, the transition probability amplitude between them is given by

Z =

∫
D[Ψ]e−SE [Ψ] , (3.1)

where is the integral is taken over all the Euclidean field configurations Ψ which satisfy

the boundary conditions associated to the given initial and final states and SE [Ψ] is their

Euclidean action. This probability can be well approximated by

Z ∼ e−SE [Ψ0] , (3.2)

for a classical solution Ψ0 with the given boundary conditions and finite Euclidean action,

i.e. an instanton. In some cases (when the initial and final states are vacua) this probability

can be interpreted as the decay rate of a metastable vacuum into a more stable one.

The simplest prescription to obtain a Euclidean solution is to Wick-rotate (t = −iτ)

a Lorentzian one. However, when applied to non-trivial field configurations (non-static

metrics, for example) this naive prescription fails to give real solutions of Euclidean sig-

nature unless some parameters of the solution are analytically continued into the complex

domain (see, for instance, the seminal ref. [21]). These Euclidean solutions can be thought

of as real sections of a complexified solution obtained by analytical continuation, but their

existence is by no means guaranteed and, in general, finding a real solution of Euclidean

signature associated to a Lorentzian one is a well-known and complicated problem.6

Here, we would like to find a real Euclidean solution associated to the Lorentzian

dumbbell solution described in eqs. (2.10) of the previous section. Such a solution, if of

finite Euclidean action, could be interpreted as an instanton interpolating between the two

vacua NS5, NG5 = 1, NF1, NW and NS5+8, NG5 = 0, NF1, NW and the (minus) exponential

of its Euclidean action would give the probability of decay from one vacuum to the other.

Predictably, after the preceeding discussion, in the search for this real Euclidean solution

we are going to meet several problems that we are going to try to solve.

The first problem arises in the Wick rotation of the Kalb-Ramond 2-form B, which

makes the electric part purely imaginary. This is usually dealt with by Wick-rotating the

“electric charge,” (Q−, here) as well, but this would prove fatal in this case because it

would make the dilaton and several components of the metric imaginary.

6See e.g. ref. [22] and references therein.
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As we are going to explain, the root of this problem may lie in the extremality of our

solution. Let us compare the Wick rotation of the solution at hands with that of a more

familiar solution: an electrically-charged Reissner-Norström black hole.

In the non-extremal regime there is no problem with the simultaneous Wick rotation

of the time t = −iτ and the electric charge q = −iqE because in the standard coordinates

in which the metric takes the form

ds2 =
(r − r+)(r − r−)

r2
dt2 − r2

(r − r+)(r − r−)
dr2 − r2dΩ2

(2) , (3.3)

with r± = M ±
√
M2 −Q2, the electric charge Q only occurs quadratically in the metric.

There is no extremal limit of this Euclidean solution, though, as the Lorentzian extremality

condition M2 − Q2 = 0 becomes M2 + Q2
E = 0 and the near-horizon limit is always

E2 × S2 (corresponding to the Lorentzian Rindler×S2) and not H2 × S2 (which would

correspond to AdS2×S2). Of course, one can always take the extremal limit of the physical

quantities computed in the non-extremal case after they are re-expressed in terms of the

Lorentzian charges. This is how, typically, the entropy and (vanishing) temperature of

extremal black holes are computed in the Euclidean approach because the direct Wick

rotation and the computation of the Euclidean action of the extremal solution present very

serious problems.7

Let us start with the problems presented by the direct Wick rotation of the extremal

solution.

First of all, if one tries to Wick-rotate directly the extremal Lorentzian solution in

which r+ = r− = M = ±Q one finds that one has to Wick-rotate the mass as well, losing

the reality of the metric. In our case there seems to be no way to make all the Wick-rotated

fields real (specially the metric, due to its complicated form) simultaneously no matter how

we treat the parameters of the solution.

There is a way out in the context of the 4-dimensional Maxwell-Einstein theory: one

can dualize the electric charge into a magnetic charge, which needs not be Wick-rotated.

Dyonic solutions such as eqs. (2.10) can be more difficult to rotate into a purely magnetic

solution but we can split the 2-form into its electric and a magnetic parts and dualize only

the electric one obtaining two magnetic fields (a 2-form and a 6-form) which do not need

to be Wick-rotated. We will explain how to do this in detail later but we can advance that

this trick turns out to be only good enough to keep the solution real for Q+ = 0. This

strongly suggests that we should try to work with a non-extremal Euclidean solution and

then take the extremal limit of the Lorentzian results.

On top of the problems related to the Wick rotation there is another problem that

seems to affect extremal solutions only and which supports the need of working with

non-extremal solutions. As shown in refs. [16, 17], a direct calculation of the entropy

of the extremal Reissner-Nordström black hole within the Euclidean approach gives a re-

7The Wick rotation of the extremal Kerr black hole provides another, slightly different, example of the

same problem which can only be solved by working with non-extremal Kerr black holes, which can be

Wick-rotated consistently if one also rotates the angular momentum, and then taking the extremal limit of

the results expressed in terms of the Lorentzian variables.
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sult (SBH = 0) which differs from the extremal limit of the entropy of the non-extremal

black holes, which is the same as the value obtained by counting microstates in the String

Theory context [23–25]. The technical reason is the existence of an inner boundary in the

extremal Euclidean solution which does not exist in the non-extremal family of solutions

for any value of the physical parameters.

The need to work with a non-extremal solution raises another problem, because the

non-extremal version of the black-hole solution eqs. (2.5) is not known and it has been

argued that it may not exist. We are going to circumvent this problem by constructing a

1-parameter non-extremal deformation of the solution eqs. (2.10) which is not a solution

of the equations of motion but interpolates between the same two vacua as the extremal

solution. This non-extremal off-shell (NEOS) deformation can be understood as a mere

regularization procedure or as a computation of the action over an off-shell family of field

configurations that contribute to the path integral in eq. (3.1) because they have the

boundary conditions demanded in this case. The extremal limit is, at the same time an

extremum of the action because it is a solution of the classical equations of motion and,

clearly, it makes sense to compute the action over the complete family of configurations

and then take the extremal limit.

In the rest of this section we are going to carry out the program explained above. First

of all, we are going to dualize the electric part of the Kalb-Ramond 2-form into a magnetic

6-form. This has to be done in the action and in the solution simultaneously. Next, we

will make a first attempt at the Wick rotation and we will see that for Q+ 6= 0 we need the

NEOS deformation. Finally, we will compute the Euclidean action for this family of field

configurations, taking into account all the boundary terms.

3.2 Dual action and solution

In order to dualize the electric part of the Kalb-Ramond 2-form B we replace it by the

sum of a pair of 2-forms B1 +B2 such that H1 ·H2 = 0 and then dualize the second into a

6-form B̃2 with 7-form field strength H̃2 = ?e−2φH2 such that H1 ∧ H̃2 = 0. The resulting

action is8

S =
g2
s

16πG
(10)
N

∫
d10x

√
|g|

{
e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 − α′FAFA

]

+
e2φ

2 · 7!
H̃2 − α′

2 · 6!
√
|g|
εµ1···µ6αβγδB̃µ1···µ6F

A
αβF

A
γδ

}
,

(3.4)

and any solution of this action satisfying the constraint H ∧ H̃ = 0 is a solution of the

original Heterotic Supergravity with

H = H + e2φ ? H̃ . (3.5)

8In the process of dualization a boundary term is also generated, which is not shown here because it

does not change the equations of motion, but which will be taken into account in the computation of the

Euclidean action.
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We can reexpress the solution eqs. (2.10) as the following purely magnetic solution of

the above action whose Wick rotation is potentially simpler:

ds2 =
2ρ2

Q−
dudv − Q+

Q−
du2 −R2

(
dρ2

ρ2
+ dΩ2

(3)

)
− dyidyi ,

e2φ = e2φ∞ R2

Q−
,

B = −Q̃0

4
cos θdψ ∧ dϕ ,

B̃ = −e
−2φ∞Q−

4
cos θdψ ∧ dϕ ∧ dy6 ∧ dy7 ∧ dy8 ∧ dy9 ,

AA = − ρ2

κ2 + ρ2
vAL .

(3.6)

In order to proceed with Wick rotation, we first need to identify an appropriate time

coordinate. Let us first begin with the case in which there is no momentum, Q+ = 0. In

this case, we can make the change of variables v = (t − x)/
√

2, u = (t + x)/
√

2, which

makes 2dudv = dt2− dx2. Then we substitute t = −iτ , and redefine with a global sign the

metric to get a positive-definite Euclidean metric (the rest of fields are unaffected)

ds2
E =

ρ2

Q−
(dτ2 + dx2) +R2

(
dρ2

ρ2
+ dΩ2

(3)

)
+ dyidyi . (3.7)

This solution interpolates between two H3 × S3 geometries of radii R0 and R∞ and

is a gravitational instanton which represents a tunneling history in which one H3 × S3

vacuum decays into another one of larger radius, or, according to the previous discussion,

a history in which a gauge 5-brane decays into 8 solitonic 5-branes. We may just compute

the Euclidean action for this solution which is real but, as we will see, it vanishes.

3.3 The NEOS deformation and its Euclideanization

This is closely related to the fact that the solution with Q+ = 0 does not produce a black

hole in five dimensions. Indeed, it is known that the on-shell Euclidean action for black

hole solutions is related to the entropy of the black hole. For Q+ = 0 the entropy of the

would-be black hole vanishes so it is reasonable that the Euclidean action does so. It is

necessary to have Q+ 6= 0 in order to get a non-vanishing action.9

When Q+ 6= 0 things are more involved: after the change of variables v = (t− x)/
√

2,

u = (t+ x)/
√

2

ds2 =
1

Q−

[(
ρ2 − Q+

2

)
dt2 −Q+dtdx−

(
ρ2 +

Q+

2

)
dx2

]
−R2

(
dρ2

ρ2
+ dΩ2

(3)

)
− dyidyi ,

(3.8)

there is a crossed term in the metric Q+dtdx that becomes imaginary after the Wick

rotation unless we rotate Q+ as well. But Q+ occurs in more places in the metric, which

would become complex.

9The Q+ = 0 solution becomes singular in d = 5, while, for Q+ 6= 0 it is AdS2 × S3, the near-horizon

limit of a regular, extremal black hole.
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As explained before, this problem can be solved by using a 1-parameter a NEOS

deformation of the metric10

ds2
NEOS =

1

Q−

[(
(ρ+ ρ0)2 − Q+

2

)
dt2 − adtdx−

(
(ρ+ ρ0)2 +

Q+

2

)
dx2

]
−R2

[
(ρ+ ρ0)2dρ2

(ρ+ ρ0)4 − ρ4
0

+ dΩ2
(3)

]
− dyidyi ,

(3.9)

where

ρ2
0 ≡

1

2

√
Q2

+ − a2 , (3.10)

and R(ρ) has the same form as before.

Even though the NEOS configuration (3.9) is not a solution in general, it shares with

the original extremal solution several interesting properties. If we consider the case of

pure gauge vector fields, so that R(ρ) is constant, it is a solution with the geometry

AdS3 × S3 × T4, albeit in different coordinates. With non-trivial gauge fields the metric

interpolates between two AdS3 × S3 ×T4 geometries with radii R0 and R∞, so the NEOS

configurations contribute to the path integral that describes the transition between these

two vacua, and the a = Q+ extremizes the Euclidean action.

Furthermore, for arbitrary values of a, this metric can be analytically continued to a

Euclidean metric by making t = −iτ , a = iℵ. In general, it is not a solution, but when the

“extremality condition” a2 = Q2
+ is satisfied in the Lorentzian configuration, we recover

the solution (3.8).

As discussed above, we are going to Wick-rotate the above NEOS configuration first,

then we are going to compute its Euclidean action and at the end we are going to take the

a2 → Q2
+ limit in the result.

First, let us massage a bit the metric by making the change of coordinates

t =

√
Q+/2 + ρ2

0√
2ρ0

t′ −
√
Q+/2− ρ2

0√
2ρ0

y ,

x =

√
Q+/2 + ρ2

0√
2ρ0

y −
√
Q+/2− ρ2

0√
2ρ0

t′ ,

(3.11)

which is a Lorentz boost. This sets the metric in a diagonal form

ds2 =
1

Q−

{[
(ρ+ ρ0)2 − ρ2

0

]
dt′2 −

[
(ρ+ ρ0)2 + ρ2

0

]
dy2
}

−R2

[
(ρ+ ρ0)2dρ2

(ρ+ ρ0)4 − ρ4
0

+ dΩ2
(3)

]
− dyidyi .

(3.12)

In the ρ → 0 limit, the t′ − ρ sector of the metric is just a 1 + 2-dimensional Rindler

spacetime and, therefore, it corresponds to a non-extremal horizon whose Hawking tem-

perature we will compute later.

To complete the definition of this field configuration we have to determine the period

of the coordinate y, which is assumed to be compact in the original solution we started

10The matter fields in the solution eqs. (3.6) are unaffected by this deformation.
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with. By comparing the area of the horizon of this metric and of the original one we

conclude that11

2πRy ≡
∫
dy =

√
Q+/2

ρ0

∫
du =

√
Q+/2

ρ0
2πRz . (3.13)

Then, we perform Wick rotation: t′ = −iτ , a = iℵ and, after an overall change of sign,

we get the Euclidean metric

ds2
ENEOS =

1

Q−

{[
(ρ+ ρ0)2 − ρ2

0

]
dτ2 +

[
(ρ+ ρ0)2 + ρ2

0

]
dy2
}

+R2

[
(ρ+ ρ0)2dρ2

(ρ+ ρ0)4 − ρ4
0

+ dΩ2
(3)

]
+ dyidyi ,

(3.14)

where now

ρ2
0 =

1

2

[
Q2

+ + ℵ2
]1/2

. (3.15)

Note that the R = constant configurations (with pure gauge vector fields) are solutions

(just as their Lorentzian partners) and have the geometry of H3 × S3 × T4 with radius R.

In the ρ → 0 limit, redefining the radial coordinate ρ ≡ ρ0r
2/R2

0, the metric takes

the form

ds2
E =

1

Q−

[
2r2 ρ

2
0

R2
0

dτ2 + 2ρ2
0dy

2

]
+ dr2 +R2

0dΩ2
(3) + dyidyi , (3.16)

and, to avoid a conical singularity at r = 0, the Euclidean time τ must be periodic with

period β so that the Hawking temperature (undoing the Wick rotation of the a parameter) is

TH = β−1 =
1

2π

√
(Q2

+ − a2)1/2

Q̃0Q−
, (3.17)

and vanishes in the a→ Q+ limit.

3.4 Computation of the Euclidean action

The complete Euclidean action that we want to compute is given by

SE =
g2
s

16πG
(10)
N

∫
M
d10x

√
|gE |

{
e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 + α′FAFA

]

+
e2φ

2 · 7!
H̃2 + α′

εµ1···µ6αβγδ

2 · 6!
√
|gE |

B̃µ1···µ6F
A
αβF

A
γδ

}

+
g2
s

8πG
(10)
N

∫
∂M

d9x
√
|hE |

[
− e2φ

2 · 6!
nµ(H̃ · B̃)µ − e−2φK

]
+ c ,

(3.18)

where K is the trace of the extrinsic curvature of the boundary ∂M, c is a normalization

constant which is fixed by the criterium that SE = 0 when evaluated on the vacuum (taken

to be H3 × S3 × T4 with radius R∞) and (H̃ · B̃)µ ≡ H̃µν1···ν6B̃
ν1···ν6 . This surface term

11Actually, we only need to impose that the period of y tends to this quantity in the limit a2 → Q2
+.

– 11 –



J
H
E
P
1
2
(
2
0
1
7
)
0
9
1

appears when we dualize the Kalb-Ramond 2-form B. For the normalization constant, we

will use the usual prescription

c =
g2
s

8πG
(10)
N

∫
∂M

d9x
√
|hE |e−2φK0 , (3.19)

where K0 is the extrinsic curvature of the boundary when it is embedded in the vacuum.

In order to evaluate the integrand of the action it is convenient to use the equations

of motion, but here we have to be very careful because we are not dealing with a solution,

and not all of them are satisfied. In particular, the equation of motion of the dilaton is not

satisfied and we have to add a “source” term δ(ρ;ℵ)

e−2φ

[
R− 4(∂φ)2 +

1

2 · 3!
H2 + α′FAFA

]
− 4∇µ(e−2φ∂µφ)− e2φ

2 · 7!
H̃2 = δ(ρ;ℵ) , (3.20)

which can be simply computed by plugging the fields in the l.h.s.

We know, however, that δ = 0 for global H3×S3×T4 and also that limρ→∞ δ(ρ;ℵ) = 0,

because the configuration we are considering asymptotically tends to a solution. Indeed, δ

decays so fast that the integral

∆(ℵ) ≡ 1

Q−

∫ ∞
0

dρ(ρ+ ρ0)R4(ρ)δ(ρ;ℵ) , (3.21)

converges.

Using the dilaton equation, the Euclidean action eq. (3.18) takes a simpler form:

SE =
g2
s

16πG
(10)
N

∫
M
d10x

√
|gE |

{
e2φ

7!
H̃2+α′

εµ1···µ6αβγδ

2·6!
√
|gE |

B̃µ1···µ6F
A
αβF

A
γδ+δ(ρ;ℵ)

}

+
g2
s

8πG
(10)
N

∫
∂M

d9x
√
|hE |

{
nµ

[
2e−2φ∂µφ− e2φ

2·6!
(H̃ ·B̃)µ

]
−e−2φ(K−K0)

}
. (3.22)

Next, we massage the first term in the integrand

e2φ

7!
H̃2 =

e2φ

6!
H̃µ1···µ7∇µ1B̃µ2···µ7 =

1

6!
∇µ
[
e2φ
(
H̃ · B̃

)µ]
− 1

6!
∇ρ
(
e2φH̃ρµ1···µ6

)
B̃µ1···µ6 .

(3.23)

The first term cancels identically the H̃ · B̃ boundary terms and the second combines with

the B̃FF term into a term proportional to the equation of motion of B̃,12 which happens

to be identically satisfied,13 so we get

SE(ℵ) =
g2
s

16πG
(10)
N

{∫
M
d10x

√
|gE |δ(ρ;ℵ) + 2

∫
∂M

d9x
√
|hE |e−2φ [2nµ∂

µφ− (K −K0)]

}
.

(3.25)

12This term has the form

− 1

6!
B̃µ1···µ6

[
∇ρ
(
e2φH̃ρµ1···µ6

)
− α′ ε

µ1···µ6αβγδ

2
√
|gE |

FAαβF
A
γδ

]
. (3.24)

13Incidentally, this is the same result we would have obtained had we worked with a complex B, which

shows that, in this case, the imaginary electric part is not harmful.
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Since the only non-compact coordinate is ρ, the boundary of M consists just of the

asymptotic region ρ = ρ∞, where ρ∞ is a regulator that must be taken to infinity eventually.

In the Euclidean NEOS configuration that we are considering, with the Euclidean time

compactified with the period β = 1/TH the region ρ = 0 is not a boundary.

In the limit ρ→∞

nµ∂µφ = O(ρ−4) , and K −K0 = O(ρ−4) , (3.26)

so these terms decay too fast to contribute to the integral. Therefore, only the bulk term

gives a non-zero contribution and the Euclidean action is given by

SE(ℵ) =
g2
s

16πG
(10)
N

VT4VS32πRyβ∆(ℵ) , (3.27)

where the 10-dimensional Newton constant is given in eq. (2.4), VT4 = (2πls)
4 is the volume

of the T4, VS3 = 2π2 is the volume of the S3 of unit radius, Ry is the radius of the compact

coordinate y given in eq. (3.13), β = 1/TH is the period of the Euclidean time given

implicitly in eq. (3.17) and ∆(ℵ) is the integral defined in eq. (3.21). Substituting in the

above expression, we find that

SE(ℵ) =
πRz

√
Q̃0Q+Q−

2l4s

∆(ℵ)

ρ2
0

. (3.28)

Note that this is a finite result for all the finite values of ρ0. These NEOS configurations

are, therefore, instantons, even if they are not solutions. We now have to undo the Wick

rotation ℵ = −ia, so that ρ2
0 = 1

2(Q2
+ − a2)1/2 and take the limit a→ Q+.

In this limit both ∆(a) and ρ0 go to zero, but the limit of ∆(a)/ρ2
0 turns out to be

finite and takes the value

lim
a→Q+

∆(a)

ρ2
0

= g2
s log

(
1 +

8α′

Q̃0

)
= g2

s log

(
1 +

8

NS5

)
≈

8g2
S

NS5
, (3.29)

where we have used the assumption that NS5 � 8.

This leads us to our final result for the Euclidean action associated to the Lorentzian

solution interpolating between two brane configurations we started from

SE = 4π

√
NF1NW

NS5
, (3.30)

which leads to the transition probability

|A|2 ∼ e
−8π

√
NF1NW
NS5 . (3.31)

4 Discussion

First of all, we observe that, quite remarkably, this result coincides with e−∆SBH , where

∆SBH is the change of Bekenstein-Hawking entropy in the process:

∆SBH = 2π
√
NF1NW (NS5 + 8)− 2π

√
NF1NWNS5 ≈ 8π

√
NF1NW

NS5
, (4.1)
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which is what one can expect on general grounds: for a single black hole, the Euclidean

action is proportional to the Bekenstein-Hawking entropy [21, 26]14 and the Lorentzian

solution we started from was interpreted as connecting two different black-holes near-

horizon geometries, so it is natural that the Euclidean action yields the difference between

the entropies of two black holes.

Notice that the sign in the exponent is opposite to what one would expect from sta-

tistical mechanics, where the decay rate would be estimated to be of the order of e+∆S . In

our case, the entropy difference is positive, so the process is favored thermodynamically.

However, the decay process involves topology change, which is highly suppressed. This way

we can interpret the minus sign in e−∆S as the fact that topology constrains the decay so

effectively that it succeeds in suppressing the process even though it involves an increase

of entropy.

Given the composition of the string background corresponding to the black hole (F1s,

NS5s etc), the result can also be interpreted as the decay rate of a gauge 5-brane which

lives in a configuration of fundamental strings, momentum waves and solitonic 5-branes.

When the numbers of each kind of component are comparable, this probability is tiny

and the gauge 5-brane, though unstable, is long lived. However, when the number of S5-

branes is much larger than the number of strings and waves, NS5 > NF1NW , the gauge

5-branes decay quickly into S5-branes. One may say that S5-branes are “hungry” for gauge

5-branes, and the larger their number the faster they will eat them.

The result suggests that the non-Abelian 5-dimensional black hole eq. (2.5) whose

near-horizon limit gives the Lorentzian “dumbbell” solution we started from eq. (2.10)

is non-perturbatively unstable. Furthermore, and possible related to this fact, it seems

very difficult or, perhaps, it is impossible, to find non-extremal black holes with the same

charges and non-Abelian fields. Clearly, more work is necessary to clarify the situation.

Finally, we should comment on the relation between the result obtained here and the

method employed and Brill’s work ref. [27] in which he computed the Euclidean action

of an instanton whose Lorentzian counterpart connects several (at least three) asymptotic

AdS2×S2 geometries and which has non-trivial topology.15 These solutions can be used to

study the non-perturbative splitting of a Reissner-Nordström black hole into smaller black

holes. In that case the Wick rotation offers no special complications but the geometry of the

instanton is very complicated and it is not clear how to deal with the inner boundaries iden-

tified in refs. [16, 17]. The solution studied here is topologically simpler (at least from the

metric point of view), but we have argued that a non-extremal off-shell (NEOS) deformation

had to be used to go to the Euclidean, compute the action and then go back to Lorentzian

signature and take the extremal limit, avoiding many of the pitfalls one finds along the way.

We expect the NEOS technique developed here to be of further use in other contexts.

14Again, we stress that, for extremal black holes, this calculation has to be made in the family of non-

extremal black holes and then one has to take the extremal limit in the result to avoid the problems found

in refs. [16, 17], as we have done here using a NEOS family.
15These solutions are obtained from the Papapetrou-Majumdar family of solutions that describe Reissner-

Nordström black holes in equilibrium [28, 29] with more than one center. Removing the constant part of

the harmonic function one finds an AdS2 × S2 region in the near-horizon limits and another AdS2 × S2

region at infinity whose charges are the sum of all those of the other regions. With just one center, one

finds a single, global AdS2 × S2 solution, with N centers one find N + 1 AdS2 × S2 regions.
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